
An Approach to Generating Server

Implementation of the Inverse Referential

Integrity Constraints
Slavica Aleksić

 #1
, Sonja Ristić

*2
, Ivan Luković

#3

#
 University of Novi Sad, Faculty of Technical Sciences,

Department of Computing and Control

Trg Dositeja Obradovića 6

21000 Novi Sad, Serbia
1
slavica@uns.ac.rs

3
ivan@uns.ac.rs

*
 University of Novi Sad, Faculty of Technical Sciences,

Department for Industrial Engineering and Management

Trg Dositeja Obradovića 6

21000 Novi Sad, Serbia
2
sdristic@uns.ac.rs

Abstract— The inclusion dependencies (INDs) convey much

information on the data structure and data semantics. There are

two basic kinds of INDs: key-based INDs and non-key-based

INDs. The inverse referential integrity constraints (IRICs) are

special case of non-key-based INDs. Referential integrity

constraints may be fully enforced by most current relational

database management systems (RDBMSs). On the contrary, non-

key-based INDs (as well as IRICs as their special case) are

completely disregarded by actual RDBMSs, obliging the users to

manage them via custom procedures and/or triggers. In this

paper we present an approach to the automated implementation

of the native IRICs and IRICs inferred from nontrivial inclusion

dependencies integrated in the SQL Generator tool that we

developed as integral part of the IIS*Case development

environment.

Keywords— Inclusion Dependencies, Non-key-based IND, Key-

based IND, Inverse Referential Integrity Constraint, Declarative

Constraint Specification.

I. INTRODUCTION

A common approach to database design is to describe the

structure and constraints of the Universe of Discourse in a

semantically rich conceptual data model. The obtained

conceptual database schema is subsequently translated into a

logical, relational database schema, representing a design

specification of the future database. The most fundamental

integrity constraints that arise in practice in relational

databases are functional dependencies (FDs) and inclusion

dependencies (INDs). Both are fundamental to the conceptual

and logical database design and are supported by the SQL

standard. The inclusion dependencies convey much

information on the data structure and data semantics. Let

Ni(Ri, Ci) and Nj(Rj, Cj) be two relation schemes, where Ni and
Nj are theirs names, Ri and Rj, corresponding sets of attributes,

and Ci and Cj corresponding sets of relation schemes'

constraints. An inclusion dependency is a statement of the

form Ni[X] ⊆ Nj[Y], where X and Y are non-empty sets of

attributes from Ri and Rj respectively. Having the inclusion

operator orientated from left to right (⊆) we say that relation

scheme Ni is on the left-hand side of the IND, while the

relation schema Nj is on the right-hand side of the IND. In

order to define the satisfaction of the IND we use the

following notation: the relation r(Ni) is the set of tuples u(Ri)

(or just u) satisfying all constraints from the constraint set Ci,

X-value is the projection of a tuple u on the set of attributes X

and, according to the aforementioned orientation of the

inclusion operator, r(Ni) is called referencing relation, while

r(Nj) is called referenced relation. Informally, a database

satisfies the inclusion dependency if the set of X-values in the

referencing relation r(Ni) is a subset of the set of Y-values in

the referenced relation r(Nj). There are two basic kinds of

INDs: key-based INDs and non-key-based INDs. The IND is

said to be key-based if the set of attributes Y is key of the

relation scheme Nj, and non-key-based otherwise. More often

key-based INDs are called referential integrity constraints

(RICs). Non-key-based INDs with X that is a key of the

relation scheme Ni, where RIC Nj[Y] ⊆ Ni[X] is specified as

well, are called inverse referential integrity constraints (IRICs).

Referential integrity constraints may be fully enforced by

most current relational database management systems

(RDBMSs). On the contrary, non-key-based INDs (as well as

IRICs as their special case) are completely disregarded by

actual RDBMSs, obliging the users to manage them via stored

program units and triggers. This implies an excessive effort to

maintain integrity and develop applications.

In order to provide an efficient transformation of design

specifications into error free SQL specifications of relational

ICIT 2011 The 5th International Conference on Information Technology

database (db) schemas we developed the SQL Generator [2].

