
Preface to the Third Edition

At the time when the second edition of this book was published the study of the liquid state
was a rapidly expanding field of research. In the twenty years since then, the subject has
matured both theoretically and experimentally to a point where a real understanding exists
of the behaviour of “simple” liquids at the microscopic level. Although there has been a
shift in emphasis towards more complex systems, there remains in our view a place for
a book that deals with the principles of liquid-state theory, covering both statics and dy-
namics. Thus, in preparing a third edition, we have resisted the temptation to broaden too
far the scope of the book, and the focus remains firmly on simple systems, though many
of the methods we describe continue to find a wider range of application. Nonetheless,
some reorganisation of the book has been required in order to give proper weight to more
recent developments. The most obvious change is in the space devoted to the theory of
inhomogeneous fluids, an area in which considerable progress has been made since 1986.
Other major additions are sections on the properties of supercooled liquids, which include
a discussion of the mode-coupling theory of the kinetic glass transition, on theories of con-
densation and freezing and on the electric double layer. To make way for this and other
new material, some sections from the second edition have either been reduced in length or
omitted altogether. In particular, we no longer see a need to include a complete chapter on
molecular simulation, the publication of several excellent texts on the subject having filled
what was previously a serious gap in the literature. Our aim has been to emphasise what
seems to us to be work of lasting interest. Such judgements are inevitably somewhat sub-
jective and, as before, the choice of topics is coloured by our own experience and tastes. We
make no attempt to provide an exhaustive list of references, limiting ourselves to what we
consider to be the fundamental papers in different areas, along with selected applications.

We are grateful to a number of colleagues who have helped us in different ways: Dor
Ben-Amotz, Teresa Head-Gordon, David Heyes, David Grier, Bill Jorgensen, Gerhard
Kahl, Peter Monson, Anna Oleksy, Albert Reiner, Phil Salmon, Ilja Siepmann, Alan Soper,
George Stell and Jens-Boie Suck. Bob Evans made many helpful suggestions concerning
the much revised chapter on ionic liquids, George Jackson acted as our guide to the litera-
ture on the theory of associating liquids, Alberto Parola provided a valuable set of notes on
hierarchical reference theory, and Jean-Jacques Weis undertook on our behalf new Monte
Carlo calculations of the dielectric constant of dipolar hard spheres. Our task could not
have been completed without the support, encouragement and advice of these and other
colleagues, to all of whom we give our thanks. Finally, we thank the respective publishers
for permission to reproduce figures from Journal of Chemical Physics, Journal of Non-
Crystalline Solids, Physical Review and Physical Review Letters.

November 2005 J.P. HANSEN

I.R. MCDONALD
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Preface to the Second Edition

The first edition of this book was written in the wake of an unprecedented advance in
our understanding of the microscopic structure and dynamics of simple liquids. The rapid
progress made in a number of different experimental and theoretical areas had led to a
rather clear and complete picture of the properties of simple atomic liquids. In the ten
years that have passed since then, interest in the liquid state has remained very active, and
the methods described in our book have been successfully generalised and applied to a
variety of more complicated systems. Important developments have therefore been seen in
the theory of ionic, molecular and polar liquids, of liquid metals, and of the liquid surface,
while the quantitative reliability of theories of atomic fluids has also improved.

In an attempt to give a balanced account both of the basic theory and of the advances of
the past decade, this new edition has been rearranged and considerably expanded relative to
the earlier one. Every chapter has been completely rewritten, and three new chapters have
been added, devoted to ionic, metallic and molecular liquids, together with substantial new
sections on the theory of inhomogeneous fluids. The material contained in Chapter 10 of
the first edition, which dealt with phase transitions, has been omitted, since it proved im-
possible to do justice to such a large field in the limited space available. Although many
excellent review articles and monographs have appeared in recent years, a comprehensive
and up-to-date treatment of the theory of “simple” liquids appears to be lacking, and we
hope that the new edition of our book will fill this gap. The choice of material again re-
flects our own tastes, but we have aimed at presenting the main ideas of modern liquid-state
theory in a way that is both pedagogical and, so far as possible, self-contained. The book
should be accessible to graduate students and research workers, both experimentalists and
theorists, who have a good background in elementary statistical mechanics. We are well
aware, however, that certain sections, notably in Chapters 4, 6, 9 and 12 require more con-
centration from the reader than others. Although the book is not intended to be exhaustive,
we give many references to material that is not covered in depth in the text. Even at this
level, it is impossible to include all the relevant work. Omissions may reflect our ignorance
or a lack of good judgement, but we consider that our goal will have been achieved if the
book serves as an introduction and guide to a continuously growing field.

While preparing the new edition, we have benefited from the advice, criticism and help
of many colleagues. We give our sincere thanks to all. There are, alas, too many names
to list individually, but we wish to acknowledge our particular debt to Marc Baus, David
Chandler, Giovanni Ciccotti, Bob Evans, Paul Madden and Dominic Tildesley, who have
read large parts of the manuscript; to Susan O’Gorman, for her help with Chapter 4; and
to Eduardo Waisman, who wrote the first (and almost final) version of Appendix B. We
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are also grateful to those colleagues who have supplied references, preprints, and material
for figures and tables, and to authors and publishers for permission to reproduce diagrams
from published papers. The last stages of the work were carried out at the Institut Laue-
Langevin in Grenoble, and we thank Philippe Nozières for the invitations that made our
visits possible. Finally, we are greatly indebted to Martine Hansen, Christiane Lanceron,
Rehda Mazighi and Susan O’Gorman for their help and patience in the preparation of the
manuscript and figures.

May 1986 J.P. HANSEN

I.R. MCDONALD



Preface to the First Edition

The past ten years or so have seen a remarkable growth in our understanding of the statisti-
cal mechanics of simple liquids. Many of these advances have not yet been treated fully in
any book and the present work is aimed at filling this gap at a level similar to that of Egel-
staff’s “The Liquid State”, though with a greater emphasis on theoretical developments.
We discuss both static and dynamic properties, but no attempt is made at completeness
and the choice of topics naturally reflects our own interests. The emphasis throughout is
placed on theories which have been brought to a stage at which numerical comparison
with experiment can be made. We have attempted to make the book as self-contained as
possible, assuming only a knowledge of statistical mechanics at a final-year undergraduate
level. We have also included a large number of references to work which lack of space has
prevented us from discussing in detail. Our hope is that the book will prove useful to all
those interested in the physics and chemistry of liquids.

Our thanks go to many friends for their help and encouragement. We wish, in particular,
to express our gratitude to Loup Verlet for allowing us to make unlimited use of his un-
published lecture notes on the theory of liquids. He, together with Dominique Levesque,
Konrad Singer and George Stell, have read several parts of the manuscript and made sug-
gestions for its improvement. We are also greatly indebted to Jean-Jacques Weis for his
help with the section on molecular liquids. The work was completed during a summer
spent as visitors to the Chemistry Division of the National Research Council of Canada; it
is a pleasure to have this opportunity to thank Mike Klein for his hospitality at that time
and for making the visit possible. Thanks go finally to Susan O’Gorman for her help with
mathematical problems and for checking the references; to John Copley, Jan Sengers and
Sidney Yip for sending us useful material; and to Mrs K.L. Hales for so patiently typing
the many drafts.

A number of figures and tables have been reproduced, with permission, from The Phys-
ical Review, Journal of Chemical Physics, Molecular Physics and Physica; detailed ac-
knowledgements are made at appropriate points in the text.

June 1976 J.P. HANSEN

I.R. MCDONALD

viii



CHAPTER 1

Introduction

1.1 THE LIQUID STATE

The liquid state of matter is intuitively perceived as being intermediate in nature between
a gas and a solid. Thus a natural starting point for discussion of the properties of any given
substance is the relationship between pressure P , number density ρ and temperature T

in the different phases, summarised in the equation of state f (P,ρ,T ) = 0. The phase
diagram in the ρ–T plane typical of a simple, one-component system is sketched in Fig-
ure 1.1. The region of existence of the liquid phase is bounded above by the critical point
(subscript c) and below by the triple point (subscript t). Above the critical point there is
only a single fluid phase, so a continuous path exists from liquid to fluid to vapour; this is
not true of the transition from liquid to solid, because the solid–fluid coexistence line, or
melting curve, does not terminate at a critical point. In many respects the properties of the
dense, supercritical fluid are not very different from those of the liquid, and much of the
theory we develop in later chapters applies equally well to the two cases.

We shall be concerned in this book almost exclusively with classical liquids. For atomic
systems a simple test of the classical hypothesis is provided by the value of the de Broglie
thermal wavelength Λ, defined as

Λ =
(

2πβh̄2

m

)1/2

(1.1.1)

where m is the mass of an atom and β = 1/kBT . To justify a classical treatment of static
properties it is necessary that Λ be much less than a, where a ≈ ρ−1/3 is the mean nearest-
neighbour separation. In the case of molecules we require, in addition, that Θrot � T ,
where Θrot = h̄2/2IkB is a characteristic rotational temperature (I is the molecular mo-
ment of inertia). Some typical results are shown in Table 1.1, from which we see that
quantum effects should be small for all the systems listed, with the exceptions of hydrogen
and neon.

Use of the classical approximation leads to an important simplification, namely that the
contributions to thermodynamic properties which arise from thermal motion can be sepa-
rated from those due to interactions between particles. The separation of kinetic and po-
tential terms suggests a simple means of characterising the liquid state. Let VN be the total
potential energy of a system, where N is the number of particles, and let KN be the total
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FIG. 1.1. Schematic phase diagram of a typical monatomic substance, showing the boundaries between solid (S),
liquid (L) and vapour (V) or fluid (F) phases.

TABLE 1.1. Test of the classical hypothesis

Liquid Tt/K Λ/Å Λ/a Θrot/Tt

H2 14.1 3.3 0.97 6.1
Ne 24.5 0.78 0.26
CH4 91 0.46 0.12 0.083
N2 63 0.42 0.11 0.046
Li 454 0.31 0.11
Ar 84 0.30 0.083
HCl 159 0.23 0.063 0.094
Na 371 0.19 0.054
Kr 116 0.18 0.046
CCl4 250 0.09 0.017 0.001

Λ is the de Broglie thermal wavelength at T = Tt and a = (V/N)1/3.

kinetic energy. Then in the liquid state we find that KN/|VN | ≈ 1, whereas KN/|VN | � 1
corresponds to the dilute gas and KN/|VN | � 1 to the low-temperature solid. Alternatively,
if we characterise a given system by a length σ and an energy ε, corresponding roughly
to the range and strength of the intermolecular forces, we find that in the liquid region
of the phase diagram the reduced number density ρ∗ = Nσ 3/V and reduced temperature
T ∗ = kBT/ε are both of order unity. Liquids and dense fluids are also distinguished from
dilute gases by the greater importance of collisional processes and short-range, positional
correlations, and from solids by the lack of long-range order; their structure is in many
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TABLE 1.2. Selected properties of typical simple liquids

Property Ar Na N2

Tt/K 84 371 63
Tb/K (P = 1 atm) 87 1155 77
Tc/K 151 2600 126
Tc/Tt 1.8 7.0 2.0
ρt/nm−3 21 24 19
CP /CV 2.2 1.1 1.6
Lvap/kJ mol−1 6.5 99 5.6
χT /10−12 cm2 dyn−1 200 19 180
c/m s−1 863 2250 995
γ /dyn cm−1 13 191 12
D/10−5 cm2 s−1 1.6 4.3 1.0
η/mg cm−1 s−1 2.8 7.0 3.8
λ/mW cm−1 K−1 1.3 8800 1.6
(kBT/2πDη)/Å 4.1 2.7 3.6

χT = isothermal compressibility, c = speed of sound, γ = surface tension, D = self-diffusion
coefficient, η = shear viscosity and λ = thermal conductivity, all at T = Tt; Lvap = heat of vapor-
isation at T = Tb.

cases dominated by the “excluded-volume” effect associated with the packing together of
particles with hard cores.

Selected properties of a simple monatomic liquid (argon), a simple molecular liquid
(nitrogen) and a simple liquid metal (sodium) are listed in Table 1.2. Not unexpectedly,
the properties of the liquid metal are in certain respects very different from those of the
other systems, notably in the values of the thermal conductivity, isothermal compressibility,
surface tension, heat of vaporisation and the ratio of critical to triple-point temperatures; the
source of these differences should become clear in Chapter 10. The quantity kBT/2πDη

in the table provides a Stokes-law estimate of the particle diameter.

1.2 INTERMOLECULAR FORCES AND MODEL POTENTIALS

The most important feature of the pair potential between atoms or molecules is the harsh
repulsion that appears at short range and has its origin in the overlap of the outer electron
shells. The effect of these strongly repulsive forces is to create the short-range order that is
characteristic of the liquid state. The attractive forces, which act at long range, vary much
more smoothly with the distance between particles and play only a minor role in deter-
mining the structure of the liquid. They provide, instead, an essentially uniform, attractive
background and give rise to the cohesive energy that is required to stabilise the liquid. This
separation of the effects of repulsive and attractive forces is a very old-established concept.
It lies at the heart of the ideas of van der Waals, which in turn form the basis of the very
successful perturbation theories of the liquid state that we discuss in Chapter 5.
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The simplest model of a fluid is a system of hard spheres, for which the pair potential
v(r) at a separation r is

v(r) = ∞, r < d,

= 0, r > d
(1.2.1)

where d is the hard-sphere diameter. This simple potential is ideally suited to the study of
phenomena in which the hard core of the potential is the dominant factor. Much of our un-
derstanding of the properties of the hard-sphere model come from computer simulations.
Such calculations have revealed very clearly that the structure of a hard-sphere fluid does
not differ in any significant way from that corresponding to more complicated interatomic
potentials, at least under conditions close to crystallisation. The model also has some rele-
vance to real, physical systems. For example, the osmotic equation of state of a suspension
of micron-sized silica spheres in an organic solvent matches almost exactly that of a hard-
sphere fluid.1 However, although simulations show that the hard-sphere fluid undergoes
a freezing transition at ρ∗ (= ρd3) ≈ 0.945, the absence of attractive forces means that
there is only one fluid phase. A simple model that can describe a true liquid is obtained by
supplementing the hard-sphere potential with a square-well attraction, as illustrated in Fig-
ure 1.2(a). This introduces two additional parameters: ε, the well depth, and (γ − 1), the
width of the well in units of d , where γ typically has a value of about 1.5. An alternative
to the square-well potential with features that are of particular interest theoretically is the
hard-core Yukawa potential, given by

v(r) = ∞, r∗ < 1,

= − ε

r∗ exp
[−λ(r∗ − 1)

]
, r∗ > 1

(1.2.2)

where r∗ = r/d and the parameter λ measures the inverse range of the attractive tail in the
potential. The two examples plotted in Figure 1.2(b) are drawn for values of λ appropriate
either to the interaction between rare-gas atoms (λ = 2) or to the short-range, attractive
forces2 characteristic of certain colloidal systems (λ = 8).

A more realistic potential for neutral atoms can be constructed by a detailed quantum-
mechanical calculation. At large separations the dominant contribution to the potential
comes from the multipolar dispersion interactions between the instantaneous electric mo-
ments on one atom, created by spontaneous fluctuations in the electronic charge distribu-
tion, and moments induced in the other. All terms in the multipole series represent attractive
contributions to the potential. The leading term, varying as r−6, describes the dipole–
dipole interaction. Higher-order terms represent dipole–quadrupole (r−8), quadrupole–
quadrupole (r−10) interactions, and so on, but these are generally small in comparison
with the term in r−6.

A rigorous calculation of the short-range interaction presents greater difficulty, but over
relatively small ranges of r it can be adequately represented by an exponential function of
the form exp(−r/r0), where r0 is a range parameter. This approximation must be supple-
mented by requiring that v(r) → ∞ for r less than some arbitrarily chosen, small value.
In practice, largely for reasons of mathematical convenience, it is more usual to represent
the short-range repulsion by an inverse-power law, i.e. r−n, with n lying generally in the
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FIG. 1.2. Simple pair potentials for monatomic systems. See text for details.

range 9 to 15. The behaviour of v(r) in the limiting cases r → ∞ and r → 0 may therefore
be incorporated in a simple potential function of the form

v(r) = 4ε
[
(σ/r)12 − (σ/r)6] (1.2.3)

which is the famous 12-6 potential of Lennard-Jones. Equation (1.2.3) involves two para-
meters: the collision diameter σ , which is the separation of the particles where v(r) = 0;
and ε, the depth of the potential well at the minimum in v(r). The Lennard-Jones potential
provides a fair description of the interaction between pairs of rare-gas atoms and also of
quasi-spherical molecules such as methane. Computer simulations3 have shown that the
triple point of the Lennard-Jones fluid is at ρ∗ ≈ 0.85, T ∗ ≈ 0.68.

Experimental information on the pair interaction can be extracted from a study of any
process that involves collisions between particles.4 The most direct method involves the
measurement of atom–atom scattering cross-sections as a function of incident energy and
scattering angle; inversion of the data allows, in principle, a determination of the pair po-
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tential at all separations. A simpler procedure is to assume a specific form for the potential
and determine the parameters by fitting to the results of gas-phase measurements of quan-
tities such as the second virial coefficient (see Chapter 3) or the shear viscosity. In this way,
for example, the parameters ε and σ in the Lennard-Jones potential have been determined
for a large number of gases.

The theoretical and experimental methods we have mentioned all relate to the properties
of an isolated pair of molecules. The use of the resulting pair potentials in calculations
for the liquid state involves the neglect of many-body forces, an approximation that is
difficult to justify. In the rare-gas liquids, the three-body, triple-dipole dispersion term is
the most important many-body interaction; the net effect of triple-dipole forces is repulsive,
amounting in the case of liquid argon to a few percent of the total potential energy due
to pair interactions. Moreover, careful measurements, particularly those of second virial
coefficients at low temperatures, have shown that the true pair potential for rare-gas atoms
is not of the Lennard-Jones form, but has a deeper bowl and a weaker tail, as illustrated by
the curves plotted in Figure 1.3. Apparently the success of the Lennard-Jones potential in
accounting for many of the macroscopic properties of argon-like liquids is the consequence
of a fortuitous cancellation of errors. A number of more accurate pair potentials have been
developed for the rare gases, but their use in the calculation of condensed-phase properties
requires the explicit incorporation of three-body interactions.

Although the true pair potential for rare-gas atoms is not the same as the effective pair
potential used in liquid-state work, the difference is a relatively minor, quantitative one.
The situation in the case of liquid metals is different, because the form of the effective
ion–ion interaction is strongly influenced by the presence of a degenerate gas of con-
duction electrons that does not exist before the liquid is formed. The calculation of the
ion–ion interaction is a complicated problem, as we shall see in Chapter 10. The ion–
electron interaction is first described in terms of a “pseudopotential” that incorporates both
the coulombic attraction and the repulsion due to the Pauli exclusion principle. Account
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FIG. 1.3. Pair potentials for argon in temperature units. Full curve: the Lennard-Jones potential with parameter
values ε/kB = 120 K, σ = 3.4 Å, which is a good effective potential for the liquid; dashes: a potential based on
gas-phase data.5
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FIG. 1.4. Main figure: effective ion–ion potential (in temperature units) for liquid potassium.6 Inset: comparison
on a logarithmic scale of potentials for argon and potassium in the core region.

must then be taken of the way in which the pseudopotential is modified by interaction be-
tween the conduction electrons. The end result is a potential that represents the interaction
between screened, electrically neutral “pseudoatoms”. Irrespective of the detailed assump-
tions made, the main features of the potential are always the same: a soft repulsion, a deep
attractive well and a long-range oscillatory tail. The potential, and in particular the depth of
the well, are strongly density dependent but only weakly dependent on temperature. Fig-
ure 1.4 shows an effective potential for liquid potassium. The differences compared with
the potentials for argon are clear, both at long range and in the core region.

For molten salts and other ionic liquids in which there is no shielding of the electro-
static forces similar to that found in liquid metals, the coulombic interaction provides the
dominant contribution to the interionic potential. There must, in addition, be a short-range
repulsion between ions of opposite charge, without which the system would collapse, but
the detailed way in which the repulsive forces are treated is of minor importance. Polarisa-
tion of the ions by the internal electric field also plays a role, but such effects are essentially
many-body in nature and cannot be adequately represented by an additional term in the pair
potential.

Description of the interaction between two molecules poses greater problems than for
spherical particles because the pair potential is a function both of the separation of the
molecules and of their mutual orientation. The model potentials discussed in this book di-
vide into two classes. The first consists of highly idealised models of polar liquids in which
a point dipole–dipole interaction is superimposed on a spherically symmetric potential. In
this case the pair potential for particles labelled 1 and 2 has the general form

v(1,2) = v0(R) − μ1 · T (R) · μ2 (1.2.4)
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where R is the vector separation of the molecular centres, v0(R) is the spherically sym-
metric term, μi is the dipole-moment vector of particle i and T (R) is the dipole–dipole
interaction tensor:

T (R) = 3RR/R5 − I/R3 (1.2.5)

where I is the unit tensor. Two examples of (1.2.4) that are of particular interest are those
of dipolar hard spheres, where v0(R) is the hard-sphere potential, and the Stockmayer po-
tential, where v0(R) takes the Lennard-Jones form. Both these models, together with ex-
tensions that include, for example, dipole–quadrupole and quadrupole–quadrupole terms,
have received much attention from theoreticians. Their main limitation as models of real
molecules is the fact that they ignore the angle dependence of the short-range forces. A sim-
ple way to take account of such effects is through the use of potentials of the second main
type with which we shall be concerned. These are models in which the molecule is repre-
sented by a set of discrete interaction sites that are commonly, but not invariably, located at
the sites of the atomic nuclei. The total potential energy of two interaction-site molecules
is then obtained as the sum of spherically symmetric, interaction-site potentials. Let riα be
the coordinates of site α in molecule i and let rjβ be the coordinates of site β in molecule j .
Then the total intermolecular potential energy is

v(1,2) = 1
2

∑
α

∑
β

vαβ
(|r2β − r1α|) (1.2.6)

where vαβ(r) is a site–site potential and the sums on α and β run over all interaction
sites in the respective molecules. Electrostatic interactions are easily allowed for by inclu-
sion of coulombic terms in the site–site potentials. Let us take as an example the particu-
larly simple case of a homonuclear diatomic, such as that pictured in Figure 1.5. A crude
interaction-site model would be that of a “hard dumb-bell”, consisting of two overlapping
hard spheres of diameter d with their centres separated by a distance L < 2d . This should
be adequate to describe the main structural features of a liquid such as nitrogen. An obvious
improvement would be to replace the hard spheres by two Lennard-Jones interaction sites,
with parameters chosen to fit, say, the experimentally determined equation of state. Some
homonuclear diatomics also have a large quadrupole moment, which plays a significant
role in determining the short-range angular correlations in the liquid. The model could in
that case be further refined by placing point charges q at the Lennard-Jones sites, together

L

q q
-2q

FIG. 1.5. An interaction-site model of a homonuclear diatomic.
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with a compensating charge −2q at the mid-point of the internuclear bond; such a charge
distribution has zero dipole moment but a non-vanishing quadrupole moment proportional
to qL2. Models of this general type have proved remarkably successful in describing the
properties of a wide variety of molecular liquids, both simple and complicated.

1.3 EXPERIMENTAL METHODS

The experimental methods available for studying the properties of simple liquids may be
placed in one of two broad categories, depending on whether they are concerned with
measurements on a macroscopic or microscopic scale. In general, the calculated micro-
scopic properties are more sensitive to the approximations used in a theory and to the
assumptions made about the pair potentials, but the macroscopic properties can usually be
measured with considerably greater accuracy. The two types of measurement are there-
fore complementary, each providing information that is useful in the development of a
statistical-mechanical theory of the liquid state.

The classic macroscopic measurements are those of thermodynamic properties, partic-
ularly of the equation of state. Integration of accurate P –ρ–T data yields information
on other thermodynamic quantities, which can be supplemented by calorimetric measure-
ments. For most liquids the pressure is known as a function of temperature and density only
in the vicinity of the liquid–vapour equilibrium line, but for certain systems of particular
theoretical interest experiments have been carried out at much higher pressures; the low
compressibility of a liquid near its triple point means that highly specialised techniques
are required. The second main class of macroscopic measurements are those relating to
transport coefficients. A variety of experimental methods are used. The shear viscosity,
for example, can be determined from the observed damping of torsional oscillations or
from capillary-flow experiments, while the thermal conductivity can be obtained from a
steady-state measurement of the transfer of heat between a central filament and a surround-
ing cylinder or between parallel plates. A direct method of determining the coefficient of
self-diffusion involves the use of radioactive tracers, which places it in the category of mi-
croscopic measurements; in favourable cases the diffusion coefficient can be measured by
nuclear magnetic resonance (NMR). NMR and other spectroscopic methods (infrared and
Raman) are also useful in the study of reorientational motion in molecular liquids, while
dielectric-response measurements provide information on the slow, structural relaxation in
supercooled liquids near the glass transition.

Much the most important class of microscopic measurements, at least from the theoreti-
cal point of view, are the radiation-scattering experiments. Elastic scattering of neutrons or
x-rays, in which the scattering cross-section is measured as a function of momentum trans-
fer between the radiation and the sample, is the source of our experimental knowledge of
the static structure of a fluid. In the case of inelastic scattering the cross-section is measured
as a function of both momentum and energy transfer. It is thereby possible to extract in-
formation on wavenumber and frequency-dependent fluctuations in liquids at wavelengths
comparable with the spacing between particles. This provides a very powerful method of
studying microscopic time-dependent processes in liquids. Inelastic light-scattering exper-
iments give similar information, but the accessible range of momentum transfer limits the
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method to the study of fluctuations of wavelength of order 10−5 cm, corresponding to the
hydrodynamic regime. Such experiments are, however, of considerable value in the study
of colloidal dispersions and of critical phenomena.

Finally, there are a range of techniques of a quasi-experimental character, referred to
collectively as computer simulation, the importance of which in the development of liquid-
state theory can hardly be overstated. Simulation provides what are essentially exact results
for a given potential model; its usefulness rests ultimately on the fact that a sample con-
taining a few hundred or few thousand particles is in many cases sufficiently large to sim-
ulate the behaviour of a macroscopic system. There are two classic approaches: the Monte
Carlo method and the method of molecular dynamics. There are many variants of each,
but in broad terms a Monte Carlo calculation is designed to generate static configurations
of the system of interest, while molecular dynamics involves the solution of the classical
equations of motion of the particles. Molecular dynamics therefore has the advantage of
allowing the study of time-dependent processes, but for the calculation of static properties
a Monte Carlo method is often more efficient. Chapter 2 contains a brief discussion of the
principles underlying the two types of calculation.
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CHAPTER 2

Statistical Mechanics

This chapter is devoted to a summary of the principles of classical statistical mechanics,
a discussion of the link between statistical mechanics and thermodynamics, and the de-
finition of certain equilibrium and time-dependent distribution functions of fundamental
importance in the theory of liquids. It also establishes much of the notation used in later
parts of the book. The focus throughout is on atomic systems; some of the complications
that arise in the study of molecular liquids are discussed in Chapter 11.

2.1 TIME EVOLUTION AND KINETIC EQUATIONS

Consider an isolated, macroscopic system consisting of N identical, spherical particles
of mass m enclosed in a volume V . An example would be a one-component, monatomic
gas or liquid. In classical mechanics the dynamical state of the system at any instant is
completely specified by the 3N coordinates rN ≡ r1, . . . , rN and 3N momenta pN ≡
p1, . . . ,pN of the particles. The values of these 6N variables define a phase point in a
6N -dimensional phase space. Let H be the hamiltonian of the system, which we write in
general form as

H
(
rN,pN

)= KN

(
pN
)+ VN

(
rN
)+ ΦN

(
rN
)

(2.1.1)

where

KN =
N∑
i=1

|pi |2
2m

(2.1.2)

is the kinetic energy, VN is the interatomic potential energy and ΦN is the potential energy
arising from the interaction of the particles with some spatially varying, external field.
If there is no external field, the system will be both spatially uniform and isotropic. The
motion of the phase point along its phase trajectory is determined by Hamilton’s equations:

ṙi = ∂H
∂pi

, ṗi = −∂H
∂ri

(2.1.3)

These equations are to be solved subject to 6N initial conditions on the coordinates and mo-
menta. Since the trajectory of a phase point is wholly determined by the values of rN , pN

11
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at any given time, it follows that two different trajectories cannot pass through the same
point in phase space.

The aim of equilibrium statistical mechanics is to calculate observable properties of a
system of interest either as averages over a phase trajectory (the method of Boltzmann),
or as averages over an ensemble of systems, each of which is a replica of the system of
interest (the method of Gibbs). The main features of the two methods are reviewed in later
sections of this chapter. Here it is sufficient to recall that in Gibbs’s formulation of statisti-
cal mechanics the distribution of phase points of systems of the ensemble is described by
a phase-space probability density f [N ](rN,pN ; t). The quantity f [N ] drN dpN is the prob-
ability that at time t the physical system is in a microscopic state represented by a phase
point lying in the infinitesimal, 6N -dimensional phase-space element drN dpN . This defi-
nition implies that the integral of f [N ] over all phase space is∫∫

f [N ](rN,pN ; t)drNdpN = 1 (2.1.4)

for all t . Given a complete knowledge of the probability density it would be possible to
calculate the average value of any function of the coordinates and momenta.

The time evolution of the probability density at a fixed point in phase space is governed
by the Liouville equation, which is a 6N -dimensional analogue of the equation of conti-
nuity of an incompressible fluid; it describes the fact that phase points of the ensemble are
neither created nor destroyed as time evolves. The Liouville equation may be written either
as

∂f [N ]

∂t
+

N∑
i=1

(
∂f [N ]

∂ri
· ṙi + ∂f [N ]

∂pi

· ṗi

)
= 0 (2.1.5)

or, more compactly, as

∂f [N ]

∂t
= {H, f [N ]} (2.1.6)

where {A,B} denotes the Poisson bracket:

{A,B} ≡
N∑
i=1

(
∂A

∂ri
· ∂B

∂pi

− ∂A

∂pi

· ∂B
∂ri

)
(2.1.7)

Alternatively, by introducing the Liouville operator L, defined as

L≡ i{H, } (2.1.8)

the Liouville equation becomes

∂f [N ]

∂t
= −iLf [N ] (2.1.9)
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the formal solution to which is

f [N ](t) = exp(−iLt)f [N ](0) (2.1.10)

The Liouville equation can be expressed even more concisely in the form

df [N ]

dt
= 0 (2.1.11)

where d/dt denotes the total derivative with respect to time. This result is called the
Liouville theorem. The meaning of the Liouville theorem is that the probability density,
as seen by an observer moving with a phase point along its phase trajectory, is indepen-
dent of time. Consider the phase points that at time t = 0 are contained within a phase-
space element drN(0)dpN(0). As time increases, the element will change in shape but no
phase points will enter or leave, otherwise phase trajectories would cross each other. The
Liouville theorem therefore implies that the volume of the element must remain the same:
volume in phase space is said to be “conserved”. In mathematical terms, conservation of
volume in phase space is equivalent to the statement that the jacobian corresponding to
the transformation rN(0),pN(0) → rN(t),pN(t) is equal to unity; this is easily proved
explicitly.1

The time dependence of any function of the phase-space variables, B(rN,pN) say, may
be represented in a manner similar to (2.1.9). Although B is not an explicit function of t , it
will in general change with time as the system moves along its phase trajectory. The time
derivative of B is therefore given by

dB

dt
=

N∑
i=1

(
∂B

∂ri
· ṙi + ∂B

∂pi

· ṗi

)
(2.1.12)

or, from Hamilton’s equations:

dB

dt
=

N∑
i=1

(
∂B

∂ri
· ∂H
∂pi

− ∂B

∂pi

· ∂H
∂ri

)
= iLB (2.1.13)

which has as its solution

B(t) = exp(iLt)B(0) (2.1.14)

Note the change of sign in the propagator compared with (2.1.10).
The description of the system that the full phase-space probability density provides is for

many purposes unnecessarily detailed. Normally we are interested only in the behaviour
of a subset of particles of size n, say, and the redundant information can be eliminated
by integrating f [N ] over the coordinates and momenta of the other (N − n) particles. We
therefore define a reduced phase-space distribution function f (n)(rn,pn; t) by

f (n)
(
rn,pn; t)= N !

(N − n)!
∫∫

f [N ](rN,pN ; t)dr(N−n) dp(N−n) (2.1.15)
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where rn ≡ r1, . . . , rn and r(N−n) ≡ rn+1, . . . , rN , etc. The quantity f (n) drn dpn yields
the probability of finding a subset of n particles in the reduced phase-space element
drn dpn at time t , irrespective of the coordinates and momenta of the remaining particles;
the combinatorial factor N !/(N −n)! is the number of ways of choosing a subset of size n.

To find an equation of motion for f (n) we consider the special case when the total
force acting on particle i is the sum of an external force Xi , arising from an external
potential φ(ri ), and of pair forces Fij due to other particles j , with Fii = 0. The second of
Hamilton’s equations (2.1.3) now takes the form

∂H
∂ri

= −Xi −
N∑

j=1

Fij (2.1.16)

and the Liouville equation becomes(
∂

∂t
+

N∑
i=1

pi

m
· ∂

∂ri
+

N∑
i=1

Xi · ∂

∂pi

)
f [N ] = −

N∑
i=1

N∑
j=1

Fij · ∂f
[N ]

∂pi

(2.1.17)

We now multiply through by N !/(N − n)! and integrate over the 3(N − n) coordinates
rn+1, . . . , rN and 3(N − n) momenta pn+1, . . . ,pN . The probability density f [N ] is zero
when ri lies outside the volume occupied by the system and must vanish as pi → ∞ to
ensure convergence of the integrals over momenta in (2.1.4). Thus f [N ] vanishes at the
limits of integration and the derivative of f [N ] with respect to any component of position
or momentum will contribute nothing to the result when integrated with respect to that
component. On integration, therefore, all terms disappear for which i > n in (2.1.17). What
remains, given the definition of f (n) in (2.1.15), is(

∂

∂t
+

n∑
i=1

pi

m
· ∂

∂ri
+

n∑
i=1

Xi · ∂

∂pi

)
f (n)

= −
n∑

i=1

n∑
j=1

Fij · ∂f
(n)

∂pi

− N !
(N − n)!

n∑
i=1

N∑
j=n+1

∫∫
Fij · ∂f

[N ]

∂pi

dr(N−n) dp(N−n) (2.1.18)

Because the particles are identical, f [N ] is symmetric with respect to interchange of parti-
cle labels and the sum of terms for j = n+1 to N on the right-hand side of (2.1.18) may be
replaced by (N − n) times the value of any one term. This simplification makes it possible
to rewrite (2.1.18) in a manner that relates the behaviour of f (n) to that of f (n+1):(

∂

∂t
+

n∑
i=1

pi

m
· ∂

∂ri
+

n∑
i=1

(
Xi +

n∑
j=1

Fij

)
· ∂

∂pi

)
f (n)

= −
n∑

i=1

∫∫
Fi,n+1 · ∂f

(n+1)

∂pi

drn+1 dpn+1 (2.1.19)
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The system of coupled equations represented by (2.1.19) was first obtained by Yvon and
subsequently rederived by others. It is known as the Bogolyubov–Born–Green–Kirkwood–
Yvon or BBGKY hierarchy. The equations are exact, though limited in their applicability to
systems for which the particle interactions are pairwise additive. They are not immediately
useful, however, because they merely express one unknown function, f (n), in terms of
another, f (n+1). Some approximate closure relation is therefore needed.

In practice the most important member of the BBGKY hierarchy is that corresponding
to n = 1: (

∂

∂t
+ p1

m
· ∂

∂r1
+ X1 · ∂

∂p1

)
f (1)(r1,p1; t)

= −
∫∫

F12 · ∂

∂p1
f (2)(r1,p1, r2,p2; t)dr2 dp2 (2.1.20)

Much effort has been devoted to finding approximate solutions to (2.1.20) on the basis
of expressions that relate the two-particle distribution function f (2) to the single-particle
function f (1). From the resulting kinetic equations it is possible to calculate the hydrody-
namic transport coefficients, but the approximations made are rarely appropriate to liquids
because correlations between particles are mostly treated in a very crude way.2 The sim-
plest possible approximation is to ignore pair correlations altogether by writing

f (2)(r,p, r′,p′; t) ≈ f (1)(r,p; t)f (1)(r′,p′; t) (2.1.21)

This leads to the Vlasov equation:(
∂

∂t
+ p

m
· ∂

∂r
+ [X(r, t) + F(r, t)

] · ∂

∂p

)
f (1)(r,p; t) = 0 (2.1.22)

where the quantity

F(r, t) =
∫∫

F(r, r′; t)f (1)(r′,p′; t)dr′dp′ (2.1.23)

is the average force exerted by other particles, situated at points r′, on a particle that at
time t is at a point r; this is an approximation of classic mean-field type. Though obvi-
ously not suitable for liquids, the Vlasov equation is widely used in plasma physics, where
the long-range character of the Coulomb potential justifies a mean-field treatment of the
interactions.

Equation (2.1.20) may be rewritten schematically in the form(
∂

∂t
+ p1

m
· ∂

∂r1
+ X1 · ∂

∂p1

)
f (1) =

(
∂f (1)

∂t

)
coll

(2.1.24)

where the term (∂f (1)/∂t)coll is the rate of change of f (1) due to collisions between par-
ticles. The collision term is given rigorously by the right-hand side of (2.1.20) but in the
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Vlasov equation it is eliminated by replacing the true external force X(r, t) by an effec-
tive force – the quantity inside square brackets in (2.1.22) – which depends in part on
f (1) itself. For this reason the Vlasov equation is called a “collisionless” approximation. In
the most famous of all kinetic equations, derived by Boltzmann more than a century ago,
(∂f (1)/∂t)coll is evaluated with the help of two assumptions, which in general are justi-
fied only at low densities: that two-body collisions alone are involved and that successive
collisions are uncorrelated.2 The second of these assumptions, that of “molecular chaos”,
corresponds formally to supposing that the factorisation represented by (2.1.21) applies
prior to any collision, though not subsequently. In simple terms it means that when two
particles collide, no memory is retained of any previous encounters between them, an as-
sumption that clearly breaks down when recollisions are frequent events. A binary collision
at a point r is characterised by the momenta p1, p2 of the two particles before collision and
their momenta p′

1, p′
2 afterwards; the post-collisional momenta are related to their pre-

collisional values by the laws of classical mechanics. With Boltzmann’s approximations
the collision term in (2.1.24) becomes(

∂f (1)

∂t

)
coll

= 1

m

∫∫
σ(Ω,Δp)

[
f (1)(r,p′

1; t)f (1)(r,p′
2; t)

− f (1)(r,p1; t)f (1)(r,p2; t)
]

dΩ dp2 (2.1.25)

where Δp ≡ |p2 − p1| and σ(Ω,Δp) is the differential cross-section for scattering into a
solid angle dΩ . As Boltzmann showed, this form of the collision term is able to account for
the fact that many-particle systems evolve irreversibly towards an equilibrium state. This
irreversibility is described by Boltzmann’s H-theorem; the source of the irreversibility is
the assumption of molecular chaos.

Solution of the Boltzmann equation leads to explicit expressions for the hydrodynamic
transport coefficients in terms of certain “collision” integrals.3 The differential scattering
cross-section and hence the collision integrals themselves can be evaluated numerically for
a given choice of two-body interaction, though for hard spheres they have a simple, ana-
lytical form. The results, however, are applicable only to dilute gases. In the case of hard
spheres the Boltzmann equation was later modified semi-empirically by Enskog in a man-
ner that extends its range of applicability to considerably higher densities. Enskog’s theory
retains the two key assumptions involved in the derivation of the Boltzmann equation, but
it also corrects in two ways for the finite size of the colliding particles. First, allowance is
made for the modification of the collision rate by the hard-sphere interaction. Because the
same interaction is also responsible for the increase in pressure over its ideal-gas value,
the enhancement of the collision rate relative to its low-density limit can be calculated if
the hard-sphere equation of state is known. Secondly, “collisional transfer” is incorporated
into the theory by rewriting (2.1.25) in a form in which the distribution functions for the
two colliding particles are evaluated not the same point, r, but at points separated by a
distance equal to the hard-sphere diameter. This is an important modification of the the-
ory, because at high densities interactions rather than particle displacements provide the
dominant mechanism for the transport of energy and momentum.

The phase-space probability density of a system in thermodynamic equilibrium is a func-
tion of the time-varying coordinates and momenta, but is independent of t at each point in
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phase space. We shall use the symbol f [N ]
0 (rN,pN) to denote the equilibrium probability

density; it follows from (2.1.6) that a sufficient condition for a probability density to be de-
scriptive of a system in equilibrium is that it should be some function of the hamiltonian.
Integration of f

[N ]
0 over a subset of coordinates and momenta in the manner of (2.1.15)

yields a set of equilibrium phase-space distribution functions f
(n)
0 (rn,pn). The case n = 1

corresponds to the equilibrium single-particle distribution function; if there is no external
field the distribution is independent of r and has the familiar maxwellian form, i.e.

f
(1)
0 (r,p) = ρ exp(−β|p|2/2m)

(2πmkBT )3/2
≡ ρfM(p) (2.1.26)

where fM(p) is the Maxwell distribution of momenta, normalised such that∫
fM(p)dp = 1 (2.1.27)

The corresponding distribution of velocities u is

φM(u) =
(

m

2πkBT

)3/2

exp
(−mβ|u|2/2

)
(2.1.28)

2.2 TIME AVERAGES AND ENSEMBLE AVERAGES

Certain thermodynamic properties of a physical system may be written as averages of func-
tions of the coordinates and momenta of the constituent particles. These are the so-called
“mechanical” properties, which include internal energy and pressure; “thermal” properties
such as entropy are not expressible in this way. In a state of thermal equilibrium these av-
erages must be independent of time. To avoid undue complications we again suppose that
the system of interest consists of N identical, spherical particles. If the system is isolated
from its surroundings, its total energy is constant, i.e. the hamiltonian is a constant of the
motion.

As before, let B(rN,pN) be some function of the 6N phase-space variables and let 〈B〉
be its average value, where the angular brackets represent an averaging process of a nature
as yet unspecified. Given the coordinates and momenta of the particles at some instant, their
values at any later (or earlier) time can in principle be obtained as the solution to Newton’s
equations of motion, i.e. to a set of 3N coupled, second-order, differential equations which,
in the absence of an external field, have the form

mr̈i = Fi = −∇iVN

(
rN
)

(2.2.1)

where Fi is the total force on particle i. It is therefore natural to view 〈B〉 as a time average
over the dynamical history of the system, i.e.

〈B〉t = lim
τ→∞

1

τ

∫ τ

0
B
[
rN(t),pN(t)

]
dt (2.2.2)
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A simple example of the use of (2.2.2) is the calculation of the thermodynamic temper-
ature of the system from the time average of the total kinetic energy. If

T (t) = 2

3NkB
KN(t) = 1

3NkBm

N∑
i=1

∣∣pi (t)
∣∣2 (2.2.3)

then

T ≡ 〈T 〉t = lim
τ→∞

1

τ

∫ τ

0
T (t)dt (2.2.4)

As a more interesting application we can use (2.2.2) and (2.2.4) to show that the equation
of state is related to the time average of the virial function of Clausius. The virial function
is defined as

V
(
rN
)= N∑

i=1

ri · Fi (2.2.5)

From previous formulae, together with an integration by parts, we find that

〈V〉t = lim
τ→∞

1

τ

∫ τ

0

N∑
i=1

ri (t) · Fi (t)dt = lim
τ→∞

1

τ

∫ τ

0

N∑
i=1

ri (t) · mr̈i (t)dt

= − lim
τ→∞

1

τ

∫ τ

0

N∑
i=1

m
∣∣ṙi (t)∣∣2 dt = −3NkBT (2.2.6)

or

〈V〉t = −2〈KN 〉t (2.2.7)

which is the virial theorem of classical mechanics. The total virial function may be sep-
arated into two parts: one, Vint, comes from the forces between particles; the other, Vext,
arises from the forces exerted by the walls and is related in a simple way to the pressure, P .
The force exerted by a surface element dS located at r is −Pn dS, where n is a unit vector
directed outwards, and its contribution to the average virial is −P r · n dS. Integrating over
the surface we find that

〈Vext〉 = −P

∫
r · n dS = −P

∫
∇ · r dV = −3PV (2.2.8)

Equation (2.2.7) may therefore be rearranged to give the virial equation:

PV = NkBT + 1
3 〈Vint〉t = NkBT − 1

3

〈
N∑
i=1

ri (t) · ∇iVN

[
rN(t)

]〉
t

(2.2.9)
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or

βP

ρ
= 1 − β

3N

〈
N∑
i=1

ri (t) · ∇iVN

[
rN(t)

]〉
t

(2.2.10)

When VN = 0, the virial equation reduces to the equation of state of an ideal gas, PV =
NkBT .

The alternative to the time-averaging procedure described by (2.2.2) is to average over
a suitably constructed ensemble. A statistical-mechanical ensemble is an arbitrarily large
collection of imaginary systems, each of which is a replica of the physical system of inter-
est and characterised by the same macroscopic parameters. The systems of the ensemble
differ from each other in the assignment of the coordinates and momenta of the particles
and the dynamics of the ensemble as a whole is represented by the motion of a cloud of
phase points distributed in phase space according to the probability density f [N ](rN,pN ; t)
introduced in Section 2.1. The equilibrium ensemble average of the function B(rN,pN) is
therefore given by

〈B〉e =
∫∫

B
(
rN,pN

)
f

[N ]
0

(
rN,pN

)
drN dpN (2.2.11)

where f
[N ]
0 is the equilibrium probability density. For example, the thermodynamic inter-

nal energy is the ensemble average of the hamiltonian:

U ≡ 〈H〉e =
∫∫

Hf
[N ]
0 drN dpN (2.2.12)

The explicit form of the equilibrium probability density depends on the macroscopic
parameters that characterise the ensemble. The simplest case is when the systems of the
ensemble are assumed to have the same number of particles, the same volume and the same
total energy, E say. An ensemble constructed in this way is called a microcanonical ensem-
ble and describes a system that exchanges neither heat nor matter with its surroundings.
The microcanonical equilibrium probability density is

f
[N ]
0

(
rN,pN

)= Cδ(H− E) (2.2.13)

where δ(· · ·) is the Dirac δ-function and C is a normalisation constant. The systems of
a microcanonical ensemble are therefore uniformly distributed over the region of phase
space corresponding to a total energy E; from (2.2.13) we see that the internal energy is
equal to the value of the parameter E. The constraint of constant total energy is reminiscent
of the condition of constant total energy under which time averages are taken. Indeed, time
averages and ensemble averages are identical if the system is ergodic, by which is meant
that after a suitable lapse of time the phase trajectory of the system will have passed an
equal number of times through every phase-space element in the region defined by (2.2.13).
In practice, however, it is almost always easier to calculate ensemble averages in one of the
ensembles described in the next two sections.
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2.3 CANONICAL AND ISOTHERMAL–ISOBARIC ENSEMBLES

A canonical ensemble is a collection of systems characterised by the same values of N , V
and T . The assignment of a fixed temperature is justified by imagining that the systems of
the ensemble are initially brought into thermal equilibrium with each other by immersing
them in a heat bath at a temperature T . The equilibrium probability density for a system of
identical, spherical particles is now

f
[N ]
0

(
rN,pN

)= 1

h3NN !
exp(−βH)

QN

(2.3.1)

where h is Planck’s constant and the normalisation constant QN is the canonical partition
function, defined as

QN = 1

h3NN !
∫∫

exp(−βH)drN dpN (2.3.2)

Inclusion of the factor 1/h3N in these definitions ensures that both f
[N ]
0 drN dpN and QN

are dimensionless and consistent in form with the corresponding quantities of quantum
statistical mechanics, while division by N ! ensures that microscopic states are correctly
counted.

The thermodynamic potential appropriate to a situation in which N , V and T are chosen
as independent thermodynamic variables is the Helmholtz free energy, F , defined as

F = U − T S (2.3.3)

where S is the entropy. Use of the term “potential” means that equilibrium at constant
values of T , V and N is reached when F is a minimum with respect to variations of any
internal constraint. The link between statistical mechanics and thermodynamics is estab-
lished via a relation between the thermodynamic potential and the partition function:

F = −kBT lnQN (2.3.4)

Let us assume that there is no external field and hence that the system of interest is homo-
geneous. Then the change in internal energy arising from infinitesimal changes in N , V
and S is

dU = T dS − P dV + μdN (2.3.5)

where μ is the chemical potential. Since N , V and S are all extensive variables it follows
that

U = T S − PV + μN (2.3.6)

Combination of (2.3.5) with the differential form of (2.3.3) shows that the change in free
energy in an infinitesimal process is

dF = −S dT − P dV + μdN (2.3.7)
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Thus N , V and T are the natural variables of F ; if F is a known function of these variables,
all other thermodynamic functions can be obtained by differentiation:

S = −
(
∂F

∂T

)
V,N

, P = −
(
∂F

∂V

)
T ,N

, μ =
(
∂F

∂N

)
T ,V

(2.3.8)

and

U = F + T S =
(
∂(F/T )

∂(1/T )

)
V,N

(2.3.9)

To each such thermodynamic relation there corresponds an equivalent relation in terms of
the partition function. For example, it follows from (2.2.12) and (2.3.1) that

U = 1

h3NN !QN

∫∫
H exp(−βH)drNdpN = −

(
∂ lnQN

∂β

)
V

(2.3.10)

This result, together with the fundamental relation (2.3.4), is equivalent to the thermody-
namic formula (2.3.9). Similarly, the expression for the pressure given by (2.3.8) can be
rewritten as

P = kBT

(
∂ lnQN

∂V

)
T ,N

(2.3.11)

and shown to be equivalent to the virial equation (2.2.10).4

If the hamiltonian is separated into kinetic and potential energy terms in the manner
of (2.1.1), the integrations over momenta in the definition (2.3.2) of QN can be carried out
analytically, yielding a factor (2πmkBT )1/2 for each of the 3N degrees of freedom. This
allows the partition function to be rewritten as

QN = 1

N !
ZN

Λ3N
(2.3.12)

where Λ is the de Broglie thermal wavelength defined by (1.1.1) and

ZN =
∫

exp(−βVN)drN (2.3.13)

is the configuration integral. If VN = 0:

ZN =
∫

· · ·
∫

dr1 · · · rN = V N (2.3.14)

Hence the partition function of a uniform, ideal gas is

Qid
N = 1

N !
V N

Λ3N
= qN

N ! (2.3.15)
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where q = V/Λ3 is the single-particle translational partition function, familiar from ele-
mentary statistical mechanics. If Stirling’s approximation is used for lnN !, the Helmholtz
free energy is

F id

N
= kBT

(
lnΛ3ρ − 1

)
(2.3.16)

and the chemical potential is

μid = kBT lnΛ3ρ (2.3.17)

The partition function of a system of interacting particles is conveniently written in the
form

QN = Qid
N

ZN

V N
(2.3.18)

Then, on taking the logarithm of both sides, the Helmholtz free energy separates naturally
into “ideal” and “excess” parts:

F = F id + F ex (2.3.19)

where F id is given by (2.3.16) and the excess part is

F ex = −kBT ln
ZN

V N
(2.3.20)

The excess part contains the contributions to the free energy that arise from interactions
between particles; in the case of an inhomogeneous fluid there will also be a contribution
that depends explicitly on the external potential. A similar division into ideal and excess
parts can be made of any thermodynamic function obtained by differentiation of F with re-
spect to either V or T . For example, the internal energy derived from (2.3.10) and (2.3.18)
is

U = U id + U ex (2.3.21)

where U id = 3NkBT/2 and

U ex = 〈VN 〉 = 1

ZN

∫
VN exp(−βVN)drN (2.3.22)

Note the simplification compared with the expression for U given by the first equality
in (2.3.10); because VN is a function only of the particle coordinates, the integrations over
momenta cancel between numerator and denominator.

In the isothermal–isobaric ensemble pressure, rather than volume, is a fixed parameter.
The thermodynamic potential of a system characterised by fixed values of N , P and T is
the Gibbs free energy, G, defined as

G = F + PV (2.3.23)
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and other state functions are obtained by differentiation of G with respect to the indepen-
dent variables. The link with statistical mechanics is now made through the relation

G = −kBT lnΔN (2.3.24)

where the isothermal–isobaric partition function ΔN is generally written5 as a Laplace
transform of the canonical partition function:

ΔN = βP

h3NN !
∫ ∞

0
dV
∫∫

exp
[−β(H+ PV )

]
drN dpN

= βP

∫ ∞

0
exp(−βPV )QN dV (2.3.25)

The factor βP (or some other constant with the dimensions of an inverse volume) is in-
cluded to make ΔN dimensionless. The form of (2.3.25) implies that the process of form-
ing the ensemble average involves first calculating the canonical-ensemble average at a
volume V and then averaging over V with a weight factor exp(−βPV ).

2.4 THE GRAND CANONICAL ENSEMBLE

The discussion of ensembles has thus far been restricted to uniform systems containing a
fixed number of particles (“closed” systems). We now extend the argument to the situation
where the number of particles may vary by interchange with the surroundings, but retain the
assumption that the system is homogeneous. The thermodynamic state of an “open” system
is defined by specifying the values of μ, V and T and the corresponding thermodynamic
potential is the grand potential, Ω , defined in terms of the Helmholtz free energy by

Ω = F − Nμ (2.4.1)

When the internal energy is given by (2.3.6), the grand potential reduces to

Ω = −PV (2.4.2)

and the differential form of (2.4.1) is

dΩ = −S dT − P dV − N dμ (2.4.3)

The thermodynamic functions S, P and N are therefore given as derivatives of Ω by

S = −
(
∂Ω

∂T

)
V,μ

, P = −
(
∂Ω

∂V

)
T ,μ

, N = −
(
∂Ω

∂μ

)
T ,V

(2.4.4)

An ensemble of systems having the same values of μ, V and T is called a grand canon-
ical ensemble. The phase space of the grand canonical ensemble is the union of phase
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spaces corresponding to all values of the variable N , and the constancy of T and μ is en-
sured by supposing that the systems of the ensemble are allowed to come to equilibrium
with a reservoir with which they can exchange both heat and matter. The ensemble prob-
ability density is now a function of N as well as of the phase-space variables rN , pN ; at
equilibrium it takes the form

f0
(
rN,pN ;N)= exp[−β(H− Nμ)]

Ξ
(2.4.5)

where

Ξ =
∞∑

N=0

exp(Nβμ)

h3NN !
∫∫

exp(−βH)drNdpN =
∞∑

N=0

zN

N !ZN (2.4.6)

is the grand partition function and

z = exp(βμ)

Λ3
(2.4.7)

is the activity. The definition (2.4.5) means that f0 is normalised such that

∞∑
N=0

1

h3NN !
∫∫

f0
(
rN,pN ;N)drNdpN = 1 (2.4.8)

and the ensemble average of a microscopic variable B(rN,pN) is

〈B〉 =
∞∑

N=0

1

h3NN !
∫∫

B
(
rN,pN

)
f0
(
rN,pN ;N)drNdpN (2.4.9)

The link with thermodynamics is established through the relation

Ω = −kBT lnΞ (2.4.10)

Equation (2.3.17) shows that z = ρ for a uniform, ideal gas and in that case (2.4.6) reduces
to

Ξ id =
∞∑

N=0

ρNV N

N ! = exp(ρV ) (2.4.11)

which, together with (2.4.2), yields the equation of state in the form βP = ρ.
The probability, p(N), that at equilibrium a system of the ensemble contains precisely

N particles irrespective of their coordinates and momenta is

p(N) = 1

h3NN !
∫∫

f0 drN dpN = 1

Ξ

zN

N !ZN (2.4.12)
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The average number of particles in the system is

〈N〉 =
∞∑

N=0

Np(N) = 1

Ξ

∞∑
N=0

N
zN

N !ZN = ∂ lnΞ

∂ ln z
(2.4.13)

which is equivalent to the last of the thermodynamic relations (2.4.4). A measure of the
fluctuation in particle number about its average value is provided by the mean-square de-
viation, for which an expression is obtained if (2.4.13) is differentiated with respect to ln z:

∂〈N〉
∂ ln z

= z
∂

∂z

(
1

Ξ

∞∑
N=0

N
zN

N !ZN

)

= 1

Ξ

∞∑
N=0

N2 z
N

N !ZN −
(

1

Ξ

∞∑
N=0

N
zN

N !ZN

)2

= 〈N2〉− 〈N〉2 ≡ 〈(ΔN)2〉 (2.4.14)

or, equivalently:

〈(ΔN)2〉
〈N〉 = kBT

〈N〉
∂〈N〉
∂μ

(2.4.15)

The right-hand side of this equation is an intensive quantity and the same must therefore be
true of the left-hand side. Hence the relative root-mean-square deviation, 〈(ΔN)2〉1/2/〈N〉,
tends to zero as 〈N〉 → ∞. In the thermodynamic limit, i.e. the limit 〈N〉 → ∞, V →
∞ with ρ = 〈N〉/V held constant, the number of particles in the system of interest (the
thermodynamic variable N ) may be identified with the grand canonical average, 〈N〉. In the
same limit thermodynamic properties calculated in different ensembles become identical.

The intensive ratio (2.4.15) is related to the isothermal compressibility χT , defined as

χT = − 1

V

(
∂V

∂P

)
T

(2.4.16)

To show this we note first that because the Helmholtz free energy is an extensive property
it must be expressible in the form

F = Nφ(ρ,T ) (2.4.17)

where φ, the free energy per particle, is a function of the intensive variables ρ and T .
From (2.3.8) we find that

μ = φ + ρ

(
∂φ

∂ρ

)
T

(2.4.18)

(
∂μ

∂ρ

)
T

= 2

(
∂φ

∂ρ

)
T

+ ρ

(
∂2φ

∂ρ2

)
T

(2.4.19)
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and

P = ρ2
(
∂φ

∂ρ

)
T

(2.4.20)

(
∂P

∂ρ

)
T

= 2ρ

(
∂φ

∂ρ

)
T

+ ρ2
(
∂2φ

∂ρ2

)
T

= ρ

(
∂μ

∂ρ

)
T

(2.4.21)

Because (∂P/∂ρ)T = −(V 2/N)(∂P/∂V )N,T = 1/ρχT and (∂μ/∂ρ)T = V (∂μ/∂N)V,T

it follows that

N

(
∂μ

∂N

)
V,T

= 1

ρχT

(2.4.22)

and hence, from (2.4.15):

〈(ΔN)2〉
〈N〉 = ρkBT χT (2.4.23)

Thus the compressibility cannot be negative, since 〈N2〉 is always greater than or equal
to 〈N〉2.

Equation (2.4.23) and other fluctuation formulae of similar type can also be derived by
purely thermodynamic arguments. In the thermodynamic theory of fluctuations described
in Appendix A, the quantity N in (2.4.23) is interpreted as the number of particles in a
subsystem of macroscopic dimensions that forms part of a much larger thermodynamic
system. If the system as a whole is isolated from its surroundings, the probability of a fluc-
tuation within the subsystem is proportional to exp(ΔSt/kB), where ΔSt is the total entropy
change resulting from the fluctuation. Since ΔSt can in turn be related to changes in the
properties of the subsystem, it becomes possible to calculate the mean-square fluctuations
in those properties; the results thereby obtained are identical to their statistical-mechanical
counterparts. Because the subsystems are of macroscopic size, fluctuations in neighbouring
subsystems will in general be uncorrelated. Strong correlations can, however, be expected
under certain conditions. In particular, number fluctuations in two infinitesimal volume el-
ements will be highly correlated if the separation of the elements is comparable with the
range of the interparticle forces. A quantitative measure of these correlations is provided
by the equilibrium distribution functions introduced below in Sections 2.5 and 2.6.

The definitions (2.3.1) and (2.4.5), together with (2.4.12), show that the equilibrium
canonical and grand canonical ensemble probability densities are related by

1

h3NN !f0
(
rN,pN ;N)= p(N)f

[N ]
0

(
rN,pN

)
(2.4.24)

The grand canonical ensemble average of any microscopic variable is therefore given by a
weighted sum of averages of the same variable in the canonical ensemble, the weighting
factor being the probability p(N) that the system contains precisely N particles.

In addition to its significance as a fixed parameter of the grand canonical ensemble,
the chemical potential can also be expressed as a canonical ensemble average. This re-
sult, due to Widom,6 provides some useful insight into the meaning of chemical potential.
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From (2.3.8) and (2.3.20) we see that

μex = F ex(N + 1,V ,T ) − F ex(N,V,T ) = kBT ln
VZN

ZN+1
(2.4.25)

or
VZN

ZN+1
= exp

(
βμex) (2.4.26)

where ZN , ZN+1 are the configuration integrals for systems containing N or (N + 1)
particles, respectively. The ratio ZN+1/ZN is

ZN+1

ZN

=
∫

exp[−βVN+1(rN+1)]drN+1∫
exp[−βVN(rN)]drN

(2.4.27)

If the total potential energy of the system of (N + 1) particles is written as

VN+1
(
rN+1)= VN

(
rN
)+ ε (2.4.28)

where ε is the energy of interaction of particle (N + 1) with all others, (2.4.27) can be
re-expressed as

ZN+1

ZN

=
∫

exp(−βε) exp[−βVN(rN)]drN+1∫
exp[−βVN(rN)]drN

(2.4.29)

If the system is homogeneous, translational invariance allows us to take rN+1 as ori-
gin for the remaining N position vectors and integrate over rN+1; this yields a factor V

and (2.4.29) becomes

ZN+1

ZN

= V
∫

exp(−βε) exp(−βVN)drN∫
exp(−βVN)drN

= V
〈
exp(−βε)

〉
(2.4.30)

where the angular brackets denote a canonical ensemble average for the system of N par-
ticles. Substitution of (2.4.30) in (2.4.25) gives

μex = −kBT ln
〈
exp(−βε)

〉
(2.4.31)

Hence the excess chemical potential is proportional to the logarithm of the mean Boltz-
mann factor of a test particle introduced randomly into the system.

Equation (2.4.31) has a particularly simple interpretation for a system of hard spheres.
Insertion of a test hard sphere can have one of two possible outcomes: either the sphere
that is added overlaps with one or more of the spheres already present, in which case ε is
infinite and the Boltzmann factor in (2.4.31) is zero, or there is no overlap, in which case
ε = 0 and the Boltzmann factor is unity. The excess chemical potential may therefore be
written as

μex = −kBT lnp0 (2.4.32)
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where p0 is the probability that a hard sphere can be introduced at a randomly chosen point
in the system without creating an overlap.

2.5 PARTICLE DENSITIES AND DISTRIBUTION FUNCTIONS

It was shown in Section 2.3 that a factorisation of the equilibrium phase-space probability
density into kinetic and potential terms leads naturally to a separation of thermodynamic
properties into ideal and excess parts. A similar factorisation can be made of the reduced
phase-space distribution functions f

(n)
0 defined in Section 2.1. We assume again that there

is no external-field contribution to the hamiltonian and hence that H = KN + VN , where
KN is a sum of independent terms. For a system of fixed N , V and T , f [N ]

0 is given by
the canonical distribution (2.3.1). If we recall from Section 2.3 that integration over each
component of momentum yields a factor (2πmkBT )1/2, we see that f (n)

0 can be written as

f
(n)
0

(
rn,pn

)= ρ
(n)
N

(
rn
)
f

(n)
M

(
pn
)

(2.5.1)

where

f
(n)
M

(
pn
)= 1

(2πmkBT )3n/2
exp

(
−β

n∑
i=1

|pi |2
2m

)
(2.5.2)

is the product of n independent Maxwell distributions of the form defined by (2.1.26) and
ρ
(n)
N , the equilibrium n-particle density is

ρ
(n)
N

(
rn
) = N !

(N − n)!
1

h3NN !QN

∫∫
exp(−βH)dr(N−n) dpN

= N !
(N − n)!

1

ZN

∫
exp(−βVN)dr(N−n) (2.5.3)

The quantity ρ
(n)
N (rn)drn yields the probability of finding n particles of the system with

coordinates in the volume element drn, irrespective of the positions of the remaining par-
ticles and irrespective of all momenta. The particle densities and the closely related, equi-
librium particle distribution functions, defined below, provide a complete description of
the structure of a fluid, while knowledge of the low-order particle distribution functions,
in particular of the pair density ρ

(2)
N (r1, r2), is often sufficient to calculate the equation of

state and other thermodynamic properties of the system.
The definition of the n-particle density means that∫

ρ
(n)
N

(
rn
)

drn = N !
(N − n)! (2.5.4)

Thus ∫
ρ
(1)
N (r)dr = N (2.5.5)
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The single-particle density of a uniform fluid is therefore equal to the overall number den-
sity:

ρ
(1)
N (r) = N/V = ρ (uniform fluid) (2.5.6)

In the special case of a uniform, ideal gas we know from (2.3.14) that ZN = V N . Hence
the pair density is

ρ
(2)
N = ρ2

(
1 − 1

N

)
(ideal gas) (2.5.7)

The appearance of the term 1/N in (2.5.7) reflects the fact that in a system containing a
fixed number of particles the probability of finding a particle in the volume element dr1,
given that another particle is in the element dr2, is proportional to (N −1)/V rather than ρ.

The n-particle distribution function g
(n)
N (rn) is defined in terms of the corresponding

particle densities by

g
(n)
N

(
rn
)= ρ

(n)
N (r1, . . . , rn)∏n

i=1 ρ
(1)
N (ri )

(2.5.8)

which for a homogeneous system reduces to

ρng
(n)
N

(
rn
)= ρ

(n)
N

(
rn
)

(2.5.9)

The particle distribution functions measure the extent to which the structure of a fluid
deviates from complete randomness. If the system is also isotropic, the pair distribution
function g

(2)
N (r1, r2) is a function only of the separation r12 = |r2 − r1|; it is then usually

called the radial distribution function and written simply as g(r). When r is much larger
than the range of the interparticle potential, the radial distribution function approaches the
ideal-gas limit; from (2.5.7) this limit can be identified as (1 − 1/N) ≈ 1.

The particle densities defined by (2.5.3) are also expressible in terms of δ-functions
of position in a form that is very convenient for later purposes. From the definition of a
δ-function it follows that

〈
δ(r − r1)

〉 = 1

ZN

∫
δ(r − r1) exp

[−βVN(r1, r2, . . . , rN)
]

drN

= 1

ZN

∫
· · ·
∫

exp
[−βVN(r, r2, . . . , rN)

]
dr2 · · ·drN (2.5.10)

The ensemble average in (2.5.10) is a function of the coordinate r but is independent of
the particle label (here taken to be 1). A sum over all particle labels is therefore equal to N

times the contribution from any one particle. Comparison with the definition (2.5.3) then
shows that

ρ
(1)
N (r) =

〈
N∑
i=1

δ(r − ri )

〉
(2.5.11)
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which represents the ensemble average of a microscopic particle density ρ(r). Similarly,
the average of a product of two δ-functions is

〈
δ(r − r1)δ(r′ − r2)

〉 = 1

ZN

∫
δ(r − r1)δ(r′ − r2) exp

[−βVN(r1, r2, . . . , rN)
]

drN

= 1

ZN

∫
· · ·
∫

exp
[−βVN(r, r′, r3, . . . , rN)

]
dr3 · · ·drN (2.5.12)

which implies that

ρ
(2)
N (r, r′) =

〈
N∑
i=1

N∑
j=1

′
δ(r − ri )δ(r′ − rj )

〉
(2.5.13)

where the prime on the summation sign indicates that terms for which i = j must be omit-
ted. Finally, a useful δ-function representation can be obtained for the radial distribution
function. It follows straightforwardly that〈

1

N

N∑
i=1

N∑
j=1

′
δ(r − rj + ri )

〉
=
〈

1

N

∫ N∑
i=1

N∑
j=1

′
δ(r′ + r − rj )δ(r′ − ri )dr′

〉

= 1

N

∫
ρ
(2)
N (r′ + r, r′)dr′ (2.5.14)

Hence, if the system is both homogeneous and isotropic:〈
1

N

N∑
i=1

N∑
j=1

′
δ(r − rj + ri )

〉
= ρ2

N

∫
g
(2)
N (r, r′)dr′ = ρg(r) (2.5.15)

The radial distribution function plays a key role in the physics of monatomic liquids.
There are several reasons for this. First, g(r) is measurable by radiation-scattering ex-
periments. The results of such an experiment on liquid argon are pictured in Figure 2.1;
g(r) shows a pattern of peaks and troughs that is characteristic of all monatomic liquids,
tends to unity at large r , and vanishes as r → 0 as a consequence of the strongly re-
pulsive forces that act at small particle separations. Secondly, the form of g(r) provides
considerable insight into what is meant by the structure of a liquid, at least at the level
of pair correlations. The definition of g(r) implies that on average the number of parti-
cles lying within the range r to r + dr from a reference particle is 4πr2ρg(r)dr and the
peaks in g(r) represent “shells” of neighbours around the reference particle. Integration of
4πr2ρg(r) up to the position of the first minimum therefore provides an estimate of the
nearest-neighbour “coordination number”. The concepts of a “shell” of neighbours and a
“coordination number” are obviously more appropriate to solids than to liquids, but they
provide useful measures of the structure of a liquid provided the analogy with solids is
not taken too far. The coordination number (≈ 12.2) calculated from the distribution func-
tion shown in the figure is in fact very close to the number (12) of nearest neighbours in
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FIG. 2.1. Results of neutron-scattering experiments for the radial distribution function of liquid argon near the
triple point. The ripples at small r are artefacts of the data analysis. After Yarnell et al.7

the face-centred cubic structure into which argon crystallises. Finally, if the atoms interact
through pairwise-additive forces, thermodynamic properties can be expressed in terms of
integrals over g(r), as we shall now show.

Consider a uniform fluid for which the total potential energy is given by a sum of pair
terms:

VN

(
rN
)= N∑

i=1

N∑
j>i

v(rij ) (2.5.16)

According to (2.3.22) the excess internal energy is

U ex = N(N − 1)

2

∫∫
v(r12)

(
1

ZN

∫
· · ·
∫

exp(−βVN)dr3 · · ·drN

)
dr1 dr2 (2.5.17)

because the double sum over i, j in (2.5.16) gives rise to N(N −1)/2 terms, each of which
leads to the same result after integration. Use of (2.5.3) and (2.5.9) allows (2.5.17) to be
rewritten as

U ex = N2

2V 2

∫∫
v(r12)g

(2)
N (r1, r2)dr1 dr2 (2.5.18)

We can now take the position of particle 1 as the origin of coordinates, set r12 = r2 − r1,
and integrate over the coordinate r1 (which yields a factor V ) to give

U ex = N2

2V 2

∫∫
v(r12)g(r21)dr1 dr12 = N2

2V

∫
v(r)g(r)dr (2.5.19)

or

U ex

N
= 2πρ

∫ ∞

0
v(r)g(r)r2 dr (2.5.20)
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This result, usually referred to as the energy equation, can also be derived in a more in-
tuitive way. The mean number of particles at a distance between r and r + dr from a
reference particle is n(r)dr = 4πr2ρg(r)dr and the total energy of interaction with the
reference particle is v(r)n(r)dr . The excess internal energy per particle is then obtained
by integrating v(r)n(r) between r = 0 and r = ∞ and dividing the result by two to avoid
counting each interaction twice.

It is also possible to express the equation of state (2.2.10) as an integral over g(r). Given
the assumption of pairwise additivity of the interparticle forces, the internal contribution to
the virial function can be written, with the help of Newton’s Third Law, as

Vint =
N∑
i=1

N∑
j>i

ri · Fij = −
N∑
i=1

N∑
j>i

rij v
′(rij ) (2.5.21)

where v′(r) ≡ dv(r)/dr . Then, starting from (2.2.10) and following the steps involved in
the derivation of (2.5.20) but with v(rij ) replaced by rij v

′(rij ), we find that

βP

ρ
= 1 − 2πβρ

3

∫ ∞

0
v′(r)g(r)r3 dr (2.5.22)

Equation (2.5.22) is called either the pressure equation or, in common with (2.2.10), the
virial equation.

Equations (2.5.20) and (2.5.22) are superficially simpler in form than (2.3.22) and
(2.2.10), but the difficulty has merely shifted to that of determining the radial distribution
function from the pair potential via (2.5.3) and (2.5.8). The problem is yet more compli-
cated if there are many-body forces acting between particles or if the pair potential is not
spherically symmetric. The presence of three-body forces, for example, leads to the ap-
pearance in expressions for the internal energy and pressure of integrals over the triplet
distribution function g

(3)
N (r1, r2, r3). We shall not pursue this matter further, since no new

point of principle is involved, but the generalisation to systems of non-spherical particles
is treated in detail in Chapter 11.

Because the pressure equation involves the derivative of the pair potential, it is not di-
rectly applicable in the calculation of the equation of state of hard spheres, or of other
systems for which the pair potential contains a discontinuity. The problem can be over-
come by rewriting (2.5.22) in terms of a function y(r) defined as

y(r) = exp
[
βv(r)

]
g(r) (2.5.23)

We show in Chapter 4 that y(r) is a continuous function of r even when there are disconti-
nuities in v(r) and hence in g(r); y(r) is called the cavity distribution function for reasons
that will become clear in Section 4.6. On introducing the definition of y(r) into (2.5.22)
we find that

βP

ρ
= 1 − 2πβρ

3

∫ ∞

0
v′(r)e(r)y(r)r3 dr

= 1 + 2πρ

3

∫ ∞

0
e′(r)y(r)r3 dr (2.5.24)
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where

e(r) = exp
[−βv(r)

]
(2.5.25)

is the Boltzmann factor for a pair of particles separated by a distance r and e′(r) ≡
de(r)/dr . In the case of hard spheres, e(r) is a unit step function, the derivative of which
is a δ-function, i.e. e(r) = 0 for r < d , e(r) = 1 for r > d and e′(r) = δ(r − d), where d is
the hard-sphere diameter. Thus

βP

ρ
= 1 + 2πρ

3

∫ ∞

0
r3y(r)δ(r − d)dr

= 1 + 2πρ

3
lim

r→d+ r3y(r) = 1 + 2πρ

3
d3g(d) (2.5.26)

The pressure of the hard-sphere fluid is therefore determined by the value of the radial
distribution function at contact, where g(r) goes discontinuously to zero. We show in the
next section that g(r) ≈ e(r), and hence that g(d) → 1, in the limit ρ → 0. Thus, at low
densities, βP/ρ ≈ 1 + 2πρd3/3; this expression represents the first two terms in the virial
expansion of the equation of state in powers of the density, which we derive in a systematic
way in Section 3.9.

The contact value of g(r) also appears in the theory of transport processes in gases.
Elementary kinetic theory8 shows that at low densities the mean time between collisions
suffered by a given particle is λ/ū, where ū = (8kBT/πm)1/2 is the mean speed appropri-
ate to a Maxwell distribution of momenta and λ is the mean free path. If the gas particles
are treated as hard spheres of diameter d , the mean free path is λ = 1/

√
2πρd2. Thus

the collision rate in the dilute gas is Γ0 = ū/λ = 4ρd2(πkBT/m)1/2. The collision rate
at higher densities is enhanced by the interactions between particles. Since the “forces”
between hard spheres act only at collisions, the collision rate is proportional to the non-
ideal contribution to the pressure, as given by the hard-sphere equation of state (2.5.26).
It follows that ΓE = g(d)Γ0 where ΓE, the collision rate in the dense gas, is the quantity
that arises in the Enskog theory discussed in Section 2.1. This enhancement of the collision
rate leads to a corresponding reduction in the self-diffusion coefficient relative to the value
obtained from the Boltzmann equation by a factor 1/g(d).

2.6 PARTICLE DENSITIES IN THE GRAND CANONICAL ENSEMBLE

The fact that in the canonical ensemble the pair distribution function behaves asymptoti-
cally as (1 − 1/N) rather than tending strictly to unity is often irrelevant since the term of
order N−1 vanishes in the thermodynamic limit. On the other hand, if a term of that order
is integrated over the volume of the system, a result of order V/N is obtained, which usu-
ally cannot be ignored. The difficulties that this situation sometimes creates can be avoided
by working in the grand canonical ensemble. As we shall see in later chapters, the grand
canonical ensemble also provides a convenient framework for the derivation of density ex-
pansions of the particle distribution functions and, more generally, for the development of
the theory of inhomogeneous fluids.
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In the grand canonical ensemble the n-particle density is defined in terms of its canonical
ensemble counterparts as the sum

ρ(n)
(
rn
) =

∞∑
N�n

p(N)ρ
(n)
N

(
rn
)

= 1

Ξ

∞∑
N=n

zN

(N − n)!
∫

exp(−βVN)dr(N−n) (2.6.1)

where p(N) is the probability (2.4.12). Integration of (2.6.1) over the coordinates
r1, . . . , rn shows that ρ(n) is normalised such that∫

ρ(n)
(
rn
)

drn =
〈

N !
(N − n)!

〉
(2.6.2)

In particular: ∫
ρ(1) dr = 〈N〉 (2.6.3)

and ∫∫
ρ(2)(r1, r2)dr1 dr2 = 〈N2〉− 〈N〉 (2.6.4)

Equation (2.6.3) confirms that the single-particle density in a homogeneous system is

ρ(1) = 〈N〉/V ≡ ρ (uniform fluid) (2.6.5)

We know from Section 2.4 that for a homogeneous, ideal gas the activity z is equal to ρ,
while the integral in (2.6.1) is equal to V (N−n). Hence the particle densities of the ideal gas
are

ρ(n) = ρn (ideal gas) (2.6.6)

The relation between the grand canonical n-particle density and the corresponding dis-
tribution function is the same as in the canonical ensemble, i.e.

g(n)
(
rn
)= ρ(n)(r1, . . . , rn)∏n

i=1 ρ
(1)(ri )

(2.6.7)

or ρ(n)(rn) = ρng(n)(rn) if the system is homogeneous, but now g(n)(rn) → 1 for all n as
the mutual separations of all pairs of particles becomes sufficiently large. In particular, the
pair correlation function, defined as

h(2)(r1, r2) = g(2)(r1, r2) − 1 (2.6.8)
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vanishes in the limit |r2 −r1| → ∞. If we insert the definition (2.6.1) into (2.6.7) we obtain
an expansion of the n-particle distribution function of a uniform fluid as a power series in z,
which starts as

Ξ

(
ρ

z

)n

g(n)
(
rn
)= exp

[−βVn

(
rn
)]+O(z) (2.6.9)

The first term on the right-hand side is the one corresponding to the case N = n in (2.6.1).
As ρ → 0, it follows from earlier definitions that z → 0, ρ/z → 1 and Ξ → 1. Hence,
taking n = 2, we find that the low-density limit of the radial distribution function is equal
to the Boltzmann factor of the pair potential:

lim
ρ→0

g(r) = exp
[−βv(r)

]
(2.6.10)

The δ-function representations of ρ
(1)
N (r), ρ(2)

N (r, r′) and g(r) provided by (2.5.11),
(2.5.13) and (2.5.15), respectively, are also valid (without the subscript N ) in the grand
canonical ensemble, as are the energy and pressure equations, (2.5.20) and (2.5.22). On
the other hand, the compressibility equation, which expresses χT as an integral over g(r),
can be derived only in the grand canonical ensemble because the compressibility is related
to fluctuations in an open system via (2.4.23). The normalisations (2.6.3) and (2.6.4) show
that ∫∫ [

ρ(2)(r1, r2) − ρ(1)(r1)ρ
(1)(r2)

]
dr1 dr2 = 〈N2〉− 〈N〉 − 〈N〉2 (2.6.11)

In the homogeneous case it follows immediately that

1 + ρ

∫ [
g(r) − 1

]
dr = 〈N2〉 − 〈N〉2

〈N〉 = ρkBT χT (2.6.12)

Unlike the energy and pressure equations, the applicability of this relation does not rely
on the assumption of pairwise additivity of the interparticle forces. For an ideal gas in the
grand canonical ensemble, g(r) = 1 for all r ; it follows from (2.6.12) that χ id

T = β/ρ, in
agreement with the result obtained by differentiation of the ideal-gas equation of state.

2.7 COMPUTER SIMULATION: MOLECULAR DYNAMICS
AND MONTE CARLO

As we briefly mentioned at the end of Chapter 1, the behaviour of liquids, solids and dense
gases at the microscopic level can be simulated in one of two ways: by the method of
molecular dynamics or by the Monte Carlo method. The importance of computer simula-
tion from the standpoint of liquid-state theory is the fact that it provides essentially exact,
quasi-experimental data on well-defined models, particularly on those that are prototypical
models of simple liquids. In this section we give a brief account of how classical computer
simulations are carried out. Excellent books exist that provide much fuller descriptions of
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the principles underlying the large variety of techniques that are now available and of the
computer codes needed for their implementation.9

We begin by considering the method of molecular dynamics. In a conventional
molecular-dynamics simulation of a bulk fluid a system of N particles is allocated a set of
initial coordinates within a cell of fixed volume, most commonly a cube. A set of velocities
is also assigned, usually drawn from a Maxwell distribution appropriate to the temperature
of interest and selected in such a way that the net linear momentum of the system is zero.
The subsequent calculation tracks the motion of the particles through space by integration
of the classical equations of motion, and equilibrium properties are obtained as time av-
erages over the dynamical history of the system in the manner outlined in Section 2.2. In
modern work N is typically of order 103 or 104, though much larger systems have occa-
sionally been studied. To minimise surface effects, and thereby simulate more closely the
behaviour expected of a macroscopic system, it is customary to use a periodic boundary
condition. The way in which the periodic boundary condition is applied is illustrated for
the two-dimensional case in Figure 2.2. The system as a whole is divided into cells. Each
cell is surrounded on all sides by periodic images of itself and particles that are images
of each other have the same relative positions within their respective cells and the same
momenta. When a particle enters or leaves a cell, the move is balanced by an image of
that particle leaving or entering through the opposite edge. A key question is whether the
properties of an infinite, periodic fluid with a unit cell containing, typically, of order 103

particles are representative of the properties of the macroscopic system that the calculation
is designed to simulate. There is no easy or general answer to this, but broadly speaking it
appears that bulk properties are only weakly dependent on sample size beyond N ≈ 500,
and that the remaining errors, relative to the N → ∞ limit, are no larger than the inevitable
statistical uncertainties. Nonetheless, the restriction on sample size does have some draw-
backs. For example, it is impossible to study collective, spatial fluctuations of wavelength
greater than L, the length of the cell. Use of a periodic boundary condition also has an
effect on time correlations. In a molecular-dynamics simulation a local disturbance will

FIG. 2.2. Periodic boundary condition used in computer simulations. The circle represents the truncation sphere
drawn around a black particle in the central cell. See text for details.
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move through the periodic system and reappear at the same place, albeit in attenuated
form, after a recurrence time of order L/c, where c is a speed of propagation that can
be roughly equated to the speed of sound. The effects of periodicity will manifest them-
selves in spurious contributions to time correlations calculated over time intervals greater
than this. Another difficulty, which is particularly acute for small samples, is the so-called
quasi-ergodic problem. In the context of a computer simulation the term refers to the possi-
bility that the system may become trapped in some region of phase space. Near the melting
temperature, for example, an initial, lattice-type arrangement of particles may persist for
very long times unless the density is appreciably less than the freezing density of the fluid.
Whatever the starting conditions, time must be allowed for the system to equilibrate be-
fore the “production” stage of the calculation begins, while throughout the simulation it is
important to monitor the properties of the system in such a way as to detect any tendency
towards a long-time drift.

The interactions between particles can be of any form but in the great majority of cases
they are assumed to be pairwise additive. For economy in computing time it is customary
to truncate the interaction at a separation rc � 1

2L, where the cut-off radius rc is typically a
few particle diameters. When a truncation sphere is used, the interaction of a particle with
its neighbours is calculated with a “nearest-neighbour” convention. The principle of this
convention is illustrated in Figure 2.3: a particle i lying within a given cell is assumed to
interact only with the nearest image of any other particle j (including j itself), the inter-
action being set equal to zero if the distance from the nearest image is greater than rc. The
significance of the restriction that rc must be not greater than 1

2L is that there is at most one
image of j (including j itself) lying with a sphere of radius 1

2L centred on i. Use of such a
cut-off is inappropriate when the interparticle forces are long ranged, particularly for ionic
systems, since there is not even a guarantee that the truncation sphere will be electrically
neutral. One way to overcome this difficulty is to calculate the coulombic interaction of a
particle not only with all other particle in the same cell but with all images in other cells.
An infinite lattice sum of this type can be evaluated by the method of Ewald, the essence
of which is to convert the slowly convergent sum in r−1 into two series that are separately
rapidly convergent. One series is a sum in real space of a short-range potential that may
safely be truncated, and the other is a sum over reciprocal-lattice vectors of the periodic
array of cells. Strongly polar systems also require special treatment.

The earliest applications of the molecular-dynamics method were those of Alder and
Wainwright10 to systems of hard spheres and other hard-core particles. A feature of hard-
sphere dynamics is that the velocities of the particles change only as the result of colli-
sions; between collisions, the particles move in straight lines at constant speeds. The time-
evolution of a many-particle, hard-sphere system may therefore be treated as a sequence
of strictly binary, elastic collisions. Thus the algorithm for calculation of the trajectories
consists of first advancing the coordinates of all particles until such a time as a collision
occurs somewhere in the system, and then of exploiting the fact that both energy and mo-
mentum must be conserved to calculate the changes in velocities of the colliding particles.
Since that calculation is exact, the trajectories of the particles can be computed with a
precision limited only by round-off errors. The instantaneous temperature of the system
remains constant because the total kinetic energy is conserved.
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When the potentials are continuous, the trajectories of the particles, unlike those of hard
spheres, can no longer be calculated exactly. In the case of spherically-symmetric potentials
the equations of motion are the 3N coupled, second-order differential equations (2.2.1).
These equations must be solved numerically by finite-difference methods, which leads un-
avoidably to errors in the particle trajectories. One of the simplest but also most successful
algorithms is that first used by Verlet11 in studies of the properties of the Lennard-Jones
fluid. Let the coordinates of particle i at time t be ri (t). The coordinates at times t ± Δt

are given by Taylor expansions forwards and backwards in time around ri (t):

ri (t ± Δt) = ri (t) ± Δt ṙi (t) + Δt2

2! r̈i (t) ±O
(
Δt3) (2.7.1)

By adding together the two expansions in (2.7.1), we obtain an estimate for the particle
coordinates at time t + Δt :

ri (t + Δt) ≈ −ri (t − Δt) + 2ri (t) + Δt2

m
Fi (t) (2.7.2)

where Fi (t) is the total force acting on particle i at time t . The error in the predicted
coordinates is of order Δt4. If we subtract the two expansions in (2.7.1), we obtain an
estimate of the velocity of particle i at time t :

ṙi (t) ≈ 1

2Δt

[
ri (t + Δt) − ri (t − Δt)

]
(2.7.3)

The error now is of order Δt2, but velocities play no part in the integration scheme and the
particle trajectories are therefore unaffected. In one of a number of variants of the Verlet
algorithm, the “velocity” version, the predicted coordinates are obtained solely from the
forward expansion in (2.7.1), i.e.

ri (t + Δt) ≈ ri (t) + Δt ṙi (t) + 1
2Δt2r̈i (t) (2.7.4)

and the velocity is calculated as

ṙi (t + Δt) ≈ ṙi (t) + 1
2Δt

[
r̈i (t + Δt) + r̈i (t)

]
(2.7.5)

Taken together, (2.7.4) and (2.7.5) are equivalent to (2.7.2). In other words, the particle
trajectories in configuration space are identical in the two versions of the algorithm, but
different estimates are obtained for the velocities.

Although simple in form, the original Verlet algorithm and its modifications are at least
as satisfactory as higher-order schemes that make use of derivatives of the particle coordi-
nates beyond r̈i (t). It may be less accurate than others at short times but, more importantly,
it conserves energy well even over very long times; it is also time reversible, as it should
be for consistency with the equations of motion. Some understanding of the reasons for the
stability of the algorithm can be obtained in the following way.12
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The true dynamics of a system of particles is described by the action of the operator
exp(iLt) on the phase-space coordinates rN , pN . Let the time interval t be divided into P

equal intervals of length Δt . Then

exp(iLt) = [exp(iLΔt)
]P (2.7.6)

If the Liouville operator is divided in the from

iL= iLr + iLp (2.7.7)

where

iLr ≡
N∑
i=1

ṙi · ∂

∂ri
, iLp =

N∑
i=1

Fi · ∂

∂pi

(2.7.8)

and if Δt is sufficiently small, use of the so-called Trotter expansion allows the operator
exp(iLΔt) to be written as

exp(iLΔt) ≈ exp
(
i 1

2LpΔt
)

exp(iLrΔt) exp
(
i 1

2LpΔt
)

(2.7.9)

This relationship is only approximate, since the operators Lr and Lp do not commute; the
error involved is of order Δt3. The action of an exponential operator of the type appearing
in (2.7.9) is

exp

(
a

∂

∂x

)
f (x) ≡ 1 + a

∂f

∂x
+ a2

2!
∂2f

∂x2
+ · · · = f (x + a) (2.7.10)

The effect of operating with exp(iLrΔt) or exp(iLpΔt) on rN , pN is therefore to displace
the position or momentum, respectively, of each particle according to the rules

ri → ri + Δt ṙi = ri + (Δt/m)pi , pi → pi + Δt ṗi = pi + ΔtFi (2.7.11)

The three operations involved in (2.7.9) may be regarded as successive steps in a sim-
ple predictor–corrector scheme. The first step yields an estimate of the momentum of the
particle at time t + Δt/2:

pi (t + Δt/2) = pi (t) + 1
2Δt ṗi (t) = pi (t) + 1

2ΔtFi (t) (2.7.12)

In the second step this estimate of the momentum is used to predict the coordinates of the
particle at time t + Δt :

ri (t + Δt) = ri (t) + (Δt/m)pi (t + Δt/2)

= ri (t) + Δt ṙi (t) + (Δt2/2m
)
Fi (t) (2.7.13)
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Finally, an improved estimate is obtained for the momentum, based on the value of the
force acting on the particle at its predicted position:

pi (t + Δt) = pi (t + Δt/2) + 1
2Δt ṗi (t + Δt)

= pi (t) + 1
2Δt

[
Fi (t) + Fi (t + Δt)

]
(2.7.14)

The results obtained in this way for ri (t +Δt), pi (t +Δt) are precisely those that appear in
the velocity version of the Verlet algorithm, (2.7.4) and (2.7.5). Although it is remarkable
that a practical and widely used algorithm can be derived from a well-defined approxima-
tion for the propagator exp(iLt), the greater significance of this analysis is its demonstra-
tion that not only is the Verlet algorithm time reversible but it also conserves volume in
phase space in the sense of Section 2.1. Time reversibility follows from the fact that each
of the steps implied in the use of (2.7.9) is separately time reversible. Similarly, for each
step, the transformation of phase-space coordinates has a jacobian equal to unity. Thus the
algorithm preserves the two key features of hamiltonian dynamics, which is almost cer-
tainly the reason why it is numerically so stable. Other time-reversible algorithms can be
derived by dividing the Liouville operator in ways different from that adopted in (2.7.9).

A molecular-dynamics calculation is organised as a loop over time. At each step, the
time is incremented by Δt , the total force acting on each particle is computed and the par-
ticles are advanced to their new positions. In the early stages of the simulation it is normal
for the temperature to move away from the value at which it was set and some occasional
rescaling of particle velocities is therefore needed. Once equilibrium is reached, the sys-
tem is allowed to evolve undisturbed, with both potential and kinetic energies fluctuating
around steady, mean values; the temperature of the system is calculated from the time-
averaged kinetic energy, as in (2.2.4). The choice of time step Δt is made on the basis of
how well total energy is conserved. In the case of a model of liquid argon, for example,
an acceptable level of energy conservation is achieved with a time step of 10−14 s, and a
moderately long run would be one lasting roughly 105 time steps, corresponding to a real
time span of order 10−9 s. By treating argon atoms as hard spheres of diameter 3.4 Å,
the mean “collision” time in liquid argon near its triple point can be estimated as roughly
10−13 s. Hence the criterion for the choice of time step based on energy conservation leads
to the physically reasonable result that Δt should be about an order of magnitude smaller
than the typical time between “collisions”. As the time step is increased, the fluctuations
in total energy become larger, until eventually an overall, upward drift in energy develops.
Even when a small time step is used, deviations from the true dynamics are inevitable, and
the phase-space trajectory of the system can be expected to diverge exponentially from that
given by the exact solution of the equations of motion. In this respect an error in the algo-
rithm plays a similar role to a small change in initial conditions. Any such change is known
to lead to a divergence in phase space that grows with time as exp(λt), where λ is a “Lya-
punov exponent”; the consequences in terms of loss of correlation between trajectories can
be dramatic.13

The methods outlined above are easily extended to molecular liquids if a model is
adopted in which the molecules consist of independent atoms bound together by con-
tinuous intramolecular forces, but small molecules are in general better treated as rigid
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FIG. 2.3. The method of constraints applied to a triatomic molecule: Fi is the total intermolecular force on
atom i and γ ij is the force of constraint that maintains rigidity of the bond between i and j .

particles. One approach to the solution of the equations of motion of a rigid body involves
a separation of internal and centre-of-mass coordinates. Another is based on the method
of “constraints”, in which the equations of motion are solved in cartesian form.14 As an
illustration of the use of constraint dynamics, consider the example of the triatomic mole-
cule shown in Figure 2.3, in which each internuclear bond is of length L and each atom
(labelled 1, 2 and 3) is of mass m. The geometry of the molecule is described by three
constraints, σij (r1, r2, r3), such that

σij = 1
2

(
rij · rij − L2)= 0 (2.7.15)

where rij = rj − ri . The total force acting on atom 1, say, at time t is the sum of three
terms: F1(t), the force due to interactions with other molecules; a force of constraint,
γ 12(t), which ensures that the bond vector r12 remains of fixed length; and a second force
of constraint, γ 13(t), which preserves the bond length between atoms 1 and 3. Similar
consideration apply to the other atoms. The forces of constraint are directed along the cor-
responding bond vectors and the law of action and reaction requires that γ ij = −γ ji . Thus
γ ij = λijrij , where λij is a time-dependent scalar quantity, with λij = λji . The newtonian
equations of motion are therefore of the form

mr̈1(t) = F1(t) + λ12r12(t) + λ13r13(t)

mr̈2(t) = F2(t) − λ12r12(t) + λ23r23(t) (2.7.16)

mr̈3(t) = F3(t) − λ13r13(t) − λ23r23(t)

Comparison with (2.7.15) shows that the total force of constraint on atom i, Gi , can be
written as

Gi = −
∑
j �=i

λij

∂σij

∂ri
(2.7.17)

As is to be expected, the sum of the forces of constraint is zero:
∑

i Gi = 0.
It is possible to eliminate the unknown quantities λ12, λ13 and λ23 from (2.7.16) by

requiring the second time derivative of the constraint conditions (2.7.15) to vanish, i.e.
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by setting σ̈ ij = ṙij · ṙij + rij · r̈ij = 0 and replacing r̈i by (Fi + Gi )/m. The resulting
system of equations for the constrained coordinates can then be integrated numerically. In
practice this procedure does not work: the errors inherent in any approximate algorithm
cause the bond lengths to drift away rapidly from their initial values. What is done instead
is to require the constraints to be satisfied exactly after each time step in a manner dictated
by the chosen integration scheme. If the Verlet algorithm (2.7.2) is used, for example, we
find that

r1(t + Δt) = r′
1(t + Δt) + (Δt2/m

)[
λ12r12(t) + λ13r13(t)

]
r2(t + Δt) = r′

2(t + Δt) + (Δt2/m
)[−λ12r12(t) + λ23r23(t)

]
(2.7.18)

r3(t + Δt) = r′
3(t + Δt) + (Δt2/m

)[−λ13r13(t) − λ23r23(t)
]

where r′
i (t + Δt) are the predicted coordinates of atom i in the absence of constraints,

given by (2.7.4). Equations (2.7.18) must be solved subject to the requirement that |rij (t +
Δt)|2 = L2 for all i, j . This leads to three simultaneous equations for the quantities λij (t),
to which a solution can be obtained by an iterative method; three to four iterations per
molecule are normally sufficient to maintain the bond lengths constant to within one part
in 104.

Apart from its simplicity, a particular merit of the method of constraints is the fact that
it can be used for both rigid and flexible molecules. A partially flexible chain molecule,
for example, can be treated by employing a suitable mixture of constraints on bond angles
and bond lengths in a way that allows for torsional motion and bending but freezes the fast
vibrations.15

Given a set of initial conditions, a conventional molecular-dynamics simulation is, in
principle, entirely deterministic in nature. By contrast, as the name suggests, a stochastic
element is an essential part of any Monte Carlo calculation. In a Monte Carlo simulation a
system of N particles, subject to the same boundary condition used in molecular-dynamics
calculations and interacting through some known potentials, is again assigned a set of
arbitrarily chosen, initial coordinates. A sequence of configurations is then generated by
successive random displacements of the particles, usually of one particle at a time. Not
all configurations that are generated are added to the sequence. The decision whether to
“accept” or “reject” a trial configuration is made in such a way that asymptotically config-
uration space is sampled according to the probability density corresponding to a particular
statistical mechanical ensemble. The ensemble average of any function of the particle co-
ordinates, such as the total potential energy, is then obtained as an unweighted average over
the resulting set of configurations. The particle momenta do not enter the calculation, there
is no time scale involved, and the order in which the configurations occur has no special
significance. The method is therefore limited to the calculation of static properties.

The Monte Carlo method was originally developed as a means of calculating averages in
the canonical ensemble and we shall consider that case first; we also assume initially that
the system consists of spherical particles. The problem of devising a scheme for sampling
configuration space according to a specific probability distribution is most easily formu-
lated in terms of the theory of Markov processes.16 Suppose we have a sequence of random
variables. Here the “variable” is the set of all coordinates of the particles and its range is
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the configuration space of the system. Hence, instead of speaking of the value of the vari-
able at a point in the sequence, it is more natural for applications in statistical mechanics
to say that the system occupies a particular state at that point. If the probability of finding
the system in a state n at “time” (t + 1) is dependent only on the state it occupied at the
previous time, t , the sequence of states constitutes a Markov chain. Note that the concept
of “time” is introduced merely for descriptive purposes; there is no connection with any
physical time scale.

Let qn(t) be the probability that the system is in state n at time t . A Markov process is
one for which

qn(t) =
∑
m

pnmqm(t − 1) (2.7.19)

where pnm is a transition probability, with
∑

n pnm = 1. If we regard the probabilities
{qn(t)} as the components of a column vector q(t) and the quantities {pnm} as the elements
of a square transition matrix p, (2.7.19) may be rewritten in more compact form as

q(t) = p · q(t − 1) (2.7.20)

Equation (2.7.20) can be immediately generalised to yield the probability distribution at
time t given an initial distribution q(0):

q(t) =
t times︷ ︸︸ ︷
p · · ·p ·q(0) ≡ pt · q(0) (2.7.21)

where pt ≡ {p(t)
nm} is the t-fold product of p with itself. If all elements of the matrix pt

are non-zero for some finite t , each state of the system can be reached from any other state
in a finite number of steps (or finite “time”) and the Markov chain is said to be ergodic; it
is clear that this usage of the term “ergodic” is closely related to its meaning in statistical
mechanics. When the chain is ergodic, it can be shown that the limits

Πn = lim
t→∞p(t)

nmqm(0) (2.7.22)

exist and are the same for all m. In other words there exists a limiting probability distri-
bution Π ≡ {Πn} that is independent of the initial distribution q(0). When the limiting
distribution is reached, it persists, because p · Π = Π or, in component form:

Πn =
∑
m

pnmΠm (2.7.23)

This result is called the steady-state condition. In the case of interest here the limits are
simply the Boltzmann factors, Πn = exp[−βVN(n)]. The task therefore is to find a set of
transition probabilities that are consistent with these limits; this task is greatly simplified
by seeking a transition matrix that satisfies microscopic reversibility, i.e. one for which

Πnpmn = Πmpnm (2.7.24)

If this relation holds, the steady-state condition is automatically satisfied.
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Let us suppose that the system is in state m at a given time. A trial state n can be
generated by selecting a particle i at random and giving it a small, random displacement,
ri → ri +Δ. If αnm is the probability of choosing n as the trial state, and if this is the same
as the probability αmn of choosing m as the trial state when starting from n, then a choice
of transition probabilities that satisfies (2.7.23) is

pnm = αnm, if Πn � Πm,

= αnm

Πn

Πm

, if Πn <Πm

(2.7.25)

with pmm = 1 −∑n�=m pnm. The transition matrix defined by (2.7.24) is the one pro-

posed in the pioneering work of Metropolis and coworkers17 and remains much the most
commonly used prescription for p. What it means in practice is that the trial state is ac-
cepted unconditionally if VN(n) � VN(m) and with a probability exp[−βΔVN ], where
ΔVN = VN(n) − VN(m), if VN(n) > VN(m). The procedure takes a particularly simple
form for a system of hard spheres: trial configurations in which two or more spheres over-
lap are rejected, but all others are accepted. One important point to note about the Metropo-
lis scheme is that the system remains in its current state if the trial state n is rejected. In
that case, state m appears a further time in the Markov chain, and the contribution it makes
to any ensemble average must be counted again.

Monte Carlo methods similar to that outlined above are easily devised for use in other
ensembles. All that changes are the form of the probability distribution and the way in
which trial states are generated. In the case of the isothermal–isobaric ensemble, for ex-
ample, random displacements of the particles must be combined with random changes in
volume, while in the grand-canonical ensemble displacements must be combined with ran-
dom attempts to insert or remove particles. The extension to molecular systems is also
straightforward. Interactions between particles are now dependent on their mutual orien-
tation and “displacements” therefore consist of random translational moves and random
reorientations.
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CHAPTER 3

Static Properties of Liquids:
Thermodynamics and Structure

Liquids are homogeneous in the bulk, but inhomogeneities appear close to the confining
walls or other physical boundaries and wherever different phases coexist. Although it might
seem natural to develop the theory of uniform fluids first, it turns out to be equally con-
venient and in many ways more illuminating to treat uniform and non-uniform systems
simultaneously from the outset. In the first six sections of this chapter we describe a gen-
eral approach to the study of inhomogeneous fluids based on the formalism of the grand
canonical ensemble.1 The starting point is a hamiltonian that includes a term representing
the interaction of the particles with some spatially varying, external field. The effect of this
term is to break the translational symmetry of the system, but results for uniform fluids are
easily recovered by taking the limit in which the external field vanishes. A key component
of the theory is a variational principle for the grand potential, which is a classical version
of a principle originally derived for the interacting electron gas.2 The last three sections
provide an introduction to the use of diagrammatic methods in the theory of liquids, with
examples chosen to complement the work discussed in earlier parts of the chapter.

3.1 A FLUID IN AN EXTERNAL FIELD

We consider again a system of identical, spherical particles in a volume V . The hamiltonian
of the system in the presence of an external potential φ(r) is given by (2.1.1), which for
ease of reference we repeat here:

H
(
rN,pN

)= KN

(
pN
)+ VN

(
rN
)+ ΦN

(
rN
)

(3.1.1)

The external field is assumed to couple to the microscopic particle density ρ(r), defined as
a sum of δ-functions in the form already introduced implicitly in (2.5.11), i.e.

ρ(r) =
N∑
i=1

δ(r − ri ) (3.1.2)

46
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Thus the total potential energy due to the field is

ΦN

(
rN
)= N∑

i=1

φ(ri ) =
∫

ρ(r)φ(r)dr (3.1.3)

The average density at a point r is the single-particle density, or density profile, ρ(1)(r):〈
ρ(r)

〉= ρ(1)(r) (3.1.4)

where the angular brackets denote an average over a grand canonical ensemble. Thus the
average value of ΦN is

〈ΦN 〉 =
∫

ρ(1)(r)φ(r)dr (3.1.5)

Fluctuations in the local density about its average value are described by a density–density
correlation function, H(2)(r, r′), defined as

H(2)(r, r′) = 〈[ρ(r) − 〈ρ(r)〉][ρ(r′) − 〈ρ(r′)
〉]〉

= ρ(2)(r, r′) + ρ(1)(r)δ(r − r′) − ρ(1)(r)ρ(1)(r′)

= ρ(1)(r)ρ(1)(r′)h(2)(r, r′) + ρ(1)(r)δ(r − r′) (3.1.6)

where ρ(2)(r, r′) is given by the analogue of (2.5.13) in the grand canonical ensemble and
h(2)(r, r′) is the pair correlation function (2.6.8). The function H(2)(r, r′) represents the
first in a hierarchy of density correlation functions having the general form

H(n)(r1, . . . , rn) = 〈[ρ(r1) − ρ(1)(r1)
] · · · [ρ(rn) − ρ(1)(rn)

]〉
(3.1.7)

for n � 2. Each function H(n) is a linear combination of all particle densities up to and
including ρ(n).

Inclusion of the external-field term in the hamiltonian requires some modification of
earlier definitions. As before, the grand partition function is related to the grand potential
by Ξ = exp(−βΩ), but now has the form

Ξ =
∞∑

N=0

1

N !
∫

exp(−βVN)

(
N∏
i=1

z exp
[−βφ(ri )

])
drN (3.1.8)

and the definition of the particle densities in (2.6.1) is replaced by

ρ(n)(rn) = 1

Ξ

∞∑
N=n

1

(N − n)!
∫

exp(−βVN)

(
N∏
i=1

z exp
[−βφ(ri )

])
dr(N−n) (3.1.9)
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Equation (3.1.8) may be recast as

Ξ =
∞∑

N=0

1

N !
∫

· · ·
∫

exp(−βVN)

(
N∏
i=1

1

Λ3
exp
[
βψ(ri )

])
dr1 · · ·drN (3.1.10)

where

ψ(r) = μ − φ(r) (3.1.11)

The quantity ψ(r) is called the intrinsic chemical potential. It is the contribution to μ that
is not explicitly dependent on φ(r).

The intrinsic chemical potential arises naturally in a thermodynamic description of the
system. We suppose that the definition of φ(r) includes the confining potential, i.e. the in-
teraction between the particles and the containing walls.3 The usual thermodynamic vari-
able V may then be replaced by φ(r), the volume accessible to the particles being that
region of space in which φ(r) is finite. The change in U resulting from an infinitesimal
change in equilibrium state is now

δU = T δS +
∫

ρ(1)(r)δφ(r)dr + μδN (3.1.12)

(cf. (2.3.5)), where the integral extends over all space rather than over a large but finite
volume. The definition of the Helmholtz free energy remains F = U − T S and the change
in F in an infinitesimal process is therefore

δF = −SδT +
∫

ρ(1)(r)δφ(r)dr + μδN (3.1.13)

By analogy with (3.1.11), we can also define an intrinsic free energy, F , as

F = F −
∫

ρ(1)(r)φ(r)dr (3.1.14)

with

δF = −SδT −
∫

δρ(1)(r)φ(r)dr + μδN

= −SδT +
∫

δρ(1)(r)ψ(r)dr (3.1.15)

Thus ψ(r) appears as the field variable conjugate to ρ(1)(r). Finally, the grand potential
Ω = F − Nμ, when expressed in terms of F , is

Ω = F +
∫

ρ(1)(r)φ(r)dr − Nμ (3.1.16)
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with a differential given by

δΩ = −SδT +
∫

ρ(1)(r)δφ(r) − Nδμ

= −SδT −
∫

ρ(1)(r)δψ(r)dr (3.1.17)

We see from (3.1.15) and (3.1.17) that it is natural to take F and Ω as functions of T and
functionals, respectively, of ρ(1) and ψ . These relationships are expressed by use of the
notation F[ρ(1)] and Ω[ψ]. Hence the change, say, in F created by a change in ρ(1)(r) is
determined by the functional derivative of F with respect to ρ(1). The calculation of such
derivatives requires some familiarity with the rules of functional differentiation, which are
summarised in the section that follows.

The intrinsic free energy can also be written as an ensemble average. The defini-
tion (2.4.5) of the grand canonical probability density f0(rN,pN ;N) shows that in the
presence of an external field:

lnf0 = βΩ − βKN − βVN − βΦN + Nβμ (3.1.18)

Thus

〈KN + VN + kBT lnf0〉 = Ω +
∫

ρ(1)(r)ψ(r)dr = F (3.1.19)

If there are no correlations between particles, the intrinsic chemical potential at a point r
is given by the usual expression (2.3.17) for the chemical potential of a system of non-
interacting particles, but with the overall number density ρ replaced by ρ(1)(r). Thus the
chemical potential of an inhomogeneous, ideal gas is

μid = kBT ln
[
Λ3ρ(1)(r)

]+ φ(r) (3.1.20)

where the first term on the right-hand side is the intrinsic part. Equation (3.1.20) can be
rearranged to give the well-known barometric law:

ρ(1)(r) = zid exp
[−βφ(r)

]
(3.1.21)

where the activity zid = Λ−3 exp(βμid) is equal to the number density of the uniform gas
at the same chemical potential. The intrinsic free energy of an ideal gas also has a purely
“local” form, given by an integral over r of the free energy per unit volume of a non-
interacting system of density ρ(1)(r):

F id = kBT

∫
ρ(1)(r)

(
ln
[
Λ3ρ(1)(r)

]− 1
)

dr (3.1.22)

This expression reduces to (2.3.16) in the uniform case.
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3.2 FUNCTIONALS AND FUNCTIONAL DIFFERENTIATION

A functional is a natural extension of the familiar mathematical concept of a function. The
meaning of a function is that of a mapping from points in n-space to a real or complex
number, n being the number of variables on which the function depends. A functional, by
contrast, depends on all values of a function u(x), say, in a range a � x � b. It can therefore
be interpreted as a mapping from ∞-space to a real or complex number, the points in ∞-
space being the values of u(x) at the infinite number of points in the relevant range of the
variable x. Functions of several variables and functionals are therefore conveniently treated
as discrete and continuous versions of the same mathematical concept, making it possible
to construct the rules of functional differentiation by analogy with those of elementary
calculus. As usual, a sum in the discrete case is replaced by an integral in the limit in
which the distribution of variables becomes continuous.

