
" عر اقة وجودة"
"Tradition and Quality"
QF01/0408-4.0E $\quad$ Course Plan for Bachelor program - Study Plan Development and Updating Procedures/

| Study plan No. | 2021/2022 |  |  | University Specialization |  |  | Bachelor of Mathematics |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Course No. | 0101322 |  |  | Course name |  |  | Linear Algebra (2) |  |
| Credit Hours | 3 |  |  | Prerequisite/ Co-requisite |  |  | Linear Algebra (1) |  |
| Course type | $\square \underset{\text { MANDATORY }}{\text { UNIVERSITY }}$ REQUIREMEN - |  | UNIVERSITY elective REQUREMENTS | $\square \begin{aligned} & \text { FACULTY } \\ & \text { MANDTORY } \\ & \text { REOUIREMENT }\end{aligned}$ |  | Support course family requirements | $\checkmark$ Mandatory requirements | $\square$ Elective requirements |
| Teaching style | $\square$ Full online learning |  |  | $\checkmark \quad$ Blended learning |  |  | $\square$ Traditional learning |  |
| Teaching model | $\square 1$ Synchronous: 1 asynchronous |  |  | $\checkmark \quad 1$ face to face : 1 asynchronous |  |  | $\square 2$ Traditional |  |

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

| Name | Academic rank | Office No. | Phone No. | E-mail |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  | Number of students | $\begin{array}{c}\text { Teaching } \\ \text { style }\end{array}$ | \(\left.\begin{array}{c}Approved \\

model\end{array}\right]\)

## Brief description

General vector space, Row space, Column space and Null space, Rank and nullity, Eigenvalues and eigenvectors, Similar matrices and diagonalization, Inner products, Inner products generated by matrices, Angle and orthogonality in inner product spaces, Orthonormal bases, Gram-Schmidt process, QR - decomposition, Diagonalization and quadratic forms, General linear transformations, Kernel and range, Inverse linear transformations

Learning resources

| Course book information (Title, author, date of issue, publisher ... etc) | Elementary Linear Algebra, by Howard Anton, $8^{\text {th }}$ Edition |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Supportive learning resources <br> (Books, databases, periodicals, software, applications, others) | 1- "Linear Algebra and its Applications", by David C. Lay and Steven R. Lay and Judi J. McDonald, $5^{\text {th }}$ Ed., (2015), Addison-Wesley. <br> 2- "Elementary Linear Algebra", B. Kolman and D. Hill, $9^{\text {th }}$ Ed., (2008), Pearson. <br> 3- "Linear Algebra with Applications", Steven J. Leon, $9^{\text {th }}$ Ed., (2015), Pearson. <br> 4- "Linear Algebra; An introduction", by R. Larson, $8^{\text {th }}$ Ed., (2017), Cengage. |  |  |  |
| Supporting websites | 1- https://en.wikipedia.org/wiki/Linear_algebra <br> 2- http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ <br> 3- http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring- <br> 2010/video-lectures/ |  |  |  |
| The physical environment for teaching | $\checkmark$ Class room | $\square$ labs | $\checkmark \quad$ Virtual educational platform | $\square$ Others |
| Necessary equipment and software |  |  |  |  |

جـامعـة الـزيتـونـــــة الأردنيــة
Al-Zaytoonah University of Jordan
كلية العلُوم وتكنولوجيا المعلومـات
Faculty of Science and information Technology
" عر اقة وجودة"
"Tradition and Quality"
QF01/0408-4.0E
Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department

| Supporting people with <br> special needs |  |
| :--- | :--- |
| For technical support |  |

Course learning outcomes ( $\mathbf{S}=$ Skills, $C=$ Competences $K=$ Knowledge,)

| No. | Course learning outcomes | The associated program learning output code |
| :---: | :---: | :---: |
| Knowledge |  |  |
| K1 | Recognize the notion of row space, column space and null space | MK1 |
| K2 | Recognize the notion of eigenvalues, eigenvectors and diagonalization | MK1 |
| K3 | Recognize the notion of linear transformation. | MK1 |
| K4 | Describe the different type of linear transformations. | MK2 |
| K5 | Memorize the properties of inner product spaces. | MK1 |
| K6 | Recognize quadratic forms. | MK2 |
| Skills |  |  |
| S1 | Justify whether a matrix is triangular, diagonalizable, symmetric, and/or orthogonal | MS1 |
| S2 | Use the definition and properties of similar matrices | MS2 |
| S3 | Analyze whether a linear transformation is one-to-one or onto. | MS4 |
| S4 | Verify the Cauchy-Schwarz Inequality, the Triangle Inequality, and the Pythagorean Theorem | MS5 |
|  | Competences |  |
| C1 | Work independently to solve assignments in the course. | MC1 |
| C2 | Develop the individual's ability to communicate and interact with other mathematical courses. | MC 2 |