One of the main reasons for the development of such a tool

was to make db designer's and developer's job easier, and

particularly to free them from manual coding and testing of

SQL scripts. SQL Generator is integrated in Integrated

Information Systems*Case (IIS*Case), a software tool aimed

to provide the information system (IS) design and generating

executable application prototypes. It is an integral part of the

development environment IIS*Studio (IIS*Studio DE, current

version 7.1). The development of IIS*Studio DE is spanned

through a number of research projects lasting for several years,

in which the authors of the paper are actively involved. A case

study illustrating main features of IIS*Case is given in [8], the

methodological aspects of its usage may be found in [9] and

the description of information system design and prototyping

using form types is given in [16]. IIS*Case generates 3NF

relational db schemas with all the relation scheme keys, null

value constrains, unique constrains, referential and inverse

referential integrity constraints. These schemas are stored in

the IIS*Case repository. The specification of the IIS*Case

repository is given in [16]. The input into SQL Generator is a

database schema stored in the repository.

Using SQL Generator, a user may produce SQL scripts for

the creation of tables, views, indexes, sequences, procedures,

functions and triggers, even without knowing SQL syntax and

mechanisms for the implementation of constrains of a selected

DBMS. SQL Generator may produce scripts for implementing

a new db schema, or modify an already existing one in the

following three ways: (i) by creating SQL scripts in files only

for a later execution, (ii) by creating and immediately

executing SQL scripts under a selected db server with an

established connection, and (iii) by creating and immediately

executing SQL scripts on a selected data source with an

established connection via an ODBC driver. In all three cases,

generated SQL scripts are stored in one or more files.

Our SQL Generator implements constraints of the

following types: domain constraints, key constraints, unique

constraints, tuple constraints, native and extended referential

integrity constraints, referential integrity constraints inferred

from nontrivial inclusion dependencies, native inverse

referential integrity constraints, and inverse referential

integrity constraints inferred from nontrivial inclusion

dependencies ([6], [13]). Constraints are implemented by the

declarative DBMS mechanisms, whenever it is possible.

However, the expressiveness of declarative mechanisms of

commercial DBMSs may be limited and therefore, SQL

Generator implements a number of constraints through the

procedural mechanisms [3].

In this paper we present the SQL Generator's feature of an

automated implementation of the native IRICs and IRICs

inferred from nontrivial inclusion dependencies. Systems

adhering to the SQL standard allow specifying of RICs using

the FOREIGN KEY clause, but the IRICs are disregarded by

actual RDBMSs.

There are numerous contemporary software tools aimed at

an automated conceptual database schema design and its

implementation under different database management systems,

such as: DeKlarit, ERwin Data Modeler, Oracle Designer,

Power Designer etc. Some of them are described in [4], [5],

[15], [17]. All of them enable setting the relationship minimal

multiplicity (cardinality) to one. Therefore, they support the

specification of the existential dependency between two entity

types. However, all of them ignore this specification when

generate the SQL code to implement a database schema. Even

more, to the best of our knowledge, neither of the other CASE

tools offers such functionality, as well. As a rule, they do not

employ any procedural DBMS mechanisms to provide the

automatic implementation of IRICs.

II. INVERSE REFERENTIAL INTEGRITY CONSTRAINT

The business rules that would be modeled with the inverse

referential integrity constraints are not rare in the real world.

They are the consequence of the mutual existential

dependency of the entities of two entity classes in the real

system.

Example 1. According to the business rules of the

university, a department can be established only as a part of a

faculty, and a faculty must have at least one department. The

relational database schema of a very simplified and

hypothetical university information system, beyond the others,

has two relation schemes (RS) Faculty and Department, with

the keys FacId and FacId+DepId respectively, and two

inclusion dependencies IND1 and IND2:

Faculty({FacId, FacShortName, FacName, Dean},

 {FacId }),

Department({FacId, DepId, DepName},

 {FacId+DepId}),

IND1: Department [FacId] ⊆ Faculty [FacId],

IND2: Faculty[FacId] ⊆ Department[FacId].

Since that FacId is the key of the relation scheme Faculty,

IND1 is the key-based inclusion dependency, i.e. the

referential integrity constraint. It is modeling the business rule

that a department can be established only as a part of a faculty.