If f is a function of the n variables z ≡ z1, . . . , zN the change in f due to an infinitesimal
change in z is

df = f (z + dz) − f (z) =
n∑

i=1

Ai(z)dzi (3.2.1)

where

Ai(z) ≡ ∂f

∂zi
(3.2.2)

Similarly, if F is a functional of u(x), then

δF = F [u + δu] − F [u] =
∫ b

a

A[u;x]δu(x)dx (3.2.3)

and the functional derivative

A[u;x] ≡ δF

δu(x)
(3.2.4)

is a functional of u and a function of x. The functional derivative determines the change
in F resulting from a change in u at a particular value of x; to calculate the change in F

due to a variation in u(x) throughout the range of x it is necessary to integrate over x, as
in (3.2.3).

The rules of functional differentiation are most easily grasped by considering some spe-
cific examples. If f is a linear function of n variables we know that

f (z) =
n∑

i=1

aizi, df =
n∑

i=1

ai dzi (3.2.5)

and

∂f

∂zi
= ai, independent of z (3.2.6)
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The analogue of (3.2.5) for a linear functional is

F [u] =
∫

a(x)u(x)dx, δF =
∫

a(x)δu(x)dx (3.2.7)

and comparison with (3.2.3) shows that

δF

δu(x)
= a(x), independent of u (3.2.8)

A more general example of the same type is when

F =
∫

· · ·
∫

a(x1, . . . , xN)u(x1)u(x2) · · ·u(xN)dx1 · · ·dxN (3.2.9)

where the function a(x1, . . . , xN) is symmetric with respect to permutation of the labels
1, . . . ,N . Then

δF =
∫

· · ·
∫

a(x1, . . . , xN)δu(x1)u(x2) · · ·u(xN)dx2 · · ·dxN

+ (N − 1) other terms (3.2.10)

The N terms on the right-hand side are all equivalent, so the change in F is N times the
value of any one term. Thus

δF

δu(x1)
= N

∫
· · ·
∫

a(x1, . . . , xN)u(x2) · · ·u(xN)dx1 · · ·dxN (3.2.11)

As a slightly more complicated example, consider the non-linear functional

F [u] =
∫

u(x) lnu(x)dx (3.2.12)

for which

δF =
∫ [

δu(x) lnu(x) + u(x)δ lnu(x)
]

dx

=
∫ [

lnu(x) + 1
]
δu(x)dx (3.2.13)

and hence

δF

δu(x)
= lnu(x) + 1 (3.2.14)

This example shows how functional derivatives can be evaluated with the help of rules
appropriate to ordinary differentiation.
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An important special case is when

F [u] = u(x′) =
∫

δ(x − x′)u(x)dx (3.2.15)

Then

δF =
∫

δ(x − x′)δu(x)dx = δu(x′) (3.2.16)

and

δu(x′)
δu(x)

= δ(x − x′) (3.2.17)

When u is a function of two variables the functional derivative is defined through the
relation

δF =
∫∫

δF

δu(x1, x2)
δu(x1, x2)dx1 dx2 (3.2.18)

In applications in statistical mechanics symmetry often leads to a simplification similar to
that seen in the example (3.2.9). Consider the functional defined as

F [u] =
∫∫∫

a(x1, x2, x3)u(x1, x2)u(x2, x3)u(x3, x1)dx1 dx2 dx3 (3.2.19)

where a(x1, x2, x3) is symmetrical with respect to permutation of the labels 1, 2 and 3. The
change in F due to an infinitesimal change in the function u is now

δF =
∫∫∫

a(x1, x2, x3)δu(x1, x2)u(x2, x3)u(x3, x1)dx1 dx2 dx3

+ two equivalent terms (3.2.20)

Thus

δF

δu(x1, x2)
= 3

∫
a(x1, x2, x3)u(x2, x3)u(x3, x1)dx3 (3.2.21)

Higher-order derivatives are defined in a manner similar to (3.2.3). In particular, the
second derivative is defined through the relation

δA[u;x] =
∫

δA[u;x]
δu(x′)

δu(x′)dx′ (3.2.22)

The second derivative of the functional (3.2.9), for example, is

δ2F

δu(x1)δu(x2)
= N(N − 1)

∫
· · ·
∫

a(x1, . . . , xN)u(x3) · · ·u(xN)dx3 · · ·dxN (3.2.23)



FUNCTIONAL DERIVATIVES OF THE GRAND POTENTIAL 53

and is a functional of u and a function of both x and x′. If the derivatives exist, a functional
F [u] can be expanded in a Taylor series around a function u0:

F [u] = F [u0] +
∫

δF

δu(x)

∣∣∣∣
u=u0

[
u(x) − u0(x)

]
dx

+ 1

2!
∫∫

δ2F

δu(x)δu(x′)

∣∣∣∣
u=u0

[
u(x) − u0(x)

][
u(x′) − u0(x

′)
]

dx dx′

+ · · · (3.2.24)

Finally, the equivalent of the chain rule of ordinary differentiation is

δF

δu(x)
=
∫

δF

δv(x′)
δv(x′)
δu(x)

dx′ (3.2.25)

3.3 FUNCTIONAL DERIVATIVES OF THE GRAND POTENTIAL

The methods of the previous section can be used very straightforwardly to derive some
important results involving derivatives of the grand potential. We saw in Section 3.1 that it
is natural to treat the intrinsic free energy as a functional of the single-particle density. The
manner in which the functional F[ρ(1)] varies with ρ(1) is described by (3.1.15) and from
that result, given the definition of a functional derivative, it follows immediately that

δF
δρ(1)(r)

= ψ(r) (3.3.1)

where the derivative is taken at constant T . The intrinsic free energy can be divided into
ideal and excess parts in the form

F
[
ρ(1)]= F id[ρ(1)]+F ex[ρ(1)] (3.3.2)

where the ideal part is given by (3.1.22). Use of example (3.2.14) confirms that the func-
tional derivative of F id is

δF id

δρ(1)(r)
= kBT ln

[
Λ3ρ(1)(r)

]
(3.3.3)

in agreement with (3.1.20). In the same way it follows from (3.1.17) that the functional
derivative of Ω[ψ] with respect to ψ is

δΩ

δψ(r)
= −ρ(1)(r) (3.3.4)
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From this result (or from (3.3.1)) it follows that the functionals Ω[ψ] and F[ρ(1)] are
related by a generalised Legendre transformation,4 i.e.

Ω[ψ] −
∫

ψ(r)
δΩ

δψ(r)
dr → Ω[ψ] +

∫
ψ(r)ρ(1)(r)dr = F

[
ρ(1)] (3.3.5)

In the limit φ → 0, ψ and ρ(1) can be replaced by μ and 〈N〉/V , respectively, and (3.3.1)
and (3.3.4) reduce to standard thermodynamic results, ∂F/∂N = μ and ∂Ω/∂μ = −N .

The relationship that exists between Ω and Ξ means that it must also be possible to
obtain (3.3.4) by differentiation of lnΞ . We already know the outcome of this calculation,
but the exercise is nonetheless a useful one, since it points the way towards the calculation
of higher-order derivatives. In carrying out the differentiation it proves helpful to introduce
a local activity, z∗, defined as

z∗(r) = exp[βψ(r)]
Λ3

= z exp
[−βφ(r)

]
(3.3.6)

If we also adopt a simplified notation in which a position vector ri is denoted by i, the
grand partition function (3.1.10) can be rewritten in the form

Ξ =
∞∑

N=0

1

N !
∫

· · ·
∫

exp(−βVN)

(
N∏
i=1

z∗(i)
)

d1 · · ·dN (3.3.7)

The derivative we require is

δΩ

δψ(1)
= −kBT

δ lnΞ

δψ(1)
= −z∗(1)

Ξ

δΞ

δz∗(1)
(3.3.8)

The term for N = 0 in (3.3.7) vanishes on differentiation. Higher-order terms are of the
general form considered in example (3.2.9) and differentiation of each term therefore yields
a factor N . Thus

δΞ

δz∗(1)
=

∞∑
N=1

1

(N − 1)!
∫

· · ·
∫

exp(−βVN)

(
N∏
i=2

z∗(i)
)

d2 · · ·dN (3.3.9)

and combination of (3.3.8) and (3.3.9) with the definition of the particle densities in (3.1.9)
leads back to (3.3.4). By further differentiation of Ξ it is easy to show that

ρ(n)(1, . . . , n) = z∗(1) · · · z∗(n)
Ξ

δnΞ

δz∗(1) · · · δz∗(n)
(3.3.10)

The grand partition function is said to be the generating functional for the particle densities.
Calculation of the second derivative of Ω with respect to ψ is only slightly more com-

plicated. The quantity to be determined is now

δ2Ω

δψ(1)δψ(2)
= −βz∗(2) δ

δz∗(2)

(
1

Ξ
z∗(1) δΞ

δz∗(1)

)
(3.3.11)
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Differentiation of successive factors in the product in brackets gives rise, respectively,
to a term in ρ(1)(2), a term in δ(1,2) (as in example (3.2.17)) and a term in ρ(2)(1,2)
(from (3.3.10)). On combining these results we find that

δ2Ω

δψ(1)δψ(2)
= β

[
ρ(1)(1)ρ(1)(2) − ρ(1)(1)δ(1,2) − ρ(2)(1,2)

]
= −βH(2)(1,2) (3.3.12)

where H(2)(1,2) is the density–density correlation function defined by (3.1.6). The process
of differentiation can again be extended; although the algebra becomes increasingly te-
dious, the general result has a simple form:

δnβΩ

δβψ(1) · · · δβψ(n)
= −H(n)(1, . . . , n), n � 2 (3.3.13)

The grand potential is therefore the generating functional for the n-fold density correlation
functions.

3.4 DENSITY-FUNCTIONAL THEORY

The grand potential has temperature and intrinsic chemical potential as its natural vari-
ables. However, it turns out to be more profitable to treat ρ(1) rather than ψ as the fun-
damental field variable. The definition (3.1.9) shows that ρ(1) is a functional of φ. What
is not obvious is the fact that for a given interparticle potential-energy function VN and
fixed values of T and μ, there is only one external potential that gives rise to a specific
density profile. This result, the proof of which is given in Appendix B, has far-reaching
implications. The grand canonical probability density f0 defined by (2.4.5) is a functional
of φ(r). Hence any quantity which, for given VN , T and μ, is wholly determined by f0

is necessarily a functional of ρ(1), and its functional dependence on ρ(1) is independent of
the external potential. In particular, because the intrinsic free energy is the ensemble aver-
age of (KN +VN + kBT lnf0) (see (3.1.19)), it follows that F[ρ(1)] is a unique functional
of ρ(1).

Let n(r) be some average of the microscopic density, not necessarily the equilibrium
one, and let Ωφ[n] be a functional of n, defined for fixed external potential by

Ωφ[n] = F[n] +
∫

n(r)φ(r)dr − μ

∫
n(r)dr (3.4.1)

At equilibrium, n(r) = ρ(1)(r), and Ωφ reduces to the grand potential, i.e.

Ωφ

[
ρ(1)]= Ω (3.4.2)
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while differentiation of (3.4.1) with respect to n(r) gives

δΩφ

δn(r)

∣∣∣∣
n=ρ(1)

= δF[n]
δn(r)

∣∣∣∣
n=ρ(1)

− μ + φ(r) = 0 (3.4.3)

where the right-hand side vanishes by virtue of (3.3.1). Thus Ωφ is stationary with respect
to variations in n(r) around the equilibrium density. It is also straightforward to show that

Ωφ[n] � Ω (3.4.4)

where the equality applies only when n(r) = ρ(1)(r). In other words, the functional Ωφ has
a lower bound equal to the exact grand potential of the system. A proof of (3.4.4) is also
given in Appendix B.

Equations (3.4.3) and (3.4.4) provide the ingredients for a variational calculation of the
density profile and grand potential of an inhomogeneous fluid. What is required in order
to make the theory tractable is a parametrisation of the free-energy functional F[n] in
terms of n(r). Since the ideal part is known exactly, the difficulty lies in finding a suitable
form for F ex[n]. The best estimates of ρ(1) and Ω are then obtained by minimising the
functional Ωφ[n] with respect to variations in n(r). Minimisation of a functional such as
Ωφ[n] is the central problem in the calculus of variations and normally requires the solu-
tion to a differential equation called the Euler or Euler–Lagrange equation. Computational
schemes of this type are grouped together under the title density-functional theory. The
theory has found application to a very wide range of problems, some of which are dis-
cussed in later chapters. As in any variational calculation, the success achieved depends on
the skill with which the trial functional is constructed. Because F is a unique functional
of ρ(1), a good approximation would be one that was suitable for widely differing choices
of external potential, but in practice most approximations are designed for use in specific
physical situations.

If VN is a sum of pair potentials, it is possible to derive an exact expression for Fex in
terms of the pair density in a form that lends itself readily to approximation. The grand
partition function can be written as

Ξ =
∞∑

N=0

1

N !
∫

· · ·
∫ ( N∏

i<j

e(i, j)

)(
N∏
i=1

z∗(i)
)

d1 · · ·dN (3.4.5)

where e(i, j) ≡ exp[(−βv(i, j)]. Then the functional derivative of Ω with respect to v at
constant T and ψ is

δΩ

δv(1,2)
= δ lnΞ

δ ln e(1,2)
= e(1,2)

Ξ

δΞ

δe(1,2)

= 1

Ξ

∞∑
N=2

N(N − 1)

2N !
∫

· · ·
∫ ( N∏

i<j

e(i, j)

)(
N∏
i=1

z∗(i)
)

d3 · · ·dN (3.4.6)
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where the factor N(N − 1)/2 is the number of equivalent terms resulting from the differ-
entiation (cf. (3.2.20)). Comparison with the definition of ρ(n) in (3.1.9) shows that

ρ(2)(r, r′) = 2
δΩ

δv(r, r′)
(3.4.7)

and hence that

ρ(2)(r, r′) = 2
δF ex[ρ(1)]
δv(r, r′)

(3.4.8)

We now suppose that the pair potential can be expressed as the sum of a “reference” part,
v0(r, r′), and a “perturbation”, w(r, r′), and define a family of intermediate potentials by

vλ(r, r′) = v0(r, r′) + λw(r, r′), 0 � λ � 1 (3.4.9)

The reference potential could, for example, be the hard-sphere interaction and the perturba-
tion could be a weak, attractive tail, while the increase in λ from 0 to 1 would correspond
to a gradual “switching on” of the perturbation. It follows from integration of (3.4.8) at
constant single-particle density that the free-energy functional for the system of interest,
characterised by the full potential v(r, r′), is related to that of the reference system by

F ex[ρ(1)] = F ex
0

[
ρ(1)]+ 1

2

∫ 1

0
dλ
∫∫

ρ(2)(r, r′;λ)w(r, r′)dr dr′

= F ex
0

[
ρ(1)]+ 1

2

∫∫
ρ(1)(r)ρ(1)(r′)w(r, r′)dr dr′ +Fcorr

[
ρ(1)] (3.4.10)

where ρ(2)(r, r′;λ) is the pair density for the system with potential vλ and

Fcorr
[
ρ(1)]= 1

2

∫ 1

0
dλ
∫∫

ρ(1)(r)ρ(1)(r′)h(2)(r, r′;λ)w(r, r′)dr dr′ (3.4.11)

is the contribution to F ex due to correlations induced by the perturbation. Equation (3.4.10)
provides a basis for the perturbation theories of uniform fluids discussed in Chapter 5.

3.5 DIRECT CORRELATION FUNCTIONS

We saw in Section 3.3 that the grand potential is a generating functional for the density
correlation functions H(n)(rn). In a similar way, the excess part of the free-energy func-
tional acts as a generating functional for a parallel hierarchy of direct correlation functions,
c(n)(rn). The single-particle function is defined as the first functional derivative of F ex

with respect to ρ(1):

c(1)(r) = −β
δF ex[ρ(1)]
δρ(1)(r)

(3.5.1)
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The pair function is defined as the functional derivative of c(1):

c(2)(r, r′) = δc(1)(r)
δρ(1)(r′)

= −β
δ2F ex[ρ(1)]

δρ(1)(r)δρ(1)(r′)
(3.5.2)

and similarly for higher-order functions: c(n+1)(rn+1) is the derivative of c(n)(rn). It fol-
lows from (3.3.1), (3.3.3) and (3.5.1) that

βψ(r) = β
δF[ρ(1)]
δρ(1)(r)

= ln
[
Λ3ρ(1)(r)

]− c(1)(r) (3.5.3)

or, given that ψ = μ − φ and z = exp(βμ)/Λ3:

ρ(1)(r) = z exp
[−βφ(r) + c(1)(r)

]
(3.5.4)

Comparison with the corresponding ideal-gas result in (3.1.21) (the barometric law) shows
that the effects of particle interactions on the density profile are wholly contained in the
function c(1)(r). It is also clear from (3.5.3) that the quantity −kBT c(1)(r), which acts
in (3.5.4) as a self-consistent addition to the external potential, is the excess part of the
intrinsic chemical potential. By appropriately adapting the argument of Section 2.4 it can
be shown that −kBT c(1)(r) is given by an expression identical to that on the right-hand side
of (2.4.31), but where ε is now the energy of a test particle placed at r that interacts with
particles of the system but not with the external field.5 If φ = 0, (3.5.4) can be rearranged
to give

−kBT c(1) = μ − kBT lnΛ3ρ = μex (3.5.5)

To obtain a useful expression for c(2)(r, r′) we must return to some earlier results. Equa-
tions (3.3.4) and (3.3.12) show that, apart from a constant factor, the density–density cor-
relation function is the functional derivative of ρ(1) with respect to ψ :

H(r, r′) = kBT
δρ(1)(r)
δψ(r′)

(3.5.6)

where, for notational simplicity, we have temporarily omitted the superscript (2). It there-
fore follows from (3.2.17) and (3.2.25) that the functional inverse of H , defined through
the relation ∫

H(r, r′′)H−1(r′′, r′)dr′′ = δ(r − r′) (3.5.7)

is

H−1(r, r′) = β
δψ(r)

δρ(1)(r′)
(3.5.8)

Functional differentiation of the expression for ψ in (3.5.3) gives

β
δψ(r)

δρ(1)(r′)
= 1

ρ(1)(r)
δ(r − r′) − c(2)(r, r′) = H−1(r, r′) (3.5.9)
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If we now substitute for H and H−1 in (3.5.7), integrate over r′′ and introduce the pair
correlation function defined by (3.1.6), we obtain the Ornstein–Zernike relation:

h(2)(r, r′) = c(2)(r, r′) +
∫

c(2)(r, r′′)ρ(1)(r′′)h(2)(r′′, r′)dr′′ (3.5.10)

This relation is often taken as the definition of c(2), but the definition as a derivative of the
intrinsic free energy gives the function greater physical meaning. Equation (3.5.10) can be
solved recursively to give

h(2)(1,2) = c(2)(1,2) +
∫

c(2)(1,3)ρ(1)(3)c(2)(3,2)d3

+
∫∫

c(2)(1,3)ρ(1)(3)c(2)(3,4)ρ(1)(4)c(2)(4,2)d3 d4 + · · · (3.5.11)

This result has an obvious physical interpretation: the “total” correlation between parti-
cles 1 and 2, represented by h(2)(1,2), is due in part to the “direct” correlation between 1
and 2 but also to the “indirect” correlation propagated via increasingly large numbers of
intermediate particles. With this physical picture in mind it is plausible to suppose that the
range of c(2)(1,2) is comparable with that of the pair potential v(1,2) and to ascribe the
fact that h(2)(1,2) is generally much longer ranged than v(1,2) to the effects of indirect
correlation. The differences between the two functions for the Lennard-Jones fluid at high
density and low temperature are illustrated in Figure 3.1; c(r) is not only shorter ranged
than h(r) but also simpler in structure.

If the fluid is uniform and isotropic, the Ornstein–Zernike relation becomes

h(r) = c(r) + ρ

∫
c
(|r − r′|)h(r ′)dr′ (3.5.12)
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FIG. 3.1. The pair functions h(r) (dashes) and c(r) (full curve) obtained by Monte Carlo calculations for the
Lennard-Jones fluid at a high density and low temperature. After Llano-Restrepo and Chapman.6
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where the term representing the indirect correlation now appears as a convolution inte-
gral. We have also followed the convention adopted earlier for g(r) by omitting the su-
perscripts (2) when the system is homogeneous and shall continue to do so in circum-
stances where there is no risk of ambiguity. On taking the Fourier transform of both sides
of (3.5.12) we obtain an algebraic relation between ĥ(k) and ĉ(k):

ĥ(k) = ĉ(k)

1 − ρĉ(k)
(3.5.13)

Equation (3.5.13) provides a link with thermodynamics via the compressibility equa-
tion (2.6.12). Since h(r) = g(r) − 1, it follows from (2.6.12) that the isothermal com-
pressibility can be written in either of the two equivalent forms:

ρkBT χT = 1 + ρĥ(0) (3.5.14)

or
1

ρkBT χT

= 1 − ρĉ(0) (3.5.15)

These results bring out particularly clearly the inverse relationship that exists between h

and c.
The definitions of c(1) and c(2) in (3.5.1) and (3.5.2) are useful in characterising the

nature of an approximate free-energy functional. As a simple example, consider the func-
tional derived from the exact result (3.4.10) by discarding the term Fcorr, which amounts
to treating the effects of the perturbation w(r, r′) in a mean-field approximation. Then

c(1)(r) ≈ c
(1)
0 (r) − β

∫
ρ(1)(r′)w(r, r′)dr′ (3.5.16)

c(2)(r, r′) ≈ c
(2)
0 (r, r′) − βw(r, r′) (3.5.17)

where c
(1)
0 and c

(2)
0 are the direct correlation functions of the reference system. Substitution

of (3.5.16) in (3.5.4) yields an integral equation for ρ(1)(r) that can be solved iteratively if
the properties of the reference system are known or if some further approximation is made
for c(1)0 . Equation (3.5.17) is a well-known approximation in the theory of uniform fluids;7

for historical reasons it is called the random-phase approximation or RPA. It is generally
accepted that c(2)(r, r′) behaves asymptotically as −βv(r, r′). The RPA should therefore
be exact when |r − r′| is sufficiently large; this assumes that the perturbation contains the
long-range part of the potential, which is almost invariably the case.

The formally exact expression for the intrinsic free energy given by (3.4.10) was ob-
tained by thermodynamic integration with respect to the interparticle potential. Another
exact expression can be derived from the definitions of c(1) and c(2) by integrating with
respect to the single-particle density. Let ρ(1)

0 (r) and c
(1)
0 (r) be the single-particle density

and single-particle direct correlation function, respectively, in a reference state of the sys-
tem of interest. We choose a linear integration path between the reference state and the
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final state of density ρ(1)(r) such that

ρ(1)(r;λ) = ρ
(1)
0 (r) + λΔρ(1)(r) (3.5.18)

where Δρ(1) = ρ(1) − ρ
(1)
0 . Then integration of (3.5.1) gives

F ex[ρ(1)] = F ex
0

[
ρ
(1)
0

]− kBT

∫ 1

0
dλ
∫

∂ρ(1)(r;λ)
∂λ

c(1)(r;λ)dr

= F ex
0

[
ρ
(1)
0

]− kBT

∫ 1

0
dλ
∫

Δρ(1)(r)c(1)(r;λ)dr (3.5.19)

Similarly, from integration of (3.5.2):

c(1)(r;λ) = c
(1)
0 (r) +

∫ λ

0
dλ′
∫

Δρ(1)(r′)c(2)(r, r′;λ′)dr′ (3.5.20)

and hence, after substitution of (3.5.20) in (3.5.19):

F ex[ρ(1)] = F ex
0

[
ρ
(1)
0

]− kBT

∫
Δρ(1)(r)c(1)0 (r)dr

− kBT

∫ 1

0
dλ
∫ λ

0
dλ′
∫∫

Δρ(1)(r)Δρ(1)(r′)c(2)(r, r′;λ)dr dr′ (3.5.21)

The integration path defined by (3.5.18) is chosen for mathematical convenience, but the
final result is independent of path, since F ex is a unique functional of ρ(1).

Some simplification of (3.5.21) is possible. An integration by parts shows that∫ 1

0
dλ
∫ λ

0
y(λ′)dλ′ =

∫ 1

0
(1 − λ)y(λ)dλ (3.5.22)

for any function y(λ). Thus

F ex[ρ(1)] = F ex
0

[
ρ
(1)
0

]− kBT

∫
Δρ(1)(r)c(1)0 (r)dr

− kBT

∫ 1

0
dλ(1 − λ)

∫∫
Δρ(1)(r)Δρ(1)(r′)c(2)(r, r′;λ)dr dr′ (3.5.23)

In contrast to (3.4.10), use of this result in constructing a trial functional requires an ap-
proximation for c(2)(r′, r′;λ) rather than h(2)(r′, r′;λ), and its derivation does not rely on
the assumption of pairwise additivity of the particle interactions. If we assume that the fi-
nal state is homogeneous and that the initial state is one of zero density, (3.5.23) yields an
expression for the excess free energy of a uniform fluid of density ρ:

F ex(ρ) = ρ2kBT

∫ 1

0
dλ (λ − 1)

∫
dr
∫

c
(|r′ − r|;λρ)d(r′ − r) (3.5.24)
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or, after integration over r:

βF ex(ρ)

N
= ρ

∫ 1

0
dλ (λ − 1)

∫
c(r;λρ)dr (3.5.25)

3.6 THE DENSITY RESPONSE FUNCTION

Let us suppose that a uniform fluid of number density ρ0 is exposed to a weak, external
potential δφ(r). The hamiltonian of the system is

H = H0 +
N∑
i=1

δφ(ri ) (3.6.1)

where H0 is the hamiltonian of the uniform fluid. The external potential acts as a pertur-
bation on the system and creates an inhomogeneity, measured by the deviation δρ(1)(r) of
the single-particle density from its value in the uniform state:

δρ(1)(r) = ρ(1)(r) − ρ0 (3.6.2)

Because the perturbation is weak, it can be assumed that the response is a linear but non-
local function of δφ(r), expressible in terms of a linear response function χ(r, r′) in the
form

δρ(1)(r) =
∫

χ(r, r′)δφ(r′)dr′ (3.6.3)

It follows from the definition of a functional derivative that

χ(r, r′) = δρ(1)(r)
δφ(r′)

∣∣∣∣
φ=0

= −δρ(1)(r)
δψ(r′)

∣∣∣∣
φ=0

(3.6.4)

and hence, from (3.5.6), that

χ(r, r′) = −βH(2)(r, r′) (3.6.5)

where H(2)(r, r′) is the density–density correlation function of the unperturbed system.
Because the unperturbed system is homogeneous, the response function can be written as

χ
(|r − r′|)= −β

[
ρ2

0h
(|r − r′|)+ ρ0δ

(|r − r′|)] (3.6.6)

and the change in density due to the perturbation divides into local and non-local terms:

δρ(1)(r) = −βρ0δφ(r) − βρ2
0

∫
h
(|r − r′|)δφ(r′)dr′ (3.6.7)



THE DENSITY RESPONSE FUNCTION 63

This result is called the Yvon equation; it is equivalent to a first-order Taylor expansion of
ρ(1) in powers of δφ.

We now take the Fourier transform of (3.6.3) and relate the response δρ̂(1)(k) to the
Fourier components of the external potential, defined as

δφ̂(k) =
∫

exp(−ik · r)δφ(r)dr (3.6.8)

The result is

δρ̂(1)(k) = χ(k)φ̂(k) = −βρ0S(k)δφ̂(k) (3.6.9)

where

S(k) = 1 + ρ0ĥ(k) = 1

1 − ρ0ĉ(k)
(3.6.10)

is the static structure factor of the uniform fluid; the second equality in (3.6.10) follows
from (3.5.13). The structure factor appears in (3.6.9) as a generalised response function,
akin to the magnetic susceptibility of a spin system. The linear density response to an
external field is therefore determined by the density–density correlation function in the ab-
sence of the field; this is an example of the fluctuation–dissipation theorem. More specif-
ically, S(k) is a measure of the density response of a system, initially in equilibrium, to a
weak, external perturbation of wavelength 2π/k. When the probe is a beam of neutrons,
S(k) is proportional to the total scattered intensity in a direction determined by the momen-
tum transfer h̄k between beam and sample. Use of such a probe provides an experimental
means of determining the radial distribution function of a liquid, as in the example shown
in Figure 2.1. Equations (3.5.14) and (3.6.10) together show that at long wavelengths S(k)
behaves as

lim
k→∞S(k) = ρkBT χT (3.6.11)

and is therefore a measure of the response in one macroscopic quantity – the number den-
sity – to a change in another – the applied pressure. If the system is isotropic, the structure
factor is a function only of the wavenumber k.

An example of an experimentally determined structure factor for liquid sodium near
the triple point is pictured in Figure 3.2; the dominant feature is a pronounced peak at a
wavenumber approximately equal to 2π/Δr , where Δr is the spacing of the peaks in g(r).
As the figure shows, the experimental structure factor is very well fitted by Monte Carlo
results for a purely repulsive potential that varies as r−4. Since the r−4 potential is only a
crude representation of the effective potential for liquid sodium, the good agreement seen
in the figure strongly suggests that the structure factor is insensitive to details of the atomic
interactions.

The discussion until now has been limited to one-component systems, but the ideas
developed in this section and the preceding one can be extended to mixtures without major
complications. Consider a system containing Nν particles of species ν, with ν = 1 to n.
If N = ∑ν Nν is the total number of particles, the number concentration of species ν

is xν = Nν/N . The partial microscopic density ρν(r) and its average value ρ
(1)
ν (r) (the
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FIG. 3.2. Structure factor of liquid sodium near the normal melting temperature. The points are experimental
x-ray scattering results8 and the curve is obtained from a Monte Carlo calculation9 for the r−4 potential under
the same thermodynamic conditions.

single-particle density of species ν) are defined in a manner identical to (3.1.2) and (3.1.4),
except that the sum on i is limited to particles of species ν. At the pair level, the structure of
the fluid is described by 1

2n(n+ 1) partial pair correlation functions h
(2)
νμ(r, r′) and 1

2n(n+
1) direct correlation functions c

(2)
νμ(r, r′). The two sets of functions are linked by a set of

coupled equations, representing a generalisation of the Ornstein–Zernike relation (3.5.10),
which in the homogeneous case becomes

hνμ(r) = cνμ(r) + ρ
∑
λ

xλ

∫
cνλ
(|r − r′|)hλμ(r

′)dr′ (3.6.12)

The change in the single-particle density of species ν induced by a weak external potential
δφμ(r) that couples to the density of species μ is given by a straightforward generalisation
of (3.6.7):

δρ(1)
ν (r) = −xνδνμβρδφμ(r) − xνxμβρ

2
∫

hνμ

(|r − r′|)δφμ(r′)dr′ (3.6.13)

or, after Fourier transformation:

δρ̂(1)
ν (k) = χνμ(k)δφ̂μ(k) = −βρSνμ(k)δφ̂μ(k) (3.6.14)

where χνμ(k) is a linear response function and

Sνμ(k) = xνδνμ + xνxμρĥνμ(k) (3.6.15)

is a partial structure factor of the uniform fluid. Note that the local contribution to δρ
(1)
ν (r)

in (3.6.13) disappears unless the labels ν, μ refer to the same species. Finally, the general-
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isation to mixtures of the expression for the compressibility given by (3.5.15) is

1

ρkBT χT

= 1 − ρ
∑
ν

∑
μ

ĉνμ(0) (3.6.16)

If the partial structure factors are represented as a matrix, S(k), combination of (3.6.12)
and (3.6.15), together with a matrix inversion, shows that the corresponding generalisation
of (3.6.11) is

ρkBT χT = |S(0)|∑
ν

∑
μ xνxμ|S(0)|νμ (3.6.17)

where |S(0)|νμ is the cofactor of Sνμ(0) in the determinant |S(0)|. Equation (3.6.17) is
called the Kirkwood–Buff formula.10

3.7 DIAGRAMMATIC METHODS

The grand partition function and particle densities are defined as many-dimensional inte-
grals over particle coordinates. Such integrals are conveniently represented by diagrams
or graphs, which in turn can be manipulated by graph-theoretical methods. These meth-
ods include simple prescriptions for the evaluation of functional derivatives of the type
encountered in earlier sections of this chapter. As we shall see, the diagrammatic approach
leads naturally to expansions of thermodynamic properties and particle distribution func-
tions in powers of either the activity or density. While such expansions are in general
more appropriate to gases than to liquids, diagrammatic methods have played a prominent
role in the development of the modern theory of dense fluids. The statistical mechanics of
non-uniform fluids, for example, was originally formulated in diagrammatic terms.11 The
introductory account given here is based largely on the work of Morita and Hiroike,12 de
Dominicis13 and Stell.14 Although the discussion is self-contained, it is limited in scope,
and no attempt is made at mathematical rigour.

We consider again the case when the interparticle potential energy is a sum of pair
terms. As we shall see later, it is sometimes convenient to replace the Boltzmann factor
exp(−βVN) by a sum of products of Mayer functions, f (i, j), defined as

f (i, j) = exp
[−βv(i, j)

]− 1 ≡ e(i, j) − 1 (3.7.1)

Then, for example, in the definition of ρ(1)(1) given by (3.1.9) the term for N = 4 involves
an integral of the form

I =
∫∫∫ ( 4∏

i=1

z∗(i)
)
f (1,2)f (1,4)f (2,3)f (3,4)d2 d3 d4 (3.7.2)

To each such integral there corresponds a labelled diagram consisting of a number of cir-
cles linked by bonds. Circles represent particle coordinates and carry an appropriate label;
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for that reason the diagrams are sometimes called “cluster” diagrams. The circles are of two
types: white circles (or “root points”), which correspond to coordinates held constant in the
integration, and black circles (or “field points”), which represent the variables of integra-
tion. With a circle labelled i we associate a function of coordinates, γ (i), say. The circle
is then referred to as a white or black γ -circle; a 1-circle is a circle for which γ (i) = 1.
Bonds are drawn as lines between circles. With a bond between circles i and j we asso-
ciate a function η(i, j), say, and refer to it as an η-bond; a simple diagram is one in which
no pair of circles is linked by more than one bond. The value of a labelled diagram is the
value of the integral that the diagram represents; it is a function of the coordinates attached
to the white circles and a functional of the functions associated with the black circles and
bonds. Thus the integral in (3.7.2) is represented by a simple, labelled diagram consisting
of z∗-circles (both white and black) and f -bonds:

I =
1 2

34

The black circles in a diagram correspond to the dummy variables of integration. The
manner in which the black circles are labelled is therefore irrelevant and the labels may
conveniently be omitted altogether. The value of the resulting unlabelled diagram involves
a combinatorial factor related to the topological structure of the diagram. Consider a la-
belled diagram containing m black γ -circles and any number of white circles. Each of
the m! possible permutations of labels of the black circles leaves the value of the diagram
unchanged. There is, however, a subgroup of permutations which give rise to diagrams that
are topologically equivalent. Two labelled diagrams are said to be topologically equivalent
if they are characterised by the same set of connections, meaning that circles labelled i

and j in one diagram are linked by an η-bond if and only if they are similarly linked in
the other. In the case when all black circles are associated with the same function, the sym-
metry number of a simple diagram is the order of the subgroup of permutations that leave
the connections unaltered. We adopt the convention that when the word “diagram” or the
symbol for a diagram appears in an equation, the quantity to be inserted is the value of that
diagram. Then the value of a simple diagram Γ consisting of n white circles labelled 1 to n

and m unlabelled black circles is

Γ = (1/m!)[the sum of all topologically inequivalent diagrams obtained

by labelling the black circles] (3.7.3)

The number of labelled diagrams appearing on the right-hand side of this equation is equal
to m!/S, where S is the symmetry number, and each of the diagrams has a value equal to
that of the integral it represents. The definition (3.7.3) may therefore be reformulated as

Γ = (1/S)[any diagram obtained by labelling the black circles]

= (1/S)[the value of the corresponding integral] (3.7.4)
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In the example already pictured the symmetry number of the diagram is equal to two, since
the connections are unaltered by interchange of the labels 2 and 4. Thus the unlabelled
diagram obtained by removing the labels 2, 3 and 4 has a value equal to 1

2I .
The definition of the value of a diagram can be extended to a wider class of diagrams

than those we have discussed, but the definition of symmetry number may have to be
modified. For example, if a diagram is composite rather than simple, the symmetry number
is increased by a factor n! for every pair of circles linked by n bonds of the same species.
On the other hand, if the functions associated with the black circles are not all the same,
the symmetry number is reduced.

The difference in value of labelled and unlabelled diagrams is important because the
greater ease with which unlabelled diagrams are manipulated is due precisely to the inclu-
sion of the combinatorial factor S. In all that follows, use of the word “diagram” without
qualification should be taken as referring to the unlabelled type, though the distinction will
often be irrelevant. Two unlabelled diagrams are topologically distinct if it is impossible to
find a permutation that converts a labelled version of one diagram into a labelled version of
the other. Diagrams that are topologically distinct represent different integrals. Statistical
mechanical quantities usefully discussed in diagrammatic terms are frequently obtained as
“the sum of all topologically distinct diagrams” having certain properties. To avoid undue
repetition we shall always replace the cumbersome phrase in quotation marks by the ex-
pression “all diagrams”. We also adopt the convention that any diagrams we discuss are
simple unless they are otherwise described.

Two circles are adjacent if they are linked by a bond. A sequence of adjacent circles
and the bonds that link them is called a path. Two paths between a given pair of circles are
independent if they have no intermediate circle in common. A connected diagram is either
simply or multiply connected; if there exist (at least) n independent paths between any
pair of circles the diagram is (at least) n-tuple connected. In the examples shown below,
diagram (a) is simply connected, (b) is triply connected and (c) is a disconnected diagram
with two doubly-connected components.

(a) (b) (c)

A bond is said to intersect the circles that it links. Removal of a circle from a diagram
means that the circle and the bonds that intersect it are erased. A connecting circle is a circle
whose removal from a connected diagram causes the diagram to become disconnected; the
multiplicity of a connecting circle is the number of components into which the diagram
separates when the circle is removed. Removal of an articulation circle from a connected
diagram causes the diagram to separate into two or more components, of which at least one
contains no white circle; an articulation pair is a pair of circles whose removal has the same
effect. A diagram that is free of articulation circles is said to be irreducible; the absence of
articulation pairs implies irreducibility but not vice versa. If a diagram contains at least two
white circles, a nodal circle is one through which all paths between two particular white
circles pass. Clearly there can be no nodal circle associated with a pair of white circles
linked by a bond. A nodal circle is necessarily also a connecting circle and may also be
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an articulation circle if its multiplicity is three or more. The examples below illustrate the
effects of removing (a) an articulation circle, (b) an articulation pair and (c) a nodal circle.

(a)

(b)

(c)

A subdiagram of a diagram Γ is any diagram that can be obtained from Γ by some
combination of the removal of circles and erasure of bonds. A subdiagram is maximal
with respect to a given property if it is not embedded in another subdiagram with the
same property; a particularly important class of maximal subdiagrams are those that are
irreducible. The star product of two connected diagrams Γ1, Γ2 is the diagram Γ3 obtained
by linking together the two diagrams in such a way that white circles carrying the same
labels are superimposed, as in the example shown below:

=

1 2 2 1 2

The two diagrams are said to be connected in parallel at the n white circles having la-
bels that are common to both Γ1 and Γ2; if the two diagrams are connected in parallel
at white γ -circles, the corresponding circles in Γ3 are γ 2-circles. If Γ1 and Γ2 have no
white circles in common, or if one or both contain only black circles, the star product is a
disconnected diagram having Γ1 and Γ2 as its components. Star-irreducible diagrams are
connected diagrams that cannot be expressed as the star product of two other diagrams ex-
cept when one of the two is the diagram consisting of a single white circle. The definition of
star-irreducibility excludes all diagrams containing white connecting circles or connecting
subsets of white circles, all diagrams with adjacent white circles and, by convention, the di-
agram consisting of a single white circle. The star product of two star-irreducible diagrams
can be uniquely decomposed into the factors that form the product; thus the properties of
star-irreducible diagrams are analogous to those of prime numbers.

Diagrammatic expressions are manipulated with the aid of certain rules, the most im-
portant of which are contained in a series of lemmas derived by Morita and Hiroike.12 The
lemmas are stated here without proof and illustrated by simple examples;15 some details
of the proofs are given in Appendix C.

Lemma 1. Let G be a set of topologically distinct, star-irreducible diagrams and let H be
the set of all diagrams in G and all possible star products of diagrams in G. Then

[all diagrams in H ] = exp[all diagrams in G] − 1
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Illustration. If G consists of a single diagram, Γ , where

Γ =

then

exp(Γ ) = 1 + + + + · · ·

Lemma 1 is called the “exponentiation theorem”. If the diagrams in G consist solely of
black circles and bonds, use of the lemma makes it possible to express a sum of connected
and disconnected diagrams in terms of the connected subset.

Lemmas 2 and 3 contain the diagrammatic prescriptions for the evaluation of two im-
portant types of functional derivative.

Lemma 2. Let Γ be a diagram consisting of black γ -circles and bonds. Then

∂Γ/∂γ (r) = [all diagrams obtained by replacing a black γ -circle of Γ by

a white 1-circle labelled r]

Illustration.

Γ = δΓ/δγ =
r

+
r

Lemma 3. Let Γ be a diagram consisting of black circles and η-bonds. Then

∂Γ/∂η(r, r′) = 1
2 [all diagrams obtained by erasing an η-bond of Γ,

whitening the circles that it linked and labelling

the whitened circles r and r′]

Illustration.

Γ = δΓ/δη =
r r'

1
2
_

The example illustrated is the diagrammatic representation of example (3.2.21) for the
case when a = 1. The numerical factor present in (3.2.21) is taken care of by the different
symmetry numbers before (S = 6) and after (S = 1) differentiation.

Lemmas 4 and 5 are useful in the process of topological reduction.

Lemma 4. Let G be a set of topologically distinct, connected diagrams consisting of a
white circle labelled r, black γ -circles and bonds, and let G(r) be the sum of all diagrams
in G. If Γ is a connected diagram, if H is the set of all topologically distinct diagrams
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obtained by decorating all black circles of Γ with diagrams in G, and if each diagram
in H is uniquely decomposable, then

[all diagrams in H ] = [the diagram obtained from Γ by replacing the

black γ -circles by G-circles]
The process of decorating the diagram Γ consists of attaching one of the elements in G in
such a way that its white circle is superimposed on a black circle of Γ and then blackened.
For the diagrams in H to be uniquely decomposable it must be possible, given the structure
of Γ , to determine by inspection which diagram in G has been used to decorate each black
circle of Γ ; this is always possible if Γ is free of black articulation circles.

Illustration. If the set G consists of the two diagrams:

and if

Γ =
then the set H consists of the three diagrams

Although the example is a simple one, it illustrates the main ingredients of a topological
reduction: the sum of a number of diagrams (here the diagrams in H , where the black
circles are γ -circles) is replaced by a single diagram of simpler structure (here Γ , where
the black circles are G-circles).

Lemma 5. Let G be a set of topologically distinct, connected diagrams consisting of two
white circles labelled r and r′, black circles and η-bonds, and let G(r, r′) be the sum of
all diagrams in G. If Γ is a connected diagram, if H is the set of all topologically distinct
diagrams obtained by replacing all bonds of Γ by diagrams in G, and if each diagram
in H is uniquely decomposable, then

[all diagrams in H ] = [the diagram obtained from Γ by replacing the

η-bonds by G-bonds]
Replacement of bonds in Γ involves superimposing the two white circles of the diagram
drawn from G onto the circles of Γ and erasing the bond between them. The circles take
the same colour and, if white, the same label as the corresponding circle in Γ .

Illustration. If the set G consists of the two diagrams:

r' r" r' r"
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and if

Γ =
r

then the set H consists of the three diagrams

r r r

3.8 DIAGRAMMATIC EXPANSIONS OF THE DIRECT CORRELATION
FUNCTIONS

We now give examples of how the definitions and lemmas of the previous section can be
used to obtain results of physical interest. The examples we choose are ones that lead to
series expansions of the direct correlation functions c(1)(r) and c(2)(r, r′) introduced in
Section 3.5. We assume again that the interparticle forces are pairwise additive and take as
our starting point the expression for Ξ given by (3.4.5). It follows immediately that Ξ can
be represented diagrammatically as

Ξ = 1 + [all diagrams consisting of black z∗-circles with an e-bond

linking each pair]
= 1 + + + + + · · · (3.8.1)

Note that the definition of the value of a diagram takes care of the factors 1/N ! in (3.4.5).
Because e(i, j) → 1 as |rj − ri | → ∞, the contribution from the N th term in (3.8.1)
is of order V N , and problems arise in the thermodynamic limit. It is therefore better to
reformulate the series in terms of Mayer functions by making the substitution f (i, j) =
e(i, j) − 1, as in example (3.7.2). The series then becomes

Ξ = 1 + [all diagrams consisting of black z∗-circles and f -bonds]
= 1 + + + + + + + + · · · (3.8.2)

The disconnected diagrams in (3.8.2) can be eliminated by taking the logarithm of Ξ and
applying Lemma 1. This yields an expansion of the grand potential in the form

−βΩ = [all connected diagrams consisting of black z∗-circles and f -bonds]
= + + + + · · · (3.8.3)

Since there is no need to consider disconnected diagrams again, the requirement that dia-
grams must be connected will from now on be omitted.
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At each order in z∗ beyond the second, many of the diagrams in the series (3.8.3) contain
articulation circles; those contributing at third and fourth orders are shown below, with the
articulation circles marked by arrows:

If the system were translationally invariant, the articulation circles could be chosen as the
origin of coordinates in the corresponding integrals. The integrals would then factorise as
products of integrals that already appear at lower order in the expansion. While this is not
possible in the general case, diagrams that contain articulation circles can be eliminated
by switching from an activity to a density expansion. This requires, as an intermediate
step, the activity expansion of ρ(1)(r). The single-particle density at a point r is the func-
tional derivative of the grand potential with respect to either ψ(r) or, equivalently, ln z∗(r).
From (3.3.10) and Lemma 2 it follows that

ρ(1)(r)/z∗(r) = 1 + [all diagrams consisting of a white 1-circle labelled

r, at least one black z∗-circle and f -bonds] (3.8.4)

The diagrams in (3.8.4) fall into two classes: those in which the articulation circle is a
white circle and those in which it is not and are therefore star-irreducible. The first of these
classes is just the set of all diagrams that can be expressed as star products of diagrams in
the second class. Use of Lemma 1 therefore eliminates the diagrams with white articulation
circles to give an expansion of ln[ρ(1)(r)/z∗(r)] which, from (3.5.3), is equal to c(1)(r):

c(1)(r) = [all diagrams consisting of a white 1-circle labelled r, at least

one black z∗-circle and f -bonds, such that the white circle

is not an articulation circle] (3.8.5)

The diagrams in (3.8.5) are all star-irreducible, but some contain black articulation cir-
cles. To eliminate the latter, we proceed as follows. For each diagram Γ in (3.8.5) we
identify a maximal, irreducible subdiagram Γm that contains the single white circle.

Illustration.

Γ = Γm =

In the example shown there is one articulation circle (marked by an arrow) and there are
two maximal, irreducible subdiagrams, one of which contains the white circle. It is easily
proved15 that for each Γ there is a unique choice of Γm; if Γ itself is irreducible, Γ and Γm
are the same. The set {Γm} is a subset of the diagrams in (3.8.5). Given any Γm, the diagram
from which it derives can be reconstructed by decorating the black circles with diagrams
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taken from the set defined in (3.8.4). Lemma 4 can therefore be used in a topological
reduction whereby the z∗-circles in (3.8.5) are replaced by ρ(1)-circles and diagrams with
black articulation circles disappear. Thus

c(1)(r) = [all irreducible diagrams consisting of one white 1-circle

labelled r, at least one black ρ(1)-circle and f -bonds]
=

r
+

r

+
r

+
r

+
r

+
r

+ · · · (3.8.6)

The final step is to exploit the definition (3.5.2) of the two-particle direct correlation func-
tion as a functional derivative by applying Lemma 2 to the series (3.8.6). The diagrams
in (3.8.6) are irreducible; since they contain only one white circle this is equivalent to
saying that they are free of connecting circles. Clearly they remain free of connecting cir-
cles when a second black circle is whitened as a result of the functional differentiation. It
follows that c(2)(r, r′) can be expressed diagrammatically as

c(2)(r, r′) = [all diagrams consisting of two white 1-circles labelled r

and r′, black ρ(1)-circles and f -bonds, and which are free

of connecting circles]
=

r r'
+

r r'

+
r r'

+
r r'

+
r r'

+
r r'

+
r r

+
r r'

+
r r'

+ · · · (3.8.7)

When there is no external field, (3.8.7) becomes an expansion of c(r) in powers of the
number density.16

The form of (3.8.7) suggests that the range of the direct correlation function should be
roughly the range of the pair potential, as anticipated in Section 3.5. To lowest order in ρ,
c(r) ≈ f (r) or, at large r , c(r) ≈ −βv(r). Since all higher-order diagrams in (3.8.7) are at
least doubly connected, the contributions they make to c(r) decay at least as fast as [f (r)]2,
and are therefore negligible in comparison with the leading term in the limit r → ∞.
However, the effects of indirect correlations are such that h(r) can be significantly different
from zero even for distances at which the potential is very weak. The contrast in behaviour
between c(r) and h(r) is particularly evident close to the critical point. As the critical
point is approached the compressibility χT becomes very large. It follows from (3.5.14)
that ĥ(k), the Fourier transform of h(r), acquires a strong peak at the origin, eventually
diverging as T → Tc, which implies that h(r) becomes very long ranged. On the other
hand, (3.5.15) shows that

ρĉ(0) = 1 − β/ρχT (3.8.8)

Close to the critical point, ρĉ(0) ≈ 1; c(r) therefore remains short ranged.
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The argument concerning the relative ranges of h(r) and c(r) does not apply to ionic
fluids. The effect of screening in ionic systems is to cause h(r) to decay exponentially at
large r , whereas c(r) still has the range of the potential and therefore decays as r−1. In this
situation c(r) is of longer range than h(r).

3.9 VIRIAL EXPANSION OF THE EQUATION OF STATE

The derivation of the series expansion of c(1)(r) yields as a valuable by-product the virial
expansion of the equation of state of a homogeneous fluid. If there is no external field, c(1)

can be replaced by −βμex and ρ(1) by ρ. Equation (3.8.6) then becomes

βμ = βμid −
∞∑
i=1

βiρ
i (3.9.1)

where the coefficients βi are the irreducible “cluster integrals”; βiρ
i is the sum of all

diagrams in (3.8.6) that contain precisely i black circles but with ρ(1) replaced by ρ. The
first two coefficients are

β1 =
∫

f (0,1)d1 (3.9.2)

β2 = 1
2

∫∫
f (0,1)f (0,2)f (1,2)d1 d2 (3.9.3)

where, in each case, the white circle is labelled 0. Substitution of (3.9.1) in (2.4.21) and
integration with respect to ρ gives

βP = ρ −
∞∑
i=1

i

i + 1
βiρ

i+1 (3.9.4)

If the virial coefficients are defined as B1 = 1,

Bi+1 = − i

i + 1
βi, i � 1 (3.9.5)

we recover the virial expansion in its standard form:

βP

ρ
= 1 +

∞∑
i=2

Bi(T )ρi−1 (3.9.6)

The coefficients B2 and B3 are given by

B2 = − 1
2β1 = − 1

2

∫
f (r)dr (3.9.7)
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B3 = − 2
3β2 = − 1

3

∫∫
f (r)f (r ′)f

(|r − r′|)dr dr′ (3.9.8)

where the coordinates of the white circle have been taken as origin.
The expression for the second virial coefficient is more easily obtained by inserting in

the virial equation (2.5.22) the low-density limit of g(r) given by (2.6.10). Then

βP

ρ
≈ 1 − 2πβρ

3

∫ ∞

0
v′(r)e(r)r3 dr (3.9.9)

If the pair potential decays faster than r−3 at large r , (3.9.9) can be integrated by parts to
give

βP

ρ
≈ 1 − 2πρ

∫ ∞

0
f (r)r2 dr (3.9.10)

in agreement with (3.9.7). Measurements of the deviation of the equation of state of dilute
gases from the ideal-gas law allow the second virial coefficient to be determined exper-
imentally as a function of temperature. Such measurements are an important source of
information on the nature of the force law between atoms or small molecules.

It is clear from the definition of the virial coefficients that the number of diagrams that
contribute to the ith coefficient grows rapidly with i, while the associated integrals be-
come increasingly more complicated. For example, the numbers of diagrams entering the
expressions for B3, B4, B5 and B6 are, respectively, 1, 3, 10, 56 and 468, and the di-
mensions of the integrals increase each time by three. Not surprisingly, therefore, explicit
calculations have been confined to the low-order coefficients. For hard spheres, B2, B3
and B4 are known analytically, and B5 to B8 have been evaluated numerically. If we define
the packing fraction, η, as

η = πρd3

6
(3.9.11)

the virial expansion for hard spheres can be rewritten as

βP

ρ
= 1 +

∞∑
i=1

Biη
i (3.9.12)

with

Bi =
(

6

πd3

)i

Bi+1 (3.9.13)

The eight-term series, based on tabulated values17 of the coefficients Bi , is now

βP

ρ
= 1 + 4η + 10η2 + 18.365η3 + 28.225η4 + 39.74η5

+ 53.5η6 + 70.8η7 + · · · (3.9.14)



76 STATIC PROPERTIES OF LIQUIDS: THERMODYNAMICS AND STRUCTURE

Figure 3.3 shows that the pressures calculated from the truncated, eight-term series are
in good agreement with the results of computer simulations at all densities up to the fluid–
solid transition at η ≈ 0.49.

Guided by the form of (3.9.14), Carnahan and Starling18 were able to construct a simple
but very accurate hard-sphere equation of state. Noting that B1 and B2 are both integers,
they chose to replace B3 by the nearest integer, 18, and supposed that Bi for all i is given
by

Bi = a1i
2 + a2i + a3 (3.9.15)

With B1 = 4, B2 = 10 and B3 = 18, the solution to (3.9.15) is a1 = 1, a2 = 3 and a3 = 0.
The formula then predicts that B4 = 28, B5 = 40, B6 = 54 and B7 = 70, in close agreement
with the coefficients in (3.9.14). The expression

βP

ρ
= 1 +

∞∑
i=1

(
i2 + 3i

)
ηi (3.9.16)

may be written as a linear combination of the first and second derivatives of the geometric
series

∑
i η

i . It can therefore be summed explicitly to give

βP

ρ
= 1 + η + η2 − η3

(1 − η)3
(3.9.17)

Equation (3.9.17) provides an excellent fit to the results of computer simulations over the
entire fluid range; the largest discrepancies are of the order of 1%. Other equations of state

0

5

10

15

0.0 0.2 0.4 0.6

/
P

8

6

4

2

3

5

hard-sphere fluid

FIG. 3.3. Equation of state of hard spheres calculated from the virial series (3.9.14). The points are the values
obtained for η = 0.50 when different numbers of virial coefficients are included and the full curve shows the
nearly exact results given by (3.9.17).
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have been devised,19 but the simple form of the Carnahan–Starling equation makes it very
convenient for use in thermodynamic calculations.20 In particular, a closed expression for
the excess Helmholtz free energy is obtained by combining (3.9.17) with the second of the
thermodynamic relations (2.3.8):

βF ex

N
=
∫ η

0

(
βP

ρ
− 1

)
dη′

η′ = η(4 − 3η)

(1 − η)2
(3.9.18)

The Carnahan–Starling equation of state is widely used in perturbation theories of the type
discussed in Chapter 5.
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CHAPTER 4

Distribution-function Theories

The greater part of this chapter is devoted to a description of the more important theoretical
methods available for calculation of the pair distribution function of a uniform fluid. If
the pair distribution function is known, thermodynamic properties of the system can be
obtained by a number of different routes. We begin, however, by describing the way in
which the distribution function is measured in radiation-scattering experiments.

4.1 THE STATIC STRUCTURE FACTOR

The structure factor of a uniform fluid was defined in Section 3.6 in terms of the Fourier
transform of the pair correlation function, h(r). It can be defined more generally as

S(k) =
〈

1

N
ρkρ−k

〉
(4.1.1)

where ρk is a Fourier component of the microscopic density (3.1.2):

ρk =
∫

ρ(r) exp(−ik · r)dr =
N∑
i=1

exp(−ik · ri ) (4.1.2)

Given the δ-function representation of the pair density in (2.5.13), the definition (4.1.1)
implies that in the homogeneous case:

S(k) =
〈

1

N

N∑
i=1

N∑
j=1

exp(−ik · ri ) exp(ik.rj )

〉

= 1 +
〈

1

N

N∑
i=1

N∑
j �=i

exp
[−ik · (ri − rj )

]〉

= 1 +
〈

1

N

N∑
i=1

N∑
j �=i

∫∫
exp
[−ik · (r − r′)

]
δ(r − ri )δ(r′ − rj )dr dr′

〉

78
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= 1 + 1

N

∫∫
exp
[−ik · (r − r′)

]
ρ
(2)
N (r − r′)dr dr′

= 1 + ρ

∫
g(r) exp(−ik · r)dr (4.1.3)

In the last step we have used the definition (2.5.8) of the pair distribution function and
exploited the fact that the system is translationally invariant in order to integrate over r′.
Conversely, g(r) is given by the inverse transform

ρg(r) = (2π)−3
∫ [

S(k) − 1
]

exp(ik · r)dk (4.1.4)

The final result in (4.1.3) can also be written as

S(k) = 1 + (2π)3ρδ(k) + ρĥ(k) (4.1.5)

The definitions (3.6.10) and (4.1.1) are therefore equivalent apart from a δ-function term,
which henceforth we shall ignore. Experimentally (see below) the term corresponds to
radiation that passes through the sample unscattered.

The structure factor of a fluid can be determined experimentally from measurements of
the cross-section for scattering of neutrons or x-rays by the fluid as a function of scattering
angle. Below we give a simplified treatment of the calculation of the neutron cross-section
in terms of S(k).

Let us suppose that an incident neutron is scattered by the sample through an angle θ .
The incoming neutron can be represented as a plane wave:

ψ1(r) = exp(ik1 · r) (4.1.6)

while at sufficiently large distances from the sample the scattered neutron can be repre-
sented as a spherical wave:

ψ2(r) ∼ exp(ik2r)

r
(4.1.7)

Thus, asymptotically (r → ∞), the wavefunction of the neutron behaves as

ψ(r) ∼ exp(ik1 · r) + f (θ)
exp(ik2r)

r
(4.1.8)

and the amplitude f (θ) of the scattered component is related to the differential cross-
section dσ/dΩ for scattering into a solid angle dΩ in the direction θ , φ by

dσ

dΩ
= ∣∣f (θ)

∣∣2 (4.1.9)

The geometry of a scattering event is illustrated in Figure 4.1. The momentum transferred
from neutron to sample in units of h̄ is

k = k1 − k2 (4.1.10)
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observer

sample

k2

k1

k

k1

FIG. 4.1. Geometry of an elastic scattering event.

To simplify the calculation we assume that the scattering is elastic. Then |k1| = |k2| and

k = 2k1 sin 1
2θ = 4π

λ
sin 1

2θ (4.1.11)

where λ is the neutron wavelength.
The scattering of the neutron occurs as the result of interactions with the atomic nu-

clei. These interactions are very short ranged, and the total scattering potential V(r) may
therefore be approximated by a sum of δ-function pseudopotentials in the form

V(r) = 2πh̄2

m

N∑
i=1

biδ(r − ri ) (4.1.12)

where bi is the scattering length of the ith nucleus. For most nuclei, bi is positive, but it
may also be negative and even complex; it varies both with isotopic species and with the
spin state of the nucleus.

The wavefunction ψ(r) must be a solution of the Schrödinger equation:(
− h̄2

2m
∇2 + V(r)

)
ψ(r) = Eψ(r) (4.1.13)

The general solution having the correct asymptotic behaviour is

ψ(r) = exp(ik1 · r) − m

2πh̄2

∫
exp(ik1|r − r′|)

|r − r′| V(r′)ψ(r′)dr′ (4.1.14)

The second term on the right-hand side represents a superposition of spherical waves em-
anating from each point in the sample.

Equation (4.1.14) is an integral equation for ψ(r). The solution in the case when the
interaction V(r) is weak is obtained by setting ψ(r) ≈ exp(ik1 · r) inside the integral sign.
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This substitution yields the so-called first Born approximation to ψ(r):

ψ(r) ≈ exp(ik1 · r) − m

2πh̄2

∫
exp(ik1|r − r′|)

|r − r′| V(r′) exp(ik1 · r′)dr′ (4.1.15)

We can now obtain an expression for f (θ) by taking the r → ∞ limit of (4.1.15) and
matching the result to the known, asymptotic form of ψ(r) given by (4.1.8). If |r| � |r′|,
then

|r − r′| = (r2 + r ′2 − 2r · r′)1/2 ≈ r − r̂ · r′ (4.1.16)

where r̂ is a unit vector in the direction of r. Since we have assumed that the scattering is
elastic, k1r̂ = k2. Thus, as r → ∞:

ψ(r) ∼ exp(ik1 · r) − exp(ik1r)

r

m

2πh̄2

∫
exp(−ik2 · r′)V(r′) exp(ik1 · r′)dr′ (4.1.17)

By comparing (4.1.17) with (4.1.8), and remembering that k1 = k2, we find that

f (θ) = − m

2πh̄2

∫
exp(−ik2 · r)V(r) exp(ik1 · r)dr

= − m

2πh̄2

∫
V(r) exp(ik · r)dr (4.1.18)

Hence the amplitude of the scattered component is proportional to the Fourier transform
of the scattering potential. The first line of (4.1.18) also shows that f (θ) is expressible
as a matrix element of the interaction V(r) between initial and final plane-wave states of
the neutron. Use of the first Born approximation is therefore equivalent to calculating the
cross-section dσ/dΩ by the “golden rule” of quantum mechanical perturbation theory.

An expression for dσ/dΩ can now be derived by substituting for V(r) in (4.1.18), in-
serting the result in (4.1.9) and taking the thermal average. This yields the expression

dσ

dΩ
=
〈∣∣∣∣∣

N∑
i=1

bi exp(−ik · ri )

∣∣∣∣∣
2〉

=
〈

N∑
i=1

N∑
j=1

bibj exp
[−ik · (rj − ri )

]〉
(4.1.19)

A more useful result is obtained by taking an average of the scattering lengths over isotopes
and nuclear spin states, which can be done independently of the thermal averaging over
coordinates. We therefore introduce the notation〈

b2
i

〉≡ 〈b2
〉
, 〈bibj 〉 = 〈bi〉〈bj 〉 ≡ 〈b〉2

〈b〉2 ≡ b2
coh,

(〈
b2
〉− 〈b〉2

)≡ b2
inc

(4.1.20)
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and rewrite (4.1.19) as

dσ

dΩ
= N

〈
b2〉+ 〈b〉2

〈
N∑
i=1

N∑
j �=i

exp
[−ik · (rj − ri )

]〉

= N
(〈
b2〉− 〈b〉2)+ 〈b〉2

〈∣∣∣∣∣
N∑
i=1

exp(−ik · ri )

∣∣∣∣∣
2〉

= Nb2
inc + Nb2

cohS(k) (4.1.21)

The subscripts “coh” and “inc” refer, respectively, to coherent and incoherent scattering.
Information about the structure of the fluid is contained entirely within the coherent con-
tribution to the cross-section; there is no incoherent contribution if the sample consists of
a single isotopic species of zero nuclear spin. The amplitude of the wave scattered by a
single, fixed nucleus is

f (θ) = −b

∫
δ(r) exp(ik · r)dr = −b (4.1.22)

In the absence of incoherent scattering the cross-section for scattering by a liquid is

dσ

dΩ
= Nb2S(k) (4.1.23)

where Nb2 is the cross-section for a system of N independent nuclei and S(k) represents
the effects of spatial correlations.

A similar calculation can be made of the cross-section for elastic scattering of x-rays.
There is now no separation into coherent and incoherent parts, but the expression for the
differential cross-section has the same general form as in (4.1.23). One important differ-
ence is that x-rays are scattered by interaction with the atomic electrons and the analogue
of the neutron scattering length is the atomic form factor, f (k). The latter, unlike b, is a
function of k and defined as

f (k) =
〈

Z∑
n=1

exp
[
ik · (r(n)i − ri

)]〉
Q

(4.1.24)

where the subscript Q denotes a quantum mechanical expectation value, r(n)i represents the
coordinates of the nth electron of the ith atom (with nuclear coordinates ri ) and Z is the
atomic number; for large atoms, f (k) ≈ Z over the range of k in which S(k) displays a
significant degree of structure.

The pair distribution function is derived from a measured structure factor, such as that
pictured in Figure 3.2, by numerically transforming the experimental data according to
(4.1.4). Difficulties arise in practise because measurements of S(k) necessarily introduce a
cut-off at large values of k. These difficulties are the source of the unphysical ripples seen
at small r in the distribution function for liquid argon shown in Figure 2.1.
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The definition of the structure factor given by (4.1.1) is easily extended to systems of
more than one component. As in Section 3.6, we consider an n-component system in which
the number concentration of species ν is xν . The microscopic partial density ρν(r) and its
Fourier components ρν

k are defined in a manner analogous to (3.1.2) and (4.1.2), except
that the sums run only over the particles of species ν. Thus

ρν
k =

Nν∑
i=1

exp(−ik · ri ) (4.1.25)

If the fluid is homogeneous, the partial pair distribution function

gνμ(r) = hνμ(r) + 1 (4.1.26)

has a δ-function representation given by

xνxμρgνμ(r) =
〈

1

N

Nν∑
i=1

Nμ∑
j=1

′
δ(r + rj − ri )

〉
(4.1.27)

The partial structure factor defined by a generalisation of (4.1.1) as

Sνμ(k) =
〈

1

N
ρν

kρ
μ

−k

〉
(4.1.28)

is related to gνμ(r) by

Sνμ(k) = xνδνμ + xνxμρ

∫
gνμ(r) exp(−ik · r)dr (4.1.29)

which again differs from the earlier definition (3.6.15) by an unimportant δ-function term.

4.2 THE YBG HIERARCHY AND THE BORN–GREEN EQUATION

It was shown in Section 2.1 that the non-equilibrium phase-space distribution functions
f (n)(rn,pn; t) are coupled together by a set of equations called the BBGKY hierarchy.
A similar hierarchy exists for the equilibrium particle densities, assuming again that the
forces between particles are pairwise additive; this is generally known as the Yvon–Born–
Green or YBG hierarchy.

Consider first the case when n = 1. At equilibrium (2.1.20) becomes(
p1

m
.
∂

∂r1
+ X1.

∂

∂p1

)
f

(1)
0 (r1,p1)

= −
∫∫

F12.
∂

∂p1
f

(2)
0 (r1,p1, r2,p2)dr2 dp2 (4.2.1)
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where, from the expression for f (n)
0 given by (2.5.1) with the subscript N omitted:

f
(1)
0 (r1,p1) = ρ(1)(r1)fM(p1) (4.2.2)

f
(2)
0 (r1,p1, r2,p2) = ρ(2)(r1, r2)fM(p1)fM(p2) (4.2.3)

On inserting (4.2.2) and (4.2.3) into (4.2.1), exploiting the normalisation (2.1.27) and the
fact that (∂/∂p)fM(p) = −(β/m)pfM(p), and finally dividing through by (β/m)fM(p1),
we obtain a relation between the single-particle (n = 1) and pair (n = 2) densities:

(kBT p1 · ∇1 − p1 · X1)ρ
(1)(r1) =

∫
(p1 · F12)ρ

(2)(r1, r2)dr2 (4.2.4)

Equation (4.2.4) may be cast in the form pi · Q = 0 where i = 1, but because this result
would be true for any choice of pi it follows that Q = 0. Thus, replacing the forces X1
and F12 in (4.2.4) by the negative gradients of the external potential φ(r1) and interparticle
potential v(r1, r2), respectively, and dividing through by ρ(1)(r1), we find that

−kBT∇1 lnρ(1)(r1) = ∇1φ(r1) +
∫

∇1v(r1, r2)ρ
(1)(r2)g

(2)(r1, r2)dr2 (4.2.5)

This expression provides a possible starting point for the calculation of the density profile
of a fluid in an external field, while if there are no interactions between particles it reduces
to the usual barometric law, ρ(1)(r) ∝ exp[−βφ(r)].

Similar manipulations for the case when n = 2 yield a relationship between the pair and
triplet distribution functions which, in the absence of an external field, takes the form

−kBT∇1 lng(2)(r1, r2)

= ∇1v(r1, r2) + ρ

∫
∇1v(r1, r3)

(
g(3)(r1, r2, r3)

g(2)(r1, r2)
− g(2)(r1, r3)

)
dr3 (4.2.6)

where on the right-hand side we have subtracted a term that vanishes in the isotropic case.
We now eliminate the triplet distribution function by use of Kirkwood’s superposition
approximation,1 i.e.

g(3)(r1, r2, r3) ≈ g(2)(r1, r2)g
(2)(r2, r3)g

(2)(r1, r3) (4.2.7)

which becomes exact in the limit ρ → 0. When this approximation is introduced into
(4.2.6) the result is a non-linear integro-differential equation for the pair distribution func-
tion in terms of the pair potential:

−kBT∇1
[
lng(r1, r2) + βv(r1, r2)

]
= ρ

∫
∇1v(r1, r3)g(r1, r3)

[
g(r2, r3) − 1

]
dr3 (4.2.8)
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This is the Born–Green equation.2 Given v(r), (4.2.8) can be solved numerically to yield
g(r), from which in turn all thermodynamic properties can be derived via the energy, pres-
sure and compressibility equations. The work of Born and Green represented one of the
earliest attempts to determine the structure and thermodynamics of a classical fluid by fol-
lowing a well-defined statistical mechanical route, but the results obtained are satisfactory
only at low densities.3 As we shall see later, other approximate integral equations have
subsequently been proposed that work well even at high densities.

By construction, the superposition approximation satisfies the so-called core condition
for hard-core systems, meaning that g(3)(r1, r2, r3) vanishes when any of the interparticle
distances r12, r13 or r23 is less than the hard-core diameter. However, it violates the sum
rule

g(2)(r1, r2) = ρ

N − 2

∫
g(3)(r1, r2, r3)dr3 (4.2.9)

which follows directly from the definitions (2.5.3) and (2.5.9). An alternative to (4.2.7) is
provided by the “convolution” approximation,4 which has the merit of satisfying (4.2.9)
exactly. The approximation is most easily expressed in k-space, where it takes the form

S(3)(k,k′) ≡
〈

1

N
ρkρk′ρ−k−k′

〉
≈ S(k)S(k′)S

(|k + k′|) (4.2.10)

The product of structure factors in (4.2.10) transforms in r-space into a convolution product
of pair distribution functions, but this fails to satisfy the core condition and in practice is
rarely used. The convolution approximation can be derived5 by setting the triplet function
ĉ(3)(k,k′) equal to zero in the three-particle analogue of the Ornstein–Zernike relation
(3.5.10).

4.3 FUNCTIONAL EXPANSIONS AND INTEGRAL EQUATIONS

A series of approximate integral equations for the pair distribution function of a uniform
fluid in which the particles interact through pairwise-additive forces can be derived system-
atically by an elegant method due to Percus.6 The basis of the method is the interpretation
of the quantity ρg(r) as the single-particle density at a point r in the fluid when a particle
of the system is known to be located at the origin, r = 0. The particle at the origin, labelled
0, is assumed to be fixed in space, while the other particles move in the force field of parti-
cle 0. Then the total potential energy of the remaining particles in the “external” field due
to particle 0 is of the form (3.1.3), with

φ(i) = v(0, i) (4.3.1)

Let Ξ [φ], as given by (3.1.8), be the grand partition function in the presence of the external
field. In that expression, VN is the total interatomic potential energy of particles 1, . . . ,N .
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Alternatively, we may treat the particle at the origin as an (N + 1)th particle. Then

VN +
N∑
i=1

φ(i) =
N∑
i=1

N∑
j>i

v(i, j) +
N∑
i=1

v(0, i) = VN+1 (4.3.2)

If we denote the partition function in the absence of the field by Ξ0, (3.1.8) may be rewrit-
ten as

Ξ [φ] =
∞∑

N=0

zN

N !
∫

· · ·
∫

exp(−βVN+1)d1 · · ·dN

= Ξ0

z

∞∑
N=0

1

Ξ0

zN+1

N !
∫

· · ·
∫

exp(−βVN+1)d1 · · ·dN

= Ξ0

z

∞∑
N=1

1

Ξ0

zN

(N − 1)!
∫

· · ·
∫

exp(−βVN)d1 · · ·d(N − 1) (4.3.3)

Equation (2.5.3) shows that the sum on N in (4.3.3) is the definition of the single-particle
density in a homogeneous system. Thus

Ξ [φ] = ρΞ0

z
(4.3.4)

The physical content of this result is closely related to that of (2.4.30). By a similar ma-
nipulation, but starting from (3.1.9), it can be shown that the single-particle density in the
presence of the external field is related to the two-particle density in the absence of the
field by

ρ(1)(1|φ) = ρ(2)(0,1|φ = 0)

ρ
(4.3.5)

Because the system is spatially uniform in the absence of the field, (2.6.7) and (4.3.5)
together yield the relation

ρ(1)(1|φ) = ρg(0,1) (4.3.6)

which is the mathematical expression of Percus’s idea. The effect of switching on the force
field of particle 0 is to change the potential φ(1) from zero to Δφ = v(0,1); the response,
measured by the change in the single-particle density, is

Δρ(1)(1) = ρ(1)(1|φ) − ρ(1)(1|φ = 0) = ρg(0,1) − ρ = ρh(0,1) (4.3.7)

If the field due to particle 0 is regarded as a perturbation, it is natural to consider func-
tional Taylor expansions of various functionals of φ or ρ(1) with respect to Δφ. One obvi-
ous choice is to expand Δρ(1) itself in powers of Δφ. The first-order result is simply the



FUNCTIONAL EXPANSIONS AND INTEGRAL EQUATIONS 87

Yvon equation (3.6.7), with the infinitesimal quantities δρ(1), δφ replaced by Δρ(1),Δφ.
On combining this expression with (4.3.1) and (4.3.7) we find that

h(0,1) = −βv(0,1) + ρ

∫
h(1,2)

[−βv(0,2)
]

d2 (4.3.8)

Comparison with the Ornstein–Zernike relation (3.5.12) shows that in this approximation

c(0,1) ≈ −βv(0,1) (4.3.9)

When the potential is steeply repulsive at short range, (4.3.8) and (4.3.9) are very poor
approximations, because Δρ(1) is then a highly non-linear functional of φ. The approach
is more successful in the case of the Coulomb potential; as we shall see in Section 4.5,
(4.3.9) is equivalent to the Debye–Hückel approximation.

Better results are obtained for short-ranged potentials by expansion in powers of Δρ(1).
In combination with the Ornstein–Zernike relation, each choice of functional to be ex-
panded yields a different integral equation for the pair distribution function. Here we con-
sider the effect of expanding the intrinsic free energy. Equation (3.5.23) is an exact relation
for F ex[ρ(1)] relative to the free energy of a reference system at the same temperature and
chemical potential. If we take the reference system to be a uniform fluid of density ρ0 and
chemical potential μ0, the quantities c

(1)
0 , F ex can be replaced by −βμex

0 , F ex
0 and (3.5.23)

becomes

F ex[ρ(1)] = F ex
0 + μex

0

∫
Δρ(1)(r)dr

− kBT

∫ 1

0
dλ (1 − λ)

∫∫
Δρ(1)(r)c(2)(r, r′;λ)Δρ(1)(r′)dr dr′ (4.3.10)

This result is still exact, but if we make the approximation of setting c(2)(r, r′;λ) equal
to the direct correlation function of the reference system, c(20 (r, r′), for all values of λ, we
obtain an expansion of Fex[ρ(1)] correct to second order in Δρ(1) ≡ ρ(1) − ρ0:

F ex ≈ F ex
0 + μex

0

∫
Δρ(1)(r)dr

− 1
2kBT

∫∫
Δρ(1)(r)c(2)0 (r, r′)Δρ(1)(r′)dr dr′ (4.3.11)

or, after adding the ideal part, given by (3.1.22), and replacing μex
0 by μ0 − kBT lnρ0Λ

3:

F
[
ρ(1)] ≈ F0 + (μ0 − kBT )

∫
Δρ(1)(r)dr + kBT

∫
ρ(1)(r) ln

ρ(1)(r)
ρ0

dr

− 1
2kBT

∫∫
Δρ(1)(r)c(2)0

(|r − r′|)Δρ(1)(r′)dr dr′ (4.3.12)
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The grand-potential functional Ωφ[ρ(1)] defined by (3.4.1) is

Ωφ

[
ρ(1)]= F

[
ρ(1)]+ ∫ ρ(1)(r)φ(r)dr − μ

∫
ρ(1)(r)dr (4.3.13)

or, after substitution for F from (4.3.12):

Ωφ

[
ρ(1)] ≈ Ω0 +

∫
ρ(1)(r)φ(r)dr

+ kBT

∫ (
ρ(1)(r) ln

ρ(1)(r)
ρ0

− Δρ(1)(r)
)

dr

− 1
2kBT

∫∫
Δρ(1)(r)c(2)0

(|r − r′|)Δρ(1)(r′)dr dr′ (4.3.14)

where

Ω0 = F0 − μ0

∫
ρ0 dr (4.3.15)

is the grand potential of the reference system. At equilibrium, Ωφ is a minimum with
respect to variations in the single-particle density, and it is straightforward to show that the
density which minimises (4.3.14) is

ρ(1)(r) = ρ0 exp

(
−βφ(r) +

∫
Δρ(1)(r′)c(2)0

(|r − r′|)dr′
)

(4.3.16)

The same result is obtained by minimising the total free-energy functional obtained by
adding the external-field term to (4.3.12), but subject now to the constraint that the total
number of particles must remain constant, i.e.∫

Δρ(1)(r)dr = 0 (4.3.17)

Equation (4.3.16) may be viewed as providing either an expression for the density profile
of a fluid in a true external field or, following Percus, an expression for the pair distribution
function of a uniform fluid of density ρ0 for which φ(r) can be identified with the pair
potential. In the uniform case it follows from (4.3.7) that

g(r) = exp

(
−βv(r) + ρ

∫
c
(|r − r′|)h(r′)dr′

)
(4.3.18)

or, from the Ornstein–Zernike relation (3.5.12):

g(r) = exp
[−βv(r)

]
exp
[
h(r) − c(r)

]
(4.3.19)
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Equation (4.3.19) represents the hypernetted-chain or HNC approximation.7 The corre-
sponding expression for the grand potential is obtained by substituting (4.3.6) for ρ(1)(r)
in (4.3.14). This leads, after some rearrangement and use of the Ornstein–Zernike relation,
to the expression

Ω = Ω0 + 1
2ρkBT

∫
h(r)

[
h(r) − c(r)

]
dr − ρkBT

∫
c(r)dr (4.3.20)

The quantity ΔΩ = Ω −Ω0 is the change in grand potential arising from the introduction
of a particle that acts as the source of the external field. Since that particle is fixed in
space, it makes no contribution to the ideal free energy, and the change in grand potential
is therefore equal to the excess chemical potential. Thus, in the HNC approximation:

βμex = 1
2ρ

∫
h(r)

[
h(r) − c(r)

]
dr − ρ

∫
c(r)dr (4.3.21)

Equation (4.3.19) represents an approximate closure of the Ornstein–Zernike relation,
since it provides a second, independent relation between h(r) and c(r). Elimination of
c(r) between the two relations yields the HNC integral equation:

lng(r) + βv(r) = ρ

∫ [
g(r − r′) − 1

][
g(r′) − 1 − lng(r′) − βv(r′)

]
dr′ (4.3.22)

The HNC equation and other integral equations of a similar type can be solved numerically
by an iterative approach, starting with a guess for either of the functions h or c. Perhaps the
easiest method is to use the relation (3.5.13) between the Fourier transforms of h and c. An
initial guess, c(0)(r) say, is made and its Fourier transform inserted in (3.5.13); an inverse
transformation yields a first approximation for h(r). The closure relation between h and c

is then used to obtain an improved guess, c(1)(r) say. The process is repeated, with c(1)(r)

replacing c(0)(r) as input, and the iteration continues until convergence is achieved.8 To
ensure convergence it is generally necessary to mix successive approximations to c(r)

before they are used at the next level of iteration. A variety of elaborations of this basic
scheme have been worked out.

The approximation represented by (4.3.19) is equivalent to setting

c(r) = h(r) − ln
[
h(r) + 1

]− βv(r) (4.3.23)

For sufficiently large r , h(r) � 1; if we expand the logarithmic term in (4.3.23), we find
that c(r) ≈ −βv(r). As we shall see in Chapter 10, the r−1 decay of c(r) at large r is
crucial in determining the properties of ionic fluids. For such systems we must expect the
HNC approximation to be superior to those approximations in which c(r) has a different
asymptotic behaviour.
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4.4 THE PERCUS–YEVICK EQUATION

The derivation of (4.3.19) has a strong appeal, since it shows that the HNC closure of the
Ornstein–Zernike relation corresponds to minimising a well-defined grand-potential (or
free-energy) functional, albeit an approximate one. It also leads naturally to an expression
for the chemical potential of a uniform fluid expressed solely in terms of the functions h(r)

and c(r). The HNC equation can, however, be derived in a simpler way by expanding the
single-particle direct correlation function c(1)(r) of an inhomogeneous fluid about that of a
uniform reference system in powers of Δρ(1) where, as before, we follow Percus’s idea by
supposing that the inhomogeneity is induced by “switching on” the interaction φ(r) with
a particle fixed at the origin. To first order in Δρ(1) the result is

c(1)(r) ≈ c
(1)
0 +

∫
Δρ(1)(r′) δc(1)(r)

δρ(1)(r′)

∣∣∣∣
φ=0

dr′

= −βμex
0 +

∫
Δρ(1)(r′)c(2)0 (r, r′)dr′ (4.4.1)

where the subscript 0 again denotes a property of the reference system. Taken together
with the relation (3.5.4) between c(1)(r) and ρ(1)(r), it is easy to show that (4.4.1) is equiv-
alent to (4.3.16), and therefore leads again to the HNC expression (4.3.19). This method
of approach is also suggestive of routes to other integral equation approximations, since
there are many functionals that could be expanded to yield a possibly useful closure of the
Ornstein–Zernike relation. We can, for example, choose to expand exp[c(1)(r)] in powers
of Δρ(1). The first-order result is now

exp
[
c(1)(r)

] ≈ exp
(−βμex

0

)+ ∫ Δρ(1)(r′)δ exp[c(1)(r)]
δρ(1)(r′)

∣∣∣∣
φ=0

dr′

= exp
(−βμex

0

)(
1 +

∫
Δρ(1)(r′)c(2)0 (r, r′)dr′

)
(4.4.2)

which leads, via (3.5.4), to an expression for the pair distribution function of a uniform
fluid:

g(r) = exp
[−βv(r)

](
1 + ρ

∫
c
(|r − r′|)h(r′)dr′

)
= exp

[−βv(r)
][

1 + h(r) − c(r)
]

(4.4.3)

This is the Percus–Yevick or PY approximation.9 The integral equation that results from
using the Ornstein–Zernike relation to eliminate c(r) from (4.4.3) is

exp
[
βv(r)

]
g(r) = 1 + ρ

∫ [
g(r − r′) − 1

]
g(r′)

(
1 − exp

[
βv(r′)

])
dr′ (4.4.4)
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The approximation (4.4.3) is equivalent to taking

c(r) ≈ (1 − exp
[
βv(r)

])
g(r) (4.4.5)

so that c(r) is zero whenever the potential vanishes. The PY equation proves to be more
successful than the HNC approximation when the potential is strongly repulsive and short
ranged. From comparison of (4.4.3) with (4.3.19) we see that the PY approximation is
recovered by linearisation of the HNC result with respect to (h− c), while a diagrammatic
analysis shows that the PY equation corresponds to summing a smaller class of diagrams
in the density expansion of h(r). To some extent, therefore, the greater success of the PY
equation in the case of short-range potentials must be due to a cancellation of errors.

The HNC and PY equations are the classic integral-equation approximations of liquid-
state theory. We shall deal shortly with the question of their quantitative reliability, but it
is useful initially to note some general features of the two approximations. Both equations
predict, correctly, that g(r) behaves as exp[−βv(r)] in the limit ρ → 0. As we shall see in
Section 4.6, they also yield the correct expression for the term of order ρ in the density ex-
pansion of g(r). It follows that they both give the correct second and third virial coefficients
in the expansion of the equation of state. At order ρ2 and beyond, each approximation ne-
glects a certain number (different for each theory) of the diagrams appearing in the exact
expansion of g(r). Once a solution for the pair distribution function has been obtained, the
internal energy, pressure and compressibility can be calculated from (2.5.20), (2.5.22) and
(2.6.12), respectively. The pressure can also be determined in two other ways. First, the
inverse compressibility can be integrated numerically with respect to density to yield the
so-called compressibility equation of state. Secondly, the internal energy can be integrated
with respect to inverse temperature to give the Helmholtz free energy (see (2.3.9)); the
latter can in turn be differentiated numerically with respect to volume to give the “energy”
equation of state. The results obtained via the three routes – virial, compressibility and
energy – are in general different, sometimes greatly so. This lack of thermodynamic con-
sistency is a common feature of approximate theories. The HNC equation is a special case
insofar as it corresponds to a well-defined free-energy functional, and differentiation of
that free energy with respect to volume can be shown10 to give the same result as the virial
equation. The energy and virial routes to the equation of state are therefore equivalent.

The PY equation is of particular interest in the theory of simple liquids because it is
soluble analytically in the important case of the hard-sphere fluid. Written in terms of the
cavity distribution function y(r), the PY approximation (4.4.5) is

c(r) = y(r)f (r) (4.4.6)

For hard spheres of diameter d , (4.4.6) is equivalent to setting

c(r) = −y(r), r < d,

= 0, r > d
(4.4.7)

It follows that c(r) has a discontinuity at r = d , since y(r) is continuous everywhere (see
Section 4.6). The solution is further restricted by the fact that g(r) must vanish inside the
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hard core, i.e.

g(r) = 0, r < d (4.4.8)

Given (4.4.7) and (4.4.8) it is possible to rewrite the Ornstein–Zernike relation as an inte-
gral equation for y(r) in the form

y(r) = 1 + ρ

∫
r ′<d

y(r ′)dr′ − ρ

∫
r′<d

|r−r′ |>d

y(r ′)y
(|r − r′|)dr′ (4.4.9)

which can be solved by Laplace transform methods.11 The final result for c(r) is

c(x) = −λ1 − 6ηλ2x − 1
2ηλ1x

3, x < 1,

= 0, x > 1
(4.4.10)

where x ≡ r/d , η is the packing fraction and

λ1 = (1 + 2η)2/(1 − η)4, λ2 = −(2 + η)2/4(1 − η)4 (4.4.11)

Appendix D describes a different method of solution, due to Baxter;12 this has the advan-
tage of being easily generalised to cases where the potential consists of a hard-sphere core
and a tail. The analytical solution to the PY equation has also been found for the case of
binary mixtures of hard spheres with different but additive diameters.13

The compressibility of the hard-sphere fluid is obtained by substitution of (4.4.10) in
(3.5.15), and integration with respect to η yields the compressibility equation of state:

βP c

ρ
= 1 + η + η2

(1 − η)3
(4.4.12)

Alternatively, substitution of

lim
r→d+ g(r) = y(d) = − lim

r→d− c(r) (4.4.13)

in (2.5.26) leads to the virial equation of state:

βP v

ρ
= 1 + 2η + 3η2

(1 − η)2
(4.4.14)

The difference between P c and P v increases with increasing density. The general expres-
sions for the nth virial coefficient, obtained by expanding the two equations in powers of
η, are

Bc
n/b

n−1 = 2
[
2 + 3n(n − 1)

]
/4n

Bv
n/b

n−1 = 8[3n − 4]/4n
(4.4.15)
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FIG. 4.2. Equation of state of the hard-sphere fluid in the PY and HNC approximations. The full curves and
dashes show results from the virial and compressibility equations, respectively, and the points are calculated from
the Carnahan–Starling equation (3.9.17).

where b ≡ B2 = (2π/3)d3. Both equations yield the exact values of B2 and B3, but give
incorrect (and different) values for the higher-order coefficients.

The full equations of state are plotted in Figure 4.2 for comparison with results predicted
by the Carnahan–Starling formula (3.9.17), which is nearly exact. The pressures calculated
from the compressibility equation lie systematically closer to and above the Carnahan–
Starling results at all densities, while the virial pressures lie below them. It appears that the
Carnahan–Starling formula interpolates accurately between the two PY expressions; in fact
(3.9.17) is recovered if (4.4.12) and (4.4.14) are added together with weights, respectively,
of two-thirds and one-third:

βP

ρ
= β

3ρ

(
2P c + P v)= 1 + η + η2 − η3

(1 − η)3
(4.4.16)

Results obtained by numerical solution of the HNC equation are also shown in Figure 4.2.
They are clearly inferior to the PY results.

The PY approximation to the pair distribution function is obtained by substitution of
(4.4.10) into the Ornstein–Zernike relation; as a consequence of the discontinuity in c(x)

at x = 1, g(x) is only a piecewise-analytical function.14 A comparison of the calculated
distribution function with the results of a Monte Carlo simulation of the hard-sphere fluid
at a density (η = 0.49) close to the fluid–solid transition is shown in Figure 4.3. Although
the general agreement is good, the theoretical curve shows two significant defects. First,
the value at contact is too low. Secondly, the oscillations are slightly out of phase with
the Monte Carlo results. In addition, the amplitude of the oscillations decreases too slowly
with increasing distance, with the consequence that the main peak in the structure factor is
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FIG. 4.3. Radial distribution function of the hard-sphere fluid at a density close to the fluid–solid transition. The
curve shows the PY solution and the points are the results of Monte Carlo calculations.
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FIG. 4.4. Equation of state of the Lennard-Jones fluid along the isotherm T ∗ = 1.35. The curves show results
obtained from the PY and HNC equations via the virial (v) and energy (e) routes and the points are the results of
Monte Carlo calculations.16

too high, reaching a maximum value of 3.05 rather than the value 2.85 obtained by simu-
lation. An accurate representation of the pair distribution function of the hard-sphere fluid
is an important ingredient of many theories. To meet that need, a simple, semi-empirical
modification of the PY result has been devised in which the faults seen in Figure 4.3 are
corrected.15

Solutions to the PY and HNC equations have been obtained for a variety of other pair
potentials over wide ranges of temperature and density. Comparison of results for the
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Lennard-Jones potential with those of computer simulations show that the PY approxi-
mation is superior at all thermodynamic states for which calculations have been made.3

At high temperatures the agreement with simulations is excellent both for internal energy
and for pressure, but it worsens rapidly as the temperature is reduced. Figure 4.4 shows
results for the virial and energy equations of state along the isotherm T ∗ = 1.35, which
corresponds to a near-critical temperature. Although the pressures calculated by the en-
ergy route are in good agreement with those obtained by simulation,17 the more significant
feature of the results is the serious thermodynamic inconsistency that they reveal, which
becomes more severe as the temperature is lowered further. The deficiencies in the PY ap-
proximation at low temperatures are also evident in the behaviour of the pair distribution
function. The main peak in g(r) has too great a height and occurs at too small a value of r ,
while the later oscillations are out of phase with the results of simulations; in the latter
respect, the situation is markedly worse than it is for hard spheres. These weaknesses show
that the PY approximation cannot be regarded as a quantitatively satisfactory theory of the
liquid state.

4.5 THE MEAN SPHERICAL APPROXIMATION

There are a variety of model fluids of interest in the theory of liquids for which the pair
potential consists of a hard-sphere interaction plus a tail. The tail is normally attractive, but
not necessarily spherically symmetric. Such systems have been widely studied in the mean
spherical approximation or MSA. The name comes from the fact that the approximation
was first proposed as a generalisation of the mean spherical model of Ising spin systems.
The general form of the potential in the spherically symmetric case is

v(r) = ∞, r < d,

= v1(r), r > d
(4.5.1)

where d is the hard-sphere diameter. The MSA is defined in terms of the pair distribution
function and direct correlation function by

g(r) = 0, r < d

c(r) = −βv1(r), r > d
(4.5.2)

When supplemented by the Ornstein–Zernike relation, these two expressions combine to
yield an integral equation for g(r). The first expression is exact, while the second extends
the asymptotic behaviour of c(r) to all r > d and is clearly an approximation. Despite the
crude form assumed for c(r), the MSA gives good results in many cases. For example, it
provides a much better description of the properties of the square-well fluid18 than is given
by either the PY or HNC approximation. However, the most attractive feature of the MSA
is the fact that the integral equation can be solved analytically for a number of potential
models of physical interest, including the hard-core Yukawa fluid defined by (1.2.2) as
well as simple models of electrolyte solutions (discussed in Chapter 10) and polar liquids
(Chapter 11).
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The PY equation for hard spheres is the special case of the MSA when the tail in the
potential is absent and the analytical solution of the MSA for certain pair potentials is
closely linked to the method of solution of the PY hard-sphere problem. The two theories
also have a common diagrammatic structure,19 but the connection between them can be
established more easily in the following way. The basic PY approximation (4.4.3) may be
expressed in the form

c(r) = f (r) + f (r)
[
h(r) − c(r)

]
(4.5.3)

where f (r) is the Mayer function for the potential v(r). In the low-density limit, h(r) and
c(r) become the same, and the right-hand side of (4.5.3) reduces to f (r). Equation (4.5.3)
can therefore be rewritten as

c(r) = c0(r) + f (r)
[
h(r) − c(r)

]
(4.5.4)

where c0(r), the limiting value of c(r) at low density, is equal to f (r) both in an exact
theory and in the PY approximation. If we choose another form for c0(r) in (4.5.3), we
generate a different theory. For a potential of the type defined by (4.5.1) the exact c0(r) is

c0(r) = exp
[−βv(r)

]− 1 = [1 + fd(r)
]

exp
[−βv1(r)

]− 1 (4.5.5)

where fd(r) is the Mayer function for hard spheres. The MSA is equivalent to linearising
(4.5.5) with respect to v1(r) by setting

c0(r) ≈ [1 + fd(r)
][

1 − βv1(r)
]− 1 = fd(r) − βv1(r)

[
1 + fd(r)

]
(4.5.6)

and at the same time replacing f by fd in (4.5.4). Taken together, these two approximations
give rise to the expression

fd(r)
[
1 + h(r)

]= [c(r) + βv1(r)
][

1 + fd(r)
]

(4.5.7)

which is equivalent to the closure relation (4.5.2). This characterisation of the MSA shows
that it involves approximations additional to those underlying the PY equation. One would
therefore not expect the MSA to be of comparable accuracy to the PY approximation. In
practice, as the results for the square-well fluid show, this is not necessarily true.

The structure of (4.5.7) suggests a natural way in which the MSA can be extended to a
class of pair potentials wider than that defined by (4.5.1).20 Let us suppose that the potential
v(r) is divided in the form

v(r) = v0(r) + v1(r) (4.5.8)

The conventional MSA is applicable only when v0 is the hard-sphere potential. When v0 is
strongly repulsive but continuous, the natural generalisation of the closure relation (4.5.7)
is obtained by replacing fd by f0, the Mayer function for the potential v0. The resulting
equation can then be rearranged to give

g(r) = exp
[−βv0(r)

][
1 + h(r) − c(r) − βv1(r)

]
(4.5.9)
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which reduces to the PY approximation (4.4.3) when v1(r) is very weak. When applied
to the Lennard-Jones fluid, the “soft-core” MSA gives good results when the potential is
divided at its minimum in the manner that has also proved very successful when used in
thermodynamic perturbation theory (see Section 5.4).

4.6 DIAGRAMMATIC EXPANSIONS OF THE PAIR FUNCTIONS

In Section 3.8 we derived the density expansion of the two-particle direct correlation func-
tion c(2)(1,2). We now wish to do the same for other pair functions. One of our main goals
is to obtain a precise, diagrammatic characterisation of the HNC approximation of Sec-
tion 4.3. The simplest way to proceed is to take as starting point the iterative solution of
the Ornstein–Zernike relation in (3.5.11). That solution can be expressed in diagrammatic
terms as

h(1,2) = [all chain diagrams consisting of two terminal white 1-circles

labelled 1 and 2, black ρ(1)-circles and c-bonds]

=
1 2

+
21

+
21

+ · · · (4.6.1)

where the meaning of the terms “chain” diagram and “terminal” circle is self-evident.
We now replace the c-bonds in (4.6.1) by their series expansion. The first term on the
right-hand side of (4.6.1) yields the complete set of diagrams that contribute to c(1,2)
and are therefore free of connecting circles, which means they contain neither articulation
circles nor nodal circles. The black circles appearing at higher order are all nodal circles;
they remain nodal circles when the c-bonds are replaced by diagrams drawn from the
series (3.8.7), but no articulation circles appear. The topology of the resulting diagrams is
therefore similar to that of the diagrams in the series for c(1,2) except that nodal circles
are now permitted. Thus21

h(1,2) = [all irreducible diagrams consisting of two white 1-circles

labelled 1 and 2, black ρ(1)-circles and f -bonds] (4.6.2)

Equation (4.6.2) contains more diagrams than (3.8.7) at each order in density beyond the
zeroth-order term; the additional diagrams contain at least one nodal circle. For example,
of the two second-order terms shown below, (a) appears in both expansions but (b) appears
only in (4.6.2), because in (b) the black circles are nodal circles.

1 2 1 2

(a) (b)

Diagrams (a) and (b) differ only by the presence in (a) of an f -bond between the white
circles. If we recall that e(1,2) = f (1,2) + 1, we see that the sum of (a) and (b) is given
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by a single diagram in which the white circles are linked by an e-bond. All diagrams in
(4.6.2) can be paired uniquely in this way, except that the lowest-order diagram

1 2

appears alone. We therefore add to (4.6.2) the disconnected diagram consisting of two
white 1-circles:

1 2
= 1

and obtain an expansion of g(1,2) = h(1,2) + 1 in terms of diagrams in which the white
circles are linked by an e-bond and all other bonds are f -bonds. Alternatively, on dividing
through by e(1,2), we find that the cavity distribution function y(1,2) = g(1,2)/e(1,2)
can be expressed in the form

y(1,2) = [all irreducible diagrams consisting of two non-adjacent white

1-circles labelled 1 and 2, black ρ(1)-circles and f -bonds]

= 1 +
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+
1 2

+ · · · (4.6.3)

If the system is homogeneous and the factor e(1,2) is restored, (4.6.3) becomes an expan-
sion of g(1,2) in powers of ρ with coefficients gn(r) such that

g(r) = exp
[−βv(r)

](
1 +

∞∑
n=1

ρngn(r)

)
(4.6.4)

Both g1(r) and g2(r) have been evaluated analytically for hard spheres.22

The form of the series (4.6.4) leads immediately to two important results. First, g(r) be-
haves as exp[−βv(r)] as ρ → 0, as we proved in a different way in Section 2.6. Secondly,
y(r) is a continuous function of r even for hard spheres, for which the discontinuity in g(r)

at r = d is wholly contained in the factor exp[−βv(r)]. This useful property has already
been exploited in the derivation of the hard-sphere equation of state (2.5.26). It is also clear
from (4.6.3) that y(1,2) can be interpreted as the distribution function for a pair 1, 2 in a
“mixed” system in which the interaction between those particles is suppressed (and hence
e(1,2) = 1) but other interactions remain the same. For a system of hard spheres, two
such particles would correspond to spheres that can overlap each other, but not other parti-
cles, and therefore play a role equivalent to that of spherical cavities. Figure 4.5 shows the
calculated cavity distribution function for the Lennard-Jones fluid in a high-density, low-
temperature thermodynamic state. The very rapid increase in y(r) as r → 0 implies that
there is a high probability of finding the two “cavity” particles at very small separations.

The pair distribution function is sometimes written as

g(1,2) = exp
[−βψ(1,2)

]
(4.6.5)
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FIG. 4.5. Monte Carlo results for the cavity distribution function of the Lennard-Jones fluid. After
Llano-Restrepo and Chapman.23

where ψ(1,2) is the potential of mean force. The name is justified by the fact that the quan-
tity −∇1ψ(1,2) is the force on particle 1, averaged over all positions of particles 3,4, . . . ,
with particles 1 and 2 held at r1 and r2, respectively. This can be proved24 by taking the
logarithm of both sides of the definition of g(1,2) provided by (2.5.3) and (2.5.8) and dif-
ferentiating with respect to the coordinates of particle 1. It is clear from the behaviour of
the pair-distribution function at low-density that ψ(1,2) → v(1,2) as ρ → 0. If we define
a function ω(1,2) by

ω(1,2) = β
[
v(1,2) − ψ(1,2)

]
(4.6.6)

then

g(1,2) = e(1,2) exp
[
ω(1,2)

]
(4.6.7)

and therefore

ω(1,2) = lny(1,2) (4.6.8)

An application of Lemma 1 of Section 3.7 to the diagrams in (4.6.3) shows that

ω(1,2) = [all diagrams consisting of two non-adjacent white 1-circles

labelled 1 and 2, black ρ(1)-circles and f -bonds, such that

the white circles are not an articulation pair] (4.6.9)

The effect of this operation is to eliminate those diagrams in the expansion of y(1,2) that
are star products of other diagrams in the same expansion. The fact that the white circles
are not an articulation pair means that there exists at least one path between each pair of
black circles which does not pass through either white circle.
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From the earlier discussion we know that c(1,2) is the sum of all diagrams in h(1,2)
that are free of nodal circles. We therefore define a function b(1,2) such that

b(1,2) = h(1,2) − c(1,2) (4.6.10)

where

b(1,2) = [all irreducible diagrams consisting of two white 1-circles

labelled 1 and 2, black ρ(1)-circles and f -bonds, and which

contain at least one nodal circle]

=
1 2

+
1 2

+
1 2

+
1 2

+ · · · (4.6.11)

Diagrams belonging to the set (4.6.11) are called series diagrams; the function b(1,2) is
given by the convolution integral on the right-hand side of the Ornstein–Zernike relation
(3.5.10) and is therefore termed the indirect correlation function.

All series diagrams are also members of the set (4.6.9). The function ω(1,2) can there-
fore be re-expressed as

ω(1,2) = b(1,2) + d(1,2) (4.6.12)

where d(1,2) is the sum of the diagrams in (4.6.9) that are free of nodal circles; these
are called the bridge or elementary diagrams and d(1,2) is called the bridge function. To
second order in density the only bridge diagram is

1 2

On combining (4.6.7), (4.6.10) and (4.6.12), we obtain the following, exact relation:

ln
[
h(1,2) + 1

]= −βv(1,2) + d(1,2) + h(1,2) − c(1,2) (4.6.13)

Since h(1,2) and c(1,2) are linked by the Ornstein–Zernike relation, (4.6.13) would be
transformed into an integral equation for h (or c) if the unknown function d(1,2) were
replaced by some function of h (or c). For example, the f -bond expansion of d(1,2)
can be rewritten as an h-bond expansion25 and inserted in (4.6.13). The result, together
with the Ornstein–Zernike relation, constitutes an exact integral equation for h(1,2), but
because the h-bond expansion introduces an infinite series of many-dimensional integrals
of products of h, the equation is intractable. If instead we set d(1,2) = 0, we recover
the HNC approximation, which was arrived at in a very different way in Section 4.3. By
rewriting the exact relation (4.6.13) as

y(1,2) = exp
[
b(1,2) + d(1,2)

]
(exact) (4.6.14)
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we see that the HNC and PY approximations are equivalent to taking either

y(1,2) ≈ exp
[
b(1,2)

]
(HNC) (4.6.15)

or

y(1,2) ≈ b(1,2) + 1 (PY) (4.6.16)

In each case differences with respect to the exact result arise initially only at second order
in density. From comparison of (4.6.14) with (4.6.16) it also follows that the PY approxi-
mation can be viewed as one for which the bridge function is approximated by

d(1,2) ≈ ln
[
b(1,2) + 1

]− b(1,2) (PY) (4.6.17)

While this interpretation is certainly correct it is important not to misunderstand its mean-
ing. In particular, it does not imply that the PY approximation represents a partial summa-
tion of the diagrammatic expansion of d(r). On the contrary, the diagrammatic effect of
(4.6.17) is to replace the sum of all bridge diagrams by a sum of star products of series
diagrams.

The derivation of the Debye–Hückel expression for the radial distribution function of
a system of charged particles provides a simple but useful example of the application of
diagrammatic techniques to the calculation of pair functions. Consider a homogeneous,
one-component plasma of point charges q , for which the pair potential26 is

v(r) = q2/r (4.6.18)

Use of (4.6.18) in expansions of the pair functions leads to divergent integrals but conver-
gent results can be obtained if entire classes of diagrams are summed. The most strongly
divergent integrals in the expansion of ω(1,2) are those associated with the most weakly
connected diagrams, namely the chain diagrams. If the chain diagrams are summed to all
orders in ρ, but all other diagrams are ignored, the result is an approximation for ω(1,2)
of the form

ω(1,2) ≈ [all chain diagrams consisting of two terminal white 1-circles

labelled 1 and 2, one or more black ρ-circles and f -bonds]

=
21

+
1 2

+
21

+ · · · (4.6.19)

By analogy with (3.5.10) and (4.6.1), ω(1,2) is given by

ω(1,2) = ρ

∫
f (1,3)

[
f (3,2) + ω(3,2)

]
d3 (4.6.20)

On taking Fourier transforms (4.6.20) becomes

ω̂(k) = ρ[f̂ (k)]2

1 − ρf̂ (k)
(4.6.21)



102 DISTRIBUTION-FUNCTION THEORIES

TABLE 4.1. Selected pair functions and their definitions

Function Symbol Definition

Pair distribution function g(r) (2.5.9)
Pair correlation function h(r) g(r) − 1
Direct correlation function c(r) (3.5.2), (3.5.10)
Cavity distribution function y(r) exp[βv(r)]g(r)
Potential of mean force ψ(r) −kBT lng(r)

[Unnamed] ω(r) β[v(r) − ψ(r)]
Indirect correlation function b(r) h(r) − c(r)

Bridge function d(r) ω(r) − b(r)

with

ρf̂ (k) = ρ

∫
exp(−ik · r)f (r)dr

≈ −βρq2
∫

exp(−ik · r)
r

dr = −k2
D

k2
(4.6.22)

where

kD = (4πβρq2)1/2 (4.6.23)

is the Debye wavenumber. We now substitute for ρf̂ (k) in (4.6.21) and find that

ρ
[
ω̂(k) − βv̂(k)

]= k2
D

k2
D + k2

(4.6.24)

or

ω(r) − βv(r) = −βψ(r) = −βq2

r
exp(−kDr) (4.6.25)

We see that summing the chain diagrams leads to a potential of mean force or “renor-
malised” potential equal to v(r) exp(−kDr). This damping of the Coulomb potential by
the factor exp(−kDr) is familiar from elementary Debye–Hückel theory and corresponds
physically to the effects of screening. It follows from (4.6.5) that the corresponding ap-
proximation for the radial distribution function is

g(r) = exp

(
−βq2

r
exp(−kDr)

)
(4.6.26)

Equation (4.6.26) is more familiar in its linearised form, valid for kDr � 1, i.e.

g(r) ≈ 1 − βq2

r
exp(−kDr) (4.6.27)
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This result could have been obtained more directly by replacing c(r) by −βv(r) in (4.6.1).
A serious weakness of the linearised approximation is the fact that it allows g(r) to become
negative at small r ; this failing is rectified in the non-linear version (4.6.26).

The pair functions discussed in this section, together with their definitions, are sum-
marised in Table 4.1.

4.7 EXTENSIONS OF INTEGRAL EQUATIONS

We saw in the previous section that the development of an accurate integral equation for
g(r) can be reduced to the problem of devising a satisfactory approximation for the bridge
function d(r). The HNC approximations consists in taking d(r) = 0. Hence the integral
equations to which some other approximation, d(r) ≈ d0(r) say, gives rise can be regarded
as a modified HNC equation in which the exact relation (4.6.13) is replaced by

lng(r) = −β
[
v(r) − kBT d0(r)

]+ h(r) − c(r) (4.7.1)

The task of solving the modified equation is therefore equivalent to finding the solution to
the HNC equation for an effective potential veff(r) defined as

veff(r) = v(r) − kBT d0(r) (4.7.2)

It is possible to improve the HNC approximation systematically by including successively
higher-order terms in the series expansion of the bridge function, but the calculations are
computationally demanding and the slow convergence of the series means that in general
only modest improvement is achieved.27

The true bridge function for a given system can be calculated from (4.6.14) if c(r),
h(r) and y(r) are known. A conventional simulation provides values of h(r) at separations
where g(r) is non-zero, from which c(r) for all r can be obtained via the Ornstein–Zernike
relation; in this range of r the calculation of y(r) from h(r) is a trivial task. To determine
d(r) at smaller separations, where h(r) ≈ −1, an independent calculation of y(r) is re-
quired. This can be achieved by simulation of the mixed system, described in the previous
section, in which the particles labelled 1 and 2 do not interact with each other. The calcu-
lation is straightforward in principle, but the very rapid rise in y(r) as r → 0 means that
special techniques are needed to ensure that the full range of r is adequately sampled.23,28

Figure 4.6 shows the bridge function derived from Monte Carlo calculations for the
Lennard-Jones fluid in a thermodynamic state not far from the triple point and compares
the results with those given by the PY approximation (4.6.17). In the example illustrated,
the bridge function makes a contribution to the effective potential (4.7.2) that is both short
ranged and predominantly repulsive, but the same is true for the Lennard-Jones fluid at
other thermodynamic states and also for other model fluids. The PY approximation is poor
at small values of r , but in that region the pair potential is so strongly repulsive that errors in
the effective potential are unimportant for many purposes. So far as the calculation of ther-
modynamic properties is concerned, the most serious deficiencies in the PY approximation
occur in the region of the main peak in g(r) (r/σ ≈ 1.0 to 1.6).
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FIG. 4.6. Bridge function of the Lennard-Jones fluid for r < σ (above) and r > σ (below). The PY results are
those given by (4.6.17). After Llano-Restrepo and Chapman.23

Alternatives to the PY approximation have been proposed29 that resemble (4.6.17) in-
sofar as d(r) is written as a function of b(r). These approximations give results for the
hard-sphere fluid that improve on those obtained from the PY equation and they have also
been applied, though with generally less success, to systems having an attractive term in
the potential. There is no reason to suppose, however, that the functional relationship be-
tween d(r) and b(r) is the same for all potentials, or even for different thermodynamic
states of a given system.23,30 To improve on the PY or PY-like approximations it seems
necessary to make the assumed form of d(r) explicitly dependent on v(r). The soft-core
MSA (SMSA) discussed in Section 4.5 provides an example of how this can be done. The
SMSA expression for g(r) given by (4.5.9) may be rewritten as

y(r) ≈ 1 + b(r) − βv1(r) (4.7.3)
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where v1(r) is the tail in the potential. Comparison with (4.6.13) shows that this is in turn
equivalent to approximating the bridge function by

d(r) ≈ ln
[
b∗(r) + 1

]− b∗(r) (SMSA) (4.7.4)

where

b∗(r) = b(r) − βv1(r) (4.7.5)

Equation (4.7.4) is identical to its PY counterpart (4.6.17), except that b(r) is replaced by
b∗(r). The result, as we have seen, is a marked improvement relative to the PY approxima-
tion in the case of the Lennard-Jones fluid.

