

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department

Study plan No.	2021/2022		University Special	lization	Master of M	ath.
Course No.	0101722		Course name		Abstract Algebra (2)	
Credit Hours	3		Prerequisite/ Co-requisite		0101721	
Course type	□ MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY MANDATORY REQUIREMENT	□ Support course family requirements	✓ Mandatory requirements	Elective requirements
Teaching style	□ Full online learning		□ Blended learning		✓ Traditional learning	
Teaching model	□ 1 Synchronous	: 1 asynchronous	□ 1 face to face : 1 asynchronous		✓ 2 Trad	litional

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

Rings and ideals, nilpotents and idempotents in rings, R-modules, products and sums of R-modules, exact sequences and split exact sequences, simple and semisimple R-modules, essential and small submodules, the ring of endomorphisms of an R-modules, projective and injective modules, regular rings, the radical and the socle of an R-module, Noetherian and Artinian R-modules.

Learning resources

Course book information (Title, author, date of issue,	Abstract Algebra An Introductory Course, by : Gregory T. Lee			
publisher etc)				
Supportive learning	• Abstract Algebra. By: I. N. Herstiein			
resources	• Abstract Algebra. By: A. P. Hillman and G. W. Alexanderson			
(Books, databases, periodicals, software,	• Abstract Algebra. By: Abraham P. Hilman and Gerald L. Alexan			
applications, others)	• Groups, rings and field. By: T. S Blyth and E. F. Robertson.			
Supporting websites	Abstract Algebra Notes- Free Harvard Courses.			
	Abstract Algebra Notes-You Tube.			
	• http://www.ugrad.math.ubc.ca/coursedoc/math100/index.html			
	Online tutorials and quizzes			
The physical environment for	✓ Class □ labs □ Virtual educational □ Others			
teaching	room platform			
Necessary equipment and				
software				
Supporting people with				

جامعة الزيتونة الأردنية

Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Cour	Course Plan for Bachelor program - Study Plan Development and Updating Procedures Mathematics Department	
special needs			
For technical support			

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program
-	Knowledge	learning output code
K1	Recognize advanced concepts in abstract algebra.	MK1
K2	Develop reading and writing proofs in abstract algebra.	MK1
K3	Discus a variety of examples and counterexamples in abstract algebra.	MK1
	Skills	
S1	Exercise abstract algebra research and scientific writing.	MS2
S2	Testing the scientific methodology as a way of thinking and a tool in	MS3
	facing algebra problems.	
	Competences	
C1	Develop logical thinking and scientific algebraic research methods.	MC2

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First/Second exam	30%	30%	30%	30%
Participation / practical applications	0	0	20%	30%
Asynchronous interactive activities	30%	30%	0	0
Final exam	40%	40%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Rings, Basic Properties of Rings and Subrings	Lecture	135-142
2	Integral Domains and and The Characteristic of a Ring.	Lecture	142-149
3	Ideals and Factor Rings.	Lecture	149-152
4	Ring, Isomorphisms and Automorphisms and	Lecture	155 167
	Isomorphism Theorems for Rings .		155-107
5	Prime and Maximal Ideals.	Lecture	167-171
6	Polynomial Rings and Euclidean Domains.	Lecture	171-182
7	Principal Ideal Domains and Unique Factorization	Lecture	182-188
	Domains.		102-100
8	Irreducibility and Roots and Irreducibility over the	Lecture	101 200
	Rationals.		191-200
9	Irreducibility over the Real and Complex Numbers and		200-205
	Irreducibility over Finite Fields		200-203
10	Mid Exam 30%		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E		Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department			
11	Vector S	Spaces	Lecture	207-210	
13	Basis and Dimension		Lecture	210-215	
14	Field Extensions		Lecture	215-221	
15	Splitting	g Fields and Applications to Finite Fields	Lecture	221-229	
16	Final E	xam 50%			