
Version 7.0

for WINDOWS NT® 4.0
for WINDOWS® 98
for WINDOWS® 95

Programming with Reflection:
Visual Basic User Guide

Reflection®

W
RQ

Viewing the PDF
For the best results when viewing dialog boxes on-screen, increase the magnification to 200%.

This document was designed to be distributed electronically and then printed on a laser printer on an as-needed basis. For this reason, the fonts and layout of this document have been chosen for optimal printing rather than for optimal viewing on-screen. To review this document on-screen, however, simply increase the magnification using the magnification box at the bottom of the window.

Printing the PDF
When printing the PDF, keep in mind that the eight roman numeral pages at the front of the book are included in the page numbering. To print the actual book pages, add eight to the page number or refer to the page numbers at the bottom of the screen or on the scroll bar.

Copyright

© 1998 by WRQ, Inc. All rights reserved. No part of this publication may be reproduced, transmitted,

transcribed, stored in a retrieval system, or translated into any language, in any form by any means, without

the written permission of WRQ, Inc. Visual Basic © 1996, Microsoft Coporation. All rights reserved.

Programming with Reflection

Visual Basic User Guide
Version 7.0

August 1998

Licenses and Trademarks

WRQ, the WRQ logo, Reflection, and Reflection Suite for the Enterprise are trademarks of WRQ, Inc., registered

in the U.S. and other countries, and Reflection EnterView is a trademark of WRQ, Inc.

Adobe Systems Incorporated — Adobe, Acrobat, and Acrobat Reader are registered trademarks.

Digital Equipment Corporation, Inc. — DEC, LAT, VAX, and OpenVMS are registered trademarks.

Hewlett-Packard Company — Hewlett-Packard, HP, and OpenMail are registered trademarks.

HiT Software, Inc. — HiT Software and HS•ODBC/400 LITE are trademarks.

INSO Corporation — INSO is a registered trademark, and International Proofreader is a trademark.

International Business Machines Corporation — AT, IBM, and AS/400 are registered trademarks.

Microsoft Corporation — Microsoft, MS-DOS, Windows, Windows NT, and Visual Basic are registered trademarks.

NCompass Labs, Inc. — NCompass and DocActive are trademarks.

NetSoft — NetSoft and NS/Router are registered trademarks.

Novell, Inc. — Novell and NetWare are registered trademarks.

The Open Company — UNIX is a registered trademark.

All other brand and product names mentioned in this manual are the trademarks of their respective owners.

Patent pending.

Customer Service

Technical Support in the USA

E-mail: support@wrq.com

WWW: support.wrq.com

Reflection Technical Notes (24-hour automated fax request line): 206.216.2680

Bulletin Board (BBS): 206.217.0145

BBS Telnet Gateway: bbs.wrq.com

Anonymous FTP Server: ftp.wrq.com

Technical Support: 206.217.7000

Technical Support Fax: 206.217.9492

For Partners of WRQ visit: www.wrq.com/bp/currpart.htm

Technical Support Outside the USA

Please contact your WRQ Worldwide Distributors: visit www.wrq.com/bp/intldist.htm,

or call WRQ for the name of the Business Partner nearest you. You can also send an e-mail

to wrqbp@wrq.com.

Technical Documentation

Visit the following Web site to download the PDF (Portable Document Format) version

of this and other WRQ manuals: www.wrq.com/products/evaluate/download/docindex.htm.

We welcome suggestions on how to improve our printed and online documentation.

Send your comments to docs@wrq.com.

At WRQ we are committed to using products that conserve the world’s resources. Therefore, the printed version

of this manual uses recycled, elemental chlorine-free paper with 20% post-consumer waste and soy-based inks.

Printed in the USA.

20-0295-000

WRQ Corporate Headquarters

1500 Dexter Avenue North

Seattle, WA 98109 USA

+1.206.217.7100

+1.206.217.0293 FAX

800.872.2829

European Headquarters

The Netherlands

+31.70.375.11.00

+31.70.356.12.44 FAX

S.E. Asian Headquarters

Singapore

+65.336.3122

+65.336.5233 FAX

mailto:support@wrq.com
http://support.wrq.com
http://www.wrq.com/bp/currpart.htm
http://www.wrq.com/bp/intldist.htm
mailto:wrqbp@wrq.com
mailto:docs@wrq.com
ftp://ftp.wrq.com
http://www.wrq.com/products/evaluate/download/docindex.htm

T a b l e o f C o n t e n t s
Chapter 1 · Overview .. 1

What’s in This Manual .. 1

Using Reflection and Visual Basic Help .. 3

What’s New? .. 4

Sample Macros .. 5

Chapter 2 · Recording and Managing Macros ... 7

Creating a Macro with the Macro Recorder .. 7

Running a Macro .. 9

Saving Macros .. 10

Sharing and Managing Macros .. 10

Exercises ... 11

Chapter 3 · Programming Fundamentals ... 17

What is Visual Basic for Applications? .. 17

Basic Language Programming ... 18

Understanding Visual Basic Projects .. 19

The Reflection Object Model ... 20

Command Syntax .. 21

Named Arguments ... 23

Chapter 4 · Using the Visual Basic Editor .. 25

The Visual Basic Editor ... 25

The Project Explorer ... 27

The Properties Window .. 28

The Code Window .. 29

Creating New Macros .. 30

Rules for Naming Macros ... 32

Editing Macros ... 32

Exercise ... 33
Project Name • Chapter • • TEMPLATE: docs_v4 • C:\checkout\VBA\VBGuideTOC.fm • 8.4.98 • 06:08pm

v

vi Table of Contents
Chapter 5 · Creating Custom Dialog Boxes .. 37

Creating a New Form ... 37

Adding and Editing Controls ... 38

Writing Form Code ... 41

Getting User Input from your Dialog Box ... 42

Opening and Closing your Dialog Box ... 42

Exercises ... 43

Chapter 6 · Handling Errors ... 53

Trapping an Error .. 54

Resuming a Procedure After an Error ... 58

Inline Error Handling .. 58

Information About Error Codes .. 59

Chapter 7 · Communicating with Other Applications ... 61

Understanding Automation .. 61

Controlling Other Applications from Reflection ... 62

Controlling Reflection from Other Applications ... 64

Using CreateObject ... 65

Using GetObject ... 66

Using Reflection Predefined Constants in Other Applications ... 67

Chapter 8 · Managing Connections to IBM Hosts .. 69

Commands for Connecting and Disconnecting ... 69

Using Connect Macros ... 69

Configuring Connection Settings .. 71

Chapter 9 · Managing Connections to HP, UNIX, Digital, and Unisys Hosts .. 73

Commands for Connecting and Disconnecting ... 73

Using Connect Macros ... 75

Configuring Connection Settings .. 76

Managing Modem Connections .. 82

Handling Connection Errors .. 84

Table of Contents vii
Chapter 10 · Reflection Basic Support .. 87

Running Reflection Basic Scripts ... 87

Displaying the Script Menu ... 87

Comparing Reflection Basic to Visual Basic ... 88

Why Use Visual Basic? .. 90

The Reflection Object Name (Application vs. Session) .. 90

· Index ... 91

C h a p t e r1

Overview

This book is an introduction to macro recording and programming using the following
Reflection products:

Reflection for HP, version 7.0.
Reflection for UNIX and Digital, version 7.0.
Reflection for ReGIS Graphics, version 7.0.
Reflection for IBM version 7.0.

This chapter includes the following information:

· The contents of this manual.

· How to use the Reflection and Visual Basic Editor Help menus to get complete information
about programming with Reflection.

· A summary of new Reflection Programming features.

· Information about sample macros.

What’s in This Manual
This book explains how to use Visual Basic for Applications in Reflection and also provides
information about Reflection’s continuing support for Reflection Basic, the scripting language
that shipped with earlier versions. It does not include reference information about Reflection’s
methods and properties, the commands you use to control Reflection programmatically. To view
reference information about these commands using Reflection’s programming Help, click the
Contents tab and open the book labeled Language Reference. (See page 3 for instructions on how
to view this Help.) You can also use the following Acrobat files to view or print this reference
information:

· Rmp70win.pdf describes the methods and properties for version 7.0 of Reflection for HP,
Reflection for UNIX and Digital, and Reflection for ReGIS Graphics.

· Rmp70ibm.pdf describes the methods and properties for version 7.0 of Reflection for IBM.
Project Name • Chapter 1 • Overview • TEMPLATE: docs_v4 • D:\working\progvba\ug\1over.fm • 8.18.98 • 11:50am

1

2 Overview
Here is a brief overview of the material covered in each chapter:

Chapter 1: “Overview” describes how to get information about programming in Reflection and
includes sections covering new features and support for prior version scripting tools.

Chapter 2: “Recording and Managing Macros” is an introduction to the Reflection macro
recorder and techniques for saving, running, and sharing macros. This chapter includes a step-
by-step exercise that demonstrates how to use the macro recorder to create a login macro.

Chapter 3: “Programming Fundamentals” provides an overview of Visual Basic for Applications,
the Reflection object model, and the conventions used for documenting command syntax in the
Reflection Help.

Chapter 4: “Using the Visual Basic Editor” introduces the tools available for developing macros
with Visual Basic. This chapter includes a step-by-step exercise that demonstrates how to create
and edit a Reflection macro using the Visual Basic Editor.

Chapter 5: “Creating Custom Dialog Boxes” explains how to create and edit forms when you
want to include custom dialog boxes in your macros. This chapter includes two step-by-step
exercises.

Chapter 6: “Handling errors” is an introduction to basic error-handling techniques.

Chapter 7: “Communicating with Other Applications” explains how to use Reflection’s
Automation support to control other applications using Reflection, or to control Reflection from
other applications.

Chapter 8: “Managing Connections to IBM Hosts” describes how to manage connections
programmatically in Reflection for IBM.

Chapter 9: “Managing Connections to HP, UNIX, Digital, and Unisys Hosts” describes how to
manage connections programmatically in Reflection for HP, Reflection for UNIX and Digital,
and Reflection for ReGIS Graphics.

Chapter 10: “Reflection Basic Support” describes support for the programming language that
shipped with earlier versions of Reflection.

 Overview 3
Using Reflection and Visual Basic Help
You can use the Reflection and Visual Basic Editor Help menus to get detailed information
not covered in this book. Two Help systems are available: Reflection’s Programming Help and
Microsoft’s Visual Basic Help.

Viewing Reflection’s Programming Help
Reflection’s Help includes information about how to use Visual Basic for Applications in
Reflection. It also includes a complete reference to Reflection’s methods and properties. To
open the Reflection Programming Help:

1. On Reflection’s Help menu, click Help Topics and click the Contents tab.

2. On the Contents tab, open the book called Reflection Programming Guide, then click
Shortcut to Reflection Programming Help.

Viewing Microsoft’s Visual Basic Help
Microsoft’s Visual Basic Help provides information about how to use the Visual Basic Editor
and about the programming language commands that are common to all Visual Basic
implementations.

To open the Visual Basic editor and view the Microsoft Help:

1. On Reflection’s Macro menu, click Visual Basic Editor.

2. On the Visual Basic Editor’s Help menu, click Contents and Index.

Note: Microsoft’s Help is not available if you install Reflection using the Typical installation
option (unless you have already installed this Help with a different product that uses Visual Basic
for Applications). To have access to the Microsoft Help topics you must select the Custom
installation option during Setup, and then select the VBA Online Help component. à

4 Overview
What’s New?
With version 7.0, Reflection introduces programming with Visual Basic for Applications. Visual
Basic for Applications (VBA) is a combination of a programming language and a program devel-
opment environment supported by many different applications (including Reflection and
Microsoft Office 97 products). VBA features that enhance Reflection’s programmability include:

· Editing features that help streamline code writing.

· Color code display to improve macro readability.

· Graphical forms design for creating custom dialog boxes.

· A full range of powerful debugging tools.

Note: If you’ve developed scripts with earlier versions Reflection using Reflection Basic, you can
still run and maintain these scripts. See Chapter 10 (page 87) for more information. à

Other changes include:

· Reflection macros are saved in one file making it easier to distribute your macros to other
users. See page 10 for more information.

· Reflection now has a Session object. See page 90 for more information.

· New methods and properties have been added to support new Reflection features. For a
complete list, look up New methods and properties in the Reflection Programming Help. See
page 3 for instructions on how to view this Help.

 Overview 5
Sample Macros
Settings files that contain sample macros are installed with Reflection when you install the
Sample Files component. You can use these samples as models to help you develop your
own macros.

If you are using Reflection for IBM, you must do a Custom installation to get the sample macro
files. If you install to the default folder, you’ll find the sample macros in:

C:\Program Files\Reflection\Ibm\Samples\Vba

If you are using Reflection for HP, the sample macros are installed as part of a Typical instal-
lation. If you install to the default file location, you’ll find the sample macros in:

C:\Program Files\Reflection\Hp\Samples\Vba

If you are using Reflection for UNIX and Digital or Reflection for ReGIS Graphics, the sample
macros are installed as part of a Typical installation. If you install to the default file location,
you’ll find the sample macros in:

C:\Program Files\Reflection\Vt\Samples\Vba

C h a p t e r2

Recording and Managing Macros

Reflection macros allow you to simplify and automate routine tasks you perform using
Reflection. For example, you might create a macro that logs onto a host and navigates to a
particular host screen. Reflection provides two ways for you to create a macro: the macro
recorder and the Visual Basic Editor. This chapter describes how to use the macro recorder,
see Chapter 4 (page 25) for information about creating and editing macros with the Visual
Basic Editor.

Topics covered in this chapter include:

· Using the Reflection macro recorder to create new macros

· Running macros

· Saving macros

· Sharing and managing macros

Creating a Macro with the Macro Recorder
The Reflection macro recorder lets you capture the actions you perform in Reflection. While the
recorder is on, Reflection records your actions as a set of commands known as a macro. When
you run a recorded macro, the sequence of commands you recorded is repeated.

To create a macro using the macro recorder:

1. On the Macro menu, click Start Recording. This starts the macro recorder.

2. Perform the actions that you want included in the macro.
Project Name • Chapter 2 • Recording and Managing Macros • TEMPLATE: docs_v4 • D:\working\progvba\ug\2macros.fm • 8.18.98 • 11:50am

7

8 Recording and Managing Macros
3. On the Macro menu, click Stop Recording. This opens the Stop Recording dialog box.

4. In the Stop Recording dialog box:

· Leave Destination set to Macro.

· Enter a name for your macro in the Macro name box. Macro names cannot include
spaces and must begin with a letter. See page 32 for more information about naming
macros.

· Enter an optional description for your macro in the Description box.

5. Click OK.

6. At this point, you can run and test your macro, but it is not yet saved. If the macro works as
desired, save your settings file to save the macro.

 Recording and Managing Macros 9
Running a Macro
When you open a settings file, all the macros created and saved in that file are available. To run
a macro:

1. On the Macro menu, click Macros. This opens the Macros dialog box.

2. Type the name of the macro you want to run or select it from the list.

3. Click Run.

When a macro is running, most menu items are disabled. You can stop a running macro by
clicking Stop Macro on the Macro menu.

10 Recording and Managing Macros
Saving Macros
When you first create a macro, you can run it and edit it, but it is not yet saved to your settings
files. Macros are saved when you save your settings file. Either of the following actions saves both
your macros and your current settings. The macros you save are available each time you open the
settings file.