We showed in Section 4.3 that the HNC approximation can be derived by minimising the
grand-potential functional obtained from a functional Taylor expansion of the intrinsic free
energy truncated at second order. The question therefore arises as to whether any significant
improvement is obtained when the third-order term is included.5 Equation (4.3.10) again
provides the starting point of the calculation, but c(2)(r, r′;λ) is now replaced, not by
c
(2)
0 (r, r′), but by

c(2)(r, r′;λ) ≈ c
(2)
0 (r, r′) + λ

∫
Δρ(1)(r′′)

δc
(2)
0 (r, r′)

δρ(1)(r′′)
dr′′

= c
(2)
0 (r, r′) + λ

∫
Δρ(1)(r′′)c(3)0 (r, r′, r′′)dr′′ (4.7.6)

where c
(3)
0 (r, r′, r′′) is the three-particle direct correlation function of the reference fluid.

The effect is to add to the grand-potential functional (4.3.14) the term

− 1
6kBT

∫∫∫
Δρ(1)(r)Δρ(1)(r′)Δρ(1)(r′′)c(3)0 (r, r′, r′′)dr dr′ dr′′

If we now follow the steps that previously led to the HNC approximation (4.3.19), we
obtain an expression for the pair distribution function of a uniform fluid having the form
(4.7.1), with

d0(r) = 1
2ρ

2
∫∫

c(3)(r − r′, r − r′′)h(r ′)h(r ′′)dr′ dr′′ (4.7.7)

Solution of the integral equation for g(r) requires some further approximation5 to be made
for the triplet function c(3). Equation (4.7.7) is equivalent to the lengthier expression in
terms of g(3) obtained from an expansion of c(1)(r) taken to second order, the so-called
HNC2 approximation.31

Results based on (4.7.7) show a clear improvement over the HNC approximation for a
number of model fluids but the method is computationally demanding. The HNC equa-
tion can more easily and successfully be extended by identifying d0(r) with the bridge
function of a suitable reference system, a step that leads to the “reference” HNC (RHNC)
approximation.32 The obvious choice of reference system is a fluid of hard spheres, since
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TABLE 4.2. Thermodynamic properties of the Lennard-Jones fluid: comparison
between molecular-dynamics results (MD) and calculations based on the RHNC

approximation. After Lado et al.32(c)

βP/ρ βUex/N

ρ∗ T ∗ MD RHNC MD RHNC

0.85 0.719 0.36 0.424 −6.12 −6.116
0.85 2.889 4.36 4.364 −4.25 −4.240
0.75 1.071 0.89 0.852 −5.17 −5.166
0.65 1.036 −0.11 −0.155 −4.52 −4.522
0.65 2.557 2.14 2.136 −3.78 −3.786
0.45 1.552 0.57 0.552 −2.98 −2.982
0.45 2.935 1.38 1.377 −2.60 −2.608
0.40 1.424 0.38 0.382 −2.73 −2.728

this is the only potential model for which the bridge function is known with sufficient
accuracy over the full range of state conditions.33 Equation (4.7.1) then represents a one-
parameter theory in which the only unknown quantity is the hard-sphere diameter d . It
was originally argued that the bridge function was likely to be highly insensitive to de-
tails of the potential and that its representation by a hard-sphere function should therefore
be a good approximation. Although it is now recognised that the bridge function does
not have a genuinely “universal” character,34 this approach has been applied successfully
in calculations for a variety of different systems. The overall agreement with the results
of simulations is very good, as illustrated by the results for thermodynamic properties of
the Lennard-Jones fluid given in Table 4.2; the errors in the corresponding pair distribution
functions are barely discernible, even under conditions close to the triple point. In the work
on which Table 4.2 is based, the hard-sphere diameter was chosen in such a way as to min-
imise an approximate free-energy functional. So far as internal consistency of the theory is
concerned, use of this procedure gives the RHNC approximation a status comparable with
that of the HNC equation. The method has also been applied to mixtures of Lennard-Jones
fluids, again with very good results.32(e)

A number of attempts have been made to combine different closure relations in hybrid
schemes that ensure a degree of thermodynamic consistency. For example, whereas the
HNC approximation is correct at large separations, the PY approximation, being much
superior for strongly repulsive potentials, is presumably more accurate at short distances.
It is therefore plausible to mix the two closures in such a way that the function y(r) in
(4.6.14) reduces to its PY value as r → 0 and to its HNC value as r → ∞.35 The parameter
that determines the proportions in which the two approximations are mixed at intermediate
values of r can then be chosen to force consistency between the compressibility and virial
equations of state. The method works well for systems of particles interacting through
purely repulsive potentials, but breaks down for the Lennard-Jones potential for which, at
low temperatures, it is impossible to find a value of the mixing parameter that provides
thermodynamic consistency.36 Where successful, the method relies heavily on the fact that
the HNC and PY approximations in some sense bracket the exact solution for the system
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of interest. The difficulty in the case of the Lennard-Jones fluid lies in the fact that the PY
approximation is poor at low temperatures. The problem can be overcome by interpolating
instead between the HNC approximation and the soft-core MSA, an approach – called
the HMSA – that yields results comparable in quality with those obtained by the RHNC
approximation.36

A more ambitious method of building thermodynamic consistency into an integral-
equation theory is to write the direct correlation function in a form that can be adjusted so
as to satisfy some consistency criterion. This is the basis of the self-consistent Ornstein–
Zernike approximation or SCOZA developed by Stell and coworkers.37 The SCOZA is
most easily applied when the potential consists of a hard core and a tail, v1(r) say, as
in (4.5.1). Since g(r) vanishes inside the hard core, closure of the Ornstein–Zernike is
achieved by making some approximation for c(r) in the range r > d ; this approximation
is typically of the form

c(r) = cd(r) − βA(ρ,T )v1(r), r > d (4.7.8)

where cd(r) is the direct correlation function of the hard-sphere fluid. The function A(ρ,T )

can then be chosen in such a way as to enforce consistency between the compressibility
and energy routes to the equation of state. Equation (4.7.8) resembles certain other closure
relations insofar as the range of c(r) is the same as that of the pair potential, but in contrast,
say, to the MSA, its amplitude is now density dependent. If the compressibility and internal
energy are to be consistent with each other, they must come from the same free energy, and
hence must satisfy the relation38

−∂ĉ(k = 0)

∂β
= ∂2u

∂ρ2
(4.7.9)

where u ≡ U ex/V and ĉ(k = 0) is related to the compressibility by (3.5.15). Published
calculations based on the SCOZA are largely concerned with the hard-core Yukawa model
(1.2.2), a system for which the analytical solution to the MSA is known.39 A major simpli-
fication of the problem is then possible. If cd(r) is represented by a second Yukawa term,
ĉ(k = 0) and u can be related analytically and (4.7.10) becomes a partial differential equa-
tion for the variable u(ρ,T ), which can be solved numerically; the two free parameters
in the second Yukawa term are chosen so as to reproduce the Carnahan–Starling equation
of state in the limit T → ∞. The method gives good results for the structure and thermo-
dynamics of the Yukawa fluid over a range of state conditions and choices of the Yukawa
parameter λ, but its chief merit is the fact that it remains accurate in the critical region,
where the performance of other integral-equation theories is mostly poor.
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CHAPTER 5

Perturbation Theory

5.1 INTRODUCTION: THE VAN DER WAALS MODEL

The intermolecular pair potential often separates in a natural way into two parts: a harsh,
short-range repulsion and a smoothly varying, long-range attraction. A separation of this
type is an explicit ingredient of many empirical representations of the intermolecular
forces, including the Lennard-Jones potential. It is now generally accepted that the struc-
ture of most simple liquids, at least at high density, is largely determined by the way in
which the molecular hard cores pack together. By contrast, the attractive interactions may,
in a first approximation, be regarded as giving rise to a uniform background potential that
provides the cohesive energy of the liquid but has little effect on its structure. A further
plausible approximation consists in modelling the short-range forces by the infinitely steep
repulsion of the hard-sphere potential. The properties of the liquid of interest can in this
way be related to those of a hard-sphere reference system, the attractive part of the potential
being treated as a perturbation. The choice of the hard-sphere fluid as a reference system
is an obvious one, since its thermodynamic and structural properties are well known.

The idea of representing a liquid as a system of hard spheres moving in a uniform,
attractive potential is an old one, providing as it does the physical basis for the famous van
der Waals equation of state. At the time of van der Waals, little was known of the properties
of the dense hard-sphere fluid. The approximation that van der Waals made was to take the
excluded volume per sphere of diameter d as equal to 2

3πd3 (or four times the hard-sphere
volume), which leads to an equation of state of the form

βP0

ρ
= 1

1 − 4η
(5.1.1)

where, as before, η is the packing fraction. Equation (5.1.1) gives the second virial coeffi-
cient correctly (see (3.9.14)), but it fails badly at high densities. In particular, the pressure
diverges as η → 0.25, a packing fraction lying well below that of the fluid–solid transition
(η ≈ 0.49).

Considerations of thermodynamic consistency1 show that the equation of state compat-
ible with the hypothesis of a uniform, attractive background is necessarily of the form

βP

ρ
= βP0

ρ
− βρa (5.1.2)
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where a is a positive constant; this is equivalent to supposing that the chemical potential is
lowered with respect to that of the hard spheres by an amount proportional to the density
and equal to 2aρ. The classic van der Waals equation is then recovered by substituting
for P0 from (5.1.1). It is clear that a first step towards improving on van der Waals’s re-
sult is to replace (5.1.1) by a more accurate hard-sphere equation of state, such as that
of Carnahan and Starling, (3.9.17). A calculation along these lines was first carried out
by Longuet-Higgins and Widom,2 who thereby were able to account successfully for the
melting properties of rare-gas solids.

The sections that follow are devoted to perturbation methods that may be regarded as
attempts to improve the theory of van der Waals in a systematic fashion. The methods we
describe have as a main ingredient the assumption that the structure of a dense, monatomic
fluid resembles that of an assembly of hard spheres. Justification for this intuitively appeal-
ing idea is provided by the great success of the perturbation theories to which it gives rise,
and which mostly reduce to (5.1.2) in some well-defined limit, but more direct evidence
exists to support it. For example, it has long been known3 that the experimental structure
factors of a variety of liquid metals near their normal melting points can to a good approx-
imation be superimposed on the structure factor of an “equivalent” hard-sphere fluid, and
Figure 5.1 shows the results of a similar but more elaborate analysis of data obtained by
molecular-dynamics calculations for the Lennard-Jones fluid. The fact that the attractive
forces play such an apparently minor role in these examples is understandable through
the following argument.4 Equation (3.6.9) shows that the structure factor determines the
density response of the fluid to a weak, external field. If the external potential is identified
with the potential due to a test particle placed at the origin, the long-range part of that po-
tential gives rise to a long-wavelength response in the density. In the long-wavelength limit
(k → 0), the response is proportional to S(k = 0) and hence, through (3.6.11), to the com-
pressibility. Under triple-point conditions the compressibility of a liquid is very small: typ-
ically the ratio of χT to its ideal-gas value is approximately 0.02. The effects of long-wave-
length perturbations are therefore greatly reduced. At lower densities, particularly in the
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FIG. 5.1. Structure factor of the Lennard-Jones fluid close to the triple point (curve) and its representation by a
hard-sphere model (points). After Verlet.4
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critical region, the compressibility can become very large. The role of the attractive forces
is then important and the simple van der Waals model no longer has a sound physical basis.

We shall assume throughout this chapter that the interactions between particles are pair-
wise additive, though there is no difficulty in principle in extending the treatment to include
three-body and higher-order forces. We also suppose that the system of interest is homoge-
neous. The basis of all the perturbation theories we discuss is a division of the pair potential
of the form

v(1,2) = v0(1,2) + w(1,2) (5.1.3)

where v0(1,2) is the pair potential of the reference system and w(1,2) is the perturbation.
The calculation then usually proceeds in two stages. The first step is to compute the effects
of the perturbation on the thermodynamic properties and pair distribution function of the
reference system. This can be done systematically via an expansion in powers either of
inverse temperature (the “λ-expansion”) or of a parameter that measures the range of the
perturbation (the “γ -expansion”). When hard spheres themselves are the reference system,
this completes the calculation, but in the more general situation the properties of some
“soft-core” reference system must in turn be related to those of the hard-sphere fluid.

5.2 THE λ-EXPANSION

Consider a pair potential vλ(1,2) of the form

vλ(1,2) = vλ0(1,2) + wλ(1,2) (5.2.1)

where λ is a parameter that varies between λ0 and λ1. When λ = λ0, wλ vanishes and
the potential vλ0 ≡ v0 reduces to that of a reference system, the properties of which are
assumed to be known, whereas for λ = λ1 the potential vλ0 ≡ v is the one that charac-
terises the system of interest. The quantity λ has the meaning of a coupling parameter: the
effect of varying λ continuously from λ0 to λ1 is that of gradually increasing the perturba-
tion wλ(1,2). The commonest example of such a potential is

vλ(1,2) = v0(1,2) + λw(1,2) (5.2.2)

with λ0 = 0 and λ1 = 1; when λ = 1, the potential is the same as that introduced in (5.1.3).
Let VN(λ), given by

VN(λ) =
N∑
i=1

N∑
j>i

vλ(i, j) (5.2.3)

be the total potential energy of a system of particles interacting through the poten-
tial (5.2.1). From the definitions of the configuration integral, (2.3.13), and the excess free
energy (here denoted simply by F ), (2.3.20), it follows immediately that the derivative of
F(λ) with respect to the coupling parameter is

β
∂F(λ)

∂λ
= 1

ZN(λ)

∫
exp
[−βVN(λ)

]
βV ′

N(λ)drN = β
〈
V ′
N(λ)

〉
λ

(5.2.4)
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where V ′
N(λ) ≡ ∂VN(λ)/∂λ and 〈· · ·〉λ denotes a canonical ensemble average for the sys-

tem characterised by the potential vλ(1,2). Integration of (5.2.4) gives

βF(λ1) = βF0 + β

∫ λ1

λ0

〈
V ′
N(λ)

〉
λ

dλ (5.2.5)

where F0 ≡ Fλ0 is the excess free energy of the reference system. A series expansion of
the ensemble average 〈V ′

N(λ)〉λ can now be made around its value for λ = λ0:

〈
V ′
N(λ)

〉
λ

= 〈V ′
N(λ)

〉
λ0

+ (λ − λ0)
∂

∂λ

〈
V ′
N(λ)

〉
λ

∣∣∣∣
λ=λ0

+O(λ − λ0)
2 (5.2.6)

The derivative with respect to λ in (5.2.6) is

∂

∂λ

〈
V ′
N(λ)

〉
λ

= 〈V ′′
N(λ)

〉
λ
− β

(〈[
V ′
N(λ)

]2〉
λ
− 〈V ′

N(λ)
〉2
λ

)
(5.2.7)

and insertion of this result in (5.2.5) yields an expansion of the free energy in powers of
(λ1 − λ0):

βF(λ1) = βF0 + (λ1 − λ0)β
〈
V ′
N(λ0)

〉
λ0

+ 1
2 (λ1 − λ0)

2(β〈V ′′
N(λ0)

〉
λ0

− β2(〈[V ′
N(λ0)

]2〉
λ0

− 〈V ′
N(λ0)

〉2
λ0

))
+O(λ1 − λ0)

3 (5.2.8)

We now restrict ourselves to the important special case when vλ(1,2) is given by (5.2.2).
If we define the total perturbation energy for λ = 1 as

WN =
N∑
i=1

N∑
j>i

w(i, j) (5.2.9)

then V ′
N = WN , V ′′

N = 0 and (5.2.8) simplifies to give

βF = βF0 + β〈WN 〉0 − 1
2β

2(〈W 2
N

〉
0 − 〈WN 〉2

0

)+O
(
β3) (5.2.10)

The series (5.2.10) is called the high-temperature expansion, but the name is not en-
tirely appropriate. Although successive terms are multiplied by increasing powers of β ,
the ensemble averages are also, in general, functions of temperature. However, when the
reference system is a hard-sphere fluid, the averages depend only on density and the
λ-expansion reduces to a Taylor series in T −1. Equation (5.2.10) was first derived by
Zwanzig,5 who showed that the nth term in the series can be written in terms of the mean
fluctuations 〈[(WN − 〈WN 〉0)]ν〉0, with ν � n. Thus every term in the expansion corre-
sponds to a statistical average evaluated in the reference-system ensemble. The third and



THE λ-EXPANSION 113

fourth-order terms, for example, are

βF3 = β3

3!
〈[
WN − 〈WN 〉0

]3〉
0

βF4 = −β4

4!
(〈[

WN − 〈WN 〉0
]4〉

0 − 3
〈[
WN − 〈WN 〉0

]2〉2
0

) (5.2.11)

The assumption of pairwise additivity of the potential (including the perturbation) means
that (5.2.5) can be written as

βF

N
= βF0

N
+ β

2N

∫ 1

0
dλ
∫∫

ρ
(2)
λ (1,2)w(1,2)d1 d2 (5.2.12)

where ρ
(2)
λ (1,2) is the pair density for the system with potential vλ(1,2); this is a special

case of the general result contained in (3.4.10). The pair density can then be expanded in
powers of λ:

ρ
(2)
λ (1,2) = ρ

(2)
0 (1,2) + λ

∂ρ
(2)
λ (1,2)

∂λ

∣∣∣∣
λ=0

+O
(
λ2) (5.2.13)

When this result is inserted in (5.2.12) the term of zeroth order in λ yields the first-order
term in the high-temperature expansion of the free energy:

βF1

N
= β

2N

∫∫
ρ
(2)
0 (1,2)w(1,2)d1 d2 = βρ

2

∫
g0(1,2)w(1,2)dr12 (5.2.14)

In this approximation the structure of the fluid is unaltered by the perturbation. At second
order in λ, however, calculation of the free energy involves the derivative ∂ρ

(2)
λ /∂λ. Care

is needed in passing to the thermodynamic limit and the differentiation is easier to perform
in the grand canonical ensemble. The final result for a closed system6 is

βF2

N
= −β2

2

(
ρ

2

∫
g0(1,2)

[
w(1,2)

]2
d2

+ ρ2
∫∫

g
(3)
0 (1,2,3)w(1,2)w(1,3)d2 d3

+ ρ3

4

∫∫∫ [
g
(4)
0 (1,2,3,4) − g

(2)
0 (1,2)g(2)

0 (3,4)
]

× w(1,2)w(3,4)d2 d3 d4

)

− 1
4S0(0)

(
∂

∂ρ

(
ρ2
∫

g0(1,2)w(1,2)d2

)2)
(5.2.15)

where S0(k) is the structure factor of the reference system.
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We see from (5.2.15) that a calculation of the second-order term requires a knowledge
of the three- and four-particle distribution functions of the reference system. The situation
is even more complicated for higher-order terms, since the calculation of Fn requires the
distribution functions of all orders up to and including 2n. By the same rule, calculation
of the first-order term requires only the pair distribution function of the reference system.
If ε defines the energy scale of the perturbation, truncation at first order is likely to be
justified whenever βε � 1. The fact that second- and higher-order terms are determined
by fluctuations in the total perturbation energy suggests that they should be small, relative
to F1, whenever the perturbing potential is a very smoothly varying function of particle
separation. Schemes that simplify the calculation of F2 have been devised, but the high-
temperature expansion remains easiest to apply in situations where terms beyond first order
are negligible. The question of whether or not a first-order treatment is adequate depends
on the thermodynamic state, the form of the potential v(1,2), and the manner in which
v(1,2) is divided into a reference-system potential and a perturbation.

If the reference system is the hard-sphere fluid and the perturbation potential w(1,2) is
very long ranged, the high-temperature expansion limited to first order reduces to the van
der Waals equation (5.1.2). It is necessary only that the range of w(1,2) be large compared
with the range of interparticle separations over which g0(1,2) is significantly different
from its asymptotic value. Then, to a good approximation:

βF1

N
≈ βρ

2

∫
w(r)dr = −βρa (5.2.16)

where a is positive when the perturbing potential is attractive. On differentiating with re-
spect to density we recover (5.1.2):

βP

ρ
= ρ

∂

∂ρ

(
βF0

N
+ βF1

N

)
= βP0

ρ
− βρa (5.2.17)

Another important feature of the high-temperature expansion is the fact that the first-order
approximation yields a rigorous upper bound on the free energy of the system of interest
irrespective of the choice of reference system. This result is a further consequence of the
Gibbs–Bogoliubov inequalities discussed in Appendix B in connection with the density-
functional theory of Section 3.4. Consider two integrable, non-negative but otherwise arbi-
trary configuration-space functions A(rN) and B(rN), defined such that7

∫
A
(
rN
)

drN =
∫

B
(
rN
)

drN (5.2.18)

The argument in Appendix B shows that the two functions satisfy the inequality

∫
A
(
rN
)

lnA
(
rN
)

drN �
∫

A
(
rN
)

lnB
(
rN
)

drN (5.2.19)
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We now make two particular choices for A and B . First, let

A
(
rN
)= exp

(
β
[
F0 − VN(0)

])
B
(
rN
)= exp

(
β
[
F0 − VN(1)

]) (5.2.20)

It follows from (5.2.19) that

F � F0 + [〈VN(1)
〉
0 − 〈VN(0)

〉
0

]= F0 + 〈WN 〉0 (5.2.21)

This is precisely the inequality announced earlier. If we interchange the definitions of A

and B , i.e. if we set

A
(
rN
)= exp

(
β
[
F0 − VN(1)

])
B
(
rN
)= exp

(
β
[
F0 − VN(0)

]) (5.2.22)

then we find from (5.2.19) that

F � F0 + 〈WN 〉1 (5.2.23)

where the average of the perturbation energy is now taken over the ensemble of the system
of interest. This result is less useful than (5.2.21), because the properties of the system
of interest are in general unknown. With the assumption of pairwise additivity, (5.2.21)
and (5.2.23) may be combined in the form

βF0

N
+ βρ

2

∫
g(r)w(r)dr � βF

N
� βF0

N
+ βρ

2

∫
g0(r)w(r)dr (5.2.24)

The second of the inequalities (5.2.24) can be used as the basis for a variational ap-
proach to the calculation of thermodynamic properties.8 The variational procedure con-
sists in choosing a reference-system potential that depends on one or more parameters and
then of minimising the last term on the right-hand side of (5.2.24) with respect to those
parameters. As we shall see in the next section, the method has been applied with particu-
lar success9 to systems of particles interacting through an inverse-power or “soft-sphere”
potential of the form

v(r) = ε(σ/r)n (5.2.25)

In these calculations the reference system is taken to be a fluid of hard spheres and the
hard-sphere diameter is treated as the single variational parameter. Still better results are
obtained if a correction is made for the fact that the configuration space accessible to the
hard-sphere and soft-sphere fluids is different for the two systems. The effect of this correc-
tion is to add to the right-hand side of (5.2.14) a term10 involving a ratio of configuration
integrals:

βΔF

N
= 1

N
ln

∫
Ωd

exp[−βVN(rN)]drN∫
Ω

exp[−βVN(rN)]drN
(5.2.26)

where VN(rN) is the total potential energy of the system of interest (the soft-sphere fluid),
Ω represents the full configuration space and Ωd represents that part of configuration space
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in which there is no overlap between hard spheres of diameter d . Since Ωd is smaller
than Ω , the correction is always negative, thereby lowering the upper bound on the free en-
ergy provided by the inequality (5.2.21). The correction term can be evaluated numerically
by a Monte Carlo method,10(b) and an approximate but accurate expression for the term has
been derived9 that involves only the pair distribution function of the hard-sphere fluid.

5.3 SOFT-CORE REFERENCE SYSTEMS

Perturbation theories are useful only if they relate the properties of the system of inter-
est to those of a well understood reference system. Hard spheres are an obvious choice
of reference system, for the reasons discussed in Section 5.1. On the other hand, realis-
tic intermolecular potentials do not have an infinitely steep repulsive core, and there is no
natural separation into a hard-sphere part and a weak perturbation. Instead, an arbitrary
division of the potential is made, as in (5.2.1), and the properties of the reference system,
with potential v0(r), are then usually related to those of hard spheres in a manner inde-
pendent of the way in which the perturbation is treated. In this section we discuss how the
relation between the reference system and the system of hard spheres can be established,
postponing the question of how best to separate the potential until Section 5.4. We describe
in detail only the “blip-function” method of Andersen, Weeks and Chandler,11 but we also
show how results obtained earlier by Rowlinson12 and by Barker and Henderson13 can be
recovered from the same analysis. In each case the free energy of the reference system
is equated to that of a hard-sphere fluid at the same temperature and density. The hard-
sphere diameter is, in general, a functional of v0(r) and a function of ρ and T , and the
various methods of treating the reference system differ from each other primarily in the
prescription used to determine d .

If the reference-system potential is harshly repulsive but continuous, the Boltzmann fac-
tor e0(r) = exp[−βv0(r)] typically has the appearance shown in Figure 5.2 and is not
very different from the Boltzmann factor ed(r) of a hard-sphere potential. Thus, for a well
chosen value of d , the function

Δe(r) = e0(r) − ed(r) (5.3.1)

is effectively non-zero only over a small range of r which we denote by ξd . The behaviour
of Δe(r) as a function of r is sketched in Figure 5.2; the significance of the name “blip
function” given to it is obvious from the figure.

When ξ is small it is natural to seek an expansion of the properties of the reference
system about those of hard spheres in powers of ξ . Such a series can be derived by making
a functional Taylor expansion of the reduced free-energy density φ = −βF ex/V in powers
of Δe(r), i.e.

φ = φd +
∫

δφ

δe(r)

∣∣∣∣
e=ed

Δe(r)dr

+ 1
2

∫∫
δ2φ

δe(r)δe(r′)

∣∣∣∣
e=ed

dr dr′ + · · · (5.3.2)
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FIG. 5.2. The blip function. The upper part of the figure shows the Boltzmann factors e0(r) and ed (r) for
soft-core (full curve) and hard-sphere (dashes) potentials, respectively; the lower part shows the blip function,
Δe(r) = e0(r) − ed (r).

where φd is the free-energy density of the hard-sphere fluid. We know from (2.5.23)
and (3.4.8) that the functional derivative of φ with respect to e(r) is

δφ

δe(r)
= 1

2ρ
2y(r) (5.3.3)

Equation (5.3.2) can therefore be rewritten as

φ = φd + 1
2ρ

2
∫

yd(r)Δe(r)dr + · · · (5.3.4)

The expression for the second-order term involves the three- and four-particle distribution
functions of the hard-sphere system, but terms beyond first order are not needed for steep
potentials.

Since the range of Δe(r) is ξd , the first-order term in the expansion (5.3.2) is of order ξ .
A natural choice of d is one that causes the first-order term to vanish; d is then determined
by the implicit relation ∫

yd(r)Δe(r)dr = 0 (5.3.5)

With this choice of d , the second-order term in (5.3.2), which would normally be of or-
der ξ2, becomes of order ξ4. Thus the free-energy density of the reference system is related
to that of the hard-sphere fluid by

φ0 = φd +O
(
ξ4) (5.3.6)

where d is defined by (5.3.5).
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Equation (5.3.5) represents only one of many possible prescriptions for calculating the
diameter of the “equivalent” hard spheres. Because Δe(r) is non-zero only in a narrow
range of r , the factor r2yd(r) in (5.3.5) can be expanded in a Taylor series about r = d in
the form

r2yd(r) = σ0 + σ1

(
r

d
− 1

)
+ σ2

(
r

d
− 1

)2

+ · · · (5.3.7)

with

σm

dm
= dm

drm
r2yd(r)

∣∣∣∣
r=d

(5.3.8)

Substitution of the expansion (5.3.7) in (5.3.5) gives

∞∑
m=0

σm

m! Im = 0 (5.3.9)

where

Im =
∫ ∞

0

(
r

d
− 1

)m

Δe(r)d(r/d)

= − 1

m + 1

∫ ∞

0

(
r

d
− 1

)m+1 d

dr
exp
[−βv0(r)

]
dr (5.3.10)

If v0(r) varies rapidly with r , the derivative in (5.3.10) is approximately a δ-function at
r = d and the series (5.3.9) is rapidly convergent. If only the first term is retained, then
I0 = 0, and a straightforward integration shows that

d =
∫ ∞

0

(
1 − exp

[−βv0(r)
])

dr (5.3.11)

This expression is identical to one derived in a different way by Barker and Henderson.13

In the case when v0(r) is a soft-sphere potential of the form (5.2.25), the integral in (5.3.11)
can be evaluated explicitly in terms of the �-function to give

d = σ(ε/kBT )1/n�

(
n − 1

n

)
= σ(ε/kBT )1/n(1 + γ /n) +O

(
1/n2) (5.3.12)

where γ = 0.5772 . . . is Euler’s constant. On discarding terms of order 1/n2 we recover
an expression due to Rowlinson.12 Rowlinson’s calculation is based on an expansion of
the free energy in powers of the inverse steepness parameter λ = 1/n about λ = 0 (hard
spheres); the work of Barker and Henderson may be regarded as a generalisation of Rowl-
inson’s method to a repulsive potential of arbitrary form.

The main difference between (5.3.5) and (5.3.11) lies in the fact that the former yields
a hard-sphere diameter that is a function of both density and temperature, whereas the
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FIG. 5.3. Thermodynamic properties of the r−12 fluid.9,11,13,15 The points are Monte Carlo results14 and the
curves show the predictions of perturbation theory: BH, method of Barker and Henderson, based on (5.3.11);
AWC and AWC-L, method of Andersen, Weeks and Chandler, based on (5.3.5) and (5.3.16), respectively. Pres-
sures are calculated from either the virial, (v), or energy, (e), routes, which yield identical results when (5.3.16) is
used. The curve labelled “var” in the inset shows the results of a variational calculation9 in which the correction
represented by (5.2.26) is included.

Barker–Henderson diameter is dependent only on temperature. The greater flexibility pro-
vided by the use of (5.3.5) ensures that the predictions of the Andersen–Weeks–Chandler
approach are, in general, superior to those of the Barker–Henderson theory. The agreement
with the results of computer simulations is illustrated for the case of the potential (5.2.25)
with n = 12 (the r−12 fluid) in Figure 5.3. The differences between the results of the two
theories becomes smaller as the potential v0(r) becomes steeper. For inverse-power poten-
tials of this type the excess thermodynamic properties have simple scaling properties, and
quantities such as those plotted in the figure are determined by the single, dimensionless
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parameter Γ defined as

Γ = ρσ 3
(

ε

kBT

)3/n

(5.3.13)

The Andersen–Weeks–Chandler theory also yields a very simple expression for the pair
distribution function of the reference system. It follows from (5.3.3) and (5.3.4) that

y0(r) = yd(r) + higher-order terms (5.3.14)

where the higher-order terms are of order ξ2 or smaller if d is chosen to satisfy (5.3.5).
Thus

g0(r) = exp
[−βv0(r)

]
y0(r) ≈ exp

[−βv0(r)
]
yd(r) (5.3.15)

This expression for the reference-system pair distribution function can now be used,
via (5.2.14), to compute the correction to the free energy that results from a perturbing
potential w(r). It also allows us to rewrite (5.3.5) in terms of the k → 0 limits of the
reference-system and hard-sphere structure factors in the form S0(0) = Sd(0). Use of the
hard-sphere diameter defined by (5.3.5) therefore has the effect of setting the compress-
ibility of the reference system equal to that of the underlying hard-sphere fluid. Equa-
tion (5.3.15) is expected to be less accurate than the expression for the free energy, (5.3.6),
because the neglected terms are now of order ξ2 rather than ξ4. This is borne out by calcu-
lations made for the r−12-fluid; the approximate g0(r) is in only moderate agreement with
the results of simulations14 whereas the agreement obtained for the free energy is very
good, as illustrated in Figure 5.3. The situation improves markedly when a much steeper
reference potential is involved.

Although the blip-function method works satisfactorily so far as the calculation of ther-
modynamic properties is concerned, it is clear from Figure 5.3 that there is scope for
improvement at large values of Γ , i.e. at high densities or low temperatures. There is
also a lack of internal consistency in the theory: pressures calculated from the virial equa-
tion (2.5.22) via (5.3.15) differ significantly from those obtained by numerical differentia-
tion of the free energy. The results derived from the free energy are the more reliable, but
they are also more troublesome to compute. Equivalence of the two routes to the equation
of state is guaranteed, however, if the hard-sphere diameter is calculated, not from (5.3.5),
but from the relation15 ∫

∂yd(r)

∂d
Δe(r)dr = 0 (5.3.16)

Equation (5.3.16) is derived by requiring that the free energy of the system of interest be
a minimum with respect to variations in the hard-sphere function yd(r). As Figure 5.3
shows, the results obtained for the pressure of the r−12-fluid are thereby much improved.

The blip-function expansion was designed specifically to treat the case of strongly re-
pulsive potentials. This is the case for the Lennard-Jones fluid, which we discuss in the
next section. In the repulsive region the Lennard-Jones potential varies much more rapidly
than r−12, and the accuracy of the blip-function method in such circumstances could
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FIG. 5.4. Thermodynamic properties of the r−4 fluid. The points are Monte Carlo results and the curves show the
predictions of different theories: blip-function method based on (5.3.5) (short dashes) or (5.3.16) (long dashes),
and variational theory based on a hard-sphere reference system with (full curve) or without (chain curve) the
correction represented by (5.2.26). After Ben-Amotz and Stell.9

scarcely be improved upon. The method is less satisfactory for the softer repulsions rel-
evant to liquid metals, because truncation of the expansion (5.3.2) after the first-order term
is no longer justified. By contrast, though we see from Figure 5.3 that the hard-sphere
variational approach described in Section 5.2 is comparable in accuracy with blip-function
theory for n = 12, it also retains its accuracy even for n = 4 while the first-order blip-
function method does not. This is clear from the results shown in Figure 5.4. We also see
that within blip-function theory the two prescriptions for the hard-sphere diameter, (5.3.5)
and (5.3.16), give rise to significantly larger differences in free energy as the potential is
softened. The correction (5.2.26) to the variational calculation is small but not negligible.

5.4 AN EXAMPLE: THE LENNARD-JONES FLUID

The λ-expansion described in Section 5.2 is suitable for treating perturbations that vary
slowly in space, while the blip-function expansion and related methods of Section 5.3
provide a good description of reference systems for which the potential is rapidly varying
but localised. In this section we show how the two approaches can be combined in a case
where the pair potential has both a steep but continuous, repulsive part and a weak, longer
ranged attraction. The example we choose is that of the Lennard-Jones fluid, a system for
which sufficient data are available from computer simulations to allow a complete test to
be made of different perturbation schemes.16

At first sight it might appear that the complications due to softness of the core would
make it more difficult to obtain satisfactory results by perturbation theory than in situations
where the potential consists of a hard-sphere interaction and a tail. This is not necessarily
true, however, because there is now the extra flexibility provided by the arbitrary separation
of the potential into a reference part, v0(r), and a perturbation, w(r). A judicious choice of
separation can significantly enhance the rate of convergence of the resulting perturbation
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FIG. 5.5. Three separations of the Lennard-Jones potential that have been used in perturbation-theory calcu-
lations: MK, by McQuarrie and Katz:17 BH, by Barker and Henderson;13 WCA, by Weeks, Chandler and
Andersen.19 Full curves: the reference-system potential; dashes: the perturbation. The arrow marks the posi-
tion of the minimum in the full pair potential; at larger values of r the Barker–Henderson and WCA choices of
perturbation are the same.

series. A number of separations have been proposed for the Lennard-Jones potential, the
best known of which are the three illustrated in Figure 5.5.

In the method of McQuarrie and Katz17 the r−12 term is chosen as the reference-system
potential and the r−6 term is treated as a perturbation. Given a scheme in which the prop-
erties of the reference system are calculated accurately, the method works well at tem-
peratures above T ∗ ≈ 3. At lower temperatures, however, the results are much less satis-
factory. This is understandable, since the reference-system potential is considerably softer
than the full potential in the region close to the minimum in v(r). In the separation used
by Barker and Henderson13 the reference system is defined by that part of the full po-
tential which is positive (r < σ) and the perturbation consists of the part that is negative
(r > σ). The reference-system properties are then related to those of hard spheres of diam-
eter d given by (5.3.11). In contrast to the case of the r−12 potential (see Figure 5.3), this
treatment of the reference system yields very accurate results. The corrections due to the
perturbation are handled in the framework of the λ-expansion; the first-order term is calcu-
lated from (5.2.14), with g0(r) taken to be the pair distribution function of the equivalent
hard-sphere fluid. At T ∗ = 0.72 and ρ∗ = 0.85, which is close to the triple point of the
Lennard-Jones fluid, the results are βF0/N = 3.37 and βF1/N = −7.79. Thus the sum of
the two leading terms is equal to −4.42, whereas the resulted obtained for the total excess
free energy from Monte Carlo calculations16 is βF/N = −4.87. The sum of all higher-
order terms in the λ-expansion is therefore far from negligible; detailed calculations show
that the second-order term accounts for most of the remainder.16(a) The origin of the large
second-order term lies in the way in which the potential is separated. As Figure 5.5 reveals,
the effect of dividing v(r) at r = σ is to include in the perturbation the rapidly varying part
of the potential between r = σ and the minimum at r = rm ≈ 1.122σ . Since the pair dis-
tribution function has its maximum value in the same range of r , fluctuations in the total
perturbation energy WN , and hence the numerical values of F2, are large.
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FIG. 5.6. Equation of state of the Lennard-Jones fluid along the isotherm T ∗ = 1.35. The points are Monte Carlo
results and the curves show the predictions of perturbation theory. Dashes: WCA theory; chain curve: first-order
Barker–Henderson theory; full curve: second-order Barker–Henderson theory. After Barker and Henderson.18

The work of Barker and Henderson is a landmark in the development of liquid-state
theory, since it demonstrated for the first time that thermodynamic perturbation theory is
capable of yielding quantitatively reliable results even for states close to the triple point
of the system of interest. A drawback to their method is the fact that its successful imple-
mentation requires a careful evaluation of the second-order term in the λ-expansion. The
calculation of F2 from (5.2.15) requires further approximations to be made, and although
the hard-sphere data that allow such a calculation are available in analytical form18 the
theory is inevitably more awkward to handle than is the case when a first-order treatment
is adequate. Nonetheless, as Figure 5.6 illustrates, the calculated equation of state is in
excellent agreement with the results of simulations.

The problem of the second-order term can be overcome by dividing the potential in the
manner of Weeks, Chandler and Andersen,19 usually called the WCA separation. In this
method, the potential is split at r = rm into its purely repulsive (r < rm) and purely attrac-
tive (r > rm) parts; the former defines the reference system and the latter constitutes the
perturbation. To avoid a discontinuity at r = rm, w(r) is set equal to −ε for r < rm and
v0(r) is shifted upwards by a compensating amount. Compared with the Barker–Henderson
separation, the perturbation now varies more slowly over the range of r corresponding to
the first peak in g(r), and the perturbation series is therefore more rapidly convergent. For
example, at T ∗ = 0.72, ρ∗ = 0.85, the reference-system free energy is βF0/N = 4.49 and
the first-order correction in the λ-expansion is −9.33; the sum of the two terms is −4.84,
which differs by less than 1% from the Monte Carlo result for the full potential.16(b) Agree-
ment of the same order is found throughout the high-density region and the perturbation se-
ries may confidently be truncated after the first-order term. The difficulties associated with
the calculation of the second- and higher-order terms are thereby avoided. At high densi-
ties, on the other hand, the hard-sphere diameter calculated for the WCA separation may
correspond to a packing fraction lying in the metastable region beyond the fluid–solid tran-
sition. This limits the range of applicability of the theory at supercritical temperatures.20
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In the calculations summarised above, and in most of those based on the WCA separa-
tion, the free energy of the reference system is related to that of hard spheres through (5.3.5)
and (5.3.6). At high densities, the error (of order ξ4) thereby introduced is very small.
Under the same conditions, use of the approximate relation (5.3.15) to calculate the first-
order correction from (5.2.14) also involves only a very small error. Some results for the
Lennard-Jones fluid along a near-critical isotherm are shown in Figure 5.6. The general
level of agreement with the results of computer simulations is good and at high densities is
comparable with that achieved by the Barker–Henderson method taken to second order. At
low densities the attractive forces play an important role in determining the structure and
the key assumption of a first-order theory, namely that g(r) ≈ g0(r), is no longer valid.
New methods are then required, as we discuss in detail in the next section.

5.5 TREATMENT OF ATTRACTIVE FORCES

Situations in which the influence of the attractive forces on the structure cannot be ignored
may be treated by methods similar to those used when the perturbation is both weak and
very long ranged relative to the reference-system potential. In such cases the natural expan-
sion parameter is the inverse range rather than the strength of the perturbation; this leads
to the so-called γ -expansion,21 the nature of which differs significantly from that of the
λ-expansion described in Section 5.2. The early work on the γ -expansion was motivated
by the fact that an exact solution can be found for the one-dimensional model of hard rods
of length d that attract each other via the potential

wγ (x) = −aγ exp(−γ x), aγ > 0 (5.5.1)

where γ is an inverse-range parameter; the integral of wγ (x) over all one-dimensional
space is independent of γ and equal to −a. Kac, Uhlenbeck and Hemmer22 have shown
that in the limit γ → 0, taken after the thermodynamic limit, the pressure is given by the
one-dimensional van der Waals equation, i.e.

lim
γ→0

βP

ρ
= 1

1 − ρd
− βρa (5.5.2)

where the first term on the right-hand side represents the exact equation of state of the
hard-rod reference system. This result was later extended to three dimensions and it was
proved rigorously that in the limit where the perturbation is both infinitesimally strong and
infinitely long ranged, the equation of state is given exactly by the generalised van der
Waals equation (5.1.2).

The γ -expansion is obtained by considering perturbations of the general form

wγ (r) = −γ 3f (γ r) (5.5.3)

and expanding the properties of the system of interest in powers of γ . If R is the range of
the reference-system potential (e.g. the hard-sphere diameter), the dimensionless parame-
ter of the expansion is δ = (γR)3; δ is roughly the ratio of the reference-system interaction
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volume (e.g. the volume of a hard sphere) to the total interaction volume. In most sim-
ple liquids the attractive forces are not truly long ranged in the sense of (5.5.3), but many
of the results of the γ -expansion can usefully be carried over to such systems by setting
γ = 1. However, rather than following the original derivation of the γ -expansion, we de-
scribe instead the closely related but simpler method of Andersen and Chandler.23 In doing
so, we make use of the diagrammatic definitions and lemmas of Section 3.7. We assume
throughout that the pair potential has the general form given by (5.1.3).

We first require the diagrammatic expansion of the excess Helmholtz free energy. This
can be derived from the corresponding expansion of the single-particle direct correlation
function given by (3.8.6), taken for the case of zero external field. By comparison of (3.8.6)
with the definition of c(1)(r) in (3.5.1) it can be deduced that the reduced free-energy
density φ = −βF ex/V introduced in Section 5.3 is expressible diagrammatically as

V φ = [all irreducible diagrams consisting of two or more black

ρ-circles and f -bonds]

= + + + + + · · · (5.5.4)

If (5.5.4) is inserted in (3.5.1), a simple application of Lemma 2 leads back to (3.8.6).
The separation of the pair potential in (5.1.3) means that the Mayer function f (1,2) can

be factorised as

f (1,2) = f0(1,2) + [1 + f0(1,2)
](

exp
[
Ψ (1,2)

]− 1
)

(5.5.5)

where f0(1,2) is the Mayer function of the reference system and

Ψ (1,2) = −βw(1,2) (5.5.6)

Since the perturbation is weak, the exponential term in (5.5.5) can be expanded to give

f (1,2) = f0(1,2) + [1 + f0(1,2)
] ∞∑
n=1

[Ψ (1,2)]n
n! (5.5.7)

The form of (5.5.7) suggests the introduction of two different types of bond: short-range
f0-bonds and long-range Ψ -bonds. The presence of two types of bond transforms the sim-
ple diagrams in (5.5.4) into composite diagrams in which two circles are linked by at most
one f0-bond but an arbitrary number of Ψ -bonds. We recall from Section 3.7 that if two
circles in a diagram are linked by n bonds of a given species, the symmetry number of
the diagram is increased, and its value decreased, by a factor n!; this takes care of the
factors 1/n! in (5.5.7). The complete expansion of a in terms of composite diagrams is

V φ = [all irreducible diagrams consisting of two or more black

ρ-circles, f0-bonds and Ψ -bonds, where each pair of

circles is linked by any number of Ψ -bonds but at most

one f0-bond] (5.5.8)
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The corresponding expansion of the pair distribution function can be obtained from (3.4.8).
Written in the notation of the present section the latter becomes

ρ2g(1,2) = 2V
δφ

δΨ (1,2)
(5.5.9)

and the diagrammatic prescription for g(1,2) follows immediately from application of
Lemma 3.

The sum of all diagrams in (5.5.8) in which only f0-bonds appear yields the free-energy
density φ0 of the reference system. The f0-bonds in the other diagrams can be replaced in
favour of h0-bonds by a process of topological reduction based on Lemma 5. This leads
to the elimination of diagrams containing “reference articulation pairs”, which are pairs
of circles linked by one or more independent paths consisting exclusively of black circles
linked by reference-system bonds.24 Of the diagrams that remain after the topological re-
duction there are two of order ρ2 that contain only a single Ψ -bond. The sum of the two is
written as

V φHTA = + ......

= 1
2ρ

2
∫∫ [

Ψ (1,2) + h0(1,2)Ψ (1,2)
]

d1 d2

= −Vβρ2

2

∫
g0(r)w(r)dr (5.5.10)

where a broken line represents an h0-bond, a solid line represents a Ψ -bond and HTA
stands for “high-temperature approximation”. Comparison of (5.5.10) with (5.2.14) shows
that the HTA is equivalent to truncation of the λ-expansion after the first-order term, with

φHTA = −βF1

V
(5.5.11)

The corresponding approximation to g(1,2) is given by a trivial application of Lemma 3.
If φ ≈ φHTA we find from (5.5.10) that

ρ2g(1,2) ≈ 2V
δφHTA

δΨ (1,2)

= ρ2 + ρ2h0(1,2) = ρ2g0(1,2) (5.5.12)

in agreement with the results of Section 5.3.
To proceed beyond the HTA it is necessary to sum a larger class of diagrams in the

expansion of φ. An approximation similar in spirit to the Debye–Hückel theory of ionic
fluids is

φ ≈ φ0 + φHTA + φR (5.5.13)
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where

V φR = + +
......

+ +
......

+ ......

......
+ · · · (5.5.14)

is the sum of all simple “ring” diagrams plus the diagram consisting of two black circles
linked by two Ψ -bonds; the absence of reference articulation pairs means that none of the
ring diagrams in (5.5.14) contains two successive h0-bonds. The approximation to g(1,2)
obtained by applying Lemma 3 is now

g(1,2) ≈ g0(1,2) + C(1,2) (5.5.15)

where the function C(1,2) is given by

ρ2C(1,2) = [all chain diagrams consisting of two terminal white

ρ-circles labelled 1 and 2, black ρ-circles, Ψ -bonds

and h0-bonds, where there are never two successive

h0-bonds] (5.5.16)

If the reference system is the ideal gas and if w(r) is the Coulomb potential, then
−kBT C(1,2) is the screened potential ψ(r) of (4.6.25) and (5.5.15) reduces to the lin-
earised Debye–Hückel result (4.6.27). For the systems of interest here, −kBT C(1,2) is a
renormalised potential in which the perturbation is screened by the order imposed on the
fluid by the short-range interaction between particles.

The function C(1,2) can be evaluated by Fourier transform techniques similar to those
used in the derivation of the Debye–Hückel result. We first group the chain diagrams ac-
cording to the number of Ψ -bonds they contain. Let C(n)(1,2) be the sum of all chain
diagrams with precisely n Ψ -bonds. Then

ρ2C(1,2) = ρ2
∞∑
n=1

C(n)(1,2) (5.5.17)

where

ρ2C(1)(1,2) =
1 2

+
21

+ ......
1 2

+ ......
1 2

(5.5.18)

and so on. Any diagram that contributes to C(n) contains at most (n + 1) h0-bonds and
C(n) consists of 2n+1 topologically distinct diagrams.

The sum of all diagrams in C(n)(1,2) may be represented by a single “generalised chain”
in which circles are replaced by hypervertices. A hypervertex of order n is associated with
a function of n coordinates, Σ(1, . . . , n), and is pictured as a large circle surrounded by
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n white circles; the latter correspond, as usual, to the coordinates r1, . . . , rn. For present
purposes we need consider only the hypervertex of order two associated with the reference-
system function Σ0(1,2) defined as

Σ0(1,2) = ρδ(1,2) + ρ2h0(1,2)

=
1 2

(5.5.19)

We can then re-express C(n)(1,2) for n = 1 and n = 2 in the form

ρ2C(1)(1,2) =
∫∫

Σ0(1,3)Ψ (3,4)Σ0(4,2)d3 d4 (5.5.20)

=
1 2

ρ2C(2)(1,2) =
1 2

(5.5.21)

and ρ2C(n)(1,2) for any n is represented by a generalised chain consisting of n Ψ -bonds
and (n+1) Σ0-hypervertices. Each generalised chain corresponds to a convolution integral
with a Fourier transform given by

ρ2Ĉ(n)(k) = [Σ̂0(k)Ψ̂ (k)
]n

Σ̂0(k) (5.5.22)

where Σ̂0(k) is related to the structure factor of the reference system by Σ̂0(k) = ρS0(k)
and Ψ̂ (k) = −βŵ(k). If |Σ̂0(k)Ψ̂ (k)| < 1, the Fourier transform of the function C(1,2)
is obtained as the sum of a geometric series:

ρ2Ĉ(k) =
∞∑
n=1

ρ2Ĉ(n)(k) = [Σ̂0(k)]2Ψ̂ (k)

1 − Σ̂0(k)Ψ̂ (k)
= − ρ2[S0(k)]2βŵ(k)

1 + ρS0(k)βŵ(k)
(5.5.23)

The derivation of (5.5.23) tends to obscure the basic simplicity of the theory. If (4.1.5),
(5.5.15) and (5.5.23) are combined, we find that the structure factor of the system of interest
is related to that of the reference fluid by

S(k) = S0(k) − ρ[S0(k)]2βŵ(k)
1 + ρS0(k)βŵ(k)

= S0(k)
1 + ρS0(k)βŵ(k)

(5.5.24)

On the other hand, we find with the help of (3.6.10) that the exact relation between the two
structure factors is given in terms of the corresponding direct correlation functions by

S(k) = S0(k)
1 − ρ[ĉ(k) − ĉ0(k)]S0(k)

(5.5.25)
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Use of (5.5.24) is therefore equivalent to replacing the true direct correlation function by
the random-phase approximation (RPA) of (3.5.17), i.e.

c(r) ≈ c0(r) − βw(r) (5.5.26)

which is asymptotically correct if the perturbation contains the long-range part of the
potential. The Debye–Hückel approximation corresponds to writing c(r) ≈ −βw(r);
(5.5.26) improves on this by building in the exact form of the direct correlation function of
the reference system.

The RPA approximation for the free energy is obtained by combining (5.5.10), (5.5.13)
and (5.5.14). When functionally differentiated with respect to Ψ (1,2) according to the
rule (5.5.12), the total ring-diagram contribution to φ yields the function C(1,2). It follows
that V φR can be expressed diagrammatically as

V φR =
∞∑
n=2

R(n) (5.5.27)

where R(n) is a generalised ring consisting of Σ0-hypervertices and Ψ -bonds. A gener-
alised ring can be derived from a generalised chain by inserting a Ψ -bond between the
white circles and integrating over the coordinates associated with those circles. Thus

R(n) = ρ2

2n

∫∫
C(n−1)(1,2)Ψ (1,2)d1 d2

= Vρ2

2n

∫
C(n−1)(r)Ψ (r)dr

= Vρ2

2n
(2π)−3

∫
Ĉ(n−1)(k)Ψ̂ (k)dk (5.5.28)

where the factor 1/2n comes from the symmetry number of the generalised ring. If we
now substitute for Ĉ(n−1)(k) from (5.5.22) and assume again that |Σ̂0(k)Ψ̂ (k)| < 1, we
find that the contribution to φ from the ring diagrams is

φR =
(

1

2π

)3 ∫ ∞∑
n=2

1

2n

[
Σ̂0(k)Ψ̂ (k)

]n dk

= − 1
2 (2π)−3

∫ (
Σ̂0(k)Ψ̂ (k) + ln

[
1 − Σ̂0(k)Ψ̂ (k)

])
dk (5.5.29)

This result is used in the discussion of hierarchical reference theory in Section 5.7.
We saw in Section 4.6 that a defect of the linearised Debye–Hückel approximation is the

fact that it yields a pair distribution function that behaves unphysically at small separations.
A similar problem arises here. Consider, for simplicity, the case in which the reference
system is a fluid of hard spheres of diameter d . In an exact theory, g(r) necessarily vanishes
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for r < d , but in the approximation represented by (5.5.15) there is no guarantee that this
will be so, since in general C(r) will be non-zero in that region. There is, however, some
flexibility in the choice of C(r), and this fact can be usefully exploited. Although C(r) is
a functional of w(r), it is obvious on physical grounds that the true properties of the fluid
must be independent of the choice of perturbation for r < d . The unphysical behaviour of
the RPA can therefore be eliminated by choosing w(r) for r < d in such a way that

C(r) = 0, r < d (5.5.30)

Comparison of (5.5.15) with the general rule (5.5.9) shows that this condition is equivalent
to requiring the free energy to be stationary with respect to variations in the perturbing
potential within the hard core. The RPA together with the condition (5.5.30) is called the
“optimised” random-phase approximation or ORPA. The ORPA may also be regarded as
a solution to the Ornstein–Zernike relation that satisfies both the closure relation (5.5.26)
and the restriction that g(r) = 0 for r < d . It is therefore similar in spirit to the MSA of
Section 4.5, the difference being that the treatment of the hard-sphere system is exact in
the ORPA.

The derivation of (5.5.24) did not involve any assumption about the range of the poten-
tial w(r). However, as we have seen in Section 3.5, the RPA can also be derived by treating
the effects of the perturbation in a mean-field way, an approximation that is likely to work
best when the perturbation is both weak and long ranged. In practice the optimised version
of the theory gives good results for systems such as the Lennard-Jones fluid.25 Not surpris-
ingly, however, it is less successful when the attractive well in the potential is both deep and
narrow.26 In that case better results are obtained by replacing −βw(r) in (5.5.26) by the
corresponding Mayer function; this modification also ensures that c(r) behaves correctly
in the low-density limit.

A different method of remedying the unphysical behaviour of the RPA pair distribution
function can be developed by extending the analogy with Debye–Hückel theory. If the
reference system is the ideal gas, the RPA reduces to

g(1,2) ≈ 1 + C(1,2) (5.5.31)

When w(r) is the Coulomb potential, this result is equivalent to the linearised Debye–
Hückel approximation (4.6.27). If we add to the right-hand side of (5.5.28) the sum of all
diagrams in the exact expansion of h(1,2) that can be expressed as star products of the di-
agram C(1,2) with itself, and then apply Lemma 1, we obtain an improved approximation
in the form

g(1,2) ≈ expC(1,2)

= 1 +
1 2

+
1 2

+
1 2

+ · · · (5.5.32)

which is equivalent to the non-linear equation (4.6.26). In the present case a generalisation
of the same approach replaces the RPA of (5.5.15) by the approximation

g(1,2) ≈ g0(1,2) expC(1,2) (5.5.33)
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This is called the “exponential” or EXP approximation. At low density the renormalised
potential behaves as C(r) ≈ Ψ (r) = −βw(r). In the same limit, g0(r) ≈ exp[−βv0(r)].
Thus, from (5.5.33):

lim
ρ→0

g(1,2) = exp
[−βv0(r)

]
exp
[−βw(r)

]= exp
[−βv(r)

]
(5.5.34)

The EXP approximation, unlike either the HTA or the ORPA, is therefore exact in the
low-density limit. Andersen and Chandler23 give arguments to show that the contribution
from diagrams neglected in the EXP approximation is minimised if the optimised C(1,2)
is used in the evaluation of (5.5.33) and the related expression for the free energy.

The ORPA and the EXP approximation with optimised C(1,2) both correspond to a
truncation of the diagrammatic expansion of the free energy in terms of ρ-circles, h0-bonds
and Ψ -bonds in which the perturbation inside the hard core is chosen so as to increase
the rate of convergence. Each is therefore an approximation within a general theoretical
framework called “optimised cluster theory”. The optimised cluster expansion is not in
any obvious way a systematic expansion in powers of a small parameter, but it has the
great advantage of yielding successive approximations that are easy to evaluate if the pair
distribution function of the reference system is known. The γ -expansion provides a natural
ordering of the perturbation terms in powers of γ 3, but it leads to more complicated expres-
sions for properties of the system of interest. If the perturbation is of the form of (5.5.3),
the terms of order γ 3 in the expansion of the free energy consist of the second of the two
diagrams in (5.5.10) (the HTA) and the sum of all diagrams in (5.5.14) (the ring diagrams).
There is, in addition, a term of zeroth order in γ , given by the first of the two diagrams
in (5.5.10), which in this case has the value

Vβρ2γ 3

2

∫
f
(
γ 3r
)

dr = Vβρ2a (5.5.35)

where a is the constant introduced in (5.2.16). We see that the effect of the volume inte-
gration is to reduce the apparent order of the term from γ 3 to γ 0. As a consequence, the
free energy does not reduce to that of the reference system in zeroth order. It yields instead
the van der Waals approximation; the latter is therefore exact in the limit γ → 0. Through
order γ 3, the free energy (with γ = 1) is the same as in the RPA. On the other hand, the
sum of all terms of order γ 3 in the expansion of g(1,2) contains diagrams additional to
the chain diagrams included in (5.5.15).27

Results obtained by the optimised cluster approach for a potential model consisting of a
hard-sphere core plus a Lennard-Jones tail at two different thermodynamic states are com-
pared with the results of Monte Carlo calculations in Figure 5.7. In the lower-density state,
the HTA, ORPA and EXP pair distribution functions represent successively improved ap-
proximations to the “exact” results. At the higher density, where the perturbation is heavily
screened and the renormalised potential is correspondingly weak, the HTA is already very
satisfactory. The difference in behaviour between the two states reflects the diminishing
role of the attractive forces on the structure of the fluid as the density increases. Similar
conclusions have been reached for other model fluids. Overall the results obtained by opti-
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FIG. 5.7. Radial distribution function for a fluid of hard spheres with a Lennard-Jones tail at two different
thermodynamic states. The points are Monte Carlo results and the curves show the predictions of perturbation
theory. Dashes: HTA; chain curve; ORPA; full curves: EXP. After Stell and Weis.28

mised cluster methods are comparable in accuracy with those of conventional perturbation
theory taken to second order.

5.6 MEAN-FIELD THEORY OF LIQUID–VAPOUR COEXISTENCE

Coexistence of liquid and vapour arises from a balance between repulsive and attractive in-
termolecular forces. In the absence of any attractive interactions, there is no liquid–vapour
transition, and only one fluid phase appears. Since perturbation theory is based explicitly
on a division of the pair potential into repulsive and attractive parts, it is a natural choice
for the description of phenomena associated with condensation. The integral-equation ap-
proximations described in Chapter 4 provide another possible approach, but for the most
part they either lead to spurious solutions or do not converge numerically in the thermody-
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namic region of interest.29 These failings are a consequence of the underlying singularities
in thermodynamic properties, in particular the divergence of the isothermal compressibility
at the critical point.

For a two-phase system to be in equilibrium, each phase must be at the same pressure
(mechanical equilibrium) and temperature (thermal equilibrium). However, the pressure
and temperature of a two-phase system are not independent variables, since equality of
the chemical potentials or, equivalently, of the molar Gibbs free energies is also required.
Thus, at equilibrium between liquid (L) and gas (G) in a one-component system:

μL(P,T ) = μG(P,T ) (5.6.1)

If μL and μG are known from some approximate theory, (5.6.1) can be solved for P as
a function of T to yield the phase-coexistence curve in the pressure–temperature plane.
Condensation is a first-order phase transition, since it coincides with discontinuities in the
first-order thermodynamic derivatives of the Gibbs free energy. The volume change, ΔV ,
corresponds to a discontinuity in (∂G/∂P )T , while the change in entropy, ΔS, corresponds
to a discontinuity in (∂G/∂T )P ; ΔS is related to the latent heat of the transition by L =
TΔS. Differentiation of the equilibrium condition (5.6.1) with respect to temperature leads
to the Clapeyron equation:

dP

dT
= ΔS

ΔV
= L

TΔV
(5.6.2)

Since V and S both increase on vaporisation, it follows that the slope of the coexistence
curve is always positive.

We consider again a system for which the pair potential v(r) consists of a hard-sphere
repulsion supplemented by an attractive term, w(r), for r > d , where, as usual, d is the
hard-sphere diameter. If w(r) is sufficiently long ranged, the free energy may be approx-
imated by the first two terms of the λ-expansion of Section 5.2 or, within the mean-field
approximation (5.2.16), by

βF

N
= βF0

N
− βρa (5.6.3)

where F0, the free energy of the hard-sphere reference system, is a function only of the
packing fraction η. The equation of state is then given by (5.2.17). We are interested primar-
ily in the calculation of thermodynamic properties in the critical region. Since the critical
density ρc is typically less than half that of the triple point, it is reasonable to approximate
the hard-sphere pressure by the Percus–Yevick compressibility equation (4.4.12), which is
very accurate at low to moderate densities. Thus

βP

ρ
= 1 + η + η2

(1 − η)3
− βρa (5.6.4)

Above a critical temperature Tc, to be determined below, the pressure isotherms calcu-
lated from (5.6.4) are single-valued, increasing functions of ρ, as sketched in Figure 5.8.
Below Tc, however, so-called van der Waals loops appear, which contain an unphysical
section between their maxima and minima where the isothermal compressibility would
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FIG. 5.8. Isotherms of a simple fluid in the pressure–density plane. The chain curve shows a van der Waals loop.
Note that the Maxwell construction applies in the pressure–volume, not the pressure–density plane.

be negative, thereby violating one of the conditions necessary for stability of the system
against fluctuations (see Appendix A). The unstable states are eliminated by replacing the
loops by horizontal portions between points on the isotherm determined via the Maxwell
equal-area construction in the P –V plane. The Maxwell construction is a graphical formu-
lation of the requirement for equality of the pressures and chemical potentials of the two
phases; it is equivalent30 to the double-tangent construction on a plot of free energy ver-
sus volume, which ensures that F is always a convex function, i.e. that (∂2F/∂V 2)T > 0.
The end-points of the horizontal portions lie on the coexistence curve, while the locus of
maxima and minima of the van der Waals loops, which separates the P –ρ plane into stable
and unstable regions, forms the spinodal curve. States lying between the coexistence and
spinodal curves are metastable, but can be reached experimentally if sufficient care is taken
to prevent formation of the thermodynamically stable phase. As the temperature increases
towards the critical value, the horizontal portion of the isotherm shrinks, eventually reduc-
ing to a point of inflection with a horizontal tangent. The critical parameters Tc and ρc are
therefore determined by the conditions(

∂P

∂ρ

)
T=Tc

= 0,

(
∂2P

∂ρ2

)
T=Tc

= 0 (5.6.5)

The first of these conditions confirms that the compressibility diverges at the critical point;
it also diverges everywhere along the spinodal curve, the apex of which coincides with the
critical point. The two coexisting phases, liquid and vapour, merge at the critical point,
so the transition, which is of first order below Tc, becomes of second order. Second-order
transitions are characterised by discontinuities in the second derivatives of the free energy,
of which the compressibility is one.



MEAN-FIELD THEORY OF LIQUID–VAPOUR COEXISTENCE 135

Equations (5.6.4) and (5.6.5) can be solved for the three unknowns: ρc, Tc and Pc (the
critical pressure). Elimination of T and P leads to a cubic equation in ρ having two un-
physical, negative roots and one positive root:

ρcd
3 ≈ 0.245 (5.6.6a)

with a corresponding critical temperature given by

kBTc ≈ 0.179a/d3 (5.6.6b)

and a critical compressibility ratio

Zc = Pc

ρckBTc
≈ 0.359 (5.6.6c)

Both ρc and Zc are independent of the strength of the interparticle attraction, as mea-
sured by the value of the quantity a. The theoretical results can be compared with
those obtained by molecular-dynamics calculations for a square-well fluid.31 In this case,
a = 2

3επd3(γ 3 − 1), where γ d is the range of the potential and ε is the depth of the
square well (see Figure 1.2(a)). The simulations give ρcd

3 ≈ 0.34, kBTc ≈ 0.25a/d3 and
Zc ≈ 0.28, so the agreement with theory is only semi-quantitative. The discrepancies can
be ascribed to the use in the theory of the mean-field approximation for the first-order
term in the high-temperature expansion and the neglect of higher-order terms. Although
the fluctuations corresponding to the higher-order terms are small for liquids at densities
close to freezing, they increase rapidly as the density is reduced.

The deficiencies of mean-field theory are also evident in the predictions to which it leads
for the behaviour of thermodynamic properties in the immediate vicinity of the critical
point. In the approximation represented by (5.6.4) the pressure is an analytic function of ρ
and T over a range of packing fraction that extends well beyond the value corresponding
to close packing, i.e. η = π

√
2/6 ≈ 0.74. It is therefore legitimate to expand P around Pc

in powers of the deviations Δρ = ρ − ρc and ΔT = T − Tc. Expansion up to third order
gives

P = Pc + P10ΔT + P11ΔTΔρ + P03(Δρ)3 + · · · (5.6.7)

where the coefficients Pij are

Pij =
(

∂i+jP

∂T i∂ρj

)
ρ=ρc,T=Tc

(5.6.8)

Terms in Δρ and (Δρ)2 are zero by virtue of the conditions (5.6.5) and other omitted terms
play no role in the derivation that follows. Along the critical isotherm, ΔT = 0, and (5.6.7)
simplifies to

ΔP = P − Pc ∼ (Δρ)3, T = Tc (5.6.9)
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Thus the critical isotherm is predicted to have an antisymmetric, cubic form. Division of
both sides of (5.6.7) by Δρ gives

P03(Δρ)2 = ΔP

Δρ
− P10

ΔT

Δρ
− P11ΔT (5.6.10)

On taking the limit ΔT → 0, we find that

ΔP

Δρ
→
(
∂P

∂ρ

)
T=Tc

= 0

ΔT

Δρ
→
(
∂T

∂ρ

)
P

= −
(
∂P

∂ρ

)
T=Tc

/(
∂P

∂T

)
ρ=ρc

= 0
(5.6.11)

where the second result follows from the fact that (∂P/∂T )ρ is always positive. Thus
(5.6.10) reduces to

Δρ = ±B|ΔT |1/2, T < Tc (5.6.12)

where B2 = P11/P03 > 0. The coexistence curve close to the critical point should therefore
be symmetrical about ρ = ρc, i.e. (ρG − ρc) = −(ρL − ρc) and ρL + ρG = 2ρc. This is a
special case of the empirical law of “rectilinear diameters”, according to which ρL + ρG is
a linear function of temperature.

Next we consider the behaviour of the isothermal compressibility. From (5.6.7) we see
that near the critical point: (

∂P

∂ρ

)
T

≈ P11ΔT + P03(Δρ)2 (5.6.13)

Along the critical isotherm, where Δρ = 0, we find that

χT = 1

ρ

(
∂ρ

∂P

)
T

≈ 1

P11ρc
(ΔT )−1, T → T +

c (5.6.14a)

Along the coexistence curve, (5.6.12) applies. Thus

χT ≈ 1

2P11ρc
|ΔT |−1, T → T −

c (5.6.14b)

Finally, it is easy to show that the specific heat CV exhibits a finite discontinuity as the
critical point is approached along either the critical isochore or the coexistence curve.

Equations (5.6.9), (5.6.12) and (5.6.14) are examples of the scaling laws that charac-
terise the behaviour of a fluid close to the critical point, some of which are summarised in
Table 5.1. Scaling laws are expressed in terms of certain experimentally measurable crit-
ical exponents (α, β , γ , etc.), which have the same values for all fluids, irrespective of
their chemical nature.33 This universality extends to the behaviour of the Ising model and
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TABLE 5.1. Definitions of the critical scaling laws and numerical values of the exponents

Definition T − Tc ρ − ρc Expt32 Classical

α CV = A(T − Tc)
−α >0 0 0.10±0.05 0∗

α′ CV = A′|T − Tc|−α′
<0 �=0 0∗

β ρL − ρG = B|T − Tc|β <0 �=0 0.32±0.01 1
2

γ χT = C(T − Tc)
−γ >0 0 1.24±0.1 1

γ ′ χT = C|T − Tc|−γ ′
<0 �=0 1

δ |P − Pc| = D|ρ − ρc|δ 0 �=0 4.8±0.2 3
ν ξ = ξ0(T − Tc)

−ν >0 0 0.63±0.04 1
2

ν′ ξ = ξ ′
0|T − Tc|−ν′

<0 �=0 1
2

∗Finite discontinuity.

other magnetic systems near the paramagnetic–ferromagnetic transition. By comparing the
definitions of the scaling laws in Table 5.1 with the results of the mean-field calculations,
we can identify the so-called classical values of some of the critical exponents: α = α′ = 0
(a finite discontinuity), β = 1

2 , γ = γ ′ = 1 and δ = 3. These results differ significantly
from the experimental values listed in the table. The classical values are independent of the
explicit form of the equation of state. They follow solely from the assumption that the pres-
sure or, equivalently, the free energy is an analytic function of ρ and T close to the critical
point and can therefore be expanded in a Taylor series.34 Analyticity also implies that the
classical exponents should be independent of the spatial dimensionality, which is in con-
tradiction both with experimental findings and with exact, theoretical results for the Ising
model. The hypothesis of analyticity at the critical point, inherent in mean-field theory,
must therefore be rejected. The presence of mathematical singularities in the free energy,
reflected in the fact that the true critical exponents are neither integers nor simple, ratio-
nal numbers, can be traced back to the appearance of large-scale density fluctuations near
the critical point. For any finite system, the partition function and free energy are analytic
functions of the independent thermodynamic variables. Singularities appear only in the
thermodynamic limit, where fluctuations of very long wavelength become possible. Finite
systems therefore behave classically, as the results of computer simulations have shown.
Extrapolation techniques based on finite-size scaling ideas are needed if non-classical val-
ues of the exponents are to be obtained by simulation.35

On approaching the critical point, the amplitude of density fluctuations increases and
local fluctuations become correlated over increasingly long distances. The compressibility
equation (2.6.12) shows that the divergence of the compressibility must be linked to a di-
vergence in the range of the pair correlation function h(r); the range of h(r) is called the
correlation length, ξ . The behaviour of ξ for T ≈ Tc is described by critical exponents ν

(along the critical isochore as T → T +
c ) and ν′ (along the coexistence curve as T → T −

c ).
These exponents are measurable by light and x-ray scattering experiments. Anomalies in
the intensity of light scattered from a fluid near its critical point, particularly the phenom-
enon known as critical opalescence, were first studied theoretically by Ornstein and Zernike
as far back as 1914; it was in the course of this work that the direct correlation function
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was introduced. Equation (3.5.15) shows that close to the critical point, ĉ(k) is of order
1/ρ at k = 0. Thus the range of c(r) remains finite, which is consistent with the conjecture
that c(r) → −βv(r) as r → ∞ (see the discussion following (3.8.7)). If we also assume
that ĉ(k) has no singularities, it can be expanded in a Taylor series about k = 0 in the form

ρĉ(k) = c0(ρ,T ) + c2(ρ,T )k2 +O
(
k4) (5.6.15)

with

c0(ρ,T ) = ρĉ(0) = 1 − 1/ρkBT χT

c2(ρ,T ) = − 1
6ρ

∫
c(r)r2 dr ≡ −R2 (5.6.16)

The characteristic length R is sometimes called the Debye persistence length. Note that
the conjecture regarding the asymptotic behaviour of c(r) means that c2 and higher-order
coefficients in (5.6.16) are strictly defined only for pair potentials v(r) of sufficiently short
range.

The key assumption of Ornstein–Zernike theory is that R remains finite at the critical
point. Equations (3.6.10) and (5.6.15) then imply that

1

S(k)
= 1 − ρĉ(k) ≈ 1 − c0(ρ,T ) − c2(ρ,T )k2 (5.6.17a)

or, from (5.6.16):

S(k) = 1 + ρĥ(k) ≈ R−2

K2 + k2
(5.6.17b)

where K2 = (1 − c0)R
−2 = R−2/ρkBT χT . The asymptotic form of the pair correlation

function is obtained by taking the Fourier transform of (5.6.17b):

h(r) ∼ 1

4πρR2

exp(−Kr)

r
, r → ∞ (5.6.18)

The form of this expression makes it natural to identify K with the inverse range of h(r),
i.e. with the inverse correlation length:

ξ = K−1 = R(ρkBT χT )
1/2 (5.6.19)

From (5.6.19) and Table 5.1 it is obvious that within the Ornstein–Zernike approximation
the critical exponents for ξ and χT are related by ν = 1

2γ . There are indications, however,
that the theory is not entirely correct at the critical point. First, it breaks down in two
dimensions, where it predicts that h(r) ∼ ln r for large r , which is clearly absurd. Secondly,
careful study of plots of 1/S(k) versus k2 shows that the experimental data are not strictly
linear, as suggested by (5.6.17a), but curve slightly downwards in the limit k2 → 0. These
difficulties can be circumvented34 by the introduction of another exponent, η, which allows
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h(r) for large r to be written as

h(r) ∼ A exp(−r/ξ)

rD−2+η
(5.6.20)

where D is the dimensionality; the Ornstein–Zernike approximation is recovered by putting
η = 0. In the limit ξ → ∞, the Fourier transform of (5.6.20) is

ĥ(k) ∼ A

k2−η
(5.6.21)

and a non-zero value of η can account for the non-linearity of the plots of 1/S(k) versus k2.
Substitution of (5.6.21) in the compressibility equation (2.6.12) yields a relation between
the exponents γ , ν and η:

ν(2 − η) = γ (5.6.22)

This result is independent of dimensionality. The value of η is difficult to determine exper-
imentally, but the available evidence suggests that it is a small, positive number, approxi-
mately equal to 0.05.

5.7 SCALING CONCEPTS AND HIERARCHICAL REFERENCE THEORY

The shortcomings of mean-field theory in the critical region are linked to its inability to de-
scribe the onset of large-scale density fluctuations close to the critical point, where the cor-
relation length ξ diverges. The scaling concepts introduced by Widom36 and Kadanoff37

in the 1960s, and later formalised by Wilson within renormalisation-group theory,38 are
ultimately based on the recognition that ξ is the only relevant length scale near criticality.
The divergence of ξ as T → Tc causes the fluid to become “scale invariant”, meaning that
fluctuations on all length scales are self-similar; this in turn implies that critical behaviour
is universal.

Scaling laws follow from an explicit assumption concerning the functional form of ther-
modynamic potentials near the critical point. The basic idea is perhaps most easily illus-
trated in the case of the chemical potential, which is the “ordering field” conjugate to the
“order parameter” (ρL −ρG). These two variables play roles analogous to the external field
and magnetisation in the Ising model, which belongs to the same universality class as sim-
ple fluids. At the critical point we see from (2.4.21) and (5.6.5) that the chemical potential
satisfies the conditions (

∂μ

∂ρ

)
T =Tc

=
(
∂2μ

∂ρ2

)
T=Tc

= 0 (5.7.1)

If μ is assumed to be an analytic function of ρ and T at the critical point, a Taylor expan-
sion similar to (5.6.7) can be made. By introducing the reduced variables

μ∗ = μρc

Pc
, Δρ∗ = ρ − ρc

ρc
, ΔT ∗ = T − Tc

Tc
(5.7.2)
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and taking account of (5.7.1), the result to first order in ΔT ∗ may be written as

Δμ∗ = μ∗(ρ,T ) − μ∗(ρc, T )

≈ (μ − μc)ρc

Pc
− μ∗

10ΔT ∗ ≈ μ∗
11Δρ∗ΔT ∗ + μ∗

03(Δρ∗)3 (5.7.3)

where

μ∗
ij =

(
∂i+jμ∗

∂ΔT ∗i∂Δρ∗j

)
ρ=ρc,T=Tc

(5.7.4)

The classical values of the critical exponents are now easily recovered. In particular, since
ΔT ∗ is zero along the critical isotherm:

Δμ∗ = ±D∗|Δρ∗|δ = D∗Δρ∗|Δρ∗|δ−1 (5.7.5)

where δ = 3 and D∗ = μ∗
03. Similarly, because Δμ∗ vanishes along the coexistence curve:

Δρ∗ = ±B∗|ΔT ∗|β (5.7.6)

where β = 1
2 and B∗ = (μ∗

11/μ
∗
03)

β .
We now introduce a dimensionless scaling parameter, defined as

x = ΔT ∗/|Δρ∗|1/β (5.7.7)

Clearly x is zero along the critical isotherm and is infinite along the critical isochore,
while along the coexistence curve x = −x0 = −(B∗)1/β . Equation (5.7.3) can therefore be
rewritten in generic form as

Δμ∗ = Δρ∗|Δρ∗|δ−1h(x) (5.7.8)

where, in the classical theory:

h(x) = μ∗
03(1 + x/x0) (5.7.9)

One way of formulating the scaling hypothesis is to postulate that non-classical critical
behaviour still yields a result having the general form of (5.7.8), but with non-classical
values of the exponents β and δ and a different (but unspecified) expression for h(x),
assumed to be an analytic function of x for −x0 < x < ∞ and to vanish as x → x0.39

The scaling hypothesis leads to relations between the critical exponents, from which the
values of all exponents can be obtained once two are specified. Consider, for example, the
exponent γ ′, which describes the behaviour of the isothermal compressibility along the
coexistence curve. Given that x = −x0 and h(x) = 0, it follows from (5.7.6) and (5.7.8)
that (

∂Δμ∗

∂Δρ∗

)
ΔT ∗

= − 1

β
|Δρ∗|δ−1−1/βΔT ∗h′(−x0) ∼ |ΔT ∗|β(δ−1) (5.7.10)
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where h′(x) ≡ dh(x)/dx. Then, since χ−1
T = ρ2(∂μ/∂ρ)T (see (2.4.22)), comparison with

the definition of the exponent γ ′ in Table 5.1 shows that

γ ′ = β(δ − 1) (5.7.11)

In a similar way it is possible to establish the relations

γ = γ ′, α′ + 2β + γ ′ = 2, α′ + β(1 + δ) = 2 (5.7.12)

However, since this analysis rests on a hypothesis that refers only to thermodynamic quan-
tities, it yields no information about the correlation-length exponents ν, ν′ and η. Relations
involving those quantities can be derived by exploiting scale invariance near the critical
point within Kadanoff’s “block-spin” construction for magnetic systems.37 That approach
leads back to the exponent relation (5.6.22) and to the “hyperscaling” relation, which in-
volves the dimensionality D of the system:

νD = 2 − α (5.7.13)

Although scaling arguments lead to relations between the critical exponents, they cannot
be used to derive numerical values of the exponents given only the hamiltonian of the
system. That goal can be reached within renormalisation-group theory, which is basically
an iterative scheme whereby the total number of degrees of freedom contained in a volume
of order ξD is systematically reduced to a smaller set of effective degrees of freedom.
The reduction is brought about by successive elimination of fluctuations of wavelength
λ < L, where the length L is progressively allowed to approach ξ . Scaling laws turn out
to be a natural consequence of the theory. The set of transformations τ associated with
the progressive reduction in the numbers of degrees of freedom gradually transforms a
given initial hamiltonian, belonging to some universality class, into a fixed point of τ , i.e.
a hamiltonian that is invariant under the transformation; the existence of a fixed point is
equivalent to the principle of universality. The theory shows that for dimensionality D > 4,
fluctuations of wavelength λ become negligible as λ increases, and mean-field theory is
therefore exact. Deviations from classical behaviour for D < 4 can be expanded in powers
of ε = 4 − D by the use of field-theoretic techniques; this allows the calculation of the
non-classical exponents in three dimensions.40

Renormalisation-group ideas have been combined with those of thermodynamic per-
turbation theory in the hierarchical reference theory or HRT of Parola, Reatto and
coworkers,41 which leads to a non-classical description of criticality. The starting point
of HRT is closely related to the treatment of long-range interactions in Section 5.5. We
assume again that the total pair potential is divided into a repulsive, reference part, v0(r),
and an attractive perturbation, w(r). Then, in the random-phase approximation (5.5.13)
and (5.5.29), the reduced free-energy density φ = −βF ex/V is given by

φ = φ0 + 1
2ρ

2
∫

g0(r)Ψ (r)dr

− 1
2 (2π)−3

∫ (
Σ̂0(k)Ψ̂ (k) + ln

[
1 − Σ̂0(k)Ψ̂ (k)

])
dk (5.7.14)
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where a subscript 0 denotes a property of the reference system, Ψ (r) = −βw(r) and
Σ̂0(k) = ρS0(k) = ρ2/[1−ρĉ0(k)]. Use of Parseval’s relation allows (5.7.14) to be rewrit-
ten as

φ = φ0 + 1
2ρ

2
∫

Ψ (r)dr − 1
2 (2π)−3

∫ (
ρΨ̂ (k) + ln

[
1 − Σ̂0(k)Ψ̂ (k)

])
dk (5.7.15)

where the first two terms on the right-hand side correspond to the mean-field approx-
imation (5.6.3) and the final term is the contribution made by fluctuations. The non-
analyticities in the free energy that characterise the critical region mean, however, that
a straightforward perturbative treatment of the effect of fluctuations is bound to fail. The
renormalisation-group approach provides a hint of how to go beyond conventional pertur-
bation theory. Density fluctuations must be introduced selectively and recursively, starting
from short-wavelength fluctuations, which modify the local structure of the reference fluid,
up to longer wavelengths, which eventually lead to condensation. The gradual switching
on of fluctuations is brought about by passing from the reference-system pair potential to
the full potential via an infinite sequence of intermediate potentials

v(Q)(r) = v0(r) + w(Q)(r) (5.7.16)

where the perturbation w(Q)(r) contains only those Fourier components of w(r) corre-
sponding to wavenumbers k >Q. In other words:

ŵ(Q) = ŵ(k), k >Q,

= 0, k <Q

and the reference-system and full potentials are recovered in the limits Q → ∞ and
Q → 0, respectively:

lim
Q→∞v(Q)(r) = v0(r), lim

Q→0
v(Q)(r) = v(r) (5.7.17)

The “Q-system”, i.e. the fluid with pair potential v(Q)(r), serves as the reference system
for a fluid of particles interacting through the potential v(Q−δQ)(r), corresponding to an in-
finitesimally lower cut-off in k-space. The parameter Q, like the inverse-range parameter γ
in (5.5.3), has no microscopic significance; its role, as we shall see, is merely to generate
a sequence of approximations that interpolate between the mean-field result and the exact
solution for the fully interacting system.

The cut-off in ŵ(k) at k = Q leads to discontinuities in the free energy and pair functions
of the Q-system. To avoid the difficulties that this would create, a modified free-energy
density φ̄(Q) is introduced, defined as

φ̄(Q) = φ(Q) + 1
2ρ

2[Ψ̂ (0) − Ψ̂ (Q)(0)
]− 1

2ρ
[
Ψ (0) − Ψ (Q)(0)

]
(5.7.18)

together with a modified direct correlation function Ĉ (Q), given by

Ĉ (Q)(k) = ĉ(Q)(k) − 1/ρ + Ψ̂ (k) − Ψ̂ (Q)(k) (5.7.19)
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where c(Q)(k) is the direct correlation function of the Q-system, defined in the usual
way, and Ψ (Q)(r) = −βw(Q)(r). Inclusion of the last two terms42 on the right-hand side
of (5.7.19) compensates for the discontinuity, equal to βŵ(k), that appears in the function
ĉ(Q)(k) at k = Q. Thus

Ĉ (Q)(k) = − 1

Σ̂(Q)(k)
, k >Q,

= − 1

Σ̂(Q)(k)
+ Ψ̂ (k), k <Q

(5.7.20)

with Σ̂(Q)(k) = ρS(Q)(k). With these definitions, the expression derived from (5.7.15) for
φ̄(Q−δQ) in terms of φ̄(Q) can be written as

φ̄(Q−δQ) = φ̄(Q) + 1
2 (2π)−3

∫
ln

(
1 − Ψ̂ (k)

Ĉ (Q)(k)

)
dk (5.7.21)

where the integration is confined to the interval Q − δQ < k < Q. By taking the limit
δQ = 0 we arrive at an exact, differential equation for φ̄(Q), which describes the evolution
of the free energy with Q:

−dφ̄(Q)

dQ
= Q2

4π2
ln

(
1 − Ψ̂ (Q)

Ĉ (Q)(Q)

)
(5.7.22)

The initial condition is imposed at Q = ∞, where the free energy takes its mean-field
value, i.e.

φ(∞) = φ0 + 1
2ρ

2Ψ̂ (0) − 1
2ρΨ (0) (5.7.23)

or, equivalently, φ̄(∞) = φ0.
Methods similar to those sketched above can be used to derive a formally exact, infinite

hierarchy of differential equations that link the pair function C(Q)(k) to all higher-order
direct correlation functions ĉ

(Q)
n (r1, . . . , rn), n � 3. Close to the critical point some simpli-

fication occurs at small values of Q, i.e. when critical fluctuations begin to make a contri-
bution to the free energy. The definitions (5.7.18) and (5.7.19) imply that a generalisation
of the compressibility relation (3.5.15):

Ĉ (Q)(k = 0) = −∂2φ̄(Q)

∂ρ2
(5.7.24)

applies for all Q. The resulting divergence of 1/Ĉ (Q)(k) in the limit k → 0 means that the
argument of the logarithmic function in (5.7.21) is dominated by the term describing pair
correlations. Thus the evolution of the free energy with Q in its final stages has a universal
character, being essentially independent of the interaction term Ψ̂ (k). Similar simplifica-
tions appear at all levels of the hierarchy, and the distinctive features of renormalisation-
group theory, such as scaling laws and the expansion in powers of ε = 4 − D, emerge
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FIG. 5.9. An isotherm of the Lennard-Jones fluid in the pressure–density plane, calculated at three different
stages in the integration of (5.7.22); P ∗ = Pσ 3/ε is the reduced pressure. The limits Q = ∞ and Q = 0 cor-
respond, respectively, to the mean-field and final solutions. For Q = 0 the theory yields an isotherm that is
rigorously flat in the two-phase region, while at finite Q van der Waals loops are obtained.
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FIG. 5.10. Liquid–vapour coexistence curve for the Lennard-Jones fluid. The curve is calculated from HRT and
the points are the results of Monte Carlo calculations.45 After Tau et al.43

from the formalism without recourse to field-theoretical models. Away from the critical
region some approximate closure of the hierarchy is required if numerical results are to
be obtained. In practice this is achieved at the level of the free energy by approximating
the function Ĉ (Q)(k) in a form that is consistent both with (5.7.24) and with the Ornstein–
Zernike assumption that Ĉ (Q)(k) is analytic in k2 (see (5.6.17)). The first equation of the hi-
erarchy is thereby transformed into a partial differential equation in the variables Q and ρ.
Closures of this general type, having features in common with other approximate theo-
ries, have been used in calculations for a variety of simple fluids.43,44 Overall the theory
yields a very satisfactory description of liquid–vapour coexistence. Non-classical values
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are obtained for the critical exponents, though these differ somewhat from the nearly ex-
act results derived from the ε expansion.41(b) For example, within HRT, β ≈ 0.345, while
the ε expansion gives β ≈ 0.327. Below Tc the theory leads to rigorously flat isotherms
in the two-phase region, illustrated by the results for the Lennard-Jones fluid shown in
Figure 5.9. The coexistence curve can therefore be determined without use of the Maxwell
construction, with results in excellent agreement with those obtained by simulation, as Fig-
ure 5.10 reveals. A fault in the theory is the fact that it leads to an artificial divergence of
the isothermal compressibility along the coexistence curve, which therefore coincides with
the spinodal everywhere, not just at the critical point (cf. Figure 5.8). The source of this
error is the analyticity imposed on Ĉ (Q)(k).
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CHAPTER 6

Inhomogeneous Fluids

Chapters 4 and 5 were concerned with theories designed primarily for the calculation of
thermodynamic and structural properties of bulk, uniform fluids. We now turn our atten-
tion to non-uniform systems. The translational symmetry characteristic of a homogeneous
fluid is broken by exposure to an external force field, in the vicinity of a confining sur-
face (which may be regarded as the source of an external field), or in the presence of an
interface between coexisting phases. Static properties of inhomogeneous fluids are most
effectively studied within the framework of density-functional theory, the foundations of
which were laid in Sections 3.1 and 3.4. As we saw there, use of the theory requires as
a starting point some approximate expression for the intrinsic free energy as a functional
of the single-particle density, or density profile, ρ(1)(r). In this chapter we show how use-
ful approximations can be devised and describe their application to a variety of physical
problems.

6.1 LIQUIDS AT INTERFACES

Molecular interactions at fluid interfaces are responsible for many familiar, physical
processes, from lubrication and bubble formation to the wetting of solids and the capil-
lary rise of liquids in narrow tubes. Questions of a fundamental character that a theory
needs to address include the nature of the interface that arises spontaneously between, say,
a liquid and its vapour or between two immiscible liquids; the layering of dense fluids
near a solid substrate; the properties of liquids confined to narrow pores; the formation of
electric double layers in electrolyte solutions; and the factors that control interfacial phase
transitions, such as the capillary condensation of under-saturated vapour in porous media.
In all these situations, surface contributions to the thermodynamic potentials (proportional
to the surface area) are no longer negligible compared with the contributions from the
bulk (proportional to the volume). The equilibrium values of the potentials are therefore
determined by the competition between bulk and surface effects.1

The change in grand potential associated with an infinitesimal change in thermodynamic
state of a system containing an interface is given by a generalisation of (2.4.3):

dΩ = −S dT − P dV − Ndμ + γ dA (6.1.1a)

147
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or, in the case of a mixture:

dΩ = −S dT − P dV −
∑
ν

Nν dμν + γ dA (6.1.1b)

where ν labels a species, A is the interfacial area and γ , the variable conjugate to A, is the
surface tension. The corresponding change in Helmholtz free energy is

dF = −S dT − P dV +
∑
ν

μν dNν + γ dA (6.1.2)

The surface tension is the work required to increase the interface by unit area. It is positive
for any real liquid, since intermolecular forces tend to reduce the interfacial area. Hence, in
the absence of gravity, formation of a spherical interface is always favoured. From (6.1.1)
and (6.1.2) it follows that γ may be written as a thermodynamic derivative in either of two
different ways:

γ =
(
∂Ω

∂A

)
V,T ,{μν}

=
(
∂F

∂A

)
V,T ,{Nν}

(6.1.3)

In addition, since Ω is a homogeneous function of first order in V and A, (6.1.1) can be
integrated at constant μν and T to give

Ω = −PV + γA (6.1.4)

which is the generalisation to interfacial systems of the thermodynamic relation (2.4.2).
Thus the surface tension can also be written as:

γ = 1

A (Ω + PV ) ≡ Ω(s)

A (6.1.5)

where Ω(s) is the surface excess grand potential.
The concept of a surface excess property is easily extended to other thermodynamic

quantities. Consider, for example, the interface between a one-component liquid and its
vapour. Under the influence of gravity, the interface is planar and horizontal, and the den-
sity profile depends only on the vertical coordinate, z. Macroscopically the interface ap-
pears sharp, but on the molecular scale it varies smoothly over a few molecular diameters.
A typical density profile, ρ(1)(z), is shown schematically in Figure 6.1, where the z-axis
is drawn perpendicular to the interface. The physical interface is divided into two parts by
an imaginary plane located at z = z0, called the Gibbs dividing surface. The liquid phase
extends below z = z0, where ρ(1)(z) rapidly approaches its bulk-liquid value, ρL, while for
z > z0, ρ(1)(z) tends towards the bulk-gas value, ρG. The liquid and gas adsorptions, ΓL
and ΓG, are defined as integrals over the regions labelled 1 and 2 in the figure:

ΓL =
∫ z0

−∞
[
ρ(1)(z) − ρL

]
dz < 0, ΓG =

∫ ∞

z0

[
ρ(1)(z) − ρG

]
dz > 0 (6.1.6)
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FIG. 6.1. Density profile at the liquid–vapour interface. The z-axis is perpendicular to the interface and the Gibbs
dividing surface is located at z = z0; ρL and ρG are the bulk densities of liquid and gas, respectively.

Though the location of the dividing surface is arbitrary, it is commonly positioned so as
to make the two labelled regions equal in area, in which case the total adsorption, Γ =
ΓL + ΓG, is zero. We shall follow this convention. If the interface were infinitely sharp,
with the two bulk phases meeting discontinuously at the dividing surface, the total number
of particles would be

NL + NG = VLρL + VGρG (6.1.7)

where VL, VG are the volumes occupied by the two phases. The total number of particles in
the inhomogeneous system contained in the volume V = VL +VG may therefore be written
as

N = NL + NG + N(s) (6.1.8)

where N(s) is the surface excess number of particles, and the total adsorption is Γ =
N(s)/A. With the conventional choice of z0, N(s) = 0. In a solution, z0 may be chosen
such that the adsorption of the solvent vanishes, but the adsorptions of the solutes will then
in general be non-zero. Expressions analogous to (6.1.8) serve as definitions of the other
surface excess quantities.

The surface excess grand potential is related to the surface tension by (6.1.5). When
that relation is combined with (6.1.1) and the corresponding expressions for the two bulk
phases, we find that

dΩ(s) = γ dA+Adγ = −S(s) dT −
∑
ν

N(s)
ν dμν + γ dA (6.1.9)

which leads, after division by A, to

s(s) dT +
∑
ν

Γν dμν + dγ = 0 (6.1.10)

where s(s) ≡ S(s)/A is the surface excess entropy per unit area. Equation (6.1.10) is called
the Gibbs adsorption equation. This is the surface equivalent of the Gibbs–Duhem relation
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in the bulk phase and shows that the adsorptions of the different species are related to the
surface tension by

Γν = −
(

∂γ

∂μν

)
T ,{μν′ �=ν }

(6.1.11)

Equations (6.1.10) and (6.1.11) have been derived with the example of a liquid–gas inter-
face in mind, but their applicability is more general. They hold also in the case of a fluid in
contact with a solid surface. There, depending on the nature of the solid–fluid interaction,
the adsorptions may be either positive or negative.

Thus far we have assumed that the system contains a single, planar (or weakly curved)
interface, well-separated from any other surface. When a fluid is narrowly confined, an ad-
ditional control variable comes into play, namely the quantity that characterises the spacing
between the bounding surfaces. In the simplest case, that of a liquid confined to a slit-like
pore between two parallel plates of area A, the new variable is the spacing L of the plates.
The necessary generalisation of (6.1.1) is

dΩ = −S dT − P dV −
∑
ν

Nν dμν + 2γ dA− fSAdL (6.1.12)

where γ = 1
2 (∂Ω/∂A)V,T ,{μν },L is the substrate–fluid interfacial tension. The quantity

−fS is the variable per unit area conjugate to L; fS has the dimensions of pressure, but is
commonly referred to as the “solvation force”. Physically, fS is the force over and above
any direct interaction between the plates that must be exerted on the plates in order to
maintain them at a separation L; when fS > 0, the force is repulsive. If Γν , ρ(1)

ν (z) and ρνL
are, respectively, the total adsorption, density profile and bulk-liquid density of species ν,
then

Γν =
∫ L

0

[
ρ(1)
ν (z) − ρνL

]
dz (6.1.13)

and the differential of the surface excess grand potential is

dΩ(s) = −2s(s)AdT −A
∑
ν

Γν dμν + 2γ dA− fSAdL (6.1.14)

The interfacial tension is again the surface excess grand potential per unit area, i.e. γ =
Ω(s)(μ,T ,L)/2A, and the solvation force is

fS = −2

(
∂γ

∂L

)
T ,{μν}

= − 1

A

(
∂Ω

∂L

)
A,T ,{μν }

− P (6.1.15)

since dV = AdL. In the limit L → ∞, the first term on the right-hand side of (6.1.15)
becomes equal to the bulk pressure and the solvation force vanishes. In the same limit, the
total adsorptions Γν become equal to the sum of the adsorptions at each plate 1, 2 consid-
ered separately, i.e. Γν → Γ

(1)
ν + Γ

(2)
ν , and 2γ → γ (1) + γ (2). The “solvation potential”
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per unit area is defined as

W(L) = 1

A
[
Ω(s)(L) − Ω(s)(L → ∞)

]= (2γ − γ (1) − γ (2))− fSL (6.1.16)

with fS = −∂W(L)/∂L. In the limit L → 0, the confined fluid is completely expelled and
γ → 0. Thus W(L = 0) = −γ (1) − γ (2).

6.2 APPROXIMATE FREE-ENERGY FUNCTIONALS

We saw in Chapter 3 that the grand potential of an inhomogeneous fluid is a functional
of the intrinsic chemical potential ψ(r) = μ − φ(r), where φ(r) is the external potential.
Equation (3.3.13) shows that Ω is also the generating functional for the set of n-particle
correlation functions H(n)(r1, . . . , rn). Similarly, the Helmholtz free energy is a functional
of the single-particle density, and its excess (non-ideal) part is the generating functional
for the set of n-particle direct correlation functions c(n)(r1, . . . , rn). Implementation of
density-functional theory is based on the variational principle embodied in (3.4.3), accord-
ing to which the functional Ωφ[n] = F[n] − ∫ n(r)ψ(r)dr reaches its minimum value
when the trial density n(r) coincides with the equilibrium density, while the minimum
value itself is the grand potential of the system. This in turn requires the construction of an
intrinsic free-energy functional F in a form appropriate to the physical problem of interest.
While the ideal part is given exactly by (3.1.22), the non-trivial, excess part is in general
unknown, and some approximation must be invoked.

We consider first the case of a small-amplitude modulation of the single-particle density
of the form δρ(1)(r) = ρ(1)(r) − ρ0, where ρ0 is the number density of the uniform, refer-
ence fluid. If the modulation is produced by a weak, external potential δφ(r), the Fourier
components of δρ(1) are related to those of δφ by the linear-response formula (3.6.9),
the constant of proportionality being the density response function χ(k). A similar result
emerges if F is assumed to be a quadratic functional of the density modulation, i.e.

F
[
ρ(1)]= Vf0 + 1

2

∫
dr
∫

dr′ δρ(1)(r)X0(r, r′)δρ(1)(r′) +O
((
δρ(1))3) (6.2.1)

where f0 is the free-energy per unit volume of the reference system; the function X0(r, r′)
is also a property of the reference system and therefore dependent only on the separation
r − r′. The absence from (6.2.1) of a term linear in δρ(1) is explained by the fact that when
φ(r) = 0, F[ρ(1)] has its minimum value for a uniform density. When written in terms of
Fourier components, (6.2.1) becomes

F
[
ρ(1)]= Vf0 + 1

2V

∑
k

δρ̂(1)(k)X̂0(k)δρ̂(1)(−k) +O
(
δρ(1))3 (6.2.2)

Then, on applying the variational formula (3.4.3), where the derivative is now taken with
respect to δρ̂(1)(k), we find that δρ̂(1)(k) and δφ̂(k) are linearly related in the form

X̂0(k)δρ̂(1)(k) = −δφ̂(k) (6.2.3)
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Comparison of (6.2.3) with the linear-response expression (3.6.9) shows that

X̂0(k) ≡ − 1

χ(k)
= kBT

ρ0S(k)
(6.2.4)

where S(k) is the static structure factor of the uniform fluid. The free-energy cost δF of
creating a weak density modulation of wavevector k is therefore proportional to 1/S(k).

Next we consider the slow-modulation limit, corresponding to the case of an inhomo-
geneity of wavelength such that |∇ρ(1)(r)|/ρ0 = 1/ξ � 1/ξ0, where ξ0 is a typical cor-
relation length in the bulk system. The simplest assumption to make is that macroscopic
thermodynamics applies locally, i.e. within volume elements of order ξ3, and hence that a
local free energy can be defined at each point in the fluid. In this local-density approxima-
tion the intrinsic free energy is written as

F
[
ρ(1)]= ∫ f

(
ρ(1))dr (6.2.5)

where f (ρ(1)) is the free-energy per unit volume of the homogeneous fluid at a density
ρ(1)(r). Because the ideal contribution to the free-energy functional is precisely of the local
form represented by (6.2.5), the approximation is needed only for the excess part, F ex. The
Euler–Lagrange formula that results from substitution of (6.2.5) in the variational formula
(3.4.3) is

f ′(ρ(1))= μ − φ(r) (6.2.6)

where, here and below, the prime denotes a derivative of a function with respect to its
argument, in this case ρ(1)(r). If we now take the gradient of both sides of (6.2.6) and use
the second of the thermodynamic relations (2.3.8), we find that (6.2.6) is equivalent to the
macroscopic condition of mechanical equilibrium:

∇P(r) = −ρ(1)(r)∇φ(r) (6.2.7)

The local-density approximation has proved successful in predicting the concentration pro-
files of colloidal dispersions in sedimentation equilibrium, where the external potential is
either gravity or a centrifugal potential and the slow-modulation criterion is therefore well
satisfied.2

To go beyond the local-density approximation we suppose initially that the inhomo-
geneity extends in only one direction, as is true, for example, of the interface pictured in
Figure 6.1. The density profile is then a function of a single coordinate, which we take to
be z. The free-energy functional can be formally expanded in powers of 1/ξ , the inverse
range of the inhomogeneity. Thus, since dρ(1)(z)/dz is of order 1/ξ , a natural generalisa-
tion of (6.2.5) is one in which the free-energy density f is taken to be a function not only
of ρ(1)(z) but also of its low-order derivatives, i.e.

F
[
ρ(1)]= ∫ ∞

−∞
f

(
ρ(1)(z),

dρ(1)(z)

dz
,

d2ρ(1)(z)

dz2

)
dz (6.2.8)
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with

f = f0 + f1
dρ(1)(z)

dz
+ f2′

(
dρ(1)(z)

dz

)2

+ f2′′
d2ρ(1)(z)

dz2
+O

(
1/ξ4) (6.2.9)

where the coefficients fn on the right-hand side are all functions of ρ(1)(z). Terms beyond
f0 in (6.2.9) represent successive “gradient” corrections to the local-density approxima-
tion. However, the coefficient f1 is zero, since the functional must be invariant under re-
flection. Indeed, if ρ(1)(z) is a solution of (3.4.3), the mirror-image profile ρ(1)(−z) must
also be a solution. A change of variable from z to z′ = −z in the integral (6.2.8) proves
that this is possible only if f1 = 0; a similar argument shows that all odd coefficients must
also vanish. When (6.2.9) is substituted in (6.2.8), the term involving d2ρ(1)(z)/dz2 can be
transformed into one proportional to [dρ(1)(z)/dz]2 through an integration by parts. The
resulting expression for F is called the square-gradient functional:

F
[
ρ(1)]= ∫ ∞

−∞

(
f0 + f2

(
dρ(1)(z)

dz

)2)
dz (6.2.10)

Substitution of (6.2.10) in (3.4.3) yields a differential equation for ρ(1)(z) of the form

f ′
0 − f ′

2

(
dρ(1)(z)

dz

)2

− 2f2
d2ρ(1)(z)

dz2
= μ − φ(z) (6.2.11)

The generalisation of these results to the three-dimensional case is straightforward, requir-
ing only the replacement of dρ(1)(z)/dz by ∇ρ(1)(r). Thus (6.2.10) becomes

F
[
ρ(1)]= ∫ (f0 + f2

∣∣∇ρ(1)(r)
∣∣2)dr (6.2.12)

where f0 and f2 are functions of ρ(1)(r).
The coefficient f2 can be determined by considering again the case of a slowly vary-

ing, small-amplitude inhomogeneity δρ(1)(r) around a bulk density ρ0. If the integrand in
(6.2.12) is expanded to second order in δρ(1)(r) and the result expressed in terms of Fourier
components, we find that

F
[
ρ(1)] ≈

∫ (
f0 + 1

2f
′′
0

(
δρ(1))2 + f2∇δρ(1)(r) · ∇δρ(1)(r)

)
dr

= Vf0 + 1

2V

∑
k

(
f ′′

0 + 2f2k
2)δρ̂(1)(k)δρ̂(1)(−k) (6.2.13)

where f0 and f2 are now functions of ρ0. This result should be compared with the quadratic
functional (6.2.2). Both approximations assume that the inhomogeneity is small in ampli-
tude, but whereas (6.2.2) is valid for any k, (6.2.13) holds only in the long-wavelength
limit. The structure factor and two-particle direct correlation function of the reference fluid
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are related by (3.6.10). If ĉ(k) is expanded in even powers of k in the manner of (5.6.15),
the quantity X̂0(k) in (6.2.2) can be replaced by

X̂0(k) = kBT

ρ0

(
1 − ρ0ĉ(k)

)= kBT

ρ0

(
1 − c0 − c2k

2 +O
(
k4)) (6.2.14)

where the coefficients c0 and c2 are given by (5.6.16). Then, on identifying the resulting
expression with (6.2.13), we find that

f ′′
0 (ρ0) = kBT

∫
c(r)dr (6.2.15a)

f2(ρ0) = 1
12kBT

∫
c(r)r2 dr (6.2.15b)

Equation (6.2.15a) is merely a restatement of the compressibility relation (3.5.15), while
(6.2.15b) shows that the coefficient f2 is determined by the second moment of the direct
correlation function of the homogeneous system.

The form of the results obtained for f0 and f2 suggests that terms of order higher than
quadratic are likely to involve still higher-order moments of c(r), thereby exposing a limi-
tation inherent in an expansion in powers of the density-profile gradient (or powers of 1/ξ).
Because c(r) decays as v(r) at large r , moments of any given order will diverge for suf-
ficiently long ranged potentials. For example, if the potential contains a contribution from
dispersion forces, c(r) will decay as r−6, leading to a divergence of the fourth and higher-
order moments and hence of the coefficients fn for n � 4. Even within the square-gradient
approximation there is the further difficulty that in the presence of attractive interactions
the equilibrium state of the reference system may be one in which liquid and vapour coex-
ist, and neither f0 nor f2 is properly defined in the two-phase region. The square-gradient
functional has nonetheless proved extremely useful in studies of the liquid–gas interface,
as the work described in the next section will illustrate.3 Long-range interactions can be
treated by dividing the pair potential into a short-range reference part and long-range per-
turbation in the spirit of the perturbation theories of Chapter 5. This separation leads to
the formally exact expression for the excess part of the free-energy functional given by
(3.4.10), from which an approximate, mean-field functional is obtained if the correlation
term is ignored. The mean-field approach provides the basis for the Poisson–Boltzmann
theory of the electric double layer described in Chapter 10.

The local-density and square-gradient functionals are both designed for use in cases
where the inhomogeneity is both weak and slowly varying. Two different strategies have
been devised to deal with situations in which these conditions are not met. The first, already
discussed in a different context in Section 4.3, is based on a functional Taylor expansion
of F ex in powers of the deviation from the bulk density. Truncation of the expansion at
second order, and replacement of the direct correlation function by that of the reference
system, leads to the expression for the density profile given by (4.3.16); the quadratic func-
tional (6.2.1) is then recovered if the ideal contribution to the free energy is also expanded
to second order. Equation (4.3.16) provides the starting point for a theory of freezing de-
scribed in Section 6.6. The alternative approach involves the concept of a weighted or
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coarse-grained local density. There are some circumstances in which the local density can
reach values greater than that corresponding to close packing. This is true, for example, of
a dense hard-sphere fluid close to a solid surface. In such cases the local-density approx-
imation becomes meaningless. However, a non-local approximation with a structure not
unlike (6.2.5) can be devised by introducing a coarse-grained density ρ̄(r), defined as a
weighted average of ρ(1)(r) over a volume comparable with the volume of a particle, i.e.

ρ̄(r) =
∫

w
(|r − r′|)ρ(1)(r′)dr′ (6.2.16)

where w(|r|) is some suitable weight function, normalised such that∫
w
(|r|)dr = 1 (6.2.17)

The excess part of the free-energy functional is then taken to be

F ex[ρ(1)]= ∫ φex(ρ̄)ρ(1)(r)dr (6.2.18)

where φex(ρ̄) = f ex(ρ̄)/ρ̄ is the excess free energy per particle of the homogeneous fluid
at a density ρ̄(r); the exact form (3.1.22) is retained for the ideal part. Equation (6.2.18)
represents a weighted-density approximation.