The constraint IND2 is the non-key-based inclusion

dependency. The FacId is the key of the relation scheme

Faculty, which is on the left side of the inclusion

dependency's specification and the referential integrity

constraint IND1 is specified as well. Therefore, the constraint

IND2 is the inverse referential integrity constraint. It is

modeling the business rule that faculty must have at least one

department. Fig. 1 represents the University database schema

using the IIS*Case closure graph. The arrow from the

Department to the Faculty rectangle represents referential

integrity constraint, while the arrow from the Faculty to the

Department rectangle represents inverse referential integrity

constraint. �

Database systems adhering to the SQL standard allow

specifying of RICs using the FOREIGN KEY clause, but the

IRICs are disregarded by actual RDBMSs. Programmers are

obliged to manage them via procedural mechanisms

(procedures and triggers). That is the reason why the IRICs

are mostly implemented on the middle layer instead on the db

server. Still, the validation of the IRICs on the db server: (i)

cuts the costs of the application maintaining; (ii) provides

ICIT 2011 The 5th International Conference on Information Technology

better performances due to the less traffic in the typical client-

server architecture; (iii) enables the same way of preventing

the violation of a database consistency.

Fig. 1 The IIS*Case closure graph diagram of a University db schema

In this paper the methods for the implementation of IRICs,

using the mechanisms provided by relational database systems

are presented. These methods are implemented in the SQL

Generator that provides creating SQL scripts according to the

syntax of: (i) ANSI SQL:2003 standard [7], (ii) DBMS

Microsoft (MS) SQL Server 2000/2008 with MS T-SQL [10],

[11], and (iii) DBMS Oracle 9i/10g with Oracle PL/SQL [14].

III. ALGORITHMS FOR IRIC VALIDATION

By specifying of the IRICs Nj[Y] ⊆ Ni[X] it comes towards

the bogus mutual „locking“ of the instances of the relation

schemas Ni and Nj. The notion „locking“ is used to illustrate

the following situation: (i) it is not possible to insert new tuple

into relation r(Ni) with not null values for all attributes A∈X,

unless there is the tuple in the relation r(Nj) with the Y value

same as the X value of the inserted tuple; and, as well, (ii) it is

not possible to insert new tuple into relation r(Nj) with a

certain Y value, unless there is the tuple in the relation r(Ni)

with the X value same as the aforementioned Y value [12].

Example 2. Fig. 2 shows a database instance of the database

schema from Example 1. Due to the specified referential

integrity IND1 it is not possible to insert the tuple (2,

D2, ’Dentistry’) into the relation Department. But, due to the

specified inverse referential integrity IND2 it is not possible to

insert the tuple (2, ’FOM’, ’Faculty of Medicine’, ’Simpson’)

into the relation Faculty. These tuples are said to be mutually

locked. �

Faculty

 FacId FacShortName FacName Dean

 1 MAT Mathematics Smith
Department

 FacId DeptId DeptName

 1 D1 Geometry

Fig. 2 A University database instance

Because of that mechanisms for IRIC's validation require

deferred trigger consideration during the transaction. Albeit

SQL standards allow deferred check constraint, most of the

contemporary DBMSs do not support it.

In this Section the common algorithms for controlling the

IRIC validation during the insert, update and delete operations

are given. The algorithms for insertion, deletion and

modification control in the presence of inverse referential

integrity constraints are presented in Fig 3, Fig 4 and Fig 5,

respectively. In the following text these algorithms will be

described in more details.

An IRIC can be violated in three cases: when tuple is

inserted into the referencing relation, when tuple is deleted

from the referenced relation or when tuple's X-value is

modified in the referenced relation.

An algorithm for the control of insertions (Fig. 3) will

reject the insert operation of the v tuple into the referencing

relation if the referenced relation doesn't contain any tuple

with X-value matching the Y-value of the tuple v.

Trigger:

INSERTION CONTROL IN
THE PRESENCE OF IRICs

Definition area:
Relation schemes: Ni, Nj

Attributes: X = (A1, ... , A|X|) X∈Ri, Y = (B1, ..., B|Y|) Y∈Rj

 |X| = |Y| ∧ (∀ l ∈ {1,…,|X|}(dom(Al)⊆dom(Bl))

Specification of the constraint:

 i: Nj[Y] ⊆ Ni[X]

Specification of the operation:
 Time: AFTER OPERATION
 Operation: INSERT

Data Inputs

From DB r(Ni), r(Nj)

Input tuple v - tuple that would be
inserted into r(Nj),

Local declarations:ind
(ind = 1 – constraint is satisfied,
 ind = 0 – constraint is violated)

Pseudo code:
BEGIN PROCESS Insert_inv_ref_int

 SET ind←0

 DO Search_in ∀ u∈r(Ni) WHILE ind = 0

 IF v[Y] = u[X] THEN

 SET ind←1
 ENDIF
 ENDDO Search_in
 IF ind = 0 THEN
 CANCEL_OPERATION(‘Error description’)
 ENDIF
ENDPROCESS Insert_inv_ref_int

Fig. 3 An algorithm for insertion control

An algorithm for the control of deletions (Fig. 4) detects an

IRIC's violation when a tuple u from the referenced relation is

deleted and if the conjunction of conditions is satisfied: (i) X-

value of the tuple u doesn't contain null values; and (ii) the

referenced relation doesn't contain another tuple t (strictly

different from the tuple u) with X-value matching the X-value

of the tuple u. The first condition needs additional explanation.

