
" عر اقة وجودة"
"Tradition and Quality"

Study plan No.	2022/2021		University Specialization		Bachelor of Mathematics	
Course No.	0101140		Course name		Statistic and Probability	
Credit Hours	3		Prerequisite/ Co-requisite		
Course type	\squareMANDATORY UNIVERSITY REQUIREMENT	$\begin{array}{\|l\|l} \hline \square & \begin{array}{l} \text { UNIVERSITY } \\ \text { ELECTIEE } \\ \text { REQUIREMENTS } \end{array} \end{array}$	YAACULTY MANDATORY REQUIREMENT	\square Support course family requirements	\square Mandatory requirements	\square Elective requirements
Teaching style	\square Full online learning		$\square \quad$ Blended learning		\checkmark Traditional learning	
Teaching model	$\square 1$ Synchronous: 1 asynchronous		$\square 1$ face to face : 1 asynchronous		$\checkmark 2$ Traditional	

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-mail	
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

Descriptive statistical measures, Updating descriptive measures and applications, Random experiment, probability concepts, Conditional probability, Univariate and bivariate random variables, Some discrete distributions (Binomial, Poisson, Geometric and hypergeometric), Continuous distribution (Normal), The central limit theorem, The distribution of the sample mean and the sample variance.

Learning resources
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Course book information } \\
\text { (Title, author, date of issue, } \\
\text { publisher ... etc) }\end{array} & \begin{array}{l}\text { Principles of Statistics, Prof. Mohammad Z. Raqab / Prof. Adnan M. Awad } \\
\text { and Prof. Mufid M. Azzam, Fifth Edition }\end{array} \\
\hline \begin{array}{l}\text { Supportive learning } \\
\text { resources } \\
\text { (Books, databases, } \\
\text { periodicals, software, } \\
\text { applications, others) }\end{array} & \begin{array}{l}\text { 1. Anderson, D.R, Sweeney, D.J. \& Williams, T.A (1994). } \\
\text { Introduction to Statistics: Concepts \& Applications, 3 }\end{array}
$$

\hline rd Edition, West

Publishing Company, New York.

2. Bhattacharyya, G.K and Johnson, R.A. (1977). Statistical Concepts

and Methods, John Wiley \& Sons, New York.\end{array}\right]\)| \square |
| :--- |
| Supporting websites |

جـامعـة الـزيتـونـــــة الأردنيــة
AI-Zaytoonah University of Jordan
كلية العلُوم وتكنولوجيا المعلومـات
Faculty of Science and information Technology
" عراقة وجودة"
"Tradition and Quality"
QF01/0408-4.0E
Course Plan for Bachelor program - Study Plan Development and Updating Procedures/

Course learning outcomes ($\mathbf{S}=$ Skills, $C=$ Competences $K=$ Knowledge,)

No.	Course learning outcomes	The associated program learning output code
Knowledge		
K1	Distinguish between different methods of collecting, presenting and organizing data.	MK1
K2	Classify different types of data.	MK1
K3	Analyze measures of central tendency and their properties.	MK2
K4	Identify measures of dispersion and their properties.	MK2
K5	Describe random experiments using sample space and events.	MK3
K6	Explain probability concept and its axioms.	MK3
K7	Recognize probability distributions of usual discrete and continuous random variables.	MK4
	Skills	
S1	Use statistical vocabulary to describe a statistical experiment.	MS1
S2	Calculate measures of central tendency and dispersion for different types of data.	MS1
S3	Compute skewness, kurtosis parameters and moments.	MS2
S4	Translate a random experiment to a probabilistic framework.	MS3
	Competences	
C1	Cooperate to work effectively in the group assignments.	MC1
C2	Develop the individual's ability to communicate and interact with other mathematical courses.	MC2

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First/Second exam	30%	30%	$\mathbf{3 0 \%}$	30%
Participation / practical applications	0	0	$\mathbf{2 0 \%}$	30%
Asynchronous interactive activities	30%	30%	$\mathbf{0}$	0
Final exam	40%	40%	$\mathbf{5 0 \%}$	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style	Reference
$\mathbf{1}$	Statistical data, types of data, collecting data, frequency table, graphical presentation of data.	Lecture	$4-35$
$\mathbf{2}$	Descriptive statistical measures.	Lecture	$40-52$
$\mathbf{3}$	Comparing two observation, applications.	Lecture	$69-80$
$\mathbf{4}$	Updating descriptive measures.	Lecture	$81-102$
$\mathbf{5}$	Random experiment, probability concepts.	Lecture	$164-185$
$\mathbf{6}$	Conditional probability.	Lecture	$104-107$

جـامعـة الـزيتونــــة الأردنيـة
AI-Zaytoonah University of Jordan
كلية العلُوم وتكنولوجيا المعلومـات
Faculty of Science and information Technology
" عر اقة وجودة"
"Tradition and Quality"

QF01/0408-4.0E

Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Mathematics Department

$\mathbf{7}$	Univariate random variables.	Lecture	$107-112$
$\mathbf{8}$	Univariate random variables. Mid Exam	Lecture	$112-117$
$\mathbf{9}$	Bivariate random variables.	Lecture	$117-127$
$\mathbf{1 0}$	The Binomial distribution, the Poisson distribution.	Lecture	$148-158$
$\mathbf{1 1}$	The Geometric distribution, the Hypergeometric distribution,	Lecture	$163-170$
$\mathbf{1 2}$	The Normal distribution	Lecture	$176-201$
$\mathbf{1 3}$	The Normal approximation to the Binomial distribution, the central limit theorem.	Lecture	$201-219$
$\mathbf{1 4}$	The distribution of the sample mean, The distribution of the sample variance.	Lecture	$260-265$
$\mathbf{1 5}$	The distribution of the sample proportion.	Lecture	$266-279$
$\mathbf{1 6}$	Final Exam		