The difficulty in implementing a weighted-density approximation lies in making an ap-
propriate choice of weight function.4 A useful guide is obtained by considering the low-
density limit. The virial expansion developed in Section 3.9 shows that to lowest order
in density the excess free energy per particle of a homogeneous fluid of density ρ0 is
φex(ρ0) = kBTρ0B2, where B2 is the second virial coefficient (3.9.7). In the case of hard
spheres, B2 is given by the integral

B2 = 1
2

∫
Θ
(|r| − d

)
dr (6.2.19)

where d is the hard-sphere diameter and Θ(x) is a unit step function: Θ(x) = 1, x < 0;
Θ(x) = 0, x > 0. The total excess free energy of the homogeneous fluid can therefore be
written as

βF ex = β

∫
ρ0φ

ex(ρ0)dr = 1
2

∫
dr
∫

dr′ ρ2
0Θ
(|r − r′| − d

)
(6.2.20)

This result is immediately generalisable to the inhomogeneous case in the form

βF ex[ρ(1)] = 1
2

∫
dr
∫

dr′ ρ(1)(r)Θ
(|r − r′| − d

)
ρ(1)(r′)

= 1
2β

∫
φex(ρ̄)ρ(1)(r)dr (6.2.21)
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where ρ̄(r) is the weighted density defined by (6.2.16), with a weight function given by

w
(|r|)= 1

2B2
Θ
(|r| − d

)= 3

4πd3
Θ
(|r| − d

)
(6.2.22)

which corresponds to averaging the density uniformly over a sphere of radius d . The same
approximation may be used at higher densities if combined with a suitable expression for
φex(ρ̄), such as that derived from the Carnahan–Starling equation of state. This leads to
qualitatively satisfactory results for the oscillatory density profiles of hard spheres near
hard, planar walls;5 an example is shown later in Figure 6.4, from which the quantitative
deficiencies in the approximation are evident. Significant improvement is achievable, at the
cost of greater computational effort, if the weight function itself is made dependent on the
weighted density.6 For example, we can retain (6.2.18) but replace (6.2.16) by

ρ̄(r) =
∫

w
(|r − r′|, ρ̄)ρ(1)(r′)dr′ (6.2.23)

Alternatively, we can write the free-energy functional in the form

F ex[ρ(1)]= Nφex(ρ̄) (6.2.24)

where ρ̄ is a position-independent, weighted density given by

ρ̄ = 1

N

∫
drρ(1)(r)

∫
dr′ w

(|r − r′|, ρ̄)ρ(1)(r′) (6.2.25)

In either case, a solution for w(|r|, ρ̄) can be obtained by functionally differentiating F ex

twice with respect to ρ(1) to give c(r) (see (3.5.2)) and matching the results to those for
the reference system. Numerical calculations therefore require as input not only the free
energy of the uniform fluid but also the direct correlation function, which would normally
be obtained from some approximate integral equation. For many purposes, however, these
methods has been superseded by the fundamental-measure theory of Rosenfeld,7 a discus-
sion of which we defer until Section 6.4.

6.3 THE LIQUID–VAPOUR INTERFACE

An interface between bulk phases will form spontaneously whenever the thermodynamic
conditions necessary for phase coexistence are met. The most familiar example is the in-
terface that forms between a liquid and its coexisting vapour, for which the density profile
ρ(1)(z) varies smoothly with the single coordinate z in the manner illustrated schemati-
cally in Figure 6.1. At low temperatures the width of the interface is of the order of a few
particle diameters, but since the distinction between the two phases vanishes continuously
at the critical temperature, the width is expected to increase rapidly as the critical point is
approached and the densities ρL and ρG merge towards a common value, the critical den-
sity ρc. The smoothness of the profile makes this a problem to which the square-gradient
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approximation is well suited. Such a calculation was first carried out by van der Waals,
whose work is the earliest known example of the use in statistical mechanics of what
are now called density-functional methods. The Euler–Lagrange equation to be solved
is (6.2.11) in the limit in which the gravitational potential φ(z) = mgz becomes vanish-
ingly small. So long as the inhomogeneity is of small amplitude, i.e. (ρL − ρG) � ρc, the
coefficient f2 of the square-gradient term is related by (6.2.15b) to the direct correlation
function of the bulk, reference system. For condensation to occur, the interparticle poten-
tial must contain an attractive term, w(r) say. Within the random-phase approximation,
c(r) ≈ c0(r)− βw(r) (see (3.5.17)), but the presence of a factor r4 in the integrand means
that the contribution to the integral in (6.2.15b) from the short-range function c0(r) can be
ignored. Thus

f2 ≈ − 1
3π

∫ ∞

0
w(r)r4 dr = 1

2m (6.3.1)

where m is a positive, density-independent constant. Equation (6.2.11) then takes the sim-
pler form

m
d2ρ(1)(z)

dz2
= −dW(ρ(1))

dρ(1)
(6.3.2)

where W(ρ(1)) = −f0(ρ
(1)) + μρ(1). The analogy between this expression and Newton’s

equation of motion is obvious, with m, z, ρ(1)(z) and W(ρ(1)) playing the roles of mass,
time, position and potential energy, respectively. Equation (6.3.2) is a non-linear differen-
tial equation that must be solved subject to the boundary conditions limz→±∞ W(ρ(1)) =
W(ρB) = −f0(ρB)+μρB = P , where ρB is the bulk density of either liquid (as z → −∞)
or gas (as z → +∞) and P is the bulk pressure. When integrated, (6.3.2) becomes

W
(
ρ(1))+ 1

2m

(
dρ(1)(z)

dz

)2

= P (6.3.3)

which is the analogue of the conservation of mechanical energy, while a second integration
yields a parametric representation of the density profile in the form of a quadrature:

z = −
(
m

2

)1/2 ∫ ρ(1)(z)

ρ(1)(0)

[
P − W(ρ)

]−1/2 dρ (6.3.4)

By definition, W(ρ) = −ω(ρ), where ω = Ω/V is the grand potential per unit volume
of the fluid at a density ρ = ρ(1)(z). At liquid–gas coexistence, ω(ρ) has two minima
of equal depth, situated at ρ = ρL and ρ = ρG, with ω(ρL) = ω(ρG) = −P . A simple
parametrisation of ω(ρ), valid near the critical point is

ω(ρ) = 1
2C(ρ − ρL)

2(ρ − ρG)2 − P (6.3.5)
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where both C and the pressure at coexistence, P , are functions of temperature. Substitution
of (6.3.5) in (6.3.4) gives

z = −
(
m

C

)1/2 ∫ ρ(1)(z)

ρ(1)(0)

dρ

(ρL − ρ)(ρ − ρG)
= −ζ ln

(
ρ(1)(z) − ρG

ρL − ρ(1)(z)

)
(6.3.6)

where ζ = (m/C)1/2/(ρL − ρG) is a characteristic length that provides a measure of the
interfacial width. Equation (6.3.6) is easily solved to give ρ(1) as a function of z:

ρ(1)(z) = ρG

1 + exp(−z/ζ )
+ ρL

1 + exp(z/ζ )

= 1
2 (ρL + ρG) − 1

2 (ρL − ρG) tanh

(
z

2ζ

)
(6.3.7)

which has the general shape pictured in Figure 6.1. The predicted profile is therefore an-
tisymmetric with respect to the mid-point, a result consequent on the symmetric form as-
sumed for the grand potential in (6.3.5) and the neglect of the density dependence of the
coefficient f2. In reality, the profile is steeper on the liquid than on the vapour side. Equa-
tion (6.3.7) also implies that the width of the interface diverges at the critical point. Within
the mean-field theory of phase transitions, (ρL −ρG) behaves as (Tc − T )1/2 as the critical
temperature is approached from below,8 so ζ diverges as (Tc − T )−1/2. Note, however,
that density-functional theory provides only an “intrinsic” or averaged description of the
density profile. The physical interface is a fluctuating object; these “capillary” fluctuations
lead to a thermal broadening of the interface that can be comparable with the theoretical,
intrinsic thickness.

The surface tension is defined thermodynamically as the additional free energy per unit
area due to the presence of an interface. Accordingly, within the square-gradient approxi-
mation:

γ =
∫ ∞

−∞
(
f0
(
ρ(1))+ 1

2m
(
dρ(1)/dz

)2 − fB
)

dz (6.3.8)

where fB is the bulk free-energy density, equal to fL for z < z0 and to fG for z > z0. Now
f0(ρ) = −W(ρ) + μρ and W(ρ) is given by (6.3.3), from which the bulk pressure can be
eliminated by use of the thermodynamic relation P = fB −μρB. Equation (6.3.8) therefore
reduces to

γ =
∫ ∞

−∞
(−P + μρ(1)(z) + m

(
dρ(1)/dz

)2 − fB

)
dz

=
∫ ∞

−∞
(
μ
[
ρ(1)(z) − ρB

]+ m
(
dρ(1)/dz

)2)dz = m

∫ ∞

−∞
(
dρ(1)/dz

)2 dz (6.3.9)

Use of (6.3.3) and (6.3.5) allows (6.3.9) to be recast in the equivalent form:

γ = m

∫ ∞

−∞
dρ(1)

dz
dρ(1) = (2m)1/2

∫ ρG

ρL

[
P + ω(ρ)

]1/2 dρ
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= −(mC)1/2
∫ ρG

ρL

(ρL − ρ)(ρ − ρG)dρ = 1
6 (mC)1/2(ρL − ρG)3 (6.3.10)

Thus, close to the critical point, the surface tension is predicted to behave as γ ∼
(Tc − T )3/2. Experimentally the critical exponent is found to be somewhat smaller than 3

2 .

6.4 FUNDAMENTAL-MEASURE THEORY

Fundamental-measure theory is a generalised form of weighted-density approximation for
fluids consisting of hard particles. In contrast to similar approximations discussed in Sec-
tion 6.2, the free-energy density is taken to be a function not just of one but of several
different weighted densities, defined by weight functions that emphasise the geometrical
characteristics of the particles. The theory was originally formulated for hard-sphere mix-
tures, but for the sake of simplicity we consider in detail only the one-component case.
Its development7 was inspired by the link that exists between scaled-particle theory9 –
described in Appendix E – and the Percus–Yevick approximation for hard spheres. Scaled-
particle theory provides only thermodynamic properties, while the PY approximation is a
theory of pair structure, but the PY equation of state obtained via the compressibility route
is identical to the scaled-particle result; the same is true for binary mixtures.

The derivation of the theory starts from the observation that the PY expression (4.4.10)
for the two-particle direct correlation function of the hard-sphere fluid can be rewritten
in terms of quantities that characterise the geometry of two intersecting spheres of radius
R (= 1

2d) and separated by a distance r < 2R, as pictured in Figure 6.2. The quantities
involved are the overlap volume ΔV (r), the overlap surface area ΔS(r) and the “overlap
radius” ΔR(r) = 2R − R, where R = R + r/4 is the mean radius of the convex envelope

R + r/2

r
R

envelope

exclusion sphere

1 2

R

FIG. 6.2. Geometry of two overlapping hard spheres of radius R and separation r . The exclusion sphere of
radius 2R drawn around sphere 1 defines the region into which the centre of another sphere cannot enter without
creating an overlap.
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surrounding the spheres. Written in this way, (4.4.10) becomes

−c(r) = χ(3)ΔV (r) + χ(2)ΔS(r) + χ(1)ΔR(r) + χ(0)Θ
(|r| − 2R

)
(6.4.1)

where the step function Θ(|r| − 2R), defined in the previous section, is the “characteris-
tic” volume function of the exclusion sphere shown in the figure. The density-dependent
coefficients χ(α) can be expressed in the form

χ(0) = 1

1 − ξ3
, χ(1) = ξ2

(1 − ξ3)2

χ(2) = ξ1

(1 − ξ3)2
+ ξ2

2

4π(1 − ξ3)3
(6.4.2)

χ(3) = ξ0

(1 − ξ3)2
+ 2ξ1ξ2

(1 − ξ3)3
+ ξ3

2

4π(1 − ξ3)4

with ξα = ρR(α), where the quantities R(α) are the “fundamental geometric measures” of
a sphere:

R(3) = 4
3πR3 (volume), R(2) = 4πR2 (surface area)

R(1) = R (radius), R(0) = 1
(6.4.3)

The variables ξα also arise naturally in scaled-particle theory. In particular, the scaled-
particle free-energy density (see Appendix E) can be written as

βF ex

V
= −ξ0 ln(1 − ξ3) + ξ1ξ2

1 − ξ3
+ ξ3

2

24π(1 − ξ3)2
(6.4.4)

The same result applies to mixtures if the scaled-particle variables are replaced by their
multi-component generalisations, i.e. ξα =∑ν ρνR(α)

ν , where ρν is the number density of

spheres of radius Rν and fundamental measures R(α)
ν .

The overlap volume, surface and radius are geometric measures associated with a pair
of overlapping spheres, but they are also expressible in terms of convolutions of the char-
acteristic volume and surface functions of individual spheres:

ω(3)(r) = Θ
(|r| − R

)
(volume), ω(2)(r) = δ

(|r| − R
)

(surface) (6.4.5)

via the relations

ΔV (r) = ω(3) ⊗ ω(3) =
∫

Θ
(|r′| − R

)
Θ
(|r − r′| − R

)
dr′

= 2
3π
(
2R3 − 3R2r + r3)Θ(|r| − 2R

)
ΔS(r) = 2ω(3) ⊗ ω(2) = 2

∫
Θ
(|r′| − R

)
δ
(|r − r′| − R

)
dr′

= 4πR2(1 − r/2R)Θ
(|r| − 2R

)
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ΔR(r) = ΔS(r)

8πR
+ 1

2RΘ
(|r| − 2R

)= (R − r/4)Θ
(|r| − 2R

)
(6.4.6)

When results are brought together, it is straightforward to show that (6.4.1) is identical to
(4.4.10); in particular, c(r) is strictly zero for r > 2R and c(r) → −Θ(|r|−2R) as ρ → 0.
It is, in addition, clear that if c(r) is to be written solely in terms of functions characteristic
of individual spheres, the pair function Θ(|r|− 2R) must be replaced by some convolution
of single-sphere functions; this can be achieved with a basis set consisting of the two scalar
functions (6.4.5), a vector function

ω(2)(r) = ∇ω(3)(r) = r
r
δ
(|r| − R

)
(6.4.7)

and three further functions proportional to either ω(2)(r) or ω(2)(r):

ω(1)(r) = ω(2)(r)
4πR

, ω(0)(r) = ω(2)(r)
4πR2

, ω(1)(r) = ω(2)(r)
4πR

(6.4.8)

The vector functions are needed to account for the discontinuity in the step function. Then

Θ
(|r| − 2R

)= 2
(
ω(3) ⊗ ω(0) + ω(2) ⊗ ω(1) + ω(2) ⊗ ω(1)) (6.4.9)

where the convolution of two vector functions also implies a scalar product; this result is
most easily verified by taking Fourier transforms. In the limit k → 0, the transforms of the
scalar characteristic functions are related to the scaled-particle variables by

ρω̂(α)(k = 0) = ξα, α = 0 to 3 (6.4.10)

while the transforms of the vector functions vanish:

ω̂(α′)
(k = 0) = 0, α′ = 1, 2 (6.4.11)

Use of the characteristic functions (6.4.5), (6.4.7) and (6.4.8) as a basis therefore allows
the PY direct correlation function to be expressed as a linear combination of convolutions
in the form

c(r) =
∑
α

∑
β

cαβ ω(α) ⊗ ω(β) (6.4.12)

where a simplified notation is adopted in which the sums on α and β run over both scalar
and vector functions; the density-dependent coefficients cαβ are proportional7 to the func-
tions χ(α) defined by (6.4.2). A different set of basis functions that does not involve vector
functions has been proposed, but this turns out to be equivalent to the one we have de-
scribed in the sense that it leads ultimately to the same free-energy functional.10

The key assumption of fundamental-measure theory is that the excess free-energy func-
tional has the form

βF ex[ρ(1)]= ∫ Φex({ρ̄α(r′)
})

dr′ (6.4.13)
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where the free-energy density Φex (in units of kBT ) is a function of a set of weighted
densities, each defined in the manner of (6.2.16), i.e.

ρ̄α(r) =
∫

wα

(|r − r′|)ρ(1)(r′)dr′ (6.4.14)

It follows from (3.5.2) that if the scheme contained in (6.4.13) and (6.4.14) is adopted, the
direct correlation function of the uniform fluid is of the form

c(r) = −
∑
α

∑
β

∂2Φex

∂ρ̄α∂ρ̄β

wα ⊗ wβ (6.4.15)

Comparison of (6.4.15) with (6.4.12) suggests immediately that the appropriate choice of
weight functions in (6.4.14) are the characteristic functions ω(α)(r) and ω(α′)(r), and hence
that the set {ρ̄α} is one consisting of four scalar and two vector densities:

ρ̄α(r) =
∫

ω(α)
(|r − r′|)ρ(1)(r′)dr′, α = 0 to 3

(6.4.16)

ρ̄α′(r) =
∫

ω(α′)(r − r′)ρ(1)(r′)dr′, α′ = 1, 2

If the system is homogeneous, the scalar weighted densities reduce to the scaled-particle
variables (6.4.2) and the vectorial densities vanish. The scalar densities have the dimen-
sions of the corresponding ξα , i.e. [L]α−3; ρ̄1 and ρ̄2 have the same dimensions as ρ̄1 and
ρ̄2, respectively.

The precise functional form of the free-energy density remains to be specified. One
obvious possibility, in the spirit of a virial expansion, is to write Φex as a linear combination
of the lowest powers of the weighted densities and their products. In that case, since Φex

is a scalar with the dimensions of density, it can only be a sum of terms in ρ̄0, ρ̄1ρ̄2, ρ̄3
2 ,

ρ̄1 · ρ̄2 and ρ̄2(ρ̄2 · ρ̄2), with coefficients that are functions of the dimensionless density
ρ̄3. Thus

Φex({ρ̄α})= φ0ρ̄0 + φ1ρ̄1ρ̄2 + φ2ρ̄
3
2 + φ3ρ̄1 · ρ̄2 + φ4ρ̄2(ρ̄2 · ρ̄2) (6.4.17a)

or, in the case of a uniform fluid:

Φex({ξα})= φ0ξ0 + φ1ξ1ξ2 + φ2ξ
3
2 (6.4.17b)

The excess free-energy functional follows from (6.4.13) and the corresponding excess
grand potential is

Ωex[ρ(1)]≡ −
∫

P ex[ρ(1)]dr = F ex[ρ(1)]− ∫ ρ(1)(r)
δF ex

δρ(1)(r)
dr (6.4.18)
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Hence the excess-pressure P ex (a functional of ρ(1)) is given by the expression

βP ex[ρ(1)]= −Φex +
∑
α

ρ̄α(r)
∂Φex

∂ρ̄α

(6.4.19)

where the sum runs over all densities in the set {ρ̄α}.
Now consider the problem from the point of view of scaled-particle theory, which pro-

vides an approximation for the excess chemical potential μex
ν of a solute particle of radius

Rν in a uniform fluid of hard spheres. It is shown in Appendix E that in the limit Rν → ∞,
μex

ν → PVν , where Vν is the volume of the particle and P is the bulk pressure. But it
follows from (6.4.17b), as applied to a mixture, that the chemical potential of the solute,
μex

ν = kBT (∂Φex/∂ρν), must also satisfy the relation

βμex
ν =

∑
α

∂Φex

∂ξα

∂ξα

∂ρν

= ∂Φex

∂ξ3
Vν +O

(
R2

ν

)
(6.4.20)

Thus the derivative ∂Φex/∂ξ3 can be identified as βP . Within fundamental-measure theory
the further assumption is now made that the analogous relation is valid for the inhomoge-
neous fluid, i.e. that

∂Φex

∂ρ̄3
= βP ex[ρ(1)]+ ρ̄0 (6.4.21)

and combination of (6.4.19) and (6.4.21) yields a differential equation for the free-energy
density in the form

−Φex +
∑
α

ρ̄α

∂Φex

∂ρ̄α

+ ρ̄0 = ∂Φex

∂ρ̄3
(6.4.22)

Substitution of (6.4.17a) into (6.4.22), and identification of the coefficients of the basis
functions in the expansion (6.4.17a), then leads to five, first-order differential equations,
one for each of the coefficients φi ; these equations are easily solved to give

φ0 = − ln(1 − ρ̄3) + c0, φ1 = c1

1 − ρ̄3
(6.4.23)

φ2 = c2

(1 − ρ̄3)2
, φ3 = c3

1 − ρ̄3
, φ4 = c4

(1 − ρ̄3)2

The constants of integration, ci , are chosen to ensure that both the free energy and its
second functional derivative, i.e. the two-particle direct correlation function (see (3.5.2)),
go over correctly to their known, low-density limits in the case of a uniform fluid.11 These
constraints give c0 = 0, c1 = 1, c2 = 1/24π , c3 = −1 and c4 = −1/8π .12 The excess
free-energy density is thereby completely determined and may be written in the form

Φex({ρ̄α})= Φ1 + Φ2 + Φ3 (6.4.24)
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with

Φ1 = −ρ̄0 ln(1 − ρ̄3), Φ2 = ρ̄1ρ̄2 − ρ̄1 · ρ̄2

1 − ρ̄3
(6.4.25)

Φ3 = ρ̄3
2 − 3ρ̄2(ρ̄2 · ρ̄2)

24π(1 − ρ̄3)2

which reduces to the scaled-particle result (6.4.4) for a uniform fluid. The two-particle
direct correlation function obtained by differentiation of the free energy reduces in turn
to the PY expression (6.4.1), while the third functional derivative yields a three-particle
function in good agreement with the results of Monte Carlo calculations.13 As Figure 4.2
shows, the scaled-particle (or PY compressibility) equation of state slightly overestimates
the pressure of the hard-sphere fluid. Some improvement in performance can therefore be
expected if the assumed form of the free-energy density is modified in such a way as to
recover the Carnahan–Starling equation of state (3.9.17) in the uniform-fluid limit.14

The theory is easily generalised to the case of hard-sphere mixtures. Scalar and vecto-
rial characteristic functions ω

(α)
ν (r) and ω

(α)
ν are defined for each species ν in a manner

completely analogous to the one-component case, with Rν replacing R. The characteristic
functions are then used as weight functions in the definition of a set of global weighted
densities:

ρ̄α(r) =
∑
ν

∫
ω(α)

ν

(|r − r′|)ρ(1)
ν (r′)dr′, α = 0 to 3

(6.4.26)

ρ̄α′(r) =
∑
ν

∫
ω(α′)

ν

(|r − r′|)ρ(1)
ν (r′)dr′, α′ = 1, 2

where ρ
(1)
ν is the density profile of species ν, and the free-energy density of the mixture is

again given by (6.4.25), or some other, improved form.
The same general approach15 can be used to derive free-energy functionals for hard-core

systems in dimensions D = 1 (hard rods) or D = 2 (hard disks). For D = 1, where only two
weight functions are required, this leads to the exact hard-rod functional due to Percus.16

For D = 2, the procedure is less straightforward, since the decomposition of the Mayer
function analogous to (6.4.9) is not achievable with any finite set of basis functions and
the PY equation does not have an analytical solution. One and two-dimensional hard-core
systems may be regarded as special cases of a hard-sphere fluid confined to a cylindrical
pore (D = 1) or a narrow slit (D = 2) for which the diameter of the cylinder or width of
the slit is equal to the hard-sphere diameter. Narrow confinement therefore corresponds
to a reduction in effective dimensionality or “dimensional crossover”, the most extreme
example of which (D = 0) occurs when a hard sphere is confined to a spherical cavity large
enough to accommodate at most one particle. If the D = 3 functional is to be used in studies
of highly confined fluids, it is clearly desirable that it should reduce to the appropriate one-
or two-dimensional functional for density profiles of the form ρ(1)(r) = ρ(1)(x)δ(y)δ(z)

(for D = 1) or ρ(1)(r) = ρ(1)(x, y)δ(z) (for D = 2). This turns out not to be the case. The
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exact results for D = 0 and D = 1 are recovered if the term Φ3 in (6.4.25) is omitted, but
this leads to a considerable deterioration in the results for D = 3. A good compromise is
achieved17 if Φ3 is replaced by

Φ ′
3 = ρ̄3

2

24π(1 − ρ̄3)2

(
1 − ξ2)3 (6.4.27)

where ξ(r) = |ρ̄2(r)/ρ̄2(r)|. The modified term vanishes for D = 0 and is numerically
small, except at the highest densities, for D = 1. In addition, since Φ ′

3 differs from Φ3 only
by terms of order ξ4, differentiation of the resulting functional still leads to the PY result for
the direct correlation function of the uniform fluid. However, the modification is essentially
empirical in nature. A more systematic method of constructing free-energy functionals
with the correct dimensional-crossover properties is to start from the exact result for D = 0
and build in successively the additional terms needed in higher dimensions.18 That the
functional should have at least the correct qualitative behaviour for D = 0 is essential for
application to the solid phase, where each particle is confined to the nearly spherical cage
formed by its nearest neighbours. The contribution from Φ3 diverges to negative infinity
in the zero-dimensional limit. Thus the theory in its unmodified form cannot account for
solid–fluid coexistence, since the solid is always the stable phase.

6.5 CONFINED FLUIDS

The density-functional formalism has been successfully applied to a wide range of phys-
ical problems involving inhomogeneous fluids. In this section we describe some of the
results obtained from calculations for fluids in confined geometries. The simplest example,
illustrated in Figure 6.3, is that of a fluid near a hard, planar wall that confines the fluid
strictly to a half-space z � 0, say, where the normal to the wall is taken as the z-axis. The
particles of the fluid interact with the wall via a potential φ(z), which plays the role of the
external potential in the theoretical treatment developed in earlier sections. For a hard wall
the potential has a purely excluded-volume form, i.e. φ(z) = ∞, z < 0, φ(z) = 0, z > 0,
but more generally it will contain a steeply repulsive term together with a longer ranged,
attractive part. If the particles making up the wall are assumed to interact with those of
the fluid through a Lennard-Jones potential with parameters ε and σ , integration over a
continuous distribution of particles within the wall leads to a wall–fluid potential given by

φ(z) = 2
3πρWσ 3ε

[ 2
15 (σ/z)

9 − (σ/z)3] (6.5.1)

where ρW is the density of particles in the wall; the surface of the wall is now at z = 0. This
so-called 9-3 potential has been widely adopted as a model of the wall–fluid interaction.

The density profile of a fluid against a planar wall is a function of the single coordinate z.
If the bulk density ρB (the density far from the wall) is sufficiently large, the profile has a
pronounced layer structure that extends several particle diameters into the fluid. When all
interactions are of hard-core type, ρ(1)(z) may be calculated by density-functional theory
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zz = 0

FIG. 6.3. A fluid confined by a hard wall; the centres of interaction of the particles are restricted to the region
z > 0. For hard spheres of diameter d , the surface of the wall is at z = − 1

2 d .

with the boundary conditions:

lim
z→∞ρ(1)(z) = ρB (6.5.2a)

lim
z→0+ρ(1)(z) = βP (6.5.2b)

where P is the bulk pressure; these conditions must be supplemented by the requirement
that ρ(1)(z) = 0 for z < 0. Equation (6.5.2b) is an expression of the contact theorem, z = 0
being the distance of closest approach of a hard sphere of diameter d to a hard wall with a
surface at z = − 1

2d (see Figure 6.3). The proof of the contact theorem is similar to that of
the relation (2.5.26) between the pressure of a uniform hard-sphere fluid and the value of
the pair distribution function at contact. The density profile of a fluid against a hard wall
is discontinuous at z = 0, but whatever the nature of the wall–fluid interaction the density
profile can always be written in the form ρ(1)(z) = exp[−βφ(z)]y(z), where y(z) is a
continuous function of z, analogous to the cavity distribution function of a homogeneous
fluid. The pressure exerted by the fluid on the wall must be balanced by the force per unit
area exerted by the wall on the fluid, i.e.

P = −
∫ ∞

0

dφ(z)

dz
ρ(1)(z)dz = kBT

∫ ∞

0

d

dz
exp
[−βφ(z)

]
y(z)dz (6.5.3a)

and hence, in the case of a hard wall:

P = kBT

∫ ∞

0
δ(z)y(z)dz = kBTρ(1)(z = 0+) (6.5.3b)

which is (6.5.2b).
The layering of a high-density, hard-sphere fluid near a hard wall is illustrated in Fig-

ure 6.4, where comparison is made between the density profile derived from fundamental-
measure theory and results obtained by Monte Carlo calculations. Agreement between the-
ory and simulation is excellent. The only significant discrepancies (not visible in the figure)
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FIG. 6.4. Density profile of a hard-sphere fluid close to a hard wall at a packing fraction η = 0.40. The full curve
is calculated from fundamental-measure theory and the points show the results of Monte Carlo calculations.19

The dashed curve is calculated from the simpler weighted-density approximation provided by (6.2.22).
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FIG. 6.5. Density profile of a Lennard-Jones fluid in a slit of width L = 7.5σ . The curve is calculated from
fundamental-measure theory and the points show the results of a Monte Carlo simulation.20 After Kierlik and
Rosinberg.21

occur close to contact, where the theoretical values are too high. The source of these small
errors lies in the fact that in the theory as implemented here the value at contact is deter-
mined, via the boundary condition (6.5.2b), by the pressure calculated from scaled-particle
theory. As discussed in Section 6.4, such errors can be largely eliminated if the free-energy
functional is tailored to reproduce a more accurate equation of state.

Though designed for systems of hard particles, fundamental-measure theory can also be
used to calculate the density profiles and associated thermodynamic properties of a wider
class of fluids if combined with the methods of perturbation theory described in Chapter 5.
We suppose, as usual, that the pair potential v(r) of the system of interest can be divided
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FIG. 6.6. Solvation force for a Lennard-Jones fluid in a slit as a function of slit width L. The curve is calculated
from fundamental-measure theory and the points show the results of a Monte Carlo simulation.22 After Kierlik
and Rosinberg.21

into a reference part, v0(r), and a perturbation, w(r). Then (3.4.10) provides an exact re-
lation between the free-energy functional corresponding to the full potential, F[ρ(1)], and
that of the reference system, F0[ρ(1)]. The obvious choice of reference system is again
a fluid of hard spheres of diameter d given, say, by the Barker–Henderson prescription
(5.3.11). If the perturbation is sufficiently weak to be treated in a mean-field approxima-
tion, the correlation term in (3.4.10) can be ignored. The grand-potential functional to be
minimised is then of the form

Ωφ[n] =Fd [n] + 1
2

∫∫
n(r)w(r, r′)n(r′)dr dr′ +

∫
n(r)

[
φ(r) − μ

]
dr (6.5.4)

where Fd [ρ(1)] is the free-energy functional of the hard-sphere system, taken to be of
fundamental-measure form, and n(r) is a trial density. This approximation has been widely
used in a variety of applications to confined fluids. An example of the results obtained for
the density profile of a Lennard-Jones fluid confined to a slit formed by two parallel plates
separated by a distance L is pictured in Figure 6.5; the wall–fluid potential has a form
similar to (6.5.1). When L/σ ≈ 3, the density profile has a double-peaked structure, with
maxima close to the walls of the slit. As the slit width increases, the number of layers
of particles that can be accommodated also increases, with a third peak appearing initially
mid-way between the walls. In the example shown, corresponding to L/σ = 7.5, six clearly
defined layers can be detected, together with a weak maximum at the centre of the slit. The
agreement with simulations is again outstandingly good. Figure 6.6 shows the solvation
force as a function of L for the same system, calculated from the microscopic expression

fS = −
∫ L

0

dφ(z)

dz
ρ(1)(z)dz − P (6.5.5)
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FIG. 6.7. Selective absorption by a cylindrical pore of solute hard-spheres (A, B) at low concentration in a solvent
of larger spheres (S) as a function of the cylinder diameter. The curve is calculated from fundamental-measure
theory and the points with error bars show the results of Monte Carlo calculations. See text for details. After
Goulding et al.24

which is easily derived from the definition (6.1.15). The force is seen to oscillate around
zero, its asymptotic value as L → ∞. Oscillatory solvation forces are a direct consequence
of the layering evident in Figure 6.5; they have been observed experimentally with the aid
of “surface-force machines”, which have a spatial resolution better than 1 Å. The amplitude
of oscillation decreases rapidly with L, and is already negligible for L = 7.5σ despite the
high degree of layering still observed at this separation.

Functionals of the general form represented by (6.5.4), with various levels of approx-
imation for the reference-system contribution, have also been used extensively in studies
of phenomena such as capillary condensation in a narrow pore and the wetting of solid
substrates.23 The two effects are closely related and each is strongly dependent on the na-
ture of the interaction between the fluid and the confining surface. Capillary condensation
is the phenomenon whereby a confined gas condenses to a liquid at a chemical potential
below that corresponding to liquid–vapour coexistence in the bulk. Wetting is an interfa-
cial phase transition for which the adsorption defined by (6.1.13) (with L → ∞) acts as
an order parameter by providing a measure of the thickness of the liquid film adsorbed on
the substrate. As the temperature increases along the liquid–vapour coexistence line, the
film thickness, which is of microscopic dimensions at low temperatures, diverges either
continuously (corresponding to a second-order wetting transition) or discontinuously (a
first-order transition) as the wetting temperature Tw, with Tt < Tw < Tc, is reached (Tt and
Tc being the triple-point and critical temperatures, respectively).

A different type of problem to which density-functional theory has been successfully
applied concerns the size selectivity of porous materials in which the pores have a con-
fining length of molecular dimensions. As a simple example, consider an infinitely long,
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cylindrical pore of diameter D connecting two reservoirs that contain a three-component
mixture of hard spheres under identical physical conditions (packing fraction and concen-
trations). The fluid in the reservoirs consists of a majority component – the “solvent” S –
at a packing fraction η = 0.41, and two “solute” components, A and B, at concentrations
of 0.05 M, with relative hard-sphere diameters dA : dB : dS appropriate to water (S) and
the ions Na+ (A) and K+ (B).24 Spheres of different diameters will permeate the pore to
different extents, and at equilibrium the chemical potentials of each species will be the
same inside the pore as in the reservoirs. The density profiles within the pore depend only
on the radial distance r from axis of the cylinder; they can be calculated by minimising a
fundamental-measure functional, modified in the manner represented by (6.4.27) to cater
for the quasi-one-dimensional nature of the confinement. The degree of permeation (or
“absorbance”) ζν of species ν may be defined as the ratio of the mean density of parti-
cles of that species inside the pore to the density of the same species in the reservoirs.
When the cylinder diameter D is comparable with the sphere diameters, the pore absorbs
preferentially one of the two solutes. The selectivity of the pore is measured by the relative
absorbance ζA/ζB, plotted as a function of cylinder diameter in Figure 6.7. This varies with
D by a factor of order 10, in fair agreement with calculations by a grand-canonical Monte
Carlo method, though the low concentrations of solute particle mean that the statistical
uncertainties in the results of the simulations are large. When dB < dS, only A-particles
can be absorbed. Thus, for cylinder diameters only slightly larger than dB, the selectivity is
initially very large but falls rapidly as D increases. When D ≈ dS, the larger solute is up to
four times more likely to be adsorbed than the smaller one, a purely entropic effect that is
somewhat counterintuitive. However, when the cylinder diameter exceeds dS and solvent
particles can enter the pore, the selectivity rises, reaching a maximum value of about 2.8
at D ≈ 1.7dS. The degree of selectivity can be greatly enhanced by changes in the relative
diameters of the species involved.

6.6 DENSITY-FUNCTIONAL THEORY OF FREEZING

If cooled or compressed sufficiently gently, a liquid will freeze into an ordered, solid phase.
The transition is accompanied by a discontinuous change in volume, ΔV = VL −VS, which
is usually positive (water is a notable exception), and by a latent heat, TΔS, which is al-
ways positive. The discontinuities in V and S, both of which are first derivatives of the
free energy, are the signatures of a first-order phase transition. Freezing of simple liquids
is largely driven by entropic factors, a fact most obvious in the case of the hard-sphere
fluid, since the nature of the hard-sphere interaction means that the difference in free en-
ergy of the solid and fluid phases at a given temperature is equal to −TΔS. One of the
most significant findings to emerge from the earliest molecular simulations25 was that the
hard-sphere fluid freezes into a stable, face-centred cubic crystal; accurate calculations26

of the free energies of the fluid and solid as functions of density subsequently showed that
the packing fractions at coexistence are ηF ≈ 0.494 and ηS ≈ 0.545. We can obtain a rough
estimate of the configurational entropy in the two phases by temporarily ignoring the cor-
relations between particles brought about by excluded-volume effects. If we treat the fluid
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as a system of non-interacting particles moving freely in a volume V and the solid as a sys-
tem of localised (and hence distinguishable) particles in which each particle is confined by
its neighbours to a region of order V/N around its lattice site, a simple calculation shows
that the configurational entropy per particle of the solid lies below that of the fluid by an
amount equal to kB. In reality, of course, correlations make a large contribution to the en-
tropy, which at densities beyond η ≈ 0.5 must be appreciably larger for the “ordered” solid
than for the “disordered” fluid, since the solid is the stable phase. The explanation of this
apparent paradox is the fact that the free volume available to a particle is larger in the solid
than in the “jammed” configurations that are generated when a fluid is over-compressed.
This ties in with Bernal’s observation that the maximum density achievable by random
packing of hard spheres (η ≈ 0.65) lies well below that of the face-centred cubic structure
(η ≈ 0.74).

The relative volume change on freezing of a hard-sphere fluid is |ΔV |/V ≈ 0.10 and
the entropy change per particle is ΔS/NkB ≈ 1.16. Simple perturbation theory shows that
the effect of adding an attractive term to the hard-sphere interaction is to broaden the freez-
ing transition, i.e. to increase the relative volume change, but the opposite effect occurs if
the short-range repulsion is softened. In the case of the soft-sphere potentials defined by
(5.2.25), for example, the relative volume change is found to decrease rapidly27 with reduc-
tion in the exponent n, becoming strictly zero28 in the limiting case of the one-component
plasma (n = 1). The change in entropy also decreases with n, but much more slowly, and
remains close to kB per particle. Both experiments and simulations show that for a wide
variety of systems consisting of spherical or nearly spherical particles the amplitude of the
main peak in the static structure factor at freezing is approximately 2.85. This provides a
useful criterion for freezing that appears to be independent of the crystal structure of the
solid phase.29 It applies, for example, to the family of soft-sphere fluids, for which the
stable crystal phase is face-centred cubic at large values of n but body-centred cubic for
softer potentials.

The lattice structure of a crystalline solid means that the density profile must be a peri-
odic function of r such that

ρ(1)(r + Ri ) = ρ(1)(r) (6.6.1)

where the set {Ri} represents the lattice coordinates of the particles in the perfectly ordered
crystal. Let ui = ri − Ri be the displacement of particle i from its equilibrium position.
Then the Fourier transform of the density profile can be written (see (3.1.4)) as

ρ̂(1)(k) =
N∑
i=1

〈
exp(−ik · ri )

〉= N∑
i=1

exp(−ik · Ri )
〈
exp(−ik · ui )

〉
(6.6.2)

Away from any interface, all lattice sites are equivalent, and the second statistical average
in (6.6.2) is therefore independent of i. Thus

ρ̂(1)(k) = 〈exp(−ik · u)
〉 N∑
i=1

exp(−ik · Ri ) (6.6.3)
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The sum over lattice sites is non-zero only if k coincides with a reciprocal lattice vector G.
Hence

N∑
i=1

exp(−ik · Ri ) = Nδk,G (6.6.4)

and the only non-zero Fourier components of the density are

ρ̂(1)(G) = N
〈
exp(−iG · u)

〉
(6.6.5)

In the harmonic-phonon approximation, valid for small-amplitude vibrations of the parti-
cles around their lattice positions, the displacement vectors u have a gaussian distribution:〈

exp(−iG · u)
〉= exp

(− 1
6G

2〈u2〉) (6.6.6)

where 〈u2〉 is the mean-square displacement of a particle from its lattice site. If we substi-
tute (6.6.6) in (6.6.5) and take the inverse transform, we find that

ρ(1)(r) = 1

V

∑
G

N∑
i=1

exp
(
iG · (r − Ri )

)
exp
(− 1

6G
2〈u2〉)

≈ 1

(2π)3

N∑
i=1

∫
exp
(
iG · (r − Ri )

)
exp
(− 1

6G
2〈u2〉)dG

=
(
α

π

)3/2 N∑
i=1

exp
(−α(r − Ri )

2) (6.6.7)

where α = (3/2〈u2〉) is an inverse-width parameter. The density profile of the crystal there-
fore appears as the sum of N gaussian peaks, each centred on a lattice site Ri . As α in-
creases, the particles become more strongly localised and the peaks become narrower. The
most general representation of ρ(1)(r) compatible with lattice periodicity is

ρ(1)(r) = ρS

(
1 +

∑
G�=0

ζ(G) exp(iG · r)
)

(6.6.8)

where ρS is the overall number density of the solid. In the harmonic approximation the
coefficients of the “density waves” exp(iG · r) are related to the parameter α by

ζ(G) = exp
(−G2/4α

)
(6.6.9)

The vibrational mean-square displacement 〈u2〉 can be determined by analysis of the
lineshape of the Bragg peaks observed in x-ray or neutron-scattering experiments; it is
found to decrease sharply as the crystal is cooled along an isochore or compressed along
an isotherm. The quantity L = 〈u2〉1/2/R0, where R0 is the nearest-neighbour distance in
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FIG. 6.8. Typical behaviour of the free-energy difference defined by (6.6.11) as a function of the variational
parameter α for increasing values of the density ρS. Curve (d) corresponds to a density at which the ordered
crystal is the stable phase. See text for details.

the crystal, is called the Lindemann ratio. According to the “Lindemann rule”, melting
should occur when L reaches a value that is only weakly material-dependent and equal to
about 0.15. Simulations have shown that for hard spheres the value at melting is approx-
imately 0.13, but is slightly larger for softer potentials. That such a criterion exists is not
surprising: instability of the solid can be expected once the vibrational amplitude of the
particles becomes a significant fraction of the spacing between neighbouring lattice sites.

The idea that underpins much of the density-functional approach to freezing goes back
to the work of Kirkwood and Monroe.30 While the periodic density profile is clearly very
different from the uniform density of the fluid, it is reasonable to assume that the short-
range pair correlations in the solid are similar to those of some effective, reference fluid.
In other words, a crystal may be regarded as a highly inhomogeneous fluid, and different
versions of the theory differ mostly in the choice made for the density of the reference
fluid.31

We showed in Section 4.3 that expansion of the free-energy functional in powers of
δρ(1)(r) around that of a homogeneous fluid of density ρ0 leads, when truncated at sec-
ond order, to the expression for the density profile given by (4.3.16). In the application to
freezing, there is no external field, and (4.3.16) becomes

ρ(1)(r) = ρ0 exp

(∫
c
(2)
0 (r − r′)

[
ρ(1)(r) − ρ0

]
dr′
)

(6.6.10)

Higher-order terms in the expansion are easily derived, but explicit calculations become
increasingly involved and are therefore rarely attempted. Equation (6.6.10) always has the
trivial solution ρ(1)(r) = ρ0, but at sufficiently high densities there exist, in addition, pe-
riodic solutions of the form (6.6.8). In order to decide whether the uniform or periodic
solution corresponds to the stable phase, it is necessary to compute the free energies of
the two phases. The free energy of the solid phase is related to that of the reference fluid
by (4.3.12), where the choice of ρ0 remains open. It is clear, however, that ρ0 should be
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comparable with ρS, the mean number density in the solid, since the density change on
freezing is typically less than 10%. One obvious possibility is to set ρ0 = ρS, which sim-
plifies the problem because the linear term in (4.3.12) then vanishes, but other choices have
been made.32 If we substitute (6.6.8) (with ρ0 = ρS) into the quadratic term in (4.3.12) and
use the convolution theorem, we find that

βΔF

N
≡ βF[ρ(1)]

N
− βF0(ρS)

N

=
∫

ρ(1)(r) ln

(
ρ(1)(r)

ρS

)
dr − 1

2ρS

∑
G�=0

ĉ
(2)
0 (G)|ζG|2 (6.6.11)

The free-energy difference ΔF must now be minimised with respect to ρ(1)(r), i.e. with
respect to the order parameters ζG. In practice, most calculations are carried out using the
gaussian form (6.6.9), in which case the inverse width α is the only variational parameter.
The ideal contribution to the free energy favours the homogeneous phase; the quadratic,
excess term favours the ordered phase provided the quantities ĉ

(2)
0 (G) are positive for the

smallest reciprocal-lattice vectors, since the contributions thereafter decrease rapidly with
increasing G. The competition between ideal and excess contributions leads to curves of
ΔF versus α of the Landau type, shown schematically in Figure 6.8. When the density
ρS is low (curves (a) and (b)), there is a single minimum at α = 0, corresponding to a
homogeneous, fluid phase. At higher densities (curve (c)), a minimum appears at a positive
value of ΔF , signalling the appearance of a metastable, crystalline phase. Further increase
in density leads to a lowering of the value of ΔF at the second minimum, which eventually
becomes negative (curve (d)); the ordered crystal is now the stable phase. Once the free
energies of fluid and solid along a given isotherm are known, the densities of the coexisting
phases can be determined from the Maxwell double-tangent construction, which ensures
equality of the chemical potentials and pressures of the two phases.8 The calculations are
carried out for a given Bravais lattice and hence for a given set of reciprocal-lattice vectors.
If the relative stability of different crystal structures is to be assessed, separate calculations
are needed for each lattice.

The method we have outlined is essentially that advanced by Ramakrishnan and
Yussouff,33 reformulated in the language of density-functional theory.34 It works satis-
factorily in the case of hard spheres, but the quality of the results deteriorates for softer
potentials, for which the stable solid has a body-centred cubic structure. In that case, if
the potential is sufficiently soft, the contribution to the sum over G in (6.6.11) from the
second shell of reciprocal-lattice vectors is negative. The resulting contribution to ΔF is
therefore positive and sufficiently large to destabilise the solid. This defect in the method
can be overcome by inclusion of the third-order term in the expansion of the free-energy
functional, but that requires some approximation to be made for the three-particle direct
correlation function of the reference system.35 Other approaches to the problem of freez-
ing have also been used. The most successful of these are variants of fundamental-measure
theory of the type discussed at the end of Section 6.4, which lead to values for the den-
sities at coexistence of the hard-sphere fluid and solid that agree with those obtained by
simulation to within one percent.
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FIG. 6.9. Phase diagrams of binary hard-sphere mixtures at a fixed pressure for two values of the diameter
ratio γ ; x1 and T1 are, respectively, the number concentration of the larger spheres and the freezing temperature
for x1 = 1. (a) An azeotropic-type diagram; (b) a eutectic-type diagram. The full curves are calculated from
density-functional theory and the points are the results of Monte Carlo calculations;37 the broken line in (b)
shows the miscibility gap at the eutectic temperature. After Zeng and Oxtoby.36

The theory can be extended to mixtures and in that form has been used to study the
freezing of binary hard-sphere mixtures into substutionally disordered, face-centred-cubic
structures, where the nature of the resulting phase diagram depends critically on the value
of the diameter ratio, γ = d1/d2. Figure 6.9 shows phase diagrams in the temperature–
concentration plane calculated from a version of density-functional theory36 in which the
free-energy of the solid is calculated from a generalisation of the weighted-density approx-
imation (6.2.24); earlier calculations based on a generalisation of (6.6.11) had led to qual-
itatively similar results.38 When γ is greater than approximately 0.94, the two species are
miscible in all proportions in both phases, the concentration of large spheres being slightly
higher in the solid. At lower values of γ (0.88 < γ < 0.93), the phase diagram has the form
shown in part (a) of the figure, in which we see the appearance of an azeotrope, i.e. a point
where the coexistence curves pass through a minimum and solid and fluid have identical
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compositions. When γ is reduced below 0.88, as in part (b), the azeotrope is replaced by
a eutectic point. There is now a wide range of concentration over which the two species
are immiscible in the solid; the solubilities of large spheres in a solid consisting mostly
of small spheres or vice versa are each less than 10% and become rapidly smaller as γ

is further reduced. This behaviour is broadly consistent with the empirical Hume–Rothery
rule, according to which the disordered solid phases of metallic alloys become unstable
for diameter ratios less than about 0.85. As the figure shows, there is good agreement with
the results of simulations both here and in the azeotropic case. Other density-functional
calculations39 have shown that ordered phases of ABn-type structure remain stable at val-
ues of γ below 0.8, which is consistent both with simulations of hard-sphere mixtures and
with experimental studies of colloidal suspensions.40
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CHAPTER 7

Time-dependent Correlation
and Response Functions

The next three chapters are devoted to a discussion of the transport properties and mi-
croscopic dynamics of simple, dense fluids.1 The present chapter deals with the general
formalism of time-correlation functions and with linear response theory; Chapter 8 is con-
cerned with the behaviour of time-dependent fluctuations in the long-wavelength, low-
frequency limit, where contact can be made with the macroscopic equations of hydro-
dynamics; and Chapter 9 describes methods that allow the explicit calculation of time-
correlation functions.

7.1 GENERAL PROPERTIES OF TIME-CORRELATION FUNCTIONS

A dynamical variable, A(t) say, of a system consisting of N structureless particles is a
function of some or all of the time-varying coordinates ri and momenta pi , i = 1 to N . We
recall from Section 2.1 that the time evolution of A is determined by the equation of motion
A(t) = exp(iLt)A(0), where L is the Liouville operator. It follows that A has the signature
εA = +1 or −1 under time reversal depending on whether or not it changes sign under the
transformation pi → −pi . Now consider two such variables, A and B , each of which may
be either real or complex. Their equilibrium time-correlation function is written as

CAB(t ′, t ′′) = 〈A(t ′)B∗(t ′′)
〉

(7.1.1)

with the convention that t ′ � t ′′. The superscript ∗ denotes a complex conjugate and the
angular brackets represent either an average over time or an ensemble average over initial
conditions. Thus CAB(t ′, t ′′) is defined either as

〈
A(t ′)B∗(t ′′)

〉= lim
τ→∞

1

τ

∫ τ

0
A(t ′ + t)B∗(t ′′ + t)dt (7.1.2)

or as 〈
A(t ′)B∗(t ′′)

〉 = ∫∫ f
[N ]
0

(
rN,pN

)
B∗(rN,pN

)
× exp

[
iL(t ′ − t ′′)

]
A
(
rN,pN

)
drNdpN (7.1.3)

178
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The average in (7.1.3) is taken over all possible states of the system at time t ′′, weighted by
the equilibrium probability density f

[N ]
0 ; for a system characterised by fixed values of N,V

and T , f
[N ]
0 is given by the canonical distribution (2.3.1). Equations (7.1.2) and (7.1.3)

yield the same result in the thermodynamic limit if the system is ergodic. The most im-
portant class of time-correlation functions are the autocorrelation functions CAA(t), for
which A and B are the same variable.

Since the equilibrium probability density is independent of time, the ensemble aver-
age in (7.1.3) is independent of the choice of time origin t ′′, and the correlation function
CAB(t ′, t ′′) is invariant under time translation. If we put t ′′ = s and t ′ = s + t the correla-
tion function is a function only of the time difference t and is said to be stationary with
respect to s. It is therefore customary to set s = 0 and use the more compact notation

CAB(t) = 〈A(t)B∗〉 (7.1.4)

where B∗ ≡ B∗(0). The stationary character of the correlation function means that

d

ds

〈
A(t + s)B∗(s)

〉= 〈Ȧ(t + s)B∗(s)
〉+ 〈A(t + s)Ḃ∗(s)

〉= 0 (7.1.5)

and hence that 〈
Ȧ(t)B∗〉= −〈A(t)Ḃ∗〉 (7.1.6)

In particular:

〈ȦA∗〉 = 0 (7.1.7)

Repeated differentiation with respect to s leads to a number of useful relations; these can
also be deduced by exploiting the definition (7.1.2). For example:

d2

dt2

〈
A(t)B∗〉 = 〈Ä(t)B∗〉

= lim
τ→∞

1

τ

∫ τ

0
Ä(t + t ′)B∗(t ′)dt ′

= − lim
τ→∞

1

τ

∫ τ

0
Ȧ(t + t ′)Ḃ∗(t ′)dt ′

= −〈Ȧ(t)Ḃ∗〉 (7.1.8)

The invariance of correlation functions under time translation implies that

CAB(t) = εAεBCAB(−t) = εAεB
〈
A(−t)B∗〉

= εAεB
〈
AB∗(t)

〉= εAεBC∗
BA(t) (7.1.9)

where εA, εB are the time-reversal signatures of the two variables.
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It is clear that

lim
t→0

CAB(t) = 〈AB∗〉 (7.1.10)

where 〈AB∗〉 is a static correlation function. In the limit t → ∞ the variables A(t) and B

become uncorrelated and

lim
t→∞CAB(t) = 〈A〉〈B∗〉 (7.1.11)

However, it is usually more convenient to define the dynamical variables in such a way as
to exclude their average values and to consider only the time correlation of their fluctuating
parts, i.e.

CAB(t) = 〈[A(t) − 〈A〉][B∗ − 〈B∗〉]〉 (7.1.12)

With this convention, CAB(t) → 0 as t → ∞. Because〈[
A(t) ± A

][
A(t) ± A

]∗〉� 0 (7.1.13)

it is also true that

−〈AA∗〉 � CAA(t) � 〈AA∗〉 (7.1.14)

The magnitude of an autocorrelation function is therefore bounded above by its initial
value. This is to be expected, since an autocorrelation function describes the averaged way
in which spontaneous (thermal) fluctuations in a variable A decay in time.

If CAB(t) is defined as in (7.1.12), it is also possible to define its Fourier transform or
power spectrum:

CAB(ω) = 1

2π

∫ ∞

−∞
CAB(t) exp(iωt)dt (7.1.15)

and its Laplace transform:

C̃AB(z) =
∫ ∞

0
CAB(t) exp(izt)dt (7.1.16)

where z is a complex frequency. Since CAB(t) is bounded, C̃AB(z) is analytic in the upper
half of the complex z plane (Im z > 0); it is also related to CAB(ω) by a Hilbert transform,
i.e.

C̃AB(z) =
∫ ∞

0
dt exp(izt)

∫ ∞

−∞
CAB(ω) exp(−iωt)dω

= i

∫ ∞

−∞
CAB(ω)

z − ω
dω (7.1.17)

From the results in (7.1.9) it follows that an autocorrelation function CAA(t) and its power
spectrum CAA(ω) are real, even functions of t and ω, respectively. An integral such as
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that in (7.1.17) can be evaluated with the help of a standard relation commonly written in
short-hand form as

lim
ε→0

1

x ± iε
≡ P

(
1

x

)
∓ iπδ(x) (7.1.18)

where P denotes the principal value. Thus, since CAA(ω) is necessarily real:

lim
ε→0

Re C̃AA(ω + iε) = lim
ε→0

Re

(
i

∫ ∞

−∞
CAA(ω

′)
ω − ω′ + iε

dω′
)

= πCAA(ω) (7.1.19)

It can also be shown that CAA � 0 for all ω. Consider an auxiliary variable, AT (ω), defined
as

AT (ω) = 1√
2T

∫ T

−T

A(t) exp(iωt)dt (7.1.20)

The statistical average of 〈AT (ω)A∗
T (ω)〉 cannot be negative. Hence

〈
AT (ω)A∗

T (ω)
〉= 1

2T

∫ T

−T

dt
∫ T

−T

dt ′
〈
A(t)A∗(t ′)

〉
exp
[
iω(t − t ′)

]
� 0 (7.1.21)

If we now make a change of variable from t ′ to τ = t − t ′ and take the limit T → ∞, we
find that

lim
T→∞

〈
AT (ω)A∗

T (ω)
〉 = ∫ ∞

−∞
CAA(τ) exp(iωτ)dτ

= CAA(ω) � 0 (7.1.22)

The experimental significance of time-correlation functions lies in the fact that the spec-
tra measured by various spectroscopic techniques are the power spectra of well-defined
dynamical variables. This connection between theory and experiment will be made explicit
in Section 7.5 for the special but important case of inelastic neutron scattering. In addition,
as we shall see later, the linear transport coefficients of hydrodynamics are related to time
integrals of certain autocorrelation functions. Finally, time-correlation functions provide
a quantitative description of the microscopic dynamics in liquids. Computer simulations
play a key role here, since they give access to a large variety of correlation functions, many
of which are not measurable by laboratory experiments.

Apart from the limitation to classical mechanics, the properties of time-correlation func-
tions given thus far are completely general. We now restrict the discussion to systems of
particles for which the interaction potential is continuous; the hamiltonian is therefore dif-
ferentiable and the Liouville operator has the form given by (2.1.8). An autocorrelation
function of such a system is an even function of time and can be expanded in a Taylor
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series in even powers of t around t = 0. Thus

CAA(t) =
∞∑
n=0

t2n

(2n)!
〈
A(2n)A∗〉= ∞∑

n=0

t2n

(2n)! (−1)n
〈
A(n)A(n)∗〉

=
∞∑
n=0

t2n

(2n)! (−1)n
〈∣∣(iL)nA

∣∣2〉 (7.1.23)

where the superscript (2n) denotes a 2n-fold derivative and repeated use has been made
of (7.1.8). Differentiation of the inverse Fourier transform of (7.1.15) 2n times with respect
to t gives 〈

ω2n〉
AA

≡
∫ ∞

−∞
ω2nCAA(ω)dω = (−1)nC(2n)

AA (t = 0) (7.1.24)

Thus, apart from a possible change of sign, the frequency moments of the power spectrum
are equal to the derivatives of the autocorrelation function taken at t = 0; these derivatives
are static correlation functions that are expressible as integrals over the particle distribu-
tion functions. On expanding the right-hand side of (7.1.17) in powers of 1/z it becomes
clear that the frequency moments defined by (7.1.24) are also the coefficients in the high-
frequency expansion of the Laplace transform:

C̃AA(z) = i

z

∞∑
n=0

〈ω2n〉AA

z2n
(7.1.25)

Expansions of the type displayed in (7.1.23) cannot be used for systems such as the hard-
sphere fluid. The impulsive nature of the forces between particles with hard cores means
that the Liouville operator no longer has the form2 shown in (2.1.8). As a result, the time-
correlation functions are non-analytic at t = 0, and their power spectra have frequency
moments that are infinite.

The definition of a time-correlation function provided by (7.1.3) has the form of an inner
product of the “vectors” A(t) and B in the infinite-dimensional, Hilbert space of dynamical
variables, usually called Liouville space. A useful notation based on this identification is
one in which a time-correlation function is written as〈

A(t)B∗〉≡ (B,A(t)
)

(7.1.26)

where (· · · , · · ·) denotes an inner product. The usual requirements of an inner product are
therefore satisfied. In particular, (A,A) � 0 and (A,B) = (B,A)∗. Formal properties of
time-correlation functions can then be deduced from the fact that the Liouville operator is
hermitian (and hence iL is anti-hermitian) with respect to the inner product, i.e.

(B,LA) = (A,LB)∗ = (LB,A) (7.1.27)
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Because L is hermitian, the propagator exp(iLt) is a unitary operator with an hermitian
conjugate given by exp(−iLt). It follows that〈

A(t)B∗〉 ≡ (B, exp(iLt)A
)= (B, exp(−iLs)A(t + s)

)
= (A(t + s), exp(iLs)B

)∗ ≡ 〈A(t + s)B∗(s)
〉

(7.1.28)

thereby proving that the correlation function is stationary. Note that the effect of the op-
eration A(t) = exp(iLt)A is to “rotate” A through an angle Lt in Liouville space. By
exploiting the fact that iLA = Ȧ, properties of time-correlation functions that involve time
derivatives of dynamical variables are also easily derived. For example:〈

Ȧ(t)B∗〉 ≡ (B, iLA(t)
)

= −(A(t), iLB
)∗ ≡ −〈A(t)Ḃ∗〉 (7.1.29)

in agreement with (7.1.6).
The proof that the Liouville operator is hermitian requires an integration by parts of the

derivatives appearing in the Poisson-bracket representation (2.1.8). The inner product is
sometimes defined without the weighting factor f (N)

0 , but the Liouville operator retains its

hermitian character, since Lf
(N)
0 = 0.

7.2 AN ILLUSTRATION: THE VELOCITY AUTOCORRELATION FUNCTION
AND SELF-DIFFUSION

The ideas introduced in Section 7.1 can be usefully illustrated by considering one of the
simplest but most important examples of a time-correlation function, namely the autocor-
relation function of the velocity u = p/m of a tagged particle moving through a fluid. The
velocity autocorrelation function, defined as

Z(t) = 1
3

〈
u(t) · u

〉= 〈ux(t)ux

〉
(7.2.1)

is a measure of the projection of the particle velocity onto its initial value, averaged over
initial conditions. Its value at t = 0 is given by the equipartition theorem:

Z(0) = 1
3

〈
u2〉= kBT

m
(7.2.2)

At times long compared with any microscopic relaxation time the initial and final velocities
will be completely uncorrelated. Thus Z(t → ∞) = 0. The results of computer simulations
of argon-like liquids show that the velocities are already largely decorrelated after times
of order 10−12 s, but in general Z(t) also has a weak, slowly decaying part. The detailed
behaviour at long times varies with thermodynamic state, as is evident from the examples
plotted in Figure 7.1. We shall return later to a discussion of the main features of curves
such as these, but first we show that there exists a general relationship between the self-
diffusion coefficient D and the time integral of Z(t).
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FIG. 7.1. Normalised velocity autocorrelation function of the r−12-fluid at two different values of the dimen-
sionless coupling parameter Γ defined by (5.3.13). The higher value of Γ represents a thermodynamic state close
to the fluid–solid transition and the unit of time is τ = (mσ 2/48ε)1/2. After Heyes et al.3

Consider a set of identical, tagged particles having initial positions {ri (0)}. If the parti-
cles diffuse in time t to positions {ri (t)}, the self-diffusion coefficient is given by a well-
known relation due to Einstein:

D = lim
t→∞

〈|ri (t) − ri (0)|2〉
6t

(7.2.3)

This result is a direct consequence of Fick’s law of diffusion, as we shall see in Section 8.2.
It is also a relation characteristic of a “random walk”, in which the mean-square displace-
ment of the walker becomes a linear function of time after a sufficiently large number of
random steps. The nature of the limiting process involved in (7.2.3) highlights the gen-
eral importance of taking the thermodynamic limit before the limit t → ∞. For a system
of finite volume V , the diffusion coefficient defined by (7.2.3) is strictly zero, since the
maximum achievable mean-square displacement is of order V 2/3. In practice, for a sys-
tem of macroscopic dimensions, the ratio on the right-hand side of (7.2.3) will reach a
plateau value at times much shorter than those required for the diffusing particles to reach
the boundaries of the system; it is the plateau value that provides the definition of D for a
finite system.

We now rewrite the Einstein relation in terms of the velocity autocorrelation function.
The displacement in a time interval t of any tagged particle is

r(t) − r(0) =
∫ t

0
u(t ′)dt ′ (7.2.4)

When squared and averaged over initial conditions, (7.2.4) becomes

〈∣∣r(t) − r(0)
∣∣2〉 = 〈∫ t

0
u(t ′)dt ′ ·

∫ t

0
u(t ′′)dt ′′

〉
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= 2
∫ t

0
dt ′
∫ t ′

0
dt ′′
〈
u(t ′) · u(t ′′)

〉
= 6

∫ t

0
dt ′
∫ t ′

0
dt ′′Z(t ′ − t ′′) (7.2.5)

A change of variable from t ′′ to s = t ′ − t ′′ followed by an integration by parts with respect
to t ′ shows that

〈∣∣r(t) − r(0)
∣∣2〉 = 6

∫ t

0
dt ′
∫ t ′

0
dsZ(s)

= 6t
∫ t

0

(
1 − s

t

)
Z(s)ds (7.2.6)

and substitution of (7.2.5) in (7.2.3) gives the required result:

D =
∫ ∞

0
Z(t)dt (7.2.7)

Equation (7.2.7) is an example of a Green–Kubo formula, an important class of relations
in which a macroscopic dynamical property is written as the time integral of a microscopic
time-correlation function.

If the interparticle potential is continuous, the short-time expansion of Z(t) starts as

Z(t) = kBT

m

(
1 − Ω2

0
t2

2
+ · · ·

)
(7.2.8)

Equation (7.1.23) shows that the coefficient of 1
2 t

2 is

Ω2
0 = m

3kBT
〈u̇ · u̇〉 = 〈|F|2〉

3mkBT
(7.2.9)

where F is the total force exerted on the diffusing particle by its neighbours. If the tagged
particle is identical to all other particles in the fluid, F = −∇VN , where VN is the total
potential energy. When VN is a sum of pair terms, Ω2

0 can be expressed in terms of the
equilibrium pair distribution function and the interparticle potential. To show this, we first
derive a useful, general result. Let A(rN) be some function of the particle coordinates.
Then 〈

A
(
rN
)∂VN

∂xi

〉
= 1

ZN

∫
· · ·
∫

A
(
rN
)∂VN

∂xi
exp(−βVN)dr1 · · ·dxi dyi dzi · · ·drN

= kBT

ZN

∫
· · ·
∫

∂A(rN)

∂xi
exp(−βVN)dr1 · · ·dxi dyi dzi · · ·drN (7.2.10)
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or 〈
A
(
rN
)∂VN

∂xi

〉
= kBT

〈
∂A(rN)

∂xi

〉
(7.2.11)

The second equality in (7.2.10) follows from an integration by parts with respect to xi .
Equation (7.2.11) is called the Yvon theorem. When applied to the current problem it
shows that the mean-square force on a particle is〈|F|2〉= kBT

〈∇2VN

〉
(7.2.12)

With the assumption of pairwise additivity, manipulations similar to those used in Sec-
tion 2.5 now allow (7.2.9) to be rewritten in the form

Ω2
0 = (N − 1)

3m

〈∇2v(r)
〉= ρ

3m

∫
∇2v(r)g(r)dr (7.2.13)

The quantity Ω0 is called the Einstein frequency, since it represents the frequency at which
the tagged particle would vibrate if it were undergoing small oscillations in the potential
well produced by the surrounding particles when maintained at their mean equilibrium
positions around the tagged particle. Numerically, Ω0 is of order 1013 s−1 for liquid argon
near its triple point.

Equation (7.2.8) does not apply to systems of hard spheres because the hard-sphere
potential is not differentiable.4 The short-time behaviour of Z(t) now takes the form

〈
u(t) · u

〉= 〈u2〉+ t

(
d

dt

〈
u(t) · u

〉)
t=0

+ · · · (7.2.14)

where the differentiation with respect to time must be carried out after the ensemble aver-
aging. Thus

Z(t) = 1
3

〈
u2〉(1 − Ω ′

0t + · · ·) (7.2.15)

where the frequency Ω ′
0 is

Ω ′
0 = − 1

〈u2〉 lim
Δt→0

〈Δu · u〉
Δt

(7.2.16)

Consider a tagged hard sphere of diameter d moving in a fluid of untagged but other-
wise identical hard spheres.5 Over a sufficiently short time interval the tagged sphere will
suffer at most one collision with a sphere from the bath. To evaluate Ω ′

0 from its defini-
tion (7.2.16), let us suppose that the tagged sphere, of momentum p, collides with a sphere
of momentum p′, as pictured in Figure 7.2. Because the collision is elastic, the momentum
gained by the tagged particle is Δp = −(p · r̂−p′ · r̂)r̂, where r̂ = r/r is a unit vector along
the line joining the two centres of mass. Thus −Δp · p = p(p − p′) where p,p′ are the
components of p and p′, respectively, along r̂. If p > p′, the separation of the two spheres
will decrease in a short time Δt by an amount Δr = (p − p′)Δt/m. On average, given



THE VELOCITY AUTOCORRELATION FUNCTION AND SELF-DIFFUSION 187
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FIG. 7.2. A collision between a tagged hard sphere, (1), and a sphere from the bath, (2).

that Δr is small, the number of spheres that initially lie within a distance d to d + Δr of
the tagged sphere will be n(Δr) ≈ 4πd2g(d)(p − p′)Δt/m, where g(d) is the pair distri-
bution function at contact, and the probability that the tagged sphere will suffer a collision
with a sphere having a component of momentum p′ along r̂ is P(p′) = n(Δr)fM(p′)dp′,
where fM is the maxwellian distribution (2.1.26) in its component form. The statistical
average of −Δp · p is therefore obtained by multiplying P(p′) by p(p−p′)fM(p)dp and
integrating over p and p′. Bringing these results together we find that

Ω ′
0 = − 1

3mkBT
lim

Δt→0

〈Δp · p〉
Δt

= 4πd2g(d)

3m2kBT

∫∫
p>p′

p(p − p′)2fM(p)fM(p′)dp dp′ (7.2.17)

or, on changing variables from p,p′ to p+ = (p + p′)/
√

2, p− = (p − p′)/
√

2:

Ω ′
0 = 4

√
2πd2g(d)

3m2kBT

∫ ∞

−∞
dp+

∫ ∞

0
dp−p3−fM(p−)fM(p+) (7.2.18)

The double integral is now easily evaluated to give

Ω ′
0 = 8ρd2g(d)

3

(
πkBT

m

)1/2

= 2ΓE

3
(7.2.19)

where ΓE is the Enskog collision rate introduced in Section 2.5.
The derivation of (7.2.19) shows that the Enskog approximation makes allowance for

static correlations in the fluid, but the key assumption underlying the Boltzmann equation
is retained, namely that successive collisions are completely uncorrelated. The velocity of
a tagged particle immediately following a collision is therefore dependent on its velocity
immediately prior to the collision, but not on its velocity at earlier times. Because colli-
sions between hard spheres are instantaneous events, this is tantamount to saying that the
“memory” associated with the tagged-particle velocity is of infinitesimally short duration,
with the consequence, as we shall see in later sections, that the velocity autocorrelation
function is exponential in time. By identifying the right-hand side of (7.2.14) with the



188 TIME-DEPENDENT CORRELATION AND RESPONSE FUNCTIONS

leading terms in the expansion of an exponential function, we do in fact recover Enskog’s
approximation6 for the velocity autocorrelation function of hard spheres:

ZE(t) = kBT

m
exp
(−2ΓE|t |/3

)
(7.2.20)

where the absolute value of t appears because Z(t) must be an even function of t .
The corresponding approximation for the diffusion coefficient is obtained by substitution
of (7.2.20) in (7.2.7):

DE = 3kBT

2mΓE
= 3

8ρd2g(d)

(
kBT

πm

)1/2

(7.2.21)

This expression is nearly exact in the low-density limit7 while its applicability at higher
densities has been thoroughly tested in molecular dynamics calculations.8 From Figure 7.3
we see that the diffusion coefficient obtained by simulation exceeds the Enskog value at
intermediate densities, but falls below it at densities close to crystallisation.9 The high-
density deviations arise from back-scattering effects, corresponding to the fact that colli-
sions lead, on average, to the reversal of the velocity of a tagged particle into a compara-
tively narrow range of angles. This gives rise to an extended negative region in Z(t); the
same effect is seen for other potential models, as exemplified in Figure 7.1. The increase
in the ratio D/DE at intermediate densities is attributable in large part to an enhancement
of velocity correlations due to the excitation of slowly decaying, collective motions in the
fluid. The motion of the tagged particle induces a backflow pattern in the surrounding fluid
that reacts on the particle at later times, giving rise to persistence (or “memory”) effects
and an unexpectedly slow (∼ t−3/2) decay of Z(t) at very long times; this behaviour is
again not specific to hard spheres. We shall return to the question of the “long-time tails”
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FIG. 7.3. Molecular-dynamics results for the self-diffusion coefficient D and shear viscosity η of the hard-sphere
fluid relative to their values in the Enskog approximation. The curves are drawn as a guide to the eye. After
Sigurgeirsson and Heyes.8(b)



THE VELOCITY AUTOCORRELATION FUNCTION AND SELF-DIFFUSION 189

of correlation functions in Section 8.7. Figure 7.3 also shows the corresponding results
for the shear viscosity of the hard-sphere fluid, but we postpone discussion of these until
Section 8.4.

A treatment of self-diffusion by kinetic theory that goes beyond the Enskog approxi-
mation must take account of the correlated sequences of binary collisions that a tagged
particle experiences. In such a sequence the tagged particle collides initially with a particle
from the bath, then diffuses through the fluid, suffering collisions with other bath particles,
before colliding either with the same particle it met initially or with another particle whose
motion is correlated in some way with that of the initial collision partner. Examples of col-
lision sequences are illustrated in Figure 7.4; in each case the tagged particle is labelled 1
and A, B represent two different space-time points. In example (a), the two collisions are
uncorrelated. In (b) and (c), particles 1 and 2 first meet at A, then recollide at B; in (b)
the recollision involves one intermediate collision between 2 and 3 (a three-body event)
and in (c) it involves intermediate collisions between 1 and 4 and between 2 and 3 (a four-
body event). Example (d) is a different type of four-body event in which the initial (at A)
and final (at B) collision partners are different but the collisions suffered by 1 at A and B
are nonetheless correlated. Sequences (b), (c) and (d) are all examples of “ring-collision”
events.
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FIG. 7.4. Examples of uncorrelated (a) and correlated (b, c, d) sequences of binary collisions. A and B represent
two different space-time points. See text for details.
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7.3 BROWNIAN MOTION AND THE GENERALISED LANGEVIN EQUATION

Calculations of the velocity autocorrelation function either by the Enskog method or by
other, more sophisticated versions of kinetic theory are largely limited to hard-sphere sys-
tems, though efforts have been made to apply similar techniques in calculations for contin-
uous potentials. In this section we describe a different approach that is more phenomeno-
logical in character, but has found wide application in the theory of transport processes in
liquids. Its basis is the stochastic theory used by Langevin to describe the brownian motion
of a large and massive particle in a bath of particles that are much smaller and lighter than
itself. The problem is characterised by two very different timescales, one associated with
the slow relaxation of the initial velocity of the brownian particle and another linked to the
frequent collisions that the brownian particle suffers with particles of the bath. Langevin
assumed that the force acting on the brownian particle consists of two parts: a systematic,
frictional force proportional to the velocity u(t), but acting in the opposite sense, and a
randomly fluctuating force, R(t), which arises from collisions with surrounding particles.
The equation of motion of a brownian particle of mass m is therefore written as

mu̇(t) = −mξu(t) + R(t) (7.3.1)

where ξ is the friction coefficient. The random force is assumed to vanish in the mean:〈
R(t)

〉= 0 (7.3.2)

to be uncorrelated with the velocity at any earlier time:〈
R(t) · u

〉= 0, t > 0 (7.3.3)

and to have an infinitesimally short correlation time, i.e.〈
R(t + s) · R(s)

〉= 2πR0δ(t) (7.3.4)

which in turn means that the power spectrum of the random force is a constant, R0
(a “white” spectrum):

1

2π

∫ ∞

−∞
〈
R(t) · R

〉
exp(iωt)dt = R0 (7.3.5)

These are reasonable assumptions when the brownian particle is much larger than its neigh-
bours, because even on a short timescale its motion will be determined by a very large
number of essentially uncorrelated collisions. When all particles are of the same size, the
assumptions are less well justified, and a generalisation of a type to be described later is
required.

The two terms on the right-hand side of the Langevin equation (7.3.1) are not inde-
pendent. To see the connection between them we first write the solution to (7.3.1) in the
form

mu(t) = mu(0) exp(−ξ t) + exp(−ξ t)

∫ t

0
exp(ξs)R(s)ds (7.3.6)
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On squaring and taking the statistical average we find, using (7.3.3) and (7.3.4), that

m2〈∣∣u(t)∣∣2〉 = m2〈∣∣u(0)∣∣2〉 exp(−2ξ t)

+ exp(−2ξ t)
∫ t

0
ds
∫ t

0
ds′ exp

[
ξ(s + s′)

]
2πR0δ(s − s′)

= m2〈∣∣u(0)∣∣2〉 exp(−2ξ t) + πR0

ξ

[
1 − exp(−2ξ t)

]
(7.3.7)

We now take the limit t → ∞; the brownian particle will then be in thermal equilibrium
with the bath regardless of the initial conditions. Hence 〈|u(∞)|2〉 = 3kBT/m and (7.3.7)
can be rearranged to give an expression for the friction coefficient:

ξ = πβR0

3m
= β

3m

∫ ∞

0

〈
R(t) · R

〉
dt (7.3.8)

From a physical point of view it is not surprising to find a link between the frictional and
random forces. If the brownian particle were to be drawn through the bath by an external
field, random collisions suffered by the particle would give rise to a systematic retard-
ing force proportional to the particle velocity. Equation (7.3.8) is a further illustration of
the fluctuation–dissipation theorem already discussed in Section 3.5 and which we shall
establish more generally in Section 7.6.

The friction coefficient is also related to the diffusion coefficient. Consider the case when
the brownian particle is initially (t = 0) situated at the origin (r = 0). We wish to calculate
the mean-square displacement of the particle after a time t . By multiplying through (7.3.1)
by r(t) and using the results

r · u = r · ṙ = 1
2

d

dt
r2 (7.3.9)

r · u̇ = r · r̈ = 1
2

d2

dt2
r2 − u2 (7.3.10)

we find that

1
2m

d2

dt2

∣∣r(t)∣∣2 + 1
2ξm

d

dt

∣∣r(t)∣∣2 = m
∣∣u(t)∣∣2 + r(t) · R(t) (7.3.11)

In the statistical mean (7.3.11) becomes

d2

dt2

〈∣∣r(t)∣∣2〉+ ξ
d

dt

〈∣∣r(t)∣∣2〉= 6kBT

m
(7.3.12)

The solution to (7.3.12) that satisfies the boundary conditions 〈|r(0)|2〉 = 0 and

d

dt

〈∣∣r(t)∣∣2〉∣∣∣∣
t=0

= 2
〈
r(0) · u(0)

〉= 0 (7.3.13)
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is 〈∣∣r(t)∣∣2〉= 6kBT

ξm

(
t − 1

ξ
+ 1

ξ
exp(−ξ t)

)
(7.3.14)

At very short times, such that ξ t � 1, the solution becomes

〈∣∣r(t)∣∣2〉≈ (3kBT

m

)
t2 = 〈u2〉t2 (7.3.15)

which corresponds to free-particle motion. At very large times (ξ t � 1), (7.3.14) reduces
to 〈∣∣r(t)∣∣2〉≈ (6kBT

ξm

)
t (7.3.16)

and comparison with (7.2.3) leads to Einstein’s expression for the diffusion coefficient:

D = kBT

ξm
(7.3.17)

An estimate of ξ can be obtained from a hydrodynamic calculation of the frictional
force on a sphere of diameter d moving with constant velocity u in a fluid of shear vis-
cosity η. This leads to a famous result due to Stokes, the precise form of which depends
on the assumptions made about the behaviour at the surface of the sphere of the velocity
field created by the fluid. If the “stick” boundary condition is used, the fluid velocity at the
surface is everywhere taken equal to u; in the “slip” approximation, the normal compo-
nent of the fluid velocity is set equal to the normal component of u, thereby ensuring that
no fluid can enter or leave the sphere, and the tangential force acting on the sphere is as-
sumed to vanish. The stress tensor at the surface is then obtained by solving the linearised
Navier–Stokes equation (see Section 8.3) subject to one of these boundary conditions, sup-
plemented by the requirement that the fluid velocity must vanish at infinite distance from
the sphere. When the stress tensor is known, the total frictional force F can be calculated
by integration over the surface. The final result has the form F = −ξu, with

ξ = 3πηd

m
(stick), ξ = 2πηd

m
(slip) (7.3.18)

Combination of (7.3.17) with (7.3.18) leads to the two familiar forms of Stokes’s law:

Dη = kBT

3πd
(stick), Dη = kBT

2πd
(slip) (7.3.19)

It is a remarkable feature of Stokes’s law that although it is derived from purely macro-
scopic considerations, and is apparently limited to brownian particles, it also provides a
good, empirical correlation of experimental data on simple liquids, use of the slip bound-
ary condition generally leading to more reasonable values of the effective diameter d .
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The form of the velocity autocorrelation function of the brownian particle is easily de-
duced. If we multiply through (7.3.1) by u(0) and take the thermal average we find that

Z(t) = 1
3

〈
u(t) · u(0)

〉= (kBT

m

)
exp(−ξ t) (7.3.20)

where t � 0. The expression for the diffusion coefficient given by (7.3.17) is then recov-
ered by inserting (7.3.20) in (7.2.7). Note that the autocorrelation function is of the same,
exponential form as the Enskog result for the hard-sphere fluid. This is to be expected,
since a markovian hypothesis underlies both calculations. In practice, as is evident from
Figure 7.1, the velocity autocorrelation function of a simple liquid may be very far from
exponential. Moreover, the power spectrum of an exponential correlation function has an
infinite second moment, which for continuous potentials is not consistent with the result
shown in (7.2.8). The inconsistency arises because the applicability of (7.3.20) does not
extend to very short times. In a time interval t such that ξ t � 1 the brownian particle expe-
riences very few collisions and the basic assumptions of the Langevin theory are no longer
valid.

When the dimensions of the diffusing particle are similar to those of its neighbours, the
weakest part of the theory is the markovian approximation whereby the frictional force
on the particle at a given time is assumed to be proportional only to its velocity at the
same time. The implication of this assumption is that the motion of the particle adjusts
itself instantaneously to changes in the surrounding medium. It would obviously be more
realistic to suppose that the frictional force acting on a particle reflects the previous history
of the system. In other words, we should associate a certain “memory” with the motion of
the particle. This can be achieved by introducing a friction coefficient ξ(t − s) that is non-
local in time and determines the contribution to the systematic force at time t coming from
the velocity at earlier times s. Mathematically this amounts to writing the frictional force
as a convolution in time, giving rise to a non-markovian generalisation of the Langevin
equation, which we write as

mu̇(t) = −m

∫ t

0
ξ(t − s)u(s)ds + R(t) (7.3.21)

The properties of R(t) expressed by (7.3.2) and (7.3.3) are assumed to be unaltered. If,
therefore, we multiply through (7.3.21) by u(0) and take the thermal average, we arrive at
an equation for the velocity autocorrelation function in the form

Ż(t) = −
∫ t

0
ξ(t − s)Z(s)ds (7.3.22)

The quantity ξ(t) is called the memory function for the autocorrelation function Z(t). An
equation analogous to (7.3.22) can be written down for the autocorrelation function of an
arbitrary dynamical variable, A say. Such an expression may be regarded as a generalised
Langevin equation in which the random “force” is proportional to that part of A(t) which is
uncorrelated with A(0) (cf. (7.3.3)). All that is lost in extending the use of the generalised
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Langevin equation to other dynamical variables is a feeling for the physical meaning of the
“friction” coefficient and random “force”.

If we take the Laplace transform of (7.3.22), we obtain a simple, algebraic relation be-
tween Z̃(z) and ξ̃ (z):

Z̃(z) = kBT/m

−iz + ξ̃ (z)
(7.3.23)

On replacing the frequency-dependent friction coefficient in (7.3.23) by a constant, ξ , and
inverting the transform, we recover the exponential form of Z(t) given by (7.3.20); this
amounts to choosing a purely local (markovian) memory function, ξ(t) = ξδ(t), which
leads back to the original Langevin equation (7.3.1). Similarly, the Enskog approxima-
tion (7.2.20) corresponds to taking ξ(t) = (3/2ΓE)δ(t). Equation (7.3.22) is exact, how-
ever, since it acts as a definition of the unknown function ξ(t). What is lacking at this stage
is any statistical-mechanical definition of either R(t) or ξ(t), nor is it obvious that ξ(t) is
a simpler object to understand than Z(t) itself; if it were not, (7.3.22) would be of little
value. The interpretation of the generalised Langevin equation and the memory-function
equation in terms of statistical mechanics is described in detail in Chapter 9. Here it is suf-
ficient to say that ξ(t) is expected to decay much faster than Z(t). If this is so, it suggests
that a phenomenological model of a complicated dynamical process can be devised by
postulating a rather simple form for the appropriate memory function that satisfies, in par-
ticular, the low-order sum rules on the autocorrelation function. For example, to describe
the diffusion process, we could suppose that the memory function decays exponentially10

with a characteristic time τ :

ξ(t) = ξ(0) exp
(−|t |/τ) (7.3.24)

If we differentiate (7.3.22) with respect to time, set t = 0 and use (7.2.9), we find that

ξ(0) = − Z̈(0)

Z(0)
= Ω2

0 (7.3.25)

Then, by taking the Laplace transform of (7.3.24) and substituting the result in (7.3.23),
we obtain the expression

Z̃(z) = kBT/m

−iz + Ω2
0

−iz+τ−1

(7.3.26)

It follows from (7.2.7) that the diffusion coefficient is

D = Z̃(0) = kBT

mΩ2
0τ

(7.3.27)

and inverse Laplace transformation of (7.3.26) shows that the velocity autocorrelation func-
tion is given by

Z(t) =
(

kBT/m

α+ − α−

)[
α+ exp

(−α−|t |)− α− exp
(−α+|t |)] (7.3.28)
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where α+, α− are the two poles of Z̃(z = iα):

α± = 1

2τ

[
1 ∓ (1 − 4Ω2

0τ
2)1/2] (7.3.29)

If τ < 1/2Ω0, the poles are real and positive and Z(t) decays monotonically with the
correct curvature (Ω2

0 ) at the origin. On the other hand, if τ > 1/2Ω0, which from (7.3.27)
is equivalent to the condition

mDΩ0

kBT
< 2 (7.3.30)

then the poles are a complex-conjugate pair and the velocity autocorrelation function be-
haves as

Z(t) =
(
kBT

m

)
exp
(−|t |/2τ

)[
cosΩ1|t | + (1/2Ω1τ) sinΩ1|t |

]
(7.3.31)

where Ω2
1 = Ω2

0 − 1/4τ 2. The function defined by (7.3.31) exhibits a negative region at
intermediate times, in qualitative agreement with simulation results on simple liquids at
low temperatures and high densities (see Figure 7.1), where the condition (7.3.30) is in-
deed well satisfied. The argument that leads to (7.3.28) is nonetheless inadequate in certain
respects. First, it provides no prescription for the relaxation time τ , though the value of
τ can be derived from (7.3.27) if D is known. Secondly, use of the simple memory func-
tion (7.3.24) yields a spectrum Z(ω) for which the even frequency moments beyond the
second are all infinite. Both defects can be overcome by postulating a gaussian rather than
an exponential memory function and forcing agreement with the fourth frequency moment
of Z(ω), which in turn requires a knowledge of the equilibrium triplet distribution func-
tion. However, none of the phenomenological memory-function calculations that use as
their basic ingredients only the short-time behaviour of the correlation function are capa-
ble of reproducing the observed slow (∼ t−3/2) decay at long times (Ω0t � 1).

7.4 CORRELATIONS IN SPACE AND TIME

A detailed description of the time evolution of spatial correlations in liquids requires the
introduction of time-dependent generalisations of the static distribution functions defined
in Sections 2.5 and 2.6. The relevant dynamical variable is the microscopic particle den-
sity (3.1.2), where account must now be taken of the time-dependence of the particle coor-
dinates ri . More generally, we define a microscopic dynamical variable as

A(r, t) =
N∑
i=1

ai(t)δ
[
r − ri (t)

]
(7.4.1)
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where ai is some physical quantity such as the mass, velocity or energy of particle i. The
spatial Fourier components of A(r, t) are

Ak(t) =
∫

A(r, t) exp(−ik · r)dr =
N∑
i=1

ai(t) exp
[−ik · ri (t)

]
(7.4.2)

A microscopic dynamical variable is said to be conserved if it satisfies a continuity equation
of the form

∂A(r, t)
∂t

+ ∇ · jA(r, t) = 0 (7.4.3)

where jA is the current associated with the variable A. Equation (7.4.3) is a local expression
of the fact that

∫
A(r, t)dr =∑i ai(t) is independent of time; the corresponding equation

for the Fourier components of A is

∂Ak(t)

∂t
+ ik · jAk (t) = 0 (7.4.4)

which shows that spontaneous fluctuations in a conserved variable decay very slowly at
long wavelengths.

The time-dependent, microscopic particle density

ρ(r, t) =
N∑
i=1

δ
[
r − ri (t)

]
(7.4.5)

corresponds to the case when ai = 1 and is a particularly important example of a conserved
local variable. The associated particle current is

j(r, t) =
N∑
i=1

ui (t)δ
[
r − ri (t)

]
(7.4.6)

with Fourier components

jk(t) =
N∑
i=1

ui (t) exp
[−ik · ri (t)

]
(7.4.7)

where ui is the velocity of particle i. Each Fourier component may be separated into longi-
tudinal (l) and transverse (t) parts, the two parts being parallel and perpendicular, respec-
tively, to the wavevector k. The longitudinal component, jkl , is related to the microscopic
density via the continuity equation (7.4.4).

The time-correlation function of two space-dependent dynamical variables is defined as
in (7.1.2) or (7.1.3) but is now, in general, non-local in space:

CAB(r′, r′′; t ′, t ′′) = 〈A(r′, t ′)B∗(r′′, t ′′)
〉

(7.4.8)
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while the correlation functions of the Fourier components are defined as

CAB(k′,k′′; t ′, t ′′) = 〈Ak′(t ′)B∗
k′′(t ′′)

〉= 〈Ak′(t ′)B−k′′(t ′′)
〉

(7.4.9)

These correlation functions have all the properties given in Section 7.1, in particular those
associated with stationarity. In addition, for homogeneous liquids, translational invariance
in space means that the correlation function (7.4.8) depends only on the relative coordinates
r = r′ − r′′. Thus

CAB(r′, r′′; t ′, t ′′) = CAB(r′ − r′′, t ′ − t ′′) (7.4.10)

Translational invariance also implies that correlations between Fourier components Ak′(t ′)
and Bk′′(t ′′) are non-zero only if k′ = k′′, i.e.

CAB(k′,k′′; t) = 〈Ak′(t)B−k′′
〉
δk′,k′′ (7.4.11)

Clearly CAB(k, t) is the spatial Fourier transform of CAB(r, t):

CAB(k, t) =
∫

CAB(r, t) exp(−ik · r)dr (7.4.12)

If the fluid is also isotropic, the correlation functions (7.4.10) and (7.4.11) share with their
static counterparts the property that they are functions, respectively, of the scalar quanti-
ties r and k. The frequency moments of the power spectrum of an autocorrelation func-
tion CAA(k, t) are again given by (7.1.24), but are now wavenumber-dependent. The conti-
nuity equation for conserved variables leads to simple expressions for the second frequency
moments, called f -sum rules. From (7.1.24) and (7.4.4) it follows that

〈
ω2〉

AA
= 〈ȦkȦ−k〉 = k2〈∣∣jAkl∣∣2〉 (7.4.13)

The memory function, MAA say, associated with a space-dependent autocorrelation
function CAA must allow for non-local effects in space as well as in time. The memory-
function equation satisfied by CAA is therefore written as

ĊAA(r, t) +
∫ t

0
dt ′
∫

dr′MAA(r − r′, t − t ′)CAA(r′, t ′) = 0 (7.4.14)

or, by exploiting the convolution theorem:

ĊAA(k, t) +
∫ t

0
dt ′MAA(k, t − t ′)CAA(k, t ′) = 0 (7.4.15)

We now focus specifically on the way in which time-dependent correlations in the micro-
scopic density and particle current are described. A convenient starting point is provided
by the space and time-dependent distribution function introduced by van Hove. The van
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Hove function for a uniform fluid is defined as

G(r, t) =
〈

1

N

N∑
i=1

N∑
j=1

∫
δ
[
r − rj (t) + ri (0)

]〉
(7.4.16)

which can be rewritten successively as

G(r, t) =
〈

1

N

∫ N∑
i=1

N∑
j=1

δ
[
r′ + r − rj (t)

]
δ
[
r′ − ri (0)

]
dr′
〉

=
〈

1

N

∫
ρ(r′ + r, t)ρ(r′,0)dr′

〉
= 1

ρ

〈
ρ(r, t)ρ(0,0)

〉
(7.4.17)

The van Hove function therefore has the meaning of a density–density time-correlation
function which for t = 0 is closely related to the static correlation function (3.1.6). It sep-
arates naturally into two terms, usually called the “self” (s) and “distinct” (d) parts, i.e.

G(r, t) = Gs(r, t) + Gd(r, t) (7.4.18)

where

Gs(r, t) =
〈

1

N

N∑
i=1

δ
[
r − ri (t) + ri (0)

]〉
(7.4.19a)

Gd(r, t) =
〈

1

N

N∑
i=1

N∑
j �=i

δ
[
r − rj (t) + ri (0)

]〉
(7.4.19b)

Hence Gs(r,0) = δ(r) and (from (2.5.15)) Gd(r,0) = ρg(r). The physical interpretation
of the van Hove function is that G(r, t)dr is the number of particles j in a region dr around
a point r at time t given that there was a particle i at the origin at time t = 0; the division
into self and distinct parts corresponds to the possibilities that i and j may be the same
particle or different ones. As t increases, Gs broadens into a bell-shaped curve and the
peaks in Gd gradually disappear. In the limit t → ∞, both functions become independent
of r , with Gs(r, t → ∞) ∼ 1/V and Gd(r, t → ∞) ∼ ρ; the behaviour at large r is the
same as that at large t .

Rather than considering the density–density correlation in real space, it is often more
convenient to focus attention on the correlation function of the Fourier components ρk:

F(k, t) = 1

N

〈
ρk(t)ρ−k

〉
(7.4.20)

The function F(k, t) is called the intermediate scattering function; as we shall see later,
F(k, t) is closely related to the cross-section measured in an inelastic scattering experi-
ment. By following steps almost identical to those that establish the relation (4.1.3) be-
tween the static structure factor and the pair distribution function it is easy to show that
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F(k, t) is the spatial Fourier transform of the van Hove function, i.e.

F(k, t) =
∫

G(r, t) exp(−ik · r)dr (7.4.21)

The power spectrum of the intermediate scattering function:

S(k,ω) = 1

2π

∫ ∞

−∞
F(k, t) exp(iωt)dt (7.4.22)

is called the dynamic structure factor. Combination of (4.1.1) and (7.1.24) shows that the
static and dynamic structure factors are related by∫ ∞

−∞
S(k,ω)dω = F(k,0) = S(k) (7.4.23)

The physical significance of this sum rule will become clear in the next section. Finally, we
define the autocorrelation function of the Fourier components (7.4.7) of the current asso-
ciated with the microscopic density. Because jk is a vector, the corresponding correlation
function is a second-rank tensor, but rotational invariance implies that the longitudinal and
transverse projections of the particle current are uncorrelated if the fluid is isotropic. When
that is so, the correlation-function tensor has only two independent components and may
therefore be written in the form

Cαβ(k, t) = k2

N

〈
jα

k (t)j
β

−k

〉
= k̂αk̂βCl(k, t) + (δαβ − k̂αk̂β)Ct (k, t) (7.4.24)

where α,β = x, y or z and k̂α, k̂β are cartesian components of the unit vector k̂ = k/k.
If the z-axis is chosen parallel to k, the longitudinal and transverse current autocorrelation
functions are given by

Cl(k, t) = k2

N

〈
jz

k(t)j
z
−k

〉
(7.4.25a)

Ct(k, t) = k2

N

〈
jx

k (t)j
x
−k

〉
(7.4.25b)

The continuity equation (7.4.4) (with A = ρ) and the general property (7.1.8) imply that
the density and longitudinal-current correlation functions are not independent, since

Cl(k, t) = 1

N

〈
ρ̇k(t)ρ̇k

〉= − d2

dt2
F(k, t) (7.4.26)

Written in terms of Laplace transforms, (7.4.26) becomes

C̃l(k, z) = z2F̃ (k, z) − izS(k) (7.4.27)
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or, on taking the real part and making use of (7.1.19):

Cl(k,ω) = ω2S(k,ω) (7.4.28)

The function Cl(k,ω) describes the spectrum of longitudinal-current fluctuations in the
liquid. Fluctuations in density are therefore intimately related to fluctuations in longitudinal
current, but are independent of the transverse current.

In classical statistical mechanics, positions and velocities at a given instant are uncorre-
lated. Thus the definitions of the current autocorrelation functions show that their zero-time
values are the same and given by

Cl,t (k,0) = k2
(
kBT

m

)
= ω2

0, say (7.4.29)

From (7.4.26) and the general f -sum rule (7.4.13) it follows that the second frequency
moment of the dynamic structure factor is given by

〈
ω2〉

ρρ
=
∫ ∞

−∞
ω2S(k,ω)dω = −F̈ (k,0) = ω2

0 (7.4.30)

Since the f -sum rule is a consequence of the continuity equation, the second moment is
purely kinetic in origin, but higher-order moments depend on the interparticle potential.
If the potential is continuous, the general results contained in (7.1.23) and (7.1.24) imply
that the odd frequency moments of S(k,ω) are all zero and the fourth moment is equal, by
virtue of the relation (7.4.28), to the second moment of Cl(k,ω). We may therefore base a
calculation of the fourth moment on the short-time expansion of Cl(k, t), which we write
as

Cl(k, t) = ω2
0

(
1 − ω2

1l
t2

2! + · · ·
)

(7.4.31)

Equations (7.1.8) and (7.4.31) show that

ω2
0ω

2
1l = − d2

dt2
Cl(k, t)

∣∣∣∣
t=0

= d4

dt4
F(k, t)

∣∣∣∣
t=0

= 1

N
〈ρ̈kρ̈−k〉 (7.4.32)

If again we take the z-axis along the direction of k and make the substitution u̇iz =
−(1/m)(∂VN/∂zi), (7.4.32) becomes

ω2
0ω

2
1l = k4〈u4

iz

〉+ k2
(
kBT

m

)〈 N∑
i=1

N∑
j=1

∂VN

∂zi

∂VN

∂zj
exp
[
ik(zi − zj )

]〉
(7.4.33)
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For a maxwellian distribution of velocities, 〈u4
iz〉 = 3〈u2

iz〉2, and the statistical average
in (7.4.33) can be simplified with the help of Yvon’s theorem (7.2.11) to give〈

N∑
i=1

N∑
j=1

∂VN

∂zi

∂VN

∂zj
exp
[
ik(zi − zj )

]〉

= kBT

〈
N

∂2VN

∂z2
1

+ N(N − 1)
∂2VN

∂z1∂z2
exp
[
ik(z1 − z2)

]〉
(7.4.34)

where 1 and 2 are the labels of two, arbitrarily chosen particles. Hence, if VN is a sum of
pair terms:

ω2
1l = 3ω2

0 + ρ

m

∫
(1 − coskz)

∂2v(r)

∂z2
g(r)dr (7.4.35)

where v(r) is the pair potential. At large k, the kinetic contribution dominates, correspond-
ing to free-particle behaviour. From (7.4.28) we see that ω2

1l is related to the second and
fourth frequency moments of S(k,ω) by ω2

1l = 〈ω4〉ρρ/〈ω2〉ρρ .
A similar calculation can be made for the transverse current. The short-time expansion

of the correlation function is now

Ct(k, t) = ω2
0

(
1 − ω2

1t
t2

2! + · · ·
)

(7.4.36)

with

ω2
0ω

2
1t = − d2

dt2
Ct(k, t)

∣∣∣∣
t=0

(7.4.37)

By pursuing the methods already used in the longitudinal case we find that the analogue
of (7.4.35) is

ω2
1t = ω2

0 + ρ

m

∫
(1 − coskz)

∂2v(r)

∂x2
g(r)dr (7.4.38)

Higher-order moments of Cl(k,ω) and Ct(k,ω) involve correlations between increasingly
large numbers of particles and rapidly become very tedious to evaluate.

7.5 INELASTIC NEUTRON SCATTERING

We now show how the Fourier transforms of the van Hove functions G(r, t) and Gs(r, t)
are related to measurements of the inelastic scattering of slow (or “thermal”) neutrons.
To do so, we require a generalisation of the calculation of Section 4.1 that allows for the
exchange of energy between the neutrons and the target.11 Neutrons are particularly useful
as probes of the microscopic dynamics of liquids because their momentum h̄k and energy
E = h̄ω are related by E = h̄2k2/2m, where m is the neutron mass. It follows that when
E is of order kBT , and therefore comparable with the thermal energies of particles in the
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liquid, the wavelength λ = 2π/k associated with the neutron is approximately 2 Å, which
is similar to the distance between neighbouring particles.

In a typical scattering event a neutron of momentum h̄k1 and energy h̄ω1 is scattered
into a solid angle dΩ . Let the momentum and energy of the neutron after the event be h̄k2
and h̄ω2 and let the momentum and energy transfer from neutron to sample be h̄k and h̄ω.
The dynamical conservation laws require that

h̄ω = E2 − E1 ≡ h̄ω12 (7.5.1)

h̄k = h̄k1 − h̄k2 (7.5.2)

where E1 and E2 are the initial and final energies of the sample. The probability per unit
time, W12, for the transition |1,k1〉 → |2,k2〉, where |1〉 and |2〉 denote the initial and final
states of the sample, is given by Fermi’s “golden rule”:

W12 = 2π

h̄

∣∣〈1,k1|V|2,k2
〉∣∣2δ(h̄ω − h̄ω12) (7.5.3)

where V represents the perturbation, i.e. the interaction between the neutron and the atomic
nuclei. For the sake of simplicity we have ignored the spin state of the neutron. The partial
differential cross-section for scattering into the solid angle dΩ in a range of energy transfer
h̄dω is calculated by averaging W12 over all initial states |1〉 with their statistical weights
P1 ∝ exp(−βE1), summing over all final states |2〉 allowed by energy conservation, mul-
tiplying by the density of final states of the neutron, namely

dk2/(2π)3 = k2
2 dk2 dΩ/(2π)3 = (m/h̄2)h̄k2 dω dΩ/(2π)3 (7.5.4)

and dividing by the flux h̄k1/m of incident neutrons, with the final result having the form

d2σ

dΩ dω
= k2

k1

(
m

2πh̄2

)2∑
{1}

∑
{2}

P1
∣∣〈1,k1|V|2,k2

〉∣∣2δ(ω − ω12) (7.5.5)

The differential cross-section (4.1.9) is obtained by integrating over all energy transfers:

dσ

dΩ
=
∫

dσ

dΩ dω
dω (7.5.6)

The structure and dynamics of the liquid enter the calculation through the interaction of
the neutron with the atomic nuclei. We assume again that V is given by the sum (4.1.12)
of δ-function pseudopotentials between a neutron located at r and nuclei at positions ri . If
the initial and final states of the neutron are taken as plane-wave states of the form (4.1.6),
the matrix element in (7.5.5) may be rewritten as

〈
1,k1|V|2,k2

〉= 2πh̄2

m

N∑
i=1

〈
1
∣∣bi exp(−ik · ri )

∣∣2〉 (7.5.7)
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where h̄k is the momentum transfer already defined and bi is the scattering length of nu-
cleus i.

Consider first the case when all nuclei in the sample have the same scattering length.
By incorporating (7.5.7) into (7.5.5), exploiting the definition (4.1.2) and introducing the
integral representation of the δ-function, we obtain an expression for the cross-section in
terms of the Fourier components of the microscopic density:

d2σ

dΩ dω
= b2

(
k2

k1

)∑
{1}

∑
{2}

P1
∣∣〈1|ρk|2〉∣∣2δ(ω − ω12)

= b2
(
k2

k1

)∑
{1}

∑
{2}

P1
1

2π

∫ ∞

−∞
∣∣〈1|ρk|2〉∣∣2 exp

[
i(ω − ω12)t

]
dt (7.5.8)

Equation (7.5.8) can be simplified by recognising that

exp(−iω12t)
∣∣〈1|ρk|2〉∣∣2

= exp(−iE2t/h̄) exp(iE1t/h̄)
〈
1|ρk|2〉〈2|ρ−k|1〉

= 〈1∣∣exp(iE1t/h̄)ρk exp(−iE2t/h̄)
∣∣2〉〈2|ρ−k|1〉

= 〈1∣∣exp(iHt/h̄)ρk exp(−iHt/h̄)
∣∣2〉〈2|ρ−k|1〉

= 〈1∣∣ρk(t)
∣∣2〉〈2|ρ−k|1〉 (7.5.9)

where H is the hamiltonian of the sample.
It remains only to sum over the initial states of the sample, which is equivalent to taking

an ensemble average, and over the final states, which is done by exploiting the closure
property,

∑
j |j 〉〈j | = 1, of a complete set of quantum states |j 〉. The final result for the

cross-section is

d2σ

dΩ dω
= b2

(
k2

k1

)
1

2π

∫ ∞

−∞
〈
ρk(t)ρ−k

〉
exp(iωt)dt

= Nb2
(
k2

k1

)
S(k,ω) (7.5.10)

where S(k,ω) is the dynamic structure factor defined by (7.4.22). Equation (7.5.10) shows
that a measurement of the experimental cross-section as a function of k and ω is equiva-
lent, at least in principle, to a determination of the van Hove correlation function G(r, t).
The connection with the elastic cross-section is made via (7.5.6); comparison of (4.1.23)
with (7.5.10), taken for the case k1 = k2, shows that (7.5.6) provides the physical content
of the so-called “elastic” sum rule (7.4.23).

By analogy with (7.4.21) and (7.4.22), it is customary to define a self dynamic structure
factor Ss(k,ω) as the double Fourier transform of the self part of the van Hove function,
i.e.

Ss(k,ω) = 1

2π

∫ ∞

−∞
dt exp(iωt)

∫
Gs(r, t) exp(−ik · r)dr (7.5.11)



204 TIME-DEPENDENT CORRELATION AND RESPONSE FUNCTIONS

together with a self intermediate scattering function Fs(k, t), defined through the transform

Ss(k,ω) = 1

2π

∫ ∞

−∞
Fs(k, t) exp(iωt)dt (7.5.12)

with Fs(k,0) = 1. The self functions are important for the discussion of inelastic scattering
in situations where more than one scattering length is involved. As in Section 4.1, the
averaging over scattering lengths can be carried out independently of the thermal average
over nuclear coordinates. A generalisation of the result in (4.1.21) allows the inelastic
cross-section to be written as the sum of incoherent and coherent parts in the form

d2σ

dΩ dω
=
(

d2σ

dΩ dω

)
inc

+
(

d2σ

dΩ dω

)
coh

(7.5.13)

with (
d2σ

dΩ dω

)
inc

= Nb2
inc

(
k2

k1

)
Ss(k,ω)(

d2σ

dΩ dω

)
coh

= Nb2
coh

(
k2

k1

)
S(k,ω)

(7.5.14)

By varying the isotopic composition of the sample, or by using polarised neutrons, it is
possible to measure separately the coherent and incoherent cross-sections and thereby,
again in principle, to separate Gs and Gd.

For systems with inversion symmetry, which includes all fluids, the dynamic structure
factor is invariant under a change of sign of k. In the classical limit, S(k,ω) is also an
even function of ω, but a measured cross-section cannot be strictly even with respect to ω;
if that were the case, thermal equilibrium between radiation and sample would never be
reached. The principle of detailed balance requires that the cross-sections for the scatter-
ing processes |k1,1〉 → |k2,2〉 and |k2,2〉 → |k1,1〉 be equal to the ratio of the statistical
weights of the states |1〉 and |2〉, i.e. S(k,ω)/S(k,−ω) = exp(βh̄ω). Experimental scatter-
ing data are therefore frequently reported in the form of a “symmetrised” dynamic structure
factor, S(k,ω), defined as

S(k,ω) = exp
(− 1

2βh̄ω
)
S(k,ω) (7.5.15)

This is an even function of frequency for both classical and quantum systems.
In the limit r, t → 0, particles in a fluid move freely at constant velocity. These condi-

tions correspond to the limit k,ω → ∞, where S(k,ω) behaves in the manner appropriate
to an ideal gas. The limiting form of S(k,ω) is easily derived, since positions of different
particles are uncorrelated in an ideal gas (Gd = ρ); the calculation of S(k,ω) is therefore
equivalent to a calculation of Gs(r, t). The probability that an ideal-gas particle will move a
distance r in a time t is equal to the probability, given by the Maxwell distribution (2.1.28),
that the particle has a velocity in the range u to u + du, where u = r/t . Thus

Gs(r, t) =
(

βm

2πt2

)3/2

exp
(−βmr2/2t2) (7.5.16)
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where the form of the pre-exponential factor is determined by the requirement that∫
Gs(r, t)dr = 1. The corresponding result for S(k,ω) is

S(k,ω) =
(

βm

2πk2

)1/2

exp
(−βmω2/2k2) (7.5.17)

Equation (7.5.17) provides a reasonable fit to data on simple liquids at wavelengths signifi-
cantly shorter than the spacing between particles, typically for k greater than about 10 Å−1;
small deviations from the free-particle result can be allowed for by calculating the correc-
tion to S(k,ω) due to a single, binary collision. At longer wavelengths correlations between
particles become increasingly important and the ideal-gas model is no longer valid. Very
small values of k correspond to the hydrodynamic regime, where thermodynamic equilib-
rium is brought by frequent collisions between particles; this is the opposite extreme to the
free-particle limit represented by (7.5.17).

Inelastic neutron-scattering experiments designed for the study of both single-particle
and collective dynamical properties have been carried out for a number of monatomic liq-
uids. These experiments have been complemented by simulations of the Lennard-Jones and
hard-sphere fluids and a variety of models of the liquid alkali metals. Most of the interest
lies in the behaviour of the dynamic structure factor as a function of k and all the existing
experiments and simulations reveal broadly the same features. At reduced wavenumbers
kd ≈ 1 or smaller, where d is the atomic diameter, S(k,ω) has a sharp peak at zero fre-
quency and two more or less well defined side peaks, one on each side of the central peak.
As k increases, the peaks shift to higher frequencies with a dispersion that is approximately
linear. We shall see in Chapter 8 that the side peaks observed at long wavelengths corre-
spond to propagating sound waves; they are clearly visible in the results of neutron scat-
tering experiments on liquid caesium, some of which are plotted in Figure 7.5. At shorter
wavelengths the sound waves are strongly damped and disappear when kd ≈ 2, leaving
only a central, lorentzian-like peak. The width of the central peak first increases with k,
but then shows a marked decrease at wavenumbers close to the peak in the static structure
factor (see curve (d) in Figure 7.5). This last effect is called “de Gennes narrowing”; it
corresponds to a dramatic slowing down in the decay of the density autocorrelation func-
tion F(k, t), which in turn has its origins in the strong spatial correlations existing at these
wavelengths. At still larger values of k, the spectrum broadens again, going over finally to
its free-particle limit. The behaviour of Ss(k,ω) is much simpler; this has only a single,
central peak, the width of which increases smoothly with k.