· In Reflection, click Save or Save As from the File menu.

· In the Visual Basic Editor, click Save <current settings file> from the File menu.

Sharing and Managing Macros
If you are developing macros that you want to share with other users, you can distribute them
using any of these strategies:

· Provide users with a settings file that contains your macros.

· Create a settings files with macros you want to share and have other users add a reference to
this file in their settings files. See page 11 for step-by-step instructions.

· Use the RunExternalMacro method to run a macro from another settings file without
adding a reference to that file. You might want to use this technique if you have created
macros that need to be run only once. See RunExternalMacro in the Reflection Programming
Help index for details.

Note: If you are using Reflection for IBM, and save a settings files that includes macros, Reflection
automatically creates a second file with the same base name and an rvx extension. For example,
saving the settings file Myfile.rsf, also creates a file called Myfile.rvx. This additional file must be
present in the same folder with your Reflection settings file for your macros to be available. In
other Reflection products, there is no additional file; macros are included in the settings file. à

Adding a reference to a settings file creates a dynamic link to all the macros in that file. When you
open a settings file with an added reference, you have access to the latest version of the macros in
the referenced file.

 Recording and Managing Macros 11
To add a reference to a settings file:

1. On the Macros menu, click Advanced, then click Add Reference. This opens the Add
Reference dialog box.

2. Select the settings file you want to add a reference to, then click Add.

3. Save your settings file to save this change.

Exercises
You can use a recorded login macro to simplify host connections by automating the steps you
need to take each time you make a connection. The following step-by-step exercises demonstrate
how to do this.

Do Exercise 1 if you are using:

Reflection for IBM

Do Exercise 2 (page 14) if you are using:

Reflection for HP with NS/VT
Reflection for UNIX and Digital
Reflection for ReGIS Graphics

12 Recording and Managing Macros
Exercise 1: Creating a Login Macro with Reflection for IBM
This exercise demonstrates how to create a login macro using Reflection for IBM.

Steps 1-5 configure a connection to a demonstration host and create a MacroDemo settings file
that you can use for saving your practice macros. If you prefer to connect to an actual host, open
(or create) a settings file that is configured to connect to that host and go directly to step 6.

Creating the MacroDemo Settings File
In steps 1-5 you’ll configure and test a connection, then save a settings file.

1. Open a new (untitled) Reflection session. (You can use the New Session command on the
File menu to open a new untitled session.)

2. On the Connection menu, click Session Setup. Under Session, set Type to either 5250
Terminal or 3270 Terminal. Under Transport, set Type to Demonstration. Select the
Simulation filename for the session type you selected. Click OK to close the Session Setup
dialog box.

3. Before you record a login, you should test your connection to the host. To do this, use the
Connect command on the Connection menu, or click the Connect/Disconnect toolbar
button. Type a user name and password, then press Enter to log on. For a demonstration
host, you can use any login name and password.

4. After you have made a successful connection, disconnect from the demonstration host by
clicking Disconnect on the Connection menu.

5. On the File menu, click Save As. Type MacroDemo in the File name box, then click Save.

Recording the Login macro
In steps 6-9 you’ll record the Login macro.

6. On the Macro menu, click Start Recording. The actions you perform next will be recorded
and saved to a macro.

7. Connect to the host by clicking the Connect command on the Connection menu or by
clicking the Connect/Disconnect toolbar button.

Note: Reflection will also connect to your host if you press the Enter key when you are
disconnected. Don’t use this shortcut when you are recording connections, because this
keystroke is also recorded. à

 Recording and Managing Macros 13
8. Type a user name and password, then press Enter to log on. Even if you are using a demon-
stration host, you should enter some text for a password; although you can make a demon-
stration connection if you leave this blank, your macro won’t accurately simulate an actual
host connection.

Note: Unless you change the value of the Record Passwords setting (or the RecordPasswords
property), Reflection will not include your password in any recorded macro. à

9. When you have completed your login procedure, click Stop Recording on the Macro menu
(or click the Start/Stop recording button on the toolbar). This opens the Stop Recording
dialog box.

10. Type Login in the Macro name box and select the Make this the connect macro check box.
Click OK to finish recording.

Testing the Login Macro
Steps 11 and 12 test the macro you just created.

11. Disconnect from the host.

12. Make a new connection. Because the macro you recorded is a connect macro, it will run
automatically as soon as the connection is made. You should see a prompt for your
password (which was not recorded). After you enter a password, the Login macro will
complete execution and you should see the host prompt that indicates that you are success-
fully logged on.

Saving the Login Macro
Step 13 saves the macro you just created; macros are not saved until you save your settings file.

13. Open the File menu and save your current settings file.

Viewing the Login Macro Code
Do steps 14 and 15 if you want to see the code that the macro recorder created:

14. On the Macros menu, click Macros.

15. In the list of macros, select the Login macro you just created, then click Edit.

You’ll see the Visual Basic Editor with the Login macro displayed in the Code window.

14 Recording and Managing Macros
Exercise 2: Creating a Login Macro with
Reflection for HP, UNIX and Digital, and ReGIS Graphics
The following exercise demonstrates how to create a login macro using Reflection for HP
with NS/VT, Reflection for UNIX and Digital, or Reflection for ReGIS Graphics.

Steps 1-5 in this exercise configure a connection to a demonstration host and create a
MacroDemo settings file that you can use for saving your practice macros. If you prefer to
connect to an actual host, open (or create) a settings file that is configured to connect to
that host and go directly to step 6.

Creating the MacroDemo Settings File
In steps 1-5 you’ll configure and test a connection, then save a settings file.

1. Open a new (untitled) Reflection session. (You can use the New Session command on the
File menu to open a new untitled session.)

2. On the Connection menu, click Connection Setup. Under Connect Using, click Network,
then select DEMONSTRATION from the network list. Use the Host Type list to select a
demonstration host type. Click OK to close the Connection Setup dialog box.

3. Before you record a login, you should test your connection to the host. To do this, press
Enter (or use the Connect command on the Connection menu) and enter appropriate
responses to the host prompts. For a demonstration host, you can use any login name
and password.

4. After you have made a successful connection, log off the host. The following commands
log off Reflection demonstration hosts:

HP 3000: bye

Digital: logout

UNIX: exit

5. On the File menu, click Save. Type MacroDemo in the File name box, then click Save.

 Recording and Managing Macros 15
Recording the Login macro
In steps 6-9 you’ll record the Login macro.

6. On the Macro menu, click Start Recording. This turns on the macro recorder. You’ll see a
small toolbar with two buttons: You can use the left button to stop recording, or the right
one to pause recording.

7. Connect to the host and enter responses to the host prompts (see step 3). If you are using
a demonstration host, you should enter text in response to the password prompt; although
you can make a demonstration connection if you leave this blank, your macro won’t
accurately simulate an actual host connection.

Note: Unless you change the value of the Save Passwords setting (or the SavePasswords
property), Reflection will not include your password in the recorded macro. à

8. On the macro menu, click Stop Recording (or click the stop recording button on the
recording toolbar). This opens the Stop Recording dialog box.

9. Because the steps you recorded included making a connection, Reflection automatically
suggests the default name Login for your macro and selects the Make this the connect
macro check box. Click OK to accept these defaults.

Testing the Login Macro
Steps 10 and 11 test the macro you just created.

10. Log off from the host. (See step 4).

11. Press Enter to make a new connection. Because the macro you recorded is a connect macro,
it will run automatically as soon as the connection is made. You should see a prompt for
your password (which was not recorded). After you enter a password, the Login macro will
complete execution and you should see the host prompt that indicates that you are success-
fully logged on.

16 Recording and Managing Macros
Saving the Login Macro
Step 12 saves the macro you just created; macros are not saved until you save your settings file.

12. On the File menu, click Save <settings file name>.

Viewing the Login Macro Code
Do steps 13 and 14 if you want to see the code that the macro recorder created:

13. On the Macro menu, click Macros.

14. Select Login, then click Edit.

You’ll see the Visual Basic Editor with the Login macro displayed in the Code window.

C h a p t e r3

Programming Fundamentals

This chapter introduces programming with Visual Basic for Applications and includes the
following topics:

· What is Visual Basic for Applications?

· Basic Language programming.

· Understanding Visual Basic projects.

· The Reflection Object model.

· Command Syntax.

What is Visual Basic for Applications?
Visual Basic for Applications (VBA) is a combination of a programming language and a program
development environment supported by many different applications (including Reflection and
Microsoft Office 97 products). You can use VBA to customize and enhance Reflection. You
can also create macros that allow Reflection to interact with other applications (such as Word
and Excel).

The core Visual Basic language consists of programming commands that are common to all
implementations of Visual Basic. A complete language reference is available in the Microsoft
Visual Basic Help; click the Contents tab and open the book labeled Visual Basic Language
Reference. (See page 3 for instructions on how to view this Help.)

In addition to this core language, Reflection macros use Reflection-specific methods and
properties that extend the core Visual Basic language. These methods and properties allow you
to manipulate and configure Reflection sessions. A complete reference to these commands is
available in Reflection’s programming Help; click the Contents tab and open the book labeled
Language Reference. (See page 3 for instructions on how to view this Help.) You can also use
Acrobat Reader to view or print this reference information. See page 1 for more information.
Project Name • Chapter 3 • Programming Fundamentals • TEMPLATE: docs_v4 • D:\working\progvba\ug\3basics.fm • 8.18.98 • 11:50am

17

18 Programming Fundamentals
Tip: As you are editing macros, you can use context sensitive Help to get information about
Visual Basic and Reflection programming commands. Position the insertion point within the
command, and press F1. à

Visual Basic for Applications 5.0 uses the same language and programming environment as
Visual Basic 5.0. However stand-alone Visual Basic can be used to create executable applications
that can run directly from the desktop. The Visual Basic projects you create using Reflection
can only be run from a Reflection session. The entry point to a Reflection Visual Basic project
is always a macro. When you create a stand-alone application, the entry point is frequently a
user form.

VBA is a shared component, which means you have one copy of VBA for all applications on your
system that use it. Although each application uses the same Visual Basic files, the Visual Basic
Editor configuration is stored separately for each product. This means that when you open the
Visual Basic Editor from Reflection, it will show your Reflection project as you last used it, even if
you have used the Editor for other applications.

Basic Language Programming
Visual Basic is a modern dialect of the BASIC programming language that was first developed
in the early 1960s. Visual Basic is far more powerful than the earliest versions, but many of the
BASIC language commands remain unchanged. If you have no prior programming experience,
you will need to become familiar with fundamental BASIC language programming concepts in
order to write your own Visual Basic macros.

Note: No programming knowledge is needed if you are using the macro recorder to create
your macros. à

Programming language elements that are common to all implementations of BASIC include:

· Data types, variable and constants, and arrays (declared with Dim and Const)

· Operators and expressions (such as +, -, *, /, Not, Like, and Or)

· User-defined functions and procedures (Sub and Function)

· Control structures and loops (such as For ... Next, Do ... Loop, and If ... Then ... Else)

 Programming Fundamentals 19
Additional concepts in Visual Basic for Applications and stand-alone Visual Basic include:

· Objects

· Forms

· Events

The Visual Basic Help covers these and other topics under the heading Visual Basic Conceptual
Topics in the Help Contents. (Instructions for viewing this Help are on page 3.) If you are new to
BASIC programming, you may want to use a guide that is organized for beginners before you
tackle the Help. Many books are available that cover the fundamentals of programming with
Visual Basic and Visual Basic for Applications.

Understanding Visual Basic Projects
A macro is the entry point to a Visual Basic project. When you run a macro, Visual Basic executes
the commands in that macro. Commands within a macro can use other components of the same
project. This means that a macro can run other macros, display forms, or execute user-defined
procedures—if these components are within the same project. In addition, macros in one project
can also run macros in other referenced projects.

When you open the Visual Basic Editor, you can see the elements of your current project by
using the Visual Basic Project Explorer.

The term scope refers to the availability of variables, constants, procedures, and forms defined in
one part of a project for use by other procedures in your project. See Scoping levels in the Visual
Basic Help for more information. (Instructions for viewing this Help are on page 3.)

The Components of a Reflection Project
A Reflection Visual Basic project contains a number of components, including Objects, Modules,
Forms, and Class Modules.

Reflection Objects
The Reflection objects component contains the module that defines the methods and properties
that make up the Reflection object. If you select ThisSession in the Project Explorer, the
Properties window lists all the properties for Reflection’s Session object. This list is similar to the
list you see when you select Macro syntax in Reflection’s View Settings dialog box. Changes you
make in either location affect the current Reflection settings.

20 Programming Fundamentals
Modules
A Modules component is present in a project if you have created any Reflection macros, or you
have created modules using the Module command in Visual Basic’s Insert menu. The Modules
folder in the Project Explorer lists code modules that include the programming procedures and
declarations you have added to your project. When you record macros in Reflection or create
new macros using the Create button in the Macros dialog box, they are placed in a module called
NewMacros. You can add your own procedures to this module or create new modules. You can
double-click a code module in the Project Explorer to display that module in the Code window.

Forms
A Forms component is present in a project if you have created user forms. Forms are custom
dialog boxes that display information and get input from users. See Chapter 5 (page 37) for
more information.

Class Modules
A Class Modules component is present in a project if you have created class modules. Class
modules are a powerful programming feature that allow you to create user-defined object classes,
including methods and properties for controlling these objects.

The Reflection Object Model
Reflection uses one object, Session. All of Reflection’s methods and properties act on the
Session object.

Note: Prior to version 7.0, Reflection used the name Application for the Reflection object. If
you are creating or maintaining Reflection Basic scripts, continue to use Application for the
Reflection object name. You can also use Application in Reflection Visual Basic macros, but
using Session enables some Visual Basic Editor features that are not available with Application
and may improve your macro performance. à

 Programming Fundamentals 21
Command Syntax
To view the Help topic for a Reflection method or property, you can search for the command
name in the Reflection Programming Help. (Instructions for viewing this Help file are on
page 3.) You can also get command help by pressing F1 when the insertion point is positioned
on a command in the Visual Basic Editor. The sample Help topic shown here is from the
Reflection for UNIX and Digital Help.

22 Programming Fundamentals
Every keyword Help topic includes a syntax line. Following are some guidelines for under-
standing and using correct command syntax:

· Items that are not shown in italics are part of the command language. You should use these
in your macros exactly as they appear in the sample syntax. Items that are shown in italics
are place holders. Replace these with your own values or expressions.

· Arguments must be used in the order shown in the syntax statement. The exception is if you
use named arguments. (See page 23.)

· Keywords and arguments are not case sensitive.

· If an argument is enclosed in square brackets [like this], it is optional.