Mechanisms for direct evaluation of learning outcomes

| Type of assessment / <br> learning style | Fully electronic <br> learning | Blended learning | Traditional <br> Learning <br> (Theory Learning) | Traditional <br> Learning (Practical <br> Learning) |
| :--- | :---: | :---: | :---: | :---: |
| Midterm exam | $30 \%$ | $\mathbf{3 0 \%}$ | $40 \%$ | $30 \%$ |
| Participation / <br> practical applications | 0 | $\mathbf{0}$ | $10 \%$ | $30 \%$ |
| Asynchronous <br> interactive activities | $30 \%$ | $\mathbf{2 0 \%}$ | 0 | 0 |
| Final exam | $40 \%$ | $\mathbf{5 0 \%}$ | $50 \%$ | $40 \%$ |

Schedule of simultaneous / face-to-face encounters and their topics

| Week | Subject | learning style | Reference |
| :--- | :--- | :---: | :---: |
| $\mathbf{1}$ | I. Row space, Column space and Null space Consistency <br> and the general solution of a linear system $A X=B$. <br> Bases for the row space, column space and null space. | Lecture | $246-259$ |
| $\mathbf{2}$ | Rank and nullity of a matrix. Relationship between rank and | Lecture |  |


" عر اقة وجودة"
"Tradition and Quality"

QF01/0408-4.0E
Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department

|  | nullity(the dimension theorem) |  | 259-270 |
| :---: | :---: | :---: | :---: |
| 3 | II. Real Inner- Product Spaces <br> Properties. Length and distance in an inner- product space. | Lecture | 275-286 |
| 4 | Cauchy-Schwarz inequality. <br> Triangle inequality. Angle between two vectors. | Lecture | 287-297 |
| 5 | Orthogonality. Orthogonal and orthonormal sets. Gram-Schmidt Process. | Lecture | 298-311 |
| 6 | Coordinates relative to orthonormal bases. QR - Decomposition of an $m \times n$ matrix. | Lecture | 298-311 |
| 7 | Orthogonal matrices. Change of bases and transition matrix. | Lecture | 320-330 |
| 8 | III. Eigenvalues, Eigenvectors and Diagonalization <br> Bases for eigenspaces. Finding the eigenvalues of any positive integer power, the transpose and the inverse (if exists) of a square matrix. Midterm Exam | Lecture | 337-346 |
| 9 | Procedure for diagonalizing a matrix. Relationship between having distinct eigenvalues and diagonalizability. <br> Diagonalization and computing powers of a matrix. | Lecture | 347-354 |
| 10 | Orthogonal diagonalization. Symmetric matrices and orthogonal diagonalizability. | Lecture | 357-360 |
| 11 | IV. Linear Transformations (L.Ts.) <br> Finding linear transformations from images of bases vectors. Composition of linear transformations. Kernel and range of a L.T. | Lecture | 365-373 |
| 12 | Rank and nullity of a L.T. Dimension theorem for L.Ts. One-to-one L. Ts and their inverse L.Ts. | Lecture | 376-387 |
| 13 | Matrices of general L.Ts. Similar matrices. | Lecture | 390-411 |
| 14 | V. Applications to Quadratic Forms Matrix representation of quadratic forms. Positive definite quadratic forms. | Lecture | 447-453 |
| 15 | Diagonalization of quadratic forms.Quadratic forms and conic Sections. Quadratic forms and quadric Surfaces. | Lecture | 454-467 |
| 16 | Final Exam |  |  |

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

| Week | Task / activity | Reference | Expected results |
| :--- | :--- | :---: | :--- |
| 1 | Background | On vector space and bases. <br> Students Notes or any Linear <br> algebra book | Self-reading and <br> Discussion |
| 2 | Video 1 Solving exercises | E-learning | Discussion in the class |
| 3 | Home work1: On the subjects <br> studied on the first three weeks | Lecture notes) | Submit a pdf or word <br> sheet |
| 4 | Quiz 1 | On the subjects studied on the <br> first three weeks | Submitting on the E- <br> learning |
| 5 | Assignment 1: On the rank and <br> nullity. | Internet sources and the other <br> Supportive learning resources | Presentation |


" عراقة وجودة"
"Tradition and Quality"

## QF01/0408-4.0E <br> Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department

| 6 | Video 2 | Solving exercises | Discussion in the class |
| :--- | :--- | :---: | :--- |
| 7 | Homework 2 On the subjects <br> studied in the weeks 4,5 and 6 | (Lecture notes) | Submit a pdf or word <br> sheet |
| 8 | Assignment 2: On orthogonal <br> vectors. | Internet sources and the other <br> Supportive learning resources | Submitted with the <br> midterm |
| 9 | Self-reading | Linear Transformations | Talk |
| 10 | Video3 Solving exercises | E-learning | Discussion in the class |
| 11 | Homework 3: On the subjects <br> studied after the midterm | (Lecture notes) | Submit a pdf or word <br> sheet |
| 12 | Self-reading | Rank and nullity of a L.T. <br> Dimension theorem for L.Ts. | Talk |
| 13 | Quiz 2 | On the subjects studied on the <br> subject studied after midterm | Submitting on the E- <br> learning |
| 14 | Matrix representation of <br> quadratic forms. <br> Positive definite quadratic forms. | Internet sources and the <br> reference book | Video |
| 15 | Video 4 Revision of all the <br> course | E-learning |  |
| 16 | Final Exam |  |  |