Measurements of S(k,ω) can also be made by the inelastic scattering of light or x-rays.
Both techniques measure only the coherent cross-section and cannot be used as probes of
the single-particle motion, though this also simplifies analysis of the experimental data.
In thermal-neutron scattering experiments the smallest momentum transfers correspond to
wavelengths of the order of the nearest-neighbour spacing, but in light scattering the wave-
lengths involved are much larger, of order 5000 Å. It is therefore possible to calculate the
spectral distribution of scattered light from the macroscopic equations of hydrodynamics,
which are discussed in detail in Chapter 8. Light is scattered by fluctuations in the local
dielectric constant of the sample, but for most liquids these are directly proportional to the
fluctuations in density and the measured spectrum is proportional to S(k,ω). Inelastic x-ray
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FIG. 7.5. Results from inelastic neutron-scattering experiments for the dynamic structure factor of liquid caesium
near the normal melting temperature. The spectra have been normalised to unit area and only the energy-gain side
is shown. The main peak in S(k) is at k ≈ 1.4 Å−1. After Bodensteiner et al.12

scattering experiments have become feasible only with the development of high-resolution
synchrotron radiation facilities. The momentum-energy relation for the neutron means that
there exists a maximum possible energy transfer for a given momentum transfer, with a
value determined by the velocity of the incoming neutron. This constraint does not apply
in the case of x-ray scattering, thereby allowing measurements of S(k,ω) to be made over
a wider range of the frequency-wavenumber plane.

7.6 LINEAR-RESPONSE THEORY

We turn now to an investigation of the behaviour of a system under the perturbing influence
of an external field to which the system is weakly coupled. As we shall see, the response of
the system can be described entirely in terms of time-correlation functions characteristic of
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the system at equilibrium, i.e. in the absence of the field; the expression already obtained
for the inelastic neutron-scattering cross-section in terms of the dynamic structure factor
is an example of this relationship. The derivation of the general result requires only a
straightforward calculation of the change produced in a dynamical variable B by an applied
space and time-dependent field F conjugate to a variable A. Both A and B are to be
regarded in general as functions of the coordinates and momenta of all particles in the
system. The mean value of B in the equilibrium state is assumed to be zero.

The hamiltonian of the system in the presence of the external field is

H = H0 +H′(t) (7.6.1)

where H0 characterises the unperturbed system and H′(t) represents the perturbation:

H′(t) = −
∫

A(r)F(r, t)dr (7.6.2)

The external field can always be treated as a superposition of monochromatic plane waves.
Since we are interested in the linear response of the system, it is sufficient to consider a
single plane wave:

F(r, t) = 1

V
Fk exp

[
i(k · r − ωt)

]
(7.6.3)

in which case (7.6.2) becomes

H′(t) = −A−kFk exp(−iωt) (7.6.4)

As a further simplification we shall temporarily suppose that the external field is spa-
tially homogeneous and ignore the dependence on k; the latter is trivially reintroduced
at a later stage. We also assume that the system was in thermal equilibrium in the infinite
past (t → −∞). Then H′(t) may be written as

H′(t) = −AF(t) = −AF0 exp
[−i(ω + iε)t

]
(7.6.5)

where A and B are now taken to be real. The factor exp(εt) (ε > 0) is included to ensure
that F → 0 as t → −∞; the limit ε → 0 is taken at the end of the calculation. The time
evolution of the phase-space probability density f [N ](t) ≡ f [N ](rN,pN ; t) in the presence
of the perturbation is determined by the Liouville equation (2.1.9). Thus

∂f [N ](t)
∂t

= −iLf [N ](t) = {H0 +H′, f [N ](t)
}

= −iL0f
[N ](t) − {A,f [N ](t)

}
F(t) (7.6.6)

where L0 is the Liouville operator corresponding to the unperturbed hamiltonian. Equa-
tion (7.6.6) must be solved subject to the initial condition that f [N ](−∞) = f

[N ]
0 .
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We are interested only in the response to a weak external field. We may therefore write
the probability density as

f [N ](t) = f
[N ]
0 + Δf [N ](t) (7.6.7)

and linearise (7.6.6) in the form

∂Δf [N ](t)
∂t

= −iL0Δf [N ](t) − {A,f
[N ]
0

}
F(t) (7.6.8)

The solution to (7.6.8) is

Δf [N ](t) = −
∫ t

−∞
exp
[−i(t − s)L0

]{
A,f

[N ]
0

}
F(s)ds (7.6.9)

That this is the solution for all t is easily checked by differentiation, since it is obvi-
ously correct for t = −∞. In the canonical ensemble, f [N ]

0 ∝ exp(−βH0), and the Poisson
bracket appearing in (7.6.9) can be re-expressed as

{
A,f

[N ]
0

} =
N∑
i=1

(
∂A

∂ri
· ∂f

[N ]
0

∂pi

− ∂A

∂pi

· ∂f
[N ]
0

∂ri

)

= −β

N∑
i=1

(
∂A

∂ri
· ∂H0

∂pi

− ∂A

∂pi

· ∂H0

∂ri

)
f

[N ]
0

= −β(iL0A)f
[N ]
0 = −βȦf

[N ]
0 (7.6.10)

The mean change in the variable B(rN, rN) arising from the change in the distribution
function is therefore〈

ΔB(t)
〉 = ∫∫ B

(
rN,pN

)
Δf [N ](t)drN dpN

= β

∫ t

−∞
F(s)ds

∫∫
f

[N ]
0 B exp

[−i(t − s)L0
]
ȦdrNdpN

= β

∫ t

−∞
F(s)ds

∫∫
f

[N ]
0 Ȧ exp

[
i(t − s)L0

]
B drNdpN (7.6.11)

where we have used a result contained in (7.1.28). The response of the system can therefore
be written in the form 〈

ΔB(t)
〉= ∫ t

−∞
ΦBA(t − s)F(s)ds (7.6.12)

in terms of an after-effect function ΦBA(t), defined as

ΦBA(t) = β
〈
B(t)Ȧ

〉= −β
〈
Ḃ(t)A

〉
(7.6.13)
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The thermal averages in (7.6.13) are taken over the unperturbed system because in the
linear approximation represented by (7.6.11) the variable B evolves in time under the in-
fluence of the reference-system propagator exp(iL0t). It is sometimes convenient to use as
an alternative definition of the after-effect function the expression

θBA(t) = −β
〈
Ḃ(t)A

〉
θ(t) (7.6.14)

where θ(t) is the Heaviside step-function. Since θBA(t) = 0 for t < 0, the upper limit of
the integral in (7.6.12) can then be extended to +∞.

The physical meaning of (7.6.12) and (7.6.13) is that the response, i.e. the change in
the variable B at time t , is a superposition of delayed effects and the response to a unit δ-
function force applied at t = 0 is proportional to the after-effect function itself. The basic
result of linear-response theory embodied in these two equations can also be derived by cal-
culating the changes in the phase-space trajectories of the particles to first order in the ap-
plied force. That method of derivation emphasises the assumption of mechanical linearity
which underlies linear-response theory. Mechanical linearity cannot hold for macroscopic
times, however, since it is known that the perturbed and unperturbed phase-space trajec-
tories diverge exponentially on a macroscopic timescale even when the external field is
very weak. On the other hand, the corresponding deviation in the phase-space distribution
function is expected to behave smoothly as a function of the perturbation. Linearisation
of the statistically averaged response should therefore be justified, in agreement with ex-
perimental observations. The apparent contradiction between mechanical non-linearity and
statistical linearity is resolved by noting that the decay times of the relevant correlations,
i.e. the times after which randomisation sets in, are generally quite short, and that use of a
linear approximation for the divergence of the trajectories in phase space is valid for time
intervals over which the after-effect function differs significantly from zero.

Equation (7.6.12) is easily generalised to the case in which the external field also varies
in space. If the unperturbed system is spatially uniform, the response is determined by an
after-effect function ΦBA(r, t) through the relation

〈
ΔB(r, t)

〉= ∫ t

−∞
ds
∫

ΦBA(r − r′, t − s)F(r′, s)dr′ (7.6.15)

or, in terms of Fourier components, by

〈
ΔBk(t)

〉= ∫ t

−∞
ds
∫

ΦBA(k, t − s)Fk(s)ds (7.6.16)

where

ΦBA(k, t) = − β

V

〈
Ḃk(t)A−k

〉
(7.6.17)

Equation (7.6.16) shows that in the linear regime a perturbation of given wavevector in-
duces a response only of the same wavevector; this is a consequence of the assumed uni-
formity of the unperturbed system and the property (7.4.11).
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We now restrict the discussion to the case of isotropic fluids. If the external field has the
monochromatic form of (7.6.5), the expression for the response becomes

〈
ΔBk(t)

〉 = ∫ t

−∞
ΦBA(k, t − s)Fk exp

[−i(ω + iε)s
]

ds

= Fk exp
[−i(ω + iε)t

] ∫ t

−∞
ΦBA(k, t − s) exp

[−i(ω + iε)(s − t)
]

ds

= Fk exp
[−i(ω + iε)t

] ∫ ∞

0
ΦBA(k, t) exp

[
i(ω + iε)t

]
dt (7.6.18)

or, taking the limit ε → 0: 〈
ΔBk(t)

〉= χBA(k,ω)Fk exp(−iωt) (7.6.19)

where χBA(k,ω) is a complex dynamic susceptibility or dynamic response function:

χBA(k,ω) = χ ′
BA(k,ω) + iχ ′′

BA(k,ω)

= lim
ε→0+

∫ ∞

0
ΦBA(k, t) exp

[
i(ω + iε)t

]
dt (7.6.20)

If we substitute for ΦBA(k, t) from (7.6.17) and integrate by parts, we find that

χBA(k,ω) = β

V

[
CBA(k, t = 0) + i(ω + iε)C̃BA(k,ω + iε)

]
(7.6.21)

When A and B are the same, it follows from (7.1.19) that

CAA(k,ω) = V kBT

πω
χ ′′
AA(k,ω) (7.6.22)

The zero-frequency limit of χAA(k,ω), i.e. the static susceptibility χAA(k), is obtained
from (7.6.21) as

χAA(k) ≡ χAA(k,ω = 0) = β

V
CAA(k, t = 0) (7.6.23)

Thus the static version of (7.6.19) for the case when A and B are the same is

〈ΔAk〉 = β

V
〈AkA−k〉Fk (7.6.24)

Equation (7.6.22) is a particular form of the fluctuation–dissipation theorem. Indeed the
name is often applied specifically to this relation between the power spectrum of the auto-
correlation function of a dynamical variable and the imaginary part of the corresponding
response function. Use of the term “dissipation” is connected to the fact, well known in
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spectroscopy, that the energy absorbed from the external field and later dissipated as heat
is proportional to ωχ ′′

AA(k,ω).
When A is the microscopic density some minor changes are needed to the formulae

we have derived. Let φk exp(−iωt) be a Fourier component of an external potential that
couples to the component ρ−k of the density. The term H′(t) in the hamiltonian (7.6.1)
now has the form

H′(t) = 1

V
ρ−kφk exp(−iωt) (7.6.25)

The resulting change in density is〈
Δρk(t)

〉= χρρ(k,ω)φk exp(−iωt) (7.6.26)

which is a generalisation to non-zero frequencies of the static result (3.6.9). The after-effect
function is

Φρρ(k, t) = β

V

〈
ρ̇k(t)ρ−k

〉= βρḞ (k, t) (7.6.27)

and the imaginary part of the response function is related to the dynamic structure factor
by

S(k,ω) = − kBT

πρω
χ ′′
ρρ(k,ω) (7.6.28)

The changes in sign relative to (7.6.17) and (7.6.22) arise from the difference in sign be-
tween the hamiltonian terms (7.6.4) and (7.6.25); the density response function is conven-
tionally defined in terms of the response to an external potential rather than an external
field. Similarly, the static susceptibility is now

χρρ(k) = − β

V
〈ρkρ−k〉 = −βρS(k) (7.6.29)

in agreement with (3.6.9).
The properties of the after-effect function ΦBA(k, t) follow directly from its defini-

tion (7.6.17) and the general properties of time-correlation functions. If A and B are dif-
ferent, we see from (7.1.9) and (7.6.17) that

ΦBA(k, t) = εAεḂΦAB(k, t) = −εAεBΦAB(k, t) (7.6.30)

Equation (7.6.30) is an expression of the Onsager reciprocity relations. If A and B are real,
ΦBA(k, t) is also real, and from (7.6.20) we see that on the real axis

χBA(k,−ω) = χ∗
BA(k,ω) = χ ′

BA(k,ω) − iχ ′′
BA(k,ω) (7.6.31)

Thus the real and imaginary parts of χBA are, respectively, even and odd functions of
frequency.
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The response function χBA(k,ω) can be interpreted as the limit of a Laplace transform
χ(k, z) defined in the entire upper half of the complex plane (Im z > 0):

χBA(k, z) =
∫ ∞

0
ΦBA(k, t) exp(izt)dt (7.6.32)

If we confine ourselves to the important special case when the variables B and A are
the same we may discard the subscripts and consider the behaviour of the susceptibility
χ(k, z) ≡ χAA(k, z) as a function of the complex variable z = ω + iε, with ε > 0. By
restricting ε to positive values we ensure that χ(k, z) is analytic in the upper half-plane, but
the function is undefined in the lower half-plane because the integral in (7.6.32) diverges.
Since (7.6.13) implies that the after-effect function (with A = B) is linear in t at short
times, it follows that χ(k, z) behaves asymptotically as z−2 at large z.

Let the contour C in the complex plane be C = C1 +C2, where C1 is the real axis and C2

is the infinite semicircle in the upper half-plane. Application of Cauchy’s integral formula
shows that

χ(k, z) = 1

2πi

∫
C

χ(k, z′)
z′ − z

dz′ (7.6.33)

where z is any point inside C. On the other hand, because the conjugate variable z∗ lies
outside C, the function χ(k, z′)/(z′ − z∗) is analytic in and on the contour C. It follows
from Cauchy’s theorem that ∫

C

χ(k, z′)
z′ − z∗ dz′ = 0 (7.6.34)

The contributions to the integrals (7.6.33) and (7.6.34) from the contour C2 are both zero,
because χ(k, z) vanishes rapidly as z → ∞. By adding quantities that are zero to the right-
hand side of (7.6.33) and discarding the integral around C2, χ(k, z) can be re-expressed
either as

χ(k, z) = 1

2πi

∫
C1

χ(k, z′)
(

1

z′ − z
+ 1

z′ − z∗

)
dz′ (7.6.35a)

or as

χ(k, z) = 1

2πi

∫
C1

χ(k, z′)
(

1

z′ − z
− 1

z′ − z∗

)
dz′ (7.6.35b)

Two further expressions for χ(k, z) are obtained by adding the real part of (a) to i times
the imaginary part of (b) and vice versa:

χ(k, z) = 1

π

∫ ∞

−∞
χ ′′(k,ω)

ω − z
dω (7.6.36a)

χ(k, z) = 1

πi

∫ ∞

−∞
χ ′(k,ω)

ω − z
dω (7.6.36b)
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We now let ε → 0 in (7.6.36a), so that χ(k,ω + iε) → χ ′(k,ω) + iχ ′′(k,ω), and use the
identity (7.1.18). In this way we find that

χ ′(k,ω) = P 1

π

∫ ∞

−∞
χ ′′(k,ω′)
ω′ − ω

dω′ (7.6.37)

which is the Kramers–Kronig relation for χ ′(k,ω) in terms of χ ′′(k,ω). The inverse rela-
tion, obtained by applying the rule (7.1.18) to (7.6.36b), is

χ ′′(k,ω) = −P 1

π

∫ ∞

−∞
χ ′(k,ω′)
ω′ − ω

(7.6.38)

These results show that the real and imaginary parts of χ(k,ω) are not independent of each
other and a knowledge of one part is sufficient to determine the full response function.

The dispersion and damping of the collective modes associated with a dynamical vari-
able A are governed, respectively, by the real and imaginary parts of the poles (corre-
sponding to resonances) of the analytic continuation of χAA(k, z) into the lower half-plane.
Much of the early theoretical work on density fluctuations in liquids was based on attempts
to modify the density response function of an ideal gas to allow for the effects of parti-
cle interactions through a variety of mean-field or “effective-field” approximations. The
problem with such approximations is that they account only for static and not for dynamic
correlations between particles; they therefore fare badly at densities characteristic of the
liquid state.

7.7 APPLICATIONS OF THE LINEAR-RESPONSE FORMALISM

The best known and most important of the applications of linear-response theory is its use
in the derivation of expressions for the transport coefficients of hydrodynamics, through
which induced fluxes are related to certain gradients within the fluid. The simplest ex-
ample concerns the mobility of a tagged particle under the action of a constant exter-
nal force F that acts only on the tagged particles. We suppose that the force is applied
along the x-direction from t = 0 onwards. Then the perturbation term in the hamiltonian
is H′(t) = −Fx(t)θ(t), where x(t) is the x-coordinate of a tagged particle; if the fluid is
isotropic, the drift velocity u of the particle will be in the same direction as the applied
force. From (7.6.12) and (7.6.13) it follows that

〈
ux(t)

〉= β

∫ t

−∞
〈
ux(t

′)ẋ
〉
Fθ(t ′)dt ′ = βF

∫ t

0

〈
ux(t

′)ux

〉
dt ′ (7.7.1)

This leads to the Einstein relation for the mobility μ, defined as the ratio of the limiting
drift velocity to the applied force:

μ = lim
t→∞

1

kBT

∫ t

0

〈
ux(t

′)ux

〉
dt ′ = D

kBT
(7.7.2)
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where D is the diffusion coefficient. Equation (7.7.2) is a further example of the
fluctuation–dissipation theorem: D is a quantity that characterises spontaneous fluctua-
tions in the velocity of a tagged particle and μ is a measure of the response of the tagged
particle to an applied force.

It is instructive to consider an alternative derivation of (7.7.2). If the tagged particles
are subjected to a weak, external force derived from a potential exp(εt)φ(r) (ε > 0), a
concentration gradient is set up. The resulting induced current is〈

j(s)(r, t)
〉= −μρs exp(εt)∇φ(r) − D∇〈ρ(s)(r, t)

〉
(7.7.3)

or, in terms of Fourier components:〈
j(s)k (t)

〉= −iμρs exp(εt)kφk − iDk
〈
ρ
(s)
k (t)

〉
(7.7.4)

where ρs is the number of tagged particles per unit volume. The first term on the right-hand
side of (7.7.3) represents the contribution to the current from the drift velocity of the tagged
particles and the second term arises from Fick’s law of diffusion (see Section 8.2). If the
field is turned on sufficiently slowly, i.e. if ε � Dk2, the system will remain in a steady
state. The two contributions to the current then cancel and (7.7.4) reduces to〈

ρ
(s)
k

〉= −μρs

D
φk (7.7.5)

If the concentration of tagged particles is sufficiently low for interactions between them to
be negligible, it follows from (3.6.9) that 〈ρ(s)

k 〉 and φk are also related by13

〈
ρ
(s)
k

〉= −βρsφk (7.7.6)

where −βρs is the static susceptibility of a non-interacting system of density ρs . Combi-
nation of (7.7.5) and (7.7.6) leads back to the Einstein expression (7.7.2).

The calculation of the electrical conductivity provides an example of a different type,
in which a collective response of a system to an external field is involved. Suppose that
a time-dependent electric field E(t) is applied to a system of charged particles. The field
gives rise to a charge current, defined as

ejZ(t) =
N∑
i=1

zieṙi (t) = Ṁ(t) (7.7.7)

where zie is the charge carried by the ith particle (e is the elementary charge) and M(t) is
the total dipole moment of the sample. The interaction with the applied field is described
by the hamiltonian

H′(t) = −
N∑
i=1

M(t) · E(t) (7.7.8)
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If the system is isotropic and the field is applied, say, along the x-axis, then, in the statistical
mean, only the x-component of the induced current will survive. The linear response to a
real, periodic field can therefore be written as

e
〈
jZ
x (t)

〉= Reσ(ω)E0 exp(−iωt) (7.7.9)

where, according to the general formulae (7.6.13) and (7.6.20), the electrical conductivity
per unit volume is given by

σ(ω) = βe

V

∫ ∞

0

N∑
i=1

〈
jZ
x (t)zieẋi

〉
exp(iωt)dt

= βe2

V

∫ ∞

0

〈
jZ
x (t)jZ

x

〉
exp(iωt)dt (7.7.10)

The usual static electrical conductivity σ is then identified as σ = limω→0 σ(ω). The statis-
tical average in the second line of (7.7.10) is the autocorrelation function of the fluctuating
charge current in the absence of the electrical field. In deriving this result we have ignored
any spatial variation of the electric field, thereby avoiding the difficulties which arise when
taking the long-wavelength limit for coulombic systems; we shall return to a discussion of
this problem in Chapter 10.

Correlation-function formulae for transport coefficients have been obtained by many
authors in a variety of ways. The derivation from linear-response theory is not always as
straightforward as it is in the case of electrical conductivity, the difficulty being that the
dissipative behaviour described by hydrodynamics is generally not induced by external
forces but by gradients of local thermodynamic variables, which cannot be represented by
a perturbation term in the hamiltonian. The thermal conductivity provides an example; this
is the transport coefficient that relates the induced heat flux to an imposed temperature
gradient via Fourier’s law. A temperature gradient is a manifestation of boundary condi-
tions and cannot be formulated in mechanical terms because temperature is a statistical
property of the system. However, a linear-response argument can still be invoked by in-
troducing an inhomogeneous field that couples to the energy density of the system and
sets up a heat flow. Einstein’s argument relating the diffusion coefficient to the mobility
can then be extended to yield a correlation-function expression for the thermal conduc-
tivity. We postpone a derivation of the microscopic expressions for thermal conductivity
and shear and bulk viscosities to Chapter 8, where it is shown that these coefficients are
related to the long-wavelength, low-frequency (or “hydrodynamic”) limit of certain space
and time-dependent correlation functions.

The response to a weak, applied field can be measured directly in a molecular dynam-
ics simulation in a way that allows the accurate calculation of transport coefficients with
relatively modest computational effort.14 To understand what is involved, we return to the
problem of the electrical conductivity. Clearly we could hope to mimic a real experiment
by adding to the equations of motion of the particles the force due to a steady electrical field
and computing the steady-state charge current to which the field gives rise. The practical
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value of such an approach is seriously limited by the fact that a very large field must be ap-
plied in order to produce a systematic response that is significantly greater than the natural
fluctuations. Use of a large field leads to a rapid heating-up of the system, non-conservation
of energy and other undesirable effects.

The problems associated with the use of large fields can be overcome either by imposing
constraints that maintain the system at constant kinetic energy or by a “subtraction” tech-
nique closely related to linear-response theory. In the subtraction method the response is
computed as the difference in the property of interest along two phase-space trajectories;
both start from the same phase point at time t = 0 but in one case a very small perturbing
force is applied. In the example of electrical conductivity the response is the difference in
charge current after a time t , given by

ΔjZ
x (t) = exp(iLt)jZ

x − exp(iL0t)j
Z
x (7.7.11)

where L and L0 are the Liouville operators that determine the perturbed and unperturbed
trajectories, respectively. The statistical response is obtained by averaging (7.7.11) over
initial conditions:〈

ΔjZ
x (t)

〉 = ∫∫ f
[N ]
0

[
exp(iLt) − exp(iL0t)

]
jZ
x drN dpN

= 〈jZ
x (t)

〉
L − 〈jZ

x (t)
〉
L0

(7.7.12)

where the brackets denote averages over the unperturbed equilibrium distribution function
and the nature of the mechanical evolution is indicated by the subscripts L and L0. The
success of the method rests mostly on the fact that random fluctuations in the two terms
in (7.7.12) are highly correlated and therefore largely cancel, leaving only the systematic
part, i.e. the response to the perturbation. It is therefore possible to use a perturbing force
that is very small. In principle, because the hamiltonian in the absence of the perturbation
is symmetric under reflection (xi → −xi), the second term in (7.7.12) should vanish, but
in practice this is not the case because the average is taken over a limited number of trajec-
tories. The form of the statistical response depends on the time-dependence of the applied
field. If a constant electric field is applied along the x-axis from t = 0 onwards, acting
in opposite senses on charges of different sign, the mean response is proportional to the
integral of the current autocorrelation function and therefore reaches a plateau value from
which the conductivity can be calculated via (7.7.10); if a δ-function force is applied at
t = 0, the response is proportional to the current autocorrelation function itself. The length
of the trajectories must, of course, exceed the relevant relaxation time of the system, in this
case the lifetime of spontaneous fluctuations in the electric current.

As a final example we show how the density response function of a non-interacting
system can be calculated by a linear-response argument. The time evolution of the single-
particle phase-space distribution function f (1)(r,p; t) of an ideal gas in an external poten-
tial φ(r, t) is determined by the Boltzmann equation (2.1.24) with the collision term set
equal to zero, i.e. (

∂

∂t
+ p

m
· ∂

∂r
− ∂φ(r, t)

∂r
· ∂

∂p

)
f (1)(r,p; t) = 0 (7.7.13)
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If we write the distribution function as

f (1)(r,p; t) = ρfM(p) + Δf (1)(r,p; t) (7.7.14)

where fM(p) is the Maxwell distribution (2.1.26), the change Δf (1) induced by the external
potential is linear in φ when the potential is weak. Substitution of (7.7.14) in (7.7.13) yields
an equation of motion for Δf (1):(

∂

∂t
+ p

m
· ∂

∂r
− ∂φ(r, t)

∂r
· ∂

∂p

)
Δf (1)(r,p; t) − ρ

∂φ(r, t)
∂r

· ∂fM(p)
∂p

= 0 (7.7.15)

and a double, Fourier–Laplace transform leads (in an obvious notation) to(
ω + iε − p · k

m

)
Δf (1)(k,p;ω + iε) + ρφ(k,ω + iε)k · ∂fM

∂p
= 0 (7.7.16)

The mean change in microscopic density due to the external potential is

〈
Δρ(r, t)

〉= ∫ Δf (1)(r,p; t)dp (7.7.17)

or, in terms of Fourier components:

〈
ρk(ω)

〉= ∫ Δf (1)(k,p;ω)dp (7.7.18)

Dividing through (7.7.16) by (ω + iε − p · k/m) and integrating over p we find that

〈
ρk(ω + iε)

〉= −ρφ(k,ω + iε)

∫
k · (∂fM/∂p)

ω + iε − p · k/m
dp (7.7.19)

Thus the density response function is

χρρ(k,ω + iε) = −ρ

∫
k · (∂fM/∂p)

ω + iε − p · k/m
dp

= βρ

∫
(p · k/m)fM(p)
ω + iε − p · k/m

dp

= −βρ + (ω + iε)βρ

∫
fM(p)

ω + iε − p · k/m
dp (7.7.20)

In the limit ε → 0 the imaginary part of (7.7.20) is

χ ′′
ρρ(k,ω) = −πβρω

∫
fM(p)δ(ω − p · k/m)dp (7.7.21)
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This result follows immediately from the identity (7.1.18). On substituting for fM(p) and
integrating over p we find that

χ ′′
ρρ(k,ω) = −βρω

(
πβm

2k2

)1/2

exp
(−βmω2/2k2) (7.7.22)

which, combined with (7.6.28), is equivalent to the expression (7.5.17) derived earlier for
the dynamic structure factor of an ideal gas.
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CHAPTER 8

Hydrodynamics and Transport Coefficients

Chapter 7 was concerned largely with the formal definition and general properties of time-
correlation functions and with the link that exists between spontaneous, time-dependent
fluctuations and the response of a fluid to an external probe. The main objectives of the
present chapter are, first, to show how the decay of fluctuations is described within the
framework of linearised hydrodynamics and, secondly, to obtain explicit expressions for
the macroscopic transport coefficients in terms of microscopic quantities. The hydrody-
namic approach is valid only on scales of length and time much larger than those char-
acteristic of the molecular level, but we show how the gap between the microscopic and
macroscopic descriptions can be bridged by an essentially phenomenological extrapola-
tion of the hydrodynamic results to shorter wavelengths and higher frequencies. The same
problem is taken up in a more systematic way in Chapter 9.

8.1 THERMAL FLUCTUATIONS AT LONG WAVELENGTHS AND LOW
FREQUENCIES

We have seen in Section 4.1 that the microscopic structure of a liquid is revealed ex-
perimentally by the scattering of radiation of wavelength comparable with the interpar-
ticle spacing. Examination of a typical pair distribution function, such as the one pictured
in Figure 2.1, shows that positional correlations decay rapidly in space and are negligi-
bly small at separations beyond a few molecular diameters. From a static point of view,
therefore, a fluid behaves, for longer wavelengths, essentially as a continuum. When dis-
cussing the dynamics, however, it is necessary to consider simultaneously the scales both
of length and time. In keeping with traditional kinetic theory it is conventional to compare
wavelengths with the mean free path lc and times with the mean collision time τc. The
wavenumber–frequency plane may then be divided into three parts. The region in which
klc � 1, ωτc � 1 corresponds to the hydrodynamic regime, in which the behaviour of
the fluid is described by the phenomenological equations of macroscopic fluid mechan-
ics. The range of intermediate wavenumbers and frequencies (klc ≈ 1,ωτc ≈ 1) forms the
kinetic regime, where allowance must be made for the molecular structure of the fluid and
a treatment based on the microscopic equations of motion is required. Finally, the region
where klc � 1, ωτc � 1 represents the free-particle regime; here the distances and times
involved are so short that the particles move almost independently of each other.

219
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In this chapter we shall be concerned mostly with the hydrodynamic regime, where the
local properties of the fluid vary slowly on microscopic scales of length and time. The set of
hydrodynamic variables or hydrodynamic fields include the densities of mass (or particle
number), energy and momentum; these are closely related to the conserved microscopic
variables introduced in Section 7.4. Like their microscopic counterparts, the conserved
hydrodynamic variables satisfy continuity equations of the form (7.4.3), which express the
conservation of matter, energy and momentum. In addition, there exist certain constitutive
relations between the fluxes (or currents) and gradients of the local variables, expressed
in terms of phenomenological transport coefficients. Fick’s law of diffusion and Fourier’s
law of heat transport are two of the more familiar examples of a constitutive relation.

One of the main tasks of the present chapter is to obtain microscopic expressions for the
transport coefficients that are similar in structure to the formula (7.7.10) already derived
for the electrical conductivity of an ionic fluid. This is achieved by calculating the hydro-
dynamic limit of the appropriate time-correlation function. To understand what is involved
in such a calculation it is first necessary to clarify the relationship between hydrodynamic
and microscopic dynamical variables. As an example, consider the local density. The mi-
croscopic particle density ρ(r, t) is defined by (7.4.5); its integral over all volume is equal
to N , the total number of particles in the system. The hydrodynamic local density ρ̄(r, t) is
obtained by averaging the microscopic density over a subvolume v around the point r that
is macroscopically small but still sufficiently large to ensure that the relative fluctuation in
the number of particles inside v is negligible. Then

ρ̄(r, t) = 1

v

∫
v

ρ(r′ − r, t)dr′ (8.1.1)

Strictly speaking, the definition of ρ̄(r, t) also requires a smoothing or “coarse graining”
in time. This can be realised by averaging (8.1.1) over a time interval that is short on
a macroscopic scale but long in comparison with the mean collision time. In practice,
however, smoothing in time is already achieved by (8.1.1) if the subvolume is sufficiently
large. The Fourier components of the hydrodynamic density are defined as

ρ̄k(t) =
∫

ρ̄(r, t) exp(−ik · r)dr (8.1.2)

where the wavevector k must be such that k is less than about 2π/v1/3. The corresponding
density autocorrelation function is then defined as in (7.4.20), except that the Fourier com-
ponents of the microscopic density are replaced by ρ̄k. Since we are now working at the
macroscopic level, the average to be taken is not an ensemble average, but an average over
initial conditions, weighted by the probability density of thermodynamic fluctuation theory
(see Appendix A). By forming such an average, we are implicitly invoking the hypothesis
of local thermodynamic equilibrium. In other words, we are assuming that although the hy-
drodynamic densities vary over macroscopic lengths and times, the fluid contained in each
of the subvolumes is in a state of thermodynamic equilibrium, and that the local density,
pressure and temperature satisfy the usual relations of equilibrium thermodynamics. These
assumptions are particularly plausible at high densities, since in that case local equilibrium
is rapidly brought about by collisions between particles.
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Once the calculation we have described in words has been carried out, the relations of
interest are obtained by supposing that in the limit of long wavelengths (λ � lc) and long
times (t � τc) or, equivalently, of small wavenumbers and low frequencies, correlation
functions derived from the hydrodynamic equations are identical to the correlation func-
tions of the corresponding microscopic variables. This intuitively appealing hypothesis,
which is due to Onsager, can be justified on the basis of the fluctuation–dissipation the-
orem discussed in Section 7.6. In the example of the density autocorrelation function the
assumption can be expressed by the statement that〈

ρk(t)ρ−k
〉∼ 〈ρ̄k(t)ρ̄−k

〉
, klc � 1, t/τc � 1 (8.1.3)

with the qualification, explained above, that the meaning of the angular brackets is dif-
ferent for the two correlation functions. As the sections that follow are concerned almost
exclusively with the calculation of correlation functions of hydrodynamic variables, no
ambiguity is introduced by dropping the bar we have used to distinguish the latter from the
corresponding microscopic quantities.

One important implication of the assumption of local thermodynamic equilibrium is that
the Maxwell distribution of velocities applies at the local level. The local velocity is defined
via the relation

p(r, t) = ρm(r, t)u(r, t) (8.1.4)

where p(r, t) is the momentum density and ρm(r, t) = mρ(r, t) is the mass density (we as-
sume that the fluid contains only one component). The single-particle distribution function
is now a function of r and t and (2.1.26) is replaced by

fl.e.(u, r; t) = ρ(r, t)
(

m

2πkBT (r, t)

)3/2

exp

(−m|u − u(r, t)|2
2kBT (r, t)

)
(8.1.5)

where T (r, t) is the local temperature. The function fl.e.(u, r; t) is called the “local-
equilibrium” Maxwell distribution.

8.2 SPACE-DEPENDENT SELF MOTION

As an illustration of the general procedure described in the previous section, we first con-
sider the relatively simple problem of the diffusion of tagged particles. If the tagged par-
ticles are physically identical to the other particles in the fluid, and if their concentration
is sufficiently low that their mutual interactions can be ignored, the problem is equivalent
to that of single-particle motion as described by the self part of the van Hove correlation
function Gs(r, t) (see Section 7.4). The macroscopic tagged-particle density ρ(s)(r, t) and
current j(s)(r, t) satisfy a continuity equation of the form

∂ρ(s)(r, t)
∂t

+ ∇ · j(s)(r, t) = 0 (8.2.1)
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and the corresponding constitutive equation is provided by Fick’s law:

j(s)(r, t) = −D∇ρ(s)(r, t) (8.2.2)

where the interdiffusion constant D is in this case the same as the self-diffusion constant.
Combination of (8.2.1) and (8.2.2) yields the diffusion equation:

∂ρ(s)(r, t)
∂t

= D∇2ρ(s)(r, t) (8.2.3)

or, in reciprocal space:

∂ρ
(s)
k (t)

∂t
= −Dk2ρ

(s)
k (t) (8.2.4)

Equation (8.2.4) can be integrated immediately to give

ρ
(s)
k (t) = ρ

(s)
k exp

(−Dk2t
)

(8.2.5)

where ρ
(s)
k is a Fourier component of the tagged-particle density at t = 0. If we multiply

both sides of (8.2.5) by ρ
(s)
−k and take the thermal average, we find that the normalised

autocorrelation function is

1

n

〈
ρ
(s)
k (t)ρ

(s)
−k

〉= 1

n

〈
ρ
(s)
k ρ

(s)
−k

〉
exp
(−Dk2t

)= exp
(−Dk2t

)
(8.2.6)

where n is the total number of tagged particles. Here we have used the fact that because
the concentration of tagged particles is low, their coordinates are mutually uncorrelated. It
then follows from the general hypothesis discussed in Section 8.1 that in the hydrodynamic
limit the self part of the density autocorrelation function (7.4.21), i.e. the self intermediate
scattering function defined by (7.5.12), behaves as

Fs(k, t) ∼ exp
(−Dk2t

)
, klc � 1, t/τc � 1 (8.2.7)

The long-wavelength, low-frequency limit of the van Hove self correlation function is
the spatial Fourier transform of (8.2.7):

Gs(r, t) = 1

(4πDt)3/2
exp
(−r2/4Dt

)
(8.2.8)

In the same limit the self dynamic structure factor is

Ss(k,ω) = 1

π

Dk2

ω2 + (Dk2)2
(8.2.9)

Equation (8.2.9) represents a single, lorentzian curve centred at ω = 0 with a width at half-
height equal to 2Dk2. A spectrum of this type is typical of any diffusive process described
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by an equation similar to (8.2.3). Alternatively, the structure of the Laplace transform of
(8.2.7), i.e.

F̃s(k, z) = 1

−iz + Dk2
(8.2.10)

shows that a diffusive process is characterised by a purely imaginary pole at z = −iDk2.
It should be emphasised again that the simple result expressed by (8.2.9) is valid only for
klc � 1, ωτc � 1. Its breakdown at high frequencies is reflected in the fact that the even
frequency moments (beyond zeroth order) of Ss(k,ω) are all infinite. Note also that the
transport coefficient D is related to the behaviour of Ss(k,ω) in the limit k, ω → 0. From
(8.2.9) we see that

D = lim
ω→0

lim
k→0

ω2

k2
πSs(k · ω) (8.2.11)

where it is crucial that the limits are taken in the correct order, i.e. k → 0 before ω → 0. In
principle, (8.2.11) provides a means of determining D from the results of inelastic neutron-
scattering experiments.

Equations (7.5.16) and (8.2.8) show that the van Hove self correlation function is a
gaussian function of r both for t → 0 (free-particle behaviour) and t → ∞ (the hydrody-
namic limit); it is therefore tempting to suppose that the function is gaussian at all times.
To study this point in more detail we write Gs(r, t) as a generalised gaussian function of r
in the form

Gs(r, t) =
(
α(t)

π

)3/2

exp
[−α(t)r2] (8.2.12)

where α(t) is a function of t but not of r ; the hydrodynamic limit corresponds to taking
α(t) = 1/4Dt and the ideal-gas model to α(t) = m/2kBT t2. The mean-square displace-
ment of tagged particles after a time t is the second moment of Gs(r, t), i.e.

〈
r2(t)

〉≡ 〈∣∣r(t) − r(0)
∣∣2〉= ∫ r2Gs(r, t)dr (8.2.13)

and is therefore related to the unknown function α(t) by 〈r2(t)〉 = 3/2α(t). If we insert this
result in (8.2.12) and take the Fourier transform, we find that in the gaussian approximation
the self intermediate scattering function has the form

Fs(k, t) = exp

(
−k2

6

〈
r2(t)

〉)
(8.2.14)

Systematic corrections to the gaussian approximation can be obtained from a cumulant
expansion of Fs(k, t) in powers of k2. Comparison with molecular-dynamics results for
argon-like liquids shows that in the intermediate range of k between the free-particle and
hydrodynamic regimes the first correction (of order k4) to (8.2.14) is typically 10% or less
and positive; corrections of higher order are even smaller.1

The Einstein expression for the long-time limit of the mean-square displacement of a
tagged particle is a direct consequence of the hydrodynamic result for Gs(r, t); substitution
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of (8.2.8) into the definition (8.2.13) leads immediately to (7.2.3). Since the mean-square
displacement is also related to the velocity autocorrelation function through (7.2.6), there
is a close connection between the functions Gs(r, t) (or Fs(k, t)) and Z(t). In fact, in the
gaussian approximation represented by (8.2.14), Fs(k, t) is entirely determined by Z(t)

and vice versa; more generally, only the second of these statements is true. To see the
significance of this connection we return briefly to the description of the system in terms
of microscopic variables. If we define the Fourier components of the microscopic current
associated with a tagged particle i having velocity ui as

jki (t) = ui (t) exp
[−ik · ri (t)

]
(8.2.15)

and the self-current autocorrelation function as

Cs(k, t) = 〈k · jki (t)k · j−ki
〉

(8.2.16)

it is clear that

Z(t) = 〈uiz(t)uiz

〉= lim
k→0

1

k2
Cs(k, t) = − lim

k→0

1

k2

d2

dt2
Fs(k, t) (8.2.17)

where we have chosen k to lie along the z-axis and used the single-particle version of
(7.4.26). The relation between the corresponding power spectra is

Z(ω) = ω2

2π
lim
k→0

1

k2

∫ ∞

−∞
Fs(k, t) exp(iωt)dt = ω2 lim

k→0

Ss(k,ω)

k2
(8.2.18)

Equation (8.2.18) may be regarded as a generalisation of (8.2.11) to non-zero frequencies
in which Z(ω) appears as a frequency-dependent diffusion coefficient; it also provides a
possible route to an experimental determination of the velocity autocorrelation function.

The relationship between Z(t) and Fs(k, t) (or Cs(k, t)) is further reflected in the short-
time expansions of these functions. By analogy with (7.4.31) the expansion of Cs(k, t) in
powers of t can be written as

Cs(k, t) = ω2
0

(
1 − ω2

1s
t2

2! + · · ·
)

(8.2.19)

From the general result (7.1.23) and the continuity equation (8.2.1) it follows that

ω2
0ω

2
1s = −〈k · j̇kik · j̇−ki

〉= 〈ρ̈ki ρ̈−ki〉
= k4〈u4

iz

〉+ k2〈u̇2
iz

〉= 3ω4
0 + (k2/m2)〈F 2

iz

〉
(8.2.20)

and hence, from the definition (7.2.9), that

ω2
1s = 3ω2

0 + Ω2
0 (8.2.21)
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The next term (of order t4) in the Taylor expansion of Cs(k, t) involves integrals over the
triplet distribution function. Short-time expansions such as (8.2.19) are useful in extending
the validity of hydrodynamic results to microscopic scales of length and time.

8.3 THE NAVIER–STOKES EQUATION AND HYDRODYNAMIC
COLLECTIVE MODES

We turn now to the problem of describing the decay of long-wavelength fluctuations in the
collective dynamical variables. For a one-component fluid the macroscopic local densities
associated with the conserved variables are the number density ρ(r, t), energy density
e(r, t) and momentum density p(r, t). The conservation laws for the local densities have
the form

m
∂

∂t
ρ(r, t) + ∇ · p(r, t) = 0 (8.3.1)

∂

∂t
e(r, t) + ∇ · Je(r, t) = 0 (8.3.2)

∂

∂t
p(r, t) + ∇ · Π(r, t) = 0 (8.3.3)

where Je is the energy current and Π is the momentum current or stress tensor. These
equations must be supplemented by two constitutive relations in which Je and Π are ex-
pressed in terms of quantities representing dissipative processes in the fluid. We choose a
frame of reference in which the mean velocity of the fluid is zero, i.e. 〈u(r, t)〉 = 0, and
assume that the local deviations of the hydrodynamic variables from their average values
are small. The equations may then be linearised with respect to the deviations. We consider
in turn each of the three conservation laws.

Conservation of particle number. Equation (8.3.1) is easily dealt with. The assumption
that the local deviation in number density is small means that the momentum density can
be written as

p(r, t) = m
[
ρ + δρ(r, t)

]
u(r, t) ≈ mρu(r, t) ≡ mj(r, t) (8.3.4)

which also serves as the definition of the local particle current j(r, t). With this approxi-
mation, (8.3.1) becomes

∂

∂t
δρ(r, t) + ∇ · j(r, t) = 0 (8.3.5)

Conservation of energy. The macroscopic energy current Je is defined as

Je(r, t) = (e + P)u(r, t) − λ∇T (r, t) (8.3.6)

where e = U/V is the equilibrium energy density, λ is the thermal conductivity and T (r, t)
is the local temperature already introduced in (8.1.5); terms corresponding to viscous heat-
ing have been omitted, since these are quadratic in the local velocity. Equations (8.3.2),
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(8.3.5) and (8.3.6) can now be combined to give the energy equation, i.e.

∂

∂t
δq(r, t) − λ∇2δT (r, t) = 0 (8.3.7)

where δq(r, t) is the fluctuation in a quantity

q(r, t) = e(r, t) −
(
e + P

ρ

)
ρ(r, t) (8.3.8)

which can be interpreted as a density of heat energy. If the number of particles is
held constant, the entropy change of the system in an infinitesimal process is T dS =
dU + P dV . Hence

T dS = d(eV ) + P dV = V de − eV

ρ
dρ − PV

ρ
dρ = V dq (8.3.9)

A change in q is therefore equal to the heat lost or gained by the system per unit volume
when the change is carried out reversibly and δq(r, t) is related to the change in entropy
density s(r, t) by

δq(r, t) = T δs(r, t) (8.3.10)

If we invoke the hypothesis of local thermodynamic equilibrium, the deviation of a local
thermodynamic variable such as s(r, t) from its average value can be expressed in terms
of a set of statistically independent quantities. We choose as independent variables the
density and temperature (see Appendix A) and expand q(r, t) to first order in the deviations
δρ(r, t) and δT (r, t). Then, from (8.3.10), and remembering that N is fixed:

δq(r, t) = T

V

(
∂S

∂ρ

)
T

δρ(r, t) + T

V

(
∂S

∂T

)
ρ

δT (r, t)

= −TβV

ρ
δρ(r, t) + ρcV δT (r, t) (8.3.11)

where

βV =
(
∂P

∂T

)
ρ

= −ρ

(
∂(S/V )

∂ρ

)
T

(8.3.12)

is the thermal pressure coefficient, cV is the heat capacity per particle at constant volume
and use has been made of the Maxwell relation (∂S/∂V )T = (∂P/∂T )V . If we now substi-
tute (8.3.11) in (8.3.7), eliminate (∂/∂t)ρ(r, t) with the help of (8.3.5) and divide through
by ρcV , the energy equation becomes(

∂

∂t
− a∇2

)
δT (r, t) + TβV

ρ2cV
∇ · j(r, t) = 0 (8.3.13)
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where

a = λ

ρcV
(8.3.14)

Conservation of momentum. The stress tensor Π in (8.3.3) is given macroscopically by

Παβ(r, t) = δαβP (r, t) − η

(
∂uα(r, t)

∂rβ
+ ∂uβ(r, t)

∂rα

)
+ δαβ

( 2
3η − ζ

)∇ · u(r, t) (8.3.15)

where P(r, t) is the local pressure, η is the shear viscosity, ζ is the bulk viscosity and the
bracketed quantity in the second term on the right-hand side is the rate-of-strain tensor.2

Substitution of (8.3.15) in (8.3.3) and use of (8.3.5) leads to the Navier–Stokes equation in
its linearised form:

∂

∂t
j(r, t) + 1

m
∇P(r, t) − ν∇2j(r, t) −

1
3η + ζ

ρm
∇∇ · j(r, t) = 0 (8.3.16)

where

ν = η

ρm
(8.3.17)

is the kinematic shear viscosity. To first order in δρ(r, t) and δT (r, t) the fluctuation in
local pressure is

δP (r, t) =
(
∂P

∂ρ

)
T

δρ(r, t) +
(
∂P

∂T

)
ρ

δT (r, t)

= 1

ρχT

δρ(r, t) + βV δT (r, t) (8.3.18)

where χT is the isothermal compressibility (2.4.16). The Navier–Stokes equation can there-
fore be rewritten as

1

ρmχT

∇δρ(r, t) + βV

m
∇δT (r, t) +

(
∂

∂t
− ν∇2 −

1
3η + ζ

ρm
∇∇·

)
j(r, t) = 0 (8.3.19)

Equations (8.3.5), (8.3.13) and (8.3.19) form a closed set of linear equations for the vari-
ables δρ(r, t), δT (r, t) and j(r, t). These are readily solved by taking the double transforms
with respect to space (Fourier) and time (Laplace) to give

−izρ̃k(z) + ik · j̃k(z) = ρk (8.3.20)

(−iz + ak2)T̃k(z) + TβV

ρ2cV
ik · j̃k(z) = Tk (8.3.21)



228 HYDRODYNAMICS AND TRANSPORT COEFFICIENTS

1

ρmχT

ikρ̃k(z) + βV

m
ikT̃k(z) +

(
−iz + νk2 +

1
3η + ζ

ρm
kk·
)

j̃k(z) = jk (8.3.22)

where, for example:

ρ̃k(z) =
∫ ∞

0
dt exp(izt)

∫
δρ(r, t) exp(−ik · r)dr (8.3.23)

and ρk, Tk and jk are the spatial Fourier components at t = 0. We now separate the com-
ponents of the current jk into their longitudinal and transverse parts. Taking k along the
z-axis, we rewrite (8.3.22) as

1

ρmχT

ikρ̃k(z) + βV

m
ikT̃k(z) + (−iz + bk2)j̃ z

k(z) = jz
k (8.3.24a)

(−iz + νk2)j̃ α
k = jα

k , α = x, y (8.3.24b)

where

b =
4
3η + ζ

ρm
(8.3.25)

is the kinematic longitudinal viscosity.
Equations (8.3.20), (8.3.21) and (8.3.24) are conveniently summarised in matrix form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iz 0 ik 0 0

0 −iz + ak2 TβV ik

ρ2cV
0 0

ik

ρmχT

βV ik

m
−iz + bk2 0 0

0 0 0 −iz + νk2 0

0 0 0 0 −iz + νk2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̃k(z)

T̃k(z)

j̃ z
k(z)

j̃ x
k (z)

j̃
y

k (z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρk

Tk

jz
k

jx
k

j
y

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.3.26)

The matrix of coefficients in (8.3.26) is called the hydrodynamic matrix. Its block-diagonal
structure shows that the transverse-current fluctuations are completely decoupled from
fluctuations in the other, longitudinal variables. The determinant of the hydrodynamic ma-
trix therefore factorises into the product of purely longitudinal (l) and purely transverse (t)
parts, i.e.

D(k, z) = Dl(k, z)Dt (k, z) (8.3.27)

with

Dl(k, z) = −iz
(−iz + ak2)(−iz + bk2)+ (−iz + ak2) k2

ρmχT

− iz
Tβ2

V k2

ρ2mcV
(8.3.28)
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and

Dt(k, z) = (−iz + νk2)2 (8.3.29)

The dependence of frequency on wavenumber or dispersion relation for the collective
modes is determined by the poles of the inverse of the hydrodynamic matrix and hence
by the complex roots of the equation

D(k, z) = 0 (8.3.30)

The factorisation in (8.3.27) shows that (8.3.30) has a double root associated with the two
transverse modes, namely

z = −iνk2 (8.3.31)

while the complex frequencies corresponding to longitudinal modes are obtained as the
solution to the cubic equation

iz3 − z2(a + b)k2 − iz
(
abk2 + c2

s

)
k2 + (a/γ )c2

s k
4 = 0 (8.3.32)

where γ = cP /cV is the ratio of specific heats, cs is the adiabatic speed of sound, given by

c2
s = γ

ρmχT

(8.3.33)

and use has been made of the thermodynamic relation3

cP = cV + T χT β
2
V

ρ
(8.3.34)

Since the hydrodynamic calculation is valid only in the long-wavelength limit, it is suf-
ficient to calculate the complex frequencies to order k2. The algebra is simplified by in-
troducing the reduced variables s = z/csk; it is then straightforward to show4 that the
approximate solution to (8.3.32) is

z0 = −iDTk
2 (8.3.35a)

z± = ±csk − iΓ k2 (8.3.35b)

where

DT = a

γ
= λ

ρcP
(8.3.36)

is the thermal diffusivity and

Γ = a(γ − 1)/2γ + b/2 (8.3.37)
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is the sound attenuation coefficient. The imaginary roots in (8.3.31) and (8.3.35a) represent
diffusive processes of the type already discussed in the preceding section, and the pair of
complex roots in (8.3.35b) correspond to propagating sound waves, as we shall see in
Section 8.5.

8.4 TRANSVERSE-CURRENT CORRELATIONS

Equation (8.3.24b) shows that in the time domain the hydrodynamic behaviour of the
transverse-current fluctuations is governed by a first-order differential equation of the form

∂

∂t
jx

k (t) = −νk2jx
k (t) (8.4.1)

This result has precisely the same structure as the diffusion equation (8.2.4) and the kine-
matic shear viscosity has the same dimensions as the self-diffusion coefficient, but is typ-
ically two orders of magnitude larger than D for, say, an argon-like liquid near its triple
point. If we multiply through (8.4.1) by jx

−k and take the thermal average we find that the
transverse current autocorrelation function satisfies the equation

∂

∂t
Ct (k, t) + νk2Ct(k, t) = 0 (8.4.2)

Equation (8.4.2) is easily solved to give

Ct(k, t) = Ct(k,0) exp
(−νk2t

)= ω2
0 exp

(−νk2t
)

(8.4.3)

where ω0 is the frequency defined by (7.4.29). The exponential decay in (8.4.3) is typical
of a diffusive process (see Section 8.2).

The diffusive behaviour of the hydrodynamic “shear” mode is also apparent in the fact
that the Laplace transform of Ct(k, t) has a purely imaginary pole corresponding to the
root (8.3.31) of D(k, z):

C̃t (k, z) = ω2
0

−iz + νk2
(8.4.4)

Let z = ω + iε approach the real axis from above (ε → 0+). Then C̃t (k,ω) at small k is
given approximately by

C̃t (k,ω) = ω2
0

−iω

(
1 − νk2

iω

)−1

≈ ω2
0

−iω

(
1 + νk2

iω

)
(8.4.5)

If we substitute for ω2
0 and recall the definition (8.3.17) of ν, we find that the shear vis-

cosity, which must be real, is related to the long-wavelength, low-frequency behaviour of
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C̃t (k,ω) by

η = βρm2 lim
ω→0

lim
k→0

ω2

k4
Re C̃t (k,ω)

= πβρm2 lim
ω→0

lim
k→0

ω2

k4
Ct(k,ω) (8.4.6)

where Ct(k,ω) is the spectrum of transverse-current fluctuations, i.e. the Fourier trans-
form of Ct(k, t); this result is the analogue of the expression (8.2.11) for the self-diffusion
coefficient. From the properties of the Laplace transform and the definition of Ct(k, t) it
follows that

k2

N

∫ ∞

0

〈
j̇ x

k (t)j̇
x
−k

〉
exp(iωt)dt = −

∫ ∞

0

d2

dt2
Ct(k, t) exp(iωt)dt

= ω2C̃t (k,ω) − iωω2
0 (8.4.7)

We may therefore rewrite (8.4.6) as

η = βm2

V
lim
ω→0

lim
k→0

Re
∫ ∞

0

1

k2

〈
j̇ x

k (t)j̇
x
−k

〉
exp(iωt)dt (8.4.8)

The time derivative of the transverse current can be expressed in terms of the stress tensor
via the conservation law (8.3.3). Taking the Fourier transform of (8.3.3), and remembering
that k lies along the z-axis and that p(r, t) = mj(r, t), we find that

∂

∂t
jx

k (t) + ik

m
Πxz

k (t) = 0 (8.4.9)

Combination of (8.4.8) and (8.4.9) shows that the shear viscosity is proportional to the time
integral of the autocorrelation function of an off-diagonal element of the stress tensor in
the limit k → 0:

η = β

V

∫ ∞

0

〈
Πxz

0 (t)Πxz
0

〉
dt ≡

∫ ∞

0
η(t)dt (8.4.10)

In order to relate the shear viscosity to the intermolecular forces it is necessary to have
a microscopic expression for the stress tensor. It follows from the definition (7.4.7) of the
microscopic particle current that

m
∂

∂t
jα

k = m

N∑
i=1

(
u̇iα −

∑
β

ikβuiαuiβ

)
exp(−ik · ri ) (8.4.11)

where α, β denote any of x, y or z; the relation to the stress tensor is then established
by use of (8.4.9), with α = x and β = z. To introduce the pair potential v(r) we note that
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rji = −rij , and rewrite the first term on the right-hand side of (8.4.11) successively as

m

N∑
i=1

u̇iα exp(−ik · ri )

=
N∑
i=1

N∑
j �=i

rijα

|rij |v
′(rij ) exp(−ik · ri )

= 1
2

N∑
i=1

N∑
j �=i

rijα

|rij |v
′(rij )

[
exp(−ik · ri ) − exp(−ik · rj )

]

= 1
2 ikβ

N∑
i=1

N∑
j �=i

rijαrijβ

ikβrijβ |rij |v
′(rij )

[
exp(−ik · ri ) − exp(−ik · rj )

]
(8.4.12)

where v′(r) ≡ dv(r)/dr ; the second step is taken by writing each term in the double sum
as half the sum of two equal terms. Introducing a quantity Φk(r) defined as

Φk(r) = rv′(r)
(

exp(ik · r) − 1

ik · r

)
(8.4.13)

we finally obtain a microscopic expression for Παβ

k in the form

Π
αβ

k =
N∑
i=1

(
muiαuiβ + 1

2

N∑
j �=i

rijαrijβ

r2
ij

Φk(rij )

)
exp(−ik · ri ) (8.4.14)

The Green–Kubo relation for the shear viscosity analogous to (7.2.7) is then obtained by
inserting (8.4.14) (taken for k = 0) in (8.4.10). Note that it follows from the virial theorem
that 〈

Παα
0

〉= PV (8.4.15)

whereas 〈
Π

αβ

0

〉= 0, α �= β (8.4.16)

Equation (8.4.10) is not directly applicable to the hard-sphere fluid because the poten-
tial v(r) has a singularity at r = d (the hard-sphere diameter). However, the microscopic
expression for the shear viscosity, together with formulae to be derived later for other trans-
port coefficients, can be recast in a form that resembles the Einstein relation (7.2.3) for the
self-diffusion coefficient and is valid even for hard spheres. A Green–Kubo formula for a
transport coefficient K , including both (7.7.10) (taken for ω = 0) and (8.4.10), can always
be written as

K = β

V

∫ ∞

0

〈
Ȧ(t)Ȧ

〉
dt (8.4.17)
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FIG. 8.1. Normalised Green–Kubo integrand for the shear viscosity of a soft-sphere (r−12) fluid at two values
of the coupling parameter Γ defined by (5.3.13). The unit of time is τ = (mσ 2/48ε)1/2. The inset shows the
results of a two-exponential fit to η(t) at the higher value of Γ . Unpublished results of D.M. Heyes.

where A is some microscopic dynamical variable. The argument used to derive (7.2.7)
from (7.2.3) can be extended to show that (8.4.17) is equivalent to writing

K = β

V
lim
t→∞

1

2t

〈∣∣A(t) − A(0)
∣∣2〉 (8.4.18)

which may be regarded as a generalised form of the Einstein relation for D. In the case of
the shear viscosity we see from (8.4.8) that the variable A(t) is

A(t) = lim
k→0

im

k
jx

k (t)

= lim
k→0

im

k

N∑
i=1

uix(t)
[
1 − ikriz(t) + · · ·]= m

N∑
i=1

uix(t)riz(t) (8.4.19)

where a frame of reference has been chosen in which the total momentum of the parti-
cles (a conserved quantity) is zero. Hence the generalised Einstein relation for the shear
viscosity is

η = βm2

V
lim
t→∞

1

2t

〈∣∣∣∣∣
N∑
i=1

[
uix(t)riz(t) − uix(0)riz(0)

]∣∣∣∣∣
2〉

(8.4.20)

The quantity Πxz
0 in the Green–Kubo formula (8.4.10) is the sum of a kinetic and a

potential term. There are consequently three distinct contributions to the shear viscosity:
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a purely kinetic term, corresponding to the transport of transverse momentum via the dis-
placement of particles; a purely potential term, arising from the action of the interparticle
forces (“collisional” transport); and a cross term. At liquid densities the potential term is
much the largest of the three. In Enskog’s theory (see Section 7.2) the shear viscosity of
the hard-sphere fluid is

ηE

η0
= 2πρd3

3

(
1

y
+ 0.8 + 0.761y

)
(8.4.21)

where y = βP/ρ − 1 = (2πρd3/3)g(d) and η0 = (5/16d2)(mkBT/π)1/2 is the limiting,
low-density result derived from the Boltzmann equation.5 The three terms between brack-
ets in (8.4.21) represent, successively, the kinetic, cross and potential contributions; the
last of these is dominant close to the fluid–solid transition, where g(d) (the pair distrib-
ution function at contact) ≈ 6 and y ≈ 10. Note that the kinetic contribution scales with
g(d) in exactly the same way as the diffusion constant (see Section 2.5); this is not sur-
prising, since diffusion is a purely kinetic phenomenon. Figure 7.3 compares the results
of molecular-dynamics calculations of the shear viscosity of the hard-sphere fluid with
those obtained from the Enskog expression (8.4.21). Agreement is very good for densi-
ties up to ρd3 ≈ 0.7. Near solidification, however, where η increases rapidly with density,
Enskog’s theory underestimates the shear viscosity by a factor of approximately two. As
the same figure also shows, the behaviour of the self-diffusion constant at high densities
is the reverse of this. The net result is that the product Dη calculated from the molecular-
dynamics data is roughly constant for ρd3 greater than about 0.2; at the highest densities
its value is within a few percent of that predicted by Stokes’s law (7.3.19) with slip bound-
ary conditions. The increase in shear viscosity at high densities is linked numerically to the
appearance of a slowly decaying, quasi-exponential tail in the stress-tensor autocorrelation
function, colloquially called the “molasses” tail.6 The effect is not peculiar to hard spheres.
For example, a persisting, positive tail is clearly present in the results shown in Figure 8.1
for a soft-sphere (r−12) fluid at a high value of the coupling constant Γ , where η(t) is well
represented by the sum of two exponentials. At the lower value, corresponding to lower
densities or higher temperatures, the tail in η(t) – if any – is not perceptible.

8.5 LONGITUDINAL COLLECTIVE MODES

The longitudinal collective modes are those associated with fluctuations in density, tem-
perature and the projection of the particle current along the direction of the wavevector k. It
is clear from the structure of the hydrodynamic matrix in (8.3.26) that the variables ρ̃k(z),
T̃k(z) and j̃ z

k(z) are coupled to each other. The analysis is therefore more complicated than
in the case of the transverse-current fluctuations discussed in Section 8.4. There are three
longitudinal modes, corresponding to the roots z0, z+ and z− displayed in (8.3.35). The
significance of the different roots is most easily grasped by solving the system of coupled,
longitudinal equations represented by (8.3.26) to obtain the hydrodynamic limiting form
of the dynamic structure factor S(k,ω). The solution for ρ̃k(z) involves terms proportional
to the initial values ρk, Tk and jz

k . We may omit the term proportional to jz
k because k can
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always be chosen to make uk (the Fourier transform of the initial local velocity u(r,0))
perpendicular to k, thereby ensuring that jz

k = 0. We can also ignore the term proportional
to Tk; this contributes nothing to the final expression for S(k,ω), since fluctuations in tem-
perature and density are instantaneously uncorrelated, i.e. 〈Tkρ−k〉 = 0 (see Appendix A).
With these simplifications the solution for ρ̃k(z) is

ρ̃k(z)

ρk
= (−iz + ak2)(−iz + bk2) + (γ − 1)c2

s k
2/γ

Dl(k, z)
(8.5.1)

where all quantities are as defined in Section 8.3. Separation of the right-hand side of
(8.5.1) into partial fractions shows that on the real axis ρ̃k is given by

ρ̃k(ω)

ρk
=
(
γ − 1

γ

)
1

−iω + DTk2

+ 1

2γ

(
1

−iω + Γ k2 − icsk
+ 1

−iω + Γ k2 + icsk

)
(8.5.2)

which, via an inverse transform, yields an expression for ρk(t) given by

ρk(t) = ρk

[(
γ − 1

γ

)
exp
(−DTk

2t
)+ 1

γ
exp
(−Γ k2t

)
cos cskt

]
(8.5.3)

The form of (8.5.3) shows that the purely imaginary root in (8.3.35a) represents a
fluctuation that decays without propagating, the lifetime of the fluctuation being deter-
mined by the thermal diffusivity DT. By contrast, the complex roots correspond to a
fluctuation that propagates through the fluid at the speed of sound, eventually decaying
through the combined effects of viscosity and thermal conduction. The definition of Γ in
(8.3.37) implies that the thermal damping of the sound mode is small when γ ≈ 1, which
is the case for many liquid metals. On multiplying through (8.5.3) by ρ−k, dividing by N

and taking the thermal average, we obtain an expression for the density autocorrelation
function F(k, t); this is easily transformed to give

S(k,ω) = S(k)

2π

[(
γ − 1

γ

)
2DTk

2

ω2 + (DTk2)2

+ 1

γ

(
Γ k2

(ω + csk)2 + (Γ k2)2
+ Γ k2

(ω − csk)2 + (Γ k2)2

)]
(8.5.4)

The spectrum of density fluctuations therefore consists of three components: the Rayleigh
line, centred at ω = 0, and two Brillouin lines at ω = ±csk; a typical spectrum is plotted
in Figure 8.2. The two shifted components correspond to propagating sound waves and
are analogous to the longitudinal acoustic phonons of a solid, whereas the central line
corresponds to the diffusive, thermal mode. The total integrated intensity of the Rayleigh
line is

IR = γ − 1

γ
S(k) (8.5.5)
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FIG. 8.2. Dynamic structure factor in the hydrodynamic limit. DT is the thermal diffusivity, Γ is the
sound-attenuation coefficient and cs is the adiabatic speed of sound.

and that of each of the two Brillouin lines is

IB = 1

2γ
S(k) (8.5.6)

Thus

IR + 2IB = S(k) (8.5.7)

which is a particular case of the sum rule (7.4.23). The ratio

IR

2IB
= γ − 1 (8.5.8)

is called the Landau–Placzek ratio. As the values of CP /CV listed in Table 1.2 suggest,
the Landau–Placzek ratio is typically an order of magnitude larger for the rare-gas liquids
than for simple liquid metals. In passing from (8.5.1) to (8.5.2) we have, for the sake of
simplicity, omitted a non-lorentzian term that in practice makes only a negligibly small,
asymmetric correction to the Brillouin lines.

We have chosen to discuss the behaviour of the longitudinal modes in terms of local
fluctuations in density and temperature, but it would have been equally appropriate to
choose the pressure and entropy as variables, since these are also statistically indepen-
dent (see Appendix A). The calculation is instructive, since it shows that the first term in
(8.5.2) can be identified with the decay of entropy fluctuations. It follows that the Brillouin
doublet is associated with propagating pressure fluctuations at constant entropy (hence the
appearance of the adiabatic speed of sound) while the Rayleigh line corresponds to non-
propagating fluctuations in entropy at constant pressure.4

The wavelength of visible light is much greater than the nearest-neighbour spacing
in liquids. Light-scattering experiments are therefore ideally suited to measurements of
the Rayleigh–Brillouin spectrum at long wavelengths and provide an accurate means of
measurement of properties such as the thermal diffusivity, speed of sound and sound-
attenuation coefficient. However, the spectral lineshape is determined by a small number of
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FIG. 8.3. Dispersion of the Brillouin peak in liquid caesium near the normal melting temperature. The points
are the results of inelastic neutron-scattering experiments and the line shows the hydrodynamic dispersion corre-
sponding to the experimental speed of sound, cs = 965 m s−1. After Bodensteiner et al.10

macroscopic properties that are insensitive to details either of the interactions between par-
ticles or of the molecular structure of the fluid. From the standpoint of microscopic theory
the more interesting question is whether the propagating density fluctuations characteris-
tic of the hydrodynamic regime can also be supported in simple liquids at wavelengths
comparable with the spacing between particles. We have already seen in Section 7.5 that
well-defined, collective excitations of the hydrodynamic type, manifesting themselves in
a three-peak structure in S(k,ω), have been detected in neutron-scattering experiments on
liquid caesium, but similar results have been obtained by neutron or x-ray scattering for the
other alkali metals as well as for lead, mercury and aluminium.7 Brillouin-type sidepeaks
have also been seen in molecular-dynamics calculations on a variety of systems, including
both the hard-sphere8 and Lennard-Jones9 fluids. The spectra are therefore qualitatively
similar to those predicted by hydrodynamics, though there are some major differences in
detail. Figure 8.3, for example, shows the dispersion of the sound-wave peak observed in
neutron-scattering experiments on liquid caesium. At the smallest wavenumbers the dis-
persion is approximately linear, in agreement with hydrodynamics, but corresponds to a
speed of propagation significantly higher than the adiabatic speed of sound. The widths of
the Rayleigh and Brillouin lines are also poorly described by the hydrodynamic result. As
we shall see in Section 8.6 and again in Chapter 9, a description of the density fluctuations
in the range of k explored in neutron or x-ray scattering experiments requires a generali-
sation of the hydrodynamic approach, the effect of which is to replace the transport coeffi-
cients and thermodynamic derivatives in (8.5.4) by quantities dependent on frequency and
wavenumber.

For later purposes we also require an expression for the hydrodynamic limit of the
longitudinal-current autocorrelation function Cl(k, t). We proceed, as before, by solving
the system of equations (8.3.26) for the variable of interest, which in this case is the lon-
gitudinal particle current j̃ z

k(z). The terms in ρk and Tk may be omitted, since they are
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uncorrelated with j̃ z
−k. For z on the real axis the result is

j̃ z
k(ω) = jz

k
−iω(−iω + ak2)

Dl(k,ω)
(8.5.9)

Thus

C̃l(k,ω) = ω2
0

−iω + bk2 + c2
s k

2

(
1

−iω
+ γ − 1

−iω + ak2

) (8.5.10)

The same result can be obtained from (7.4.28) and the hydrodynamic result (8.5.4).
According to (8.5.10), the spectrum of longitudinal-current fluctuations at small k be-

haves as

Cl(k,ω) = 1

π
Re C̃l(k,ω) ≈ ω2

0

πω2

(
bk2 + (γ − 1)ac2

s k
4

ω2 + (ak2)2

)
(8.5.11)

Hence the longitudinal viscosity is given by a limiting operation analogous to (8.4.6) for
the shear viscosity, i.e.

4
3η + ζ = ρmb = πβρm2 lim

ω→0
lim
k→0

ω2

k4
Cl(k,ω) (8.5.12)

If we now follow steps similar to those that lead to the Green–Kubo formula (8.4.10), we
find that the longitudinal viscosity can be expressed in terms of the autocorrelation function
of a diagonal element of the microscopic stress tensor (8.4.14):

4
3η + ζ = lim

ω→0

β

V

∫ ∞

0

〈
Πzz

0 (t)Πzz
0

〉
exp(iωt)dt (8.5.13)

In taking the limit ω = 0 in (8.5.13) we find a discontinuity: the thermal average of Πzz
0

is non-zero (see (8.4.15)), so the integrand in (8.5.13) goes to a non-zero value as t → ∞.
The problem is overcome by subtracting the invariant part, the transport coefficient being
linked only to fluctuations in the local variables. Thus

4
3η + ζ = β

V

∫ ∞

0

〈[
Πzz

0 (t) − PV
][
Πzz

0 − PV
]〉

dt (8.5.14)

To obtain the Green–Kubo relation for the thermal conductivity we require an expression
for the rate of decay of a fluctuation in q(r, t), the macroscopic density of heat energy;
q(r, t) is related to the entropy density by (8.3.10). We first use (8.3.11) to eliminate the
local temperature from the energy equation (8.3.13). The result is(

∂

∂t
− a∇2

)
δq(r, t) − λTβV

ρ2cV
∇2δρ(r, t) = 0 (8.5.15)
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which, after transformation to Fourier–Laplace variables and use of (8.3.12) and the ther-
modynamic chain rule(

∂S

∂ρ

)
T

= −
(
∂S

∂T

)
ρ

(
∂T

∂ρ

)
S

= −NcV

T

(
∂T

∂ρ

)
S

(8.5.16)

gives (−iz + ak2)q̃k(z) + λk2
(
∂T

∂ρ

)
S

ρ̃k(z) = qk (8.5.17)

Next, an equation relating ρ̃k(z) to P̃k(z) is obtained by taking the divergence of the
Navier–Stokes equation (8.3.16) and transforming again to the variables k and z; the result
in this case is

izm
(−iz + bk2)ρ̃k(z) − k2P̃k(z) = −m

(−iz + bk2)ρk (8.5.18)

where k has once more been chosen perpendicular to the initial particle current. Equation
(8.5.18) can now be converted into a relation for q̃k(z) by making the substitutions

P̃k(z) =
(
∂P

∂ρ

)
S

ρ̃k(z) + V

T

(
∂P

∂S

)
ρ

q̃k(z) (8.5.19)

and

ρk =
(

∂ρ

∂P

)
S

Pk + V

T

(
∂ρ

∂S

)
ρ

qk (8.5.20)

The final step is to eliminate ρ̃k(z) between (8.5.17) and (8.5.18). The resulting expression
for q̃k(z) has some similarities with that obtained previously for ρ̃k(z) in (8.5.1). In par-
ticular, there are two complex-conjugate poles and a single imaginary pole. At small k the
local pressure and entropy are uncorrelated (see Appendix A). The problem can therefore
be simplified by discarding terms proportional to Pk. The lowest-order solution for q̃k(z)

then reduces to

q̃k(z) = qk

−iz + DTk2
(8.5.21)

where DT is the thermal diffusivity defined by (8.3.36). Equation (8.5.21) describes a
purely diffusive mode, thereby confirming the fact that the Rayleigh peak in S(k,ω) is
associated with the decay of non-propagating entropy fluctuations.

Our main concern is with the behaviour at small k. Since limk→0 qk = TΔS, it follows
from (A.8) of Appendix A that 〈qkq−k〉 can be replaced by〈

q2
0

〉= T 2NkBcP (8.5.22)

We now proceed as in the cases of the shear and longitudinal viscosities. On multiplying
(8.5.21) through by q−k and taking the thermal average, we obtain an expression for the



240 HYDRODYNAMICS AND TRANSPORT COEFFICIENTS

thermal conductivity of the form

λ = ρcPDT = β

V T
lim
ω→0

lim
k→0

ω2

k2
Re
〈
q̃k(ω)q−k

〉
(8.5.23)

If we introduce a fluctuating heat current Jq

k(t) defined, by virtue of (8.3.8), as the Fourier
transform of

Jq(r, t) = Je(r, t) − e + P

ρ
j(r, t) (8.5.24)

we see that the energy-conservation equation (8.3.2) may be re-expressed as

∂

∂t
qk(t) + ik · Jq

k(t) = 0 (8.5.25)

Hence, if the z-axis is taken parallel to k, we can rewrite (8.5.23) in typical Green–Kubo
form as

λ = β

V T

∫ ∞

0

〈
J

qz

0 (t)J
qz

0

〉
dt (8.5.26)

For (8.5.26) to be useful we require a microscopic expression for the heat current. Taking
the Fourier transform of (8.3.2), we find that the component of the microscopic energy
current in the direction of k is

−ikJ ez
k = ∂

∂t
ek = ∂

∂t

N∑
i=1

(
1
2m|ui |2 + 1

2

N∑
j �=i

v(rij )

)
exp(−ik · ri ) (8.5.27)

where we have adopted the convention that the total potential energy of interaction of
two particles is shared equally between them. Differentiation of the quantity inside large
brackets gives rise to a term that can be treated by the methods used in calculating the
microscopic stress tensor; the final result for k = 0 is

J ez
0 =

N∑
i=1

uiz

(
1
2m|ui |2 + 1

2

N∑
j �=i

v(rij )

)
− 1

2

N∑
i=1

N∑
j �=i

ui · rij
∂v(rij )

∂zij
(8.5.28)

The current J qz

0 is obtained from J ez
0 by subtracting the term (e+P)

∑
i uiz; with a suitable

choice of frame of reference this term will be zero. Thus we can equally well write the
Green–Kubo formula for λ as

λ = β

V T

∫ ∞

0

〈
J ez

0 (t)J ez
0

〉
dt (8.5.29)

The correlation-function formulae (or the equivalent Einstein expressions) for D, η, ζ
and λ have been used in simulations to determine the transport coefficients of a number
of model fluids. A particularly large body of results exists for the hard-sphere fluid, some
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of which have already been discussed in Section 8.4. As we saw there, the shear viscosity
is in good agreement with the predictions of Enskog theory at densities up to about 80%
of that corresponding to the fluid–solid transition, but close to the transition it is larger
than the Enskog value by a factor of nearly two. The enhancement of the shear viscosity
at high densities is linked numerically to the existence of a long-lived positive tail in the
corresponding autocorrelation function. The bulk viscosity is purely potential in origin
and vanishes as ρ → 0, but the Enskog result for the thermal conductivity has a structure
similar to that displayed for η in (8.4.21), i.e.

λE

λ0
= 2πρd3

3

(
1

y
+ 1.2 + 0.757y

)
(8.5.30)

where λ0 = (75kB/64d2)(kBT/πm)1/2 is the value in the low-density limit.5 The poten-
tial term (the last term within brackets) again provides the dominant contribution at high
densities, but good agreement with molecular-dynamics results is now maintained up to
the freezing transition. The success of Enskog theory in the case of λ can be plausibly
attributed to the absence of a significant tail in the energy-current autocorrelation function.

8.6 GENERALISED HYDRODYNAMICS

In the earlier sections of this chapter we have shown in some detail how the equations of hy-
drodynamics can be used to calculate the time-correlation functions of conserved variables
in the long-wavelength, low-frequency limit. Two questions then arise. First, what are the
scales of length and time over which it is possible to maintain the continuum description
that underlies the hydrodynamic approach? Secondly, how can the hydrodynamic equa-
tions be modified to make their predictions applicable on the atomic scale, where lengths
are typically of order a few ångström units and times are of order 10−13 s? We have seen
in Chapter 7 that the behaviour of the correlation functions at short times is related to
frequency sum rules involving static distribution functions descriptive of the molecular
structure of the fluid. It is precisely these sum rules that are violated by hydrodynamic ex-
pressions such as (8.4.5) and (8.5.4), since the resulting frequency moments beyond zeroth
order all diverge. In addition, an exponential decay, such as that in (8.4.3), cannot satisfy
certain of the general properties of time-correlation functions discussed in Section 7.1. The
failure of the hydrodynamic approach at short times (or high frequencies) is linked to the
presence of dissipative terms in the basic hydrodynamic equations; the latter, unlike the
microscopic equations of motion, are not invariant under time reversal. In this section we
describe some phenomenological generalisations of the hydrodynamic equations, based on
the introduction of frequency and wavenumber-dependent transport coefficients, that have
been developed in attempts to bridge the gap between the hydrodynamic (small k,ω) and
kinetic (large k,ω) regimes. The use of non-local transport coefficients is closely related
to the memory-function approach of Section 7.3, which we develop in more systematic
fashion in Chapter 9.

The ideas of generalised hydrodynamics are most easily illustrated by considering the
example of the transverse-current correlations. Equation (8.4.3) shows that in the hydro-
dynamic limit the correlation function Ct(k, t) decays exponentially with a relaxation time
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equal to 1/νk2, where ν is the kinematic shear viscosity. The corresponding power spec-
trum is of lorentzian form:

Ct(k,ω) = 1

π
Re C̃t (k,ω) = ω2

0

π

νk2

ω2 + (νk2)2
(8.6.1)

The ω−2 behaviour at large ω is not compatible with the exact, high-frequency sum rules
such as (7.4.38), nor does (8.6.1) yield the correct free-particle limit of Ct(k,ω) at large k;
that limit is gaussian in form, similar to the longitudinal free-particle limit displayed in
(7.5.17). Moreover, molecular-dynamics calculations, which are the only source of “ex-
perimental” information on transverse-current fluctuations in atomic liquids, show that in
an intermediate wavenumber range Ct(k, t) decays in an oscillatory manner and its power
spectrum has a peak at non-zero frequency, suggestive of the existence of a propagating
shear mode. (Examples of the power spectra are shown later in Chapter 9, Figure 9.3.)
What this means physically is that at high frequencies the fluid has insufficient time to
flow in response to an applied strain rate, and instead reacts elastically in the manner of a
solid. To account for the appearance of shear waves we need to extend the hydrodynamic
description to include the effects of elasticity. Suppose that a shearing force is applied to
a fluid. The strain at a point (x, y, z) is expressible in terms of the displacement r at that
point and the rate of strain is expressible in terms of the velocity ṙ. If the flow is purely vis-
cous, the shearing stress (an off-diagonal component of the stress tensor Π) is proportional
to the rate-of-strain tensor and can be written as

Πxz = −η
∂

∂t

(
∂rx

∂z
+ ∂rz

∂x

)
(8.6.2)

which is the hydrodynamic form (see (8.3.15)). By contrast, if the force is applied suddenly,
the instantaneous displacement is determined by the stress through a typical stress–strain
relation, i.e.

Πxz = −G∞
(
∂rx

∂z
+ ∂rz

∂x

)
(8.6.3)

where G∞ is an instantaneous (high-frequency) modulus of rigidity. We can interpolate
between these two extremes by making a viscoelastic approximation such that(

1

η
+ 1

G∞
∂

∂t

)
Πxz = − ∂

∂t

(
∂rx

∂z
+ ∂rz

∂x

)
(8.6.4)

By taking the Laplace transform of (8.6.4) it is easy to show that the viscoelastic approx-
imation is equivalent to replacing η in (8.6.2) by a complex, frequency-dependent shear
viscosity given by

η̃(ω) = G∞
−iω + 1/τM

(8.6.5)

The constant τM = η/G∞ is called the Maxwell relaxation time. If ωτM � 1, η̃(ω) ≈ η,
which corresponds to purely viscous flow, but if ωτM � 1, substitution of (8.6.5) in (8.6.4)
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FIG. 8.4. Dispersion of the shear-wave peak derived from molecular-dynamics simulations of liquid argon9,11

and potassium12 for state conditions close to the triple point. The dashed line through the data for potassium
is a guide to the eye; the full line for argon is drawn with a slope given by the viscoelastic expression (8.6.6)
for the speed of propagation (630 m s−1). Results are shown only for the range of k in which the dispersion is
approximately linear.

yields a dispersion relation of the form ω2 ≈ (G∞/ρm)k2, corresponding to elastic waves
propagating at a speed

ct = (G∞/ρm)1/2 (8.6.6)

Figure 8.4 shows the dispersion of the shear-wave peak observed in molecular-dynamics
simulations of liquid argon and potassium at state conditions close to their respective triple
points. Over the wavenumber range covered by the figure the dispersion is well described
by a relation of the form ω = ct (k − kt ), where kt is the wavenumber below which the
propagating mode vanishes. In the case of argon, for which a value of G∞ is available
from simulation, the slope of the dispersion curve is in surprisingly good agreement with
that calculated from the viscoelastic approximation (8.6.6).

If account is also to be taken of non-local effects in space, the generalised shear vis-
cosity must be a function of wavenumber as well as of frequency. The rigidity modulus
is also dependent on k and related in a simple way to the second frequency moment ω2

1t .
These ideas can be formalised via a phenomenological generalisation of the hydrodynamic
equation (8.4.2):

∂

∂t
Ct (k, t) + k2

∫ t

0
ν(k, t − s)Ct (k, s)ds = 0 (8.6.7)

The quantity ν(k, t) is a memory function; it describes a response that is non-local in both
space and time and its Laplace transform ν̃(k,ω) plays the role of a generalised kinematic
viscosity. If we take the Laplace transform of (8.6.7) and compare the result with (8.4.4),
we find that ν̃(k,ω) must satisfy the constraint that

lim
ω→0

lim
k→0

ν̃(k,ω) = ν (8.6.8)
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where ν is the macroscopic kinematic viscosity, given by the Green–Kubo formula
(8.4.10). If, on the other hand, we differentiate (8.6.7) with respect to t , set t = 0 and
use (7.4.37), we find that

ν(k, t = 0) = ω2
1t

k2
≡ G∞(k)

ρm
(8.6.9)

which acts as the definition of the k-dependent shear modulus G∞(k). Equations (8.6.8)
and (8.6.9) are useful in the construction of approximate forms of ν(k, t) that reduce to the
hydrodynamic and viscoelastic expressions in the limits, respectively, ω → 0 and ω → ∞.

If molecular-dynamics results for Ct(k, t) are available, values of the generalised shear
viscosity η̃(k,ω) = ρmν̃(k,ω) can be obtained by numerical inversion of (8.6.7) while
its value at infinite wavelength, η̃(k = 0,ω) ≡ η̃(ω), is given by the Laplace transform
of the stress autocorrelation function η(t) in (8.4.10). The generalised shear viscosity is
believed to be a non-analytic function of both k and ω. For example, molecular-dynamics
calculations for hard spheres13 have shown that η(t) decays as t−3/2 beyond about ten
mean collision times, implying that η̃(ω) behaves as ω1/2 at low frequencies. If the zero-
frequency shear viscosity η(k) ≡ η̃(k,ω = 0) could be expanded in a Taylor series in k

about its macroscopic limit, η ≡ η(k = 0), the series would start as

η(k) = η + η2k
2 + · · · (8.6.10)

since invariance under space inversion means that only even powers of k can appear. The
quantity η2 is called a Burnett coefficient. Burnett coefficients were introduced in an at-
tempt to extend the range of validity of hydrodynamic equations through the addition of
terms of higher order in the gradients of the hydrodynamic fields. However, the indications
from mode-coupling theories14 of the type to be discussed in the section that follows are
that the coefficients diverge, implying that the relation between the applied gradients and
the induced hydrodynamic fluxes is non-analytic in character. This conclusion is supported
by the results of computer simulations of a soft-sphere (r−12) fluid,15 which are compatible
with a small-k behaviour of the form

η(k) = η − η3/2k
3/2 + · · · (8.6.11)

where η3/2 is a positive quantity. These and related calculations16 suggest that η(k) and
other generalised transport coefficients decrease smoothly with increasing wavenumber,
becoming an order of magnitude smaller than their macroscopic (k = 0) values when the
wavelength is comparable with the interparticle spacing.

The longitudinal projections of the hydrodynamic equations can be treated in the same
way through the introduction of wavenumber and frequency-dependent quantities that are
generalisations of the coefficients a and b defined by (8.3.14) and (8.3.25). Similarly, the
thermodynamic derivatives, which are related to static correlation functions, become func-
tions of wavelength.17 In particular, the macroscopic compressibility is replaced by its
k-dependent generalisation, i.e. the structure factor S(k) (see (3.6.11)), while the thermal
pressure coefficient, which determines the coupling between momentum and energy, now
contains a part that is explicitly dependent on frequency and vanishes in the limit k → 0.
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A scheme in which the various thermodynamic and transport coefficients are assumed to
be functions only of wavenumber and not of frequency has been found to reproduce satis-
factorily a large part of the molecular-dynamics results obtained for the dynamic structure
factor of the hard-sphere fluid.8 This approach breaks down, however, both for wavelengths
shorter than the mean free path (corresponding to free-particle behaviour), and at densities
close to crystallisation, where viscoelastic effects becomes important.

8.7 LONG-TIME TAILS IN TIME-CORRELATION FUNCTIONS

Fluctuations in the conserved hydrodynamic variables decay infinitely slowly in the long-
wavelength limit. The rates of relaxation are determined by the hydrodynamic eigenvalues
(8.3.31) and (8.3.35) (multiplied by −i), all of which vanish with k. No such property
holds for the non-conserved currents that enter the Green–Kubo integrands for the trans-
port coefficients; if it did, the transport coefficients would not be well defined. Until the
late 1960s it was generally believed that away from critical points the autocorrelation func-
tions of non-conserved variables decay exponentially at long times. This, for example, is
the behaviour predicted by the Boltzmann and Enskog equations. It therefore came as a
surprise when analysis of the molecular-dynamics results of Alder and Wainwright18 on
self diffusion in hard-disk (D = 2) and hard-sphere (D = 3) fluids showed that the velocity
autocorrelation function apparently decays asymptotically as t−D/2, where D denotes the
dimensionality of the system. Later simulations of hard-core fluids and other systems have
also detected the presence of a long-time tail in the stress-tensor autocorrelation function.

The presence of a slowly decaying tail in Z(t) suggests that highly collective effects
make a significant contribution to the process of self diffusion. The apparent involvement
of large numbers of particles makes it natural to analyse the long-time behaviour in hydro-
dynamic terms, and Alder and Wainwright were led in this way to a simple but convincing
explanation of their results. Underlying their argument is the idea that the initial motion of
a tagged particle creates around that particle a vortex or backflow, which in turn causes a
retarded current to develop in the direction of the initial velocity. At low densities, where
the initial direction of motion is likely to persist, the effect of the current is to reduce the
drag on the particle, thereby “pushing” it onwards in the initial direction. This results in
a long-lasting, positive correlation between the initial velocity and its value at later times.
At high densities, on the other hand, the initial direction of motion is on average soon re-
versed. In this case the retarded current gives rise to an extra drag at later times and hence
to an extended negative region in Z(t); at very large times an enhancement of the forward
motion can again be expected but the effect is likely to be undetectable. That this physical
picture is basically correct was confirmed in striking fashion by observation of the velocity
field that forms around a moving particle in a fluid of hard disks. A vortex pattern quickly
develops; this, after a few mean collision times, matches closely the pattern obtained by
numerical solution of the Navier–Stokes equation. The persistence of the tail in Z(t) is
therefore associated with a coupling between the motion of the tagged particle and the hy-
drodynamic modes of the fluid. As we shall now show, this argument can be formalised in
such a way as to predict the observed t−D/2 decay at long times.19
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Suppose that at time t = 0 a particle i has a component of velocity uix(0) in the
x-direction. After a short time, τ say, collisions will have caused the initial momentum
of particle i to be shared among the ρVτ particles in a D-dimensional volume Vτ centred
on i. Local equilibrium now exists within the volume Vτ , and particle i will be moving with
a velocity uix(τ ) ≈ uix(0)/ρVτ . (We have assumed, for simplicity, that the neighbours of
i are initially at rest.) Further decay in the velocity uix(t) for t > τ will occur as the result
of enlargement of the volume Vτ , i.e. from the spread of the velocity field around particle
i. At large times the dominant contribution to the growth of Vτ will come from diffusion of
the transverse component of the velocity field and the radius of Vτ will therefore increase
as (νt)1/2. Thus Vτ ∼ (νt)3/2 in the three-dimensional case, from which it follows that
Z(t) ∼ (νt)−3/2. This argument assumes that particle i remains at the centre of Vτ ; if the
diffusive motion of i is taken into account it can be shown that

Z(t) ∼ [(D + ν)t
]−3/2 (8.7.1)

The analogous result in two dimensions implies that a self-diffusion coefficient does not
exist, because the integral of Z(t) diverges logarithmically.

The form of (8.7.1) has been confirmed by a number of more sophisticated calculations.
In the case of hard-core fluids these include a microscopic treatment based on kinetic the-
ory in which account is taken of the effect of correlated collision sequences (the ring col-
lisions of Section 7.2) along with that of uncorrelated, binary collisions.20 Though limited
to low densities, the calculation shows that the velocity, stress-tensor and energy-current
autocorrelation functions all decay as t−D/2; it also yields explicit expressions for the coef-
ficients of the long-time tails. A more phenomenological approach has also been developed
in which the existence of the long-time tails is explained by simple arguments concerning
the decay of fluctuations into pairs of hydrodynamic modes. Since the physical content of
this work is closely related to the mode-coupling formalism to be discussed in Chapter 9,
we give here a brief derivation of the result obtained in three dimensions for the velocity
autocorrelation function.21

The definition (7.1.3) of a time-correlation function involves an equilibrium ensemble
average over the initial phase-space coordinates of the system. This average can be replaced
by a constrained ensemble average, characterised by an initial position r0 and initial veloc-
ity u0 of a tagged particle i, which is then integrated over all r0 and u0. The definition of
Z(t) is thereby reformulated as

Z(t) = 〈uix(t)uix

〉
=
∫

dr0

∫
du0 u0x

〈
uix(t)δ(ui − u0)δ(ri − r0)

〉
(8.7.2)

The constrained average in (8.7.2) can be written as a non-equilibrium ensemble average
(subscript n.e.), defined through the relation〈

uix(t)δ(ui − u0)δ(ri − r0)
〉= 〈uix(t)

〉
n.e.

〈
δ(ui − u0)δ(ri − r0)

〉
(8.7.3)

In the canonical ensemble the equilibrium average on the right-hand side of (8.7.3) is equal
to 1/N times the single-particle distribution function defined by (2.1.15) (taken for n = 1)
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but with p replaced by u as independent variable. Equations (8.7.2) and (8.7.3) can there-
fore be combined to give

Z(t) = 1

V

∫
dr0

∫
du0 φM(u0)u0x

〈
uix(t)

〉
n.e. (8.7.4)

where φM(u0) is the Maxwell distribution (2.1.28). By defining a tagged-particle distribu-
tion function in the non-equilibrium ensemble as

f (s)(r,u; t) = 〈δ[ri (t) − r
]
δ
[
ui (t) − u

]〉
n.e. (8.7.5)

we can rewrite the non-equilibrium average in (8.7.4) as

〈
uix(t)

〉
n.e. =

∫
dr
∫

du uxf
(s)(r,u; t) (8.7.6)

The calculation thus far is exact. To make progress we assume that f (s)(r,u; t) relaxes
towards the corresponding local-equilibrium form on a timescale that is fast in comparison
with the rate of decay of Z(t). The long-time behaviour of the non-equilibrium average
(8.7.6) is then obtained by replacing f (s)(r,u; t) by the tagged-particle analogue of (8.1.5)
to give 〈

uix(t)
〉
n.e. =

∫
ρ(s)(r, t)ux(r, t)dr (8.7.7)

If this result is in turn substituted in (8.7.4), and the hydrodynamic variables u(r, t) and
ρ(s)(r, t) are replaced by the sums of their Fourier components, we find that

Z(t) = 1

3V

∫
dr0

∫
du0 φM(u0)

× 1

V 2

∑
k

∑
k′

ρ
(s)

k′ (t)uk(t) · u0

∫
exp
[−i(k + k′) · r

]
dr (8.7.8)

The integral over r is equal to V δk,−k′ and (8.7.8) therefore reduces to

Z(t) = 1

3V

∫
dr0

∫
du0 φM(u0)

1

V

∑
k

ρ
(s)
−k(t)uk(t) · u0 (8.7.9)

Equation (8.7.9) is said to be of “mode-coupling” form, because Z(t) is expressed as a sum
of products of pairs of hydrodynamic variables. We assume, in addition, that at times much
longer than the mean collision time the decay of Z(t) is dominated by the long-wavelength
components of the hydrodynamic fields and that the time evolution of the latter is described
by the equations of linearised hydrodynamics. The quantity ρ

(s)
−k(t) is then given by (8.2.5),

while the hydrodynamic velocity field is conveniently divided into its longitudinal and
transverse parts:

uk(t) = ukl(t) + ukt (t) (8.7.10)
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The term ukt (t) satisfies the transverse-current diffusion equation (8.4.1) (with jkt = ρukt ),
the solution to which is

ukt (t) = ukt exp
(−νk2t

)
(8.7.11)

The longitudinal velocity field may be treated in a similar way, but its contribution to
Z(t) turns out to decay exponentially, the physical reason for this being the fact that the
momentum of the tagged particle is carried away by the propagating sound waves. Hence
the long-time behaviour of Z(t) is entirely determined by the transverse velocity field.
Finally, the choice of initial conditions implies that

ρ
(s)
−k = exp(ik · r0) (8.7.12a)

jk = ρuk = u0 exp(−ik · r0) (8.7.12b)

An expression for Z(t) is now obtained by substituting (8.7.11), (8.7.12a) and the trans-
verse projection of (8.7.12b) into (8.7.9) (remembering that there are two transverse com-
ponents), and integrating over r0 and u0. The result is

Z(t) = 2kBT

3ρmV

∑
k

exp
[−(D + ν)k2t

]
(8.7.13)

or, in the thermodynamic limit:

Z(t) = 2kBT

3ρm
(2π)−3

∫
exp
[−(D + ν)k2t

]
dk (8.7.14)

Integration over all wavevectors is a questionable procedure, since the hydrodynamic equa-
tions on which (8.7.14) is based are not valid when k is large. However, we are interested
only in the asymptotic form of Z(t), and the main contribution to the integral comes from
wavenumbers such that k ≈ [(D + ν)t]−1/2; this is in the hydrodynamic range whenever t
is much larger than typical microscopic times (∼ 10−13) s. Alternatively, a natural upper
limit on k can be introduced by a more careful choice of the initial spatial distribution of
tagged particles. Use of such a cut-off has no effect on the predicted long-time behaviour
that results from carrying out the integration in (8.7.14), namely

Z(t) ∼ 2kBT

3ρm

[
4π(D + ν)t

]−3/2
, t → ∞ (8.7.15)

This has the same general form as (8.7.1) but it also provides an explicit expression for the
coefficient of the long-time tail.

The result in (8.7.15) has been confirmed by molecular-dynamics calculations for sys-
tems of hard discs and of particles interacting through a Lennard-Jones potential truncated
at r = 21/6σ , the separation at which v(r) has its minimum value; the simulations are dif-
ficult to carry out with the necessary precision because the long-time tail is very weak.22

Results obtained for the truncated Lennard-Jones potential are shown in Figure 8.5, where
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Z(t) is plotted versus t on a log–log scale. If (5.3.5) is used to define an effective hard-
sphere diameter for the particles, the onset of the asymptotic behaviour is found to come
after approximately 18 mean collision times. The predicted long-time behaviour of Z(t)

implies that at low frequencies its Fourier transform behaves as

Z(ω) = D

π

[
1 − (ω0/ω)1/2 + · · ·] (8.7.16)

where ω0 is related to the transport coefficients D and ν. Experimentally, evidence for the
presence of a long-time tail can be derived from neutron-scattering measurements of the
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self dynamic structure factor, provided results are obtained at sufficiently small values of
k to allow the extrapolation required in (8.2.18) to be successfully carried through. Figure
8.6 shows some results obtained for liquid sodium at a temperature well above the melting
point (the effect at low temperatures is too weak to be detectable). Not only is the square-
root dependence on ω well reproduced, but the value obtained for ω0 from a least-squares
fit to the data lies within 2% of that predicted by mode-coupling theory.

8.8 DYNAMICS OF SUPERCOOLED LIQUIDS

When a liquid is slowly cooled (or compressed) it normally undergoes a transition to an
ordered, crystalline phase at a temperature located on the equilibrium liquid–solid coexis-
tence curve. However, if the rate of cooling (or compression) is sufficiently rapid, crystalli-
sation can be by-passed; in that case the liquid is gradually transformed into an amorphous
solid or glass. The glass-transition temperature TG is less than the freezing temperature, but
its value depends on factors such as the cooling rate and the diagnostic used to locate the
transition; it is not an intrinsic property of the system. Relaxation times in the supercooled
liquid measured, for example, in dielectric or shear-stress relaxation experiments, increase
dramatically with decreasing temperature and close to the glass transition become com-
parable with macroscopic time-scales. A rough but useful estimate of TG is provided by
the viscoelastic theory of Section 8.6, which shows that a crossover from viscous to elastic
behaviour can be expected when the structural relaxation time of the system becomes of
the order of the Maxwell relaxation time, defined as the ratio of shear viscosity to shear
modulus, τM = η/G∞. The shear modulus is of order 1010 erg cm−1 for most materials
and is only weakly dependent on temperature, but the shear viscosity rises by many orders
of magnitude as the temperature approaches TG. An implicit definition of TG is obtained
by identifying τM with some experimental time-scale, τexp. A choice of 103 s for τexp leads
to the conventional definition of TG as the temperature at which the viscosity reaches a
value of 1013 poise (1 P ≡ 0.1 N s m−2). Below this temperature, the system exists in a
metastable state having a disordered, liquid-like structure but with mechanical properties
similar to those of a crystalline solid. The freezing-out of the translational and rotational
degrees of freedom at the glass transition leads in many cases to anomalies in the tem-
perature dependence of thermodynamic properties such as the specific heat. The change
in behaviour at TG is therefore described as a “thermodynamic” or “calorimetric” phase
transition, though its nature is very different from that of an equilibrium phase transition.

Glass-forming liquids appear to fall into one of two broad classes: “strong” and
“fragile”.24 The difference between the two is particularly evident in the way in which
the viscosity changes with temperature, as exemplified by the Arrhenius plots shown in
Figure 8.7. Strong glass formers are covalently bonded, network-forming substances such
as silica; the network already exists in the high-temperature melt and gradually strength-
ens as the liquid is supercooled. The calorimetric anomalies near TG are weak, or may be
absent altogether, and the Arrhenius plots are essentially linear, implying that transport in
the liquid is largely governed by thermally activated processes or “barrier hopping”. The
anomalies are stronger for the ionic and organic liquids that make up the class of fragile
glass formers. The Arrhenius plots of such materials show a marked change in curvature
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at a temperature TC lying some 10 to 20% above TG; this is suggestive of a qualitative
change in character of the microscopic dynamics over a narrow temperature interval. When
T ≈ TC, the Maxwell relaxation time is in the nanosecond range. This is a time-scale well
suited to studies of the dynamics by neutron and light-scattering experiments and other
experimental probes as well as by molecular-dynamics simulation, and there is now ample
evidence to show that as the temperature is lowered towards TC there is a dramatic slow-
ing down in the decay of time-dependent correlation functions. The crossover in behaviour
near TC seen, for example, in Figure 8.7, corresponds to what is called a kinetic glass tran-
sition. Experiment and simulation also show that structural and thermodynamic properties
vary smoothly with temperature in the region of the transition. It is therefore reasonable
to suppose that the supercooled liquid remains in a state of thermodynamic equilibrium
and that equilibrium statistical mechanics applies once crystallisation has been by-passed.
This is the key assumption underlying the mode-coupling theory of the transition, which
we describe later in Section 9.6.

The nature of the changes that take place at the kinetic glass transition are well illustrated
by the results shown in Figures 8.8 and 8.9. Those in Figure 8.8 are taken from a simulation
of a binary,26 soft-sphere (r−12) fluid and show the behaviour for one of the two species
of the probability density

W(r, t) = 4πr2Gs(r, t) (8.8.1)

where Gs(r, t) is the self part (7.4.19a) of the van Hove function; the quantity W(r, t)dr is
the probability of finding a particle at time t at a distance r from its position at t = 0. The
thermodynamic state of the system is specified by a single coupling constant, Γ , defined in
a manner similar to (5.3.13) but generalised to allow for the two-component nature of the
system. A decrease in temperature is therefore strictly equivalent to an increase in density.
The inset to the figure shows the results obtained for three different times at a value of
Γ corresponding to a temperature above TC. The curve has a single peak, which moves
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to larger r according to a t1/2 law, in agreement with the result derived from Fick’s law
(see (8.2.8)). However, the qualitative behaviour changes dramatically above a threshold
value of Γ , which can be identified with the crossover value ΓC. The peak in W(r, t) now
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appears to be frozen at a fixed value of r and its amplitude decreases only slowly with time
as a secondary maximum builds up at a distance from the main peak roughly equal to the
mean spacing between particles. The physical interpretation of this bimodal distribution
is clear: most atoms vibrate around fixed, disordered positions, but some diffuse slowly
by correlated hopping to neighbouring sites. The two values of Γ for which the results are
shown correspond to temperatures differing by less than 6%. Thus the diffusion mechanism
changes very rapidly from one that is hydrodynamic-like to one consisting of a succession
of activated jumps.

The same, pronounced slowing down of the single-particle motion as a threshold temper-
ature is reached is also visible in the behaviour of the self intermediate scattering function
Fs(k, t). Some results obtained by molecular-dynamics calculations for a binary Lennard-
Jones system are shown in Figure 8.9, where time is plotted on a logarithmic scale. At
high temperatures, Fs(k, t) relaxes to zero in nearly exponential fashion. However, as the
temperature is lowered into the supercooled region, the decay becomes very much slower
and its exponential character is lost. As T approaches TC, the relaxation proceeds in two,
increasingly well-separated steps. After a fast initial decay on the time-scale of an inverse
Einstein frequency, a first step (β-relaxation) leads to a plateau, where the function remains
almost constant over two or more decades in time. The plateau is followed by a second
step (α-relaxation) in which the correlation function finally decays to zero. The width of
the plateau increases rapidly as the temperature is reduced. Eventually, when the temper-
ature is sufficiently low, α-relaxation can be expected to set in only at times longer than
those accessible in a simulation. The correlation function will then appear to level off at a
non-zero value, signalling the onset of non-ergodic behaviour, at least on the (nanosecond)
time-scale of the simulation. The plateau value varies with k, but the general pattern seen
in Figure 8.9 remains much the same over a wide range of molecular-scale wavenumber.

The decay of collective density fluctuations, as described by the full intermediate scat-
tering function F(k, t) defined by (7.4.20) and measurable either experimentally or by sim-
ulation, shows a qualitatively similar behaviour to that of the single-particle function. The
plateau value of F(k, t) is analogous to the Debye–Waller factor of a solid; it provides a
measure of the “structural arrest” in the fluid, which persists for times that increase rapidly
with decreasing temperature. Over a temperature range just above TC, the decay of either
function in the α-relaxation regime, normalised by its value at t = 0, can be accurately
represented by a function of the form

f (t) = fkΦ(t∗) (8.8.2)

where fk is the plateau value, t∗ ≡ t/τk(T ) and Φ(t∗) is a universal scaling function. The
wavenumber and temperature dependence of the decay enter only through the relaxation
time τk(T ) and the correlation functions are said to satisfy a “time–temperature superpo-
sition” principle. The scaling function is distinctly non-exponential, but is generally well-
approximated by a Kohlrausch stretched-exponential function, i.e.

Φ(t∗) ≈ exp
[−(t∗)β

]
(8.8.3)

where the exponent β (< 1 for “stretching”) is material and wavenumber dependent but
independent of temperature.28 Stretched-exponential behaviour is typical of relaxation



254 HYDRODYNAMICS AND TRANSPORT COEFFICIENTS

processes in which the observed rate is determined by a wide distribution of relaxation
times.
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CHAPTER 9

Theories of Time-correlation Functions

We turn now to the problem of devising a general theoretical scheme for the calculation of
time-correlation functions at wavelengths and frequencies on the molecular scale. Memory
functions play a key role in the theoretical development and we begin by showing how
the memory-function approach can be formalised through use of the projection-operator
methods of Zwanzig1 and Mori.2 The calculation of the memory function in a specific
problem is a separate task that can be tackled along two different lines. The first represents a
systematic extension of the ideas of generalised hydrodynamics introduced in Section 8.6;
the second is more microscopic in nature and based on the mode-coupling approach already
used in Section 8.7.

9.1 THE PROJECTION-OPERATOR FORMALISM

Let A be some dynamical variable, dependent in general on the coordinates and momenta
of all particles in the system. The definition of A is assumed to be made in such a way that
its mean value is zero, but this involves no loss of generality. We have seen in Section 7.1
that if the phase function A is represented by a vector in Liouville space, the inner product
(B,A(t)) of A(t) with the vector representing a second variable B may be identified with
the equilibrium time-correlation function CAB(t). We can also use a vector in Liouville
space to represent a set of dynamical variables of the system, but for the present we restrict
ourselves to the single-variable case.

The time variation of the vector A(t) is given by the exact equation of motion (2.1.14).
Our aim is to find an alternative to (2.1.14) that is also exact but more easily usable. We
proceed by considering the time evolution both of the projection of A(t) onto A (the pro-
jected part), and of the component of A(t) normal to A (the orthogonal part), which we
denote by the symbol A′(t). The projection of a second variable B(t) onto A can be written
in terms of a linear projection operator P as

PB(t) = (A,A)−1(A,B(t)
)
A (9.1.1)

Thus (
PB(t),A

)= (A,B(t)
)≡ 〈B(t)A∗〉 (9.1.2)

255
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The complementary operator Q= 1−P projects onto the subspace orthogonal to A. Hence
the orthogonal part of A(t) is

A′(t) = QA(t) (9.1.3)

Both P and Q satisfy the fundamental properties of projection operators:

P2 = P, Q2 = Q, PQ= QP = 0 (9.1.4)

The projection of A(t) along A is proportional to Y(t), the normalised time autocorrelation
function of the variable A, i.e.

PA(t) = Y(t)A (9.1.5)

with

Y(t) = (A,A(t)
)
(A,A)−1 ≡ 〈A(t)A∗〉〈AA∗〉−1 = CAA(t)/CAA(0) (9.1.6)

The definitions (9.1.1) to (9.1.3) ensure that(
A,A′(t)

)= 0 (9.1.7)

The first step is to derive an equation for the time evolution of the projected part, Y(t).
The Laplace transform of the equation of motion (2.1.14) is

(z +L)Ã(z) ≡ (z +L)(P +Q)Ã(z) = iA (9.1.8)

Thus

Ỹ (z) =
(
A,

∫ ∞

0
exp(izt) exp(iLt)Adt

)
(A,A)−1

= (A, i(z +L)−1A
)
(A,A)−1 = (A, Ã(z)

)
(A,A)−1 (9.1.9)

where the “resolvent” operator i(z + L)−1 is the Laplace transform of the propagator
exp(iLt). We now project (9.1.8) parallel and perpendicular to A by application, respec-
tively, of the operators P and Q. Use of the properties (9.1.4) shows that

zPÃ(z) +PLPÃ(z) +PLQÃ(z) = iA (9.1.10)

zQÃ(z) +QLPÃ(z) +QLQQÃ(z) = 0 (9.1.11)

and elimination of QÃ(z) between (9.1.10) and (9.1.11) gives

zPÃ(z) +PLPÃ(z) −PLQ(z +QLQ)−1QLPÃ(z) = iA (9.1.12)
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If we now take the inner product with A and multiply through by −i(A,A)−1, (9.1.12)
becomes

−izỸ (z) − i
(
A,LPÃ(z)

)
(A,A)−1

+ i
(
A,LQ(z +QLQ)−1QLPÃ(z)

)
(A,A)−1 = 1 (9.1.13)

Since iLPÃ(z) = (A,A)−1(A, Ã(z))Ȧ, this expression can be rewritten as

(−iz − iΩ)Ỹ (z) + (K, R̃(z)
)
(A,A)−1Ỹ (z) = 1 (9.1.14)

where

K = QȦ = Q(iL)A (9.1.15)

is the projection of Ȧ orthogonal to A and we have introduced the quantity

R̃(z) = i(z +QLQ)−1K (9.1.16)

and defined a frequency Ω as

iΩ = (A, Ȧ)(A,A)−1 = Ẏ (0) (9.1.17)

In the single-variable case the frequency Ω is identically zero for systems with continuous
interactions, since all autocorrelation functions are even functions of time, but we retain
the term in Ω here to facilitate the later generalisation to the multi-variable description.