Namely, Y is the key for the left-hand side relation scheme.

ICIT 2011 The 5th International Conference on Information Technology

Consequently, neither of the tuples from the referencing

relation can contain null value in the Y-value sequence.

Therefore, neither of the tuples from the referenced relation

that contains null values can be referenced by some tuple from

referencing relation. It may be concluded that by the deletion

of such a tuple from r(Ni), IRIC cannot be violated. If a

constraint violation is detected, the algorithm will reject the

delete operation or, alternatively it will delete all tuples from

the referencing relation having the Y-value matching the X-

value of the tuple u. During the IRIC implementation pseudo-

instruction EXECUTE ACTIVITY will be replaced with an

appropriate program code for the selected action.

Trigger:

DELETION CONTROL IN THE
PRESENCE OF IRICs

Definition area:
 Relation schemes: Ni, Nj

 Attributes: X = (A1, ... , A|X|) X∈Ri, Y= (B1, ..., B|Y|) Y∈Rj

 |X| = |Y| ∧ (∀ l ∈ {1,…,|X|}(dom(Al)⊆dom(Bl))

Specification of the constraint:

 i: Nj[Y] ⊆ Ni[X]

Specification of the operation:
 Time: AFTER OPERATION
 Operation: DELETE

Data Inputs

From DB r(Ni), r(Nj)

Input tuple u - tuple that would
be deleted into r(Ni)

Local declarations:ind
(ind = 1 – constraint is satisfied,
 ind = 0 – constraint is violated)
Pseudo code:
BEGIN PROCESS Delete_inv_ref_int

 SET ind ← 0

 DO Search_Null_value ∀ A∈X WHILE ind = 0

 IF u[A] = ω THEN

 SET ind ← 1
 ENDIF
 ENDDO Search_Null_value
 IF ind = 0 THEN

 DO Search_t ∀ t∈r(Ni) WHILE ind =0

 IF t[Kp(Ri)] ≠ u[Kp(Ri)] ∧ u[X] = t[X] THEN

 SET ind ← 1
 ENDIF
 ENDDO Search_t
 ENDIF
 IF ind = 0 THEN
 EXECUTE ACTIVITY
 ENDIF
ENDPROCESS PROCESS Delete_inv_ref_int

Fig. 4 An algorithm for deletion control

An algorithm for the control of modifications (Fig. 5) will

reject the update operation of the tuple u from the referenced

relation if the conjunction of conditions is satisfied: (i) the

update operation changes the tuple's X-value; (ii) the original

X-value (X-value of the tuple u before the modification)

doesn't contain null values; and (iii) the referenced relation

doesn't contain any other tuple t (strictly different from the

tuple u) with X-value matching the original X-value. The

explanation for the second condition is analog to the

explanation for the first condition in the previous paragraph.

Trigger:

MODIFICATION CONTROL IN
THE PRESENCE OF IRICs

Definition area:
 Relation schemes: Ni, Nj

 Attributes: X = (A1, ... , A|X|) X∈Ri, Y= (B1, ..., B|Y|) Y∈Rj

 |X| = |Y| ∧ (∀ l ∈ {1,…,|X|}(dom(Al)⊆dom(Bl))

Specification of the constraint:

 i: Nj[Y] ⊆ Ni[X]

Specification of the operation:
 Time: AFTER OPERATION
 Operation: UPDATE

Data Inputs

From DB r(Ni), r(Nj)

Input tuple u - tuple that would
be modified r(Ni)

Local declarations:ind
(ind = 1 – constraint is satisfied,
 ind = 0 – constraint is violated)
Pseudo code:
BEGIN PROCESS Update_inv_ref_int