· Use quotation marks for string arguments when you are using literal strings, (but not when
you are using string variables). Use double quotation marks for strings within other strings.
For example:

Session.SomeMethod "Say ""Hello"" to Joe"

· When you use a Reflection method or property in a Visual Basic macro, precede it with the
Reflection object (Session) and a period, or use a With statement to identify Session as the
object. You can also use just the command name (with nothing preceding it), however this
can cause conflicts if you have defined variables or procedures that use the same name as a
Reflection method or property. These statements are equivalent:

Preceding the command with the Reflection object:

Session.Connect

Placing the command or commands between With and End With statements:

With Session

.Connect

End With

Using just the method name:

Note: If you have declared a variable named connect, this statement will generate
an error. If you have defined a Connect procedure, this statement will run that
procedure. à

Connect

 Programming Fundamentals 23
Named Arguments
If you use the syntax shown in the Help topic for any Reflection method, you must put your
arguments in the same order as they appear in the syntax line. Use named arguments if you want
to reorder the arguments, omit optional arguments, or as a means of helping identify arguments
in your commands.

A named argument consists of a token to identify an argument, followed by a colon and an equal
sign, and then the value for the argument:

Token:= ArgumentValue

The token name is the same as the argument name used in the syntax statement. For example,
the Transmit method (supported in Reflection for HP, Reflection for UNIX and Digital, and
Reflection for ReGIS Graphics) takes two arguments:

Transmit String , [Options]

Using standard syntax, the String argument must always be given first. For example:

Session.Transmit "mypass", rcDecodePassword

Using tokens derived from the syntax line, you can modify this command to use named
arguments:

Session.Transmit String:= "mypass", Options:= rcDecodePassword

Named arguments allow you to reorder arguments, so the following command is equivalent to
the one above:

Session.Transmit Options:= rcDecodePassword, String:= "mypass"

For user-defined procedures, the token name is the variable name you use when you define
the procedure.

C h a p t e r4

Using the Visual Basic Editor

The Visual Basic Editor allows you to modify recorded macros or to create new ones. You can
use Visual Basic to create more flexible, powerful macros that include features (such as dialog
boxes and conditional statements) that cannot be created using Reflection’s macro recorder. The
Visual Basic Editor you use in Reflection is identical to that used by many other applications
(including Microsoft Office 97 applications). This means that expertise you acquire with one
product will help you develop macros in other products.

This chapter includes:

· An overview of the Visual Basic Editor.

· Descriptions of the Project Explorer, the Properties window, and the Code window.

· Procedures for creating and editing macros.

· Rules for naming macros.

· A step-by-step exercise that demonstrates how to create, test, run, and save a Reflection
macro using the Visual Basic Editor.

The Visual Basic Editor
The Visual Basic Editor is an integrated development environment for writing, editing, and
debugging Reflection macros. The first time you edit a Reflection macro, you’ll see the Project
Explorer, Properties window, and Code window. If you create user forms, you’ll also work
with the UserForm window. (See Chapter 5 on page 37 for more information about creating
forms.) Three additional windows—Immediate, Locals, and Watch—are useful for testing
and debugging.
Project Name • Chapter 4 • Using the Visual Basic Editor • TEMPLATE: docs_v4 • D:\working\progvba\ug\4editor.fm • 8.18.98 • 11:50am

25

26 Using the Visual Basic Editor
Detailed information about each of the Editor’s features is available in the Visual Basic Help;
click the Contents tab and see User Interface Help and Visual Basic How-To Topics. (Instructions
for viewing this Help are on page 3.)

 Using the Visual Basic Editor 27
The Project Explorer
The Project Explorer displays the elements of your current project. (See page 19 for information
about the components of a Reflection project.)

By default, the Project Explorer arranges items in the project in related groups using a tree
diagram. Click the plus sign to expand a branch of the tree, or click the minus sign to collapse
that branch.

There are three buttons at the top of the Project Explorer:

· View Code displays the code for the currently selected object. For example, if you select the
NewMacros module and click View Code, the code window opens with the insertion point
in the macro you most recently edited.

Tip: Double-clicking a module also displays the code for that module. à

· View Object displays the currently selected object. For example, if you select a user form
and click View Object, the UserForm window opens with that form visible. You can also
display objects by double-clicking them.

· Toggle Folders changes the display in the Project Explorer so items are no longer arranged
in related folders. When you toggle folder display off, components are listed alphabetically
rather than in related groups. Click this button again to return to the default display.

28 Using the Visual Basic Editor
The Properties Window
The Properties window lists all the properties of the currently selected object. If a code module is
selected, the only thing visible in the Properties window is the module name. If a form is selected,
you can use the Properties window to modify the form and its controls.

If the Reflection ThisSession object is selected, the Properties windows shows the current value
of all of Reflection’s properties.

 Using the Visual Basic Editor 29
The Code Window
The Code window displays all of the code (procedures and declarations) for a given module.
Some key features of the Code window are summarized here. For more detailed information,
look up Code window in the Visual Basic Help index. (See page 3 for instructions on how to
view this Help.)

Getting Help
Context sensitive Help is available for Visual Basic and Reflection commands. To view a Help
topic, position the insertion point within a command and press F1.

30 Using the Visual Basic Editor
Editing Code
Visual Basic provides a number of features to help you type and edit code. The Auto Quick Info
feature displays information about command arguments as you type. (To see this, type
SetClipboardText in the Code window, then press the spacebar.) The Auto Syntax Check feature
determines whether Visual Basic checks your syntax after each line of code you type. Drag-and-
drop text editing allows you to drag and drop elements within the current code and from the
Code window into the Immediate or Watch windows. For more information about these and
other features, click Options on the Visual Basic Editor’s Tools menu, click the Editor tab, then
click the Help button.

Viewing Macros
The Procedure list in the upper-right corner of the Code window allows you to quickly locate any
macro, or other procedure in a module. When you display this list, you see a list of items in the
current module.

The buttons in the lower-left corner of the Code window determine how procedures are
displayed. By default, procedures are displayed in Full Module view. In this view, all procedures
are visible in a single, scrolling window, with a line between each procedure. In Procedure view,
each procedure is displayed separately.

The split bar allows you to view and edit different procedures in the same module. To split
the Code window, drag the split box at the top of the scroll bar (immediately above the up
arrow). Drag the split bar to the top or the bottom of the window or double-click the bar to
close the pane.

Creating New Macros
You can create new macros using both Reflection and the Visual Basic Editor. In Reflection, use
the macro recorder if you want to create macros without writing any Visual Basic code. You can
also use recorded macros as a starting point, and then edit the code in the Visual Basic Editor.

Each of the step-by-step procedures that follows creates a new macro. Follow the steps to create
a new Sub procedure, then place your macro code between the Sub and End Sub statements of
this procedure.

 Using the Visual Basic Editor 31
Creating a New Macro Using Reflection’s Macros Dialog Box
To create a new macro using Reflection’s Macros dialog box:

1. In Reflection, on the Macro menu, click Macros.

2. Type a macro name in the Macro name box.

3. Click Create.

Reflection automatically places new macros in the NewMacros module. You can create new
macros in other modules using one of the following procedures:

Creating A New Macro Using the Visual Basic Editor’s Add Procedure Dialog Box
To create a new macro using the Visual Basic Editor’s Add Procedure dialog box:

1. In the Visual Basic Editor Project Explorer, double-click the module in which you want
to put your new macro. This displays the Code window for that module. (By default,
Reflection places macros in a module called NewMacros. To create your own modules, on
the Insert menu, click Module.)

2. On the Insert menu, click Procedure.

3. Type a macro name in the Name box.

4. Macros are Public Sub procedures. These options are selected by default in the Type and
Scope group boxes.

5. Click OK.

Creating a New Macro by Writing Code
To create a new macro by writing code:

1. In the Visual Basic Editor’s Project Explorer, double-click the module in which you want to
put your new macro. This displays the Code window for that module. (By default,
Reflection places macros in a module called NewMacros. To create your own modules, on
the Insert menu, click Module.)

2. Type Sub followed by a space, then type a macro name.

3. Press Enter. The Editor automatically creates an End Sub statement. Type code for your
macro between these statements.

32 Using the Visual Basic Editor
Rules for Naming Macros
Use the following rules when you name macros:

· Use a letter as the first character.

· You can use alphanumeric characters and the underscore character (_), but spaces and
other symbols are not allowed.

· The macro name can’t exceed 255 characters in length.

· Don’t use any names that are the same as the Visual Basic or Reflection commands. If you
do use a macro name that is the same as a command, fully qualify the command when you
want to use it. To do this, you need to precede the command name with the name of the
associated type library. For example, if you have a macro called Beep, you can only invoke
the Visual Basic Beep statement by using VBA.Beep.

· You can’t repeat names within the same level of scope. This means you can’t have two
macros named StartUp in the same code module, but you can have two StartUp macros if
they are in different code modules. To call a macro with a duplicate name that is in another
code module, you must fully qualify the macro name. For example Module1.StartUp will
invoke the StartUp macro in Module1.

The naming rules described here for macros also apply to procedures, constants, variables, and
arguments in Visual Basic modules.

Note: Visual Basic isn’t case sensitive, but it preserves the capitalization you use when you name
macros. This allows you to create macro names that are easier to read. à

Editing Macros
To edit existing macros, you can locate them in Reflection’s macros dialog box or in the Visual
Basic Code Window.

To display a macro to edit using Reflection’s Macro dialog box:

1. In Reflection, on the Macro menu, click Macros.

2. Select the macro you want to edit from the list of macros, or type the macro name in the
Macro name box. (The macros lists shows all macros in the current settings file and any
referenced files.)

3. Click Edit.

 Using the Visual Basic Editor 33
To display a macro to edit using the Visual Basic Editor:

1. In the Visual Basic Editor Project Explorer, double-click the module containing the macro.
This displays the Code window for that module. (Any macros you create using Reflection’s
macro recorder or Reflection’s Macros dialog box are located in a module called
NewMacros.)

2. Select the macro you want to edit using the Procedures box in the upper-right corner of the
Code window.

Exercise
This exercise demonstrates how to create a macro using the Visual Basic Editor. The macro you
create uses Reflection methods to get text from the screen display and copy it to the Clipboard.
As you type the code, you’ll have a chance to see some of the Visual Basic Editor features that
help simpify this process. The completed code is on page 36.

Creating the ClipboardDemo Macro
In steps 1-7, you open the Visual Basic Editor and use its editing features to create the code for
the macro:

1. Open the Reflection settings file you are using for your practice macros. The macro you
create in this exercise copies text from the screen display, so you should connect to a host.

2. On the Macro menu, click Macros. In the Macro name box, type ClipboardDemo. In the
Description box, type Copy screen text to the Clipboard.

3. Click Create; this closes the Macros dialog box and opens the Visual Basic Editor with the
following code already entered. The lines preceded by apostrophes are comments. They add
useful information for someone reading the macro, but have no other effect.

Sub ClipboardDemo()

' ClipboardDemo Macro

' Macro created <today's date> by <your name>

' Copy screen text to the Clipboard

End Sub

34 Using the Visual Basic Editor
4. This macro uses a string variable to hold the screen text. You can take advantage of the
Visual Basic Editor’s editing features to write the statement that declares this variable. Make
sure the insertion point is located beneath the comment code, press Tab to indent your code,
then type:

dim displayText as

Press the spacebar, and the Editor displays a list of valid variable types. Type s to jump to the
items on the list that start with s, then double-click the String item. The editor automatically
inserts the item you select into your code.

5. Press Enter. The insertion point will move to a new line indented at the same level as the
previous line. The Editor will also format your code automatically, so that Visual Basic
commands are identified by color and begin with uppercase letters. Your statement should
look like this:

Dim displayText As String

Variable names are not case sensitive. The Editor retains the capitalization you use when you
type variables. Identifying variables by using a lowercase initial letter helps distinguish them
from the commands.

Tip: For more information about the Dim statement, position the insertion point on Dim
and press F1. This opens the Microsoft Help topic for this command. à

6. The next line in your macro gets 80 characters of text from the host display and assigns this
string value to the displayText variable. The method you use to do this depends on the
Reflection product you are using. Type one of the following. (You may need to adjust the
coordinates to capture text from your display):

If you are using Reflection for HP, Reflection for UNIX and Digital, or Reflection for ReGis
Graphics, type:

displayText = Session.GetText(1, 0, 1, 80)

If you are using Reflection for IBM, type:

displayText = Session.GetDisplayText(1, 1, 80)

Notice that as you type code for a Reflection method, the Editor displays syntax information
about this method. Press F1 when the insertion point is positioned on a method to open the
Reflection Help file with more detailed information.

 Using the Visual Basic Editor 35
7. The next line in your macro uses the SetClipboardText method to place the display text in
the Clipboard. Type the following:

Session.SetClipboardText(displayText)

8. The last line in your macro uses a MsgBox statement to let you know the macro has done
something. Type the following:

MsgBox "Screen text has been copied to the Clipboard."

Your macro is done. The completed code is on page 36.

Testing the Macro
Steps 9-11 test the macro:

9. On the Visual Basic Editor’s View menu, click Immediate Window. The Immediate window
is a debugging tool that allows you to test code. In this exercise, you’ll just use it as a scratch
pad to paste the Clipboard contents.

10. Place the insertion point anywhere in the ClipboardDemo procedure you just created. You
can run this procedure from the Editor using any of the following techniques:

· Click the Run button on the Visual Basic toolbar.

· Press F5.

· On the Run menu, click Run Sub/UserForm.

11. Click in the Immediate window and press Ctrl+V to paste the Clipboard contents. You
should see the text that was copied from your host screen.

Saving the ClipboardDemo Macro
Step 12 saves the macro you just created; macros are not saved until you save your settings file.
You can save settings files using either the Visual Basic Editor or Reflection.

12. On the Visual Basic Editor’s File menu, click the Save command, which identifies your
current Reflection settings file (or uses Untitled if you have not created a settings file). Using
this command is equivalent to using the Save command on Reflection’s File menu.

36 Using the Visual Basic Editor
The Completed ClipboardDemo Macro
Refer to the sample code for the Reflection product you are using.

Reflection for IBM
If you are using Reflection for IBM, your ClipboardDemo code should look like this:

Sub ClipboardDemo()

'

' ClipboardDemo Macro

' Macro created <today's date> by <your name>

'

' Copy screen text to the Clipboard

'

Dim displayText As String

displayText = Session.GetDisplayText(1, 1, 80)

Session.SetClipboardText (displayText)

MsgBox "Screen text has been copied to the Clipboard."

End Sub

Reflection for HP, Reflection for UNIX and Digital, and Reflection for ReGIS Graphics
If you are using Reflection for HP, Reflection for UNIX and Digital, or Reflection for ReGIS
Graphics, your ClipboardDemo code should look like this:

Sub ClipboardDemo()

'

' ClipboardDemo Macro

' Macro created <today's date> by <your name>

'

' Copy screen text to the clipboard

'

Dim displayText As String

displayText = Session.GetText(1, 0, 1, 80)

Session.SetClipboardText (displayText)

MsgBox "Screen text has been copied to the Clipboard."

End Sub

C h a p t e r5

Creating Custom Dialog Boxes

Macros use dialog boxes to display information and get user feedback. To create dialog boxes,
you add forms (also called UserForms) to your project. This chapter describes the steps needed
to create and edit user forms, including:

· Creating a new form.

· Adding and editing controls.

· Writing form code.

· Getting user input from your dialog box.

· Opening and Closing your dialog box.

· Step-by-step exercises for creating and getting user input from dialog boxes.

Creating a New Form
To create a custom dialog box, insert a new form in your project following these steps:

1. Open the Visual Basic Editor.

2. On the Insert menu, click UserForm. This opens a new, blank user form. When you first
create a form, the entire form is selected and you can readily modify its properties.