The projection K is conventionally termed a “random force”. If A is the momentum
of particle i, Ȧ is the total force acting on i and K is then the random force of the clas-
sic Langevin theory described in Section 7.3. In other cases, however, K is not a force in
the mechanical sense. Instantaneously, K and Ȧ are the same, but the two quantities evolve
differently in time. The time-dependence of the random force is given by the Laplace trans-
form of R̃(z):

R(t) = exp(iQLQt)K (9.1.18)

with R(0) = K . The special form of its propagator means that R(t) remains at all times in
the subspace orthogonal to A, i.e.(

A,R(t)
)= 0 for all t (9.1.19)

This is easily proved by expanding the right-hand side of (9.1.18) in powers of t , since it
is clear by inspection that every term in the series is orthogonal to A. The expansion also
makes it clear that the propagator in (9.1.18) can equally well be written as exp(iQLt)

and both forms appear in the literature. The autocorrelation function of the random force
defines the memory function M(t) for the evolution of the dynamical variable A:

M(t) = (R,R(t)
)
(A,A)−1 (9.1.20)
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or

M̃(z) = (R, R̃(z)
)
(A,A)−1 (9.1.21)

Equation (9.1.14) can be rewritten in terms of the memory function as

Ỹ (z) = [−iz − iΩ + M̃(z)
]−1 (9.1.22)

or, in the time domain, as

Ẏ (t) − iΩY(t) +
∫ t

0
M(t − s)Y (s)ds = 0 (9.1.23)

The equation describing the time evolution of the orthogonal component A′(t) is ob-
tained along similar lines. From (9.1.11) we find that for Ã′(z) = QÃ(z):

(z +QLQ)Ã′(z) = −QLPÃ(z)

= −QLỸ (z)A = iỸ (z)K (9.1.24)

If we substitute for Ỹ (z) from (9.1.22) and use the definition of R̃(z) in (9.1.16), (9.1.24)
becomes

R̃(z) = [−iz − iΩ + M̃(z)
]
Ã′(z) (9.1.25)

or, in the time domain:

Ȧ′(t) − iΩA′(t) +
∫ t

0
M(t − s)A′(s)ds = R(t) (9.1.26)

Equations (9.1.23) and (9.1.26) are the projections parallel and perpendicular to the vari-
able A of a generalised Langevin equation for A:

Ȧ(t) − iΩA(t) +
∫ t

0
M(t − s)A(s)ds = R(t) (9.1.27)

Apart from the introduction of the term in Ω , (9.1.27) has the same general form as the
Langevin equation (7.3.21), but the random force R(t) and memory function M(t) now
have the explicit definitions provided by (9.1.18) and (9.1.20).

There is a close connection between the behaviour of the functions Y(t) and M(t) at
short times, a fact we have already exploited in Section 7.3. When differentiated with
respect to time the memory-function equation (9.1.23) becomes

Ÿ (t) − iΩẎ (t) + M(0)Y (t) +
∫ t

0
Ṁ(t − s)Y (s)ds = 0 (9.1.28)

Since Y(0) = 1 and Ẏ (0) = iΩ , we see that

M(0) = −Ÿ (0) − Ω2 = (Ȧ, Ȧ)(A,A)−1 − Ω2 (9.1.29)
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Repeated differentiation leads to relations between the initial time derivatives of Y(t) and
M(t) or, equivalently, given (7.1.24), between the frequency moments of the power spectra
Y(ω) and M(ω). These relations are useful in constructing simple, approximate forms for
M(t) that satisfy the low-order sum rules on Y(t). A link also exists between the autocor-
relation function of the random force, i.e. the memory function, and that of the total force,
Ȧ. Let Φ(t) be the autocorrelation function of Ȧ, defined as

Φ(t) = (Ȧ, Ȧ(t)
)
(A,A)−1 = −Ÿ (t) (9.1.30)

It follows from the properties of the Laplace transform that the functions Φ̃(z) and Ỹ (z)

are related by

Φ̃(z) = z2Ỹ (z) − iz + iΩ (9.1.31)

Since the term iΩ vanishes in the one-variable case, we may temporarily discard it. Then
elimination of Ỹ (z) between (9.1.22) and (9.1.31) leads to the expression

1

M̃(z)
= 1

Φ̃(z)
+ 1

iz
(9.1.32)

The two autocorrelation functions therefore vary with time in different ways except in the
high-frequency (short-time) limit: the time dependence of Φ(t) is determined by the full
Liouville operator L and that of M(t) by the projected operator QLQ.

There are two important ways in which the projection-operator formalism can be ex-
tended. First, (9.1.23) may be regarded as the leading member in a hierarchy of memory-
function equations. If we apply the methods already used to the case when R is treated as
the dynamical variable, we obtain an equation similar to (9.1.23) for the time evolution of
the projection of R(t) along R. The kernel of the integral equation is now the autocorre-
lation function of a second-order random force that is orthogonal at all times to both R

and A. As an obvious generalisation of this procedure we can write a memory-function
equation of the form

Ṁn(t) − iΩnMn(t) +
∫ t

0
Mn+1(t − s)Δ2

n+1Mn(s)ds = 0 (9.1.33)

where

Mn(t) = (Rn,Rn(t)
)
(Rn,Rn)

−1 (9.1.34a)

Rn(t) = exp(iQnLQnt)QnṘn−1 (9.1.34b)

and

Δ2
n = (Rn,Rn)(Rn−1,Rn−1)

−1 (9.1.35)
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The operator Pn projects a dynamical variable along Rn−1 according to the rule (9.1.1).
By construction, therefore, the complementary operator

Qn = 1 −
n∑

j=1

Pj (9.1.36)

projects onto the subspace orthogonal to all Rj for j < n. Thus the nth-order random force
Rn(t) is uncorrelated at all times with random forces of lower order. Equation (9.1.23)
is a special case of (9.1.33) with Y ≡ M0. Repeated application of the Laplace transform
to equations of the hierarchy leads to an expression for Ỹ (z) in the form of a continued
fraction:

Ỹ (z) = 1

−iz − iΩ0 + Δ2
1

−iz − iΩ1 + Δ2
2

−iz − iΩ2 + · · ·

(9.1.37)

A second extension of the method, which has proved particularly useful for the descrip-
tion of collective modes in liquids, is one we have already mentioned. This is the gener-
alisation to the case where the dynamical quantity of interest is not a single fluctuating
property of the system but a set of n independent variables A1, A2, . . . , An. We repre-
sent this set by a column vector A and its hermitian conjugate by the row vector A∗. The
derivation of the generalised Langevin equation for A follows the lines already laid down,
due account being taken of the fact that the quantities involved are no longer scalars. The
result may be written in matrix form as

Ȧ(t) − iΩ · A(t) +
∫ t

0
M(t − s) · A(s)ds = R(t) (9.1.38)

The definitions of the random-force vector R(t), frequency matrix Ω and memory-function
matrix M(t) are analogous to those of R(t), Ω and M(t) in the single-variable case, the
scalars A and A∗ being replaced by the vectors A and A∗. If we multiply (9.1.38) from the
right by A∗ · (A,A)−1 and take the thermal average we find that

Ẏ(t) − iΩ · Y(t) +
∫ t

0
M(t − s) · Y(s)ds = 0 (9.1.39)

where Y(t) = (A,A(t)) · (A,A)−1 is the correlation-function matrix. Equation (9.1.39) is
the multivariable generalisation of (9.1.23); its solution in terms of Laplace transforms is

Ỹ(z) = [−izI − iΩ + M̃(z)
]−1 (9.1.40)

where I is the identity matrix. Note that each diagonal element of Y(t) is an autocorre-
lation function, normalised by its value at t = 0, and the off-diagonal elements are cross-
correlation functions.
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The value of the memory-function formalism is most easily appreciated by considering
specific examples of its use. Before doing so, however, it is helpful to look at the prob-
lem from a wider point of view. Equation (9.1.38) represents an equation of motion for
A(t) in which terms linear in A are displayed explicitly on the left-hand side while the
random-force vector describes the effects of non-linear terms, initial transient processes
and the dependence of A(t) on variables not included in the set {Ai}. This separation of
effects is most useful in cases where the random force fluctuates rapidly and the non-zero
elements of the memory-function matrix decay much faster than the correlation functions
of interest. It is then not unreasonable to represent M(t) in some simple way, in particular
by invoking a markovian approximation whereby the non-zero elements are replaced by
δ-functions in t . For this representation to be successful the vector A should contain as its
components not only the variables of immediate interest but also those to which they are
strongly coupled. If the set of variables is well chosen, the effect of projecting A(t) onto
the subspace spanned by A is to project out all the slowly varying properties of the system.
The markovian assumption can then be used with greater confidence in approximating the
memory-function matrix. By extending the dimensionality of A, an increasingly detailed
description can be obtained without departing from the markovian hypothesis. In practice,
as we shall see in later sections, this ideal state of affairs is often difficult to achieve, and
some of the elements of M(t) may not be truly short ranged in time. The calculation of
the frequency matrix Ω is generally a straightforward problem, since it involves only static
quantities; the same is true of the static correlation matrix (A,A).

As an alternative to the multidimensional description it is possible to work with a smaller
set of variables and exploit the continued-fraction expansion, truncating the hierarchy at a
suitable point in some simple, approximate way. This approach is particularly useful when
insufficient is known about the dynamical behaviour of the system to permit an informed
choice of a larger set of variables. Its main disadvantage is the fact that the physical signif-
icance of the memory function becomes increasingly obscure as the expansion is carried
to higher orders.

9.2 SELF CORRELATION FUNCTIONS

As a simple example we consider first the application of projection-operator methods to the
calculation of the self intermediate scattering function Fs(k, t). This function is of interest
because of its link to the velocity autocorrelation function via (8.2.17) and because its
power spectrum, the self dynamic structure factor Ss(k,ω), is closely related to the cross-
section for incoherent scattering of neutrons.

The most straightforward approach to the problem is to choose as the single variable A

the fluctuating density ρki of a tagged particle i and write a memory-function equation for
F̃s(k, z) in the form

F̃s(k, z) = 1

−iz + M̃s(k, z)
(9.2.1)
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Results given in Section 8.2 show that the short-time expansion of Fs(k, t) starts as

Fs(k, t) = 1 − ω2
0
t2

2! + ω2
0

(
3ω2

0 + Ω2
0

) t4

4! + · · · (9.2.2)

where the coefficients of successive powers of t are related to the frequency moments of
Ss(k,ω) via the general expression (7.1.24) and the quantities Ω0 (the Einstein frequency)
and ω0 are defined by (7.2.9) and (7.4.29) respectively. Thus, from (9.1.29), the effect of
setting Ms(k, t = 0) = ω2

0 = k2(kBT/m) is to ensure that Ss(k,ω) has the correct second
moment. We may also rewrite M̃s in the form M̃s(k, z) = k2D̃(k, z) where, by analogy
with (8.2.10), D̃(k, z) plays the role of a generalised self-diffusion coefficient such that
limz→0 limk→0 D̃(k, z) = D. If the continued-fraction expansion is taken to second order
we find that

F̃s(k, z) = 1

−iz + ω2
0

−iz + Ñs(k, z)

(9.2.3)

By extension of the calculation that leads to (9.1.29) it is easy to show that the initial value
of the second-order memory function Ns(k, t) is related to the short-time behaviour of
Ms(k, t) by Ns(k,0) = −M̈s(k,0)/Ms(k,0) = ω2

0(2ω
2
0 + Ω2

0 ). Thus, if

Ñs(k, z) = (2ω2
0 + Ω2

0

)
ñs(k, z) (9.2.4)

where ns(k, t = 0) = 1, the resulting expression for Ss(k,ω) also has the correct fourth
moment, regardless of the time dependence of ns(k, t).

As an alternative to making a continued-fraction expansion of F̃s(k, z) we can consider
the multivariable description of the problem that comes from the choice

A =
⎛⎝ρki

ρ̇ki

σki

⎞⎠ (9.2.5)

where the variable σki , given by

σki = ρ̈ki − (ρki , ρ̈ki )(ρki , ρki )
−1ρki (9.2.6)

is orthogonal to both ρki and ρ̇ki . From results derived in Sections 7.4 and 8.2 it is straight-
forward to show that the corresponding static correlation matrix is diagonal and given by

(A,A) =
⎛⎝1 0 0

0 ω2
0 0

0 0 ω2
0(2ω

2
0 + Ω2

0 )

⎞⎠ (9.2.7)
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while the frequency matrix is purely off-diagonal:

iΩ = (A, Ȧ) · (A,A)−1 =
⎛⎝ 0 1 0

−ω2
0 0 1

0 −2ω2
0 − Ω2

0 0

⎞⎠ (9.2.8)

Both Ȧ1 and Ȧ2 form part of the space spanned by the vector A. In the case of Ȧ1 this
is easy to see, since Ȧ1 = A2. To understand why it is also true for Ȧ2 it is sufficient
to note that the projection of Ȧ2 along A1 is obviously part of the space of A, whereas
the component orthogonal to A1 is, according to the definition (9.2.6), the same as A3. It
follows that the random-force vector has only one non-zero component and the memory-
function matrix has only one non-zero entry:

M(k, t) =
⎛⎝0 0 0

0 0 0

0 0 M(k, t)

⎞⎠ (9.2.9)

On collecting results and inserting them in (9.1.40), we find that the correlation-function
matrix has the form

Ỹ(k, z) =
⎛⎝−iz −1 0

ω2
0 −iz −1

0 2ω2
0 + Ω2

0 −iz + M̃(k, z)

⎞⎠ (9.2.10)

Inversion of (9.2.10) shows that F̃s(k, z) is given by

F̃s(k, z) = Ỹ11(k, z) = 1

−iz + ω2
0

−iz + 2ω2
0 + Ω2

0

−iz + M̃(k, z)

(9.2.11)

and comparison with (9.2.3) and (9.2.4) makes it possible to identify M(k, t) as the mem-
ory function of Ns(k, t). Similarly, the Laplace transform of the self-current autocorrelation
function Cs(k, t) is

C̃s(k, z) = ω2
0Ỹ22(k, z)

= ω2
0

−iz + (2ω2
0 + Ω2

0 )ñs(k, z) + ω2
0−iz

(9.2.12)

The same result can be derived from (9.2.3) via the relation (8.2.17) between Cs(k, t) and
Fs(k, t), which in turn implies that C̃s(k, z) = z2F̃s(k, z) − iz.

In the long-wavelength limit the memory function ns(k, t) is directly related to the
memory function of the velocity autocorrelation function Z(t). From (7.2.8), (8.2.17) and
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(9.2.12) we find that

Z̃(z) = kBT/m

−iz + Ω2
0 ñs(0, z)

(9.2.13)

Thus

Ns(0, t) = Ω2
0ns(0, t) ≡ ξ(t) (9.2.14)

where ξ(t) is the memory function of Z(t), introduced earlier in Section 7.3. Since Ns(k, t)

is also the memory function of Ms(k, t) and Ms(k,0) = k2Z(0), we see that k2Z(t) be-
comes the memory function of Fs(k, t) as k → 0. For consistency with the hydrodynamic
result (8.2.10) we also require that

Ω2
0 ñs(0,0) = kBT

mD
(9.2.15)

A particularly simple (markovian) approximation is to replace Ns(k, t) by a quantity
independent of t , 1/τs(k) say, which is equivalent to assuming an exponential form for
Ms(k, t):

Ms(k, t) = ω2
0 exp

[−|t |/τs(k)
]

(9.2.16)

with the constraint, required to satisfy (9.2.15), that

τs(0) = mD

kBT
(9.2.17)

As we have seen in Section 7.3, this approximation leads to an exponential velocity auto-
correlation function of the Langevin type, the quantity 1/τs(0) appearing as a frequency-
independent friction coefficient. Better results are obtained by choosing an exponential
form for Ns(k, t), i.e.

Ns(k, t) = (2ω2
0 + Ω2

0

)
exp
[−|t |/τs(k)

]
(9.2.18)

with

τs(0) = kBT

mDΩ2
0

(9.2.19)

This second approximation is equivalent to neglecting the frequency dependence of
M̃(k, z); it leads to an analytic form for Ss(k,ω) having the correct zeroth, second and
fourth moments:

Ss(k,ω) = 1

π

τs(k)ω
2
0(2ω

2
0 + Ω2

0 )

ω2τ 2
s (k)(ω

2 − 3ω2
0 − Ω2

0 )
2 + (ω2 − ω2

0)
2

(9.2.20)

The corresponding expression for Z̃(z) is that given in (7.3.26) (with τ ≡ τs(0)).
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FIG. 9.1. Velocity autocorrelation function, curve (a), and the associated memory function, curve (b), derived
from molecular-dynamics calculations for liquid sodium at state conditions close to the normal melting point.
Curve (c) shows the exponential approximation (9.2.18) for the memory function, with τs(0) chosen to give the
correct self-diffusion coefficient. After Balucani et al.5

In the absence of any well-based microscopic theory it is perhaps best to treat the relax-
ation time τs(k) as an adjustable parameter, but it is also tempting to look for some rela-
tively simple prescription for this quantity. An argument based on a scaling of the memory
function Ms(k, t) has been used to derive the expression3

τ−1
s (k) = γ

(
2ω2

0 + Ω2
0

)1/2 (9.2.21)

where the parameter γ is taken to be independent of k, an assumption that is reasonably
well borne out in practice. If, in the limit k → 0, we require (9.2.21) to yield the correct
diffusion coefficient, it follows that γ = mDΩ0/kBT ; this leads to a value of γ of approx-
imately 0.9 at the triple point of liquid argon. On the other hand, for large wavenumbers,
Ss(k,0) goes over correctly to the ideal-gas result if γ = 2/π1/2 ≈ 1.13.

Although the exponential approximation (9.2.18) has been used with some success in
the interpretation of experimental neutron-scattering data,4 the true situation is known to
be much less simple, at least at small wavenumbers. In particular, molecular-dynamics
calculations for a range of simple liquids have shown that the memory function of Z(t),
i.e. Ns(0, t), cannot be adequately described by a model involving only a single relaxation
time. Figure 9.1 shows the memory function obtained from a simulation of liquid sodium
in which a clear separation of time-scales is apparent; the presence of the long-time tail in
the memory function has the effect of reducing the self-diffusion coefficient by about 30%.
In their analysis of the self correlation functions of the Lennard-Jones fluid Levesque and
Verlet6 found it necessary to use a rather complicated expression for Ns(k, t), which for
k = 0 reduces to

Ns(0, t) = Ω2
0 exp

(−At2/2
)+ Bt4 exp(−αt) (9.2.22)

where A, B and α are adjustable parameters. A separation into a rapidly decaying part
and a longer-lived term that starts as t4 is also an explicit ingredient of modern versions of
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kinetic theory, in which account is taken of correlated as well as uncorrelated collisions.
The long-lived term represents collective effects and lends itself to calculation by mode-
coupling methods similar to that employed in Section 8.7 and which we shall meet again
later in this chapter.

The importance of including a long-time tail in the memory function Ns(k, t) for k > 0
is illustrated for the case of the Lennard-Jones fluid close to the triple point in Figure 9.2.
The quantity plotted there, as a function of k, is the width at half-height of Ss(k,ω) relative
to its value in the hydrodynamic limit (where Δω = 2Dk2). Comparison with results for
Ss(kω) itself is not very illuminating, since the spectrum is largely featureless, but the
dependence of Δω/k2 on k shows a structure that is not even qualitatively reproduced
by the single-exponential approximation; the same is true of the gaussian approximation
(8.2.14).

9.3 TRANSVERSE COLLECTIVE MODES

As we saw in Section 8.6, the appearance of propagating shear waves in dense fluids can
be explained in qualitative or even semi-quantitative terms by a simple, viscoelastic model
based on a generalisation of the hydrodynamic approach. In this section we show how
such a theory can be developed in systematic fashion by use of the projection-operator
formalism.

Taking the viscoelastic relation (8.6.4) as a guide, we choose as components of the vec-
tor A the x-component of the mass current and the xz-component of the stress tensor,
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assuming as usual that the z-axis is parallel to k. Thus

A =
(
mjx

k

Πxz
k

)
(9.3.1)

and

(A,A) = V kBT

(
ρm 0

0 G∞(k)

)
(9.3.2)

where G∞(k) is the generalised elastic constant defined by (8.6.9). To calculate the fre-
quency matrix we use the relations

(A1, Ȧ1) = (A2, Ȧ2) = 0 (9.3.3)

(A2, Ȧ1) = (A1, Ȧ2) = −ikV kBTG∞(k) (9.3.4)

and find that

iΩ =
⎛⎜⎝ 0 −ik

−ikG∞(k)

ρm
0

⎞⎟⎠ (9.3.5)

Because Ȧ1 is proportional to A2, the projection of Ȧ1 orthogonal to A is identically zero.
The memory-function matrix therefore has only one non-zero element, which we denote
by Mt(k, t):

M(k, t) =
(

0 0

0 Mt(k, t)

)
(9.3.6)

When these results are substituted in (9.1.40) we obtain an expression for the Laplace
transform of the correlation-function matrix in the form

Ỹ(k, z) =
⎛⎜⎝ −iz ik

ikG∞(k)

ρm
−iz + M̃t (k, z)

⎞⎟⎠
−1

(9.3.7)

Thus the Laplace transform of the transverse-current autocorrelation function is

C̃t (k, z) = ω2
0Ỹ11(k, z) = ω2

0

−iz + ω2
1t

−iz + M̃t (k, z)

(9.3.8)

where ω2
1t , defined by (7.4.38), is related to G∞(k) by (8.6.9). Consistency with the hydro-

dynamic result (8.4.4) in the long-wavelength, low-frequency limit is achieved by setting

M̃t (0,0) = G∞(0)

η
(9.3.9)
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The function M̃t (k, z) is the memory function of the generalised kinematic shear viscos-
ity introduced in Section 8.6. This identification follows immediately from comparison of
(9.3.8) with the Laplace transform of (8.6.7), which shows that

C̃t (k, z) = ω2
0

−iz + k2ν̃(k, z)
(9.3.10)

The viscoelastic approximation corresponds to ignoring the frequency dependence of
M̃t (k, z) and replacing it by a constant, 1/τt (k) say, implying that ν(k, t) decays expo-
nentially with a characteristic time τt (k) and hence, from (8.6.9), that

ν(k, t) = G∞(k)

ρm
exp
[−|t |/τt (k)

]
(9.3.11)

Use of (9.3.11) ensures that the spectrum of transverse-current fluctuations:

Ct(k,ω) = 1

π
Re C̃t (k,ω) = 1

π

ω2
0ω

2
1t τt (k)

ω2 + τ 2
t (k)(ω

2
1t − ω2)2

(9.3.12)

has the correct second moment irrespective of the choice of τt (k). If, as in Section 8.6,
we define a wavenumber-dependent shear viscosity η(k) as the zero-frequency limit of
ρmν̃(k,ω), we find in the approximation represented by (9.3.11) that

η(k) = τt (k)G∞(k) (9.3.13)

so that τt (k) appears as a k-dependent Maxwell relaxation time (see (8.6.5)). In particular:

η ≡ η(0) = τt (0)G∞(0) (9.3.14)

in agreement with (9.3.9).
It is easy to establish the criterion for the existence of propagating transverse modes

within the context of the single-relaxation-time approximation represented by (9.3.12).
The condition for Ct(k,ω) to have a peak at non-zero frequency at a given value of k is

ω2
1t τ

2
t (k) >

1
2 (9.3.15)

and the peak, if it exists, is at a frequency ω such that ω2 = ω2
1t − 1

2τ
−2
t (k). It follows from

the inequality (9.3.15) that shear waves will appear for values of k greater than kc, where
kc is a critical wavevector given by

k2
c = ρm

2τ 2
t (k)G∞(k)

(9.3.16)

We can obtain an estimate for kc by taking the k → 0 limit of (9.3.16); this gives

k2
c ≈ ρmG∞(0)

2η2
(9.3.17)
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On inserting the values of η and G∞(0) obtained by molecular-dynamics calculations for
the Lennard-Jones fluid close to its triple point we find that kcσ ≈ 0.79. This is apparently
a rather good guide to what occurs in practice: the dispersion curve for liquid argon plotted
in Figure 8.4 shows that shear waves first appear at kc ≈ 2.0 Å or, taking a value (3.4 Å) for
σ appropriate to argon, kcσ ≈ 0.7. At sufficiently large values of k the shear waves again
disappear as the role of the interparticle forces becomes less important.

Given its simplicity, the viscoelastic approximation provides a very satisfactory de-
scription of the transverse-current fluctuations over a wide range of wavelength. Careful
study reveals, however, that there are some systematic discrepancies with the molecular-
dynamics data that persist even when the parameter τt (k) is chosen to fit the observed
spectrum rather than calculated from some semi-empirical prescription. In particular, the
shear-wave peaks at long wavelengths are significantly too broad and flat, as the results
for the Lennard-Jones fluid shown in Figure 9.3 reveal. The structure of the correlation-
function matrix (9.3.7) gives a clue to the origin of the deficiencies in the viscoelastic
model. The element Ỹ22(k, z) of the matrix is the Laplace transform of the normalised
autocorrelation function of the xz-component of the stress tensor. Thus

Ỹ22(k, z) = β

VG∞(k)

∫ ∞

0

〈
Πxz

k (t)Πxz
−k

〉
exp(izt)dt

= 1

−iz + M̃t (k, z) + ω2
1t

−iz

(9.3.18)
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where the form of the normalisation factor follows from (8.4.10) and (8.6.9). If we again
replace M̃t (k, z) by 1/τt (k) and take the limit k → 0, (9.3.18) can be inverted to give

η(t) = G∞(0)Y22(0, t) = G∞(0) exp
[−G∞(0)|t |/η] (9.3.19)

which is consistent with (8.4.10). We saw in Section 8.6 that the memory function ν(k, t)

and the stress autocorrelation function η(t) become identical (apart from a multiplicative
factor) as k tends to zero; within the viscoelastic approximation the identity is apparent
immediately from intercomparison of (9.3.11), (9.3.14) and (9.3.19). At high densities, as
Figure 8.1 illustrates, the correlation function η(t) has a pronounced, slowly decaying tail
and it is reasonable to suppose that the transverse-current fluctuations at small wavevectors
can be adequately described only if a comparably long-lived contribution is included in the
memory function ν(k, t). In their classic analysis of the collective dynamical properties
of the Lennard-Jones fluid, Levesque, Verlet and Kürkijarvi7 suggested the use of a two-
exponential memory function of the form

ν(k, t)/ν(k,0) = (1 − αk) exp
[−|t |/τ1(k)

]+ αk exp
[−|t |/τ2(k)

]
(9.3.20)

which, as the inset to Figure 8.1 suggests, is also a useful approximation for other systems.
In practise, for the Lennard-Jones fluid, τ2 turns out to be almost independent of k and
some seven times larger than τ1(0), while the parameter αk decreases rapidly with increas-
ing k. Thus, for large k, the single-relaxation-time approximation is recovered. At small k,
however, inclusion of the long-lived tail in the memory function leads to a marked enhance-
ment of the shear-wave peaks and significantly improved agreement with the molecular-
dynamics results, as illustrated in Figure 9.3; the price paid is the introduction of an ad-
ditional two parameters. Broadly similar conclusions have emerged from calculations for
liquid metals.8

9.4 DENSITY FLUCTUATIONS

The description of the longitudinal-current fluctuations on the basis of the generalised
Langevin equation is necessarily a more complicated task than in the case of the transverse
modes. This is obvious from the much more complicated structure of the hydrodynamic
formula (8.5.10) compared with (8.4.4). The problem of particular interest is to account for
the dispersion and eventual disappearance of the collective mode associated with sound-
wave propagation.

In discussion of the longitudinal modes a natural choice of components of the dynamical
vector A is the set of conserved variables consisting of ρk, jk and the microscopic energy
density ek defined via (8.5.27). The variables ρk and ek are both orthogonal to jk. In place
of ek, however, it is more convenient to choose that part which is also orthogonal to ρk and
plays the role of a microscopic temperature fluctuation; this we write as Tk. Thus

Tk = ek − (ρk, ek)(ρk, ρk)
−1ρk (9.4.1)
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The static correlation matrix is then diagonal. Since our attention is focused on the longi-
tudinal fluctuations, we include only the projection of the current along k, which we label
jz

k . The vector A specified in this way, i.e.

A =
⎛⎝ρk

jz
k

Tk

⎞⎠ (9.4.2)

is only one of many possible choices; larger sets of variables that include both the stress
tensor and heat current have also been considered. The static correlation matrix arising
from (9.4.2) is

(A,A) =
⎛⎜⎝

NS(k) 0 0

0
NkBT

m
0

0 0 〈TkT−k〉

⎞⎟⎠ (9.4.3)

and the corresponding frequency matrix is

−iΩ =

⎛⎜⎜⎜⎝
0 −ik 0

−ik

S(k)

(
kBT

m

)
0

〈j̇ z
kT−k〉

〈TkT−k〉
0 − 〈Tkj̇

z
−k〉

NkBT/m
0

⎞⎟⎟⎟⎠ (9.4.4)

It is unnecessary for our purposes to write more explicit expressions for the statistical
averages appearing in (9.4.3) and (9.4.4).

Since Ȧ1 is proportional to A2, it follows that the component R1 of the random-force
vector is zero and the memory-function matrix reduces to

M(k, t) =
⎛⎜⎝

0 0 0

0 M22(k, t) M23(k, t)

0 M32(k, t) M33(k, t)

⎞⎟⎠ (9.4.5)

The correlation-function matrix is therefore given by

Ỹ(k, z) =
⎛⎜⎝

−iz ik 0
ik

S(k)

(
kBT

m

)
−iz + M̃22(k, z) −iΩ23 + M̃23(k, z)

0 −iΩ32 + M̃32(k, z) −iz + M̃33(k, z)

⎞⎟⎠
−1

(9.4.6)

and the Laplace transform of the longitudinal-current autocorrelation function is

C̃l(k, z) = ω2
0Ỹ22(k, z)

= ω2
0

−iz + ω2
0

−izS(k)
+ Ñl(k, z)

(9.4.7)
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where the memory function Nl(k, t) is defined through its Laplace transform as

Ñl(k, z) = M̃22(k, z) − Θ(k, z)

−iz + M̃33(k, z)
(9.4.8)

with

Θ(k, z) =
(
M̃23(k, z) − 〈j̇ z

kT−k〉
〈TkT−k〉

)(
M̃32(k, z) + 〈Tkj̇

z
−k〉

N(kBT/m)

)
(9.4.9)

The physical significance of the four unknown memory functions in (9.4.5) is easily in-
ferred from their definitions in terms of the random forces Qj̇ z

k and QṪk. The functions
M23 and M32 describe a coupling between the momentum current (the stress tensor) and
heat flux whereas M22 and M33 represent, respectively, the relaxation processes associ-
ated with viscosity and thermal conduction. By comparison of (9.4.7) to (9.4.9) with the
hydrodynamic result in (8.5.10) we can make the following identifications in the limit
k → 0:

lim
k→0

M̃22(k,0) =
( 4

3η + ζ
)
k2

ρm
= bk2 (9.4.10)

lim
k→0

M̃33(k,0) = λk2

ρm
= ak2 (9.4.11)

and

lim
k→0

|〈j̇ z
kT−k〉|2

〈TkT−k〉 = Nk2
(
kBT

m

)2
γ − 1

S(k)
(9.4.12)

Finally, by requiring that

Nl(k, t = 0) = ω2
1l −

ω2
0

S(k)
(9.4.13)

with ω2
1l given by (7.4.35), we guarantee that the first three non-zero moments of S(k,ω)

are correct.
The derivation of (9.4.6) brings out clearly the advantage of working with a multivariable

description of a problem such as that provided by (9.4.2). For example, we can immediately
write down an expression for the fluctuations in temperature analogous to (9.4.7) for the
current fluctuations. If we define a temperature autocorrelation function as

CT (k, t) = 〈Tk(t)T−k
〉

(9.4.14)

we find from (9.4.6) that
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C̃T (k, z) = 〈TkT−k〉Ỹ33(k, z)

= 〈TkT−k〉
−iz − Θ(k, z)

−iz + ω2
0

−izS(k)
+ M̃22(k, z)

+ M̃33(k, z)

(9.4.15)

The key point to note is that C̃T (k, z) can be expressed in terms of the same memory func-
tions used to describe C̃l(k, z). Similarly, by solving for Ỹ11(k, z), we obtain an expression
for the density autocorrelation function:

F̃ (k, z) = S(k)Ỹ11(k, z)

= S(k)

−iz + 1

S(k)

(
ω2

0

−iz + Ñl(k, z)

) (9.4.16)

This is a less interesting result than that obtained for C̃T (k, z), because F(k, t) and Cl(k, t)

are in any case related by (7.4.26). It nevertheless brings out a second important feature
of the multivariable approach. An expression for F̃ (k, z) having the same form as (9.4.16)
can more easily be obtained by setting A = ρk and making a continued-fraction expansion
of F̃ (k, z) truncated at second order. What the more elaborate calculation yields is detailed
information on the structure of the memory function Nl(k, t), enabling contact to be made
with the hydrodynamic result and allowing approximations to be introduced in a controlled
way.

If we write the complex function Ñl(k, z) on the real axis (z = ω + iε, ε → 0+) as the
sum of its real and imaginary parts, i.e.

Ñl(k,ω) = N ′
l (k,ω) + iN ′′

l (k,ω) (9.4.17)

we find from (9.4.7) that the spectrum of longitudinal-current fluctuations is given by

Cl(k,ω) = 1

π

ω2ω2
0N

′
l (k,ω)

[ω2 − ω2
0/S(k) − ωN ′′

l (k,ω)]2 + [ωN ′
l (k,ω]2

(9.4.18)

If the memory function were small, there would be a resonance at a frequency determined
by the static structure of the fluid, i.e. at ω2 ≈ ω2

0/S(k). The physical role of the memory
function – the generalised “friction” – is therefore to shift and damp the resonance.

The task of calculating the function Nl(k, t) remains a formidable one, even with the
restrictions we have discussed. Some recourse to modelling is therefore needed if tractable
expressions for Cl(k,ω) and S(k,ω) are to be obtained. The limiting form of Ñl(k,ω)

when k, ω → 0 (hydrodynamic limit) follows from (9.4.8) to (9.4.12):

lim
ω→0

lim
k→0

Ñl(k,ω) = bk2 + ω2
0

S(k)

γ − 1

−iω + ak2
(9.4.19)

The first-term on the right-hand side of this expression describes viscous relaxation
and corresponds to M̃22(k,ω) in (9.4.8), while the second term arises from temperature
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fluctuations. We now require a generalisation of (9.4.19) that is valid for microscopic
wavelengths and frequencies. An obvious first approximation is to assume that the cou-
pling between the momentum and heat currents, represented by the memory functions
M23(k, t) and M32(k, t), makes no contribution to the density fluctuations. This is true
in the hydrodynamic limit and it is true instantaneously at finite wavelengths because the
random forces Qj̇ z

k and QṪk are instantaneously uncorrelated; the two memory functions
therefore vanish at t = 0. If we also assume that the effect of thermal fluctuations is neg-
ligible, an approximation that can be justified at large wavenumbers, we are left only with
the problem of representing the generalised longitudinal viscosity M̃22(k,ω). Since the
viscoelastic model (9.3.11) works moderately well in the case of the transverse currents, it
is natural to make a similar approximation here by writing

Nl(k, t) =
(
ω2

1l −
ω2

0

S(k)

)
exp
[−|t |/τl(k)

]
(9.4.20)

which is compatible with the constraint (9.4.13). The resulting expression for the dynamic
structure factor is

S(k,ω) = 1

π

τl(k)ω
2
0[ω2

1l − ω2
0/S(k)]

ω2τ 2
l (k)(ω

2 − ω2
1l)

2 + [ω2 − ω2
0/S(k)]2

(9.4.21)

A variety of proposals have been made for the calculation of the relaxation time τl(k). For
example, arguments similar to those used in the derivation of (9.2.21) lead in this case to
the expression9

τ−1
l (k) = 2

π1/2

(
ω2

1l −
ω2

0

S(k)

)1/2

(9.4.22)

The usefulness of this approach is illustrated in Figure 9.4, which shows the dispersion of
the sound-wave peak obtained from molecular-dynamics calculations for liquid rubidium
and compares the results with those predicted by the viscoelastic approximation (9.4.21)
in conjunction with (9.4.22). The agreement is good but the detailed shape of S(k,ω) is
less well reproduced, particularly at small k. As the example shown in the lower part of the
figure reveals, the discrepancies occur mostly at low frequencies. This is not surprising,
since the low-frequency region of the spectrum is dominated by temperature fluctuations,
which the viscoelastic model ignores.

The type of scheme outlined above is clearly an oversimplification. Analysis of results
obtained by inelastic x-ray scattering at small wavenumbers has confirmed the inadequacy
of the viscoelastic approximation for liquid metals12 and in other cases the method is not
even qualitatively satisfactory. In particular, the viscoelastic model is unable to account
for the Brillouin peak observed in molecular-dynamics calculations for the Lennard-Jones
fluid, as pictured in Figure 9.5. It can be shown from (9.4.22) that the viscoelastic model
predicts the existence of such a propagating mode whenever

ω2
1l <

3ω2
0

S(k)
(9.4.23)



DENSITY FLUCTUATIONS 275

0

2

4

6

8

10

0.0 0.4 0.8 1.2

s
p / 

1-

k / Å-1

liquid Rb    319 K

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4

,
k(

S
s

p / )

 / ps-1

k = 0.174 Å-1

FIG. 9.4. Sound-wave dispersion curve (above) and dynamic structure factor (below) for a model of liquid
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If k is small this inequality can be rewritten as

χT

[ 4
3G∞(0) + K∞(0)

]
< 3 (9.4.24)

when ω2
1l is expressed in terms of the long-wavelength limits of the instantaneous shear

modulus (8.6.9) and the instantaneous bulk modulus K∞(k) defined by the relation

4
3G∞(k) + K∞(k) = ρmω2

1l

k2
(9.4.25)

In the case of the alkali metals the inequality (9.4.24) is easily satisfied, but for the Lennard-
Jones fluid under triple-point conditions the left-hand side of (9.4.24) has a value of ap-
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proximately 4.9. Given the structure of (9.4.24), it seems plausible to conclude that the
persistence of the sound-wave peak in liquid metals to relatively much larger wavenum-
bers than in rare-gas liquids is associated with the lower compressibility of the metals (see
Table 1.2). This difference in behaviour can in turn be correlated with the softer nature of
the interatomic potentials in metals compared with those in the rare gases.

In order to describe the small-k behaviour of the Lennard-Jones system it is necessary to
go beyond the viscoelastic approximation (9.4.20) by including the effect of temperature
fluctuations. A generalisation of the hydrodynamic result (9.4.19) that satisfies the short-
time constraint (9.4.13) is obtained by setting

Ñl(k,ω) =
(
ω2

1l −
ω2

0γ (k)

S(k)

)
ñ1l (k,ω) + ω2

0

S(k)

γ (k) − 1

−iω + a(k)k2
(9.4.26)

with n1l (k, t = 0) = 1; this ignores any frequency dependence of the generalised ther-
mal diffusivity a(k) (the quantity a(0) is defined by (8.3.14)). If, in addition, γ (k) (a k-
dependent ratio of specific heats) is set equal to one, the term representing temperature
fluctuations disappears and (9.4.26) reduces to the viscoelastic approximation; the latter,
as we have seen, works reasonably well for liquid metals, for which γ (0) ≈ 1. The first
term on the right-hand side of (9.4.26) can be identified as M̃22(k,ω). Then, if we assume
a simple, exponential form for n1l (k, t), i.e.

n1l (k, t) = exp
[−|t |/τl(k)

]
(9.4.27)

we find that in the hydrodynamic limit M̃22(k,0) approaches the value

lim
k→0

M̃22(k,0)

k2
= τl(0)

ρm

[ 4
3G∞(0) + K∞(0) − γ /χT

]
(9.4.28)

Comparison of (9.4.28) with (9.4.10) shows that τl(0) is given by

τl(0) =
4
3η + ζ

4
3G∞(0) + K∞(0) − γ /χT

(9.4.29)

Equations (9.4.26) to (9.4.29) make up the set of generalised hydrodynamic equations used
by Levesque, Verlet and Kürkijarvi7 in their study of the Lennard-Jones fluid; together they
yield a good fit to the dynamic structure factor over a wide range of k. Among the satis-
fying features of the analysis is the fact that at long wavelengths τl(k), as determined by
a least-squares fitting procedure, tends correctly to its limiting value (9.4.29) as k → 0.
Moreover, γ (k) ≈ 1 beyond kσ ≈ 2. The large-k behaviour of γ (k) implies that the vis-
coelastic model is a good approximation at short wavelengths because the coupling with the
thermal mode becomes negligible. On the other hand, at small k, γ (k) tends to a value that
is larger by a factor of approximately two than the thermodynamic value derived from the
simulation. This fault can be eliminated by inclusion of a slowly relaxing part in the gener-
alised longitudinal viscosity M̃22(k,ω). If a two-exponential form is used for n1l(k, t), and
if the two decay times are given the same values as the corresponding relaxation times in
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lar-dynamics results and the curves show results calculated from (9.4.26) with a two-exponential approximation
to n1l (k, t). The unit of time is τ = (mσ 2/48ε)1/2. After Levesque et al.7

the transverse-current memory function (9.3.20), an excellent fit is obtained, as Figure 9.5
shows, for which γ (k) tends to its thermodynamic value as k → 0. The good agreement
obtained with a single exponential is to some extent fortuitous, the omission of the long-
time part of the viscous contribution to the memory function being offset by an increase in
the size of the thermal contribution.

9.5 MODE-COUPLING THEORY I. THE VELOCITY AUTOCORRELATION
FUNCTION

The applications of the projection-operator formalism studied thus far are largely phe-
nomenological in character in the sense that a simple functional form has generally been
assumed to describe the decay of the various memory functions. Such descriptions can
be looked upon as interpolation schemes between the short-time behaviour of correlation
functions, which is introduced via frequency sum rules, and the hydrodynamic regime,
which governs the choice of dynamical variables to be included in the vector A. A more
ambitious programme would be to derive expressions for the memory functions from first
principles, starting from the formally exact definitions of Section 9.1. A possible route to-
wards such a microscopic theory is provided by the mode-coupling approach, which we
have already used in Section 8.7 to investigate the slow decay of the velocity autocorrela-
tion function at long times. In this section we show how mode-coupling concepts can be
applied to the calculation of time-correlation functions and their associated memory func-
tions within the framework of the projection-operator formalism. The basic idea behind
mode-coupling theory is that the fluctuation (or “excitation”) of a given dynamical variable
decays predominantly into pairs of hydrodynamic modes associated with conserved single-
particle or collective dynamical variables. The possible “decay channels” of a fluctuation
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are determined by “selection rules” based, for example, on time-reversal symmetry or on
physical considerations. If a further, decoupling approximation is made, time-correlation
functions are expressible as sums of products of the correlation functions of conserved
variables.

To illustrate the method, we first use the projection-operator formalism to rederive
the asymptotic form (8.7.15) of the velocity autocorrelation function. Let uix be the x-
component of the velocity of a tagged particle i. In the notation of Section 9.1 the velocity
autocorrelation function has the from

Z(t) = (uix, exp(iLt)uix

)
(9.5.1)

From the discussion in Section 8.7 we can expect the tagged-particle velocity to be strongly
coupled to the longitudinal and transverse components of the collective particle current,
while the form of (8.7.8) suggests that we take the tagged-particle density ρk′i and the
current j−k′′ to be the modes into which fluctuations in uix decay. Translational invari-
ance implies that the only products of Fourier components whose inner product with the
tagged-particle velocity are non-zero are those for which k′ = k′′. The first approximation
of the mode-coupling treatment therefore consists in replacing the full evolution operator
exp(iLt) by its projection onto the subspace of the product variables ρkij−k, i.e.

exp(iLt) ≈ P exp(iLt)P (9.5.2)

The projection operator P is defined, as in (9.1.1), by its action on a dynamical variable B:

PB =
∑

k

∑
α

(
ρkij

α
−k,B

)(
ρkij

α
−k, ρkij

α
−k

)−1
ρkij

α
−k (9.5.3)

where the sum on α runs over all cartesian components. Thus

exp(iLt)Puix =
∑
k′

∑
β

(
ρk′ij

β

−k′ , uix

)(
ρk′ij

β

−k′ , ρk′ij
β

−k′
)−1

× exp(iLt)ρk′ij
β

−k′ (9.5.4)

and

Z(t) ≈ (uix,P exp(iLt)Puix

)
=
∑
k,k′

∑
α

∑
β

(
ρk′ij

β

−k′ , uix

)(
ρk′ij

β

−k′ , ρk′ij
β

−k′
)−1

× (ρkij
α
−k, exp(iLt)ρk′ij

β

−k′
)

× (ρkij
α
−k, ρkij

α
−k

)−1(
uix, ρkij

α
−k

)
(9.5.5)

In this expression the time-correlation functions of the product variables are bracketed by
two time-independent “vertices”, each of which has the same value. For example, since
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〈ρkij
α
−kρ−kij

α
k 〉 = N(kBT/m) and 〈uixρ−kij

α
k 〉 = (kBT/m)δαx , it follows that

(
ρkij

α
−k, ρkij

α
−k

)−1(
uix, ρkij

α
−k

)= 1

N
δαx (9.5.6)

The time-correlation functions appearing on the right-hand side of (9.5.5) are of an un-
usual type, since they involve four, rather than two, dynamical variables. A second approx-
imation usually made is to assume that the two modes appearing in the product variables
propagate independently of each other. This means that the four-variable functions fac-
torise into products of two-variable functions. In the present case:

(
ρkij

α
−k, exp(iLt)ρk′ij

β

−k′
) ≈ (ρki , exp(iLt)ρk′i

)(
jα
−k, exp(iLt)j

β

−k′
)
δk,k′

≡ 〈ρki (t)ρ−ki
〉〈
j
β

−k(t)j
α
k

〉
(9.5.7)

and use of (9.5.6) and (9.5.7) reduces (9.5.5) to the simpler form given by

Z(t) = 1

N2

∑
k

〈
ρki (t)ρ−ki

〉〈
jx

k (t)j
x
−k

〉
(9.5.8)

The first factor in the sum over wavevectors is the self intermediate scattering function
Fs(k, t) and the second is a current correlation function; the latter can be decomposed into
its longitudinal and transverse parts in the manner of (7.4.24). On switching from a sum
to an integral and replacing the current correlation function by its average over a sphere,
(9.5.8) becomes

Z(t) = 1

3ρ
(2π)−3

∫
Fs(k, t)

1

k2

[
Cl(k, t) + 2Ct(k, t)

]
dk (9.5.9)

If the time-correlation functions on the right-hand side of (9.5.9) are replaced by the hydro-
dynamic expressions, (9.5.9) leads back to (8.7.14), which is valid for long times. At short
times, however, (9.5.9) breaks down: as t → 0, Z(t) diverges, since Fs(k, t = 0) = 1 and
Cl(k, t = 0) = Ct(k, t = 0) = k2(kBT/m). To overcome this difficulty a cut-off at large
wavenumbers must be introduced in the integration over k. Such a cut-off occurs natu-
rally in the so-called velocity-field approach,13 in which a result very similar to (9.5.9)
is obtained on the basis of a microscopic expression for the local velocity of the tagged
particle. This expression involves a “form factor” f (r), which in the simplest model used
is represented by a unit step-function that vanishes for distances greater than the particle
“radius” a and has the effect of making the velocity field constant over the range r � a.
Replacement of the Fourier components of the velocity field by their projections along the
particle current leads to an expression of the form

Z(t) = 1
3 (2π)−3

∫
f̂ (k)Fs(k, t)

1

k2

[
Cl(k, t) + 2Ct(k, t)

]
dk (9.5.10)
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where f̂ (k = 0) = 1/ρ and limk→∞ f̂ (k) = 0. This result reduces to that obtained by the
mode-coupling approach in the long-wavelength limit, but the behaviour at short times is
much improved compared with (9.5.9). In particular, the zero-time value is now correct:

Z(0) = (2π)−3
∫

f̂ (k)
kBT

m
dk = kBT

m
f (r = 0) = kBT

m
(9.5.11)

Equation (9.5.10) does not represent a complete theory, since its evaluation requires a
knowledge of the intermediate scattering function and the two current-correlation func-
tions. For numerical purposes, however, use can be made of the viscoelastic approxima-
tions for Cl(k, t) and Ct(k, t) and the gaussian approximation (8.2.15) for Fs(k, t). As
Figure 9.6 shows, results obtained in this way for the velocity autocorrelation function and
corresponding power spectrum of liquid rubidium are in good agreement with results ob-
tained by molecular dynamics. The pronounced, low-frequency peak in the power spectrum
arises from the coupling to the transverse current and the shoulder at higher frequencies
comes from the coupling to the longitudinal current.

Another method whereby the short-time behaviour of the mode-coupling approximation
can be improved is to include the exact, low-order frequency moments of Z(ω) in a sys-
tematic way by working in the continued-fraction representation.14 Truncation of (9.1.37)
at second order gives

Z̃(z) = 1

−iz + Ω2
0

−iz + Ñ2(z)

(9.5.12)

where Ω0 is the Einstein frequency (7.2.13) and Ñ2(z) ≡ Δ2
2M̃2(z). The Laplace transform

of Ñ2(z) is related to the autocorrelation function of the second-order random force R2 =
Q2(iL)2uix =Q1(iL)2uix by

N2(t) = (R2, exp(iQ2LQ2t)R2
)
(R1,R1)

−1

= m

Ω2
0kBT

(
Q1L2uix, exp(iQ2LQ2t)Q1L2uix

)
(9.5.13)

The operator Q1 = 1 − P1 projects onto the subspace orthogonal to uix while Q2 =
Q1 − P2 projects onto the subspace orthogonal to both uix and the acceleration u̇ix =
iLuix . The fact that (iL)2uix is automatically orthogonal to (iL)uix makes it possible to
replace Q2 by Q1 in the definition of R2.

If the product variables ρkij−k are again chosen as the basis set, use of the approximation
(9.5.2) allows (9.5.13) to be rewritten as

N2(t) ≈ m

Ω2
0kBT

∑
k,k′

∑
α

∑
β

(
ρk′ij

β

−k′ ,Q1L2uix

)(
ρk′ij

β

−k′ , ρk′ij
β

−k′
)−1

× (ρkij
α
−k, exp(iQ2LQ2t)ρk′ij

β

−k′
)

× (ρkij
α
−k, ρkij

α
−k

)−1(Q1L2uix, ρkij
α
−k

)
(9.5.14)
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If we again assume that the variables ρki and jαk evolve in time independently of each other,
and make the further approximation of replacing the projected operator Q2LQ2 by the
full Liouville operator L in the propagator governing the time evolution of the factorised
correlation functions, (9.5.14) becomes

N2(t) ≈ m

Ω2
0kBT

∑
k,k′

∑
α

∑
β

(
ρk′ij

β

−k′ ,Q1L2uix

)(
ρk′ij

β

−k′ , ρk′ij
β

−k′
)−1

× (ρki , ρk′i (t)
)(
jα
−k, j

β

−k′(t)
)
δkk′

× (ρkij
α
−k, ρkij

α
−k

)−1(Q1L2uix, ρkij
α
−k

)
(9.5.15)
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The time-correlation functions appearing here are the same as in (9.5.7), but the time-
independent vertices have a more complicated form; a detailed calculation shows that

(
Q1L2uiα, ρkij

β

−k

)= −Ω2
0kBT

m
Vαβ(k) (9.5.16)

where

Vαβ(k) = ρ

Ω2
0m

∫
exp(−ik · r)g(r)∇α∇βv(r)dr (9.5.17)

is a normalised “vertex function”. Then, proceeding as before by switching from a sum
over wavevectors to an integral, we find that

N2(t) = N2l(t) + 2N2t (t) (9.5.18)

N2l,t (t) = Ω2
0m

3ρkBT
(2π)−3

∫
V2
l,t (k)Fs(k, t)

1

k2
Cl,t (k, t)dk (9.5.19)

where Vl,t are the longitudinal and transverse components of the vertex tensor, defined in
a manner analogous to (7.4.24).

There is striking similarity between the structure of (9.5.19) and that of the mode-
coupling expression (9.5.9) obtained earlier for Z(t) except that (9.5.19) contains the
vertex factors Vl,t . Inclusion of these factors ensures that the integral over wavevectors
converges for all t ; they therefore play a similar role to that of the form factor f̂ (k) in the
velocity-field approach, but have the advantage of being defined unambiguously through
(9.5.17). The theory is also self-consistent, since the correlation functions required as input
may be obtained by a mode-coupling calculation of the same type. Numerically, however,
the results are less satisfactory than those pictured in Figure 9.6.

9.6 MODE-COUPLING THEORY II. THE KINETIC GLASS TRANSITION

The mode-coupling ideas introduced in Section 9.5 were first used by Kawasaki15 to study
the “critical slowing down” of density fluctuations near the liquid–gas critical point. Here
we describe the application of the same general approach16 to the not dissimilar phenom-
ena associated with the kinetic glass transition of a fragile glass former, already discussed
in a qualitative way in Section 8.8. The theory shows that the structural arrest and associ-
ated dynamical anomalies that appear in the supercooled liquid at a well-defined temper-
ature (on cooling) or density (on compression) are a direct consequence of a non-linear,
feedback mechanism, the source of which is the fact that the memory function of the den-
sity autocorrelation function F(k, t) may be expressed, at least approximately, in terms
of F(k, t) itself. Although real glass-forming liquids are usually multi-component in na-
ture, we limit the discussion to one-component systems; the generalisation to mixtures is
straightforward.
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We saw in Section 9.4 that the decay of density fluctuations in a simple liquid above its
triple point is well described within the memory-function formalism by choosing as com-
ponents of the dynamical vector A the three variables ρk (particle density), jk ≡ k · jk/k
(longitudinal particle current) and Tk (a microscopic temperature variable). It turns out,
however, that temperature fluctuations are not important for the description of structural
arrest and for present purposes the variable Tk can therefore be omitted. To simplify the
resulting equations we first introduce a normalised density autocorrelation function

φ(k, t) = F(k, t)/S(k) (9.6.1)

with φ(k, t = 0) = 1. Then, by following steps similar to those used to derive the memory-
function equation (9.4.16), we arrive at an expression for the Laplace transform of φ(k, t)

in the form

φ̃(k, z) = 1

−iz + Ω2
k

−iz + M̃(k, z)

(9.6.2)

where Ω2
k = v2

T k
2/S(k) and vT = (kBT/m)1/2 is the thermal velocity. The structure of this

result is identical with that in (9.4.16) and the function M̃(k, z), like Ñl(k, z) in (9.4.16),
is again the memory function of the longitudinal current, but the two choices made for the
vector A means that the explicit form of the memory function is different in the two cases.
In the two-variable description the random-force vector has only one component, given by

Kk =Q(iLjk) (9.6.3)

and the corresponding memory function is

M(k, t) = 1

Nv2
T

(
Kk,Rk(t)

)
(9.6.4)

with Rk(t) = exp(iQLQt)Kk, where the operator Q= 1−P projects an arbitrary dynam-
ical variable onto the subspace orthogonal to the variables ρk and jk. The time dependence
of φ(k, t) is obtained from (9.6.2) via an inverse Laplace transform:

φ̈(k, t) + Ω2
k φ(k, t) +

∫ t

0
M(k, t − t ′)φ̇(k, t ′)dt ′ = 0 (9.6.5)

which can be recognised as the equation of motion of a harmonic oscillator of frequency
Ωk , damped by a time-retarded, frictional force.

The theoretical task is to derive an expression for the memory function that accounts
for the structural slowing-down near the transition temperature TC; to achieve this, we
follow the original arguments of Götze and collaborators.17 The random force Kk is by
construction orthogonal to the slow variable ρk and the simplest slow variables having a
non-zero correlation with Kk are the pair products

Ap,q = ρpρq (9.6.6)
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Hence the first approximation, one of typical mode-coupling type, is to replace the random
force Kk in (9.6.3) by its projection onto the subspace spanned by all pair products, i.e.

Kk ≈
∑
p,q

∑
p′,q′

(Ap′,q′ ,Kk)(Ap,q,Ap′,q′)−1Ap,q (9.6.7)

Substitution of (9.6.7) and the corresponding expression for Rk(t) in (9.6.4) gives

M(k, t) = 1

Nv2
T

∑
p,q

∑
p′,q′

(Ap′,q′ ,Kk)(Ap,q,Ap′,q′)−1

×
∑

p′′,q′′

∑
p′′′,q′′′

(Ap′′′,q′′′ ,Kk)(Ap′′,q′′,Ap′′′,q′′′)−1

× (Ap,q, exp(iQLQt)Ap′′,q′′
)

(9.6.8)

The next step is to factorise the static and dynamic four-point correlation functions in
(9.6.8) into products of two-point functions, and simultaneously to replace the propagator
of the projected dynamics by the full propagator. Thus(

Ap,q, exp(iQLQt)Ap′′,q′′
) = (ρpρq, exp(iQLQt)ρp′′ρq′′

)
≈ (ρp, exp(iLt)ρp′′

)(
ρq, exp(iLt)ρq′′

)
= δp,p′′δq,q′′N2S(p)S(q)φ(p, t)φ(q, t) (9.6.9)

while for t = 0:

(Ap,q,Ap′,q′) = δp,p′δq,q′N2S(p)S(q)

(9.6.10)

(Ap,q,Ap′,q′)−1 = δp,p′δq,q′

N2S(p)S(q)

The three-point static correlation functions that appear in the terms involving Kk in (9.6.8)
can be eliminated with a help of a generalisation of the Yvon equality (7.2.11), i.e.

〈ȦB∗〉 = 〈(iLA)B∗〉≡ −〈{H,A},B∗〉= kBT
〈{A,B∗}〉 (9.6.11)

the proof of which now requires a double integration by parts. We also make use of the
Ornstein–Zernike relation in the form S(k) = 1/(1 − ρĉ(k)) and the convolution approxi-
mation (4.2.10). Then, for example:

(ρp′,q′ , iLjk) = −iv2
T Nδk,p′+q′

[
k · p′S(q ′) + k · q′S(p′)

]
/k (9.6.12)

The final result of these manipulations is

M(k, t) = v2
T ρ

2

2Nk2

∑
p,q

δk,p+qS(p)S(q)
[
ĉ(p)k · p + ĉ(q)k · q

]2
φ(p, t)φ(q, t) (9.6.13)
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The factor 1
2 on the right-hand side arises from the fact that all double sums over pairs of

wavevectors must be ordered in such a way that each product variable Ap,q appears only
once.

The appearance of the product φ(p, t)φ(q, t) in (9.6.13) means that the memory func-
tion decays on the same time-scale as the correlation function. This represents only the
long-time contribution to the total memory function and cannot describe the behaviour at
short times, which is dominated by nearly instantaneous, binary collisions. To describe the
effect of collisions it is assumed that the short-time contribution M(0)(k, t) can be repre-
sented by a δ-function, i.e.

M(0)(k, t) = ν(k)δ(t) (9.6.14)

The complete memory function is therefore written as

M(k, t) = ν(k)δ(t) + Ω2
km(k, t) (9.6.15)

Comparison with (9.6.13) shows that

m(k, t) = 1

2V

∑
p,q

δk,p+qV(k,p,q)φ(p, t)φ(q, t) (9.6.16)

where the vertex function V is

V(k,p,q) = ρS(k)S(p)S(q)

k4

[
ĉ(p)k · p + ĉ(q)k · q

]2 (9.6.17)

The non-linear, integro-differential equation (9.6.5) may then be rewritten as

φ̈(k, t) + Ω2
k φ(k, t) + ν(k)φ̇(k, t) + Ω2

k

∫ ∞

0
m(k, t − t ′)φ̇(k, t ′)dt ′ = 0 (9.6.18)

The coupled equations (9.6.16) and (9.6.18) form a closed, self-consistent set; the only
input required for their solution is the static structure factor of the supercooled liquid,
which determines the value of the vertex function via (9.6.17). The feedback mechanism is
provided by the quadratic dependence of the memory function on φ(k, t), with the density
and temperature dependence of the effect coming from the vertex function. Numerical
solution of the coupled equations reveals the existence of a sharp crossover from ergodic
to non-ergodic behaviour of φ(k, t) at a well-defined temperature (at constant density)
or density (at constant temperature). The predicted correlation function can also be used
as input to a similar set of equations for the self correlation function Fs(k, t), where the
memory function now involves the product φ(k, t)Fs(k, t).

In the case of hard spheres the theory outlined above predicts a kinetic glass transition
at a packing fraction ηC ≈ 0.516 when the Percus–Yevick approximation for the structure
factor is used. At the critical packing fraction the order parameter18 fk = limt→∞ φ(k, t)

changes discontinuously from zero to a wavenumber-dependent value 0 < fk � 1. That this
transition is a direct consequence of the non-linearity of the equation of motion (9.6.18)
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can be demonstrated with the help of some further approximations.17,19 The largest contri-
bution to the vertex function comes from the region k ≈ kmax of the main peak in the struc-
ture factor. It is therefore not unreasonable to ignore the sum over wavevectors by putting
S(k) ≈ 1 + aδ(k − kmax), where a is the area under the main peak. With this assumption,
(9.6.18) becomes an equation for the single correlation function φ(kmax, t) ≡ φ(t), which
we write as

φ̈(t) + Ω2φ(t) + νφ̇(t) + λΩ2
∫ ∞

0

[
φ(t − t ′)

]2
φ̇(t ′)dt ′ = 0 (9.6.19)

where Ω ≡ Ωkmax , ν can be interpreted as a collision frequency and λ, which replaces
the complicated vertex function, acts as a “control parameter”, a role played by inverse
temperature or density in the more complete theory. By taking the Laplace transform of
(9.6.19) we recover (9.6.2) in the form

φ̃(z) = 1

−iz + Ω2

−iz + ν + Ω2m̃(z)

(9.6.20)

with

m̃(z) = λ

∫ ∞

0

[
φ(t)

]2 exp(izt)dt (9.6.21)

Equation (9.6.20) can be rearranged to give

φ̃(z)

1 + izφ̃(z)
= 1

Ω2

[−iz + ν + Ω2m̃(z)
]

(9.6.22)

Let limt→∞ φ(t) = f , where the order parameter f is now independent of k. Then

lim
z→0

φ̃(z) = f

−iz
(9.6.23)

and hence, from substitution in (9.6.22):

lim
z→0

m̃(z) = f

−iz(1 − f )
(9.6.24)

In the non-ergodic or structurally arrested phase, where f > 0, the power spectrum φ(ω)

will contain a fully elastic component, f δ(ω); experimentally this would correspond to
scattering from the frozen structure.

Equation (9.2.21) shows that

lim
z→0

m̃(z) = λf 2

−iz
(9.6.25)
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FIG. 9.7. Predictions of mode-coupling theory for the dependence on λ of the order parameter f . The full curve
is the result obtained from the equation of motion (9.6.19) and the dashes show the approximate solution (9.6.27).

Identification of (9.6.25) with (9.6.24) leads to a simple equation for the order parameter:

f

1 − f
= λf 2 (9.6.26)

the solutions to which are

f = 0, f = 1
2

[
1 ± (1 − 4/λ)1/2] (9.6.27)

Since f must be real, the only acceptable solution for λ < 4 is f = 0, corresponding to the
ergodic phase. This remains a solution at larger values of λ, but at the critical value, λC = 4,
there is a bifurcation to the non-ergodic solution, f = 1

2 [1 + (1 − 4/λ)1/2]; for λ = 4,
f = 1

2 . The root f = 1
2 [1 − (1 − 4/λ)1/2] is not acceptable, since it implies that the system

would revert to ergodic behaviour in the limit λ → ∞. Let λ = 4(1 + σε), where σ = −1
and +1 in the ergodic and arrested phases, respectively. The quantity ε = (λ− λC)/σλC is
a positive number that measures the distance from the transition. Substitution in (9.6.27)
shows that for σ = +1, f has a square-root cusp as ε → 0:

lim
ε→0

f = 1
2

(
1 + ε1/2) (9.6.28)

The dependence of f on λ calculated from (9.6.27) and (9.6.28) is sketched in Figure 9.7.
Equation (9.6.28) describes the infinite-time behaviour of the correlation function in the

arrested phase for λ ≈ λC. To extend this result to finite times, we look for a solution to
(9.6.19) of the form

φ(t) = 1
2 + ε1/2gε(τ ) (9.6.29)

where τ = εst is a scaled time and gε(τ ) is a scaling function. The quantity s (> 0) is a
scaling exponent, which is determined later by requiring φ(t) to be independent of ε in the
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short-time limit. This restriction on φ follows from the fact that the short-time behaviour
is controlled by the collision frequency ν, not by the mode-coupling contribution to the
memory function. The Laplace transform of (9.6.29) is

φ̃(z) = ε−s

(
1

−2iζ
+ ε1/2g̃ε(ζ )

)
(9.6.30)

where ζ ≡ ε−sz. If we substitute (9.6.29) in (9.6.21) (with λ = 4(1 + σε)) and (9.6.30)
in (9.6.22), combine the two results and let ε → 0, we obtain an equation for the scaling
function at the critical point (ε = 0):

−8iζ
[
g̃0(ζ )

]2 − 4
∫ ∞

0

[
g0(τ )

]2 exp(iζ τ )dτ = σ

−iζ
(9.6.31)

To derive this result it must be assumed that ε1/2g̃0(ζ ) vanishes with ε; the solution ob-
tained below is consistent with that assumption.

The β-relaxation regime corresponds to scaled times τ � 1 (or ζ � 1). We look for a
power-law solution for g0(τ ) such that

g0(τ ) = a0τ
−a, τ → 0 (9.6.32)

with a Laplace transform given by

g̃0(ζ ) = a0�(1 − a)(−iζ )a−1, ζ → ∞ (9.6.33)

where �(x) is the gamma function. Substitution in (9.6.31) gives

(−iζ )2a−14a2
0

[
2�2(1 − a) − �(1 − 2a)

]= 0 (9.6.34)

i.e. 2�2(1 − a) = �(1 − 2a), the positive solution to which is a ≈ 0.395. When written in
terms of the original time variable t , combination of (9.6.29) and (9.6.32) shows that

φ(t) = 1
2 + a0ε

−as+1/2t−a (9.6.35)

Since φ(t) must be independent of ε in the limit t → 0, it follows that s = 1/2a ≈ 1.265.
Thus the correlation function decays as

φ(t) = 1
2 + a0t

−a (9.6.36)

The result expressed by (9.6.36) is independent of σ . It therefore describes both the
decay of φ(t) towards its non-zero, asymptotic value in the arrested phase and the first
relaxation process in the ergodic phase, where the power-law behaviour will persist so
long as τ � 1. Times τ � 1 corresponds to α-relaxation in the ergodic phase. A scaling
analysis similar to the previous one starts from the ansatz

g0(τ ) = −b0τ
b, τ → ∞ (9.6.37)
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and leads to the exponent relation

2�2(1 + b) − �(1 + 2b) = 0 (9.6.38)

The only acceptable solution to this equation is b = 1. Thus

φ(t) = 1
2 − b0ε

1/2τ, 1 � τ � 1/b0ε
1/2 (9.6.39)

The upper limit on τ in (9.6.39) appears because |ε1/2g0(τ )| must be less than unity for
the asymptotic analysis to be valid. For yet longer times, a purely exponential decay is
predicted, in contrast to the stretched-exponential decay seen both experimentally and in
simulations (see Section 8.8). To reproduce the observed behaviour the simplified model
represented by (9.6.19), in which m(t) behaves as [φ(t)]2, must be generalised16 to include
more control parameters and other powers of φ(t).

The scaling predictions of mode-coupling theory have been tested against experimental
data and the results of simulations,20 and generally good agreement is found at temper-
atures just above TC. However, the distinction between ergodic and strictly non-ergodic
phases that appears in the original version of the theory is unrealistic. At sufficiently long
times, thermally activated processes of the type evident, for example, in Figure 8.8 will
eventually cause ergodicity to be restored. Such effects can be accommodated within the
theory by inclusion of the coupling of fluctuations in the microscopic density with those
in particle current.21 The “ideal” transition is then suppressed and the correlation func-
tion is found to decay to zero even below TC, though only after a period of near-complete
structural arrest that rapidly lengthens as the temperature is lowered.22
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CHAPTER 10

Ionic Liquids

10.1 CLASSES AND MODELS OF IONIC LIQUIDS

We have been concerned so far almost exclusively with fluids in which the range of the
interparticle forces is of the order of a few atomic radii. This chapter is devoted to sys-
tems in which the particles carry an electric charge. Ionic liquids have certain properties
that are absent in fluids composed of neutral particles and many of their distinguishing
features are associated in some way with the slow decay of the Coulomb potential. Our
attention will be focused on three types of system: molten salts, ionic solutions and liquid
metals. Molten salts are in many respects the simplest class of ionic liquids. We shall con-
sider in detail only the case in which there is a single cation and a single anion species, of
which the alkali halides are the best understood examples. Molten salts are characterised
by large cohesive energies and high temperatures, and by ionic conductivities of the order
of 1 Ω−1 cm−1. There exist also certain crystalline salts that have conductivities com-
parable with those of the molten phase. These are the so-called “fast-ion” conductors, or
“solid electrolytes”, in which one of the ionic species becomes liquid-like in behaviour
above a certain temperature.1 Ionic solutions are liquids consisting of a solvent formed
from neutral, polar molecules and a solute that dissociates into positive and negative ions.
They vary widely in complexity. In the classic electrolyte solutions the cations and anions
are of comparable size and absolute charge, whereas macromolecular ionic solutions con-
tain both macroions (charged polymer chains, micelles, charged colloidal particles, etc.)
and microscopic counterions. Despite their complexity, some systems of the latter type,
including charged colloidal suspensions, can be treated quantitatively by standard methods
of liquid-state theory. Finally, liquid metals are similar in composition to molten salts, the
anion of the salt being replaced by electrons from the valence or conduction bands of the
metal. The analogy is a superficial one, however, because the small mass of the electron
leads to a pronounced asymmetry between the two charge-carrying species. Whereas the
behaviour of the ions can be discussed within the framework of classical statistical mechan-
ics, the electrons form a degenerate Fermi gas for which a quantum-mechanical treatment
is required. The presence of “free” electrons is also the origin of the very high electrical
conductivies of liquid metals, which are typically three to four orders of magnitude larger
than those of molten salts. “Simple” metals are those in which the electronic valence states
are well separated in energy from the tightly bound, core states; they include the alkali
metals, magnesium, zinc, mercury, gallium and aluminium.

291
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The systems we have listed vary widely in character but they have two important features
in common: first, that of overall, macroscopic charge neutrality and, secondly, the presence
of mobile charge carriers. The condition of overall charge neutrality imposes a constraint
on the relative concentrations of the ions. If the fluid contains ρν = Nν/V ions per unit
volume of species ν and if the charge carried by ions of that species is qν = zνe, where e

is the elementary charge, overall charge neutrality requires that∑
ν

zνρν = 0 (10.1.1)

We shall see in the next section that a tendency towards charge neutrality exists even at
the local, microscopic level. This effect gives rise in turn to the phenomenon of screening.
Introduction of an external charge into an ionic fluid causes a rearrangement, or polarisa-
tion, of the surrounding charge density of a nature such that the net electrostatic potential
due to the external charge and the “polarisation cloud” decays much faster than the bare
Coulomb potential. In fact, as we shall show later, the potential decays exponentially. Since
it is permissible to regard any ion in the fluid as an “external” charge, it follows that the
screening mechanism determines the long-range behaviour of the ionic distribution func-
tions. Screening also requires that the distribution functions satisfy a number of important
sum rules. In ionic liquids of high density, such as molten salts, there is a competition
between packing effects and screening; this leads to a charge ordering of the ions, which
manifests itself as an alternation in sign of the charge carried by successive coordination
shells around a central ion.

The presence of mobile charge carriers plays an important role in determining the dy-
namical properties of ionic liquids. It leads most obviously to new kinds of transport, of
which electrical conduction is the most familiar example. In addition, the interplay between
Maxwell’s equations and the equations of hydrodynamics causes the long-wavelength
charge fluctuations to relax in a manner qualitatively different from that of concentration
fluctuations in mixtures of uncharged particles. Under conditions achievable, in particular,
in molten salts, fluctuations in charge may give rise to propagating, high-frequency, collec-
tive modes. These excitations are similar in character to the optic modes of ionic crystals
and are also closely related to the charge oscillations found in plasmas.

Theories of ionic liquids rely heavily on the use of simple hamiltonian models that re-
tain only the essential features of the ionic interactions. One simplifying approximation
commonly made is to ignore the polarisability of the ions and represent the interactions by
a rigid-ion model. The total potential energy is then assumed to be pairwise-additive and
written as the sum of short-range (S) and coulombic (C) terms in the form

VN

(
rN
)= V S

N

(
rN
)+ V C

N

(
rN
)= V S

N

(
rN
)+ N∑

i=1

N∑
j>i

zizj e
2

ε|rj − ri | (10.1.2)

where N is the total number of ions and ε is the dielectric constant of the medium in which
the ions are immersed. It is often convenient to replace the Coulomb term in (10.1.2) by a
sum in reciprocal space. Let ρZ

k be a Fourier component of the microscopic charge density,
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given by

ρZ
k =

∑
ν

zνρ
ν
k (10.1.3)

where ρν
k is a Fourier component of the microscopic number density of species ν. Then the

total Coulomb energy of a periodic system of volume V is

V C
N

(
rN
)= 1

2V

∑
k

v̂(k)

(
ρZ

k ρZ
−k −

N∑
i=1

z2
i

)
(10.1.4)

where the sum on k runs over wavevectors compatible with the assumed periodic boundary
conditions and the (negative) second term inside brackets cancels the infinite self-energy
of the ions. The function v̂(k) is the Fourier transform of the Coulomb potential between
two elementary charges, i.e.

v̂(k) = 4πe2/k2 (10.1.5)

The same expression was used earlier in the derivation of the Debye–Hückel result (4.6.26);
the k−2 singularity in the limit k → 0 is an important characteristic of Coulomb systems.
In the thermodynamic limit the sum over wavevectors in (10.1.4) becomes an integral over
k divided by (2π)3; the equivalence of the two expressions for V C

N in (10.1.2) and (10.1.4)
is then an immediate consequence of elementary properties of the Fourier transform.

If electrical neutrality is to be achieved, an ionic fluid must contain at least two species
of opposite charge. The simplest representation of such a system is obtained by replacing
one of the species by a uniformly smeared-out, structureless background, the total charge
of which must cancel that of the discrete ions. When the discrete ions are identical point
charges, the resulting model (already discussed in Section 4.6) is called the one-component
plasma or OCP.2 The total potential energy of an OCP in which the ions carry a charge ze

is given by the sum over k in (10.1.4), with ρZ
k = zρk, except that the presence of the

neutralising background means that the term for k = 0 must be omitted. The OCP has
certain unphysical features. For example, mass and charge fluctuations are proportional
to each other and the system therefore has zero resistivity, because conservation of total
momentum is equivalent to conservation of the microscopic electric current. Nevertheless,
as the prototypical ionic fluid, the OCP plays a conceptual role similar to that filled by the
hard-sphere model in the theory of simple, insulating liquids. It provides, in particular, a
useful starting point for the study of liquid metals, where the mobile species corresponds
to the metal ions and the background represents the conduction electrons.

To illustrate the usefulness of the OCP in the qualitative discussion of the properties of
ionic liquids we return briefly to the question of the high-frequency, charge-fluctuation
modes mentioned earlier. The characteristic frequency of the longitudinal mode is the
plasma frequency, ωp. In the case of the OCP an expression for ωp can be obtained by
a simple argument based on a δ-function representation of the dynamic structure factor.
Use of such a model is justified by the fact that conservation of momentum of the ions
means that there is no damping of charge fluctuations in the long-wavelength limit. We
therefore assume that S(k,ω) consists of a pair of δ-functions located at frequencies ±ωk ,
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and identify the plasma frequency as ωp = limk→0 ωk . If the spectrum is to satisfy the sum
rules (7.4.23) and (7.4.30), ωk must be such that

ω2
k = ω2

0

S(k)
= kBT

mS(k)
k2 (10.1.6)

The long-wavelength limit of S(k) can be estimated within the random-phase approxima-
tion of Section 5.5. If we choose the ideal gas as reference system and make the substitution
ĉ(k) = −βz2v̂(k), (5.5.25) becomes

S(k) = 1

1 + βρz2v̂(k)
= 1

1 + 4πβρz2e2/k2
∼ k2

k2
D

, k → 0 (10.1.7)

where kD is the Debye wavenumber defined by (4.6.23); as we shall see later, (10.1.7) is
exact for the OCP. If we now substitute for S(k) in (10.1.6), we find that

ω2
p = lim

k→0
ω2

k = 4πρz2e2

m
(10.1.8)

The frequency of the propagating mode therefore remains non-zero even in the long-
wavelength limit; this is a characteristic feature of an optic-type excitation. The fact that
ωp is non-zero is a direct consequence of the k−2 singularity in v̂(k), since it is this singu-
larity that determines the small-k behaviour of S(k). Note also that the plasma frequency
is independent of temperature.

If the fluid is genuinely two-component in character, a short-range repulsion is essential
if the system is to be stable against the collapse of oppositely charged pairs. Within a
model, stability is most easily achieved by imposing a hard-sphere repulsion between ions,
a choice of interaction that defines the primitive model of electrolytes and molten salts.
The primitive model has been widely adopted in studies of the osmotic properties of ionic
solutions, the solvent being replaced by a continuum of dielectric constant ε that acts to
reduce the Coulomb interaction between ions; the restricted version of the model is one in
which all ions have the same diameter, d , and the same absolute valency, z.

The restricted primitive model with ε = 1 provides the simplest example of a rigid-ion
model of a molten salt. Alternatively, the short-range interactions in the salt can be mod-
elled by soft-core repulsions characterised by a single length parameter σ . For example,
the short-range contribution to the pair potential can be written as

vS
νμ(r) = z2e2

nσ

(
σ

r

)n

(10.1.9)

for all pairs ν, μ; the parameter σ is the separation at which the cation–anion potential
has its minimum value. Equation (10.1.9), together with the coulombic term, defines what
we shall call the “simple molten salt”. This provides a fair representation of the ionic
interactions in the molten alkali halides, particularly of salts in which the positive and
negative ions are of approximately equal size. The values of n appropriate to the alkali
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halides are in the range n = 8 to 10; in the limit n → ∞, the simple molten salt reduces to
the restricted primitive model. If the two ionic species have equal masses, the hamiltonian
of the system is fully symmetric under charge conjugation, meaning that cations and anions
play identical roles.

The examples given in later sections of this chapter draw heavily on calculations for the
restricted primitive model and the simple molten salt, but a number of more realistic mod-
els appropriate to molten salts have also been extensively studied both theoretically and
by simulation. The best known of these are the rigid-ion potentials derived for salts of the
alkali-halide family3 in which the short-range interaction between a given ion pair is writ-
ten as the sum of an exponential repulsion and attractive terms arising from dipole–dipole
and dipole–quadrupole dispersion forces. If the ions are highly polarisable, however, as is
often the case for the anion, the effect of induction forces cannot be ignored. A variety of
schemes have therefore been devised that allow the incorporation of ionic polarisation into
molecular-dynamics simulations of molten salts. Much of the early work on polarisable
systems was based on the “shell model” of lattice dynamics, in which the total charge of
the ion is divided between a core and a massless shell. The shell is bound to the core by
a harmonic potential and polarisation of the ion corresponds to a bodily shift of the shell
relative to the core; the shells, being of zero mass, are assumed to adjust themselves instan-
taneously in such a way as to minimise the total potential energy. Some interesting results
have been obtained in this way, but the model has a number of unsatisfactory features. For
example, the parameters characterising a particular ion species are not transferable from
one salt to another. A different approach has subsequently been developed4 in which the di-
pole moments are treated as additional degrees of freedom within an “extended lagrangian”
scheme; this method resembles closely one devised earlier for the treatment of many-body
polarisation effects in polar fluids.5

10.2 SCREENING AND CHARGE ORDERING

The microscopic structure of an n-component ionic fluid can be discussed in terms of
1
2n(n + 1) partial structure factors Sνμ(k) with ν, μ = 1 to n, but it is certain linear com-
binations of these functions that are of most physical relevance. If

ρN
k =

∑
ν

ρν
k (10.2.1)

is a Fourier component of the microscopic number density, and if the components of the
charge density are defined as in (10.1.3), fluctuations in the densities are described by three
static structure factors of the form

SNN(k) = 1

N

〈
ρN

k ρN
−k

〉=∑
ν

∑
μ

Sνμ(k) (10.2.2a)

SNZ(k) = 1

N

〈
ρN

k ρZ
−k

〉=∑
ν

∑
μ

zμSνμ(k) (10.2.2b)
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SZZ(k) = 1

N

〈
ρZ

k ρZ
−k

〉=∑
ν

∑
μ

zνzμSνμ(k) (10.2.2c)

Of these three functions, the number–number structure factor SNN(k) is the closest in
significance to the single structure factor of a one-component fluid.

Let δφμ(r) be a weak, external potential that couples to the microscopic number density
of species μ. We saw in Section 3.6 that the change induced in a Fourier component of the
single-particle density of species ν is

δρ̂(1)
ν (k) = χνμ(k)δφ̂μ(k) (10.2.3)

where the static response function χνμ (k) is related to the corresponding partial structure
factor by

χνμ(k) = −βρSνμ(k) (10.2.4)

The problem of greatest interest here concerns the response of the fluid to a weak field
produced by an external charge density with Fourier components eδρ̂ext(k); to simplify the
discussion we consider a system of rigid ions in vacuo (ε = 1). The electric potential due
to the external charge density is obtained from the k-space version of Poisson’s equation,
i.e.

δφ̂ext(k) = 4πe

k2
δρ̂ext(k) (10.2.5)

The electric potential couples directly to the microscopic charge density of the fluid, giving
rise to a mean induced charge density δρ̂Z(k). The latter is proportional to eδφ̂ext(k),
the constant of proportionality being, by definition, the charge-density response function,
χZZ(k). Thus

δρ̂Z(k) =
∑
ν

zνδρ̂
(1)
ν (k) = χZZ(k)eδφ̂

ext(k) (10.2.6)

If we put δφ̂μ(k) = zμeδφ̂
ext(k) in (10.2.3) and then substitute for δρ̂(1)

ν (k) in (10.2.6), we
find that the response function can be identified as

χZZ(k) =
∑
ν

∑
μ

zνzμχνμ(k) (10.2.7)

and combination of (10.2.2c), (10.2.4) and (10.2.7) leads to the charge-response version of
the fluctuation–dissipation theorem:

χZZ(k) = −βρSZZ(k) (10.2.8)

The electrostrictive behaviour of the fluid, i.e. the number-density response to an external
electric potential, is characterised by a cross response function χNZ(k) through an expres-
sion analogous to (10.2.6):

δρ̂N(k) =
∑
ν

δρ̂(1)
ν (k) = χNZ(k)eδφ̂

ext(k) (10.2.9)
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The charge response to the external potential can equally well be described in terms of
a longitudinal dielectric function ε(k); this is simply a k-dependent generalisation of the
macroscopic dielectric constant of elementary electrostatics. If E is the electric field and D
is the electric displacement, ε(k) is given by

1

ε(k)
= k · Ê(k)

k · D̂(k)
= 1 + δρ̂Z(k)

δρ̂ext(k)
(10.2.10)

where Maxwell’s equations have been used to relate E and D, respectively, to the total and
external charge densities. Equations (10.2.5), (10.2.6) and (10.2.10) can now be combined
to yield the fundamental relation between the dielectric and charge-response functions:

1

ε(k)
= 1 + 4πe2

k2
χZZ(k) (10.2.11)

The definition (10.2.2c) shows that SZZ(k) can never be negative. Equations (10.2.8) and
(10.2.11) therefore imply that 1/ε(k) � 1 for all k.

It is known experimentally that an external charge distribution is completely screened by
a conducting fluid. In other words, the total charge density vanishes in the long-wavelength
limit, or

lim
k→0

[
δρ̂ext(k) + δρ̂Z(k)

]= 0 (10.2.12)

If this result is to be consistent with (10.2.10), it follows that

lim
k→0

ε(k) = ∞ (10.2.13)

In combination with (10.2.8) and (10.2.11), the assumption of perfect screening contained
in (10.2.13) implies that the charge structure factor at long wavelengths behaves as

lim
k→0

k2
D

k2
SZZ(k) =

∑
ν

xνz
2
ν (10.2.14)

where xν = ρν/ρ and kD, the Debye wavenumber, is given by a generalisation of (4.6.23):

k2
D = 4πβρe2

ε

∑
ν

xνz
2
ν (10.2.15)

The quantity ΛD = 1/kD is the Debye screening length, familiar from ionic-solution the-
ory; in a dilute electrolyte it is the distance beyond which the electric potential due to
an ion is completely screened by the local, induced charge distribution. From compari-
son of (10.2.14) with the compressibility equation (3.6.11) we see that large-scale (long-
wavelength) charge fluctuations are strongly inhibited in comparison with the number-
density fluctuations of a neutral fluid. It has been proved rigorously6 that the fluctuation
in the total charge QV contained in a volume V , i.e. (〈Q2

V 〉− 〈QV 〉2), is proportional only
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to the surface area bounding the volume. By contrast, (2.4.23) shows that the fluctuation
in the number of particles within V is proportional to V itself.

Equation (10.2.14) leads directly to two important relations between the partial pair
distribution functions of an ionic fluid, known as the Stillinger–Lovett sum rules.7 We see
from (3.6.15) and (10.2.2c) that the charge structure factor is related to the partial pair
correlation functions hνμ(r) by

SZZ(k) =
∑
ν

∑
μ

zνzμ

(
xνδνμ + 4πρxνxμ

∫ ∞

0

sin kr

kr
hνμ(r)r

2 dr

)
(10.2.16)

If the functions hνμ(r) decay sufficiently rapidly at large r , the Fourier integrals in
(10.2.16) may be expanded to order k2. The two sum rules are then obtained by equat-
ing terms of zeroth and second order in k in (10.2.14) and (10.2.16) and exploiting the
condition of overall charge neutrality expressed by (10.1.1). The results derived in this
way are

ρ
∑
ν

xνzν
∑
μ

∫
xμzμgνμ(r)dr = −

∑
ν

xνz
2
ν

(10.2.17)

ρ
∑
ν

xνzν
∑
μ

∫
xμzμgνμ(r)r

2 dr = −6Λ2
D

∑
ν

xνz
2
ν

The assumption concerning the large-r behaviour of the correlation functions is equiva-
lent to a “clustering” hypothesis for the particle densities. An n-particle density ρ(n)(rn)

is said to have a clustering property if, for all m < n, it reduces to the product
ρ(m)(rm)ρ(n−m)(r(n−m)) faster than a prescribed inverse power of the distance between
the centres of mass of the clusters (r1, . . . , rm) and (rm+1, . . . , rn) as the clusters become
infinitely separated. If the clustering hypothesis is used, the Stillinger–Lovett sum rules
can be derived from the YBG hierarchy of Section 4.2 without making any assumption
about the small-k behaviour of SZZ(k). The derivation is therefore not dependent on the
perfect-screening condition (10.2.13); perfect screening appears instead as a consequence
of the sum rules.

The first of the Stillinger–Lovett rules is just a linear combination of local electroneu-
trality conditions of the form

ρ
∑
μ

∫
xμzμgνμ(r)dr = −zν (10.2.18)

The physical meaning of (10.2.18) is that the total charge around a given ion must exactly
cancel the charge of the ion. This is the first of a series of sum rules satisfied by the mul-
tipole moments of the charge distribution in the vicinity of a given number of fixed ions.8

The sum rules can again be derived from the YBG hierarchy if appropriate clustering as-
sumptions are made. In particular, if correlations are assumed to decay exponentially, it
can be shown that the charge distribution around any number of fixed ions has no mul-
tipole moment of any order. The local electroneutrality condition may be re-expressed in
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terms of the long-wavelength limits of the partial structure factors. In the case of a two-
component system, (10.2.18) becomes z2

1S11(0) = −z1z2S12(0) = z2
2S22(0) or, because the

fluid is electrically neutral overall:

x2
2S11(0) = x1x2S12(0) = x2

1S22(0) (10.2.19)

No such property holds for the partial structure factors of a mixture of neutral fluids.
The k → 0 limits of the partial structure factors of a binary ionic fluid are related to the

isothermal compressibility via the Kirkwood–Buff formula (3.6.17). The conditions im-
posed by charge neutrality mean, however, that direct substitution of (10.2.19) in (3.6.17)
leads to an indeterminate result. To avoid this problem we invert the system of linear equa-
tions represented by (10.2.2) and rewrite (3.6.17) in terms of SNN(k), SNZ(k) and SZZ(k)

in the form

ρkBT χT = lim
k→0

SNN(k)SZZ(k) − S2
NZ(k)

SZZ(k)
(10.2.20)

The small-k limits of the three structure factors in (10.2.20) can be deduced from the
asymptotic behaviour of the partial direct correlation functions cνμ(r). At large r we may
expect these functions to decay as cνμ(r) ∼ −βzνzμe

2/r . It is therefore natural to separate
cνμ(r) into short-range and coulombic parts; in k-space ĉνμ(k) becomes

ĉνμ(k) = ĉS
νμ(k) − 4πβzνzμe2

k2
(10.2.21)

where ĉS
νμ(k) is a regular function in the limit k → 0. Substitution of (10.2.21) in the

Ornstein–Zernike relation (3.6.12) leads, after some straightforward algebra and use of
(10.1.1) and (10.2.2), to the required results: at small k, SNN(k) ∼ k0, SNZ(k) ∼ k2 and
SZZ(k) ∼ k2; the last result agrees with (10.2.14). Thus (10.2.20) reduces to the simpler
expression

ρkBT χT = lim
k→0

SNN(k) (10.2.22)

while (3.6.16) becomes

1

ρkBT χT

= 1 − ρ lim
k→0

∑
ν

∑
μ

xνxμĉ
S
νμ(k) (10.2.23)

Because fluctuations in concentration correspond to fluctuations in charge density, and
because such fluctuations are suppressed at long wavelengths, all reference to the two-
component nature of the fluid has vanished from (10.2.22), which therefore resembles the
corresponding result for a one-component system of uncharged particles.

The coefficients of the terms of order k4 in the small-k expansions of SZZ(k) and SNZ(k)

and those of order k2 in the expansion of SNN(k) can be determined by macroscopic argu-
ments based on linearised hydrodynamics or thermodynamic fluctuation theory. We give
here the corresponding calculation for the OCP, where the problem is simplified by the fact
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that fluctuations in particle number are equivalent to fluctuations in charge. In the absence
of any flow the force per unit volume due to the electric field must exactly balance the force
due to the pressure gradient. Thus

zeρE(r) = ∇P(r) (10.2.24)

where zeρ is the mean charge density of the mobile ions and the field E(r) is related to the
sum of external and induced charge densities by Poisson’s equation:

∇ · E(r) = 4πe
[
δρext(r) + δρZ(r)

]
(10.2.25)

If the system is in local thermodynamic equilibrium, the pressure change in an isothermal
process is

δP (r) ≡ P(r) − P =
(
∂P

∂ρ

)
T

δρ(r) = 1

zρχT

δρZ(r) (10.2.26)

Equations (10.2.24) to (10.2.26) may now be combined to give a differential equation for
δρZ(r) of the form

1

k2
s
∇2δρZ(r) − δρZ(r) = δρext(r) (10.2.27)

where

k2
s = 4πz2e2ρ2χT = k2

D
χT

χ id
T

(10.2.28)

The solution to (10.2.27), obtained by taking Fourier transforms, is

δρ̂Z(k) = − δρ̂ext(k)
1 + k2/k2

s
(10.2.29)

Comparison of (10.2.29) with (10.2.10) shows that the long-wavelength limit of ε(k) is

lim
k→0

ε(k) = 1 + k2
s /k

2 (10.2.30)

which clearly satisfies the perfect-screening condition (10.2.13). The corresponding long-
wavelength expression for SZZ(k) (= z2S(k)), derived from (10.2.8) and (10.2.11), is

lim
k→0

SZZ(k) = z2k2/k2
D

1 + k2/k2
s

(10.2.31)

in agreement with (10.1.7). Equations (10.2.30) and (10.2.31) also apply to mixtures of
oppositely charged ions with z1 = −z2 = z, except that ks is differently defined.9

The Fourier components of the total electrostatic potential δφ(r) are related to the com-
ponents of the total charge density by the analogue of (10.2.5). In the long-wavelength



SCREENING AND CHARGE ORDERING 301

limit it follows from (10.2.10) and (10.2.30) that

δφ̂(k) = 4πe

k2

[
δρ̂ext(k) + δρ̂Z(k)

]
= 4πe

k2ε(k)
δρ̂ext(k) = 4πe

k2 + k2
s
δρ̂ext(k) (10.2.32)

If an ion of species ν in the fluid is regarded as an “external” charge placed at the origin,
the “external” charge density is eδρext(r) = zνeδ(r), and (10.2.32) shows that the effective
potential due to the ion decays as

φν(r) = zνe

r
exp(−ksr) (10.2.33)

The quantity φν(r) (= δφ(r)) is the potential of mean force for ions of species ν. In the
case of the OCP, ks is given by (10.2.28); this becomes equal to the Debye wavenumber in
the weak-coupling limit (ρ → 0 or T → ∞), where χT may be replaced by its ideal-gas
value, χ id

T = βρ. With these simplifications, (10.2.33) reduces to the Debye–Hückel result
(4.6.25). In the strong-coupling regime the compressibility of the OCP becomes negative,
ks takes on imaginary values, and the potential of mean force develops the oscillations
characteristic of systems with short-range order.

Oscillations of the charge density around a given ion are also a feature of two-
component ionic fluids, where they arise as a result of competition between hard-core
packing and local charge neutrality. In the case of the restricted primitive model a simple
argument7(a) based on the sum rules (10.2.17) shows that the radial charge distribution
function [g11(r) − g12(r)] (or [g22(r) − g12(r)]) must change sign as a function of r if
kDd �

√
6. Charge ordering of this type is a very strong effect in molten salts and oscil-

lations in the charge density around a central ion extend over many ionic radii. Computer
simulations of a variety of monovalent salts show that the pair distribution functions for
ions of like sign, g11(r) and g22(r), are very similar in form and that the oscillations in
these two functions are almost exactly out of phase with those in the much more sharply
peaked, cation–anion distribution function g12(r). Thus the radial charge distribution func-
tions around either a cation or anion are essentially the same and strongly oscillatory. The
similarity between g11(r) and g22(r) gives support to the use of the simple molten salt
defined by (10.1.9) as a model of the alkali halides. Some molecular-dynamics results for
such a model (with n = 9) are shown in Figure 10.1. The regular alternation of concentric
shells of oppositely charged ions is clearly visible in the pair distribution functions plotted
in part (a) of the figure. In k-space the effects of charge ordering reflect themselves in the
very sharp main peak in the charge–charge structure factor SZZ(k) (the Fourier transform
of [g11(r) + g22(r) − 2g12(r)]), shown in part (b); by contrast, SNN(k) (the transform of
[g11(r) + g22(r) + 2g12(r)]) is a relatively structureless function. The symmetry of the
model means that charge and number fluctuations are completely decoupled; thus SNZ(k)

is zero at all k. In the general case, the fluctuations are strictly independent only in the
long-wavelength limit, since SNZ(k) ∼ k2 as k → 0.

The main structural features exhibited by the simple molten salt are also seen in com-
puter simulations of more realistic rigid-ion models of the alkali halides. The results are
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FIG. 10.1. Charge ordering in the simple molten salt10 in a thermodynamic state corresponding roughly to that
of molten sodium chloride at T ≈ 1270 K. (a) Distribution functions for cation–anion and cation–cation (or
anion–anion) pairs. The points show the results of molecular-dynamics calculations and the curves are calculated
from the HNC approximation (see Section 10.3). (b) Molecular-dynamics results for the static charge–charge and
number–number structure factors.

consistent with those obtained by neutron-scattering experiments, which rely on the use
of isotopic substitution to separate the contributions of the partial structure factors Sνμ(k)

to the measured cross-section. Similar experiments have been carried out for the alkaline-
earth halides and are again in good general agreement with those obtained in simulations
based on rigid-ion models. Because the absolute charges of the two ionic species are now
different, the marked similarity seen in the alkali halides between g11(r) and g22(r) is lost.

10.3 INTEGRAL-EQUATION THEORIES

The techniques introduced in Chapters 3 to 5 provide a number of possible routes to the
calculation of thermodynamic and structural properties of simple ionic liquids. Versions of



INTEGRAL-EQUATION THEORIES 303

the optimised cluster theory of Section 5.5 and other, closely related methods have proved
particularly successful in describing the thermodynamic behaviour of dilute systems. In
this section, however, we focus on the integral-equation approach, in which the emphasis
is placed on the calculation of the pair distribution functions. Much of the published work
in this field is concerned with the alkali halides, either in the molten phase or in solution,
though there has also been considerable interest in the properties of 2 : 1 and 2 : 2 electrolyte
solutions, the structure of which is characterised by a high degree of ionic association. The
physical conditions are, of course, very different in the molten-salt and electrolyte regimes.
If we adopt the primitive model of Section 10.1, the thermodynamic state is conveniently
characterised by the reduced density ρ∗ = Nd3/V , where N is the total number of ions and
d = 1

2 (d11 + d22) is the mean ionic diameter, and a reduced Coulomb coupling parameter,
or inverse temperature, defined as

β∗ = |z1z2|e2

εkBT d
(10.3.1)

Near the melting point of an alkali halide, ρ∗ ≈ 0.4 and β∗ ≈ 65, while for a 1 M aqueous
solution of the same salt at room temperature, ρ∗ ≈ 0.01 and β∗ ≈ 3. We must therefore
expect the nature of the interionic correlations to be very different in the two cases. The
liquid–vapour phase diagram of a molten alkali halide is qualitatively similar to that, say,
of a rare gas, but the reduced critical densities of the salts are only about one-third of those
of typical insulating liquids.

The value of different theoretical approaches can be illustrated by limiting attention
initially to systems of charged hard spheres and, in particular, to the restricted primitive
model, with z1 = −z2 = 1. A convenient starting point for the discussion is the mean
spherical approximation (MSA) introduced in Section 4.5, since in this case the MSA has
a completely analytic solution.11 The MSA for equisized hard spheres of diameter d is

gνμ = 0, r < d; cνμ(r) = −βzνzμe
2

εr
, r > d (10.3.2)

which must be used in conjunction with the Ornstein–Zernike relation for equimolar binary
mixtures; this is obtained as a special case of (3.6.12), with x1 = x2 = 1

2 . The symmetry of
the restricted primitive model allows the Ornstein–Zernike relation to be rewritten as two
independent equations for the linear combinations

hS(r) = 1
2

[
h11(r) + h12(r)

]
, hD(r) = h11(r) − h12(r) (10.3.3)

and the corresponding direct correlation functions cS(r) and cD(r); hS(r) is a number-
density correlation function and hD(r) describes the correlation in charge density. When
written in terms of the new functions the MSA becomes

hS(r) = −1, r < d; cS(r) = 0, r > d (10.3.4a)

hD(r) = 0, r < d; cD(r) = −2βe2

εr
, r > d (10.3.4b)
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The closure relation (10.3.4a) is just the Percus–Yevick approximation for hard spheres, for
which the solution is known (see Section 4.4). The solution to (10.3.4b) and the associated
Ornstein–Zernike relation between hD(r) and cD(r) can also be obtained in closed form
by incorporating the sum rules (10.2.17) into generalised versions of the methods used to
solve the PY equation for hard spheres. The result for cD(r) inside the hard core is

cD(r) = −2βe2

εd
(2 − Br/d)B (10.3.5)

with B = [ξ + 1 − (1 + 2ξ)1/2]/ξ , where ξ2 = k2
Dd2 = 4πρ∗β∗ and kD is the Debye

wavenumber defined by (10.2.15). The excess internal energy has a very simple form:

U ex

N
= − e2

εd
B (10.3.6)

and is a function of the single coupling constant ξ and not separately of ρ∗ and β∗. In the
high-temperature or low-density (or concentration) limit, i.e. for ξ � 1, the MSA internal
energy reduces to the Debye–Hückel result:

U ex
DH

N
= − e2

2εd
ξ = −kBT

8πρ
k3

D (10.3.7)

The limiting law (10.3.7) is valid when ion-size effects are negligible; it corresponds to the
case when the direct correlation functions cνμ(r) are replaced by their asymptotic forms
(10.3.2) for all r . The virial pressure in the MSA is the sum of a hard-sphere contact term
and the contribution of the Coulomb forces, i.e.

βP v

ρ
= 1 + 2πρ∗

3
gS(d) + βU ex

3N
(10.3.8)

Alternatively, the pressure can be calculated by first integrating (10.3.6) to give the free
energy and then differentiating with respect to density. The comparison made in Figure
10.2 for the case of a 1 : 1 electrolyte shows that the results for the excess internal energy
are in good agreement with those of Monte Carlo calculations, but there is a serious in-
consistency between the pressures calculated by the two different routes. In the molten-salt
regime the results, not surprisingly, are much less satisfactory.13

Although the MSA is a good starting point for the calculation of thermodynamic prop-
erties of the restricted primitive model, it is less reliable in predicting the correlation func-
tions. If the density and temperature are such that ξ � 1, use of the MSA leads to distri-
bution functions g11(r) (or g22(r)) that become negative at separations close to contact.
The situation is improved if, at small r , the direct correlation functions cS(r) and cD(r) are
allowed to deviate from their asymptotic forms.14 In the “generalised” MSA or GMSA the
deviations are expressed in terms of Yukawa functions and the closure relations for cS(r)

and cD(r) in (10.3.4) are replaced by

cS(r) = A1

r
exp
[−t1(r − d)

]
, r > d
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FIG. 10.2. Thermodynamic properties of the restricted primitive model of a 1 : 1 electrolyte. The points show
the results of Monte Carlo simulations and the curves are calculated from the MSA and the HNC approximation.
Energy: dashes, MSA; full curve, HNC. Pressure: long and short dashes, MSA via the energy and virial equations,
respectively; full curve, HNC via the virial (or energy) equation. The value of β∗ corresponds to an aqueous
solution of ions of diameter 4.25 Å at T = 298 K; the arrow marks the value of

√
ρ∗ corresponding to a 1 M

solution. After Rasaiah et al.12

(10.3.9)

cD(r) = −2βe2

εr
− A2

r
exp
[−t2(r − d)

]
, r > d

The parameters A1, t1, A2 and t2 are related through a set of algebraic equations to the
internal energy, compressibility, virial pressure and contact value of gD(r), and can be fitted
to those quantities if the necessary data are available from an independent source. Where
that is possible, the resulting pair distribution functions represent a significant improvement
over the MSA, but in this form the theory is not self-contained.

The main appeal of theories such as the MSA or GMSA in the calculation of the pair dis-
tribution functions is the fact that they can be solved analytically in closed or nearly closed
form, but their applicability is limited, at least in their conventional forms, to systems of
charged hard spheres. These “primitive” models display certain structural features that are
artefacts of the hard-sphere interaction. In particular, for values of ρ∗ and β∗ appropri-
ate to molten salts, the main peak in the distribution functions for ions of like charge, i.e.
g++(r) or g−−(r), shows a marked splitting not seen experimentally. The splitting disap-
pears when the short-range repulsion is softened, but different theoretical methods are then
required. Of the integral-equation theories described in Chapter 4 the HNC approximation
is far better suited to ionic systems than its PY counterpart. Equation (4.4.3) shows that the
PY approximation cannot account for the exponential screening of the pair correlations at
large separations, since within that approximation the pair distribution function decays as
the pair potential. The HNC equation does describe the long-range correlations correctly
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and there is also a close connection between HNC theory and the traditional form of the
Debye–Hückel approach. When generalised to a system of more than one component, the
exact relation (4.6.13) becomes

ln
[
hνμ(r) + 1

]= −βvνμ(r) + dνμ(r) + hνμ(r) − cνμ(r) (10.3.10)

and the HNC approximation corresponds to setting dνμ(r) = 0 for all pairs ν, μ. As Figure
10.2 illustrates, the thermodynamic results obtained in this way for a 1 : 1 electrolyte agree
very well with those calculated by the Monte Carlo method. The degree of thermodynamic
consistency in the theory is high; even at the highest concentration studied, pressures cal-
culated via the compressibility and virial (or energy) routes differ by less than 1%. Good
results are also obtained for the thermodynamic properties of the restricted primitive model
of a 2 : 2 electrolyte, where the superiority of the HNC approximation over the MSA be-
comes more evident.15 On the other hand, over a range of low to moderate concentrations
the calculated like-ion distribution function of the 2 : 2 system has a pronounced peak at
r ≈ 2d , a feature that persists even when the hard-sphere term in the pair potential is re-
placed by an inverse-power repulsion.16 No similar peak is seen in simulations of the same
potential models, as the examples shown in Figure 10.3 illustrate; instead, the distribu-
tion function increases monotonically towards its limiting value at large r . Conversely, the
HNC calculations significantly underestimate the height (of order 100) of the peak in the
unlike-ion distribution function, the strength of which provides a measure of the degree
of ion pairing in the system. These defects in the theory are linked to the difference in
form of the bridge functions for like and unlike pairs. The results of simulations16,17 show
that the function d++(r) (or d−−(r)) is negative at all separations, and therefore resembles
the bridge function of the Lennard-Jones fluid (see Figure 4.6), but d+−(r) is everywhere
positive. Thus the HNC approximation acts in such a way as to weaken both the effective
repulsion between ions of like charge and the effective attraction between those of unlike
charge, with differing consequences for the calculated distribution functions.18 At high
concentrations the bridge functions maintain their difference in sign but their magnitude is
greatly reduced. The error involved in neglecting them is therefore small and the spurious
peak in the like-ion distribution function becomes progressively less pronounced.

The HNC approximation is also successful in reproducing the pair structure under state
conditions typical of molten salts, as shown by the results for the simple molten salt plot-
ted in Figure 10.1. The deficiencies in the approximation are evident only in the small-k
region of SNN(k); the error there means that the calculated compressibility is about twice
as large as that obtained by simulation. A systematic study of the alkali halides has con-
firmed that HNC theory is able to reproduce quantitatively all the main features of the pair
distribution functions of more realistic potential models; still better results are obtained by
including the contributions from the bridge diagrams in a semiempirical way19 or by en-
forcing thermodynamic self-consistency through the hybrid, HMSA scheme20 mentioned
in Section 4.7.
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FIG. 10.3. Pair distribution function for like-charged ions in a 2 : 2 electrolyte solution under state conditions
corresponding to an aqueous solution at T = 298 K. Short-range repulsions are represented by a soft-sphere (r−9)
potential and σ is the separation at which the cation–anion potential is a minimum. The points show the results of
molecular-dynamics simulations and the curves are calculated from the HNC approximation. The spurious peak
in the HNC results is less pronounced at the higher concentration and disappears for concentrations greater than
about 0.06 M. After Duh and Haymet.16

10.4 FREQUENCY-DEPENDENT ELECTRIC RESPONSE

We have seen in earlier sections of this chapter that the static properties of ionic liquids are
strongly affected by the long-range nature of the Coulomb potential or, equivalently, the
k−2 singularity in its Fourier transform. We now turn to the question of how the same fac-
tors influence the dynamical correlations. The discussion here is limited to two-component
systems of ions in vacuo, the case of liquid metals being deferred until Section 10.9. The
phenomena of greatest interest are those linked to charge fluctuations; these generate a
local electric field that acts as a restoring force on the local charge density. At low frequen-
cies the charge density responds in a diffusive manner, but at high frequencies there is a
reactive behaviour, which gives rise to a propagating mode of the type briefly discussed in
Section 10.1.

The linear combinations of microscopic partial densities that arise naturally in a discus-
sion of the collective dynamics are the mass (M) and charge (Z) densities, defined in terms
of Fourier components as

ρM
k (t) =

∑
ν

mνρ
ν
k(t), ρZ

k (t) =
∑
ν

zνρ
ν
k(t) (10.4.1)

where mν is the mass of an ion of species ν. With each fluctuating density we may associate
a current. Thus

jMk (t) =
∑
ν

mνjνk(t), jZk (t) =
∑
ν

zνjνk(t) (10.4.2)

where the partial currents jνk are given by an expression identical to (7.4.7) except that
the sum on i is restricted to ions of a given species. Each current can be divided into
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longitudinal (l) and transverse (t) parts in the manner of (7.4.25); the longitudinal currents
satisfy equations of continuity analogous to (7.4.4). The mass current is related to the stress
tensor Πk by

∂

∂t
jMk (t) + ik · Πk = 0 (10.4.3)

where the components of Πk are given by a two-component generalisation of (8.4.14).
Equation (10.4.3) shows that the time derivative of jMk (t) vanishes as k → 0. The mass
current is therefore a conserved variable in the sense of Section 7.1, but the charge current is
not. Although the total momentum of the ions is conserved, there is a continuous exchange
of momentum between the two species; this momentum exchange is the source of the
electrical resistivity of the fluid.