 IF u'[X] ≠ u[X] THEN

 SET ind←0

 DO Search_Null_value ∀ A∈X WHILE ind = 0

 IF u[A] = ω THEN

 SET ind ← 1
 ENDIF
 ENDDO Search_Null_value
 IF ind = 0 THEN

 DO Search_t ∀ t∈r(Ni) WHILE ind =0

 IF t[Kp(Ri)] ≠ u[Kp(Ri)] ∧ u[X] = t[X] THEN

 SET ind ← 1
 ENDIF
 ENDDO Search_t
 ENDIF
 IF ind = 0 THEN
 CANCEL_OPERATION(‘Error description’)
 ENDIF
 ENDIF
ENDPROCESS PROCESS Update_inv_ref_int

Fig. 5 An algorithm for modification control

IV. IMPLEMENTATION OF IRICS BY PROCEDURAL
MECHANISMS

The process of the procedural implementation of a

constraint can be unified. It consists of the following steps: (i)

specifying a parameterized pattern of the algorithm for a

specific DBMS, (ii) replacing the pattern parameters with real

values, and (iii) generating an SQL script comprising

necessary triggers, procedures and functions [1].

In this Section, we present the parameterized patterns of the

algorithms from Section 3 for DBMSs MS SQL Server 2008

[11] and Oracle 10g [14]. Since the parameterized patterns for

implementation of modification and deletion are similar, only

the patterns for insertion and deletion will be presented.

In order to keep the db consistency checking under the

database management system, in the presence of the IRICs a

special mechanism has to be developed. Namely, mutually

ICIT 2011 The 5th International Conference on Information Technology

locked tuples (like those in Example 2) must be inserted in

one transaction. There are two ways to do that: (i) a view

created over the relations r(Ni) i r(Nj) may be used for the

double insertion; and (ii) a custom db procedure for double

insertion may be developed. In the following subsections the

first way will be shown. The patterns for the custom

procedures, both for the MS SQL Server and Oracle may be

found in [1].

A. IRIC Implementation for MS SQL Server 2008

The pattern of the trigger using views for tuple insertion is

presented in Fig. 6. Procedure Trigger_Ex in Fig 7 is aimed at

the trigger's execution control. In the suggested solution an

auxiliary db relation Trigger_Stat is used. This relation

contains the information would the observed trigger be

executed or not in previously specified transaction. If the

relation contains the tuple with given trigger name and

transaction ID, trigger procedure will not be executed. The

pattern of the db function ContainmentIRI_<Nj>, called in

this trigger is shown in Fig. 9.

CREATE TRIGGER TRG_<Const_Name>_INV_View
ON View_<Nj>_<Ni> INSTEAD OF INSERT
AS
 DECLARE
 @Idt int, @Count int, <Decl_Var_For_Ni_i_Nj>
 SELECT <Var_array_For_Ni_i_Nj> FROM Inserted
 SET @Idt = @@SPID
 exec dbo.Trigger_Ex 0, 'WriteRI_<Nj>', @Idt
 INSERT INTO <Nj> VALUES (<Var_array_For_Nj>)
 INSERT INTO <Ni> VALUES (<Var_array_For_Ni>)
 exec dbo.Trigger_Ex 1, 'WriteRI_<Nj>', @Idt
 IF dbo.ContainmentIRI_<Nj> (<Var_For_Y>) = 0

 BEGIN
 RAISERROR('IRIC violation!',16,1)
 ROLLBACK TRAN

 END

Fig. 6 A pattern of the trigger over view

CREATE PROCEDURE dbo.Trigger_Ex
 (@Stat int, @Trigger_Name varchar(50), @Idt int)
AS
 IF @Stat = 1
 DELETE FROM Trigger_Stat WHERE
 Trigger = @Trigger_Name AND IdTransaction = @Idt
 ELSE
 INSERT INTO Trigger_Stat (Trigger, IdTransaction)
 VALUES (@Trigger_Name, @Idt)

Fig. 7 A SQL procedure for trigger execution control

CREATE TRIGGER TRG_<Nj>_<Const_Name>_INS
 ON <Nj> FOR INSERT
 AS
 IF (dbo.ExecuteTrigger
 (TRG_<Nj>_<Const_Name>_INS)=0)
 BEGIN
 RAISERROR('Data have to be inserted via view:
 View_<Nj>_<Ni> or procedure
 Insert_<Const_Name>',16,1)
 ROLLBACK TRAN
 END

Fig. 8 A tuple insertion control pattern

CREATE FUNCTION dbo.ContainmentIRI_<Nj>
(<Decl_Var_For_Y>)
RETURNS int
AS
BEGIN
 DECLARE @Count int, @Ret int
 SELECT @Count = COUNT(*) FROM <Ni> u
 WHERE (<Selection_Cond>)
 IF @Count != 0 SELECT @Ret =1
 ELSE SELECT @Ret =0
 RETURN @Ret
END