3. If you want to resize the form, drag the small, square resizing handles.
Project Name • Chapter 5 • Creating Custom Dialog Boxes • TEMPLATE: docs_v4 • D:\working\progvba\ug\5forms.fm • 8.18.98 • 11:50am

37

38 Creating Custom Dialog Boxes
4. Use the Properties window to specify the properties of this form. (If it’s not already visible,
on the View menu, click Properties Window.) Properties you may want to change include:

· Name: Forms are identified by this name in the Project Explorer. You’ll use this name
when you want to call the form from a macro. Visual Basic uses a default name, such as
UserForm1. You can change this to a more meaningful name.

· Caption: The caption appears in the title bar when the dialog box opens. Change this
to a word or phrase that will help identify the dialog box to your user.

For a detailed explanation of these and other UserForm properties, look up UserForm object in
the Visual Basic Help and click the Properties link at the top of the UserForm Object topic. (See
page 3 for instructions on how to view this Help.)

Adding and Editing Controls
Controls on dialog boxes allow you to provide information and get user input. Different controls
are appropriate for different purposes. Examples of some commonly used controls include:

· CommandButton: Allows a user to carry out an action.

· TextBox: Allows a user to enter text.

· Label: Identifies portions of the dialog box and displays information to the user.

· ListBox: Displays a list of items from which the user can select.

· ComboBox: Displays a drop-down list of items.

· OptionButton: Allows users to select from mutually exclusive options.

· CheckBox: Allows users to select yes/no options that are not mutually exclusive.

· Frame: Draws an outline that groups related controls.

 Creating Custom Dialog Boxes 39
To add or edit controls on a form, display the form and the Toolbox in the Visual Basic Editor.
You can display both by double-clicking a form name in the Project Explorer. All of the available
controls are shown on the Toolbox.

For a detailed explanation of each control and the properties it supports, refer to Microsoft Forms
Object Model Reference in the Contents tab of the Visual Basic Help. (See page 3 for instructions
on how to view this Help.)

For more information about using the Toolbox and designing forms, look up Toolbox in
the Visual Basic Help Index, or see Microsoft Forms Design Reference in the Visual Basic Help
Contents.

40 Creating Custom Dialog Boxes
Adding a New Control to a Form
Use this procedure to add a new control to a form:

1. Click the command button in the Toolbox that identifies the control you want to add.

Tip: To display a ToolTip that identifies each control, position your mouse pointer over the
control and wait a few seconds. à

2. Position the mouse pointer on your form where you want the new control. Click and hold
down the mouse button, then drag the control until it is the size you want, or click without
dragging to insert a control that uses default dimensions.

Editing Control Properties
To edit the properties of a control:

1. Click the control you want to edit; this selects that control.

2. To reposition the control, drag it to a new location. To resize it, use the small, square sizing
handles that appear around the edge of the control when it is selected.

3. To change other properties, use the Properties window. (If it’s not already visible, on the
View menu, click Properties Window.) Properties you may want to change include:

· Name: Visual Basic assigns default names like CommandButton1 and TextBox1 to new
controls. These names are used to identify the control in your code. You can leave a
control’s name unchanged or edit it to a more meaningful name.

Warning: â If you plan on changing a control name, do it before you create an event procedure for the
control. If you change a control name after you have written an event procedure, you need to edit
the event procedure name as well. à

· Caption: Captions apply to controls, such as command buttons and labels that are
typically identified with text. Use the Caption property to specify the text that appears
on the control when the dialog box opens.

Tip: You can also edit controls directly on a form. Click to select the control, then wait a few
seconds and click again. Edit the text, then click outside the control to redisplay the Toolbox. à

 Creating Custom Dialog Boxes 41
Writing Form Code
Dialog box controls frequently need to trigger appropriate actions based on a user’s actions. In
Visual Basic, you define event procedures to respond to user actions. An event procedure is code
that is executed when a particular event occurs. For example, if you have a button labeled OK
on your form, you need to write an appropriate event procedure that executes when this button
is clicked.

To write event procedures for a form:

1. Display the form in the Visual Basic Editor. You can display a form by double-clicking the
form name in the Project Explorer.

2. On the View menu, click Code to display the form Code window.

3. Using the Object list in the upper-left area of the Code window, select the control for which
you want to write a procedure. (Controls are identified here using their Name property.)

4. Using the Procedure list in the upper-right area of the Code window, select the event that
you want to define. For example, select Click if you want the procedure to occur when the
user clicks this control. At this point, the editor will do one of the following:

· If a procedure exists for this event, it is displayed in the Code window.

· If no procedure exists, the Editor creates a new event procedure and places the insertion
point in the procedure where you will write your code.

Event procedures are identified with a name that includes both the control name and
the event; for example, the following procedure will govern what happens when the
CommandButton1command button is clicked:

Private Sub CommandButton1_Click()

Tip: You can also double-click a control in the Form window to create an event procedure for
that control. The Visual Basic Editor automatically creates a procedure using the default event
for that control. à

5. Write the code that you want executed when this event occurs; for example, this procedure
displays a message saying "Hello World!" when a Hello command button is clicked:

Private Sub Hello_Click()

MsgBox "Hello World!"

End Sub

42 Creating Custom Dialog Boxes
Getting User Input from your Dialog Box
Some actions a user takes in a dialog box change the properties of the control being used. For
example, typing text in a TextBox control changes its Text property and clicking an Option-
Button changes its Value property. When you want to determine what a user has done with a
particular control, you can return the value of the relevant property.

For example, the following command displays the current text in the TextBox1 control:

MsgBox TextBox1.Text

This command tests to see the current state of the CheckBox1 control:

If CheckBox1.Value = True Then

If a form is loaded into memory, you can use the form properties to return information to
any procedure in the same project. To do this, fully qualify the control name by including the
UserForm name. For example, the following expression can be used in a macro to return the
text in the TextBox1 control located in the UserForm1 form:

UserBox1.TextBox1.Text

Opening and Closing your Dialog Box
Once you have created a user form, you need to add code that opens and closes this form.

Opening a Dialog Box
To open a dialog box, use the Show method. For example, you could use the following command
in a macro to display the UserForm1 dialog box:

UserForm1.Show

If this dialog box has not yet been loaded in memory, this command loads it and displays it. You
can load a dialog box into memory without displaying it using the Load statement. For example:

Load UserForm1

When a form is loaded, you can access information about it using form and control properties.

Tip: It is easy to display and test a dialog box while you work with it in the Visual Basic editor—
just open the Debug menu and click Run Sub/UserForm. à

 Creating Custom Dialog Boxes 43
Closing a Dialog Box
You can close a dialog box by hiding it using the Hide property or unloading it using the Unload
statement. When you hide a form, it is no longer visible to the user, but you can still access infor-
mation about the form by referencing the UserForm object and its control objects. When you
unload a form, it is removed from memory and you can no longer access information about it.

Within a form’s code, you can identify the form by using Me for the object name. (You can also
use the Name property for the form.) The following example shows a procedure that is activated
when a button named CloseButton is clicked. The procedure closes the dialog box without
unloading it from memory.

Private Sub CloseButton_Click()

Me.Hide

End Sub

This next procedure closes the dialog box and removes it from memory.

Private Sub CloseButton_click()

Unload Me

End Sub

If a user closes a dialog box by clicking the Close button in the upper-right corner, the form
is unloaded.

Exercises
The exercises that follow demonstrate how to use forms to create custom dialog boxes. In
Exercise 1 you create a dialog box with buttons that change the color of your Reflection window.
In Exercise 2 you create a dialog box that allows users to select a file on their computer and then
displays the file that was selected.

Tip: These exercises are available in the Reflection Programming Help. You can use this Help file
if you want to copy and paste code, rather than type it manually. See page 3 for instructions on
how view this Help. Look up Tutorial in the index. à

44 Creating Custom Dialog Boxes
Exercise 1: Creating a Dialog Box
This exercise demonstrates how to create a form using the Visual Basic Editor. The macro you
create displays a dialog box that changes the background color in the Reflection window. The
finished Change Colors dialog box is shown in the figure.

Creating a New UserForm
In steps 1-4, you open the Visual Basic Editor and create a new UserForm.

1. Open the Reflection settings file you are using for your practice macros.

2. On the Macro menu, click Macros. In the Macro name box, type ColorDemo, then click
Create.

3. If the Properties window is not already visible in the Visual Basic Editor, on the View menu,
click Properties Window. You’ll use this window to modify the properties of your UserForm
and its controls.

4. On the Insert menu, click UserForm; this creates a new blank form. If the Toolbox window
isn’t open, click Toolbox on the View menu.

Designing the Dialog Box
In steps 5-12, you add custom features to the dialog box.

5. In the Properties window, double-click (Name) at the top of the Properties list. This selects
the default name (UserForm1 or a similar name). Type ColorDemoDialog to replace the
default name. This name identifies the dialog box in your project.

6. Select the Caption property and change it to Change Colors. This changes the text that shows
up in the title bar of your dialog box.

 Creating Custom Dialog Boxes 45
7. While the Properties window is active, the Toolbox is not visible. Activate the UserForm
window to display the Toolbox. (You can activate this window by clicking it, by using the
Editor’s Window menu, or by using the Project Explorer.)

8. Locate the CommandButton control on the Toolbox. (By pausing on a control, you can use
ToolTips to identify it.) Drag this control to your dialog box, then release the mouse button.
This places a default command button on your form.

9. Practice dragging this control to new locations in the form, then drag it to the position of the
Red Background button in the finished dialog box.

10. Use the Properties window to change the following properties: Set Name to RedButton and
set Caption to Red Background.

11. Return to the UserForm window, add a second button and position it where the Default
Colors button is in the finished dialog box. For this button, set Name to DefaultButton, and
set Caption to Default Colors.

12. Add a third button where the Close button is in the finished dialog box. For this button, set
Name to CloseButton and set Caption to Close.

Adding Code to the Form
In steps 13-16, you add code to the user form that controls what happens when a user clicks the
command buttons. The complete code for this dialog box is on pages 47 and 48.

13. Double-click the Connect button in your user form. This opens the UserForm Code
window, with the following event procedure automatically in place. The code you place
between these lines executes when the user clicks the Red Background button.

Private Sub RedButton_Click()

End Sub

14. Edit this procedure to change the color of the Reflection window, using the code shown here
for the Reflection product you are using:

If you are using Reflection for HP, Reflection for UNIX and Digital, or Reflection for ReGIS
Graphics, use the SetColorMap method to change the foreground color to white and the
background color to red:

Private Sub RedButton_Click()

Session.SetColorMap rcPlainAttribute, rcWhite, rcRed

End Sub

46 Creating Custom Dialog Boxes
If you are using Reflection for IBM, use the BackgndColor property to change the
background color to red:

Private Sub RedButton_Click()

Session.BackgndColor = rcRed

End Sub

15. Return to the UserForm window, and double-click the Default Color button to create an
event procedure for this button. The statement you add uses the RestoreDefaults method
to restore the default colors.

Private Sub DefaultButton_Click()

Session.RestoreDefaults rcColors

End Sub

16. Finally, create a procedure for the Close button with the following code. The Unload
statement closes the dialog box and removes it from memory. You can use Me to refer to
a UserForm object within your form code. Unload Me in this example is equivalent to
Unload ColorDemoDialog.

Private Sub CloseButton_Click()

Unload Me

End Sub

Testing the Dialog Box
The next step tests the dialog box before you add it to your macro.

17. To test the dialog box, activate the UserForm window, then click the Run button on the
Visual Basic toolbar. Try the Red Background and Default Colors buttons, then click the
Close button.

Displaying the Dialog Box from Your Macro
In steps 18 and 19, you add code that opens your dialog box to the ColorDemo Macro.

18. Double-click NewMacros in the Project Explorer to open this Code window. Position the
insertion point beneath the comment code of the ColorDemo procedure. The code you
enter here runs when you run the ColorDemo macro.

19. Type the following line immediately beneath the comments at the top of the procedure.
This line displays the UserForm you just created.

ColorDemoDialog.Show

 Creating Custom Dialog Boxes 47
Testing and Saving the ColorDemo Macro
In the final steps of this exercise, you test and save your macro.

20. Return to Reflection. (You can use the Windows taskbar or click the Reflection item at the
bottom of the Editor’s View menu.)

21. On the Macro menu, click Macros. Select the ColorDemo macro from the list and click Run.
This should display the dialog box you just created. Test and close the dialog box.

22. Save your settings file to save this macro.

The ColorDemo Dialog Box UserForm Code
Refer to the sample code for the Reflection product you are using.

ColorDemo Code for Reflection for IBM
If you are using Reflection for IBM, your UserForm code for the ColorDemo dialog box will look
like this:

Option Explicit

Private Sub CloseButton_Click()

 Unload Me

End Sub

Private Sub DefaultButton_Click()

 Session.RestoreDefaults rcColors

End Sub

Private Sub RedButton_Click()

 Session.BackgndColor = rcRed

End Sub

48 Creating Custom Dialog Boxes
ColorDemo Code for Reflection for HP, UNIX and Digital, and ReGIS Graphics
If you are using Reflection for HP with NS/VT, Reflection for UNIX and Digital, or Reflection for
ReGIS Graphics, your UserForm code for the ColorDemo dialog box will look like this:

Option Explicit

Private Sub CloseButton_Click()

End Sub

Private Sub DefaultButton_Click()

 Session.RestoreDefaults rcColors

End Sub

Private Sub RedButton_Click()

 Session.SetColorMap rcPlainAttribute, rcWhite, rcRed

End Sub

Exercise 2: Getting User Input from a Dialog Box
This exercise demonstrates how to create a dialog box that changes in response to user input. The
macro you create uses Reflection’s GetOpenFolder method to allow a user to browse for files.
The file the user selects is displayed in a text box. The finished dialog box is shown in the figure.

Creating a New UserForm
In steps 1 and 2, you open the Visual Basic Editor and create a new UserForm.

1. Open the Reflection settings file you are using for your practice macros. On the Macro
menu, click Macros. In the Macro name box, type OpenFileDemo, then click Create.

2. Open the Insert menu in the Visual Basic Editor, and click UserForm.

 Creating Custom Dialog Boxes 49
Designing the Dialog Box
In steps 3-10, you modify the dialog box and add controls to it. For more detailed help on these
techniques, see the ColorDemo macro exercise on page 44.

3. Use the Properties window to set the form Name to OpenFileDialog and Caption to
Select File.

4. Use the sizing handles on the dialog box form to change its shape to match the completed
dialog box shown above.

5. Add a Label control, a TextBox control, and three CommandButton controls. Arrange these
controls as shown in the completed dialog box.

6. Set the Label Caption to Path and file name:

7. Set the TextBox Name to SelectedPath.

8. For the Browse button, set the Name to BrowseButton and Caption to Browse....

9. For the OK button, set the Name to OKButton and Caption to OK.

10. For the Cancel button, set the Name to CancelButton and Caption to Cancel.

Add Code to the Form
In steps 11-14, you add code to the form. The completed code for this dialog box is on page 51.