The mass and charge densities can be used to construct three, independent, time-
correlation functions FAB(k, t) (with A,B = M or Z), the definitions of which are similar
to that of the intermediate scattering function (7.4.20). The initial values of the correlation
functions are equal to the static structure factors in (10.2.2), but with number N replaced
by mass M , and their Fourier transforms with respect to t are the corresponding dynamic
structure factors. A function of particular interest for our purposes is the charge–charge
dynamic structure factor, defined as

SZZ(k,ω) = 1

2πN

∫ ∞

−∞
〈
ρZ

k (t)ρZ
−k

〉
exp(iωt)dt (10.4.4)

Finally, three longitudinal and three transverse current correlation functions can be defined
through straightforward generalisations of (7.4.25):

CAB,l(k, t) = k2

N

〈
jAz

k (t)jBz
−k

〉
(10.4.5a)

CAB,t (k, t) = k2

N

〈
jAx

k (t)jBx
−k

〉
(10.4.5b)

where, as usual, the z-axis is chosen parallel to k. Each CAB,l(k, t) is related to the corre-
sponding FAB(k, t) by an analogue of (7.4.26).

We next consider how the response of the system to an external electric field can be
described in terms of the correlation functions introduced above. This requires a general-
isation to frequency-dependent perturbations of the result in (10.2.6). As an extension of
the linear-response relation (7.6.26), we find that the mean induced charge density is

δρ̂Z(k, t) = 〈ρZ
k (t)

〉= χZZ(k,ω)eφext
k exp(−iωt) (10.4.6)

The imaginary part of the complex dynamic susceptibility χZZ(k,ω) is related to the
dynamic structure factor SZZ(k,ω) through a trivial modification of the fluctuation–
dissipation theorem (7.6.28), i.e.

SZZ(k,ω) = − kBT

πρω
χ ′′
ZZ(k,ω) (10.4.7)
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and the susceptibility can also be expressed in terms of the complex dielectric function
ε(k,ω) by a frequency-dependent generalisation of (10.2.11):

1

ε(k,ω)
= 1 + 4πe2

k2
χZZ(k,ω) (10.4.8)

The functions χZZ(k,ω) and 1/ε(k,ω) measure the linear response of a fluid of charged
particles to an external electric field. The external field polarises the fluid and the local, in-
ternal field (the Maxwell field) is the sum of the field due to the external charge distribution
and that due to the induced charge density. The local field is, of course, the field experi-
enced by the ions. The response of the system to the local electric potential is described by
a screened response function χ sc

ZZ(k,ω), defined through the expression

δρ̂Z(k, t) = χ sc
ZZ(k,ω)e

[
φext

k exp(−iωt) + δφ̂ind(k,ω)
]

(10.4.9)

where the induced electric potential δφ̂ind(k,ω) is related to the induced charge density by
Poisson’s equation (cf. (10.2.5)):

δφ̂ind(k,ω) = 4πe

k2
δρ̂Z(k,ω) (10.4.10)

Comparison of (10.4.9) with (10.4.6) shows that the relation between the external and
screened susceptibilities is

χZZ(k,ω) = χ sc
ZZ(k,ω)

1 − 4πe2

k2
χ sc
ZZ(k,ω)

(10.4.11)

and hence, from (10.4.8), that

ε(k,ω) = 1 − 4πe2

k2
χ sc
ZZ(k,ω) (10.4.12)

The response function χZZ(k,ω) satisfies the Kramers–Kronig relations (7.6.37) and
(7.6.38), which are merely consequences of causality. The same is not necessarily true
of the screened function χ sc

ZZ(k,ω), which determines the response of the system to the
local field. Since the local field depends on the material properties of the system, it cannot
be controlled at will in an experiment.

The electric response of an ionic fluid can also be discussed in terms of the induced
electric current. Let E(k,ω) be a Fourier component of the local electric field. Ohm’s Law
in its most general form states that the induced electric current JZ is linearly related to the
field, i.e.

JZ(k,ω) = σ (k,ω) · E(k,ω) (10.4.13)
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The quantity σ is the conductivity tensor, which can be divided into longitudinal and trans-
verse parts in the form

σ (k,ω) = kk
k2

σl(k,ω) +
(

I − kk
k2

)
σt (k,ω) (10.4.14)

where σl and σt are scalars. The longitudinal and transverse projections of the induced
current are related, respectively, to the longitudinal (or irrotational) and transverse (or
divergence-free) components of the local electric field. Thus

JZ
l (k,ω) = σl(k,ω)El (k,ω), JZ

t (k,ω) = σt (k,ω)Et (k,ω) (10.4.15)

Since E = −∇δφ, it follows that the component El(k,ω) of the local field is related to the
total electric potential by the expression

El (k,ω) = −ikδφ̂(k,ω) = −ik
[
φext

k exp(−iωt) + δφ̂ind(k,ω)
]

(10.4.16)

Equations (7.4.4), (10.4.9), (10.4.12), (10.4.15) and (10.4.16) can now be combined to
yield the fundamental relation between the dielectric function and the conductivity tensor:

ε(k,ω) = 1 + 4πi

ω
σl(k,ω) (10.4.17)

Note that σl(k,ω) is a screened response function in the same sense as χ sc
ZZ(k,ω), since it

measures a response to the internal field.
Linear-response theory was used in Section 7.7 to derive a microscopic expression for

the frequency-dependent electrical conductivity; this “external” conductivity measures the
response of a fluid to a uniform (k = 0) applied electric field. A uniform field corresponds
to a situation in which the boundaries of the system are removed to infinity, thereby avoid-
ing the appearance of a surface polarisation. The electric response to an inhomogeneous
(k-dependent) applied field is measured by a wavenumber-dependent external conductiv-
ity that can be related to the time-autocorrelation function of the fluctuating charge current
jZk (t). In the case of the longitudinal component the required generalisation of (7.7.10) is
simply

σ ext
l (k,ω) = βe2

V

∫ ∞

0

〈
jZz

k (t)jZz
−k

〉
exp(iωt)dt (10.4.18)

However, the macroscopic electrical conductivity σ given by the low-frequency limit of
(7.7.10) is not the same as the k, ω → 0 limit of σ ext

l (k,ω). Indeed, it follows from the
continuity equation (see (7.4.4)) that the integral in (10.4.18) can be re-expressed as∫ ∞

0

〈
jZz

k (t)jZz
−k

〉
exp(iωt)dt = 1

k2

∫ ∞

0

〈
ρ̇Z

k (t)ρ̇Z
−k

〉
exp(iωt)dt

= −iωNSZZ(k) + ω2NF̃ZZ(k,ω)

k2
(10.4.19)
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Written in this form it is easy to see that the integral vanishes as k, ω → 0, since
SZZ(k) ∼ k2 for small k. (Note that F̃ZZ(k,ω) is the Laplace transform of FZZ(k, t),
which is bounded above by SZZ(k): see (7.1.14).) On the other hand, the rotational invari-
ance of an isotropic fluid implies that the macroscopic longitudinal and transverse conduc-
tivities must be the same, i.e. σ ext

l (0,ω) = σ ext
t (0,ω) = σ(ω). Hence σ may be defined in

terms of the transverse charge–current autocorrelation function; the transverse current is
not related to the charge density by a continuity equation and is therefore unaffected by the
small-k divergence of the longitudinal electric field. Thus

σ = lim
ω→0

lim
k→0

βe2

V

∫ ∞

0

〈
jZx

k (t)jZx
−k

〉
exp(iωt)dt

= lim
ω→0

lim
k→0

βρe2

k2
C̃ZZ,t (k,ω) (10.4.20)

The differing behaviour of the longitudinal and transverse charge–current autocorrela-
tion functions is also evident from the sum rules for the corresponding spectra. The short-
time expansions of CZZ,l(k, t) and CZZ,t (k, t) can be written in a form similar to (7.4.31)
and (7.4.36), namely

CZZ,l(k, t) = ω2
0

(
1 − ω2

1l
t2

2! + · · ·
)

(10.4.21a)

CZZ,t (k, t) = ω2
0

(
1 − ω2

1t
t2

2! + · · ·
)

(10.4.21b)

where, in the case when z1 = −z2 = z:

ω2
0 = z2k2

(
kBT

2M

)
(10.4.22)

with M = m1m2/(m1 + m2). The frequency moments ω2
1l and ω2

1t are the charge–current
analogues of the quantities defined in Section 7.4. If the interionic potentials are separated
into their coulombic and short-range parts, the derivation of (7.4.35) and (7.4.38) can be
suitably generalised.21 The resulting expressions are lengthy, but reduce in the limit k → 0
to the simpler forms given by

lim
k→0

ω2
1l (k) = 2

3ω
2
p + ρ

6M

∫
∇2vS

12(r)g12(r)dr (10.4.23a)

lim
k→0

ω2
1t (k) = − 1

3ω
2
p + ρ

6M

∫
∇2vS

12(r)g12(r)dr (10.4.23b)
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where vS
12(r) is the short-range part of the cation–anion potential and ωp is the plasma

frequency (10.1.8), generalised to the two-component case:

ω2
p =

∑
ν

4πρνz
2
νe

2

mν

(10.4.24)

Thus, in contrast to the results obtained in Section 7.4, the characteristic frequencies of the
charge–current fluctuations remain non-zero as k → 0. In addition, the longitudinal and
transverse frequencies at k = 0 are split according to the rule

ω2
1l(0) − ω2

1t (0) = ω2
p (10.4.25)

This result is of the same form as the well-known relation between the longitudinal and
transverse optic frequencies of ionic crystals. The behaviour of ω1l (k) and ω1t (k) at finite
wavelengths is also similar to that of the corresponding phonon dispersion curves for the
crystal: initially, ω1l(k) falls rapidly with increasing k, but the curve of ω1t (k) is almost
flat. In the case of the alkali halides, ω1l(0) is typically 20–30% larger than ωp.

The nature of the collective modes associated with fluctuations in mass, charge and
temperature in a molten salt can be analysed by methods described in Chapters 8 and 9.
By analogy with the phonon spectra of ionic crystals, the collective modes are expected
to be of acoustic and optic character, corresponding to low-frequency sound waves and
high-frequency “plasma” oscillations. The different fluctuations are, in general, strongly
coupled, and the associated memory functions have a complicated structure. A consider-
able simplification occurs when the anions and cations differ only in the sign of their elec-
trical charge. Under such conditions, charge fluctuations are completely decoupled from
fluctuations in mass and temperature at all frequencies and all wavenumbers. The same is
true for any molten salt in the long-wavelength limit, thereby making it possible to cal-
culate the spectrum of charge fluctuations at long wavelengths by the following, simple,
macroscopic argument.9 The Laplace transform of the continuity equation for the induced
charge density is

−iωδρ̃Z(k,ω) = δρ̂Z(k, t = 0) + ik · JZ(k,ω) (10.4.26)

while Poisson’s equation may be written as

−ik · E(k,ω) = 4πδρ̃Z(k,ω) (10.4.27)

These two expressions can be combined with the longitudinal projection of Ohm’s Law to
give

δρ̃Z(k,ω) = δρ̂Z(k, t = 0)

−iω + 4πσl(k,ω)
(10.4.28)

If we multiply (10.4.28) through by δρ̂Z(−k, t = 0) and take the thermal average, we find
that

F̃ZZ(k,ω) = SZZ(k)

−iω + 4πσl(k,ω)
(10.4.29)
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In the limit k → 0, σl(k,ω) can be replaced by σ(ω). This gives an important result:

lim
k→0

F̃ZZ(k,ω)

SZZ(k)
= 1

−iω + 4πσ(ω)
(10.4.30)

Comparison with (7.3.23) shows that the frequency-dependent, complex conductivity is
the memory function for the long-wavelength limit of the charge-density autocorrelation
function. The spectrum of charge-density fluctuations may therefore be expressed in terms
of the real (σ ′) and imaginary (σ ′′) parts of σ(ω) in the form

lim
k→0

SZZ(k,ω)

SZZ(k)
= 1

π

4πσ ′(ω)

[ω − 4πσ ′′(ω)]2 + [4πσ ′(ω)]2
(10.4.31)

In the low-frequency limit, σ ′(ω) → σ , σ ′′(ω) → 0, and (10.4.31) reduces to

SZZ(k,ω) ∼ 1

π

4πσ(k/kD)2

ω2 + (4πσ)2
, k,ω → 0 (10.4.32)

Charge fluctuations in the low-frequency, long-wavelength regime are therefore of a non-
propagating type. The same is true of concentration fluctuations in a mixture of uncharged
particles, but the two cases differ in a significant way. If the coupling to other hydrodynamic
variables is weak, a Fourier component of a fluctuation in the local concentration c(r, t) in
a non-ionic, binary mixture decays in approximately the same way as a component of the
density of tagged particles in a one-component system (see (8.2.5)), i.e.

ck(t) ≈ ck exp
(−Dk2t

)
(10.4.33)

where D is the interdiffusion coefficient.22 The spectrum of concentration fluctuations
therefore has approximately the same functional form as the self dynamic structure factor
(8.2.9):

Scc(k,ω) = 1

2π

∫ ∞

−∞
〈
ck(t)c−k

〉
exp(iωt)dt

≈ 〈|ck|2〉
π

Dk2

ω2 + (Dk2)2
(10.4.34)

Equation (10.4.34) represents a lorentzian curve centred at ω = 0 and having a width that
varies as k2, whereas the width of the charge-fluctuation spectrum (10.4.32) remains non-
zero even in the long-wavelength limit. The source of this difference in behaviour is the
fact that in the coulombic case the “restoring force” is proportional to the charge-density
fluctuation, while in the neutral system it is proportional to the laplacian of the concentra-
tion fluctuation.

Although the hydrodynamic analysis yields the correct low-frequency behaviour, the
possibility that a propagating charge-density oscillation could occur at higher frequencies
has to be investigated within the framework either of generalised hydrodynamics or of the
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memory-function formalism. In particular, the memory-function representations developed
in Sections 9.3 and 9.4 lend themselves easily to a unified treatment of transverse and
longitudinal charge fluctuations. Here, however, we consider only the more interesting
question of the nature of the longitudinal fluctuations. We also restrict the discussion to
long wavelengths and to the case when z1 = −z2 = z, and use the fact that

lim
k→0

ω2
0

SZZ(k)
= ω2

p (10.4.35)

which follows from the long-wavelength relation (10.2.14) and the definitions (10.4.22)
and (10.4.24). When adapted to the problem of the longitudinal charge current, the
memory-function equation (9.4.7) becomes

C̃ZZ,l(k,ω) = ω2
0

−iω + ω2
p

−iω
+ Ñl(k,ω)

(10.4.36)

Use of (10.4.19) shows that the corresponding expression for the charge-density autocor-
relation function is given in terms of Laplace transforms by

F̃ZZ(k,ω) = SZZ(k)

−iω + ω2
p

−iω + Ñl(k,ω)

(10.4.37)

The high-frequency behaviour can now be studied in an approximate way by assuming that
the memory function Nl(k, t) decays exponentially with a relaxation time equal τl . This
is the characteristic approximation of the viscoelastic model introduced in Chapter 9, and
leads, for small k, to

Ñl(k,ω) = ω2
1l − ω2

p

−iω + 1/τl
(10.4.38)

A simple calculation then shows that if ωτl � 1, the charge–charge dynamic structure
factor (proportional to Re F̃ZZ(k,ω)) has peaks at ω = 0 and ω = ±ω1l ; those at ±ω1l
correspond to charge fluctuations that propagate at a frequency comparable with the plasma
frequency, but modified by the short-range interactions between ions. The calculation is a
crude one, limited as it is to high frequencies and long wavelengths, but it provides a fair
description of the dispersion of the propagating mode observed in simulations (see below
in Figure 10.5).

10.5 MICROSCOPIC DYNAMICS IN MOLTEN SALTS

Much of our current understanding of the microscopic dynamics in strongly coupled ionic
systems comes from molecular-dynamics simulations. In this section we give some ex-
amples, taken from studies of monovalent molten salts, that illustrate the richness of the
observed single-particle and collective behaviour.
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Single-particle motion is conveniently discussed in terms of the velocity autocorrelation
functions Zν(t) and self-diffusion coefficients Dν of the two ionic species; Dν is related to
Zν(t) in the manner of (7.2.7). For mixtures of neutral particles in which cross correlations
of velocity of the type 〈ui (t) · uj 〉 (i �= j) are negligible, the two self-diffusion coefficients
are related to the interdiffusion coefficient D by the expression

D ≈ F x1x2

NkBT
(x2D1 + x1D2) (10.5.1)

where F = (∂2G/∂x2
1)P,T is a purely thermodynamic quantity.22 If, in addition, the

mixture is nearly ideal, which is a good approximation for mixtures of simple liquids,
F ≈ NkBT/x1x2, and (10.5.1) becomes

D ≈ x2D1 + x1D2 (10.5.2)

In an ionic liquid interdiffusion is equivalent to electrical conduction. We have shown in
Section 7.7 that the static electrical conductivity σ is proportional to the time integral of
the electric-current autocorrelation function J (t), defined as

J (t) = 〈jZ(t) · jZ
〉= N∑

i=1

N∑
j=1

〈
ziui (t) · zjuj

〉
(10.5.3)

If the self-correlation terms (i = j) in (10.5.3) are separated from the cross terms (i �= j),
integration over time and use of (7.7.10) shows that

σ = βe2ρ
(
x1z

2
1D1 + x2z

2
2D2

)
(1 − Δ) (10.5.4)

Equation (10.5.4), with Δ = 0, is called the Nernst–Einstein relation; the value of the devi-
ation factor Δ is a measure of the importance of cross-correlations. If Δ = 0, (10.5.4) be-
comes the ionic equivalent of the approximate relation (10.5.2). In practice, at least for the
alkali halides, Δ is significantly different from zero and always positive. The importance
of cross correlations in monovalent salts is illustrated in Figure 10.4, where molecular-
dynamics results for the velocity and electric-current autocorrelation functions of the sim-
ple molten salt are plotted. The symmetry of the model means that the velocity autocorre-
lation functions of cations and anions are identical; if cross-correlations of velocities were
negligible, the normalised curves of Z(t) and J (t) would also be the same. At short times,
however, there are substantial differences between the two functions, and the calculated
Nernst–Einstein deviation factor for the case shown is Δ = 0.19. The positive value of Δ

corresponds physically to the fact that motion in the same direction by a pair of oppositely
charged ions contributes to self-diffusion but not to electrical conduction. The numerical
result agrees well with experimental data: the mean value of Δ for eight alkali-halide salts
is 0.26. The observed deviations from the Nernst–Einstein relation therefore have a natural
explanation in terms of positive correlations between the velocities of nearest-neighbour
ions that persist for times which, for a real molten salt, would be of order 10−12 s. Such
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FIG. 10.4. Normalised velocity and electric-current autocorrelation functions of the simple molten salt10 under
the state conditions described in the caption to Figure 10.1. Full curve: Z(t)/Z(0); dashes: J (t)/J (0). The points
show the difference between the two functions.

correlations are of a nature that physical intuition would lead one to expect, but it is not
necessary to assume the existence of well-defined ion pairs.

The velocity autocorrelation function shown in Figure 10.4 has a negative plateau similar
to that seen in argon-like liquids. Both the shape of Z(t) and the value of the diffusion
coefficient are reasonably well reproduced by a mode-coupling calculation23 of the type
discussed in Section 9.5. The mode-coupling results for the electric-current autocorrelation
function are much less satisfactory and the theoretical value for the case illustrated in the
figure is about 30% too small. These discrepancies have been attributed to the neglect of
temperature fluctuations in the mode-coupling calculations.

Molecular-dynamics results on self diffusion are also available for rigid-ion models of
the alkali halides in which allowance is made for the differences in mass and size of the
two ions. Where the mass difference is large, the velocity autocorrelation function of the
lighter ion is strongly oscillatory. This effect is the result of a “rattling” motion of the
ion in the relatively long-lived cage formed by its heavier neighbours and is particularly
marked in the case of the very light Li+ ion. The calculated diffusion coefficients are in
general smaller than the experimental values, sometimes significantly so, but the agree-
ment with experiment is substantially improved when allowance is made for polarisation
of the ions.24 In a rigid-ion model, local charge neutrality around a diffusing ion can be
maintained only by bodily displacement of its neighbours; when the ions are polarisable,
an additional screening mechanism is present that does not entail movement of the ion
cores. The net result is that the cage effect is smaller for polarisable ions; this leads to an
increased damping of oscillations in the velocity-autocorrelation function and a consequent
increase in the diffusion coefficient.

The wavenumber-dependent collective motions in molten salts have also been studied by
molecular dynamics. The simple molten salt is particularly well-suited to theoretical inves-
tigation of the collective modes,10 because the fluctuations in mass and charge densities are
strictly independent at all wavelengths (see Section 10.4). The main objects of interest are
the optic-type modes associated with charge fluctuations, since these are specific to ionic
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FIG. 10.5. Charge–charge dynamic structure factor of the simple molten salt10 at two values of k under the state
conditions described in the caption to Figure 10.1. The points show the results of molecular-dynamics calcula-
tions, the dashes are guides to the eye and the curves are calculated from a single-relaxation time approximation
for the memory function Nl(k, t), with the relaxation time determined by a least-squares fit to the simulated
spectra. The arrows mark the value of ω1l (k).

fluids. The results of the simulations show that the charge-density autocorrelation func-
tion FZZ(k, t) is strongly oscillatory at wavelengths up to about twice the mean interionic
spacing. These oscillations give rise to a “plasmon” peak in the dynamic structure factor
SZZ(k,ω), as shown in Figure 10.5. The frequency ωk at which the optic peak is seen is in
the region of the plasma frequency ωp, but its dispersion is strongly negative and described
reasonably well by the relation ωk ≈ ω1l (k), as suggested by the rough calculation made
in the previous section. The peak eventually disappears at a value of k close to the position
of the main peak in the charge–charge structure factor SZZ(k). More surprising is the fact
that at small wavenumbers the optic peak initially sharpens as k increases, i.e. the damp-
ing of the plasmon mode becomes weaker. This behaviour is in striking contrast to that of
the sound-wave mode; in molten salts, as in systems of neutral particles, the sound-wave
damping increases rapidly with k.

The main features of the charge-fluctuation spectrum of the simple molten salt are also
seen in simulations of more realistic rigid-ion models; the effect of including polarisation
is to broaden the optic peak and shift it to lower frequencies.25 It can be seen from Figure
10.5 that in the case of the simple molten salt the single-relaxation time, viscoelastic ap-
proximation cannot account for the detailed shape of the spectrum. At least two relaxation
times are required, and other calculations have confirmed that the memory function for the
longitudinal charge–current correlation function consists of a rapidly decaying term and
a long-time, quasi-exponential tail; it therefore has a structure similar to that required to
describe the density fluctuations in argon-like liquids (see Section 9.4). A fair description
of the spectra of mass and charge fluctuations in the simple molten salt has been obtained
by mode-coupling methods along the general lines of Section 9.5. In particular, a mode-
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coupling calculation26 has shown that the width of the plasmon peak should decrease with
increasing k in a certain wavenumber range, in qualitative agreement with the unexpected
behaviour observed in the simulations.

Several attempts have been made to detect a collective, plasmon-like excitation in molten
salts by inelastic neutron scattering. If b1 and b2 are the coherent neutron scattering lengths
of the two ionic species, and if z1 = −z2, a straightforward extension of the derivation
given for a one-component fluid in Section 7.5 shows that the coherent, inelastic cross-
section for a monovalent salt can be written in the form

d2σ

dΩ dω
∝ (b1 + b2)

2SNN(k,ω) + 2
(
b2

1 − b2
2

)
SNZ(k,ω)

+ (b1 − b2)
2SZZ(k,ω) (10.5.5)

Thus a single experiment yields only a linear combination of the three dynamic struc-
ture factors (number–number, number–charge and charge–charge). Moreover, the contri-
bution made by the charge-fluctuation component is very low at small wavenumbers, since
SZZ(k) (the integral of SZZ(k,ω)) is proportional to k2 in the limit k → 0. Only when the
scattering lengths are such that b1 ≈ −b2 does the component SZZ(k,ω) dominate, and
this situation is not easily achievable with readily available isotopes. The most convinc-
ing experimental evidence obtained so far for the existence of a plasmon mode in ionic
liquids comes from the analysis of infrared reflectivity data for molten lithium fluoride.27

The resulting spectrum, which corresponds effectively to SZZ(k,ω) at zero wavenumber,
displays a well-defined plasmon-like response, at a frequency somewhat above ωp, which
is well separated from a central, diffusive peak.

The autocorrelation functions of the transverse components of the mass and charge cur-
rents have been calculated in molecular-dynamics simulations of a number of model sys-
tems. The frequency of the transverse optic mode lies roughly an amount ωp below that
of its longitudinal counterpart, as suggested by the sum rule (10.4.25), and is relatively
insensitive to wavenumber. As in the case of the longitudinal modes, an accurate memory-
function fit of the transverse-current spectra requires the introduction of two relaxation
times that are very different in value.25

10.6 THE ELECTRIC DOUBLE LAYER

So far in this chapter the emphasis has been placed on the bulk properties of ionic liquids.
In this section and the one that follows we discuss some of the new phenomena that arise
in the vicinity of a charged surface, and show how the resulting inhomogeneities can be
described within the framework of the density-functional theory developed in Chapters 3
and 6.

When colloidal particles or macromolecules are dissolved in a highly polar solvent such
as water, they will normally release counterions into the solvent, leaving behind a “polyion”
carrying a surface charge of opposite sign. The solvent will in general be an electrolyte
solution, and itself is therefore a source of both counterions and coions, coions being those
of like charge to that of the polyion. Counterions are attracted by the surface charge, but
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the effect is counterbalanced by the tendency for ions to spread into the bulk solution in
order to maximise the entropy. These competing effects lead to the formation of an electric
double layer at the charged surface, to which both coions and counterions contribute. In the
discussion that follows we restrict ourselves to the situation in which only two ionic species
are present, with charges zνe, ν = + or −. The inhomogeneous solution in the vicinity of
the charged surface is assumed to be in chemical equilibrium with a bulk solution (or
reservoir) of the same ions at chemical potentials, μν . The surface charge is the source of
an external field acting on the ions and the solution of the electrostatic problem involves
boundary conditions on the local electrostatic field.

Within a confined dielectric medium of permittivity ε, the electrostatic potential at r′ due
to a unit point charge at r is given by the Green’s function G(r, r′) that satisfies Poisson’s
equation:

∇2G(r, r′) = −4π

ε
δ(r′ − r) (10.6.1)

for given boundary conditions at any interfaces.28 If there are no boundaries, the Green’s
function is the usual Coulomb potential, G(r, r′) = G(r′ − r) = 1/ε|r′ − r|; when bound-
aries are present, the solution can be obtained by the method of images, at least for suf-
ficiently simple geometries.29 Let ρZ(r) be the local charge density of the fluid, defined
as30

ρZ(r) =
∑
ν

zνρ
(1)
ν (r) (10.6.2)

where ρ
(1)
ν (r) is the single-particle density of species ν. The local electrostatic potential

ΦC(r) that satisfies Poisson’s equation:

∇2ΦC(r) = −4πe

ε
ρZ(r) (10.6.3)

subject to any boundary conditions, is

ΦC(r) =
∫

G(r, r′)eρZ(r′)dr′ (10.6.4)

The electrostatic energy of the system is then given by

UC = 1
2e

∫
ΦC(r)ρZ(r)dr = 1

2e
2
∫∫

ρZ(r)G(r, r′)ρZ(r′)dr dr′ (10.6.5)

where the integral extends over the region occupied by the fluid. From now on, however,
we shall restrict ourselves to the situation in which there are no dielectric discontinuities
and the permittivity is the same throughout space. Lifting this restriction introduces only
technical complications.

The grand, potential functional of the fluid is

Ω
[
ρ
(1)
+ , ρ

(1)
−
]= F

[
ρ
(1)
+ , ρ

(1)
−
]−∑

ν

∫ [
μν − φν(r)

]
ρ(1)
ν (r)dr (10.6.6)
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where φν(r) is the total external potential acting on ions of species ν, which may have both
coulombic and non-coulombic components. The intrinsic free-energy functional F can be
split, as usual, into ideal and excess parts:

F
[
ρ
(1)
+ , ρ

(1)
−
]=∑

ν

F id
ν

[
ρ(1)
ν

]+F ex[ρ(1)
+ , ρ

(1)
−
]

(10.6.7)

where the ideal contributions are defined as in (3.1.22) and the excess contribution is given
by a two-component generalisation of (3.5.23). If the reference state, corresponding to
λ = 0 in (3.5.23), is taken as one in which the chemical potentials are the same as those of
the bulk solution, then

F ex[ρ(1)
+ , ρ

(1)
−
]

= F ex(n+, n−) +
∑
ν

μex
ν

∫
Δρ(1)

ν (r)dr

− kBT
∑
ν

∑
μ

∫ 1

0
dλ (1 − λ)

∫∫
Δρ(1)

ν (r)cνμ(r, r′;λ)Δρ(1)
μ (r′)dr dr′ (10.6.8)

where n+, n− are the number densities in the bulk.
The direct correlation functions in (10.6.8) may be decomposed in the form

cνμ(r, r′) = cS
νμ(r, r′) − zνzμlB/|r′ − r| (10.6.9)

where lB = e2/εkBT is called the Bjerrum length. The second term on the right-hand side is
the asymptotic value of the function; the first term therefore represents the short-range cor-
relations. If we now substitute for cνμ(r, r′) in (10.6.8), the excess free-energy functional
separates into a mean-field, purely coulombic part, F C, and a correlation term, F corr.
The mean-field part is given by (10.6.5), with G(r, r′) taking its coulombic form, and the
correlation term is formally identical to (10.6.8), but with the direct correlation functions
replaced by their short-range parts. Thus

F ex = F C +F corr, F C = 1
2e

2
∫∫

ρZ(r)ρZ(r′)
ε|r′ − r| dr dr′ (10.6.10)

A particularly simple approximation is to set F corr = 0, implying that the fluid behaves as
an ideal gas in which each ion experiences only the average electrostatic potential due to
other ions and the charges at any interfaces. The density profile ρ

(1)
ν (r) derived from the

variational principle (3.4.3) is then

ρ(1)
ν (r) = ξν exp

(−β
[
φν(r) + zνeΦ

C(r)
])

(10.6.11)

where the electrostatic potential ΦC(r) is given by (10.6.4) and ξν = exp(βμν)/Λ
3
ν is the

activity of species ν, which in the mean-field approximation is equal to the bulk density nν .
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If the external potentials have a coulombic component, arising from an external charge
density ρext

Z (r), (10.6.11) may be rewritten as

ρ(1)
ν (r) = nν exp

(−β
[
φS
ν (r) + zνeΦ(r)

])
(10.6.12)

where φS
ν (r) is the short-range, non-coulombic contribution to φν(r) and Φ(r) is the total

electrostatic potential, which is related to the total charge density by

∇2Φ(r) = −4πe

ε

[
ρext
Z (r) + ρZ(r)

]
(10.6.13)

The coupled equations (10.6.11) (or (10.6.12)) and (10.6.3) (or (10.6.13)) are the equations
of Poisson–Boltzmann theory.

As a first application of the theory we take the case of an electric double layer near an
inpenetrable, planar wall at z = 0. The wall separates the ionic solution for z > 0 from a
dielectric medium of the same permittivity for z < 0; the density profiles now depend only
on z. The wall carries a surface charge density σ and overall charge neutrality requires that∫ ∞

0
eρZ(z)dz = −σ (10.6.14)

If we assume that the absolute charges of the two ionic species are equal, it follows that
n+ = n− = 1

2n0, and combination of (10.6.2), (10.6.12) and (10.6.13) gives

d2Φ(z)

dz2
= 4πen0

ε
sinh

[
βeΦ(z)

]
, z > 0 (10.6.15)

with the constraint, valid for point ions, that ρ(1)
ν (z) = 0 for z < 0. Equation (10.6.15) is

the Poisson–Boltzmann equation; it must be solved subject to two boundary conditions:

lim
z→0

dΦ(z)

dz
= 0,

dΦ(z)

dz

∣∣∣∣
z=0

= −4πσ

ε
(10.6.16)

The local number density of microions is ρN(z) = ρ
(1)
+ (z) + ρ

(1)
− (z), the gradient of

which is easily obtained from (10.6.2), (10.6.12) and (10.6.13):

dρN(z)

dz
= −β

dΦ(z)

dz
eρZ(z) = βε

4π

dΦ(z)

dz

d2Φ(z)

dz2
= βε

8π

d

dz

(
dΦ(z)

dz

)2

(10.6.17)

Integration of both sides of (10.6.17) from z to infinity yields a relation between the local
number density and the local electric field E(z) = −dΦ(z)/dz:

kBT
[
ρN(z) − n0

]= ε

8π

[
E(z)

]2 (10.6.18)
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Since the microions behave as an ideal gas, the left-hand side of (10.6.18) is the difference
in local osmotic pressure P(z) = kBTρN(z) between a point z and a point in the bulk,
where ρN(z) = n0; the right-hand side is the electrostatic pressure,28 which vanishes in the
bulk. Differentiation of (10.6.18) with respect to z and use of Poisson’s equation leads to
the condition necessary for hydrostatic equilibrium, i.e.

dP(z)

dz
= eE(z)ρZ(z) = f (z) (10.6.19)

where f (z) is the local force per unit volume acting on the solution. By evaluating
(10.6.18) at z = 0 and making use of the second of the boundary conditions (10.6.16),
we obtain an expression for the enhancement of the microion density at contact over its
bulk value:

kBTρN(0) = kBT n0 + ε[E(0)]2

8π
= kBT n0 + 2πσ 2

ε
(10.6.20)

This result is a special case of the contact theorem for ionic systems:31

kBTρN(0) = P + 2πσ 2

ε
(10.6.21)

where P is the bulk osmotic pressure, which for an ideal solution is equal to kBT n0. Equa-
tion (10.6.21) is a generalisation of (6.5.3b), which applies to uncharged systems. As the
surface charge increases, the contact density will eventually become sufficiently large that
the role of ion–ion correlations can no longer be ignored. The correlation term in the free-
energy functional (10.6.10) must then be included in some approximate form,32 such as a
weighted-density approximation of the type discussed in Section 6.2.

Equation (10.6.15) can be solved analytically. The dimensionless potential Φ∗(z) =
eΦ(z)/kBT satisfies the equation

d2Φ∗(z)
dz2

= k2
D sinhΦ∗(z) (10.6.22)

where kD is the Debye wavenumber (10.2.15). The solution to (10.6.22) is

Φ∗(z) = 4 tanh−1[g exp(−kDz)
]

(10.6.23)

where g is related to the dimensionless surface potential Φ∗(0) by

g = tanh 1
4Φ

∗(0) (10.6.24)

The density profiles follow from (10.6.11):

ρ
(1)
± (z) = 1

2n0

(
1 ∓ g exp(−kDz)

1 ± g exp(−kDz)

)2

(10.6.25)
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At distances z ≈ k−1
D or larger, the density profiles approach their bulk values exponen-

tially, so the thickness of the double layer is of the order of ΛD, the Debye screening length.
We next consider the question of what the effective interaction is between charged sur-

faces separated by an inhomogeneous ionic solution. The simplest geometry is that of two
infinite, parallel, uniformly charged planes placed at z = ± 1

2L. If the two surface charge
densities are the same, there is a plane of symmetry at z = 0 where the local electric field
must vanish. The ionic fluid is assumed to be in chemical equilibrium with a reservoir
of non-interacting, monovalent microions, which fixes the chemical potentials of the two
species at their ideal values, μν = kBT ln(Λ3

νnν). The mirror symmetry means that it is
necessary to solve the Poisson–Boltzmann equation only in the interval − 1

2L � z � 0,
with the boundary conditions

dΦ(z)

dz

∣∣∣∣
z=−L/2

= −4πσ

ε
,

dΦ(z)

dz

∣∣∣∣
z=0

= 0 (10.6.26)

For this problem, apart from the somewhat academic case when the solution contains only
counterions, the solution to the non-linear differential equation (10.6.15) must be obtained
numerically. If the surface charge σ is sufficiently low, however, it is justifiable to linearise
(10.6.22) by setting sinhΦ∗(z) ≈ Φ∗(z). The resulting linear equation is easily solved to
give

Φ(z) = Φ0

sinh(kDL/2)
cosh(kDz) (10.6.27)

with Φ0 = 4πσ/εkD.
The normal component PN(z) of the stress tensor determines the force per unit area on

a test surface placed at z within the fluid. In mechanical equilibrium, PN must be constant
throughout the interval between the planes, i.e.

dPN(z)

dz
= 0, − 1

2L< z < 1
2L (10.6.28)

The quantity PN(z) is the sum of the osmotic pressure of the ions, P(z) = kBTρN(z), and
an electrostatic contribution, which is related to Maxwell’s electrostatic stress tensor:28

PN = P(z) − ε

8π

(
dΦ(z)

dz

)2

= kBTρN(z) − ε

8π

[
E(z)

]2 (10.6.29)

Taken together, (10.6.28) and (10.6.29) lead back to the equilibrium condition (10.6.19).
The pressure difference

ΔP = PN(L) − PN(∞) (10.6.30)

is the force per unit area that must be applied to the charged planes in order to maintain
them at a separation L; it can therefore be identified with the solvation force fS introduced
in Section 6.1. Since the local electrical field is zero at z = 0, it follows from (10.6.29) that

fS ≡ ΔP = kBT
[
ρN(0) − n0

]
(10.6.31)
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Combination of (10.6.27), (10.6.31) and the linearised version of (10.6.12) shows that to
lowest, non-vanishing order in Φ(z = 0):

fS(L) = 1
2kBT n0

[
βeΦ(0)

]2 = 2πσ 2

ε

1

sinh2(kDL/2)

≈ 8πσ 2

ε
exp(−kDL) (10.6.32)

Thus the effective interaction between the charged plates is always repulsive. The same
conclusion is reached within non-linear Poisson–Boltzmann theory. However, when cor-
relations between ions are taken into account, the force between the planes may become
attractive at small separations.33 Such correlations are particularly strong in the case of di-
valent (or polyvalent) counterions, as illustrated by the results of Monte Carlo calculations
shown in Figure 10.6.

Attraction between two like-charged surfaces can be accounted for within density-
functional theory only if the correlation term in the excess free-energy functional is ad-
equately approximated. If the ions are modelled as charged hard spheres, the correlations
between ions arise both from hard-core effects and from short-range, coulombic interac-
tions. This suggests that F ex can be usefully rewritten as

F ex[ρ(1)
+ , ρ

(1)
−
]

= 1
2

∫
eρZ(r)Φ(r)dr +FHS[ρ(1)

+ , ρ
(1)
−
]

− kBT
∑
ν

∑
μ

∫ 1

0
dλ(1 − λ)

∫∫
Δρ(1)

ν (r)Δcνμ(r, r′;λ)Δρ(1)
μ (r′)dr dr′ (10.6.33)

The first term on the right-hand side of (10.6.33) is the mean-field, purely coulombic con-
tribution; the second is the excess free-energy functional for a binary hard-sphere mixture,
corresponding to uncharged ions; and the last term contains the “residual” direct correla-
tion functions, defined as

Δcνμ(r, r′;λ) = cνμ(r, r′;λ) + zνzμλlB

|r − r′| − cHS
νμ(r, r′;λ) (10.6.34)

and represents the remaining correlations.34 The hard-sphere direct correlation functions
cHS
νμ(r′r′) are those compatible with the assumed form of the functional FHS, for which a

weighted-density approximation can be used, and the residual direct correlation functions
can be replaced by those of the bulk solution obtained, for example, from the solution of the
MSA given in Section 10.3. Figure 10.6 makes a comparison between the results obtained
in this way and those of Poisson–Boltzmann theory for restricted primitive models of both
1 : 1 and 2 : 2 electrolyte solutions. In the case of the 1 : 1 solution, where the force is
everywhere repulsive, the two theories give similar results. In the divalent system, however,
the inclusion of correlations gives rise to a strongly attractive force at small separations,
with a minimum at L ≈ 2d ; the results are in good agreement with those obtained by
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FIG. 10.6. Electric double-layer force between charged plates in restricted primitive models of (a) 1 : 1 and
(b) 2 : 2 electrolyte solutions as a function of the plate separation L. The state conditions correspond in each
case to an aqueous solution of ions of diameter d = 4.2 Å at 298 K. The curves are calculated from the Pois-
son–Boltzmann approximation (PB) or from density-functional theory (DFT) and the points are the results of
Monte Carlo simulations.33(b) See text for details. After Tang et al.34

simulation for the same system. Poisson–Boltzmann theory, by contrast, again predicts that
the force should be repulsive for all L. Ion correlations may also lead to charge inversion or
“overscreening” of the surface charge: the total charge of the double layer, integrated over
a few ionic diameters, can be of opposite sign to that of the planes. Similar results have
been reached on the basis of numerical solution of the so-called anisotropic HNC equation,
which represents an extension of bulk HNC theory to inhomogeneous situations.35

10.7 EFFECTIVE INTERACTIONS BETWEEN COLLOIDAL PARTICLES

We now show how the methods developed in the previous section can be used to calcu-
late the effective interaction between large polyions in solution. The example we choose
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is that of a dispersion of spherical, colloidal particles in a polar solvent of dielectric con-
stant ε. The radius R of a particle, which we treat as a hard sphere, would be typically
tens or even hundreds of nanometres, and the particle would carry a charge Ze (|Z| � 1),
with the consequent formation of an electric double layer at the surface. We again adopt
a primitive-model description of the solvent, with both coions and counterions being rep-
resented as charged hard spheres of diameter d (� R), and assume that the dispersion
is in equilibrium with a salt reservoir, which fixes the chemical potentials μ+, μ− of the
microions. The three-component system can be described within the so-called semi-grand
canonical ensemble, characterised by the variables N0, μ+, μ−, V and T , in which the
number of polyions, N0, is fixed but the numbers of microions are allowed to fluctuate. If
we denote the coordinates of the polyions and microions by {Ri} and {rj }, respectively, the
total potential energy of the system may be written in a shorthand form in which subscripts
0 and M refer, respectively, to polyions and microions:

V
({Ri}, {rj }

)= V00
({Ri}

)+ V0M
({Ri}, {rj }

)+ VMM
({rj }) (10.7.1)

where V00, V0M and VMM are all sums of pair potentials of primitive-model form.
The large difference, both in size and charge, between polyions and microions renders

the conventional integral-equation approaches impractical. A coarse-graining strategy is
needed whereby the degrees of freedom of the microions are averaged out, so reducing the
problem to that of an effective, one-component system of polyions dressed by their electric
double layers. The reduction is achieved by writing the partition function of the semi-grand
canonical system in the form

QN0 = 1

N0!Λ3N0
0

∫
exp(−βV00)ΞM

(
μ+,μ−,V ,T ; {Ri}

)
dRN0 (10.7.2)

where

ΞM =
∞∑

N+=0

∞∑
N−=0

ξ
N++ ξ

N−−
N+!N−!

∫∫
exp
[−β(V0M + VMM)

]
drN+ drN− (10.7.3)

is the grand partition function of the microions in the external potential φν(r) of the
polyions in a configuration {Ri}:

φν(r) =
N0∑
i=1

v0ν
(|r − Ri |

)
(10.7.4)

and ξ+, ξ− are the activities of the microions. Equation (10.7.2) can be re-expressed as

QN0 = 1

N0!Λ3N0
0

∫
exp
(−βVeff

({Ri}
))

dRN0 (10.7.5)
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in which the effective interaction between the dressed polyions is

Veff
({Ri}

)= V00
({Ri}

)+ ΩM
(
μ+,μ−,V ,T ; {Ri}

)
(10.7.6)

where ΩM = −kBT lnΞM is the grand potential of the microions. The first term on the
right-hand side of (10.7.6) arises from the direct interaction between polyions, while the
second is a state-dependent, microion-induced interaction, which depends parametrically
on the coordinates {Ri}. Whereas the direct interaction is pairwise additive, the effective
interaction is not; the effective interaction also includes a “volume” term, which is inde-
pendent of the polyion coordinates.

The grand potential ΩM can be evaluated by the methods of density-functional the-
ory. If we limit ourselves to a mean-field approach, we can take over the grand-potential
functional defined by (10.6.6), (10.6.7) and (10.6.10) (with Fcorr = 0). The solution of the
resulting Euler–Lagrange equations for the local densities ρ

(1)
ν (r) in the multi-centre exter-

nal potential (10.7.4) poses a formidable task. Numerical results may be obtained through a
form of molecular-dynamics calculation in which the Fourier components of the local den-
sities are treated as dynamical variables,36 a scheme inspired by the Car–Parrinello method
for simulating systems of classical ions and quantum mechanical, valence electrons.37

However, further progress can be made analytically if the inhomogeneities induced by
the polyions are assumed to be weak. In that case it is justifiable to expand the ideal free-
energy functional (3.1.22) to second order in the deviation Δρ

(1)
ν (r) of the local density

from its bulk value, i.e.

Δρ(1)
ν (r) = ρ(1)

ν (r) − nν (10.7.7)

The intrinsic free-energy functional of the microions is then

F
[
ρ
(1)
+ , ρ

(1)
−
] =

∑
ν

(
F id(nν) + kBT ln

(
Λ3

νnν

)∫
Δρ(1)

ν (r)dr

+ kBT

2nν

∫ [
Δρ(1)

ν r
]2 dr

)
+ 1

2

∫
eρZ(r)ΦC(r)dr (10.7.8)

where the electrostatic potential ΦC(r) satisfies Poisson’s equation (10.6.3). Substitution
of (10.7.8) in (10.6.6), replacement of the chemical potentials μν by their ideal values and
use of the variational principle (3.4.3) gives

Δρ
(1)
ν (r)
nν

+ zνΦ
C(r) = −βφν(r), ν = +,− (10.7.9)

These two equations are coupled through the terms in ΦC. If we were to suppose for the
moment that the polyions are point particles, i.e. that R = 0, the coulombic contribution to
φν(r) would be everywhere equal to zνeΦ

ext(r), where Φext(r) is the “external” electrosta-
tic potential acting on the microions.38 If there were no boundaries, the total electrostatic
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potential within the fluid would then be

Φ(r) = ΦC(r) + Φext(r) = e

∫
ρZ(r′) + Zρext(r′)

ε|r − r′| dr′ (10.7.10)

where ρext(r) =∑i δ(r−Ri ) is the microscopic density of the polyions. Equation (10.7.9)
now becomes

Δρ(1)
ν (r) = −nνzνe

2

kBT

∫
ρZ(r′) + Zρext(r′)

ε|r − r′| dr′ (10.7.11)

To simplify the problem, we consider only the salt-free case, where all microions are
counterions. The coupled equations (10.7.11) then reduce to a single integral equation from
which the subscript ν can be dropped and the charge density ρZ(r) replaced by zρ(1)(r).
On taking Fourier transforms of both sides of (10.7.11), applying the convolution theorem
and incorporating the result in (10.1.5), we find that the Fourier transform of Δρ(1)(r) is

ρ̂(1)(k) = Zk2
D

k2 + k2
D

N0∑
i=1

exp(−ik · Ri ) (10.7.12)

where k2
D = 4πnz2e2/εkBT is the square of the Debye wavenumber associated with the

counterions. Inverse Fourier transformation of (10.7.12) leads to a counterion density pro-
file given by

ρ(1)(r) =
N0∑
i=1

Zk2
D

4π

exp(−kD|r − Ri |)
|r − Ri | ≡

N0∑
i=1

ρ
(1)
i (r) (10.7.13)

The total profile is therefore a superposition of profiles associated with each of the
polyions. The radius of the polyions is now reintroduced by imposing the constraint that
ρ
(1)
i (r) must be zero whenever |r − Ri | <R. Charge neutrality means that ρ(1)

i (r) must be
normalised such that ∫

|r−Ri |>R

ρ
(1)
i (r)dr = |Z/z| (10.7.14)

and for the profile defined by (10.7.13) this requirement would be met if the polyion charge
Ze were replaced by a renormalised charge Z′e, where

Z′ = Z
exp(kDR)

1 + kDR
(10.7.15)

The normalisation in (10.7.14) implicitly assumes that the colloid concentration is low
and hence that the electric double-layers associated with neighbouring polyions have, on
average, little overlap. From Poisson’s equation it is evident that the total electrostatic
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potential may similarly be written as a superposition of N0 screened potentials:

Φ(r) =
N0∑
i=1

Z′e
ε

exp(−kD|r − Ri |)
|r − Ri | ≡

N0∑
i=1

Φi(r) (10.7.16)

If the density profile (10.7.13) and the potential (10.7.16) are substituted in the free-energy
functional (10.7.8), we find that the effective interaction energy (10.7.6) is of the form

Veff
({Ri}

)= V0 +
N∑
i=1

N∑
j>i

veff
(|Ri − Rj |

)
(10.7.17)

where the effective pair potential veff(R) provides the electrostatic contribution to the well-
known Derjaguin–Landau–Verwey–Overbeek (DLVO) potential:39

veff
(|Ri − Rj |

) =
∫

Φi(r)ρ
(1)
j (r)dr

= Z′2e2

ε

exp(−kD|Ri − Rj |)
|Ri − Rj | (10.7.18)

The pairwise additivity is a consequence of the quadratic form of the approximate func-
tional (10.7.8).

The effective interaction energy (10.7.17) contains a structure-independent term, V0.
This term has no effect on the forces acting between the polyions, but it has a significant
influence on the phase diagram.40 It includes, among other contributions, the self-energy
of the double layers associated with individual polyions. The DLVO potential is a function
of density and temperature through its dependence on the Debye wavenumber; its form
remains the same even in the presence of coions, provided the contributions of all microions
are included in the definition of kD and in V0. It is strictly repulsive, thereby stabilising the
colloidal suspension against irreversible aggregation (flocculation) induced by the strong
van der Waals attractive forces between particles. However, if the salt concentration is
sufficiently low, the structure-independent term can drive a phase transition into colloid-
rich and colloid-poor dispersions, even in the absence of attractive forces.

The quadratic functional is inadequate for highly-charged polyions. The strong electro-
static attraction exerted by the polyions on the counterions leads to a substantial fraction
of the latter becoming tightly bound to the colloid surface; this reduces41 the magnitude of
the bare polyion charge to an effective value |Zeff|e. The remaining counterions therefore
experience a much weaker external potential, so the diffuse part of the double layer can
still be described within the quadratic approximation. Direct measurement of the effective
pair potential between charged colloidal particles shows that (10.7.18) provides a good
representation of the data when Zeff is suitably chosen, as the results shown in Figure 10.7
illustrate. The strong, coulombic correlations between microions that arise in the presence
of divalent or trivalent counterions lead to a short-range attraction between like-charged
polyions, similar to that calculated for planar surfaces in Section 10.6.
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FIG. 10.7. Effective pair potential between polystyrene sulphate spheres of radius 0.765 ± 0.01 μm dispersed
in water. The points are experimental results and the curve is calculated from (10.7.18) for an effective charge
|Zeff| = 22 793. After Crocker and Grier.42

10.8 LIQUID METALS: ELECTRONS AND IONS

Pure liquid metals are two-component fluids consisting of Ni positive ions and Ne = zNi

conduction electrons, where z is the ionic valency. The ionic core radius is usually only
a small fraction of the mean interionic spacing, with the result that the ion cores oc-
cupy less than 10% of the total volume of the metal. In the “nearly free electron” pic-
ture the conduction electrons are assumed to move more or less freely through the liq-
uid, interacting only rarely with the ions; the mean-free path of the electrons is typically
ten to a hundred times larger than the separation of neighbouring ions. In the crudest
approximation, interactions are neglected altogether, and the electrons are treated as an
ideal Fermi gas characterised by the energy εF of the highest occupied (Fermi) level, i.e.
εF = h̄2k2

F/2me = h̄2(3π2ρe)
2/3/2me, where kF is the Fermi wavenumber, ρe is the num-

ber density of conduction electrons and me is the electron mass. The Fermi temperature,
TF = εF/kB, is always some two orders of magnitude higher than the melting tempera-
ture. It is therefore a good approximation to assume that the electron gas is completely
degenerate under normal liquid–metal conditions.

The simplest model that takes account of electron–ion interactions is the “jellium” model
of Wigner. This is the quantum-mechanical analogue of the one-component plasma (OCP)
discussed in Section 10.1. It treats the conduction electrons as an interacting Coulomb gas
moving in the uniform background provided by the positively charged ions, with a hamil-
tonian H = KNe + VNe , where KNe is the kinetic-energy operator and the potential energy
VNe is the sum of electron–electron, electron–background and background–background
terms. In a k-space representation, VNe is given as a special case of (10.1.4) by

VNe = 1

2V

∑
k

′
v̂ee(k)

(
ρe

kρ
e
−k − Ne

)
(10.8.1)
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where ρe
k is a Fourier component of the microscopic electron density, v̂ee(k) = 4πe2/k2

is the Fourier transform of the electron–electron potential and the prime on the summation
means that the contribution for k = 0 is omitted because of cancellation by the background.
The ground-state energy has been calculated by methods of quantum-mechanical many-
body theory;43 it is the sum of kinetic, exchange and correlation terms and is expressible
as a function of the single, dimensionless parameter rS = ae/a0, where ae = (3/4πρe)

1/3 is
the “electron-sphere” radius and a0 is the Bohr radius. The minimum energy, correspond-
ing to zero pressure, occurs at rS ≈ 4.2. This result is independent of the chemical nature
of the system, but is in fair agreement with experimental results for the alkali metals, which
range from 3.30 (for Li) to 5.78 (for Cs).

In a more realistic model the hamiltonian of a liquid metal is written as the sum of
a purely electronic term He, a purely ionic term Hi and an electron–ion interaction Vei.
The Coulomb repulsion between ions is in general sufficiently strong to prevent any short-
range forces coming into play, while dispersion forces are weak because the ion cores are
only weakly polarisable. It is therefore a good approximation to set the ion–ion interaction
vii(R) equal to z2e2/R for all R. The electron–electron interaction vee(r) is purely coulom-
bic and the electron–ion potential vei is also coulombic outside the ion core; we shall see
below that inside the core, vei can be replaced by a weak “pseudopotential”. We proceed44

by adding to and subtracting from the hamiltonian the two contributions that would arise
if the electrons were replaced by a uniform background of charge density −eρe. The terms
involved are the ion–background interaction Vib and the background self-energy Vbb, given
by

Vib = −ρe

Ni∑
j=1

∫
ze2

|Rj − r| dr, Vbb = 1
2ρ

2
e

∫∫
e2

|r − r′| dr dr′ (10.8.2)

where Rj denotes the coordinates of ion j . The hamiltonian can then be written as

H =H′
e +H′

i + V ′
ei (10.8.3)

with

H′
e =He − Vbb, H′

i =Hi + Vib + Vbb, V ′
ei = Vei − Vib (10.8.4)

In k-space:

H′
e = Ke + 1

2V

∑
k

′ 4πe2

k2

(
ρe

kρ
e
−k − Ne

)
H′

i = Ki + 1

2V

∑
k

′ 4πz2e2

k2

(
ρi

kρ
i
−k − Ni

)
(10.8.5)

V ′
ei = U0 + 1

V

∑
k

′
v̂ei(k)ρ

i
kρ

e
−k
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where Ki is the kinetic energy of the ions and

U0 = 1

V
lim
k→0

(
v̂ei(k) + 4πze2

k2

)
ρi

kρ
e
−k = Niρe

∫ (
vei(r) + ze2

r

)
dr (10.8.6)

The term H′
e is the jellium hamiltonian and H′

i is the hamiltonian of an OCP of positive
ions in a uniform background. In this formulation of the problem a liquid metal emerges
as a “mixture” of a classical OCP and a quantum-mechanical jellium, the two components
being coupled together through the term V ′

ei.
Inside the ion core the interaction of the conduction electrons with the ion is deter-

mined by details of the charge distribution of the core electrons. The true electron–ion
interaction is therefore a complicated, non-local function for r < rC, where rC is the ion-
core radius. In addition, the potential has a singularity at r = 0. Despite these difficulties
it is possible to treat the electron–ion coupling by perturbation theory if the interaction
is recast in pseudopotential form. The procedure adopted in practice is to parametrise an
assumed functional form for the pseudopotential by fitting to experimental results for quan-
tities that are sensitive to electron–ion collisions. A particularly simple and widely adopted
pseudopotential v∗

ei(r) consists in taking

v∗
ei(r) = 0, r < rC,

= −ze2/r, r > rC
(10.8.7)

This is called the “empty-core” pseudopotential;45 values of the parameter rC can be de-
rived from transport and Fermi-surface data and lie close to generally accepted values for
the ionic radii of simple metals.

If the pseudopotential is weak, the electron–ion term in (10.8.5) can be treated as a
perturbation, the reference system being a superposition of a classical OCP and a degen-
erate, interacting electron gas. To lowest order in perturbation theory, the structure of each
component of the reference system is unaffected by the presence of the other. In this ap-
proximation, assuming the two fluids to be homogeneous:〈

ρi
kρ

e
−k

〉= 〈ρi
k

〉〈
ρe

−k

〉= 0, k �= 0 (10.8.8)

Hence, on averaging the perturbation V ′
ei, only the structure-independent term survives.

The internal energy of the metal is then the sum of three terms: the energy of the degen-
erate electron gas, given by the jellium model; the internal energy of the classical OCP,
which is known from Monte Carlo calculations46 as a function of the dimensionless cou-
pling constant Γ = z2e2/aikBT , where ai = (3/4πρi)

1/3; and the quantity U0, which can
be calculated from (10.8.6) and (10.8.7). When combined, these results allow the calcu-
lation of the internal energy and equation of state as functions of the density parameter
rS for values of Γ and rC appropriate to a particular metal. Figure 10.8 shows the equa-
tion of state obtained in this way for four alkali metals along isotherms corresponding to
the experimental melting temperatures. Given the crudeness of the model, the agreement
between theory and experiment for the zero-pressure value of rS is surprisingly good.
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FIG. 10.8. Equation of state of four alkali metals along isotherms corresponding to the experimental melting
temperatures (Li, 452 K; Na, 371 K; K, 337 K; Cs, 303 K). The curves are calculated from the first-order pertur-
bation theory described in the text and the arrows mark the experimental values of rS at atmospheric pressure.

A more accurate calculation has to take account of the influence of the ionic component
on the structure of the electron gas and vice versa. To do so, we must go to second order
in perturbation theory. We also use an adiabatic approximation: the electrons are assumed
to adjust themselves instantaneously to the much slower changes in the ionic coordinates.
Thus the problem to be considered is that of an inhomogeneous, interacting electron gas in
the external field produced by a given ionic charge distribution; because the electron–ion
pseudopotential is assumed to be weak, the influence of the external field can be treated by
linear-response theory. The polarisation of the electron gas by the ionic charge distribution
leads to a screening of the external field and hence, as we shall see, to a new, effective
interaction between the ions. Although different in detail, the calculation is similar in spirit
to that of the effective interaction between colloidal particles in solution, described in the
previous section.

The partition function corresponding to the hamiltonian (10.8.3) is

QNiNe = 1

Ni!h3Ni

∫∫
exp(−βH′

i)Tre exp
[−β(H′

e + V ′
ei)
]

dRNi dPNi (10.8.9)

where PNi ≡ {Pj } represents the momenta of the ions. The trace is taken over a complete
set of quantum states of the electron gas in the field due to a fixed ionic configuration; the
free energy F ′

e of the inhomogeneous electron gas is a function of the ionic coordinates
{Rj } and given by

F ′
e

({Rj }
)= −kBT ln

(
Tre exp

[−β(H′
e + V ′

ei)
])

(10.8.10)
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If the homogeneous electron gas is taken as the reference system, and V ′
ei is again treated

as a perturbation, F ′
e is obtained from the coupling-parameter formula (5.2.5) as47

F ′
e = Fe +

∫ 1

0
〈V ′

ei〉λ dλ (10.8.11)

where Fe is the free energy of the reference system and the subscript λ shows that the
average is to be taken over an ensemble characterised by the hamiltonian H′

e + λV ′
ei. From

(10.8.5), with v̂ei(k) replaced by v̂∗
ei(k), we find that for a fixed ionic configuration:

〈V ′
ei〉λ = U0 + 1

V

∑
k

′
v̂∗

ei(k)ρ
i
k

〈
ρe

−k

〉
λ

(10.8.12)

The result of first-order perturbation theory corresponds to setting λ = 0. But 〈ρe
−k〉0 is

zero because the reference system is homogeneous; the second term on the right-hand
side of (10.8.12) therefore disappears and we are led back to our earlier result. To obtain
the second-order term it is sufficient to calculate the components of the induced electron
density to first order in λV ′

ei. If χe(k) is the static electron-density response function, the
induced density is 〈

ρe
−k

〉
λ

= χe(k)λv̂
∗
ei(k)ρ

i
−k (10.8.13)

If we now substitute for 〈V ′
ei〉 in (10.8.11) and integrate over λ, we find that the free energy

of the electron gas is given to second order in the electron–ion coupling by

F ′
e = Fe + U0 + 1

2V

∑
k

′
χe(k)

[
v̂∗

ei(k)
]2
ρi

kρ
i
−k (10.8.14)

On comparing this result with (10.8.9) and (10.8.10) we see that the system can be regarded
as a one-component fluid for which the total interaction energy is

VNi

({Rj }
)= V0 + 1

2V

∑
k

′(
v̂ii(k) + χe(k)

[
v̂∗

ei(k)
]2)(

ρi
kρ

i
−k − Ni

)
(10.8.15)

where

V0 = U0 + Fe + 1
2ρi

∑
k

′
χe(k)

[
v̂∗

ei(k)
]2 (10.8.16)

is independent of the structure of the liquid. Since T is normally much less than TF, Fe can
be replaced by the ground-state energy of the interacting electron gas (the jellium model).

The total interaction energy may now be rewritten in a form that involves a sum of pair
interactions:

VNi = V0 +
Ni∑
j=1

Ni∑
j ′>j

veff
ii

(|Rj ′ − Rj |
)

(10.8.17)
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The effective ion–ion potential veff
ii (R) is the Fourier transform of the sum of the bare

ion–ion interaction vii(R) and an electron-induced term v′
ii(R) or, in k-space:

v̂eff
ii (k) = v̂ii(k) + v̂′

ii(k) = 4πz2e2

k2
+ [v̂∗

ei(k)
]2
χe(k)

= 4πz2e2

k2
+ [v̂∗

ei(k)]2

(4πe2/k2)

(
1

εe(k)
− 1

)
(10.8.18)

where εe(k), the dielectric function of the electron gas, is related to the susceptibility χe(k)

in the manner of (10.2.11).43 In the long-wavelength limit, εe(k) behaves as

lim
k→0

εe(k) = 1 + k2
e/k

2 (10.8.19)

with

k2
e = k2

TF
χT e

χ id
T e

(10.8.20)

where χT e and χ id
T e are the isothermal compressibilities, respectively, of the interacting and

non-interacting electron gas, and kTF = 2(kF/πa0)
1/2 is the Thomas–Fermi wavenumber.

Equation (10.8.19) is the electronic counterpart of the relation (10.2.30) satisfied by the
classical OCP and ke is the analogue of the ionic screening wavenumber ks. In the same
limit, v̂∗

ei(k) → 4πze2/k2. It follows that the effective interaction v̂eff
ii (k) is a regular func-

tion in the limit k → 0, the k−2 singularity in the bare potential v̂ii(k) being cancelled by
the same singularity in v̂′

ii(k). In other words, the bare ion–ion potential vii(R) is com-
pletely screened by the polarisation of the electron gas, and the effective potential veff

ii (R)

is therefore a short-range function. A typical effective potential for an alkali metal has a
soft repulsive core, an attractive well with a depth (in temperature units) of a few hundred
kelvin and a weakly oscillatory tail.48 An example of a calculated effective potential for
liquid potassium is shown in Figure 1.4.

The results of the second-order calculation can be summarised by saying that we have
reduced the liquid–metal problem to one of calculating the classical partition function of
a fluid of Ni pseudoatoms in which the particles interact through a short-range effective
potential veff

ii (R). After integration over momenta, the partition function becomes

QNi = exp(−βV0)

Ni!Λ3Ni
i

∫
exp
(−βV eff

Ni

)
dRNi (10.8.21)

where V eff
Ni

is the sum of the pairwise-additive effective interactions for a given ionic con-
figuration and Λi is the de Broglie thermal wavelength of the ions. Equation (10.8.21)
differs from the usual partition function of a monatomic fluid in two important ways: first,
in the appearance of a large, structure-independent energy V0; and, secondly, in the fact
that both V0 and the pair potential from which V eff

Ni
is derived are functions of density by

virtue of the density dependence of the properties of the electron gas. The reduction of
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FIG. 10.9. Pair distribution function of liquid lithium near the normal melting. temperature. The curve shows
results obtained by molecular-dynamics calculations for an effective ion–ion potential and the points are the
results of neutron-scattering measurements. After Salmon et al.50

the problem to the form described by (10.8.21) means that the theoretical methods devel-
oped for the calculation of static properties of simple classical liquids can also be applied
to liquid metals. Special care is needed only when evaluating volume derivatives of the
free energy, because the density dependence of the effective interaction gives rise to ex-
tra terms. Computer simulations have shown that effective ion–ion potentials can account
quantitatively for many of the observed properties of simple liquid metals. From Figure
10.9, for example, we see that the pair distribution function obtained in this way for liquid
lithium49 is in excellent agreement with that derived from neutron-diffraction data.

10.9 IONIC DYNAMICS IN LIQUID METALS

The microscopic dynamics of the ions in liquid metals do not differ in any fundamental
way from the corresponding motions in simple, insulating liquids such as the rare gases.
This is not surprising, since the pair potentials for metallic pseudoatoms and rare-gas atoms
are qualitatively similar. For the same reason, experimental and theoretical methods that
have been used successfully to study and describe the dynamics of argon-like liquids have,
for the most part, met with comparable success in their application to simple liquid metals.
However, as comparison of Figures 1.3 and 1.4 shows, the interactions in, say, potassium
and argon do differ considerably in detail, and this gives rise to quantitative differences in
the dynamical behaviour of the two types of system. For example, as we have seen in earlier
chapters, experiments and simulations have combined to show that propagating collective
modes of both transverse and longitudinal character persist over ranges of wavelength rela-
tive to the particle diameters that are considerably wider in liquid metals than in argon-like
liquids.51

A different insight into the dynamics can be obtained through the representation of a
liquid metal as an ion–electron plasma along the lines followed for static properties in
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Section 10.8. In this picture of the liquid, the ionic and electronic components are only
weakly coupled through the electron–ion pseudopotential, and each component may be
regarded as an external perturbation on the other. Let φν(k,ω) be an external potential
that acts on component ν, where ν = 1 for the ions and 2 for the electrons. Within linear-
response theory the Fourier components of the induced densities are related to the external
potentials by a matrix of density-response functions:〈

ρν
k(ω)

〉=∑
μ

χνμ(k,ω)φμ(k,ω) (10.9.1)

The response to the internal field is described by a similar matrix of screened response
functions, χ sc

νμ. Written in matrix form the response is〈
ρk(ω)

〉= χ sc(k,ω) · [φ(k,ω) + v̂(k) · 〈ρk(ω)
〉]

(10.9.2)

where v̂(k) is the matrix of bare potentials v̂νμ(k) and the second term in square brackets is
the “polarisation potential”. Elimination of 〈ρν

k(ω)〉 between (10.9.1) and (10.9.2) leads to
a matrix generalisation of the relation (10.4.11) between the external and screened response
functions:

χ(k,ω) = χ sc(k,ω) + χ sc(k,ω) · v̂(k) · χ(k,ω) (10.9.3)

or, in terms of elements of the inverse matrices:[
χ(k,ω)

]−1
νμ

= [χ sc(k,ω)
]−1
νμ

− v̂νμ(k) (10.9.4)

To lowest order in the ion–electron coupling the two species respond to the internal
field as two, independent, one-component plasmas. The off-diagonal elements of χ sc are
then zero, and the diagonal elements χ sc

νν(k,ω) are the screened response functions of the
classical OCP (ν = 1) and the degenerate electron gas in a uniform background (jellium)
(ν = 2). It follows, given (10.4.11) and (10.4.12), that[

χ sc(k,ω)
]−1

11 = 1/χOCP(k,ω) + v̂11(k)

(10.9.5)[
χ sc(k,ω)

]−1
22 = v̂22(k)

1 − εe(k,ω)

and the external susceptibility of the ions is obtained from (10.9.4) as

χ11(k,ω) = χOCP(k,ω)

1 − v̂(k,ω)χOCP(k,ω)
(10.9.6)

where v̂(k,ω) describes the dynamical screening of the ion–ion interaction by the elec-
trons:

v̂(k,ω) = k2[v̂12(k)]2

4πe2

(
1

εe(k,ω)
− 1

)
(10.9.7)
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The frequency scale of the electronic motion is much higher than any frequency associ-
ated with the ions. It is therefore reasonable to make an adiabatic approximation in which
v̂(k,ω) is replaced by v̂(k,0). The characteristic frequencies of the longitudinal modes of
the screened ionic plasma are given by the roots of the denominator in (10.9.6) or, in the
adiabatic approximation, by the solution to the equation

1 − v̂(k,0)χOCP(k,ω) = 0 (10.9.8)

In the limit k → 0, the ratio F̃OCP(k,ω)/SOCP(k) is related to the frequency-dependent
electrical conductivity by (10.4.30). Thus, from (7.6.21):52

lim
k→0

χOCP(k,ω) = −βρi lim
k→0

lim
ε→0

[
SOCP(k) + i(ω + iε)F̃OCP(k,ω + iε)

]
= −βρi lim

k→0
SOCP(k) lim

ε→0

4πσ(ω + iε)

−i(ω + iε) + 4πσ(ω + iε)
(10.9.9)

The long-wavelength limit of SOCP(k) is given by (10.2.31) and the complex conductivity
σ(ω + iε) can be expressed, via (7.7.10), in the form

σ(ω + iε) = β

V

∫ ∞

0
J (t) exp

[
i(ω + iε)t

]
dt (10.9.10)

where J (t) is the charge–current autocorrelation function. In the OCP the proportionality
of mass and charge means that the conservation of total linear momentum is equivalent to
the conservation of charge current, i.e. the resistivity is zero. Hence

J (t) = J (0) = Niz
2e2kBT

mi
(10.9.11)

and, from (10.9.10):

σ(ω + iε) = iω2
pi

4π(ω + iε)
(10.9.12)

where ω2
pi = 4πρiz

2e2/mi is the square of the ionic plasma frequency. Substitution of
(10.9.12) in (10.9.9) shows that

lim
k→0

χOCP(k,ω)

SOCP(k)
= βρiω

2
pi

ω2 − ω2
pi

(10.9.13)

At small k, εe(k,0) ≈ k2
e/k

2, from (10.8.19), and v̂12(k), in the empty-core model, behaves
as

v̂12(k) = 4πz2e2 coskrc

k2
≈ 4πze2

k2

(
1 − 1

2k
2r2

c

)
(10.9.14)
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so that

lim
k→0

v̂(k,0) = 4πz2e2

k2

(
1 − k2r2

c

)(k2

k2
e

− 1

)
(10.9.15)

When the results are brought together we find that to order k2 the solution to (10.9.8) leads
to a dispersion relation characteristic of a propagating sound wave, i.e.

ω = ωpi
(
k−2

e + k−2
s + r2

c

)1/2
k = ck (10.9.16)

where ks is the ionic screening wavenumber defined by (10.2.28) and c is the speed of
sound. Thus the effect of electron screening is to convert the plasmon mode at frequency
ωpi into a sound wave of a frequency that vanishes linearly with k. A more detailed analysis
shows that c can be identified with the isothermal speed of sound, but this differs little from
the adiabatic value, since the ratio of specific heats is close to unity for liquid metals.
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CHAPTER 11

Molecular Liquids

The earlier parts of the book have dealt almost exclusively with atomic systems. In this
chapter we consider some of the new problems that arise when the theory is broadened to
include molecular fluids.

11.1 THE MOLECULAR PAIR DISTRIBUTION FUNCTION

The description of the structure of a homogeneous molecular fluid in terms of particle
densities and distribution functions can be developed along lines similar to those followed
in the atomic case. The main added complication is the fact that the phase-space probability
density for particles with rotational degrees of freedom is not immediately factorisable into
kinetic and configurational parts. This problem is very well treated in the book by Gray
and Gubbins1 and we shall not dwell on it here. The final expressions for the molecular
distribution functions resemble closely those obtained for atomic fluids, except that all
quantities are now functions of the molecular orientations.

In this chapter we shall be concerned almost exclusively with pair correlations. We there-
fore take as our starting point a suitably generalised form of the definition (2.5.13) of the
pair density in a uniform fluid. Let Ri be the translational coordinates of molecule i and let
Ω i be the orientation of i in a laboratory-fixed frame of reference. If the molecule is linear,
Ω i ≡ (θi, φi), where θi , φi are the usual polar angles; if it is non-linear, Ω i ≡ (θi, φi, χi),
where θi , φi , χi are the Euler angles. Then the molecular pair density is defined as

ρ(2)(R,R′,Ω,Ω ′) =
〈

N∑
i=1

N∑
j �=i

δ(R − Ri )δ(R′ − Rj )δ(Ω − Ω i )δ(Ω
′ − Ωj )

〉
(11.1.1)

and the molecular pair distribution function as

g(R12,Ω1,Ω2) = (Ω/ρ)2ρ(2)(R12,Ω1,Ω2) (11.1.2)

where Ω ≡ ∫ dΩ i . The definition of Ω means that

Ω =
∫∫

d(cos θi)dφi = 4π, if linear (11.1.3a)

341
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Ω =
∫∫∫

d(cos θi)dφi dχi = 8π2, if non-linear (11.1.3b)

The coordinates Ri are often taken to be those of the molecular centre of mass or
some other point of high symmetry in the molecule, but the choice of molecular “cen-
tre” is entirely arbitrary. To simplify the notation it is convenient to use the symbol
i ≡ (Ri ,Ω i ) to denote both the coordinates of the molecular centre and the orientation
of molecule i. Thus the molecular pair distribution function will often be written simply
as g(1,2) and the molecular pair correlation function as h(1,2) = g(1,2) − 1. The func-
tions e(1,2) = exp[−βv(1,2)], f (1,2) = e(1,2) − 1 and y(1,2) = g(1,2)/e(1,2) have
the same significance as in the atomic case, but are now functions of the orientations Ω1,
Ω2. Finally, the molecular direct correlation function c(1,2) is related to h(1,2) by a gen-
eralisation of the Ornstein–Zernike relation (3.5.12):

h(1,2) = c(1,2) + ρ

Ω

∫
c(1,3)h(3,2)d3 (11.1.4)

Integration of the pair distribution function over the variables Ω1, Ω2 yields a func-
tion gc(R) (with R ≡ |R12|) that describes the radial distribution of molecular centres:

gc(R) = 1

Ω2

∫∫
g(R,Ω1,Ω2)dΩ1 dΩ2 ≡ 〈g(1,2)

〉
Ω1Ω2

(11.1.5)

Here and elsewhere in this chapter we use angular brackets with subscripts Ω1 · · · to denote
an unweighted average over the angles Ω1 · · ·, i.e.

〈· · ·〉Ω1 ≡ 1

Ω

∫
· · · dΩ1 (11.1.6)

With this convention the Ornstein–Zernike relation (11.1.4) may be re-expressed as

h(1,2) = c(1,2) + ρ

∫ 〈
c(1,3)h(3,2)

〉
Ω3

dR3 (11.1.7)

If g(1,2) is multiplied by some function of the orientations Ω1, Ω2 and then integrated
over all coordinates of the pair 1 and 2, the result is a quantity that measures the importance
of angular correlations of a specific type. Let us suppose that molecule i has an axis of
symmetry and let ui be a unit vector along that axis. A set of angular order parameters that
are of interest both theoretically and experimentally are those defined as

Gl = ρ

∫ 〈
Pl(u1 · u2)g(R12,Ω1,Ω2)

〉
Ω1Ω2

dR12

= 〈(N − 1)Pl(u1 · u2)
〉

(11.1.8)

where Pl(· · ·) denotes a Legendre polynomial. The value of the first-rank order parame-
ter G1 determines the dielectric constant of a polar fluid, as we show in Section 11.5, while



EXPANSIONS OF THE PAIR DISTRIBUTION FUNCTION 343

G2 is related to a number of measurable quantities, including the integrated intensity of the
spectrum observed in depolarised light-scattering experiments.

When the total potential energy of the fluid is a sum of pair terms the internal energy and
equation of state can both be written as integrals over g(1,2). The excess internal energy,
for example, is given by

U ex

N
= ρ

2Ω2

∫∫∫
v(1,2)g(1,2)dR12 dΩ1 dΩ2

= 2πρ
∫ ∞

0

〈
v(1,2)g(1,2)

〉
Ω1Ω2

R2
12 dR12 (11.1.9)

which is the molecular analogue of (2.5.20) The corresponding result for the pressure is a
generalisation of (2.5.22):

βP

ρ
= 1 − 2πβρ

3

∫ ∞

0

〈
v′(1,2)g(1,2)

〉
Ω1Ω2

R3
12 dR12 (11.1.10)

where the prime denotes differentiation with respect to R12 with Ω1, Ω2 held constant.
Irrespective of whether or not the potential energy is pairwise additive, an argument similar
to that leading to (2.6.12) shows that the isothermal compressibility is given by

ρkBT χT = 1 + ρ

∫ 〈
g(1,2) − 1

〉
Ω1Ω2

dR12 = 1 + ρ

∫ [
gc(R) − 1

]
dR (11.1.11)

This result is of particular interest insofar as all reference to angular coordinates has disap-
peared.

Equations (11.1.9), (11.1.10) and (11.1.11) are identical to their atomic counterparts ex-
cept for the fact that the pair functions (or products of pair functions) in the integrands
are replaced by their unweighted angular averages. Their significance, however, is largely
formal. The many-dimensional character of the molecular pair distribution function means
that, in general, these results do not represent practical routes to the calculation of ther-
modynamic properties. The shape of g(1,2) is difficult even to visualise and if progress
is to be made the basic problem must be cast in simpler form. Two different approaches
have been widely used. In one, which we review in the next section, g(1,2) (or h(1,2))
is expanded in a series of suitably chosen, angle-dependent basis functions; in the other,
which we discuss in Section 11.3, the fluid structure is described in terms of site–site dis-
tribution functions. Use of site–site distribution functions is particularly appropriate when
the intermolecular potential is cast in site–site form, as in (1.2.6).

11.2 EXPANSIONS OF THE PAIR DISTRIBUTION FUNCTION

The pair distribution function for molecules of arbitrary symmetry can be expanded in
terms of the Wigner rotation matrices or generalised spherical harmonics.2 The general
formalism has not been widely used, however, and the discussion that follows is limited
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to linear molecules. In this case the natural expansion functions are the usual spherical
harmonics, which we denote by Ylm(θ,φ).3 Let Ω1, Ω2 be the orientations of molecules 1,
2 in a system of polar coordinates in which the z-axis lies along the vector R12 = R2 − R1
(the “intermolecular” frame). Then g(1,2) may be written as

g(1,2) = 4π
∑
l1

∑
l2

∑
m

gl1l2m(R)Yl1m(Ω1)Yl2m̄(Ω2) (11.2.1)

where R ≡ |R12| and m̄ ≡ −m. The sum on m runs from −l to l, where l is the lesser
of l1 and l2; the indices m of the two harmonics are equal (apart from sign) by virtue of
the cylindrical symmetry with respect to the axis R12. Important properties of the spherical
harmonics include the fact that they are normalised and orthogonal:∫

Y ∗
lm(Ω)Yl′m′(Ω)dΩ = δll′δmm′ (11.2.2)

and that Ylm̄(Ω) = (−1)mY ∗
lm(Ω).

If (11.2.1) is multiplied through by Y ∗
l1m̄

(Ω1)Y
∗
l2m

(Ω2) and integrated over angles, it
follows from the properties just quoted that

gl1l2m(R) = 1

4π

∫∫
Yl1m̄(Ω1)Yl2m(Ω2)g(1,2)dΩ1 dΩ2

= 4π
〈
Yl1m̄(Ω1)Yl2m(Ω2)g(1,2)

〉
Ω1Ω2

(11.2.3)

The expansion coefficients gl1l2m(R) are called the “projections” of g(1,2) onto the cor-
responding angular functions and are easily calculated by computer simulation. Certain
projections of g(1,2) are closely related to quantities introduced in Section 11.1. Given
that Y00(Ω) = (1/4π)1/2, we see that g000(R) is identical to the centres distribution func-
tion gc(R); this is the reason for the inclusion of the factor 4π in (11.2.1). Moreover, the
order parameters defined by (11.1.8) can be re-expressed as

Gl = ρ

2l + 1

∑
m

(−1)m
∫

gllm(R)dR (11.2.4)

This result is a consequence of the addition theorem for spherical harmonics, i.e.

Pl(cosγ12) = 4π

2l + 1

∑
m

Y ∗
lm(Ω1)Ylm(Ω2) (11.2.5)

where γ12 is the angle between two vectors with orientations Ω1 and Ω2.
An expansion similar to (11.2.1) can be made of any scalar function of the variables R12,

Ω1 and Ω2, including both the intermolecular potential v(1,2) and its derivative with
respect to R12. The corresponding expansion coefficients vl1l2m(R) and v′

l1l2m
(R) can be

calculated numerically for any pair potential and in some cases are expressible in analytical
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form. If we introduce the expansions of g(1,2) and v(1,2) into (11.1.9) and integrate over
angles, the energy equation becomes

U ex

N
= 2πρ

∑
l1

∑
l2

∑
m

∫ ∞

0
vl1l2m(R)gl1l2m(R)R2 dR (11.2.6)

The pressure equation (11.1.10) can be similarly rewritten in terms of the coeffi-
cients v′

l1l2m
(R) and gl1l2m(R). The multidimensional integrals appearing on the right-

hand sides of (11.1.9) and (11.1.10) are thereby transformed into infinite sums of one-
dimensional integrals. In general, however, the new expressions do not represent an im-
provement in the computational sense. The evidence from Monte Carlo calculations for
systems of diatomic molecules is that on the whole the rate of convergence of the sums is
poor and becomes rapidly worse as the elongation of the molecule increases.4

A different expansion of g(1,2) is obtained if the orientations Ω1, Ω2 are referred to a
laboratory-fixed frame of reference (the “laboratory” frame). Let ΩR be the orientation of
the vector R12 in the laboratory frame. Then g(1,2) may be expanded in the form

g(1,2) =
∑
l1

∑
l2

∑
l

g(l1l2l;R)
∑
m1

∑
m2

∑
m

C(l1l2l; m1m2m)

× Yl1m1(Ω1)Yl2m2(Ω2)Y
∗
lm(ΩR) (11.2.7)

where C(· · ·) is a Clebsch–Gordan coefficient. The coefficients g(l1l2l; R) are linear com-
binations of the coefficients in (11.2.1) and the two expansions are equivalent if the z-axis
of the laboratory frame is taken parallel to R12. The relation between the two sets of coef-
ficients is

g(l1l2l; R) =
(

64π3

2l + 1

)1/2∑
m

C(l1l2l; mm̄0)gl1l2m(R) (11.2.8)

with, as a special case, g(000; R) = (4π)3/2g000(R). Equation (11.2.7) is sometimes writ-
ten in the abbreviated form

g(1,2) =
∑
l1

∑
l2

∑
l

g(l1l2l; R)Φl1l2l (Ω1,Ω2,ΩR) (11.2.9)

where Φl1l2l is a “rotational invariant”.
Use of (11.2.7) in preference to (11.2.1) does not help in resolving the problem of

slow convergence in expansions such as (11.2.6), but it does have some advantages, par-
ticularly in the manipulation of Fourier transforms. We shall use the notation ĝ(1,2) ≡
ĝ(k,Ω1,Ω2) to denote a Fourier transform with respect to R12, i.e.

ĝ(k,Ω1,Ω2) =
∫

g(R12,Ω1,Ω2) exp(−ik · R12)dR12 (11.2.10)
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Then ĝ(1,2) can be written in terms of laboratory-frame harmonics as

ĝ(1,2) =
∑
l1

∑
l2

∑
l

g(l1l2l; k)
∑
m1

∑
m2

∑
m

C(l1l2l; m1m2m)

× Yl1m1(Ω1)Yl2m2(Ω2)Y
∗
lm(Ωk) (11.2.11)

where Ωk is the orientation of k in the laboratory frame. The reason that this expansion and
the corresponding expansions of ĥ(1,2) and ĉ(1,2) are so useful is the fact that the coeffi-
cients g(l1l2l; k) and g(l1l2l; R) are related by a generalised Fourier or Hankel transform,
i.e.

g(l1l2l; k) = 4πil
∫ ∞

0
jl(kR)g(l1l2l; R)R2 dR (11.2.12)

where jl(· · ·) is the spherical Bessel function of order l. No equivalent simplification is
found in the case of the intermolecular-frame expansion. We shall not give a general proof
of (11.2.12), since in this book we are concerned only with l = 0 and l = 2. The case when
l = 0 corresponds to the usual Fourier transform of a spherically symmetric function; the
case when l = 2 is considered in detail in Section 11.4.

Expansions of g(1,2) and other pair functions along the lines of (11.2.1) and (11.2.7)
have been applied most successfully in the theory of polar fluids, as we shall see in Sec-
tions 11.5 and 11.6.

11.3 SITE–SITE DISTRIBUTION FUNCTIONS

When an interaction-site model is used to represent the intermolecular potential the natural
way to describe the structure of the fluid is in terms of site–site distribution functions. If
the coordinates of site α on molecule i are denoted by riα and those of site β on molecule j

(j �= i) by rjβ , then the site–site pair distribution function gαβ(r) is defined in a manner
similar to (2.5.15):

ρgαβ(r) =
〈

1

N

N∑
i=1

N∑
j �=i

δ(r + r2β − r1α)

〉

= 〈(N − 1)δ(r + r2β − r1α)
〉

(11.3.1)

The corresponding site–site pair correlation function is defined as hαβ(r) = gαβ(r) − 1.
The site–site distribution functions are, of course, of interest in a wider context than that of
interaction-site models. For any real molecular fluid the most important site–site distribu-
tion functions are those that describe the distribution of atomic sites.

The definition (11.3.1) can be used to relate the site–site distribution functions to the
molecular pair distribution function g(1,2). Let �iα be the vector displacement of site α in
molecule i from the molecular centre Ri , i.e.

�iα = riα − Ri (11.3.2)
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Then gαβ(r) is given by the integral of g(1,2) over all coordinates, subject to the constraint
that the vector separation of sites α, β is equal to r:

gαβ(r) = 1

Ω2

∫∫∫∫
dR1 dR2 dΩ1 dΩ2 g(1,2)

× δ
[
R1 + �1α(Ω1)

]
δ
[
R2 + �2β(Ω2) − r

]
= 1

Ω2

∫∫∫
dR12 dΩ1 dΩ2 g(1,2)

× δ
[
R12 + �2β(Ω2) − �1α(Ω1) − r

]
(11.3.3)

It follows from (11.3.3) that the Fourier transform of gαβ(r) with respect to r is

ĝαβ(k) = 1

Ω2

∫∫∫∫
dR12 dΩ1 dΩ2 g(1,2)

× δ
[
R12 + �2β(Ω2) − �1α(Ω1) − r

]
exp(−ik · r)dr

= 1

Ω2

∫∫∫
dR12 dΩ1 dΩ2 g(1,2) exp(−ik · R12)

× exp
[−ik · �2β(Ω2)

]
exp
[
ik · �1α(Ω1)

]
= 〈ĝ(1,2) exp

[−ik · �2β(Ω2)
]

exp
[
ik · �1α(Ω1)

]〉
Ω1Ω2

(11.3.4)

where ĝ(1,2) is defined by (11.2.10). There is an analogous expression for ĥαβ(k) in terms
of h(1,2).

The site–site distribution functions have a simple physical interpretation. They are also
directly related to the structure factors measured in x-ray and neutron-scattering exper-
iments. On the other hand, the integrations in (11.3.3) involve an irretrievable loss of
information, and g(1,2) cannot be reconstructed exactly from any finite set of site–site
distribution functions.

Many of the quantities that are expressible as integrals over g(1,2) can also be written in
terms of site–site distribution functions. For example, if the intermolecular potential is of
the interaction-site form and the site–site potentials are spherically symmetric, the excess
internal energy is given by

U ex

N
= 2πρ

∑
α

∑
β

∫ ∞

0
vαβ(r)gαβ(r)r

2 dr (11.3.5)

Equation (11.3.5) is a straightforward generalisation of (2.5.20) and can be derived by the
same intuitive approach discussed in connection with the earlier result. The generalisation
of the virial equation (2.5.22) is more complicated and knowledge of gαβ(r) for all α, β is
not sufficient to determine the pressure. The equation of state can, however, be determined
by integration of the compressibility equation (11.1.11). Because the choice of molecular
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centre is arbitrary, and need not be the same for each molecule, (11.1.11) can be written as

ρkBT χT = 1 + ρ

∫ [
gαβ(r) − 1

]
dr = 1 + ρĥαβ(0) (11.3.6)

where α, β refer to any pair of sites. Finally, the angular correlation parameters Gl defined
by (11.1.8) can be expressed5 as integrals over combinations of the functions hαβ(r). In
the case of a heteronuclear but non-polar molecule with atomic sites α and β the result
for G1 is6

G1 = − ρ

2L2

∫ ∞

0
r2Δh(r)dr (11.3.7)

where L is the bondlength and

Δh(r) = hαα(r) + hββ(r) − 2hαβ(r) (11.3.8)

If ĥαβ(k) is expanded in powers of k in the form

ĥαβ(k) = 4π
∫ ∞

0
hαβ(r)

sin kr

kr
r2 dr = ĥαβ(0) + h

(2)
αβ k

2 + · · · (11.3.9)

we find that G1 is proportional to the coefficient of k2 in the small-k expansion of Δĥ(k):

G1 = 3ρ

L2
Δh(2) (11.3.10)

Similarly, Gl for l > 1 can be written in terms of the higher-order coefficients Δh(n). The
example given is somewhat artificial, since any real heteronuclear molecule will have a di-
pole moment; in that case (11.3.7) is no longer correct. Nonetheless, it serves to illustrate
the general form of the results, and we shall see in Section 11.5 how (11.3.7) can be recov-
ered from the expression appropriate to polar molecules. If the molecule is homonuclear,
all site–site distribution functions are the same and G1 vanishes, as it must do on grounds
of symmetry.

Information on the atom–atom distribution functions of real molecules is gained exper-
imentally from the analysis of radiation-scattering experiments. Consider first the case of
a homonuclear diatomic. Let ui be a unit vector along the internuclear axis of molecule i.
Then the coordinates of atoms α, β relative to the centre of mass Ri are

riα = Ri + 1
2 uiL, riβ = Ri − 1

2 uiL (11.3.11)

We define the Fourier components of the atomic density as

ρk =
N∑
i=1

[
exp(−ik · riα) + exp(−ik · riβ)

]
(11.3.12)
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and the molecular structure factor as

S(k) =
〈

1

4N
ρkρ−k

〉
(11.3.13)

where N is the number of molecules. The factor 1
4 is included in order to make the defi-

nition of S(k) reduce to that of an atomic fluid in the limit L → 0. The statistical average
in (11.3.13) may be rewritten in terms of either the atomic or molecular pair distribution
functions. In the first case, by exploiting the fact that atoms α, β in each molecule play
equivalent roles, we can write

〈
1

4N
ρkρ−k

〉
= 1

2
+ 1

2N

N∑
i=1

〈
cos(k · uiL)

〉
Ω i

+
〈

1

4N

N∑
i=1

N∑
j �=i

exp
[−ik · (rjβ − riα)

]〉
(11.3.14)

The second term on the right-hand side involves only an average over angles and the third
term can be related to any of the four identical distribution functions gαβ(r) via the defini-
tion (11.3.1). Thus

S(k) = Sintra(k) + Sinter(k) (11.3.15)

The first term on the right-hand side of (11.3.15) is the intramolecular contribution:

Sintra(k) = 1
2

(
1 + 〈cos k · uiL〉Ω i

)= 1
2

[
1 + j0(kL)

]
(11.3.16)

where j0(x) = x−1 sinx. The intermolecular part is given by

Sinter(k) = ρ

∫
hαβ(r) exp(−ik · r)dr = Sαβ(k) − 1 (11.3.17)

where Sαβ(k) is the atomic structure factor and a physically unimportant term in δ(k) has
been omitted. The total intensity of scattered radiation at a given value of k is proportional
to the structure factor (11.3.15); this can be inverted to yield the atomic pair distribution
function if the intramolecular part is first removed.7

In order to relate S(k) to the molecular pair distribution function we start from the defi-
nition (11.3.13) and proceed as follows:

S(k) =
〈

1

4N
ρkρ−k

〉

=
〈

1

N

N∑
i=1

N∑
j=1

exp(−ik · Rij ) cos
( 1

2 k · uiL
)

cos
( 1

2 k · ujL
)〉

= 1
2

[
1 + j0(kL)

]
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+
〈

1

N

N∑
i=1

N∑
j �=i

exp(−ik · Rij ) cos
( 1

2 k · uiL
)

cos
( 1

2 k · ujL
)〉

= Sintra(k) + ρ

Ω2

∫∫∫ [
g(1,2) − 1

]
exp(−ik · R12)

× cos
( 1

2 k · u1L
)

cos
( 1

2 k · u2L
)

dR12 dΩ1 dΩ2 (11.3.18)

Equation (11.3.18) is an exact relation between S(k) and g(1,2). Comparison with (11.3.4)
shows that the second term on the right-hand side is ĥαβ(k); this can also be deduced
from inspection of Eqns (11.3.15) to (11.3.17). A more tractable expression is obtained
by replacing g(1,2) by it spherical-harmonic expansion (11.2.1). The structure factor can
then be written as

S(k) = Sintra(k) + f (k)
[
Sc(k) − 1

]+ Saniso(k) (11.3.19)

where

f (k) = 〈cos
( 1

2 k · u1L
)

cos
( 1

2 k · u2L
)〉

Ω1Ω2
= [j0

( 1
2kL

)]2 (11.3.20)

and Sc(k) is the Fourier transform of the centres distribution function gc(r). The term
Saniso(k) in (11.3.19) represents the contribution to S(k) from the angle-dependent terms
in g(1,2), i.e. from all spherical harmonics beyond (l1, l2,m) = (0,0,0). If the intermole-
cular potential is only weakly anisotropic, Saniso(k) will be small. In those circumstances
it follows from (11.3.15), (11.3.17) and (11.3.19) that

Sαβ(k) ≈ 1 + f (k)
[
Sc(k) − 1

]
(11.3.21)

Equation (11.3.21) is called the “free-rotation” approximation. This can be expected to
work well only when the intermolecular potential is very weakly anisotropic, as in the case
of liquid nitrogen, for example. At the same time, even in the absence of strong orienta-
tional correlations, the modulating role of the function f (k) means that the intermolecular
contribution to S(k) will differ from the structure factor of an atomic fluid. This is evident
in Figure 11.1, which shows the results of x-ray scattering experiments on liquid nitrogen.
Although the function Sc(k) cannot usually be determined experimentally,9 the evidence
from computer simulations10 is that for small molecules it has a strongly oscillatory char-
acter and can be well fitted by the structure factor of an atomic system. By contrast, as
comparison of Figures 3.2 (or 5.1) and 11.1 reveals, the first peak in the molecular struc-
ture factor is significantly weaker and the later oscillations are more strongly damped than
in the case of a typical atomic fluid. Note also that beyond the first peak the behaviour of
the molecular structure factor is dominated by the intramolecular term. The free-rotation
approximation becomes exact in the limit k → 0 because the cosine terms in (11.3.18) all
approach unity. Thus

ρkBT χT = lim
k→0

S(k) = 1 + ρ

∫ [
gc(R) − 1

]
dR (11.3.22)

which is the same result as in (11.1.11).
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FIG. 11.1. Results obtained by x-ray scattering for the structure factor of liquid nitrogen near its triple point.
Filled circles: S(k); open circles: Sinter(k); dashes: Sintra(k). After Narten et al.8

For heteronuclear molecules there is normally little value in defining a structure factor
through a formula analogous to (11.3.13). It is more useful instead to focus attention on
those combinations of atomic structure factors that are experimentally accessible. In the
case of neutron scattering the measured structure factor can again be written in the form
of (11.3.15), but now(∑

α

bα

)2

SN
intra(k) =

∑
α

b2
α +

∑
α

∑
β �=α

bαbβj0(kLαβ) (11.3.23a)

(∑
α

bα

)2

SN
inter(k) = ρ

∑
α

∑
β

bαbβ

∫ [
gαβ(r) − 1

]
exp(−ik · r)dr

=
∑
α

∑
β

bαbβ
[
Sαβ(k) − 1

]
(11.3.23b)

where the sums run over all nuclei in the molecule, bα is the coherent neutron scattering
length of nucleus α and Lαβ is the separation of nuclei α, β . These expressions reduce
to (11.3.16) and (11.3.17) for a diatomic molecule with bα = bβ . After removal of the in-
tramolecular term, Fourier transformation yields a weighted sum of atomic pair distribution
functions of the form

gN(r) =
∑
α

∑
β

bαbβgαβ(r)

/(∑
α

bα

)2

(11.3.24)

Isotopic substitution makes it possible to vary the weights with which the different gαβ(r)

contribute to gN(r) and hence, in favourable cases, to determine some or all of the individ-
ual atom–atom distribution functions.
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Formulae similar to (11.3.23) apply also to x-ray scattering, the only difference being
that the nuclear scattering lengths are replaced by the atomic form factors (see Section 4.1).
Since the form factors are functions of k, the weighted distribution function gX(r) obtained
by Fourier transformation of the measured structure factor SX(k) is not a linear combina-
tion of the functions gαβ(r), but for large atoms the error introduced by ignoring this fact
is small.

In Figure 11.2 we show some results obtained by x-ray scattering for the carbon–carbon
distribution function gCC(r) in liquid ethylene near its triple point. Although ethylene is
a polyatomic molecule, gCC(r) resembles the pair distribution function for diatomics, as
seen in both simulations and experiments. The main peak is appreciably weaker than in
argon-like liquids and there is a pronounced shoulder on the large-r side. Both these fea-
tures are consequences of the interference between inter- and intramolecular correlations.
Simple geometry suggests that shoulders might be seen at combinations of distances such
that rαγ ≈ |σαβ ± Lβγ |, where σ is an atomic diameter and Lβγ is a bondlength, but they
are often so smooth as to be undetectable. In the case of fused-hard sphere models of the in-
termolecular potential the shoulders appear as cusps in the site–site distribution functions,
i.e. as discontinuities in the derivative of gαβ(r) with respect to r . The shoulder seen in Fig-
ure 11.2 is associated with “T-shaped” configurations of the type pictured in Figure 11.3.
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FIG. 11.2. Results obtained by x-ray scattering for the carbon–carbon distribution function in liquid ethylene.
After Narten and Habenschuss.11

~~

FIG. 11.3. The T-shaped configuration for a pair of homonuclear diatomics.
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This particular feature is enhanced for molecules having a large quadrupole moment, such
as bromine,12 since the quadrupolar interaction strongly favours the T-configuration.

11.4 CORRELATION-FUNCTION EXPANSIONS FOR SIMPLE POLAR
FLUIDS

In the simplest models of a polar fluid the intermolecular potential can be written as the
sum of a small number of spherical-harmonic components. The prospects for success of
theories are therefore greater than in situations where the potential contains an infinite
number of harmonics and the series expansions are only slowly convergent, as is true, for
example, in the case of Lennard-Jones diatomics.4 In this section we discuss some of the
general questions that arise in attempts to treat polar fluids in this way.

Consider a polar fluid for which the intermolecular potential is the same as in (1.2.4),
but which we rewrite here as

v(1,2) = v0(R) − μ2

R3
D(1,2) (11.4.1)

with

D(1,2) = 3(u1 · s)(u2 · s) − u1 · u2 (11.4.2)

where R ≡ |R12|, s is a unit vector in the direction of R12, ui is a unit vector parallel to
the dipole moment of molecule i, v0(R) is assumed to be spherically symmetric and the
angle-dependent terms represent the ideal dipole–dipole interaction. It was first shown by
Wertheim13 and subsequently elaborated by others14 that an adequate description of the
static properties of such a fluid can be obtained by working with a basis set consisting
of only three functions: S(1,2) = 1, Δ(1,2) = u1 · u2 and D(1,2), defined above. The
solution for h(1,2) is therefore assumed to be of the form

h(1,2) = hS(R) + hΔ(R)Δ(1,2) + hD(R)D(1,2) (11.4.3)

On multiplying through (11.4.3) successively by S, Δ and D and integrating over angles
we find that the projections hS(R), hΔ(R) and hD(R) are given by

hS(R) = 〈h(1,2)
〉
Ω1Ω2

(11.4.4)

hΔ(R) = 3
〈
h(1,2)Δ(1,2)

〉
Ω1Ω2

(11.4.5)

hD(R) = 3
2

〈
h(1,2)D(1,2)

〉
Ω1Ω2

(11.4.6)

Equation (11.4.3) is equivalent to an expansion in laboratory-frame harmonics, since the
functions Δ and D are the same, respectively, as the rotational invariants Φ110 and Φ112

introduced in (11.2.9).
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The direct correlation function c(1,2) can be treated in similar fashion to h(1,2). We
therefore write

c(1,2) = cS(R) + cΔ(R)Δ(1,2) + cD(R)D(1,2) (11.4.7)

and introduce both (11.4.3) and (11.4.7) into the molecular Ornstein–Zernike rela-
tion (11.1.4). After taking Fourier transforms we find that

ĥ(1,2) = ĉ(1,2) + ρ
〈
ĉ(1,3)ĥ(3,2)

〉
Ω3

(11.4.8)

where, for example:

ĥ(1,2) = ĥS(k) + ĥΔ(k)Δ(1,2) +
∫

hD(R)D(1,2) exp(−ik · R)dR (11.4.9)

The term in D can be transformed by taking the direction of k as the z-axis and making
the substitution s = (sin θ cosφ, sin θ sinφ, cos θ). Two integrations by parts show that∫ 1

−1

∫ 2π

0
(u1 · s)(u2 · s) exp(−ik · R cos θ)dφ d(cos θ)

= −4πR2(3u1zu2zj2(kR) − u1 · u2
[
j0(kR) + j2(kR)

])
(11.4.10)

where j2(x) = 3x−3 sinx − 3x−2 cosx − x−1 sinx. Thus∫
hD(R)D(1,2) exp(−ik · R)dR = Dk(1,2)h̄D(k) (11.4.11)

with

Dk(1,2) = 3u1zu2z − u1 · u2 = 3(u1 · k)(u2 · k)
k2

− u1 · u2 (11.4.12)

and the Hankel transform h̄D(k) is

h̄D(k) = −4π
∫ ∞

0
j2(kR)hD(R)R2 dR (11.4.13)

Equation (11.4.11) is a particular case of the general result (11.2.12); the transform of
cD(R)D(1,2) is handled in the same way.

In order to summarise the effect of the angular integrations in (11.4.8), we define the
angular convolution of two functions A,B as

A ∗ B = B ∗ A = 1

Ω

∫
A(1,3)B(3,2)dΩ3 ≡ 〈A(1,3)B(3,2)

〉
Ω3

(11.4.14)

For the functions of interest here the “multiplication” rules shown in Table 11.1 are easily
established. We see from the table that the functions S, Δ and Dk form a closed set under
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TABLE 11.1. Rules for the evaluation of angular convolutions of the
functions S, Δ and Dk

S Δ Dk

S S 0 0
Δ 0 Δ/3 Dk/3
Dk 0 Dk/3 (Dk + 2Δ)/3

the operation (11.4.14) in the sense that convolution of any two functions yields only a
function in the same set (or zero). The practical significance of this result is the fact that if
h(1,2) is assumed to be of the form (11.4.3), then c(1,2) is necessarily given by (11.4.7),
and vice versa. A closure of the Ornstein–Zernike relation is still required. However, if this
does not generate any new harmonics, (11.4.3) and (11.4.7) together form a self-consistent
approximation, to which a solution can be found either analytically (as in the MSA, Sec-
tion 11.6) or numerically.

At large R, c(1,2) behaves as −βv(1,2). Hence cD(R) must be long ranged, decaying
asymptotically as R−3. It turns out, as we shall see in Section 11.5, that hD(R) also decays
as R−3, the strength of the long-range part being related to the dielectric constant of the
fluid, but the other projections of h(1,2) and c(1,2) are all short ranged. The slow decay of
hD(R) and cD(R) creates difficulties in numerical calculations. It is therefore convenient
to introduce two short-range, auxiliary functions h0

D(R) and c0
D(R). These are defined in

terms, respectively, of hD(R) and cD(R) in such a way as to remove the long-range parts.
Thus

h0
D(R) = hD(R) − 3

∫ ∞

R

hD(R′)
R′ dR′ (11.4.15)

with an analogous definition of c0
D(R); we see from (11.4.15) that h0

D(R) vanishes for R

in the range where hD(R) has reached its asymptotic value. The inverse of (11.4.15) is

hD(R) = h0
D(R) − 3

R3

∫ R

0
h0
D(R′)R′2 dR′ (11.4.16)

which can be checked by first differentiating (11.4.16) with respect to R and then integrat-
ing from R to R = ∞ (where both hD(R) and h0

D(R) are zero); this leads back to (11.4.15).
Equation (11.4.16) shows that hD(R) behaves asymptotically as

lim
R→∞hD(R) = − 3

4πR3
lim
k→0

ĥ0
D(k) (11.4.17)

The short-range functions h0
D(R) and c0

D(R) play an important part in the analytical solu-
tion of the MSA for dipolar hard spheres.

We have seen that use of the approximation (11.4.3) has some attractive mathematical
features. The solution is of physical interest, however, only because the projections hS(R),
hΔ(R) and hD(R) contain between them all the information needed to calculate both the
thermodynamic and static dielectric properties of the fluid. We postpone discussion of the
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difficult problem of dielectric behaviour until the next section, but expressions for thermo-
dynamic properties are easily derived. If v0(R) in (11.4.1) is the hard-sphere potential, the
excess internal energy is determined solely by the dipole–dipole interaction and (11.1.9)
becomes

U ex

N
= −2πρ

∫ ∞

0

μ2

R12

〈
D(1,2)g(1,2)

〉
Ω1Ω2

dR12

= −4πμ2ρ

3

∫ ∞

0

hD(R)

R
dR (11.4.18)

where we have used the definition (11.4.6) and the fact that the angle average of D(1,2)
is zero. If v0(R) is the Lennard-Jones potential or some other spherically symmetric but
continuous interaction, there will be a further contribution to U ex that can be expressed as
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FIG. 11.4. Projections of h(1,2) for a fluid of dipolar hard spheres at ρd3 = 0.80, βμ2/d3 = 2.0. The points
are Monte Carlo results and the curves are calculated from the LHNC (dashes) and RHNC (continuous lines)
approximations discussed in Section 11.6. After Fries and Patey.15
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an integral over hS(R). Similarly, (11.1.10) can be used to relate the equation of state to
the projections hS(R) and hD(R). Thermodynamic properties are therefore not explicitly
dependent on hΔ(R).

Examples of hΔ(R) and hD(R) for the dipolar hard-sphere fluid are shown in Fig-
ure 11.4. For the state point concerned, corresponding to a static dielectric constant ε of
approximately 30, the curves retain a pronounced oscillatory character over a range of
three to four molecular diameters. The structure in hΔ(R) and hD(R) disappears as the
dipole moment is reduced, but hS(R) (not shown) is much less sensitive to the value of ε

and bears a strong resemblance to the pair correlation function of a fluid of non-polar hard
spheres. The structure seen in the Δ and D projections is also depressed by addition of a
quadrupole moment, as we discuss again in Section 11.6.

