Thermo-responsive *In Situ* Gels Loaded with Prednisolone Niosomal Nanoparticles for the Treatment of Skin Inflammation

By

Rafa Abed Alnaser Aburayya

Supervisor

Prof. Rania Hamed

Al-Zaytoonah University of Jordan, 2024

Abstract

Prednisolone (PRD) is known for its anti-inflammatory effects on the skin. PRD was loaded into non-PEGylated and PEGylated niosomes to develop a dermal delivery system while maintaining vesicles' integrity and avoiding their aggregation. All niosomes were then entrapped in thermo-responsive *in situ* gels to enhance dermal application. The thin-film technique was used to prepare niosomes with diameters of 354.3 ± 1.9 nm, polydispersity index (PDI) of 0.3 ± 0.0 , and ζ -potential of -19.4 ± 1.0 mV. The physical characteristics (particle diameter, PDI, and ζ -potential) of niosomes were enhanced by PEGylation to 314.9 ± 4.2 nm, 0.1 ± 0.0 , and -34.6 ± 2.2 mV, respectively. PEGylated niosomes exhibited higher entrapment efficiency (EE%) of $93.4 \pm 2.2\%$ and drug loading (DL%) of $15.8 \pm 0.4\%$ compared to non-PEGylated niosomes (EE%: $85.2 \pm 1.3\%$, DL%: $12.2 \pm 1.5\%$). In addition, PEGylated niosomes demonstrated a sustained drug release profile for 6 h, while the non-PEGylated niosomes attained a complete drug release after

4 h. The rheological analysis exhibited a pseudoplastic flow behavior. Biological assessment for safety and efficacy proved the biocompatibility and suitability of PRD niosomes and their corresponding gels against human gingival fibroblasts. Moreover, a significant qualitative and quantitative reduction in rat paw inflammation was induced by formalin induction (p < 0.0001). Stability assessments and physicochemical and rheological characterization were carried out to assess the effect of PEGylation on niosomes. Compared to the non-PEGylated formulation, the stability investigations showed that PEGylated niosomes loaded *in situ* gel had a superior behavior regarding dynamic light scattering. The rheological characteristics of the gel did not significantly change during the three-month stability study. With high loading capacity, sustained release, and stable vesicles, the gel containing PEGylated niosomes has intriguing potential for dermal delivery.

Keywords: Dermal delivery, In situ gel, Stability, PEGylated niosomes, Prednisolone