11. Double-click the Browse control to create an event procedure for this button and insert the
code shown here. The Reflection GetOpenFileName method displays a standard Windows
dialog box for selecting a file, and returns a string with the file name and path selected. In
this procedure, the returned string is used to set the Text property of the SelectedPath text
box. Me is used to identify the current UserForm; Me.SelectedPath.Text in this statement is
equivalent to OpenFileDemo.SelectedPath.Text.

With Session

Me.SelectedPath.Text = GetOpenFilename("All Files (*.*),*.*")

End With

12. Double-click the OK button, and insert the following statement in the event procedure. This
statement closes the dialog box without removing it from memory.

Me.Hide

50 Creating Custom Dialog Boxes
13. Double-click the Cancel button, and insert the following statement in the event procedure.
This statement closes the dialog box and unloads it from memory.

Unload Me

14. To test the dialog box, return to the UserForm window (by clicking it or by using the
Windows menu), then click the Run button on the Visual Basic toolbar. Click the Browse
button in your dialog box. You should see the Open File dialog box created by GetOpen-
Filename. Select any file, then click Open. The file you selected should be displayed in the
Path and filename text box.

Incorporating the Dialog Box into Your Macro
In steps 15 and 16, you add code to your macro that opens the dialog box and then shows a
message box with the current value of the TextBox control. If you close the dialog box using
the Close button, the message box displays the most recent contents of this control. If you close
the dialog box using the Cancel button, the message box displays an empty string, because the
OpenFileDemo dialog box is no longer loaded in memory.

15. Double-click NewMacros in the Project Explorer to open this module in the Code window.

16. Edit the OpenFileDemo procedure as follows:

Sub OpenFileDemo()

'

' OpenFileDemo Macro

' Macro created 09/30/98 by Your Name

'

'Display the OpenFileDialog form

OpenFileDialog.Show

'Use a message box to display the contents of the text box

MsgBox "User selected " & OpenFileDialog.SelectedPath.Text

End Sub

17. Test the macro and save your settings file.

 Creating Custom Dialog Boxes 51
TheOpenFileDemo Dialog Box UserForm Code
This is the completed code for the OpenFileDemo dialog box.

Option Explicit

Private Sub BrowseButton_Click()

With Session

Me.SelectedPath.Text = GetOpenFilename("All Files (*.*),*.*")

End With

End Sub

Private Sub CancelButton_Click()

Unload Me

End Sub

Private Sub OKButton_Click()

Me.Hide

End Sub

C h a p t e r6

Handling Errors

There are the three types of errors you may encounter as you program in Reflection:

Compile errors
Compile errors prevent your macro from running and generally result from errors in syntax.

Programming logic errors
Logic errors occur when your macro does not perform as you expected. The programming
syntax is correct, the macro compiles, but an error in logic causes the macro to produce
unexpected or incorrect results. The Visual Basic Editor’s debugging tools can help you track
down logic errors. See debugging in the Visual Basic Editor’s Help index for more information.

Run-time errors
Run-time errors occur as your macro runs, and generally result from specific conditions present
at that time. For example, a run-time error may occur if you prompt the user for a host name, try
to connect to that host, but the host is not available. The Connect method fails and Visual Basic
generates a run-time error.

You should always include some form of error handling in your macros to deal with run-time
errors, even if you handle the error by doing nothing. Without any error handling at all, a run-
time error causes a macro to stop immediately, and gives the user little information. This chapter
covers the following topics:

· Trapping an error.

· Handing the error.

· Resuming the macro.

· Inline error handling.

· Error codes.
Project Name • Chapter 6 • Handling Errors • TEMPLATE: docs_v4 • D:\working\progvba\ug\6errors.fm • 8.18.98 • 11:50am

53

54 Handling Errors
Trapping an Error
The first step in dealing with run-time errors is to set a “trap” to catch the error. You do this
by including an On Error statement in your macro. When a run-time error occurs, the On Error
statement transfers control to an error-handling routine. Refer to the On Error topic in the
Visual Basic Help for more information. (See page 3 for information about how to view
this Help.)

To trap errors correctly, you must set your error trap above the point in the procedure where
errors are likely to occur. In general, this means that your error trap should be placed near the
top of the procedure. Further, to avoid having the error-handling routine execute even when
no error occurs, include an Exit Sub or Exit Function statement just before the error-handling
routine’s label.

Examples
The following examples show the general structure of a procedure that includes an error trap and
error-handling routine.

In the first example, the On Error statement specifies the name of an error handler (called
MyHandler) to which control is transferred when a run-time error occurs. After the error is
handled, the macro terminates:

Sub SampleWithoutResume ()

On Error GoTo MyHandler

' Program code goes here. To avoid having the error handling

' routine invoked after this section is executed, include the

' following line just above the error-handler.

Exit Sub

MyHandler:

' Error is handled and the macro terminates gracefully.

Exit Sub

End Sub

 Handling Errors 55
The next example shows the general structure of a procedure in which control resumes at the line
following the statement that caused the run-time error:

Sub SampleResumeNext ()

On Error GoTo MyHandler

' Normal program code goes here. If an error occurs, control is

' transferred to the handler. When the handler is done, control

' resumes at the next line here.

Exit Sub

MyHandler:

' Error is handled, and control resumes at the line after the

' statement that caused the error.

Resume Next

End Sub

In the third example, after the error handler executes, control returns to the DoPrompt label.

Sub SampleResumeToLabel ()

On Error GoTo MyHandler

DoPrompt:

' Normal program code goes here. If an error occurs, control

' is transferred to the handler.

Exit Sub

MyHandler:

' Error is handled, then control is transferred to the top of

' the macro, at the DoPrompt label.

Resume DoPrompt

End Sub

56 Handling Errors
Error-Handling Routines
After setting an error trap, you must write the error-handling routine that deals with the errors
that you anticipate arising when your macro runs. You can anticipate many of the common
errors and specifically handle these cases. Include some code in your error-handling routine to
catch errors you don’t anticipate; this lets you deal with unanticipated errors that “fall through”
your specific error-handling cases.

The error-handling routine specified by an error trap is identified by a line label. Typically, the
error-handling routine is placed at the end of the procedure, just before the End Sub or End
Function statement. Also, to avoid having the error-handling code executed even when no error
occurs, an Exit Sub or Exit Function should be placed just before the error handler’s label. A
Resume statement is generally used to continue execution of the macro after the error handler
is done.

Depending on how you want to deal with errors, you can write your error-handling routine
in any number of ways. For example, a simple error handler that just displays a custom error
message and then terminates the macro might look like this:

Sub ExitOnError ()

On Error GoTo MyHandler

' Main body of procedure.

Exit Sub

MyHandler:

MsgBox "Error occurred. Cannot complete operation."

Exit Sub

End Sub

A more complex error handler can use the Err object to return specific information about the
error. (Refer to the Visual Basic Help for more information about the Err object.) For example, a
“Path/File access error”, with an error code of 75, is returned when you attempt to open a read-
only file in sequential Output or Append mode. The following macro uses the GetOpenfilename
method to display a File Open dialog box and request a file, then tries to write to that file. If the
file is read-only, the error handler displays this information and returns the user to the File Open
dialog box.

 Handling Errors 57
The line continuation character, an underscore preceded by a space, is used here to break up
long lines of code.

Sub WriteToFile()

Dim fileName As String

On Error GoTo MyHandler

chooseAgain:

 fileName = GetOpenFilename("All Files (*.*),*.*", , _

 "File Open", "Open")

Open fileName For Append As #1

Write #1, "stuff"

Close #1

Exit Sub

MyHandler:

'If the file is read-only, let the user try again.

'The underscore character is used here to break the long line.

If Err.Number = 75 Then

MsgBox "Can't write to file " & fileName & _

". Please choose another.", , "File Error"

Resume chooseAgain

'For other errors display the error message, close the

‘open file and exit.

Else

MsgBox Err.Number & ": " & Err.Description, , "File Error"

Close #1

Exit Sub

End If

End Sub

Note: If you have existing Reflection Basic error-handling code that was written without using
the Err object, you do not need to rewrite it for use in Visual Basic. Visual Basic continues to
support the Error function. Also, the default property of the Err object is Number. Because the
default property can be represented by the object name Err, earlier code written using the Err
function or Err statement doesn’t have to be modified. à

58 Handling Errors
Resuming a Procedure After an Error
After you’ve successfully trapped and handled an error, you can either exit the procedure directly
from the error handler by including an Exit Sub or Exit Function statement in the handler, or
you can continue execution of the procedure. Before resuming the procedure, you may even be
able to correct the error condition automatically, in which case the user may never know that an
error occurred.

To resume a macro from an error-handling routine, use the Resume statement. There are three
forms of the Resume statement:

Resume
The Resume statement by itself exits the error handler and resumes the macro at the line that
caused the error. Of course, your macro must automatically correct the error condition or
prompt the user to correct it before resuming; otherwise, the error will occur again.

Resume Next
This form of the Resume statement resumes the macro at the line following the one that caused
the error.

Resume label
This form of the Resume statement exits the error handler and passes control to the statement
identified by the label.

Inline Error Handling
If you want a procedure to handle relatively simple run-time errors without having to branch
to a separate error-handling routine, you can use a form of the On Error statement that lets
you deal with errors “in line”; that is, directly in the code that caused the error, rather than in
a separate routine.

To handle an error in line, use On Error Resume Next. With this form of the On Error
statement, any errors that occur during run time simply cause Reflection to continue executing
the macro at the next statement. The lines following the error should then determine if an error
occurred and handle the error by displaying a dialog box, passing control to another procedure
or to a routine within the same procedure.

 Handling Errors 59
Example
This example checks for errors when saving a Reflection for UNIX and Digital settings file. (To
see examples for other Reflection products, open the Reflection Programming Help and look up
Error handling in macros, inline error handling. See page 3 for information about viewing this
Help.) If the save operation fails, an error message is displayed. If the save operation succeeds
(and therefore Err.Number returns 0), a message to indicate success is displayed. The inline
error handler is needed because without it, the macro would simply terminate with an error if
the SaveSettings method failed.

Sub SaveSettingsDemo()

Dim theError As Integer

On Error Resume Next

Session.SaveSettings "Settings.r2w", rcSettings

theError = Err.Number

Select Case theError

Case 0

MsgBox "Save complete."

Case Else

MsgBox Err.Description & "."

End Select

End Sub

Information About Error Codes
Error codes between 1 and 1000 are returned if an error occurs while executing a Visual Basic
command. For more information about these errors, see trappable errors in the Visual Basic
Help. Reflection-specific error codes have different values depending on the Reflection product
you are using.

Reflection for IBM
Error codes between 4000 and 4999 are returned if an error occurs while executing a command
supported by Reflection for IBM. To see a list of these errors and their corresponding error
messages, look up Error codes, error codes and constants in the Reflection Help. These errors can
also be represented by error constants beginning with “rcRte”. For example, the predefined
constant rcRtePathNotFound is equivalent to 4023. You can use predefined constants in your
macros to help make them more readable.

60 Handling Errors
Reflection for HP, Reflection for UNIX and Digital, and Reflection for ReGIS Graphics
Error codes between 10000-10999 are returned if an error occurs while executing a command
supported by these Reflection products: Reflection for HP, Reflection for UNIX and Digital,
Reflection for ReGIS Graphics. To see a list of these errors and their corresponding error
messages, look up Error codes, error codes and constants in the Reflection Programming Help.
These errors can also be represented by error constants beginning with “rcErr”. For example,
the predefined constant rcErrNotConnected is equivalent to 100023. You can use predefined
constants in your macros to help make them more readable.

C h a p t e r7

Communicating with Other Applications

Visual Basic uses a standard set of protocols called Automation (or OLE Automation) to allow
one application to communicate with other applications. This chapter covers the following
Automation topics:

· Understanding Automation.

· Controlling other applications from Reflection.

· Controlling Reflection from other applications.

· Using CreateObject and GetObject.

· Using Reflection predefined constants in other applications.

Understanding Automation
Any application that supports Automation can communicate with any other. This means that a
Reflection session can communicate with other Reflection sessions, Microsoft Office products,
Visio, stand-alone Visual Basic, or any other product that supports Automation. Automation
support provides a standardized way to:

· Control other applications from Reflection. For example, from Reflection, you can start
Excel, copy data from a host screen to an Excel spreadsheet, save the spreadsheet, and exit
Excel. In this situation, Reflection is the controller (or client) that manipulates Excel, which
is the object (or server).

· Control Reflection from other applications. For example, from Word you can launch a
Reflection session, log onto a host, then copy screen data to the current document. In this
situation, Reflection is the object (or server) that is being manipulated by Word, which is
the controller (or client).
Project Name • Chapter 7 • Communicating with Other Applications • TEMPLATE: docs_v4 • D:\working\progvba\ug\7ole.fm • 8.18.98 • 11:45am

61

62 Communicating with Other Applications
Reflection’s Automation support is provided by Visual Basic for Applications and Reflection’s
methods and properties. When you want to manipulate another application, use Visual Basic
commands to create an object for that application, then control that object using its methods
and properties. When you want to communicate with Reflection from another application,
create a Reflection object and use Reflection’s methods and properties in the other application’s
programming environment to extract data from or send instructions to Reflection.

Controlling Other Applications from Reflection
Use these steps when you want to use Reflection to control an application that supports
Automation (such as Word or Excel):

1. Add a reference to the object library for the application you want to control. To do this, click
References in the Visual Basic Editor’s Tools menu, select the application you want from the
Available References list, then click OK.

2. In your procedure code, use Dim to dimension an object variable for the object you want to
control. For example, this statement dimensions an Excel object:

Dim excelApp As Excel.Application

3. Use Set to assign an object to the object variable. Use either CreateObject or GetObject to
identify the object. For example, to create a new instance of Excel:

Set excelApp = CreateObject("Excel.Application")

4. Use the object to manipulate the application by using commands supported by that appli-
cation. For example, these statements use Excel objects, methods, and properties to make
Excel visible, create a new Excel workbook and put the number 14 in cell B2:

excelApp.Visible = True

excelApp.Workbooks.Add

excelApp.ActiveSheet.Range("B2").Select

excelApp.ActiveCell.Value = 14

 Communicating with Other Applications 63
Example
This procedure copies text from the Reflection screen display and enters it into a Word 97
document. The line continuation character (an underscore preceded by a space) is used here
to break up long lines.

Note: Use GetText to get display text in Reflection for HP, UNIX and Digital, and ReGIS
Graphics. Use GetDisplayText in Reflection for IBM. In the example, the command for
Reflection for IBM is commented out. à

Sub SendDisplayInfoToWord()

Dim displayText As String

With Session

'Get text from the screen display

'For Reflection for HP, UNIX and Digital, RegGis Graphics:

displayText = .GetText(.ScreenTopRow, 0, _

.ScreenTopRow + .DisplayColumns, .DisplayColumns)

'For Reflection for IBM:

'displayText = .GetDisplayText(1, 1, _

' .DisplayColumns * .DisplayRows)

End With

'Create a Word 97 object

Dim Word As Word.Application

Set Word = CreateObject("Word.Application")

'Make Word visible and create a new document

Word.Visible = True

Word.Documents.Add

'Add the display text to the document

Word.Selection.TypeText Text:=displayText

'Save the document and quit Word

Word.ActiveDocument.SaveAs Filename:="C:\MySample.doc"

Word.Quit

End Sub

64 Communicating with Other Applications
Controlling Reflection from Other Applications
The following steps are guidelines for controlling Reflection from stand-alone Visual Basic or
from other applications (such as Word and Excel) that use Automation:

1. In the procedure you are writing in the other application, dimension an object variable for
the Reflection object. For late binding use the following statement. (Refer to the Visual Basic
Help for CreateObject for more information about early and late binding.)