Fig. 9 A pattern of the ContainmentIRI_<Nj> function

CREATE FUNCTION
dbo.ExecuteTrigger(@Trigger_Name varchar(50))
RETURNS int
AS
BEGIN
 DECLARE @Count int, @Idt int, @Ret int
 SELECT @Idt = @@SPID
 SELECT @Count = COUNT(*) FROM Trigger_Stat
 WHERE (Trigger = @Trigger_Name) AND
 (IdTransaction = @Idt)
 IF @Count != 0
 SELECT @Ret =1
 ELSE
 SELECT @Ret =0
 RETURN @Ret
END

Fig. 10 A SQL function for trigger execution control

CREATE TRIGGER TRG_<Ni>_<Const_Name>_DEL
ON <Ni> FOR DELETE
AS
 DECLARE @Count int, <Decl_Var_For_X>
 DECLARE Cursor_<Ni> CURSOR
 FOR SELECT <Attr_From_X> FROM Deleted
 OPEN Cursor_<Ni>
 FETCH NEXT FROM Cursor_<Ni> INTO <Var_For_X>
 WHILE @@FETCH_STATUS=0
 BEGIN
 IF (<Condition>)
 BEGIN
 SELECT @Count = COUNT(*) FROM <Ni> u
 WHERE (<Selection_Cond>)
 IF (@Count = 0) <Execute_Activity>
 END
 FETCH NEXT FROM Cursor_<Ni> INTO
 <Var_For_X>
 END
 CLOSE Cursor_<Ni>
 DEALLOCATE Cursor_<Ni>

Fig. 11 A pattern of the delete trigger

SQL code for view creation is trivial, and therefore it is

omitted here. We only emphasize that it should contain all

attributes from both relation schemes: Ni and Nj.

In order to prevent the IRIC violation due to the separate

insertion of mutually locked tuples a trigger adhering the

pattern in Fig. 8 should be created.

Finally, the pattern for SQL function for trigger execution

is presented in Fig. 10.

ICIT 2011 The 5th International Conference on Information Technology

The pattern of the trigger for tuple deletion is presented in

Fig. 11. Depending on the selected activity,

<Execute_Activity> is replaced with CascadeIRI_Del_<Ni>

procedure call (Cascade delete) or with SQL code for activity

restriction. Aforementioned code could be found in [1].

B. IRIC Implementation for Oracle 10g

SQL syntax for different DBMSs is not the same. Therefore,

we present the parameterized patterns for triggers and

procedures implementing algorithms from Section 3, for

Oracle db Server. The pattern of the trigger using views for

tuple insertion is presented in Fig. 12. The pattern of the db

function ContainmentIRI_<Nj>, called in this trigger is shown

in Fig. 14.

CREATE OR REPLACE TRIGGER
 TRG_<Const_Name>_View
INSTEAD OF INSERT ON View_<Nj>_<Ni>
FOR EACH ROW
DECLARE
 I NUMBER;
 Exc EXCEPTION;
 t <Nj>%ROWTYPE;
BEGIN
 <Const_Name>_PCK.Trigger_Ex := FALSE;
 INSERT INTO <Nj> VALUES (<Attr_Value_From_Nj>);
 INSERT INTO <Ni> VALUES (<Attr_Value_From_Ni>);
 <Const_Name>_PCK.Trigger_Ex := TRUE;
 SELECT * INTO t
 FROM <Nj> WHERE (<Selection_Cond>);
 IF NOT Global_PCK.ContainmentIRI_<Nj> (t) THEN
 RAISE Exc;
 END IF;
 EXCEPTION WHEN Exc THEN
 RAISE_APPLICATION_ERROR
 (-20001,'IRIC violation!');
END;

Fig. 12 A pattern of the trigger over view

In Oracle Server Trigger_Ex is a global variable defined in

special package created for the appropriate constraint. The

variable gets value true if the trigger ought to be executed and

gets value false otherwise. The parameterized content of that

package is presented in Fig. 13.

CREATE OR REPLACE PACKAGE
 <Const_Name>_PCK
IS
 TYPE TRec<Ni> IS RECORD (<Attr_Decl_Rec_X>);
 TYPE TTabForDelUpd IS TABLE OF TRec<Ni> INDEX
 BY BINARY_INTEGER;
 For_<Ni> TTabForDelUpd;
 Count_IRI NUMBER(8,0);
 Trigger_Ex BOOLEAN;
END;

Fig. 13 A pattern of IRIC's package

In order to prevent the IRIC violation due to the separate

insertion of mutually locked tuples a trigger adhering the

pattern in Fig. 15 should be created.