Dim MyReflectionObject As Object

For early binding, use one of the following statements, depending on the Reflection product
you are using:

'Reflection for IBM

Dim MyObject As Reflection.Session

'Reflection for HP

Dim MyObject As Reflection1.Session

'Reflection for UNIX and Digital

Dim MyObject As Reflection2.Session

'Reflection for ReGIS Graphics

Dim MyObject As Reflection4.Session

2. Use Set to assign a Reflection object to the object variable. You can create a new instance of
Reflection at this time, or attach to an existing Reflection object.

· Use CreateObject to create a new Reflection object. (See “Using CreateObject” in this
chapter for more information.)

· Use GetObject to attach to an existing Reflection object. (See “Using GetObject” in this
chapter for more information.)

For example, this statement creates a new Reflection for IBM object.

Set MyReflectionObject = CreateObject("ReflectionIBM.Session")

Refer to the Visual Basic Help for additional information about Set, CreateObject, and
GetObject.

 Communicating with Other Applications 65
3. Use the Reflection object you just created to access Reflection’s methods and properties. The
CreateObject function launches Reflection, but does not make the application visible. If you
want Reflection to be visible while the other application uses it, use Reflection’s Visible
property. For example:

MyReflectionObject.Visible = True

Using CreateObject
Use CreateObject to create a new instance of an Automation application. CreateObject takes
one argument of the form AppName.ObjectType. AppName is the name of an application and
ObjectType specifies the object to create. (Many applications support several objects. Reflection
has only one object, and all Reflection methods and properties act on this object.)

The following examples show how to use CreateObject to create a Reflection object for different
Reflection products:

To create a Reflection for IBM object:

Dim ReflectionIBM As Reflection.Session

Set ReflectionIBM = CreateObject("ReflectionIBM.Session")

To create a Reflection for HP object:

Dim ReflectionHP As Reflection1.Session

Set ReflectionHP = CreateObject("Reflection1.Session")

To create a Reflection for UNIX and Digital object:

Dim ReflectionUD As Reflection2.Session

Set ReflectionUD = CreateObject("Reflection2.Session")

To create a Reflection for ReGIS Graphics object:

Dim ReflectionGraphics As Reflection4.Session

Set ReflectionGraphics = CreateObject("Reflection4.Session")

66 Communicating with Other Applications
Using GetObject
GetObject returns a reference to an object. With most applications, you can specify a file name to
identify the object. For example, you can access an open Word document like this:

Dim Word As Object

Set Word = GetObject("C:\Mypath\Mydoc.doc")

To use GetObject to access a Reflection session, you can use two different strategies. GetObject
supports two arguments; the first argument, pathname, specifies a path and file name (for most
applications); the second specifies an application name and object type. The following examples
show how to use each of these arguments to attach to a Reflection session:

Attaching to Reflection Using the OLE Server Name
This technique uses the first argument to the GetObject function. The value you use for this
argument should be the OLE server name for that session. This name is specified in Reflection
using the OLEServerName property. Because you can specify a unique OLE server name for
every Reflection session, this technique allows you to identify a particular Reflection session
even if multiple sessions are active. The default values for this property are:

Reflection for HP: “R1WIN”
Reflection for UNIX and Digital: “R2WIN”
Reflection for ReGIS Graphics: “R4WIN”
Reflection for IBM: “RIBM”

The following example shows how to attach to an instance of Reflection for ReGIS Graphics
using the default OLEServerName value:

Dim ReflectionReGIS As Object

Set ReflectionReGIS = GetObject("R4WIN")

Attaching to Reflection Using the Session Object
This technique uses the second argument to the GetObject function, which has the format
“AppName.ObjectType”. The application name for Reflection products are:

Reflection for HP: “Reflection1”
Reflection for UNIX and Digital: “Reflection2”
Reflection for ReGIS Graphics: “Reflection4”
Reflection for IBM: “ReflectionIBM”

All Reflection products support a single object called Session.

 Communicating with Other Applications 67
The following example shows how to attach to Reflection for IBM. The comma is needed to
indicate that the first argument is being omitted.

Dim RibmObject As Object

Set RibmOjbect = GetObject(, "ReflectionIBM.Session")

This technique works well if there is only one session running for any given Reflection product.
If there are multiple Reflection sessions running, using this techniques makes the attachment to
an arbitrary instance of Reflection.

Note: If you include an empty string for the first argument, GetObject will open the specified
application. à

For example, these commands create a new instance of Reflection for HP:

Dim ReflectionHP As Object

Set ReflectionHP = GetObject("", "Reflection1.Session")

Using Reflection Predefined Constants in Other Applications
Reflection uses many predefined constants; they are used as method arguments, property values,
and error codes. Using predefined constants rather than numbers makes macros easier to read.
The examples below show pairs of equivalent statements. In each pair, the first statement uses a
Reflection predefined constant, and the second statement uses the numeric equivalent.

Equivalent ways to save a settings file in Reflection for UNIX and Digital:

Session.SaveSettings "Myfile.r2w", rcSettings, rcOverwrite

Session.SaveSettings "Myfile.r2w", 1, 1

Equivalent ways to set the value of the GraphicsPrintMode property in Reflection for ReGIS
Graphics:

Session.GraphicsPrintMode = rcRotate

Session.GraphicsPrintMode = 2

Equivalent ways to handle an error in Reflection for IBM:

If Err.Number = rcRteNoFileAccess Then

If Err.Number = 4025 Then

68 Communicating with Other Applications
If you are programming using stand-alone Visual Basic or you are using VBA in another appli-
cation, you can use Reflection’s predefined constants by adding a reference to the Reflection
object library. To do this, click References on Visual Basic’s Tool menu, and select the object
library for the Reflection product with which you’ll be communicating.

If you want to incorporate Reflection’s predefined constants in other programming environ-
ments, use one of the following files (depending on the Reflection product you are using). These
files contain symbolic names and values for all the constants used by Reflection.

· Rodecls.bas defines constants for Reflection for IBM. Look for this file in your Reflection
folder.

· Rwinapi.txt defines constants for Reflection for HP, Reflection for UNIX and Digital, and
Reflection for ReGIS graphics. Look for this file in either \Reflection\VT\Samples or
\Reflection\HP\Samples.

C h a p t e r8

Managing Connections to IBM Hosts

This chapter describes techniques for making connections with Reflection for IBM. The
following topics are covered:

· Commands for Connecting and Disconnecting

· Using Connect macros

· Configuring Connection Settings

Commands for Connecting and Disconnecting
To establish a connection in a macro, use the Connect method. If a connection is already
active when you issue the Connect method, this method is ignored.

You can check for an open connection by using the Connected property.

To disconnect from the host, use the Disconnect method.

Using Connect Macros
A connect macro is one that runs automatically when Reflection successfully makes a host
connection. This procedure uses the macro recorder to create a connect macro:

1. (Omit this step if your settings are already configured to connect to your host.) On the
Connection menu, click Session Setup. Use the Session Setup dialog box to configure
your host connection. Don’t connect yet. Click OK to close the dialog box.

2. Click Start Recording on the Macro menu.

3. Connect to the host using the Connect command on the Connection menu, then log on
as you usually do.

Note: Reflection will also connect to your host if you press the Enter key when you are
disconnected. Don’t use this shortcut when you are recording connections, because this
keystroke is also recorded. à
Project Name • Chapter 8 • Managing Connections to IBM Hosts • TEMPLATE: docs_v4 • D:\working\progvba\ug\8connibm.fm • 8.18.98 • 11:50am

69

70 Managing Connections to IBM Hosts
4. Click Stop Recording. In the Stop Recording dialog box, enter a name for your macro in
the Macro name box and enter an optional Description. Select the Make this the connect
macro check box. Click OK to save the macro.

Macro names cannot include spaces and must begin with a letter. See page 32 for more
information about naming macros.

5. At this point you can run your macro, but it is not yet saved. Click Save on the File menu to
save your settings and macros.

Note: Connect macros run as soon as a host connection is successfully established. A connect
macro can help simplify host log on procedures and automate the process of navigating to a
particular host screen. Because you cannot change your session configuration while you are
connected, connect macros should not include session setup commands. à

If you have an existing macro that you want to designate as the connect macro, use either of these
techniques:

· In Reflection, click Session Setup on the Connection menu. Enter the name of the macro in
the Connect macro box (or use the Browse button to select a macro).

· In a macro, use the ConnectMacro property, for example:

Session.ConnectMacro = "LogonToMyHost"

You can pass additional information to a connect macro using either of these techniques:

· In Reflection, click Session Setup on the Connection menu. Enter the information in the
Macro data box.

· In a macro, use the ConnectMacroData property, for example:

Session.ConnectMacroData = "one two three"

Note: You can also automate connection events using Reflection’s Events Setup dialog box. One
of the available events is When a connection is made. Click the Help button in the Events Setup
dialog box for more information. à

 Managing Connections to IBM Hosts 71
Configuring Connection Settings
Because macros and connection settings are saved in the same settings file, you do not need to
change connection settings programmatically if you have already saved correct connection infor-
mation in the settings file that contains your macros.

You may want to configure connections programmatically if:

· You are sharing macros with someone who has added a reference to a settings file containing
your macros.

· You are using Automation to create new Reflection sessions or to attach to existing sessions.

· You are creating several macros that connect to different hosts using different connection
settings.

Using the Macro Recorder to Configure Connections
A good strategy for managing connections in macros is to use the macro recorder to capture
connection information. You can begin with an untitled Reflection session, record a connection,
then copy the recorded information to the macro you are developing. To do this:

1. Open the settings file that contains your macros.

2. On the File menu, click New Session to open an untitled Reflection for IBM session.

3. Start the macro recorder in the new session.

4. Use the Session Setup dialog box in the new, untitled session to configure a connection to
your host, then click either OK or Connect to close this dialog box. (If you click OK, the
recorded code will include session configuration information, but will not include making
the connection.)

5. Stop the macro recorder. By default, the recorded macro is placed in your new, untitled
Reflection session. The remaining steps describe how to copy this code to your original
settings file.

72 Managing Connections to IBM Hosts
6. In the Stop Recording dialog box, change Destination to Clipboard. When you make this
change, a Clipboard options area appears in the dialog box. In this area, set Syntax to VBA
Source and clear the Include object prologue check box. Click OK.

7. Return to your original Reflection session, open the Visual Basic Editor, display the code
module you want to contain your code, and use the Paste command to paste your re-
corded code.

Note: Do not use this procedure to create a connect macro. Connect macros run after a
connection has already been established and should not include session setup information. à

Reflection Methods and Properties for Establishing and Managing Connections
Use the SetupSession method to configure a connection. With SetupSession, you specify a
SessionType (what type of host terminal or printer Reflection is to emulate), a TerminalModel
(the specific host terminal or printer Reflection is to emulate) and a TransportType (what data
communications software Reflection uses to communicate with the host). An error results if
you try to use SetupSession when you already have a host connection.

Several read-only properties let you find out about the current connection: The SessionType
property returns the type of host terminal or printer Reflection is emulating. The TerminalModel
property returns the specific host terminal or printer Reflection is emulating. Both Trans-
portType and TransportName return the transport Reflection is using to connect to the host;
TransportType returns a numeric value indicating the transport type and TransportName
returns a string. When no connection exists, these properties return values indicating which
connection settings Reflection would use if a connection was established.

The Reflection Help includes lists of the properties you can use to configure connections for
specific hosts and transports. Look up Connection keywords (programming) in the index.

Note: For 802.2 DLC, Coax DFT, SDLC, and Eicon connections, links configuration is handled
by the Reflection SNA engine. This information is stored in the SNA Engine configuration file.
By default, this file is called Wrqsna.rlf and is stored in the folder where your operating system is
located. You can specify a different name and location for this file with the SNAEngineCFGFile
property. à

Project

C h a p t e r9

Managing Connections to HP, UNIX, Digital,
and Unisys Hosts

This chapter describes techniques for making connections with the following Reflection products:

Reflection for HP
Reflection for UNIX and Digital
Reflection for ReGIS Graphics

These topics are covered:

· Commands for Connecting and Disconnecting.

· Using Connect macros.

· Configuring Connection Settings.

· Managing Modem Connections.

· Handling Connection Errors.

Commands for Connecting and Disconnecting
To establish a connection in a macro, use the Connect method. If a connection is already active
when you issue the Connect method, a run-time error occurs. You can check for an open
connection by using the Connected property.

To disconnect from the host, use the Disconnect method. Unlike the Connect method, which
must always be used to open a connection, Disconnect may not be necessary. When you log
out of the host computer, the network connection is typically closed automatically. You can use
the Disconnect method, however, to ensure that the connection is closed. If the connection is
already closed, the Disconnect method generates an error. You should trap this error with an
error-handling routine.

For serial connections (either direct serial or modem connections), the Disconnect method
closes the serial port. You should always use the Disconnect method to ensure that the serial
port is closed when you’re done with it; this makes the port available to another session or
application.
 Name • Chapter 9 • Managing Connections to HP, UNIX, Digital, and Unisys Hosts • TEMPLATE: docs_v4 • D:\working\progvba\ug\9con124.fm • 8.18.98 •
11:50am

73

74 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
By default, when you close a serial connection (including serial, modem, NASI, EICON, INT-14,
and IBM-ACS connections)—no matter whether you close it with the Disconnect method, the
Disconnect command in the Connection menu, or by quitting Reflection—the DTR (data
terminal ready) signal is also dropped. In some cases, particularly with modem connections, you
may want the DTR signal to remain true even after disconnecting or quitting Reflection; this
prevents the modem from hanging up and lets you return to your Reflection session and resume
your connection. To avoid dropping the DTR signal when disconnecting, set the ConnectionSet-
tings keyword DropDTROnDisconnect to False. More information about this keyword is
available in the Reflection Programming Help. (See page 3 for instructions on how to view
this Help.)

Example
In the following example, a connection is configured and the Connect method is used to open
the connection before waiting for a host prompt. If the host prompt is not received after 10
seconds, the connection is closed.

Sub MakeMyConnection ()

Dim isFound As Integer

Dim timeOut As Integer

timeOut = 10

With Session

If .Connected = False Then

.ConnectionType = "VT-MGR"

.ConnectionSettings = "Host MyHPHost"

.Connect

isFound = .WaitForString("MPE XL:", timeOut, rcAllowKeystrokes)

If isFound = False Then

.Disconnect

End If

Else

MsgBox "There is already a connection open."

End If

End With

End Sub

 Managing Connections to HP, UNIX, Digital, and Unisys Hosts 75
Using Connect Macros
A connect macro is one that runs automatically when Reflection successfully makes a host
connection. You can specify a connect macro using any of these techniques:

· When you record a login macro, select the Make this the connect macro check box in the
Stop Recording dialog box.

· In Reflection, click Connection Setup on the Connection menu, and click the Connect
Macro button. This opens the Connect Macro dialog box. Enter the macro name in the
Macro name box (or use Browse to select a macro).

· In a macro, set the ConnectMacro keyword token of the ConnectionSettings property,
for example:

Session.ConnectionSettings = "ConnectMacro Login"

You can pass information to a connect macro using either of these methods. (To return this
value in the macro, use the MacroData property.)

· In Reflection, click Connection Setup in the Connection menu, and click the Connect
Macro button. This opens the Connect Macro dialog box. Enter the information you want
to pass to the macro in the Macro data box.

· In a macro, use the ConnectMacroData keyword token of the ConnectionSettings property,
for example:

Session.ConnectionSettings = "ConnectMacroData ""one two three"""

If you have upgraded from an earlier version of Reflection and have already designated a
Reflection Basic connect script, Reflection will continue to use your script as the connect script.

Note: You can also automate connection events using Reflection’s Events Setup dialog box. One
of the available events is When a connection is made. Click the Help button in the Events Setup
dialog box for more information. à

76 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
Configuring Connection Settings
Macros and connection settings are saved to the same settings file, so you do not need to change
connection settings programmatically if you have already saved correct connection information
to the settings file that contains your macros.

You may want to configure connections programmatically if:

· You are sharing macros with someone who has added a reference to a settings file containing
your macros.

· You are using Automation to create new Reflection session.

· You are creating several macros that connect to different hosts using different connection
settings.

Determining the Current Connection Type
The ConnectionType property is used both to find out the current connection type, and to
specify a connection type.

Since each type of connection has its own set of configuration options, if you’re writing a
macro that manipulates the current connection settings, you may want to determine the current
settings before changing them. After determining the current connection type, you can use
the ConnectionSetting method to retrieve the value of a single connection parameter, or the
ConnectionSettings property to retrieve or set multiple connection parameters.

Example
In the following example, the connection type is retrieved and displayed in a message box. If
there is no connection currently configured (the ConnectionType is NONE), a different message
is displayed:

Sub DisplayCurrentConnection ()

 Dim how As String

 how = Session.ConnectionType

 If how = "NONE" Then

 how = "There is no connection currently configured."

 Else

 how = "The current Connection Type is " & how

 End If

 MsgBox(how)

End Sub

 Managing Connections to HP, UNIX, Digital, and Unisys Hosts 77
Specifying a Connection Type
If you want to change connection settings in a macro, you use ConnectionType property both
to determine the current connection type and to specify a new connection type.

If you want Reflection to attempt the connection using its Best Network option, specify a
ConnectionType of BEST-NETWORK. After the Best Network connection is established, the
DefaultNetwork keyword of the ConnectionSettings property is set to the actual network
connection type that was used to establish the connection.

When you change the connection type using the ConnectionType property, all connection
settings for that type (that is, all settings you can configure with the ConnectionSettings
property) are reset to their default values.

If a connection is already active when you specify a connection type, a run-time error occurs. Use
the Connected property, as shown in the example, to determine if a connection is already active
before trying to set the ConnectionType property.

Example
The following example first determines whether a connection is open. If not, the example
configures a Telnet connection, specifies a host, and opens the connection. If the connection is
already open, a message box reports the current connection to the user.

Sub ConnectToMyHost ()

 Dim how As String

 With Session

 If .Connected = False Then

 .ConnectionType = "TELNET"

 .ConnectionSettings = "Host myHost"

 .Connect

 Else

 how = "You are currently connected using " & .ConnectionType

 MsgBox how

 End If

 End With

End Sub

78 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
Configuring Settings for a Connection Type
Once you have specified a connection type with the ConnectionType property, use the
ConnectionSettings property to configure the individual options for the connection type.
(The ConnectionSettings property can also be used to determine the current settings for a
connection type.)

The ConnectionSettings property has the following syntax:

Session.ConnectionSettings = StringValue

The StringValue consists of alternating keyword tokens and value tokens. The keyword token
specifies a setting; the value token specifies a value for the setting. For example, in the statement:

Session.ConnectionSettings = "Parity 8/None"

the keyword Parity is given a value of 8/None.

Different connection types have different keyword/value pairs, and both the keywords and values
are specific to the connection type (though many of the keywords are valid for a number of
different connection types).

The entire configuration string must be enclosed in quotation marks. If a value token contains
double quotation marks or a backslash character, you must precede the character with a
backslash character. If a value token contains spaces, the token must be enclosed in single quotes
or in two sets of quotation marks; for example:

Session.ConnectionSettings = "ConnectMacroData 'a b c'"

or

Session.ConnectionSettings = "ConnectMacroData ""a b c"" "

For any given connection type, the complete ConnectionSettings string can be quite lengthy. For
example, the connection settings string for a Telnet connection might look like this:

CheckParity False Parity 8/NONE CharDelay 0 Host "" TelnetPort 23 TelnetBreak False Telnet-
Binary False TelnetLFAfterCR False TelnetInitOptionNegotiation True TelnetTermType VT220
SettingsFile "" TelnetEcho Auto TelnetUseEmulatorTermType False TelnetSetWindowSize True
TelnetLinemode Never UseSOCKS False TelnetTrace False ExitAllowed True ExitOnDisconnect
False UseThreadedIO True ConnectMacro "" ConnectMacroData "" ConnectionName ""

 Managing Connections to HP, UNIX, Digital, and Unisys Hosts 79
Although you could specify an entire string like this as the ConnectionSettings property, you
typically do not need to specify everything in order to establish a connection. Instead, you can
issue an abbreviated configuration string containing only the keyword and value tokens for the
settings you need to change; current values are used for the keywords you do not specify. For
example, if you want to change only the setting for allowing an exit while connected, you could
use this statement:

Session.ConnectionSettings = "ExitAllowed False"

All other settings for the current connection type remain unchanged.

If the string you assign to the ConnectionSettings property contains any invalid keyword or
value tokens (for example, a token is not valid for the current connection type), a run-time error
occurs. An error also results if a connection is currently active and you try to set a keyword that
cannot be changed while the connection is open. Your macro should contain an error-handling
routine to trap and deal with these errors (by displaying a message box, for example); you can
retrieve the error message text with the ConnectionErrorMessage property.

Example
In the following example, a Telnet connection is configured, a host name is specified using an
abbreviated configuration string, and a connection is opened. An input box is used to prompt for
the host name. Error handling has been omitted from this example for simplicity.

Sub ConnectToTelnetHost ()

 Dim whatHost As String

 With Session

 If .Connected = True Then

 MsgBox "You already have an open connection."

 Else

 .ConnectionType = "TELNET"

 whatHost = InputBox("Host to connect to:", "Host Name")

 If whatHost <> "" Then

 .ConnectionSettings = "Host " & whatHost

 .Connect

 End If

 End If

 End With

End Sub

80 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
Determining the Settings for a Connection Type
In macros, you use the ConnectionSettings property to configure the settings for a selected
connection type. The ConnectionSettings configuration string for any given connection type
can consist of just a few keyword tokens, or it can consist of more than a dozen keyword tokens.
Further, each keyword token can take many different value tokens.

Determining the correct keyword and value tokens for the ConnectionSettings string can be
difficult, and determining the correct configuration string can be tedious. Besides, to establish a
host connection, you typically do not need to configure every setting for a connection type, but
rather just one or two. “Configuring Settings for a Connection Type” on page 78 explains how
to use the ConnectionSettings property to configure a connection type using either a complete
configuration string or an abbreviated configuration string.

There are three ways to determine the keyword and value tokens you should use for a given
connection type:

· Capture the connection settings with the Reflection macro recorder. This is the easiest and
recommended method. (See below)

· Consult the tables that list all of the valid keyword and value tokens for the connection types
that Reflection supports. To display these tables, open the Reflection Programming Help,
and look up Keyword/Value tokens. (See page 3 for instructions on how to view this Help.)

· Use values returned by the ConnectionSettings property or the ConnectionSetting method.

Capturing Connection Settings Using the Reflection Macro Recorder
When you are writing macros with the ConnectionSettings property, the easiest way to
determine which keywords to change, what values to change them to, and the correct configu-
ration string to issue, is to use the Reflection macro recorder. With the macro recorder, you
use Reflection dialog boxes to configure the connection options you want; the macro recorder
captures only the parameters you change from their defaults, making the resulting macros
very efficient and concise.

The following steps describe how to use the macro recorder to capture changes you make to
connection settings after starting with the default settings for a connection type. You will open a
new Reflection session, record a connection, and copy the resulting macro code to the Clipboard.
You can then return to the Reflection session that contains your macros and paste the code into a
code module.

 Managing Connections to HP, UNIX, Digital, and Unisys Hosts 81
1. Open the settings file that contains your macros.

2. On the File menu, click New Session to open an untitled Reflection session.

3. Start the macro recorder in the new, untitled session.

4. Use the Connection Setup dialog box in the untitled session to configure a connection to
your host, then click Connect.

Note: The macro recorder will not capture your connection settings unless you successfully
complete a connection to the host. à

5. Stop the macro recorder. By default, the recorded macro would be placed in your new,
untitled Reflection session. The remaining steps describe how to copy this code to your
original settings file instead.

6. In the Stop Recording dialog box, change Destination to Clipboard. In the Clipboard
Options area that appears, set Format to Reflection macro. Clear the Add "Sub... End Sub"
check box (unless you want to create a new procedure using this code.)

7. Return to your original Reflection session, open the Visual Basic Editor, display the code
module you want to contain your code, and use the Paste command to paste in your
recorded code.

When you capture connection settings using this technique, the correct syntax, including spaces
and quotation marks, is automatically recorded. In most cases, you can simply copy and paste
the recorded commands into your own procedures; modification of the ConnectionSettings
lines is rarely needed. You may want to add your own error-handing routines, however, to take
into account times when the host is unavailable, or the connection fails for some other reason.

82 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
Managing Modem Connections
By default, Reflection makes modem connections using the modem you have configured with
Windows Control Panel.

To make a modem connection:

1. Set the ConnectionType property to “MODEM”.

2. Use the ConnectionSettings property to specify the modem parameters you need. Use
the Reflection Programming Help to view a list of keyword tokens you can use to specify
modem settings. Look up Modem, Tables of Keyword/Value tokens. (See page 3 for instruc-
tions on how to view this Help.)

3. Use the Connect method to open the connection.

Note: If no modem has been configured, a dialog box will appear asking you if you want to
run the Modem Control Panel to add a modem driver. If you select Yes in this dialog box,
the Install New Modem wizard will be started and Reflection will display a second dialog box
instructing you to click OK when modem installation is complete. When you close this
dialog box, Reflection dials the newly installed modem. If you do not run the Install New
Modem program, or cancel the installation process before modem installation is complete,
Connect will return rcGeneralConnectionError with ConnectionErrorMessage set to No
modems installed. à

4. At the end of the modem session, use the Disconnect method to hang up the modem.

 Managing Connections to HP, UNIX, Digital, and Unisys Hosts 83
Example
The following example configures a connection to the WRQ bulletin board. The area code and
country are used to determine appropriate dialing prefixes. (The line continuation character, an
underscore preceded by a space, is used here to break up a long line of code.)

Sub WRQDemo ()

With Session

.ConnectionType = "MODEM"

.ConnectionSettings = "ModemUseDialingRules True"

.ConnectionSettings = "ModemPhoneNumber 217-0145"

.ConnectionSettings = "ModemAreaCode 206"

.ConnectionSettings = _

"ModemCountryName 'United States of America (1)'"

.ConnectionSettings = "ModemLocation 'Default Location'"

.Connect

End With

End Sub

Note: If you have used versions of Reflection prior to version 6.0, you may have developed
Reflection Basic scripts that use Reflection’s modem dialer rather than the Control Panel
Modem. To configure Reflection to use the old modem dialer, set the UseModemDialerV5
property to True. If you are using the old modem dialer, you can use the Dial method to
invoke the modem dialer, which initializes the modem and dials. The Dial method supports
a number of arguments to specify a phone number, an initialization string to send to the
modem, and others. à

84 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
Handling Connection Errors
When you write a macro that makes a connection, you should write an error handling routine
to trap any run-time errors that may occur when Reflection attempts the connection. With an
error handler, you can provide additional feedback to the user if necessary, and proceed with the
macro as appropriate; without an error handler, the macro stops at the point where the error
occurred, and Reflection displays an error message. See Chapter 6 (page 53) for more infor-
mation about error handling.

If a connection-related error occurs, you can trap the error with the On Error statement, and use
the Number property of the Err object (Err.Number) to determine which error occurred. Once
you have trapped the error, you can retrieve a pre-defined text string that describes the error,
using either Err.Description or the ConnectionErrorMessage property. Then you can have your
macro proceed as needed.

Note: If you have existing error-handling code that was written without using the Err object, you
do not need to rewrite it for use in Visual Basic. Visual Basic continues to support the Error
function. Also, the default property of the Err object is Number. Because the default property
can be represented by the object name Err, earlier code written using the Err function or Err
statement doesn’t have to be modified. à

Use the following rules to determine whether to use the Err.Description function or the
ConnectionErrorMessage property to retrieve the error text:

· If Err.Number returns the constant rcErrConnectionError, a general connection failure
occurred. Use the ConnectionErrorMessage property to retrieve a text string that describes
the specific cause of the error.

· If Err.Number does not return rcErrConnectionError, use Err.Description to retrieve a
text string that describes the specific cause of the error. In this case, you can also use the
constant returned by Err.Number to handle the error more specifically; for example, if
you determine from the Err.Number value that a connection already exists (the constant
rcErrAlreadyConnected), you could ask whether the user wants to disconnect and try again.

To see a list of the constants returned by Err.Number when a connection-related error occurs,
open the Reflection Programming Help and search for Connections, error handling in the index.
(See page 3 for instructions on how to view this Help.) Error constants are also listed in
Rwinapi.txt, and can also be viewed using the Visual Basic Editor’s Object Browser.

 Managing Connections to HP, UNIX, Digital, and Unisys Hosts 85
Note: If Err.Number does not return rcErrConnectionError and you use the Connection-
ErrorMessage property to retrieve the error text string, you will retrieve incorrect information.
The ConnectionErrorMessage property always contains the text of the most recent general
connection failure—that is, when Err.Number is rcErrConnectionError—or an empty string if
no general connection failure occurred. Make sure to use Err.Description if Err.Number does
not return rcErrConnectionError. à

Example
In this example, a connection type of Telnet is configured, but a host name is not specified; this
causes Reflection to prompt for the host name. After you enter a host name and choose OK, the
connection is attempted. If the connection fails for any reason, the macro’s error handler is
invoked. The error handler displays a message box with the error message text, and offers you the
opportunity to try the connection again. Without the error handler, the macro simply stops if
the connection cannot be established.

Sub ConnectionErrorDemo

 Dim theErrorMsg As String ' To hold the error message.

 Dim theErrorText As String ' To hold longer error text.

 Dim theResult As Integer ' Value from Try Again dialog.

TryToConnect:

 On Error GoTo handler

 With Session

 If .Connected = True Then

 MsgBox "You are already connected."