For Oracle 10g three triggers should be created for the

implementation of tuple deletion under the presence of IRICs.

The first one is run at the statement level, before the tuple

deletion. It has an assignment to set the auxiliary data

structures, used by other triggers. The pattern for first trigger

is shown in Fig. 16.

FUNCTION ContainmentIRI_<Nj> (v IN
 <Nj>%ROWTYPE)
RETURN BOOLEAN
IS
 I NUMBER;
BEGIN
 SELECT COUNT(*) INTO I FROM <Ni> u
 WHERE (<Selection_Cond>);
 IF I <> 0 THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;

END;

Fig. 14 A pattern of the ContainmentIRI_<Nj> function

CREATE OR REPLACE TRIGGER
TRG_<Const_Name>_INS
BEFORE INSERT ON <Nj> FOR EACH ROW
BEGIN
IF <Const_Name>_PCK.Trigger_Ex = TRUE THEN
 RAISE_APPLICATION_ERROR(-20004, 'Data have to
 be inserted via view:View_<Nj>_<Ni> or procedure
 Insert_<Const_Name>');
END IF;
END;

Fig. 15 A tuple insertion control pattern

CREATE OR REPLACE TRIGGER
TRG_<Const_Name>_DEL1
 BEFORE DELETE <Ni>
BEGIN
 <Const_Name>_PCK.Count_IRI := 0;
 <Const_Name>_PCK.For_<Ni>.DELETE;
END;

Fig. 16 A pattern of the first delete trigger

CREATE OR REPLACE TRIGGER
 TRG_<Const_Name>_DEL2
 BEFORE DELETE ON <Ni>
 FOR EACH ROW
 DECLARE u <Ni>%ROWTYPE;
BEGIN
 < Initialization _u>
 <Name_P>.Count_IRI := <Name_P>.Count_IRI + 1;
 <Name_P>.For_<Ni> (<Name_P>.Count_IRI).
 <Attr_From_X> := u.<Attr_From_X>;
 .
 .
 .
END;

Fig. 17 A pattern of the second delete trigger

The second trigger is run just before the tuple deletion. It

puts the attribute values from the tuple that would be deleted

ICIT 2011 The 5th International Conference on Information Technology

into the previously declared auxiliary data structures. The

pattern for the second trigger is presented in Fig. 17.

The third trigger (Fig. 18) is run on the statement level after

the tuple deletion. It uses the auxiliary data set by the second

trigger.

CREATE OR REPLACE TRIGGER
 TRG_<Const_Name>_DEL3
AFTER DELETE ON <Ni>
DECLARE
 u <Ni>%ROWTYPE;
 I NUMBER;
BEGIN
 FOR j IN 1.. <Const_Name>_PCK.Count_IRI LOOP
 <Initialization_u>
 SELECT COUNT(*) INTO I FROM <Nj>
 WHERE <Selection_Cond>;
 IF I <> 0 THEN
 <Execute_Activity>
 END IF;
 END LOOP;
END;

Fig. 18 A pattern of the third delete trigger

Depending on the selected activity, <Execute_Activity> is

replaced with CascadeIRI_Del_<Ni> procedure call (Cascade

delete) or with SQL code for activity restriction.

Aforementioned code could be found in [1].

V. CONCLUSIONS

In order to provide an efficient transformation of design

specifications into error free SQL specifications of relational

db schema we developed the SQL Generator, as an integral

part of the development environment IIS*Studio. IIS*Studio

generates 3NF relational db schema with all the relation

scheme keys, null value constrains, unique constrains,

referential and inverse referential integrity constraints. These

schemas are stored in the IIS*Studio repository. The input into

SQL Generator is a database schema specification stored in

the repository. SQL Generator implements constraints of the

following types: domain constraints, key constraints, unique

constraints, tuple constraints, native and extended referential

integrity constraints, referential integrity constraints inferred

from nontrivial inclusion dependencies, native inverse

referential integrity constraints, and inverse referential

integrity constraints inferred from nontrivial inclusion

dependencies.