 Exit Sub

 End If

 .ConnectionType = "TELNET"

 .ConnectionSettings = "Host ''"

 .Connect

 End With

 Exit Sub

86 Managing Connections to HP, UNIX, Digital, and Unisys Hosts
Handler:

 With Session

 If Err.Number = rcErrConnectionError Then

 theErrorMsg = .ConnectionErrorMessage

 Else

 theErrorMsg = Err.Description

 End If

 End With

 theErrorText = "Connection error: " & theErrorMsg

 theErrorText = theErrorText & VbCr & VbLf & VbLf & "Try again?"

 theResult = MsgBox(theErrorText, vbOKCancel, "Connection Error")

 If theResult = VbCancel Then

 Exit Sub

 Else

 Resume TryToConnect

 End If

End Sub

C h a p t e r10

Reflection Basic Support

Reflection Basic is an Automation scripting language provided with earlier versions of Reflection.
Reflection continues to support scripts developed using Reflection Basic. This chapter covers the
following topics:

· Running Reflection Basic scripts.

· Displaying the Script menu.

· Comparing Reflection Basic to Visual Basic.

· Why use Visual Basic?

· The Reflection object name (Application vs. Session).

Running Reflection Basic Scripts
When you launch Reflection, you will notice that a Macro menu has replaced the Script menu
that was present in older versions of Reflection. Although the Script menu is no longer displayed
by default, your existing scripts (*.rbs) can still run without any modification.

If you attached scripts to custom features (such as toolbar buttons, or hotspots), you don’t need
to make any changes to your settings file; your scripts will continue to run exactly as they did
before. Similarly, scripts that run automatically (such as connection scripts and scripts that are
triggered by events) will continue to run as they did before.

Displaying the Script Menu
If you want to continue to maintain and edit Reflection Basic scripts, you can add the Script
menu to your Reflection menu bar. The specific steps depend on the Reflection product you
are using.
Project Name • Chapter 10 • Reflection Basic Support • TEMPLATE: docs_v4 • D:\working\progvba\ug\10old.fm • 8.18.98 • 11:50am

87

88 Reflection Basic Support
Using Reflection for IBM
This procedure restores the Script menu to the right of the new Macro menu on the Reflection
menu bar:

1. Click Menu on the Setup menu to open the Menu Setup dialog box.

2. Click Macro under Defined menu to select this item.

3. In the Available options box, open Additional items, then highlight Script.

4. Click Add After. This adds the Script menu to the right of the Macro menu.

5. Click OK to close the dialog box.

6. Save your settings file to save this change.

Using Reflection for HP, UNIX and Digital, or ReGIS Graphics
This procedure restores the Script menu to the right of the new Macro menu on the Reflection
menu bar:

1. Click Menu on the Setup menu to open the Menu Setup dialog box.

2. Click Macro under Defined menu to select this item.

3. In the Available options box, open Additional items, open Items from Version 6.x, then
highlight Script.

4. Click Add After. This adds the Script menu to the right of the Macro menu.

5. Click OK to close the dialog box.

6. On the File menu, click Save to save this change.

Comparing Reflection Basic to Visual Basic
Reflection Basic and Visual Basic for Applications are both dialects of the BASIC programming
language. Version 7.0 of Reflection supports both dialects. If you run a Reflection Basic script,
Reflection recognizes it as such and uses the Reflection Basic compiler to run the script; if you
run a macro, Reflection uses Visual Basic to compile and run the macro.

 Reflection Basic Support 89
· The following Language elements are the same in Reflection Basic and VBA:

· Reflection methods and properties are identical. A small number of Reflection commands
cause potential conflicts with equivalent Visual Basic commands. For more information
about handling these situations, see Keyword conflicts between Reflection and Visual Basic
in the Reflection Programming Help index. (See page 3 for instructions on how to view
this Help.)

· Core BASIC language commands are generally the same. You can expect most statement
and function syntax that works in Reflection Basic to work in Visual Basic. For more infor-
mation about handling these situations, see Reflection Basic, comparing Reflection Basic and
Visual Basic in the Reflection Programming Help index.

Differences between Reflection Basic and VBA include:

· In versions of Reflection prior to 7.0, all methods and properties acted on the Application
object. If you are creating or maintaining Reflection Basic scripts, you should continue to
use Application for the Reflection object name. If you are creating Visual Basic macros,
you can use either Application or Session for the object name. Using Session in Visual Basic
macros enables some Visual Basic Editor features that are not available with Application,
and may improve your macro performance. The Session object is not available for
Reflection Basic scripts.

· Dialog boxes in Visual Basic are created using forms. Dialog box statements used to create
dialog boxes in Reflection Basic are not supported in VBA.

· Reflection Basic scripts are contained within separate files, and script execution always
begins with the Main procedure. Macros are contained within a single project; each macro
is a procedure within that project. Projects are saved when you save your settings files.

· In Reflection Basic, one script accesses information or procedures in another script using the
$Include metacommand, the Delcare statement, or the RunScript method. In VBA, the
Public and Private keywords are used to manage the availability (or scope) of elements
within a project. With VBA, you can also add references to other projects to access code or
forms in those projects.

· Visual Basic is a more object-oriented programming language than Reflection Basic. For
example, using Visual Basic you can define your own object classes.

For more detailed information, open the Reflection Programming help and look up Reflection
Basic, comparing Reflection Basic and Visual Basic. (See page 3 for instructions on how to view
this help.)

90 Reflection Basic Support
Why Use Visual Basic?
If you have developed scripts using previous versions of Reflection Basic, you may be wondering
if it’s worthwhile to convert your scripts to Visual Basic macros. In making this decision, you
may want to consider the following:

· Visual Basic can simplify management and distribution. Reflection Basic scripts must be
distributed as a number of separate files, while macros can be distributed in a single
settings file.

Note: If you are using Reflection for IBM, you must distribute both a *.rsf file and a *.rvx file
when you distribute macros. à

· Visual Basic for Applications is common to many programming applications, including
Microsoft Office 97 products. Your programming knowledge in any of these products will
be immediately applicable to any other product that uses Visual Basic. In fact, you can write
common code that you can share with other VBA applications.

· There are many resources available to help you answer questions and develop expertise with
Visual Basic. These include books, magazines, training seminars, and a large number of
programmers already familiar with this programming environment.

· The Visual Basic Editor is a much more powerful and flexible development environment
than the Reflection Basic Editor. After you spend the initial time necessary to become
familiar with its features, you’ll find many tools that can help you develop your code more
efficiently.

· The Visual Basic programming language is more powerful and more flexible than Reflection
Basic. For example, programming language features not available in Reflection Basic include
user forms and user-defined object classes.

· Visual Basic for Applications is a shared component. If you already have an application
installed that uses VBA, Reflection uses that component.

The Reflection Object Name (Application vs. Session)
In versions of Reflection prior to 7.0, all methods and properties acted on the Application object.
The newer Session object is now used in all help programming examples.

If you are creating and/or maintaining Reflection Basic scripts, continue to use Application for
the Reflection object name. You can also use Application in Reflection Visual Basic macros, but
using Session enables some Visual Basic Editor features that are not available with Application
and may improve your macro performance.

I n d e x
802.2 DLC 72

A
Adding references 11, 68
Application object 20, 90
Auto Quick Info feature 30
Automation 61–68

controlling other applications 62
controlling Reflection 64
examples 63
OLEServerName property 66
overview 61

B
Basic language programming 18
Bulletin Board (BBS), phone number iii

C
CheckBox control 38
Class Modules 20
Closing custom dialog boxes 43
Coax DFT 72
Code window 20, 29
ComboBox control 38
Command syntax 21
CommandButton control 38
Connect macros

Reflection for HP 75
Reflection for IBM 69
Reflection for ReGIS Graphics 75
Reflection for UNIX and Digital 75

Connect method 69, 73
Connected property 69, 73
Connection Errors

Reflection for HP 84
Reflection for UNIX and Digital 84
Reflection forReGIS Graphics 84

Connection settings
Reflection for IBM 71

Connections
Reflection for HP 14, 73–86
Reflection for IBM 12, 69–72
Reflection for ReGIS Graphics 14, 73–86
Reflection for UNIX and Digital 14, 73–86

ConnectionSetting method 76
ConnectionSettings property 76, 77, 78, 80
ConnectionType property 77, 78
Constants 67
Context-sensitive help 18
Control structures 18
Controls in forms 38
CreateObject 62, 64, 65
Creating a custom dialog box 37
Creating a new form 37
Creating macros 30

D
Data types 18
Demonstration hosts 12, 14
Dial method 83
Dialog boxes (also see Forms) 37–51
Digital hosts 73
Disabled menu items 9
Disconnect method 69, 73

E
Early binding 64
Editing macros 32
Editing techniques 30
Eicon 72
Err object 56
Error codes 59
Error function 57
Error handling 53–60

connections 84
examples 54, 58, 59
91

92 Index
inline 58
resuming a procedure 58
trapping an error 54

Events 19
Executable applications 18
Exercises

ClipboardDemo (creating new macros) 33
ColorDemo (forms) 44
GetOpenFolder (forms) 48
Login macro (using the recorder) 11

F
Forms 20, 37–51

adding a new control 40
adding controls 38
closing 43
creating 37
showing 42
step-by-step exercises 43
testing 42

Frame control 38
Full module view 30
Functions 18

G
GetObject 62, 66

H
Help

context-sensitvie 18
Reflection programming 3, 21
Visual Basic (Microsoft) 3

HP hosts 73

I
IBM hosts 69
Immediate window 30
Installation

help files 3
sample macros 5

K
Keyword/Value tokens 80

L
Label control 38
Language references 17
Late binding 64
ListBox control 38
Login exercise 11
Login macro

Reflection for HP 14
Reflection for IBM 12
Reflection for ReGIS Graphics 14
Reflection for UNIX and Digital 14

Loops 18

M
Macros

creating 30
editing 32
in settings files 10
naming rules 32
recording 7, 11, 71, 80
running 9
samples 5
saving 10
stopping 9

Index 93
Macros dialog box 9
Microsoft Visual Basic Help 3
Modem Connections

Reflection for HP 82
Reflection for ReGIS Graphics 82
Reflection for UNIX and Digital 82

Modules 20

N
Naming rules for macros 32
New features 4
NewMacros module 20

O
Objects 19, 20, 90
OLE Automation (see Automation)
OLEServerName property 66
On Error 54
Opening custom dialog boxes 42
Operators 18
Optional arguments 22
OptionButton control 38

P
Phone numbers, WRQ, Inc. iii
Predefined Constants 67
Procedures 18
Project components 19
Project Explorer 19, 27
Projects, overview 19
Properties 19
Properties window 28

Q
Quotation marks 22

R
Rbs files 87
Recording macros 7, 11, 71, 80
References 10
Reflection Basic 4, 20, 57

compared to Visual Basic 88
displaying the Script menu 87
running scripts 87
support 87

Reflection language reference 17
Reflection object model 20
Reflection Programming Help 3, 21
Resume statement 58
Rodecls.bas 68
Run-time errors 53
Rvx files 10
Rwinapi.txt 68

S
Sample macros 5
Saving macros 10
Scope 19
Script menu 87
SDLC 72
Session object 19, 22, 66, 90
Session setup

Reflection for HP 76
Reflection for IBM 71
Reflection for ReGIS Graphics 76
Reflection for UNIX and Digital 76

SessionType property 72
Settings files 10
SetupSession method 72
Shared component 18
Sharing macros 10
SNA Engine 72
SNAEngineCFGFile property 72
Splitting the code window 30

94 Index
Stopping macros 9
Sub procedures 18
Syntax 21, 30

T
Technical support

phone number iii
TerminalModel property 72
TextBox control 38
ThisSession 19
Toolbox 39
TransportName property 72
TransportType property 72
Tutorial exercises

ClipboardDemo (creating new macros) 33
ColorDemo (forms) 44
GetOpenFolder (forms) 48
Login macro (using the recorder) 11

U
Unisys hosts 73
UNIX hosts 73
UseModemDialerV5 property 83
User forms (see Forms)

V
VBA 17
VBA Online Help component 3
View Settings dialog box 19
Visual Basic Editor 25–30
Visual Basic for Applications 4, 17, 90
Visual Basic Help 3
Visual Basic language reference 17

W
Watch window 30
What’s new 4
With statement 22
WRQ, Inc., phone numbers iii
Wrqsna.rlf 72

	Contacting WRQ
	Table of Contents
	Overview
	What’s in This Manual
	Using Reflection and Visual Basic Help
	Viewing Reflection’s Programming Help
	Viewing Microsoft’s Visual Basic Help

	What’s New?
	Sample Macros

	Recording and Managing Macros
	Creating a Macro with the Macro Recorder
	Running a Macro
	Saving Macros
	Sharing and Managing Macros
	Exercises
	Exercise 1: Creating a Login Macro with Reflection for IBM
	Exercise 2: Creating a Login Macro with Reflection for HP, UNIX and Digital, and ReGIS Graphics

	Programming Fundamentals
	What is Visual Basic for Applications?
	Basic Language Programming
	Understanding Visual Basic Projects
	The Components of a Reflection Project

	The Reflection Object Model
	Command Syntax
	Named Arguments

	Using the Visual Basic Editor
	The Visual Basic Editor
	The Project Explorer
	The Properties Window
	The Code Window
	Getting Help
	Editing Code
	Viewing Macros

	Creating New Macros
	Creating a New Macro Using Reflection’s Macros Dialog Box
	Creating A New Macro Using the Visual Basic Editor’s Add Procedure Dialog Box
	Creating a New Macro by Writing Code

	Rules for Naming Macros
	Editing Macros
	Exercise
	The Completed ClipboardDemo Macro

	Creating Custom Dialog Boxes
	Creating a New Form
	Adding and Editing Controls
	Adding a New Control to a Form
	Editing Control Properties

	Writing Form Code
	Getting User Input from your Dialog Box
	Opening and Closing your Dialog Box
	Opening a Dialog Box
	Closing a Dialog Box

	Exercises
	Exercise 1: Creating a Dialog Box
	Exercise 2: Getting User Input from a Dialog Box

	Handling Errors
	Trapping an Error
	Examples
	Error-Handling Routines

	Resuming a Procedure After an Error
	Inline Error Handling
	Example

	Information About Error Codes

	Communicating with Other Applications
	Understanding Automation
	Controlling Other Applications from Reflection
	Example

	Controlling Reflection from Other Applications
	Using CreateObject
	Using GetObject
	Using Reflection Predefined Constants in Other Applications

	Managing Connections to IBM Hosts
	Commands for Connecting and Disconnecting
	Using Connect Macros
	Configuring Connection Settings
	Using the Macro Recorder to Configure Connections
	Reflection Methods and Properties for Establishing and Managing Connections

	Managing Connections to HP, UNIX, Digital, and Unisys Hosts
	Commands for Connecting and Disconnecting
	Using Connect Macros
	Configuring Connection Settings
	Determining the Current Connection Type
	Specifying a Connection Type
	Configuring Settings for a Connection Type
	Determining the Settings for a Connection Type
	Capturing Connection Settings Using the Reflection Macro Recorder

	Managing Modem Connections
	Handling Connection Errors

	Reflection Basic Support
	Running Reflection Basic Scripts
	Displaying the Script Menu
	Using Reflection for IBM
	Using Reflection for HP, UNIX and Digital, or ReGIS Graphics

	Comparing Reflection Basic to Visual Basic
	Why Use Visual Basic?
	The Reflection Object Name (Application vs. Session)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