In the paper we deal with the inverse referential integrity

constraints. We presented the algorithms that control the

insertion, modification and deletion database operations under

the presence of IRICs. The patterns for triggers, as well as

stored SQL functions and procedures, based on the

aforementioned algorithms, are also presented. Proposed

patterns provide generating SQL program code for DBMSs

MS SQL Server 2008 and Oracle 10g. Our SQL Generator

replaces the pattern parameters with real values obtained from

a database specification stored in IIS*Case repository; then, it

generates executable SQL scripts comprising necessary

triggers, procedures and functions for a target DBMS platform.

Further development is directed towards extensions of SQL

Generator's functionality to provide: (i) generating SQL

scripts for a wider set of contemporary DBMSs and (ii)

implementation of other, more complex constraints types, but

often recognized in real database projects. One of typical

examples is the extended referential integrity constraint, as it

is illustrated in [8].

ACKNOWLEDGMENT

Research presented in this paper was supported by Ministry

of Science and Technological Development of Republic of

Serbia, Grant III-44010, Title: Intelligent Systems for Software

Product Development and Business Support based on Models.

REFERENCES

[1] S. Aleksić, “An SQL Generator of Database Schema Implementation

Specification in a CASE Toll IIS*Case,” M. Eng. (Mr.) thesis,

University of Novi Sad, Faculty of Technical Sciences, Novi Sad,
Serbia, Nov. 2006.

[2] S. Aleksić, I. Luković, P. Mogin, and M. Govedarica, “A Generator of

SQL Schema Specifications,” Computer Science and Information
Systems (ComSIS), Consortium of Faculties of Serbia and Montenegro,

Belgrade, Serbia, ISSN: 1820-0214, Vol. 4, No. 2, pp. 77-96, 2007.

[3] S. Aleksić and I. Luković, "Generating SQL Specifications of a
Database Schema for Different DBMSs", Info M - Journal of

Information Technology and Multimedia Systems, Faculty of

Organizational Sciences, Belgrade, Serbia, ISSN: 1451-4397, No. 23,
pp. 36-43, 2007.

[4] (2007) ARTech. DeKlaritTM (The Model-Driven Tool for Microsoft

Visual Studio 2005), Chicago, U.S.A. [Online]. Available:
http://www.deklarit.com/

[5] (2008) CA ERwin Data Modeler r7.3, [Online]. Available:

https://support.ca. com/irj/
[6] M. Govedarica, “Design the Set of Implementation Database Schema

Constraints,” M. Eng. (Mr.) thesis, University of Novi Sad, Faculty of

Technical Sciences, Novi Sad, Serbia, 1998.
[7] ANSI SQL:2003, American National Standards Institute, USA,

ISO/IEC Std. 9075-{1, 2, 11}, 2003.

[8] I. Luković, P. Mogin, J. Pavićević, and S. Ristić, “An Approach to
Developing Complex Database Schemas Using Form Types”, Software:

Practice and Experience, John Wiley & Sons Inc, Hoboken, USA,

ISSN: 0038-0644, DOI: 10.1002/spe.820 Vol. 37, No. 15, pp. 1621-
1656, 2007.

[9] I. Luković, S. Ristić, P. Mogin, and J. Pavicević, “Database Schema

Integration Process – A Methodology and Aspects of Its Applying,”
Novi Sad Journal of Mathematics, Faculty of Science, Novi Sad, Serbia,

ISSN: 1450-5444, Vol. 36, No. 1, pp. 115-140, 2006.

[10] Microsoft SQL Server 2000, 2000.
[11] Microsoft SQL Server 2008, 2008.

[12] P. Mogin, I. Luković, and M. Govedarica, Database Design Principles,

2nd Edition, University of Novi Sad, Faculty of Technical Sciences,
Novi Sad, Serbia, ISBN: 86-80249-81-5, 2004.

[13] P. Mogin, I. Luković, and M. Govedarica, “Extended Referential

Integrity”, Novi Sad Journal of Mathematics, Novi Sad, Serbia, ISSN:
1450-5444, Vol. 30, No. 3, pp. 111-122, 2000.

[14] Oracle DBMS 10g, 2004.

[15] Oracle Designer 9i, 2000.
[16] J. Pavićević, I. Luković, P. Mogin, and M. Govedarica, “Information

System Design and Prototyping Using Form Types,” INSTICC I

International Conference on Software and Data Technologies, Setubal,
Portugal, September 11-14, Proceedings, Vol. 2, pp. 157-160, 2006.

[17] Sybase PowerDesigner 15, 2009.

ICIT 2011 The 5th International Conference on Information Technology