11.5 THE STATIC DIELECTRIC CONSTANT

Our goal in this section is to obtain molecular expressions for the static dielectric constant.
We show, in particular, that ε is related to the long-wavelength behaviour of each of the
functions ĥΔ(k) and h̄D(k) introduced in the previous section.16 By suitably combining
the two results it is also possible to express ε in terms of site–site distribution functions.17

Consider a sample of dielectric material (a polar fluid) placed in an external electric
field. Let E(R, t) be the field at time t at a point R inside the sample (the Maxwell field),
let P(R, t) be the polarisation induced in the sample and let E0(R, t) be the field that would
exist at the same point if the sample were removed (the external field). The polarisation is
related to the Maxwell field by

P(R, t) =
∫

dR′
∫ t

−∞
χ(R − R′, t − t ′) · E(R′, t ′)dt ′ (11.5.1)

where the tensor χ(R, t) is an after-effect function of the type introduced in Section 7.6.
A Fourier–Laplace transform of (11.5.1) (with z on the real axis) gives

P̂(k,ω) = χ(k,ω) · Ê(k,ω) (11.5.2)

where the susceptibility χ(k,ω) is related to the dielectric permittivity ε(k,ω) by

χ(k,ω) = 1

4π

[
ε(k,ω) − I

]
(11.5.3)

The polarisation is also related to the external field via a second susceptibility, χ0(k,ω):

P̂(k,ω) = χ0(k,ω) · Ê0(k,ω) (11.5.4)

The external field and Maxwell field will not, in general, be the same, because the polar-
isation of the sample makes a contribution to the Maxwell field. The relation between the
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two fields, and hence also that between χ and χ0, is dependent on sample geometry. We
shall assume that the system is infinite, in which case the relation between E and E0 is

E(R, t) = E0(R, t) +
∫

T (R − R′) · P(R′, t)dR′ (11.5.5)

where T (R) is the dipole–dipole interaction tensor defined by (1.2.5). Integrals involving
the dipole–dipole tensor must be handled with care, since T (R) has a singularity at the
origin; the usual procedure is to cut off the integrand inside a sphere of radius σ centred
on the origin and take the limit σ → 0 after integration.18 The transform of (11.5.5) is then
given by

Ê(k,ω) = Ê0(k,ω) − 4π

k2
kk · P̂(k,ω) (11.5.6)

The relationship between the two susceptibilities follows immediately from consideration
of (11.5.2), (11.5.4) and (11.5.6):19

χ0(k,ω) = [I + (4π/k2)kk · χ(k,ω)
]−1 · χ(k,ω) (11.5.7)

It is an experimental fact that the dielectric permittivity is an intensive property of the
fluid, having a value that for given k and ω is independent of sample size and shape. The
same is therefore true of the susceptibility χ(k,ω), since the two quantities are trivially
linked by (11.5.3). It follows, provided the system is isotropic, that both ε and χ must be
independent of the direction of k. Thus, in the limit k → 0:

lim
k→0

ε(k,ω) = ε(ω)I , lim
k→0

χ(k,ω) = χ(ω)I (11.5.8)

where ε(ω) and χ(ω) are scalars. On the other hand, the longitudinal (parallel to k) and
transverse (perpendicular to k) components of χ0(k,ω) must behave differently in the
long-wavelength limit; this is inevitable, given that the relation between χ (0) and ε is
shape dependent. Taking the z-axis along the direction of k, we find from (11.5.3), (11.5.7)
and (11.5.8) that

4π lim
k→0

χ0
αα(k,ω) = ε(ω) − 1, α = x, y (11.5.9a)

4π lim
k→0

χ0
zz(k,ω) = ε(ω) − 1

ε(ω)
(11.5.9b)

and

4π lim
k→0

Trχ0(k,ω) = [ε(ω) − 1][2ε(ω) + 1]
ε(ω)

(11.5.10)

The statistical-mechanical problem is to obtain expressions for the components of χ0 in
terms of microscopic variables. The microscopic expression for the polarisation induced
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by the external field is

P(R, t) = 〈M(R, t)
〉
E0 =

〈
μ

N∑
i=1

ui (t)δ
[
R − Ri (t)

]〉
E0

(11.5.11)

where M(R, t) is the dipole-moment density, 〈· · ·〉E0 denotes a statistical average in the
presence of the external field and the other symbols have the same meaning as in earlier
sections of this chapter. The susceptibility χ0 can now be calculated by the methods of
linear-response theory described in Section 7.6. (Note that χ cannot be treated in the same
way as χ0, because the Maxwell field is not an “external” field in the required sense.) As
an application of the general result given by (7.6.21) we find that

χ0(k,ω) = β

V

(
〈MkM−k〉 + iω

∫ ∞

0

〈
Mk(t)M−k

〉
exp(iωt)dt

)
(11.5.12)

where the statistical averages are now computed in the absence of the field, Mk ≡
Mk(t = 0) and

Mk(t) = μ

N∑
i=1

ui (t) exp
[−ik · Ri (t)

]
(11.5.13)

If we take the limit ω → 0, (11.5.12) reduces to

χ0
αα(k,0) = β

V

〈
Mα

k Mα
−k

〉
, α = x, y, z (11.5.14)

By combining this result with (11.5.10) we find that

(ε − 1)(2ε + 1)

9ε
= gKy (11.5.15)

where ε ≡ ε(0) is the static dielectric constant, y is a molecular parameter defined as

y = 4πμ2ρ

9kBT
(11.5.16)

and gK, the Kirkwood “g-factor”, is given by

gK = 〈|M|2〉/Nμ2 (11.5.17)

where M ≡ Mk=0 is the total dipole moment of the sample. Equation (11.5.17) can be
rewritten, with the help of (11.4.5), as

gK = 1 + 〈(N − 1)u1 · u2
〉

= 1 + 4πρ

3

∫ ∞

0
hΔ(R)R2 dR = 1 + 1

3ρĥΔ(0) (11.5.18)

where hΔ(R) is the function appropriate to an infinite system.
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Equation (11.5.15) is the first of two key results of this section. It was originally derived
by Kirkwood20 via a calculation of the fluctuation in total dipole moment of a spherical
region surrounded by a dielectric continuum and is commonly referred to as the Kirk-
wood formula. By setting gK = 1 we obtain the result known as the Onsager equation;
this amounts to ignoring the short-range angular correlations represented by the func-
tion hΔ(R). The Kirkwood formula could have been obtained by working throughout in the
ω = 0 limit, but the frequency-dependent results are needed for the discussion of dielectric
relaxation in Section 11.11.

The next task is to relate ε to the function hD(R). To do this we must consider separately
the longitudinal and transverse components of χ0. For the longitudinal component we find
from (11.5.13) and (11.5.14) that

χ0
zz(k,0) = β

V

〈
Mz

kM
z
−k

〉
= 1

3μ
2ρβ + μ2ρβ

〈
(N − 1)u1zu2z exp(−ik · R12)

〉
= 1

3μ
2ρβ

+ μ2ρ2β

Ω2

∫∫∫
(k · u1)(k · u2)

k2
h(1,2)

× exp(−ik · R12)dR12 dΩ1 dΩ2

= 1
3μ

2ρβ + μ2ρ2β
〈
k−2(k · u1)(k · u2)ĥ(1,2)

〉
Ω1Ω2

(11.5.19)

We now substitute for ĥ(1,2) from (11.4.9) and evaluate the angular averages with the help
of the following, easily proved results (here n is a unit vector of fixed orientation):〈

(n · u1)(n · u2)(u1 · u2)
〉
Ω1Ω2

= 〈(n · u1)
2(n · u2)

2〉
Ω1Ω2

= 1
9 (11.5.20)

A simple calculation shows that

lim
k→0

χ0
zz(k,0) = 1

3μ
2ρβ

[
1 + 1

3ρĥΔ(0) + 2
3ρh̄D(0)

]
(11.5.21)

Although we have used the approximation (11.4.9), (11.5.21) is an exact result, since the
terms ignored in (11.4.9) make no contribution to the angular average in (11.5.19).

The transverse component can be treated in a similar way. It is possible, however, to
take a short-cut, since we are interested only in the k → 0 limit. Equations (11.5.10),
(11.5.15) and (11.5.18) show that the trace of the tensor χ0(k,ω) in the long-wavelength,
low-frequency limit is

lim
k→0

Trχ0(k,0) = μ2ρβ
[
1 + 1

3 ĥΔ(0)
]

(11.5.22)

As the two transverse components are equivalent, we find from (11.5.21) and (11.5.22) that

lim
k→0

χ0
xx(k,0) = 1

3μ
2ρβ
[
1 + 1

3ρĥΔ(0) − 1
3ρh̄D(0)

]
(11.5.23)
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Use of (11.5.9) leads to the second main result:

(ε − 1)2

ε
= 4π lim

k→0

[
χ0
xx(k,0) − χ0

zz(k,0)
]= −3yρh̄D(0) (11.5.24)

It can be shown21 that the Hankel transform in (11.5.24) is also the Fourier transform of the
short-range function h0

D(R) defined by (11.4.15), i.e. h̄D(k) = ĥ0
D(k). Equations (11.4.17)

and (11.5.24) may therefore be combined to give

lim
R→∞hD(R) = (ε − 1)2

4πyρε

1

R3
(11.5.25)

The calculation establishes both that h(1,2) is long ranged and that the long range of the
correlations is responsible for the difference in behaviour of the longitudinal and transverse
components of the susceptibility χ (0)(k,0).

The expansion of h(1,2) in terms of the functions S, Δ(1,2) and D(1,2) is particularly
well suited to treating the type of potential model described by (11.4.1), but its range of
applicability is wider than this. It can be used, in particular, to discuss the dielectric prop-
erties of linear, interaction-site molecules. Consider a diatomic molecule of bondlength L

with charges ±q located on atoms α, β and a dipole moment μ = qL. If !α is the distance
of atom α from the molecular centre, (11.3.4) shows that the Fourier transform of any of
the atomic pair correlation functions may be written as

ĥαβ(k) = 〈ĥ(1,2) exp(−ik · u1!α) exp(ik · u2!β)
〉
Ω1Ω2

(11.5.26)

with !α+!β = L. The plane-wave functions can be replaced by their Rayleigh expansions:22

exp(−ik · r) =
∞∑
n=0

(2n + 1)injn(kr)Pn(k · r/kr) (11.5.27)

but since our concern is only with the behaviour of ĥαβ(k) to order k2, it is necessary to
retain only the contributions from n = 0 and n = 1. If, in addition, we substitute for ĥ(1,2)
from (11.4.9), (11.5.26) becomes

ĥαβ(k) = 〈(ĥS(k) + ĥΔ(k)u1 · u2 + h̄D(k)
[
3k−2(k · u1)(k · u2) − u1 · u2

])
× [j0(−k!α) + 3ij1(−k!α)k · u1/k

]
× [j0(k!β) + 3ij1(k!β)k · u2/k

]〉
Ω1Ω2

(11.5.28)

where j1(x) = x−2 sinx − x−1 cosx.
The terms in (11.5.28) that survive the integration over angles are those of the type

shown in (11.5.20). On multiplying out, integrating with the help of (11.5.20) and collect-
ing terms we find that

ĥαβ(k) = ĥS(k)j0(−k!α)j0(k!β) − [ĥΔ(k) + 2h̄D(k)
]
j1(−k!α)j1(k!β) (11.5.29)
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The functions ĥαα(k), ĥβα(k) and ĥββ(k) can be expressed in a similar way. If we now
expand the Bessel functions to order k2, the result obtained for the Fourier transform of the
function Δh(r) in (11.3.8) is

Δĥ(k) = k2L2

9

[
ĥΔ(0) + 2h̄D(0)

]+O
(
k4) (11.5.30)

or, from (11.5.9b) and (11.5.21):

Δh(2) = L2

9ρ

(
ε − 1

yε
− 3

)
(11.5.31)

where Δh(2) is the coefficient introduced in (11.3.10). Equation (11.5.31) expresses the
dielectric constant as a combination of integrals involving only the site–site distribution
functions and may be rewritten as

∑
α

∑
β

qαqβh
(2)
αβ = μ2

9ρ

(
ε − 1

yε
− 3

)
(11.5.32)

where qα is the charge on site α. The result in this form is not limited to diatomics: it
applies to any interaction-site molecule.23

It is clear from (11.5.18) that ĥΔ(0) is related to the angular correlation parame-
ter (11.3.10) by G1 = 1

3ρĥΔ(0). This is true whether or not the molecule has a dipole
moment, but the analysis that leads to (11.3.10) is valid only in the non-polar case. The
difference between polar and non-polar molecules lies in the long-range function hD(R).
The significance of hD(R) can be seen in the fact that whereas ĥΔ(0) contributes equally to
the longitudinal and transverse components of the long-wavelength susceptibility χ(k,0),
h̄D(0) does not. The effect of long-range correlations can therefore be suppressed by set-
ting h̄D(0) = 0 in (11.5.30), which then reduces to (11.3.10).

11.6 INTEGRAL-EQUATION APPROXIMATIONS FOR DIPOLAR HARD
SPHERES

The expansion of h(1,2) or c(1,2) in terms of S, Δ(1,2) and D(1,2) was first exploited by
Wertheim13 in obtaining the analytic solution to the MSA (mean spherical approximation)
for dipolar hard spheres. Although the MSA is not a quantitatively satisfactory theory,
Wertheim’s methods have had a considerable influence on later work on simple models of
polar fluids.

The groundwork for the solution has already been laid in Section 11.4. The next stage in
the calculation consists in substituting for ĥ(1,2) and ĉ(1,2) in the Ornstein–Zernike rela-
tion (11.4.8), integrating over angles with the help of Table 11.1, and equating coefficients
of S, Δ and Dk on the two sides of the equation. The terms in S separate from those in Δ
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and Dk to give

ĥS(k) = ĉS(k) + ρĉS(k)ĥS(k) (11.6.1a)

ĥΔ(k) = ĉΔ(k) + 1
3ρ
[
ĉΔ(k)ĥΔ(k) + 2c̄D(k)h̄D(k)

]
(11.6.1b)

h̄D(k) = c̄D(k) + 1
3ρ
[
c̄D(k)h̄D(k) + c̄D(k)ĥΔ(k) + ĉΔ(k)h̄D(k)

]
(11.6.1c)

The Hankel transforms in these equations are the Fourier transforms of the short-range
functions h0

D(R) and c0
D(R); this fact has already been used in the derivation of (11.5.25).

The inverse Fourier transforms of ĥS(k), ĥΔ(k) and h̄D(k) can therefore all be written in
terms of spatial convolution integrals (denoted by the symbol ⊗):

hS(R) = cS(R) + ρcS ⊗ hS (11.6.2a)

hΔ(R) = cΔ(R) + 1
3ρ
(
cΔ ⊗ hΔ + 2c0

D ⊗ h0
D

)
(11.6.2b)

hD(R) = cD(R) + 1
3ρ
(
c0
D ⊗ h0

D + c0
D ⊗ hΔ + cΔ ⊗ h0

D

)
(11.6.2c)

These equations are to be solved subject to the MSA closure relations (4.5.2). For dipolar
hard spheres, (4.5.2) becomes

h(1,2) = −1, R < d; c(1,2) = βμ2D(1,2)

R3
, R > d (11.6.3)

or, equivalently:

hS(R) = −1, R < d; hΔ(R) = hD(R) = 0, R < d

cD(R) = βμ2

R3
, R > d; cS(R) = cΔ(R) = 0, R > d

(11.6.4)

It is clear from (11.6.2a) and (11.6.4) that within the MSA the functions hS(R) and cS(R)

are simply the solution to the PY equation for non-polar hard spheres: the dipolar interac-
tion has no effect on the distribution of molecular centres. The closure relations involving
the projections hD(R) and cD(R) can also be written as

h0
D(R) = −3K, R < d; c0

D(R) = 0, R > d (11.6.5)

where K is the dimensionless parameter defined as

K =
∫ ∞

d

hD(R)

R
dR (11.6.6)
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We now look for a linear combination of functions that causes (11.6.2b) and (11.6.2c)
to become decoupled. Direct substitution shows that this is achieved by taking

h+(R) = 1

3K

[
h0
D(R) + 1

2hΔ(R)
]

h−(R) = 1

3K

[
h0
D(R) − hΔ(R)

] (11.6.7)

with analogous expressions for c+(R) and c−(R). The new functions satisfy the equations

h+(R) = c+(R) + 2Kρc+ ⊗ h+
h−(R) = c−(R) − Kρc− ⊗ h−

(11.6.8)

Equations (11.6.8) are to be solved subject to the closure relations h+(R) = h−(R) = −1,
R < d (this is why the factor 1/3K is included in (11.6.7)) and c+(R) = c−(R) = 0, R > d .

The original problem has now been greatly simplified. The effect of decoupling the
different projections, first in (11.6.2) and then in (11.6.8), means that the Ornstein–Zernike
relation has been reduced to three independent equations, namely (11.6.2a) and (11.6.8).
These equations, with their corresponding closure relations, are just the Percus–Yevick
approximation for hard spheres at densities equal, respectively, to ρ, 2Kρ and −Kρ. The
fact that one solution is required at a negative density poses no special difficulty.

To complete the analytical solution it is necessary to relate the quantity K to hard-sphere
properties. Given the analogue of (11.4.16) for cD(R), the closure relation (11.6.5) requires
that

cD(R) = − 3

R3

∫ d

0
c0
D(R′)R′2 dR′, R > d (11.6.9)

Because c0
D(R) vanishes for R > d , comparison of (11.6.4) with (11.6.9) shows that

βμ2 = −3
∫ d

0
c0
D(R)R2 dR = − 3

4π
c̄D(0) (11.6.10)

The function c0
D(R) may be written as

c0
D(R) = K

[
c+(R) + c−(R)

]
= K

[
2cPY(R; 2Kρ) + cPY(R; −Kρ)

]
(11.6.11)

where cPY(R; ρ) is the PY hard-sphere direct correlation function at a density ρ. Let
Q(η) = β(∂P/∂ρ)T be the PY approximation to the inverse compressibility of the hard-
sphere fluid at a packing fraction η. Integrals over cPY(R; ρ) can be related to Q(η) via the
general expression (3.8.8) and the approximate result (4.4.12). A short calculation shows
that

Q(η) = 1 − 4πρ
∫ d

0
cPY(R; ρ)R2 dR = (1 + 2η)2

(1 − η)4
(11.6.12)
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On combining the last three equations we find that

βμ2 = −3K
∫ d

0

[
2cPY(R; 2Kρ) + cPY(R; −Kρ)

]
R2 dR

= 3

4πρ

[
Q(2Kη) − Q(−Kη)

]
(11.6.13)

or

3y = Q(2Kη) − Q(−Kη) (11.6.14)

where y is the parameter defined by (11.5.16). Equations (11.6.12) and (11.6.14) determine
K implicitly for given choices of y and η; as y varies from 0 to ∞, Kη varies from 0 to 1

2 .
As an alternative to (11.6.12) we can write

1

Q(η)
= 1 + 4πρ

∫ ∞

0
hPY(R; ρ)R2 dR (11.6.15)

whence, from (11.6.7):

ρĥΔ(0) = 8πρK
∫ ∞

0

[
h+(R) − h−(R)

]
R2 dR

= 8πρK
∫ ∞

0

[
hPY(R; 2Kρ) − hPY(R; −Kρ)

]
R2 dR

= 1

Q(2Kη)
+ 2

Q(−Kη)
− 3 (11.6.16)

Taken together, (11.5.15), (11.6.14) and (11.6.16) lead to a remarkably simple expression
for the dielectric constant:

ε = Q(2Kη)

Q(−Kη)
(11.6.17)

The same result is obtained if (11.5.24) is used instead of (11.5.15).
Although the method of solution is very elegant, comparison with the results of Monte

Carlo calculations shows that the MSA does not provide a quantitatively acceptable de-
scription of the properties of the dipolar hard-sphere fluid. As is evident from compar-
ison of (11.6.14) with (11.6.17), the dielectric constant in the MSA is dependent only
on the parameter y and not separately on the two independent parameters ρ∗ = ρd3 and
μ∗2 = βμ2/d3 required to specify the thermodynamic state of the system. When both these
variables are large (for liquid water, μ∗2 ≈ 3), use of the MSA gives values of ε that are
much too small, as shown by the results in Figure 11.5.

The analytical solution to the MSA has also been found for dipolar hard-sphere
mixtures25 and for dipolar hard spheres with a Yukawa tail.26 The numerical results ob-
tained for dipolar mixtures show again that the MSA seriously underestimates the dielectric
constant. Addition of a Yukawa term to the pair potential leads to changes in thermody-
namic properties, but the dielectric constant remains the same.
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FIG. 11.5. Dielectric constant of the dipolar hard-sphere fluid at ρd3 = 0.80 as a function of μ∗2 = βμ2/d3,
showing a comparison between Monte Carlo results24 (points) and the predictions of theories discussed in the
text (curves). After Stell et al.14

Of the developments inspired by Wertheim’s work on the MSA the simplest to imple-
ment is the “linearised HNC” or LHNC approximation of Patey and coworkers.27 The
LHNC approximation is equivalent to one proposed earlier by Wertheim himself and called
by him the “single-superchain” approximation.28 In the case of dipolar hard spheres the
LHNC approximation resembles the MSA in basing itself on expansions of h(1,2) and
c(1,2) limited to the terms in S, Δ(1,2) and D(1,2), but improves on it by employing
a closure relation that is applicable to other simple models of polar liquids, such as the
Stockmayer fluid. As the name suggests, the LHNC closure corresponds to a linearisation
of the HNC approximation, which in its general form is

c(1,2) = h(1,2) − lng(1,2) − βv(1,2) (11.6.18)

The LHNC closure is obtained by substituting for h(1,2) and c(1,2) from (11.4.3)
and (11.4.7) and linearising with respect to the functions Δ and D. The result is

c(1,2) = hS(R) − lngS(R) − βv0(R) + hΔ(R)
[
1 − 1/gS(R)

]
Δ(1,2)

+ (hD(R)
[
1 − 1/gS(R)

]+ βμ2/R3)D(1,2) (11.6.19)

where gS(R) = hS(R) + 1. When v0(R) is the hard-sphere potential, (11.6.19) reduces to
the MSA closure if the substitution gS(R) = 1 for R > d is made; the MSA may therefore
be regarded as the low-density limit of the LHNC approximation.

The linearisation involved in (11.6.19) means that the closure relation involves only the
harmonics S, Δ and D. This is consistent with the assumed form of h(1,2) and c(1,2) and
the results in (11.6.2) remain valid. In other words, the relation between hS(R) and cS(R)

remains independent of the other projections, and the results for these two functions are
just the solutions to the HNC equation for the potential v0(R). In contrast to the MSA,



INTEGRAL-EQUATION APPROXIMATIONS FOR DIPOLAR HARD SPHERES 367

however, the projections on Δ and D are influenced by the projections on S through the
appearance of gS(R) in the closure relations for cΔ(R) and cD(R).

The method of solution of the LHNC equations for the problem of dipolar hard spheres
parallels that used for the MSA up to the point at which the linear combinations (11.6.7)
are introduced. In the LHNC approximation the functions h+(R), c+(R) remain coupled
to h−(R), c−(R) through the closure relations; the solution must therefore be completed
numerically. Some results for the projections hΔ(R) and hD(R) are compared with those
obtained by the Monte Carlo method in Figure 11.4. The general agreement between theory
and simulation is fair and improves markedly as the value of the parameter μ∗ is reduced.
However, in contrast to the MSA, the calculated values of the dielectric constant are now
everywhere too large, as is evident from Figure 11.5, and the discrepancy between theory
and simulation increases rapidly with μ∗. The LHNC approximation has also been applied
to systems of quadrupolar hard spheres and to fluids of hard spheres carrying both dipoles
and quadrupoles.27(b,d) The calculations are more complicated than in the purely dipolar
case because the pair potentials contain additional harmonics and still more are generated
by the angular convolutions in the Ornstein–Zernike relation. The results for the mixed,
dipolar–quadrupolar system are of particular interest for the light they throw on the way
in which the quadrupolar interaction modifies the dipolar correlations in the fluid. The
effect on the projection hΔ(R) is particularly striking. In the purely dipolar case, when
both ρ∗ and μ∗ are large, hΔ(R) is positive nearly everywhere, and significantly different
from zero out to values of R corresponding to ten or more molecular diameters. Since ε is
determined by the integral of R2hΔ(R) over all R (see (11.5.18)), these effects combine to
give very large values for the dielectric constant. The addition of even a small quadrupole
moment leads to a marked falling off in both the magnitude and range of hΔ(R); ε therefore
decreases rapidly as the quadrupole moment is increased. This could have been anticipated
from the discussion in Section 11.3, since Δ is zero for the ideal T-shaped configurations
favoured by the quadrupolar interaction.

The LHNC approximation for dipolar hard spheres resembles the MSA to the extent that
the function gS(R) is the pair distribution function of the underlying hard-sphere system,
and is therefore independent of the strength of the dipole–dipole interaction. This unreal-
istic feature disappears when the expansion of the HNC closure relation is taken to second
order, since hS(R) and cS(R) can no longer be decoupled from the other projections. In
other respects, the results are not always an improvement on those of the linearised ver-
sion, and the theory becomes computationally more awkward to implement. Rather than
pursuing the expansion to higher orders, it seems preferable to return to the full HNC clo-
sure (11.6.18) or its “reference” (RHNC) modification.15,29 The molecular generalisation
of the RHNC closure (4.7.1) is

lng(1,2) = −β
[
v(1,2) − kBT d0(1,2)

]+ h(1,2) − c(1,2) (11.6.20)

where d0(1,2) is the bridge function of some anisotropic reference system. In the case of
dipolar hard spheres, however, hard spheres are the obvious choice of reference system. Be-
cause the closure relation couples together all harmonic components of h(1,2) and c(1,2),
the results obtained depend on the number of harmonics retained when expanding the pair
functions, but essentially complete convergence is achieved with a basis set of easily man-
ageable size. Some results for hΔ(R) and hD(R) are shown in Figure 11.4. The theoretical
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curves lie systematically below those given by the LHNC approximation; the dielectric
constant is therefore much reduced and the agreement with simulations correspondingly
improved, as Figure 11.5 confirms.

It is known experimentally that the Kirkwood g-factors of many non-associating polar
liquids are close to unity, and the very large discrepancies seen in Figure 11.5 between the
Monte Carlo results and the predictions of the Onsager approximation (for which gK = 1)
show that the dipolar hard-sphere model gives dielectric constants that are unrealistically
large.30 The role played by quadrupolar forces provides a possible explanation of the ex-
perimental facts, but a more realistic model of a polar fluid must also make allowance for
the inevitable anisotropy in the short-range, repulsive forces. The simplest such model con-
sists of a hard, homonuclear diatomic with a dipole moment superimposed at the mid-point
between the two spheres. Within the RHNC approximation the natural choice of reference
system is now the underlying hard-dumbbell fluid, the bridge function of which can be cal-
culated from the molecular version of the PY approximation.31 The same general approach
can be used for heteronuclear molecules having either soft or hard cores. Some good re-
sults have been achieved in this way, though a strong empirical element is often involved
both in the choice of reference system and in the form of closure relation used to calculate
the corresponding bridge function.32

11.7 INTERACTION-SITE DIAGRAMS

The diagrammatic expansions of c(1,2), h(1,2) and y(1,2) given in Chapters 3 and 4
are also applicable to molecular fluids if certain minor changes in interpretation are made.
First, the circles in a “molecular” diagram are associated with both the translational and
orientational coordinates of a molecule and the black circles imply integrations over both
sets of coordinates. Secondly, black circles carry a weight factor equal to 1/Ω , where Ω is
defined by (11.1.3). As an illustration of these rules, the diagram

1 2

which appears at order ρ in the ρ-circle, f -bond expansion of h(1,2) (see (4.6.2)) now
represents the integral

ρ

Ω

∫∫
f (R13,Ω1,Ω3)f (R23,Ω2,Ω3)dR3 dΩ3

and is therefore much more complicated to evaluate than in the atomic case.
The diagrammatic expansion of h(1,2) is not immediately useful in cases where the

focus of interest is the set of site–site distribution functions hαβ(r) rather than h(1,2).
Ladanyi and Chandler33 have shown how the diagrammatic approach can be adapted to
the needs of such a situation and this section is devoted to a brief review of their results.
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We give only a simplified treatment, restricting the detailed discussion to the case of rigid,
diatomic (or two-site) molecules. The generalisation to larger numbers of interaction sites
is straightforward, but requires a more complex notation.

The first step is to rewrite the molecular Mayer function f (1,2) as a product of
interaction-site Mayer functions fαβ(r):

f (1,2) = exp
[−βv(1,2)

]− 1 = exp

(
−β
∑
α

∑
β

vαβ
(|r2β − r1α|))− 1

= −1 +
∏
α,β

[
fαβ

(|r2β − r1α|)+ 1
]

(11.7.1)

The subscripts α, β run over all interaction sites in the molecule; if there are two
sites per molecule, the right-hand side of (11.7.1) consists of 15 separate terms. Equa-
tion (11.7.1) can be used to rewrite the integrals occurring in the density expansion
of h(1,2). As the simplest possible example, consider the low-density limit of h(1,2),
namely limρ→0 h(1,2) = f (1,2). The corresponding approximation to, say, hαα(r, r′) is

lim
ρ→0

hαα(r, r′) =
∫∫

f (1,2)δ(r1α − r)δ(r2α − r′)d1 d2 (11.7.2)

When f (1,2) is replaced by (11.7.1), (11.7.2) becomes

lim
ρ→0

hαα(r, r′) = fαα

(|r′ − r|)+ [1 + fαα

(|r′ − r|)]
×
∫∫ [

fαβ

(|r2β − r1α|)+ six other terms
]

× δ(r1α − r)δ(r2α − r′)d1 d2 (11.7.3)

The integrals appearing on the right-hand side of (11.7.3) can be re-expressed in terms
of an intramolecular site–site distribution function sαβ(x − y) defined as

sαβ(x − y) = (1 − δαβ)

∫
δ(R1 + u1!α − x)δ(R1 − u1!β − y)d1

= (1 − δαβ)
〈
δ(x − y − u1L)

〉
Ω1

= (1 − δαβ)

4πL2
δ
(|x − y| − L

)
(11.7.4)

where !α , !β and u1 have the same meaning as in (11.5.26) and L = !α + !β . The function
sαβ(r) is the probability density for finding site β of a molecule at a position r, given that
site α of the same molecule is at the origin. The definition (11.7.4) satisfies the obvious
conditions that the interpretation as an intramolecular distribution function requires, i.e.
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sαβ(r) = sβα(r), sαα(r) = 0 and
∫
sαβ(r)dr = 1, α �= β . The integral shown explicitly

in (11.7.3) can now be transformed as follows:∫∫
δ(r1α − r)δ(r2α − r′)fαβ

(|r2β − r1α|)d1 d2

=
∫

dx
∫∫

δ(r1α − r)δ(r2α − r′)fαβ(r1α − x)δ(r2β − x)d1 d2

=
∫

d1 δ(r1α − r)
∫

dxfαβ(r1α − x)
∫

d2 δ(r2α − r′)δ(r2β − x)

=
∫

fαβ

(|r − x|)sαβ(x − r′)dx (11.7.5)

All other integrals in (11.7.3) may be treated in the same way and each can then be
represented by an interaction-site diagram. The circles (white or black) of an interaction-
site diagram are associated with the coordinates of interaction sites and the bonds, in the
two-site case, represent components of the 2 × 2 matrices f and s formed by the functions
{fαβ} and {sαβ}, respectively. The symmetry number and value of an interaction-site dia-
gram are defined as in the atomic case (see Section 3.7), except that black circles imply
a summation over all sites in the molecule in addition to integration over site coordinates.
For example, if we denote an f -bond by a solid line and an s-bond by a broken line, the
diagrammatic representation of the sum of integrals in (11.7.3) is

...
. + + ....

.... + ....

.... + ....

.... + ....

.... + ....

....

The diagrams shown all have a symmetry number of one. They are of zeroth order in den-
sity, since they arise from a molecular diagram – their “molecular origin” – that represents
the low-density limit of h(1,2). Thus all circles, white or black, are 1-circles. The order
in density of any interaction-site diagram in the expansion of a site–site pair correlation
function is equal to the number of black circles in its molecular origin, which in turn is
equal to the number of black circles in the interaction-site diagram minus the number of
s-bonds.

The procedure outlined above can be applied to each of the integrals appearing in the
density expansion of h(1,2). This yields an expansion of any of the functions hαβ(r) in
terms of interaction-site diagrams. As the example (11.7.3) demonstrates, each molecular
diagram is replaced by a large number of interaction-site diagrams, but the interaction-site
diagrams are mathematically simpler objects because all reference to orientational coordi-
nates has disappeared. (Note that the black circles no longer carry the weight factor Ω−1

associated with the black circles of a molecular diagram.)
The topology of allowed interaction-site diagrams is restricted in certain ways. Diagrams

must be simple and connected; white circles must not be connected by an s-bond (because
different white circles always refer to different molecules); all black circles must be in-
tersected by at least one f -bond (otherwise they contribute nothing to the intermolecular
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correlations); no circle may be intersected by more than one s-bond (for reasons to be ex-
plained below); and diagrams must be free of articulation circles and articulation s-bonds,
i.e. s-bonds whose removal causes the diagram to separate into two or more components
of which at least one contains no white circle. The last restriction is imposed because any
such diagram would have as its molecular origin a diagram containing one or more artic-
ulation circles; as we showed in Chapters 3 and 4, the expansions of the pair functions of
interest here consist entirely of irreducible diagrams.

Given the restrictions listed above, the site–site pair correlation functions may be char-
acterised as follows:

hαβ(r1α, r2β) = [all interaction-site diagrams consisting of two white

1-circles labelled 1α and 2β, black 1-circles, f -bonds

and s-bonds, each diagram to be multiplied by ρn,

where n is the number of black circles minus the

number of s-bonds
]

(11.7.6)

The generalisation of this result to molecules with more than two interaction sites requires
the introduction of three-body and higher-order intramolecular distribution functions. It re-
mains true, however, that no circle may be intersected by more than one s-bond or, indeed,
by more than one intramolecular bond of any order. Consider the diagram shown in (a) be-
low. For a two-site molecule such a diagram is physically meaningless, because one site is
bonded to two others. But it is also not an allowed diagram even for a three-site (or larger)
molecule, because the three black circles would then be linked, as in (b), by a single bond
or “face”, representing a three-body intramolecular distribution function.

...
. ....

(a) (b)

The diagrammatic formalism can be extended to flexible molecules, but in that case the
intramolecular distribution functions become statistically averaged quantities.

11.8 INTERACTION-SITE MODELS: THE RISM EQUATIONS

We saw in Section 11.3 that the static structure factors measured in neutron and x-ray
scattering experiments on molecular liquids are weighted sums of atomic pair distribution
functions. In this section we describe an integral-equation theory that has been widely used
in the interpretation of diffraction experiments and, more generally, in the calculation of
site–site distribution functions for interaction-site potential models: this is the “reference
interaction-site model” or RISM approximation of Andersen and Chandler.34 The theory
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has been applied with particular success in calculations for model fluids composed of hard
molecules. From experience with atomic systems we can expect the structure of simple
molecular liquids to be dominated by the strongly repulsive part of the pair potential, and
an obvious way represent to the short-range repulsions is through an interaction-site model
consisting of fused hard spheres.

The key ingredient of the RISM approximation is an Ornstein–Zernike-like relation be-
tween the site–site pair correlation functions hαβ(r) and a set of direct correlation functions
cαβ(r). In the atomic case the meaning of the Ornstein–Zernike relation is that the total cor-
relation between particles 1 and 2 is the sum of all possible paths of direct correlations that
propagate via intermediate particles 3, 4, . . . etc. The same, intuitive idea can be applied
to site-site correlations, but allowance must now be made for the fact that correlations also
propagate via the intramolecular distribution functions. Hence, whereas in an atomic fluid
h(1,2) is given diagrammatically by the sum of all simple chains consisting of c-bonds,
hαβ(r) consists of all simple chains formed from c-bonds and s-bonds. We make this idea
precise by writing hαβ(r) as a sum of interaction-site diagrams in the form

hαβ(r1α, r2β) = [all interaction-site chain diagrams consisting of two

white terminal 1-circles labelled 1α and 2β, black

1-circles, at least one c-bond, and s-bonds, each

diagram to be multiplied by ρn−1, where n is the

number of c-bonds]
= + .... + ....

+ ρ
( + .... + · · ·)+ · · · (11.8.1)

where a full line denotes a c-bond and a broken line denotes an s-bond. We recall that
within the diagrammatic formalism a black circle implies a summation over all sites in
the molecule. Thus, for example, the value of the third diagram on the right-hand side
of (11.8.1) is ∑

γ

∫
sαγ (r1γ − r1α)cγβ

(|r2β − r1γ |)dr1γ

The term for which α = γ contributes nothing to the sum because the intramolecular dis-
tribution function is zero when the two sites are the same.

We now have to sum the chain diagrams in (11.8.1). To do so, we use the same tech-
niques as in Section 5.5, because the diagrams have the same topology as those in the
diagrammatic expansion (5.5.16) of the renormalised potential C(1,2). We define a matrix
of functions ω(r) by

ωαβ

(|r1β − r1α|)= δαβδ(r) + sαβ(r) (11.8.2)
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and represent ωαβ(|r1β − r1α|) by the hypervertex

Then the sum of all chain diagrams with n c-bonds becomes a single diagram consisting
of (n + 1) ω-hypervertices and n c-bonds. For example:

= + .... + ....

=
∑
γ

∑
δ

∫∫
ωαγ

(|r1α − r1γ |)cγ δ

(|r1γ − r2δ|
)
ωδβ

(|r2δ − r2β |)dr1γ dr2δ

(11.8.3)

A hypervertex corresponds to a single molecule and incorporates all the intramolecu-
lar constraints represented by the s-bonds. The Fourier transform of (11.8.3) is the αβ-
component of the matrix ω̂(k) · ĉ(k) · ω̂(k), i.e.∑

γ

∑
δ

ω̂αγ (k)ĉγ δ(k)ω̂δβ(k) = (ω̂ĉω̂)αβ (11.8.4)

The components of the matrix ω̂(k) are

ω̂αβ(k) = δαβ + (1 − δαβ)j0(kLαβ) (11.8.5)

where Lαβ is the intramolecular separation of sites α, β . Similarly, the Fourier trans-
form of the sum of all chain diagrams containing precisely n c-bonds is ρn−1((ω̂ĉ)nω̂)αβ

(cf. (5.5.22)), and ĥαβ(k) is the sum of a geometric series (cf. (5.5.23)). The matrix ĥ(k) is
therefore given by

ĥ(k) = ω̂(k) · ĉ(k) · [I − ρω̂(k) · ĉ(k)]−1 · ω̂(k) (11.8.6a)

or

ĥ(k) = ω̂(k) · ĉ(k) · ω̂(k) + ρω̂(k) · ĉ(k) · ĥ(k) (11.8.6b)

Equation (11.8.6) is the Ornstein–Zernike-like relation. It can be derived in other ways
than the one we have described, but the diagrammatic method35 has a strong intuitive
appeal. We shall refer to it as the RISM-OZ relation, though we shall see later that its status
differs from that of the molecular Ornstein–Zernike relation (11.1.4). If ω is the identity
matrix and ρ is appropriately reinterpreted, it reduces to the Ornstein–Zernike relation for
a mixture of atomic fluids.
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If the RISM-OZ relation is to be useful, it must be combined with some approximate
closure relation. For systems of fused hard spheres the obvious choice is a generalisation
of the PY approximation for atomic hard spheres, i.e.

hαβ(r) = −1, r < dαβ; cαβ(r) = 0, r > dαβ (11.8.7)

where dαβ is the α − β hard-sphere diameter. When the site–site potentials are continu-
ous, generalisations of either the PY or HNC approximations can be used. A number of
schemes have been devised for numerical solution of the resulting system of equations and
calculations have been made for a wide variety of molecular liquids. Figure 11.6 shows
the results of RISM calculations based on the PY closure relation for the atomic pair dis-
tribution function of a two-site Lennard-Jones model of liquid chlorine. There are some
differences in detail, but all the main features seen in molecular-dynamics calculations for
the same potential model are well reproduced. Note that the shoulder in the ethylene results
of Figure 11.2 appears here as a well-defined subsidiary peak.

The agreement between theory and simulation seen in Figure 11.6 is typical of that
achieved for other small, rigid molecules. More surprisingly, a version of the theory37

known as “polymer” RISM or PRISM has also been applied successfully in studies of the
structure of realistic models of polymer melts. Consider a chain molecule consisting of
n identical monomers in a linear sequence, each represented by a single interaction site.
Then, if the sites are assumed to be geometrically equivalent, the pair functions hαβ(r) and
cαβ(r) are the same for all α, β and the matrix relation (11.8.6b) reduces to a single, scalar
equation:

ĥ(k) = Ω̂(k)ĉ(k)Ω̂(k) + nρΩ̂(k)ĉ(k)ĥ(k) (11.8.8)
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FIG. 11.6. Atom–atom distribution function for a Lennard-Jones diatomic model of liquid chlorine. The points
show the results of a molecular-dynamics simulation and the curve is calculated from the RISM approximation
with PY closure. After Monson.36
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where

Ω̂(k) = 1

n

∑
α

∑
β

ω̂αβ(k) (11.8.9)

is the single-chain (or intramolecular) structure factor. This reduction in form is exact for
ring polymers, but it is also a good approximation for chains if end-effects can be ignored.
In either case it represents a huge simplification of the original problem, even for values
of n as small as 10.

When combined with a suitable closure relation, (11.8.8) can be solved numerically
to yield the site–site correlation function h(r), provided the single-chain structure factor is
known. In principle, intramolecular and intermolecular correlations should be calculated in
a self-consistent way.38 This complication can be avoided by treating the chains as “ideal”,
meaning that their average conformation is determined only by the connectivity constraints
along the chain. The excluded-volume interactions between sites far apart in chemical se-
quence are assumed to be screened by interactions with surrounding chains.39 For highly
simplified models, such as the freely jointed chain, Ω̂(k) can be calculated analytically;
for more elaborate models, it can be determined from a single-chain simulation in which
the interactions are truncated at some cut-off point along the chain.

11.9 ANGULAR CORRELATIONS AND THE RISM FORMALISM

Although successful in many applications, the RISM formalism suffers from a number
of defects. First, it does not lend itself readily to a calculation of the equation of state
and the results obtained are thermodynamically inconsistent in the sense of Section 4.4.
Secondly, calculated structural properties show an unphysical dependence on the presence
of “auxiliary” sites, which are sites that label a point in the molecule but contribute nothing
to the intermolecular potential. Thirdly, and most unexpectedly, trivial and incorrect results
are obtained for certain quantities descriptive of angular correlations in the fluid.40 As an
example, we show below that the order parameter G1 defined by (11.1.8) is identically zero
for any asymmetric but non-polar diatomic. The only assumption made is that the site–site
potentials are short ranged.

We note first that all elements of the matrix ω̂(k) defined by (11.8.5) are unity when
k = 0. If we define a matrix Q as

Q = I − n−1ω̂(0) =
( 1

2 − 1
2

− 1
2

1
2

)
(11.9.1)

where n is the number of sites (here equal to two), then

Q · ω̂(0) = ω̂(0) · Q = 0 (11.9.2)

Next we write the RISM-OZ relation (11.8.6b) in the form

ĥ(k) = ω̂(k) · X(k) (11.9.3)
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where

X(k) = ĉ(k) · [ω̂(k) + ρĥ(k)
]

(11.9.4)

Expanding ω̂(k) in powers of k, we find to order k2 that

ĥ(k) = [ω̂(0) + k2ω(2) + · · ·] · X(k) (11.9.5)

If multiplied on the left by Q, (11.9.5) reduces, by virtue of the property (11.9.2), to

Q · ĥ(k) = Q · [k2ω(2) + · · ·] · X(k) (11.9.6)

We now suppose that ĥ(k) and ĉ(k) (and hence also X(k)) have small-k expansions at
least up to order k2. This is plausible, since the site–site potentials are assumed to be short
ranged. Then

Q · [ĥ(0) + k2h(2) + · · ·]= Q · [k2ω(2) + · · ·] · [X(0) + k2X(2) + · · ·] (11.9.7)

and by equating coefficients of k2 we find that

Q · h(2) = Q · ω(2) · X(0) (11.9.8)

We have seen in Section 11.3 that all elements of ĥ(0) are the same and related to the
compressibility by (11.3.6). Thus X(0) may be written as

X(0) = [1 + ρĥ0(0)
]
ĉ(0) · ω̂(0) (11.9.9)

where ĥ0(0) (a scalar) is any element of ĥ(0). Inserting (11.9.9) in (11.9.8), multiplying
on the right by Q, and using again the property (11.9.2), we find that

Q · h(2) · Q = 0 (11.9.10)

But every element of the matrix Q · h(2) · Q is proportional to Δh(2), where Δh(r) is de-
fined by (11.3.8). Thus Δh(2) = 0 and hence, from (11.3.10), G1 = 0. As we pointed out
in Section 11.3, this result is obvious on symmetry grounds for a homonuclear molecule,
but in the general case it will be true (unless accidentally) only in the ideal-gas limit. Simi-
larly, by considering terms of order k4 in (11.9.7), it can be that G2 = 0 for an asymmetric,
linear, triatomic molecule.

If the molecule is polar, with the interaction sites carrying point charges, the problem
becomes more complicated. When expanding ĉ(k), allowance must be made for a term
in k−2, corresponding to an r−1 decay of the site–site potential. This term must be treated
separately, but it is then possible to show that for any interaction-site molecule

ρ
∑
α

∑
β

qαqβh
(2)
αβ = − yμ2

1 + 3y
(11.9.11)



ANGULAR CORRELATIONS AND THE RISM FORMALISM 377

where qα is the charge carried by site α. Comparison of (11.9.11) with the exact re-
sult (11.5.32) shows that within the RISM approximation

ε = 1 + 3y (11.9.12)

which is a well-known result for the dielectric constant of an ideal gas of polar molecules.
The results in (11.9.10) and (11.9.12) are consequences solely of the RISM-OZ rela-

tion (11.8.6). They are independent of the choice of closure relation except insofar as the
latter must be consistent with the assumed small-k behaviour of ĥ(k) and ĉ(k). It fol-
lows that the RISM-OZ relation, when combined with a conventional closure approxima-
tion, cannot describe correctly certain long-wavelength properties of molecular systems, of
which G1, G2 and ε are important examples.

Attempts to develop a more satisfactory theory have developed along two different lines.
The first relies on treating the RISM-OZ relation as providing the definition of the site–site
direct correlation functions. So far as the calculation of angular order parameters is con-
cerned, it then appears necessary to abandon the assumption that cαβ(r) is a short-range
function, even when the corresponding site–site potential is short ranged. For example,41

a non-zero value of G1 for a symmetric diatomic is obtained if cαβ(r) is assumed to de-
cay as r−1. In such circumstances the concept of “direct correlation” no longer has a clear
physical meaning. In the alternative approach the view is taken that the RISM-OZ relation,
though plausible, does not provide an adequate basis for a complete theory of interaction-
site models of molecular liquids. Accordingly, it is there rather than in the closure relation
that improvement must be sought.42 The argument is based on the difference in diagram-
matic structure between the RISM-OZ relation and the molecular Ornstein–Zernike rela-
tion (11.1.4). In the latter case the indirect correlation function b(1,2) = h(1,2) − c(1,2)
is given, as in (4.6.1), by the sum of all simple chain diagrams containing two or more
c-bonds. In any such diagram, every black circle is a nodal circle, and c(1,2) consists of
the subset of diagrams in the ρ-circle, f -bond expansion of h(1,2) that are free of nodal
circles. By analogy, it might be supposed that the c-bonds in (11.8.1) represent the subset
of diagrams in the expansion of hαβ(r) that are free of nodal circles. This is not the case.
For example, the diagram

...
.

which appears at zeroth order in the density expansion of hαβ(r) is a diagram without
nodal circles. If this is substituted into the second and third diagrams on the right-hand
side of (11.8.1), it yields, respectively, diagrams (a) and (b) below:

....

....

....

....

(a) (b)

Diagram (a) is a diagram in the exact expansion of hαβ(r), but (b) is not. In fact, (b) is not
even an allowed diagram, because two s-bonds intersect the same black circle. Chandler
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and coworkers42 have shown how this problem can be overcome through the introduction
of another Ornstein–Zernike-like relation that reduces to (11.8.6) in the limit ρ → 0 but
in which the direct correlation functions correspond to well-defined subsets of diagrams
in h. Calculations based on the new relation lead to non-trivial results for the angular order
parameters and dielectric constant when approximate closures of conventional type are
employed. However, the theory has not been widely applied, and so far as the description
of short-range order is concerned it is not clear that the method represents an improvement
on the original formulation.43

11.10 ASSOCIATING LIQUIDS

Although hydrogen-bonded liquids and other associating fluids are not normally classed as
“simple”, our understanding of the link between the macroscopic properties of such sys-
tems and their behaviour at the microscopic level has improved greatly in recent years. This
is a development to which both experiment and simulation have made major contributions.
For understandable reasons, much of the effort has been focused on studies of water. The
particular geometry of the water molecule gives rise to structural features in the liquid that
are not seen for other small, hydrogen-bonded species, and the macroscopic properties of
water display a number of anomalies that are directly attributable to hydrogen bonding, of
which the best known is the fact that the density at atmospheric pressures passes through
a maximum at a temperature of 4 ◦C. One of the most important advances on the experi-
mental front has been the resolution of significant differences that had previously existed
between the results of x-ray and neutron-scattering measurements of the structure of liquid
water. X-ray scattering is sensitive primarily to the oxygen–oxygen correlations,44 while
neutron scattering is the main source of information on correlations involving hydrogen
atoms.45 Figure 11.7 shows the results obtained by x-ray scattering for the distribution
function of oxygen atoms in water at room temperature, contrasting these with the results
for liquid argon already shown in Chapter 2. To assist comparison, the horizontal axis is
scaled so as to bring the two main peaks into coincidence. Clearly the structure is very dif-
ferent in the two liquids. Two features in particular stand out. First, the area under the main
peak is significantly smaller for water than it is for argon, leading to a large reduction in the
nearest-neighbour coordination number defined in Section 2.5, from approximately 12 for
argon to about four for water. Secondly, the oscillations in the two curves are out of phase.
The second peak for water is displaced inwards with respect to that for argon and appears
at a distance r/rmax = 1.61 ± 0.01, which is very close to the value found for the ratio of
the second-neighbour separation to that of first neighbours in the ideal ice structure, i.e.
2
√
(2/3) ≈ 1.63. Both the value of the coordination number and the position of the second

peak in the oxygen–oxygen distribution function provide clear evidence that the molecules
in liquid water form a hydrogen-bonded network which represents a strained version of the
tetrahedral ordering found in ice.

A similar picture to that outlined above emerges from the many simulations of water
that have been carried out.48 Such calculations provide a level of detail that cannot be
matched experimentally concerning the number, energies and lifetimes of the hydrogen
bonds formed by individual molecules. A very large number of empirical intermolecular



ASSOCIATING LIQUIDS 379

0

1

2

3

1 2 3

)r(g

r / r

water   298 K

argon   85 K

max

FIG. 11.7. Experimental results for the pair distribution function for oxygen atoms in water at room temperature
(from x-ray scattering44) and for liquid argon near its triple point (from neutron scattering46). The points are the
results for gOO(r) obtained by Monte Carlo calculations47 for an interaction-site model of water. The quantity
rmax is the separation at which the corresponding experimental curve has its main peak: 2.74 Å for water and
3.68 Å for argon.

potentials have been designed for use in simulations, which differ from each other mainly
in the way in which the electrostatic interaction between molecules is described. The ma-
jority are based on rigid charge distributions represented by three or more point charges,
though a number of polarisable models have also been developed, and the best of these
empirical potentials give results in impressive agreement with experiment for a wide range
of properties. An example of what can be achieved is illustrated by the Monte Carlo re-
sults shown in Figure 11.7. These were obtained with a model47 (TIP5P) consisting of a
Lennard-Jones interaction centred on the oxygen atom and four rigid charges, one on each
hydrogen site and two at sites chosen to represent the lone-pair electrons. The same model
is also successful in reproducing the density anomaly at 4 ◦C, while a predecessor (TIP4P)
has been shown to capture all the main features of the experimental phase diagram.49

A number of standard, integral-equation approximations have been used in calcula-
tions for models of specific hydrogen-bonded liquids, including water,50 but progress has
also been achieved in the development of a general approach to the theory of associating
fluids.51–53 One of the most successful of these theories is that of Wertheim, which in its
commonly used form has the character of a thermodynamic perturbation theory.53(b) The
theory is designed for application to a class of highly simplified models in which the asso-
ciating species are treated as particles with repulsive cores in which a number of attractive
interaction sites are embedded; it is at these sites that association occurs. In the examples
discussed below the particles are taken to be hard spheres of diameter d and the association
sites are represented by off-centre, square-well potentials with a well-depth εA. Because
hard spheres cannot overlap, the square-well potential can always be made sufficiently
short ranged that the formation of more than one bond at any given site is forbidden, as in
the example shown in Figure 11.8. A model with one association site describes a dimeris-
ing fluid; with two sites, illustrated in the figure, the spheres can form chains and rings;
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d

FIG. 11.8. A simple interaction-site model of an associating liquid. The large circles represent hard spheres
and the small circles represent square-well interaction sites displaced from the centre of the hard sphere by a
distance δ. The range of the square-well potential is sufficiently short to ensure that multiple bonding at any
association site is forbidden, since that would require hard spheres to overlap.

with three sites, chain branching and network formation become possible; and a sphere
with four, tetrahedrally disposed sites serves as a crude model of a water molecule.

If the attractive interactions between particles are sufficiently strong to promote associ-
ation, we cannot expect a conventional perturbation calculation to succeed. In Wertheim’s
approach this difficulty is circumvented by treating different association aggregates as dis-
tinct species, each described by a separate single-particle density within a “multi-density”
formalism. The theory leads ultimately to an expression for the free energy in terms of the
densities of particles in different bonding states. As a specific example, consider the case
of a system of hard spheres with a single association site. Since only dimer formation is
allowed, the total number density of spheres can be written as

ρ = ρM + 2ρD (11.10.1)

where ρM and ρD are the number densities of monomers and dimers, respectively. Dia-
grammatic arguments along the general lines of those pursued in Section 3.8 can then be
used to show that

ρ = ρM + ρ2
M

∫
gMM(1,2)fA(1,2)d2 (11.10.2)

where gMM(1,2) is the pair distribution function of the free monomers and fA(1,2) is the
Mayer function for the association potential.

The starting point in the derivation of (11.10.2) is the activity expansion of lnΞ provided
by (3.8.3). By decomposing the Mayer function for the full pair potential in the form

f (1,2) = f0(1,2) + Φ(1,2), Φ(1,2) = e0(1,2)fA(1,2) (11.10.3)

where e0(1,2) and f0(1,2) are, respectively, the Boltzmann factor and Mayer function for
the hard-sphere potential, the right-hand side of (3.8.3) can be written a sum of diagrams
consisting of z∗-circles, f0-bond and Φ-bonds. The assumption that multiple bonding at a
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single site is blocked by steric effects means that many of the diagrams either vanish or are
cancelled by other diagrams; this greatly simplifies the subsequent analysis. The diagram-
matic representation of the total single-particle density ρ(1)(1) is again obtained from the
prescription given by (3.8.4), i.e. as the sum of all topologically distinct diagrams obtained
from lnΞ by whitening a black circle and labelling it 1. Now, however, the diagrams that
contribute to ρ(1)(1) can be divided into two classes:

ρ(1)(1) = ρ
(1)
M (1) + ρ

(1)
A (1) (11.10.4)

where ρ
(1)
M (1) is the density of unassociated spheres (monomers) and ρ

(1)
A (1) is the density

of spheres that form part of an associated aggregate, which in the present case can only
be a dimer; the class of monomer diagrams consists of those diagrams in which the white
circle is not intersected by a Φ-bond. The last step in the derivation involves a topologi-
cal reduction in which the z∗-circles in the z∗-expansion of lnΞ are replaced by ρ(1) or
ρ
(1)
M -circles, which in turn leads to expressions for the free energy and pressure as func-

tionals of the two densities. The monomer density is not a free parameter; it is determined
self-consistently by a relation between ρ(1)(1) and ρ

(1)
M (1), which in the homogeneous

limit reduces to (11.10.2).
The full calculation is too lengthy to reproduce here, but the brief sketch we have given

is enough to show that the derivation of the expression that relates ρ and ρM does not rely
on the assumption that the association potential is in some sense weak. However, for the
purposes of evaluating the integral in (11.10.2), the characteristic approximation of first-
order perturbation theory can now be made, whereby the unknown function gMM(1,2)
in (11.10.2) is replaced by the pair distribution function of the underlying hard-sphere
system, g0(1,2). Thus

ρ ≈ ρM + ρ2
M

∫
g0(1,2)fA(1,2)d2 ≡ ρM + ρ2

MD(ρ,T ) (11.10.5)

It can then be shown that the change in free energy due to dimerisation, FA, is given, to
the same order in perturbation theory, by a very simple formula:

βFA

N
= βF

N
− βF0

N
= lnx + 1

2 (1 − x) (11.10.6)

where F0 is the free energy of the reference system and x = ρM/ρ is the fraction of spheres
that remain unassociated. The value of x is given by the positive root of the equation
obtained by dividing (11.10.5) though by ρ:

x2ρD(ρ,T ) + x − 1 = 0 (11.10.7)

Since the association potential is very short ranged, the integral D(ρ,T ) can be adequately
approximated in the form

D(ρ,T ) ≈ g0(d)

∫
fA(1,2)d2 ≡ g0(d)D

′(T ) (11.10.8)
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FIG. 11.9. Equilibrium composition and equation of state of a dimerising hard-sphere fluid at a reduced in-
verse temperature εA/kBT = 7, where εA is the depth of the square-well potential. The points are the results of
Monte Carlo calculations and the full curves are obtained by perturbation theory. The broken curve shows the
Carnahan–Starling equation of state for the hard-sphere reference system. After Jackson et al.54

where g0(d) is the value of the hard-sphere distribution function at contact. Once the free
energy is known, other thermodynamic properties can be obtained by differentiation. Fig-
ure 11.9 shows results obtained for the equilibrium composition and equation of state as a
function of the hard-sphere packing fraction at a temperature such that εA/kBT = 7. The
agreement between theory and simulation is very good.

The final results of the theory and, in particular, the self-consistency of (11.10.5)
and (11.10.6), can be made plausible by considering the simplest possible case, that of
a dimerising ideal gas.55 In the low-density limit, (11.10.5) reduces to56

ρ = ρM + ρ2
M

∫
e0(1,2)fA(1,2)d2 ≡ ρM + ρ2

MΔ(T ) (11.10.9)

The role of the association potential is limited to that of dimer formation and the free
energy of the partly associated system is that of a ideal gas composed of monomers and
dimers. At equilibrium, the chemical potential of a sphere must be the same in its monomer
and dimer states and therefore equal to kBT lnρMΛ3, and the pressure is kBT (ρM + ρD).
A short calculation shows that the free energy F = Nμ − PV of the associated system
relative to that of the ideal monomeric gas is

βFA

V
= ρ ln

ρM

ρ
+ 1

2 (ρ − ρM) (11.10.10)

which is equivalent to (11.10.6). At equilibrium, FA must be a minimum with respect to
variations in ρM at constant ρ, subject to the constraint imposed by (11.10.9). If we replace
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the second term on the right-hand side of (11.10.10) by (ρ − ρM) − 1
2ρ

2
MΔ(T ), we find

that

β

V

∂FA

∂ρM
= ρ

ρM
− 1 − ρMΔ(T ) (11.10.11)

which vanishes when (11.10.9) is satisfied. Equations (11.10.9) and (11.10.10) are there-
fore mutually consistent.

An important feature of Wertheim’s approach is that it leads naturally to a theory of
polymerisation.57 This extension of the theory is easily illustrated, in a non-rigorous way,
for the case of dimer formation. The degree of dimerisation approaches unity as the depth
of the square-well potential is increased to values appropriate to a covalent bond and the
Mayer function fA(1,2) becomes correspondingly large. Equation (11.10.7) implies that
as the limit of complete dimerisation is approached, the monomer fraction must vanish
as x → 1/[ρD(ρ,T )]1/2. If we adopt the approximation (11.10.8), we find that the free
energy of association in the limit ρ → 2ρD is

βFA

N
≈ − 1

2 lnρD′(T ) + 1
2 (11.10.12)

implying that the equation of state of the fully dimerised system, i.e. a fluid of hard di-
atomics, is

β(P − P0) = −β
∂FA

∂V
= − 1

2ρ

(
1 + ρg0(d)

∂ lng0(d)

∂ρ

)
(11.10.13)

where P0 is the pressure of the hard-sphere fluid. If the Carnahan–Starling equation of state
is used for P0, the contact value g0(d) is given by

g0(d) =
(
1 − 1

2η
)

(1 − η)3
(11.10.14)

and (11.10.13) (with ρ = 2ρD) becomes

βP

ρD
= 2(1 + η + η2 − η3)

(1 − η)3
−
(
1 + η − 1

2η
2
)

(1 − η)
(
1 − 1

2η
) (11.10.15)

Equation (11.10.15) proves to be remarkably accurate. It yields results that agree with those
of simulations of systems of tangent hard spheres to within 0.15% over the full density
range.57(a)

Wertheim’s theory and its extensions provide the basis for the general approach called
“statistical associating fluid theory” or SAFT, within which equations of state have been
developed for a wide range of complex fluids of importance in chemical engineering.58
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11.11 REORIENTATIONAL TIME-CORRELATION FUNCTIONS

The description of the dynamical properties of molecular liquids differs most obviously
from that used for atomic systems through the appearance of a class of reorientational time-
correlation functions. We end this chapter by briefly considering some of the properties of
these functions, limiting ourselves mainly to the case of linear molecules. We consider first
the simpler problem of the single-molecule functions, leaving until later the question of
collective reorientational properties.

Reorientation of a linear molecule can be described in a compact way through the intro-
duction of a family of time-correlation functions defined as

C(l)(t) = 〈Pl

[
ui (t) · ui

]〉
(11.11.1)

where, as before, ui is a unit vector parallel to the internuclear axis of molecule i and
Pl(· · ·) is again a Legendre polynomial. The functions C(l)(t) are time-dependent general-
isations of the angular order parameters Gl of Section 11.1. Apart from their application
to linear molecules, they are also the most important functions for the description of the
reorientational motion of spherical-top molecules, i.e. those in which all three principal
moments of inertia are the same (CCl4, SF6, etc.), and of the reorientation of the main
symmetry axis of symmetric-top molecules, i.e. those in which two of the principal mo-
ments of inertia are equal (NH3, CH3I, etc.). The l = 1 and l = 2 functions are related to
the spectral bandshapes measured in infrared absorption (l = 1) and Raman or depolarised
light scattering (l = 2) experiments. Information on the correlation functions can be ob-
tained by Fourier transformation of the experimental spectra, but the interpretation of the
results is complicated by a number of factors, including uncertainty about the contribu-
tions to the spectra from vibrational relaxation and collision-induced effects or, in the case
of depolarised light scattering, the importance of angular correlations of the type described
by the order parameter G2.

Figure 11.10 shows some typical results for the l = 2 function, derived from spectro-
scopic measurements on carbon dioxide in two very different thermodynamic states and,
in the inset, liquid acetonitrile. Under liquid-state conditions the function is approximately
exponential in form, except at short times, but at low densities oscillations appear; infrared-
absorption experiments on polar molecules give qualitatively similar results for the l = 1
function. The oscillations seen at low densities can be understood by considering the be-
haviour of the correlation functions in the ideal-gas limit. Let ω = u × u̇ be the angular
velocity of a linear molecule of moment of inertia I . In the absence of any interactions
the angular velocity is a constant of the motion, and in a time t the molecule will rotate
through an angle ωt = cos−1 u(t) · u(0), where ω ≡ |ω|. The probability that a molecule
will rotate through such an angle is therefore determined by the probability that its angular
velocity lies in the range ω → ω + dω. Thus the correlation function C(l)(t) is the value
of Pl(cosωt) averaged over a Maxwell–Boltzmann distribution of angular velocities and
appropriately normalised, i.e.

C(l)(t) = I

kBT

∫ ∞

0
Pl(cosωt) exp

(− 1
2βIω

2)ω dω (11.11.2)
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FIG. 11.10. The l = 2 reorientational correlation function derived from experiments on liquid and gaseous car-
bon dioxide (main figure) and liquid acetonitrile (inset, plotted on a logarithmic scale). Open and closed circles in
the main figure show the results for ρ/ρc = 0.09 and ρ/ρc = 2.35, respectively, where ρc is the critical density.
After Versmold59 and Bien et al.60

These functions are oscillatory and tend to zero as t → ∞ only for odd l. They are com-
monly called the “free-rotor” correlation functions and the oscillations seen in gas-phase
experimental results are the remnants of free-rotor behaviour. Similar results are obtained
for the free-rotor functions of non-linear molecules; the principle of the calculation is the
same, but the final expressions have a more complicated form.61

The short-time expansion of the Legendre polynomial in (11.11.2) begins as

Pl(cosωt) = 1 − 1
4 l(l + 1)ω2t2 + · · · (11.11.3)

If we expand the correlation function in powers of t :

C(l)(t) = 1 − M
(l)
2

t2

2! + · · · (11.11.4)

a simple integration shows that

M
(l)
2 = l(l + 1)

kBT

I
(11.11.5)

At sufficiently short times a molecule rotates freely. Hence, although (11.11.5) has been
derived only in the free-rotor limit, it is also valid for interacting molecules; there is an
analogy here with the short-time behaviour of the mean-square translational displacement.
From the general properties of time-correlation functions discussed in Section 7.1 it fol-
lows that the coefficient M(l)

2 is the second moment of the power spectrum of C(l)(t). The
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mean-square width of the experimental bandshape is therefore independent of the molec-
ular interactions. The fourth moment, however, contains a contribution proportional to the
mean-square torque acting on the molecule.

The quasi-exponential behaviour of the correlation functions at high densities can be ex-
plained by invoking an approximation similar in spirit to the Langevin equation (7.3.21).
We begin by writing a memory-function equation for C(l)(t) and taking the Laplace trans-
form to give

C̃(l)(ω) = 1

−iω + Ñ (l)(ω)
(11.11.6)

From (11.11.5) it follows that the memory function N(l)(t) behaves as

N(l)(t) = l(l + 1)

(
kBT

I

)
n(l)(t) (11.11.7)

with n(l)(0) = 1. We now suppose that reorientation occurs as the result of a succession
of small, uncorrelated steps. This is the Debye approximation or “small-step-diffusion”
model. In memory-function language the Debye approximation is equivalent to the as-
sumption that Ñ (l)(ω) is independent of frequency. To preserve the l-dependence con-
tained in the exact result (11.11.7) we approximate the memory function in the form
Ñ (l) ≈ l(l + 1)DR , where DR (a frequency) is a “rotational-diffusion coefficient”. Then

C(l)(t) = exp
[−l(l + 1)DRt

]
(11.11.8)

In this approximation the correlation functions decay exponentially at all times and for all
values of l, and the entire family of functions is characterised by the single parameter DR ;
for small molecules under triple-point conditions, DR is typically of order 1011 s−1. The
characteristic decay times for different values of l are related by the simple rule

τl

τl+1
= l + 2

l
(11.11.9)

The correlation times derived from infrared and Raman measurements should therefore be
in the ratio τ1/τ2 = 3. This is approximately true of many liquids and also of correlation
times obtained by simulation.62

A weakness of the Debye approximation is its neglect of the fact that molecules ro-
tate freely at short times. It therefore cannot account for the quadratic time dependence
of the reorientational correlation functions at small t . A more complete theory must also
describe correctly the details of the transition to the long-time, quasi-exponential behav-
iour. In the case of acetonitrile, for example, the transition region is characterised by a
marked change in slope of the curve of lnC(2)(t) versus t . The behaviour in the different
time regimes can be described in a unified way by relating the form of the reorientational
correlation functions to that of the angular-velocity autocorrelation function Cω(t).63 By
analogy with (7.2.6) and (7.2.7) we define the rotational-diffusion coefficient of a linear
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molecule as

DR = kBT

I
lim
t→∞

∫ t

0

(
1 − s

t

)
Cω(s)ds (11.11.10)

where

Cω(t) = 〈ωi (t) · ωi〉
〈|ωi |2〉 = I

2kBT

〈
ωi (t) · ωi

〉
(11.11.11)

Then substitution of (11.11.10) in (11.11.8) gives an expression for C(l)(t) in terms
of Cω(t):

lnC(l)(t) = −l(l + 1)

(
kBT

I

)∫ t

0
(t − s)Cω(s)ds (11.11.12)

The main merit of this approximation is the fact that it contains the correct short-time
behaviour yet goes over to the Debye model at long times. Let τω be the integral correlation
time for the angular velocity, i.e.

τω =
∫ ∞

0
Cω(t)dt (11.11.13)

At times t � τω, Cω(t) ≈ 1 and (11.11.12) becomes

lnC(l)(t) ≈ −l(l + 1)

(
kBT

I

)
t2

2
(11.11.14)

in agreement with the exact result (11.11.5). In the opposite limit, t � τω, (11.11.12) be-
comes

lnC(l)(t) ≈ −l(l + 1)

(
kBT

I

)
τωt (11.11.15)

which is equivalent to the Debye approximation (11.11.8) with the identification DR =
(kBT/I)τω . Finally, the behaviour at intermediate times can be related to the shape of the
function Cω(t). Differentiating (11.11.12) twice with respect to t we find that

d2 lnC(l)(t)

dt2
= −l(l + 1)

(
kBT

I

)
Cω(t) (11.11.16)

The angular-velocity autocorrelation function is not measurable experimentally, but
molecular-dynamics calculations show that for liquids such as acetonitrile, in which the
intermolecular torques are strong, it decays rapidly at short times and then becomes
negative.62 The change in sign occurs because the direction of the angular-velocity vector
is on average soon reversed; the behaviour is similar to that seen in the linear-velocity
autocorrelation function at high densities and low temperatures (see Figure 7.1). Equa-
tion (11.11.16) shows that a change in sign of Cω(t) corresponds to a point of inflexion
in lnC(l)(t) of the type visible in Figure 11.10, which in turn is a common feature of the
reorientational correlation functions of high-torque fluids.
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A variety of theoretical schemes have been devised to treat those cases in which the
Debye model is inadequate. Many of these are expressible in terms of simple approxima-
tions for the relevant memory functions, but none has proved to be satisfactory either for
any large group of molecules or for any particular molecule over a wide range of den-
sity and temperature. The failure to develop an adequate theory is striking in view of the
apparent simplicity in structure of the correlation functions themselves.

We have focused until now on the reorientational motion of single molecules. There are,
in addition, a number of collective reorientational correlation functions that are of experi-
mental significance and are also many-particle generalisations of single-particle functions.
It is therefore of interest to establish an approximate relation between the correspond-
ing collective and single-particle functions and, in particular, between the two correlation
times, since this allows a connection to be made between the results of very different
experiments. We take as an example the collective motions that determine the frequency-
dependent dielectric behaviour of a polar fluid,16 as described by the complex dielectric
permittivity ε(ω) introduced in Section 11.5. The quantities of interest in the study of
dielectric relaxation are the correlation functions and associated power spectra of the lon-
gitudinal (l) and transverse (t) components of the dipole-moment density (11.5.13), i.e.

Cl(k, t) = 〈Mz
k(t)M

z
−k〉

〈|Mz
k|2〉 , Ct (k, t) = 〈Mx

k (t)M
x
−k〉

〈|Mx
k |2〉 (11.11.17)

where we have followed the usual convention that k is parallel to the z-axis. The functions
Cl(k, t) and Ct(k, t) are collective analogues, generalised to non-zero k, of the single-
molecule function C(1)(t). It follows from (11.5.9) and (11.5.12) that the long-wavelength
limits of the Laplace transforms C̃l(k,ω) and C̃t (k,ω) are related to ε(ω) by

4πβ

V
lim
k→0

〈∣∣Mz
k

∣∣2〉[1 + iωC̃l(k,ω)
]= ε(ω) − 1

ε(ω)

4πβ

V
lim
k→0

〈∣∣Mx
k

∣∣2〉[1 + iωC̃t (k,ω)
]= ε(ω) − 1

(11.11.18)

We begin by writing memory-function equations for Cl(k, t) and Ct(k, t) in the form

C̃l(k,ω) = 1

−iω + Ñl(k · ω)
, C̃t (k,ω) = 1

−iω + Ñt (k · ω)
(11.11.19)

The initial values of the memory functions Nl(k, t) and Nt(k, t) in the limit k → 0
can be deduced from the general property (9.1.29) and the limiting behaviour described
by (11.11.18), taken for ω = 0:

lim
k→0

Nl(k, t = 0) = lim
k→0

〈|Ṁz
k|2〉

〈|Mz
k|2〉 = 4πβε

3V (ε − 1)

〈|Ṁ|2〉
lim
k→0

Nt(k, t = 0) = lim
k→0

〈|Ṁx
k |2〉

〈|Mx
k |2〉 = 4πβ

3V (ε − 1)

〈|Ṁ|2〉 (11.11.20)
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where ε ≡ ε(0) and Ṁ ≡ Ṁk→0. In deriving these results we have exploited the fact that the
different components of 〈|Ṁk|2〉 (unlike those of 〈|Mk|2〉) are equivalent and, in particular,
that limk→0〈|Ṁα

k |2〉 = 1
3 〈|Ṁ|2〉, where α = x, y or z.

The form of (11.11.20) makes it convenient to write the memory functions at long wave-
lengths as

lim
k→0

Ñl(k,ω) = εR̃l(ω)

ε − 1
, lim

k→0
Ñt (k,ω) = R̃t (ω)

ε − 1
(11.11.21)

It is clear from comparison of (11.11.20) with (11.11.21) that Rl(t = 0) = Rt(t = 0) =
(4πβ/3V )〈|Ṁ|2〉. More generally, if the two parts of (11.11.18) are to be consistent with
each other in the sense of giving the same result for ε(ω), some straightforward algebra
shows that Rl(t) and Rt(t) must be the same for all t . Thus

Rl(t) = Rt(t) = R(t), say (11.11.22)

This has the immediate consequence that in the long-wavelength limit the correlation times
for the longitudinal and transverse functions differ by a factor ε, i.e. limk→0 C̃l(k,0)/
C̃t (k,0) = ε−1 or

lim
k→0

∫ ∞

0
Cl(k, t)dt = 1

ε
lim
k→0

∫ ∞

0
Ct(k, t)dt (11.11.23)

The diffusion approximation analogous to (11.11.8) now corresponds to setting

R(t) = R(0)δ(t) = 4πβ

3V

〈|Ṁ|2〉δ(t) (11.11.24)

so that both Ñl(k,ω) and Ñt (k,ω) are assumed to be independent of frequency in the limit
k → 0. If we define a characteristic time τD as

τD = 3V

4πβ

ε − 1

〈|Ṁ|2〉 (11.11.25)

it follows from (11.11.19) and (11.11.21) that

lim
k→0

Cl(k, t) = exp(−εt/τD), lim
k→0

Ct(k, t) = exp(−t/τD) (11.11.26)

which represents a special case of the general result in (11.11.23). Simulations of strongly
polar fluids confirm that the longitudinal and transverse correlation functions at small k do
decay on very different timescales and that the ratio of correlation times is approximately
equal to the value of ε derived from fluctuations in the mean-square dipole moment of
the sample.64 The transverse function is also approximately exponential in form with a
decay time only weakly dependent on k, in qualitative agreement with (11.11.26), but the
longitudinal function has oscillations at large t ; to describe these oscillations it is necessary
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to allow for some frequency dependence of the memory function. The approximation for
ε(ω) corresponding to (11.11.26) is

ε(ω) − 1

ε(0) − 1
= 1

1 − iωτD
(11.11.27)

This is an expression much used in the analysis of experimental data on ε(ω), in which
context τD is invariably called the Debye relaxation time. A feature of the approximation
is the fact that the curve, or Cole–Cole plot, of the real versus imaginary part of ε(ω) is
a semicircle with a maximum at a frequency such that ωτD = 1. Many real liquids have
Cole–Cole plots that are approximately semicircular. Because of its neglect of short-time,
inertial effects, the diffusion approximation is least satisfactory at high frequencies, where
the deviations from (11.11.27) are mostly to be found. However, as in the case of the
single-molecule problem, it has proved difficult to develop an alternative theory having a
wide range of applicability.

One goal of dielectric-relaxation theory is to relate the decay times that characterise the
collective functions (11.11.17) and the single-molecule correlation function C(1)(t). The
necessary link can be established by postulating some relationship between the memory
functions R(t) and N(1)(t). A simple but useful result is obtained by supposing that the
two memory functions have the same time dependence, but also have their correct initial
values. It follows from (9.1.29) that

N(1)(0) = 〈|u̇i |2
〉= 〈|Ṁ|2〉

Nμ2
= R(0)

3y
(11.11.28)

where y is the molecular parameter defined by (11.5.16). If, for simplicity, we adopt the
diffusion model, we find immediately from the definition (11.11.25) that

τD =
(
ε − 1

3y

)
τ1 (11.11.29)

or, after substitution from the Kirkwood formula (11.5.15):

τD =
(

3εgK

2ε + 1

)
τ1 (11.11.30)

This expression relates the dielectric relaxation time to the correlation time measured by
infrared spectroscopy in a form determined solely by static dielectric properties of the fluid.
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Appendix A

FLUCTUATIONS

It is shown in Chapter 2 that certain thermodynamic properties are expressible in terms
of fluctuations in the microscopic variables of a system. Here we examine the question of
fluctuations from a purely thermodynamic point of view.

Consider a subsystem of macroscopic dimensions that forms part of a much larger ther-
modynamic system. The subsystem is assumed to be in thermal, mechanical and chemical
equilibrium with the rest of the system which, being much larger, plays the role of a reser-
voir. The thermodynamic properties of the subsystem fluctuate around the average values
characteristic of the total system, and the mean-square deviations from the average values
can be derived systematically from the thermodynamic theory of fluctuations.

We assume that the total system is isolated from its surroundings. Then the probability
p that a fluctuation will occur is

p ∝ exp(ΔSt/kB) (A.1)

where ΔSt is the entropy change of the total system due to the fluctuation. Because St is
a maximum at equilibrium, ΔSt (< 0) will be a quadratic function of the thermodynamic
variables, higher-order terms in the expansion of St around its maximum value being negli-
gible for large systems. Let P , T and μ be the average pressure, temperature and chemical
potential, respectively, of the reservoir. Then, given that the energy, volume and number of
particles of the total system remain constant, the entropy change ΔSt is

ΔSt = ΔS + (−ΔU − PΔV + μΔN)/T (A.2)

where ΔS, ΔU , ΔV and ΔN are the changes in thermodynamic variables of the subsystem
and the second term on the right-hand side represents the entropy change of the reservoir.
Since the fluctuations are very small, it is permissible to replace ΔU by an expansion in
powers of ΔS, ΔV and ΔN truncated at second order, i.e.

ΔU ≈ TΔS − PΔV + μΔN + 1
2 (ΔTΔS − ΔPΔV + ΔμΔN) (A.3)

Then

p ∝ exp
[− 1

2β(ΔTΔS − ΔPΔV + ΔμΔN)
]

(A.4)

The subsystem can be defined either by the fraction of volume it occupies in the total
system or by the number of particles it contains. In the second case, ΔN = 0, and of
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the four remaining variables (P , V , T and S) only two are independent. If T and V are
chosen as independent variables, and ΔS and ΔP are expressed in terms of ΔT and ΔV ,
(A.4) becomes

p ∝ exp

(
−βCV

2T
(ΔT )2 + β

2

(
∂P

∂V

)
N,T

(ΔV )2
)

(A.5)

The probability that a fluctuation will occur is therefore a gaussian function of the devia-
tions ΔT and ΔV . Equation (A.5) shows that the system is stable against fluctuations in
temperature and volume provided CV > 0 and (∂P/∂V )N,T < 0. The mean-square fluctu-
ations derived from (A.5) are

〈
(ΔT )2〉= kBT

2

CV

,
〈
(ΔV )2〉= −kBT

(
∂V

∂P

)
N,T

= V kBT χT (A.6)

while 〈ΔTΔV 〉 = 0. Fluctuations in temperature are therefore independent of those in
volume. Alternatively, choice of S and P as independent variables transforms (A.4) into

p ∝ exp

(
− 1

2kBCP

(ΔS)2 + β

2

(
∂V

∂P

)
N,S

(ΔP )2
)

(A.7)

where CP is the heat capacity at constant pressure. The averages calculated from (A.7) are

〈
(ΔS)2〉= kBCP ,

〈
(ΔP )2〉= −kBT

(
∂P

∂V

)
N,S

= kBT

V χS

(A.8)

where χS = −(1/V )(∂V/∂P )N,S is the adiabatic compressibility, and 〈ΔSΔP 〉 = 0. Fluc-
tuations in entropy are therefore independent of those in pressure.

Finally, if the subsystem is defined as occupying a fixed fraction of the total volume,
the mean-square fluctuation in the number of particles in the subsystem can be calculated,
with the help of (2.4.22), to be

〈
(ΔN)2〉= kBT

(
∂N

∂μ

)
V,T

= ρNkBT χT (A.9)

Equation (A.9) is identical to the statistical mechanical relation relation (2.4.23), while
comparison of (A.9) with (A.6) shows that volume fluctuations at constant N are equivalent
to number fluctuations at constant V .
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TWO THEOREMS IN DENSITY-FUNCTIONAL THEORY

In this appendix we prove two of the key results of density-functional theory, usually called
the Hohenberg–Kohn–Mermin theorems. In doing so we use a simplified notation in which

Tr · · · ≡
∞∑

N=0

1

h3NN !
∫∫

· · · drN dpN

This operation is called the “classical trace”, by analogy with the corresponding operation
in quantum statistical mechanics. The definition of the grand partition function Ξ and the
normalisation of the equilibrium phase-space probability density f0 can then be expressed
in the compact form

Ξ = Tr exp
[−β(H− Nμ)

]
, Trf0 = 1

We first prove the following lemma.

Lemma. Let f be a normalised phase-space probability density and let Ω[f ] be the func-
tional defined as

Ω[f ] = Trf (H− Nμ + kBT lnf ) (B.1)

Then

Ω[f ] � Ω[f0] (B.2)

where f0 is the equilibrium phase-space density.

PROOF. From the definition of f0 in (2.4.5) it follows that

Ω[f0] = Trf0(H− Nμ − kBT lnΞ −H+ Nμ) = −kBT lnΞ

≡ Ω (B.3)

where Ω is the grand potential. Thus

Ω[f ] − Ω[f0] = kBT
[
Tr(f lnf ) − Tr(f lnf0)

]
(B.4)
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The term inside square brackets can be written as

Tr(f lnf ) − Tr(f lnf0) = Trf0
[
(f/f0) ln(f/f0) − (f/f0) + 1

]
(B.5)

The right-hand side is always non-negative, since x lnx � x − 1 for any x > 0. The in-
equality (B.2) is thereby verified.

This result is an example of the Gibbs–Bogoliubov inequalities, which are essentially a
consequence of the convexity of the exponential function.

Theorem 1. For given choices of VN , T and μ, the intrinsic free-energy functional

F
[
ρ(1)]= Trf0(KN + VN + kBT lnf0) (B.6)

is a unique functional of the equilibrium single-particle density ρ(1)(r).

PROOF. The equilibrium phase-space probability density f0 is a functional of φ(r). The
same is therefore true of the single-particle density ρ(1)(r) = Tr(f0ρ(r)), where ρ(r) is the
microscopic density. Let us assume that there exists a different external potential, φ′(r) �=
φ(r), that gives rise to the same ρ(1)(r). With the hamiltonian H′ = KN + VN + Φ ′

N we
may associate an equilibrium phase-space density f ′

0 and grand potential Ω ′. The inequal-
ity (B.2) implies that

Ω ′ = Trf ′
0(H′ − Nμ + kBT lnf ′

0) � Trf0(H′ − Nμ + kBT lnf0)

= Ω + Tr
[
f0(Φ

′
N − ΦN)

]
(B.7)

or

Ω ′ <Ω +
∫

ρ(1)(r)
[
φ′(r) − φ(r)

]
dr (B.8)

If the same argument is carried through with primed and unprimed quantities interchanged,
we find that

Ω <Ω ′ +
∫

ρ(1)(r)
[
φ(r) − φ′(r)

]
dr (B.9)

Addition of the two inequalities term by term leads to a contradiction:

Ω + Ω ′ <Ω ′ + Ω (B.10)

showing that the assumption concerning ρ(1)(r) must be false. We therefore conclude that
there is only one external potential that gives rise to a particular single-particle density.
Since f0 is a functional of φ(r), it follows that it is also a unique functional of ρ(1)(r).
This in turn implies that the intrinsic free energy (B.6) is a unique functional of ρ(1)(r) and
that its functional form is the same for all external potentials.
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Theorem 2. Let n(r) be some average of the microscopic density. Then the functional

Ωφ[n] = F[n] +
∫

n(r)φ(r)dr − μ

∫
n(r)dr (B.11)

has its minimum value when n(r) coincides with the equilibrium single-particle density
ρ(1)(r).

PROOF. Let n(r) be the single-particle density associated with a phase-space probability
density f ′. The corresponding grand-potential functional is

Ω[f ′] = Trf ′(H− Nμ + kBT lnf ′)

= F[n] +
∫

n(r)φ(r)dr − μ

∫
n(r)dr = Ωφ[n] (B.12)

The inequality (B.2) shows that Ω[f0] � Ω[f ′]. It is also clear that Ωφ[ρ(1)] = Ω[f0] =
Ω . Thus Ωφ[ρ(1)] � Ωφ[n]: the functional Ωφ[n] is minimised when n(r) = ρ(1)(r) and
its minimum value is equal to the grand potential.



Appendix C

LEMMAS ON DIAGRAMS

We give here proofs of Lemmas 1, 2 and 4 of Section 3.7; the proofs of Lemmas 3 and 5
are similar to those of 2 and 4, respectively, and are therefore omitted.

PROOF OF LEMMA 1. Let {g1, . . . , gN } be the set of diagrams in G (N may be infinite).
A typical diagram, Γ , in the set H is the star product of n1 diagrams g1, n2 diagrams
g2, . . . , and nN diagrams gN , where some of the numbers ni may be zero; we express this
result symbolically by writing

Γ = (g1 ∗ ∗n1) ∗ (g2 ∗ ∗n2) ∗ · · · ∗ (gN ∗ ∗nN) (C.1)

The value of gi is by definition [gi] = Ii/Si , where Si is the symmetry number, Ii is the
integral associated with gi , and we temporarily adopt the notation [· · ·] to denote the value
of a diagram. Then the value of Γ is

[Γ ] = I/S = (1/S)
N∏
i=1

I
ni

i (C.2)

where the symmetry number is

S =
N∏
i=1

ni ! ×
N∏
i=1

S
ni

i (C.3)

The factors ni ! take care of the permutations of the ni identical diagrams gi ; note that (C.3)
is true only for diagrams that are star irreducible. Equation (C.2) can be rewritten as

[Γ ] =
N∏
i=1

I
ni

i S
−ni

i

/ N∏
i=1

ni ! =
N∏
i=1

[gi]ni

/ N∏
i=1

ni ! (C.4)

We now sum over all diagrams in H and find that

∑
Γ

[Γ ] = −1 +
∞∑

n1=0

· · ·
∞∑

nN=0

N∏
i=1

[gi]ni

ni ! = −1 +
N∏
i=1

∞∑
ni=0

[gi]ni

ni !
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=
N∏
i=1

exp
([gi]

)− 1 = exp

(
N∑
i=1

[gi]
)

− 1 (C.5)

We subtract unity in the first line of (C.5) to exclude the case when all ni = 0.

PROOF OF LEMMA 2. If S is the symmetry number and m is the number of black circles
of Γ , the number of topologically inequivalent diagrams that are generated by attaching
labels 1, . . . ,m to the black circles in all possible ways is ν = m!/S. These diagrams we
denote by Γi . It follows from the definition of a value of a diagram given by (3.7.3) that

Γ = 1

m!
ν∑

i=1

Γi (C.6)

We now take the functional derivative of Γ with respect to γ (r). Since

δγ (ri )
δγ (r)

= δ(r − ri ) (C.7)

the differentiation corresponds diagrammatically to replacing successively each black γ -
circle in (C.6) by a white 1-circle. In this way, νm diagrams are generated, each containing
one white circle and m − 1 black circles. These we denote by Γ

(j)
i , where j is the label

carried by the whitened circle. Thus

δΓ

δγ (r)
= 1

m!
ν∑

i=1

m∑
j=1

Γ
(j)
i = 1

(m − 1)!
ν∑

i=1

Γ
(1)
i (C.8)

In the second step we have replaced the sum over j by m times the contribution for j = 1;
this is permissible, since the value of any Γ

(j)
i is independent of j for given i.

The ν diagrams Γ
(1)
i can now be divided into μ groups, chosen according to the topolog-

ically distinct diagrams into which each reduces when the labels of the m− 1 black circles
are removed. If these diagrams are denoted by Γ ′

1, . . . ,Γ
′
μ, definition (3.7.3) implies that

δΓ

δγ (r)
= Γ ′

1 + · · · + Γ ′
μ (C.9)

which is the required result.

PROOF OF LEMMA 4. Let m be the number of black circles in Γ . Any diagram in the set
H can be expressed as h(Γ ; {gi}), where {gi} ≡ {g1, . . . , gm} is a set of diagrams drawn
from G that are attached to the black circles of Γ ; some of the gi may be identical. Two
diagrams h obtained from two distinct sets {gi} are not necessarily different. Lemma 4 can
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then be written in more compact form as

′∑
{gi }

h(Γ ; {gi}) = [the diagram obtained from Γ by associating the

function G(r) with each of the black circles
]

(C.10)

The sum in (C.10) is taken over all sets {gi}, with the restriction (denoted by the prime)
that the diagrams h(Γ ; {gi}) must be topologically distinct.

Let S(Γ ) be the symmetry number of Γ , and let S(gi) and S(Γ ; {gi}) be, respectively,
the symmetry numbers of the diagrams in G and H ; S(Γ ) is obviously also the symmetry
number of the right-hand side of (C.10). According to the definition (3.7.4):

h
(
Γ ; {gi}

)= h
(
Γ ′; {g′

i}
)/

S
(
Γ ; {gi}

)
(C.11)

where h(Γ ′; {g′
i}) is a diagram derived from h(Γ ; {gi}) by labelling its black circles in an

arbitrary way. Let h(Γ ′; {gi}) be the diagram obtained from h(Γ ′; {g′
i}) by removing the

labels of the black circles of the g′
i , but retaining the labels of the black circles of Γ ′, and

let S∗(Γ ; {gi}) be the number of permutations of the m labels of h(Γ ′; {gi}) that give rise
to topologically equivalent diagrams. For each of the S∗ permutations there are

∏m
i=1 S(gi)

permutations of the black circles of the gi that yield diagrams equivalent to h(Γ ′; {g′
i}).

We can therefore write

S
(
Γ ; {gi}

)= S∗(Γ ; {gi}
) m∏
i=1

S(gi) (C.12)

We now require a relation between S(Γ ) and S∗(Γ ; {gi}). Note that S(Γ ) � S∗(Γ ; {gi}),
since the process of decorating the black circles of Γ can never lead to an increase in
symmetry number. Let n(Γ ; {gi}) be the number of labellings that give rise to diagrams
h(Γ ′; {gi}) that are topologically inequivalent, but yield diagrams Γ ′ (i.e. labelled ver-
sions of Γ on its own) that are equivalent. Consider now the set of S(Γ ) diagrams that are
obtained from h(Γ ′; {gi}) by making the S(Γ ) permutations that leave Γ ′ topologically
unaltered. This set can be divided into precisely n(Γ ; {gi}) groups, such that the diagrams
in different groups are topologically inequivalent to each other. Each of the n(Γ, {gi})
groups consists of S∗(Γ ; {gi}) topologically inequivalent diagrams. Thus

S(Γ ) = n
(
Γ ; {gi}

)
S∗(Γ ; {gi}

)
(C.13)

Illustration.

Γ = g1 =
g2 = g3 =
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h
(
Γ ; {gi}

)=

h
(
Γ ; {gi}

)=
1 2

3

In this example, S(Γ ) = 6;S∗(Γ ;g1, g2, g3) = 2, because labels 2 and 3 can be permuted
in h(Γ ′;g1, g2, g3); and n(Γ ;g1, g2, g3) = 3, because permutation of labels 1 and 2 or 1
and 3 in h(Γ ′;g1, g2, g3) generates diagrams that are topologically inequivalent.

By combining (C.12) and (C.13) we find that

S
(
Γ ; {gi}

)= S(Γ )

m∏
i=1

S(gi)/n
(
Γ ; {gi}

)
(C.14)

If use is made of (C.11) and (C.14), the left-hand side of (C.10) can be rewritten as

∑
{gi }

′ n(Γ ; {gi})
S(Γ )

∏m
i=1 S(gi)

h
(
Γ ′; {g′

i}
)

(C.15)

or, from (3.7.4): ∑
{gi }

′ n(Γ ; {gi})
S(Γ )

h
(
Γ ′; {gi}

)
(C.16)

Remembering the significance of n(Γ ; {gi}), we see that (C.16) can also be expressed as∑
gi

· · ·
∑
gm

h(Γ ′;g1, . . . , gm)/S(Γ ) (C.17)

where the m summations are now unrestricted. But (C.17) is just a labelled diagram ob-
tained from Γ ′ by associating the function G(r) with each black circle and dividing by the
symmetry number S(Γ ). It follows from (3.7.4) that (C.17) is equal to the right-hand side
of (C.10).



Appendix D

SOLUTION OF THE PY EQUATION FOR HARD SPHERES

The PY closure relation for hard spheres is

h(r) = −1, r < d (D.1a)

c(r) = 0, r > d (D.1b)

When substituted in the Ornstein–Zernike relation (3.5.12), this approximation yields an
integral equation that can be solved in closed form. We follow here the method of Bax-
ter, which is based on a transformation of the Ornstein–Zernike relation via a so-called
Wiener–Hopf factorisation of the function Â(k) defined as

Â(k) = 1

S(k)
= 1 − ρĉ(k) = 1 − 4πρ

k

∫ ∞

0
r sin(kr)c(r)dr (D.2)

The three-dimensional Fourier transform of any function f of r ≡ |r| can be cast in the
form

f̂ (k) = 4π

k

∫ ∞

0
r sin(kr)f (r)dr = 4π

∫ ∞

0
cos(kr)F (r)dr

= 2π
∫ ∞

−∞
exp(ikr)F (r)dr (D.3)

where

F(r) =
∫ ∞

r

sf (s)ds = F(−r) (D.4)

The second equality in (D.4) follows immediately if the convention that f (r) = f (−r) is
followed. Substitution of (D.1b), (D.3) and (D.4) in (D.2) leads to

Â(k) = 1 − 4πρ
∫ d

0
cos(kr)S(r)dr = Â(−k) (D.5)

where

S(r) =
∫ d

r

tc(t)dt (D.6)
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Similarly:

ĥ(k) = 2π
∫ ∞

−∞
exp(ikr)J (r)dr (D.7)

with

J (r) =
∫ ∞

r

sh(s)ds (D.8)

Consider now the behaviour of the function Â(k) in the complex k-plane and set k =
x + iy. Because Â(k), as given by (D.5), is a Fourier transform over a finite interval, it is
regular throughout the complex plane. It also has no zeros on the real axis (y = 0), since it
is the inverse of the static structure factor; the latter is a finite quantity at all wavenumbers.
Moreover, according to (D.5), Â(k) tends uniformly to unity as |x| → ∞ in any strip
y1 < y < y2. Thus there exists a strip |y| � ε about the real axis within which Â(k) has
no zeros. The function ln Â(k) is therefore regular within that strip and tends uniformly to
zero as |x| → ∞. Integrating around the strip and applying Cauchy’s theorem, we find that
for any k = x + iy such that |y| < ε:

ln Â(k) = ln Q̂(k) + ln P̂ (k) (D.9)

where

ln Q̂(k) = 1

2πi

∫ −iε+∞

−iε−∞
ln Â(k′)
k′ − k

dk′ (D.10a)

ln P̂ (k) = − 1

2πi

∫ iε+∞

iε−∞
ln Â(k′)
k′ − k

dk′ (D.10b)

Since Â(k) is an even function of k, (D.10) implies that

ln P̂ (k) = ln Q̂(−k) (D.11)

From (D.10a) we see that ln Q̂(k) is regular in the domain y > −ε. It follows from (D.9)
and (D.11) that when |y| < ε:

Â(k) = Q̂(k)Q̂(−k) (D.12)

The function Q̂(k) is regular and has no zeros in the domain y > −ε, since it is the ex-
ponential of a function that is regular in the same domain. Equation (D.12) is the Wiener–
Hopf factorisation of Â(k).

When |x| → ∞ within the strip |y| < ε, it follows from (D.10a) that ln Q̂(k) ∼ x−1 and
hence that Q̂(k) ∼ 1−O(x−1). The function 1−Q̂(k) is therefore Fourier integrable along
the real axis and a function Q(r) can be defined as

2πρQ(r) = 1

2π

∫ ∞

−∞
exp(−ikr)

[
1 − Q̂(k)

]
dk (D.13)
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Equation (D.10a) shows that if k is real, the complex conjugate of Q̂(k) is Q̂(−k), and
hence that Q(r) is a real function. The same equation also shows that when y � 0,
ln Q̂(k) → 0, and therefore Q̂(k) → 1, as k → ∞. Thus, if r < 0, the integration in (D.13)
can be closed around the upper half-plane, where Q̂(k) is regular, to give

Q(r) = 0, r < 0 (D.14)

The right-hand side of (D.10a) is a different analytic function of k according to whether
y > −ε or y < −ε. The analytic continuation of Q̂(k) into the lower half-plane is therefore
given, not by (D.10a), but by (D.12), i.e.

Q̂(k) = Â(k)/Q̂(−k) (D.15)

where (D.10a) can be used to evaluate Q̂(−k). Since Â(k) is regular everywhere, and
Q̂(−k) is regular and has no zeros for y < ε, we see from (D.15) that Q̂(k) is also regular
for y < ε. Furthermore, since Q̂(−k) → 1 as y → −∞, it follows from (D.5) and (D.15)
that both Â(k) and Q̂(k) grow exponentially as exp(ikd) = exp(ixd) exp(−yd) when y

becomes large and negative. Thus, when r > d , the integration in (D.13) can be closed
around the lower half-plane, giving

Q(r) = 0, r > d (D.16)

On inversion of the Fourier transform in (D.13), (D.14) and (D.16) together yield

Q̂(k) = 1 − 2πρ
∫ d

0
exp(ikr)Q(r)dr (D.17)

Substitution in (D.12) of the expressions (D.5) for Â(k) and (D.17) for Q̂(k), followed by
multiplication by exp(−ikr) and integration with respect to k from −∞ to +∞, shows
that

S(r) = Q(r) − 2πρ
∫ d

r

Q(s)Q(s − r)ds, 0 < r < d (D.18)

Equations (3.5.13), (D.2) and (D.12) imply that

Q̂(k)
[
1 + ρĥ(k)

]= 1/Q̂(k) (D.19)

where ĥ(k) is given by (D.7). We now multiply both sides of (D.19) by exp(−ikr) and
integrate with respect to k from −∞ to +∞. The contribution from the right-hand side
vanishes when r > 0, since the integration can then be closed around the lower half-plane,
where Q̂(k) is regular, has no zeros and tends to unity at infinity. On substituting (D.7)
and (D.17) into the left-hand side of (D.19) and carrying out the integration, we obtain a
relation between Q(r) and J (r) for r > 0 of the form

−Q(r) + J (r) − 2πρ
∫ d

0
Q(s)J

(|r − s|)ds = 0, r > 0 (D.20)
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It is clear from (D.6) and (D.18) that Q(r) → 0 as r → d from below; comparison
with (D.16) then shows that Q(r) is continuous at r = d .

Equations (D.18) and (D.20) can be expressed in terms of c(r) and h(r), rather than
S(r) and J (r), by differentiating them with respect to r . If we use (D.6) and (D.8), and the
fact that Q(d) = 0, we find after integration by parts that

rc(r) = −Q′(r) + 2πρ
∫ d

r

Q′(s)Q(s − r)ds, 0 < r < d (D.21)

and

rh(r) = −Q′(r) + 2πρ
∫ d

0
(r − s)h

(|r − s|)Q(s)ds, r > 0 (D.22)

where Q′(r) ≡ dQ(r)/dr . Equations (D.21) and (D.22) express h(r) and c(r) in terms of
the same function, Q(r), and constitute a reformulation of the Ornstein–Zernike relation
that is applicable whenever c(r) vanishes beyond a range d , which is precisely the case
with the PY closure. Equation (D.22) is an integral equation for Q(r) that is easy to solve
for 0 < r < d , where h(r) = −1 and (D.22) therefore reduces to

r = Q′(r) + 2πρ
∫ d

0
(r − s)Q(s)ds, 0 < r < d (D.23)

The solution is of the form

Q′(r) = ar + b (D.24)

with

a = 1 − 2πρ
∫ d

0
Q(s)ds, b = 2πρ

∫ d

0
sQ(s)ds (D.25)

Given the boundary condition Q(d) = 0, (D.24) is trivially integrated to yield Q(r). Sub-
stitution of the result in (D.25) gives two linear equations, the solutions to which are

a = 1 + 2η

(1 − η)2
, b = −3dη

2(1 − η)2
(D.26)

where η is the hard-sphere packing fraction. Thus Q(r) is now a known function of r and
c(r) can therefore be calculated from (D.21); this leads to the results displayed in (4.4.10)
and (4.4.11). The isothermal compressibility is obtained from (3.8.8), (D.2) and (D.15) as

β/ρχT = Â(0) = [Q̂(0)
]2 (D.27)

The function Q̂(0) is easily calculated from (D.17) and the solution for Q(r), leading
ultimately to the PY compressibility equation of state (4.4.12).



Appendix E

SCALED-PARTICLE THEORY

Scaled-particle theory is an approximate interpolation scheme that allows the calculation
of the work required to create a spherical cavity in a hard-sphere fluid or, equivalently, to
insert a solute sphere of the same radius. From this starting point it is possible to derive the
equation of state of the fluid. The theory is easily formulated for mixtures, but we restrict
the discussion here to the one-component case.

Consider a fluid of N hard spheres of diameter d = 2R at a number density ρ. Let W(R0)

be the reversible work required to create a spherical cavity of radius R0 centred on a point r
within the fluid. According to the basic principles of thermodynamic fluctuation theory, the
probability that such a cavity will appear as the result of spontaneous fluctuations within
the system is

p0(R0) = exp
[−βW(R0)

]
(E.1)

This is the same as the probability that there are no spheres whose centres lie within the
spherical region of radius R0 +R around r. That interpretation can be extended to negative
values of R0 in the range −R � R0 � 0, in which case the radius of the region of interest
is 0 � R0 + R � R. Since overlap of hard spheres is forbidden, there can be at most one
particle in such a region, a situation that occurs with probability

p1(R0) = 4
3πρ(R0 + R)3 = 1 − p0(R0) (E.2)

Combination of (E.1) and (E.2) gives

W(R0) = −kBT ln
[
1 − (4πρ/3)(R0 + R)3], R0 � 0 (E.3)

In the opposite limit, that of very large cavities, the reversible work required is given by
thermodynamics. If P is the pressure of the fluid and ΔV0 = 4πR3

0/3 is the volume of
the cavity, then W(R0) is the increase in Helmholtz free energy resulting from a reduction
equal to ΔV0 in the volume accessible to the fluid:

W(R0) = PΔV0 = 4
3πPR3

0, R0 � R (E.4)

The assumption now made is that for R0 > 0, W(R0) is given by a cubic polynomial
in R0, where the term in R3

0 (the dominant contribution for large cavities) is given by (E.4),
i.e.

W(R0) = w0 + w1R0 + 1
2w2R

2
0 + 4

3πPR3
0, R0 � 0 (E.5)
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The coefficients w0, w1 and w2 are determined by requiring W(R0) and its first derivative,
as given by (E.3) for R0 < 0 and (E.5) for R0 > 0, to be continuous at R0 = 0. The results
obtained in this way are

βw0 = − ln(1 − η), βw1 = 4πρR2

1 − η

βw2 = 8πρR

1 − η
+ (4πρR2)2

(1 − η)2
(E.6)

where η is the hard-sphere packing fraction.
The excess chemical potential of the fluid is the reversible work required to insert a hard

sphere of radius R0 = R. Thus, from (E.5) and (E.6):

βμex = βW(R0)

= − ln(1 − η) + 6η

1 − η
+ 9η2

2(1 − η)2
+ βPη

ρ
(E.7)

Then use of the thermodynamic relation ∂P/∂ρ = ρ(∂μ/∂ρ) leads to the scaled-particle
equation of state in the form

βP

ρ
= 1 + η + η2

(1 − η)3
(E.8)

Equation (E.8) is identical to the Percus–Yevick compressibility equation (4.4.12). The
corresponding expression for the excess free energy is

βF ex

N
= − ln(1 − η) + 3η

1 − η
+ 3η2

2(1 − η)2
(E.9)
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Activity, 24, 49

local, 54
Adjacent circles, 67
Adsorption, 148–150
After-effect function, 208–211
Alkali halides, 295, 301–303, 306, 316
Alkaline-earth halides, 302
Angular order parameters, 342–344, 362, 376–378
Angular velocity autocorrelation function, 386, 387
Articulation circle, 67, 68
Articulation pair, 67, 68
Associating liquids, 378–383
Atomic form factor, 82
Azeotrope, 175, 176

β-relaxation, 252, 253, 288
Back-scattering effect, 188
Barometric law, 49, 58, 84
BBGKY hierarchy, 14, 15, 83
Binary collisions, 16, 37, 186–189, 205, 285
Bjerrum length, 320
Blip function, 116, 117
Bonds, see Diagrams
Born approximation, 81
Bridge function, 100, 101

of hard spheres, 105, 106
of ionic fluids, 306
of Lennard-Jones fluid, 103, 104
of molecular fluids, 367, 368
universal character, 106

Brownian motion, 190–194
Bulk modulus, 275, 276
Bulk viscosity, 227, 241
Burnett coefficients, 244

Capillary condensation, 147, 169
Capillary fluctuations, 158
Carnahan–Starling equation, 76, 77
Car–Parrinello method, 327
Cavity distribution function, 32, 98, 99, 103

diagrammatic expansion, 98
of Lennard-Jones fluid, 98, 99

Charge fluctuations, 292, 297, 312, 313
Charge neutrality, 292, 298, 299
Charge ordering, 301
Charge–charge structure factor, 296–302

and electrical conductivity, 310, 311
at long wavelengths, 297, 299
dynamic, 308, 313, 316–318
of OCP, 299, 300
of simple molten salt, 301, 302

Charge–current autocorrelation function, 215,
310–312, 315, 316

Charge–number structure factor, 295, 299
Chemical potential, 20, 21

as ensemble average, 26–28
ideal, 22, 49
in HNC approximation, 89
intrinsic, 48

Circles, see also Diagrams
definitions, 66–68
in molecular diagrams, 368, 370

Classical hypothesis, 1, 2
Cluster integral, 74
Clustering property, 298
Cole–Cole plot, 390
Collision rate, 16, 33, 187, 286, 288
Collisional transport, 16, 234
Colloidal suspensions, 4, 10, 152, 176, 291, 318

effective interactions, 325–330, 333
Composite diagram, 67, 125
Compressibility

adiabatic, 394
isothermal, 25

Compressibility equation, 35, 60, 63, 65
for ionic fluids, 299
for molecular fluids, 343, 348, 350

Concentration fluctuations, 313
Configuration integral, 21
Confined fluids, 165–170
Connected diagram, 67
Connecting circles, 67
Conservation laws, 225
Conserved dynamical variables, 196
Constitutive relation, 220
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Constraint dynamics, 41, 42
Contact theorem, 166, 322
Continued-fraction expansion, 260–262
Continuity equation, 196, 221
Coordination number, 30, 378
Convolution approximation, 85, 284
Correlation length, 137–139
Coulomb coupling parameter, 303
Critical-point behaviour

and integral equations, 107
critical exponents, 136–141, 145, 158, 159
critical slowing down, 282
hierarchical reference theory, 141–145
mean-field theory, 132–139
of pair functions, 73
Ornstein–Zernike theory, 137–139
scaling hypothesis, 140
scaling laws, 136, 139–141, 143
universality, 136, 141

Current autocorrelation functions
longitudinal, 199, 200, 237, 238
self, 224
short-time expansions, 200, 201, 224, 225
transverse, 199, 200, 230, 231, 241–244

de Broglie thermal wavelength, 1
de Gennes narrowing, 205
Debye approximation, 386–388
Debye relaxation time, 389, 390
Debye screening length, 297
Debye wavenumber, 102, 297
Debye–Hückel theory, 87, 101–103, 126, 127, 129,

130, 301, 304, 306
Density–density correlation function, 47, 55, 58, 62
Density expansion, see Diagrammatic expansion,

Virial expansion
Density profile, 47, 84, 88, 147, 165–168, see also

Single-particle density
at liquid–gas interface, 148, 149, 156–158
near a charged surface, 321–323, 327–329
of fluid near a wall, 165–167
of fluid in a slit, 168, 169
of crystal, 171–174
variational calculation, 56, 151

Density response function, 62–65, 110, 211, 216–218,
296, see also Static structure factor

Density-functional theory, 55–57, 318, see also Free-
energy functional

for colloidal particles, 327–330
of confined fluids, 167–170
of electric double layer, 324, 325
of freezing, 171–176
theorems in, 55, 56, 395–397

Diagrammatic expansion
cavity distribution function, 98
direct correlation functions, 71–74
free energy, 125
grand partition function, 71
grand potential, 71
indirect correlation function, 100
pair correlation function, 97
pair distribution function, 98
single-particle density, 72
site–site correlation function, 371, 372

Diagrams, 65–68
allowed, 370, 371
bridge, 100, 101
chain, 97
elementary, 100
interaction-site, 370, 371
lemmas on, 68–71, 398–401
molecular, 368
molecular origin, 370, 371
ring, 127
series, 100

Dielectric constant, 357–362
and pair correlation function, 359–362
and site–site distribution functions, 362
in MSA, 365
in RISM formalism, 376–378
Kirkwood formula, 359, 360, 390
of dipolar hard spheres, 365–368
Onsager equation, 360, 368

Dielectric function, 297, 309, 310, 335
Dielectric permittivity, 357, 358, 388
Dielectric relaxation, 388–390
Dielectric susceptibility, 357–361
Diffusion equation, 222
Dimensional crossover, 164, 165, 170
Dimer formation, 383, 384
Dipole–dipole interaction tensor, 8, 358
Dipole-moment density, 359
Dispersion forces, 4, 6, 154, 295, 331
Dispersion relation, 229, 339
DLVO potential, 329
Dynamic structure factor, 199–201, see also Longitu-

dinal collective modes
as response function, 211
experimental results, 205, 206, 237
hydrodynamic limit, 234–237
measurement, 201–206
of ideal gas, 204, 205, 213, 216–218
of Lennard-Jones fluid, 277
of liquid rubidium, 275
self part, 203, 205, 222–224, 250
spectral moments, 200, 201
symmetrised, 204
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Einstein frequency, 186
Elastic sum rule, 199, 203
Electric double layer, 154, 318–325
Electrical conductivity

and charge current, 215, 310, 311, 315, 338
and linear response theory, 214–216, 310
external, 310
Nernst–Einstein relation, 315, 316
tensor, 309–311

Electrolyte solutions, 291, 303–307
Electron–ion pseudopotential, 6, 7, 331

empty-core, 332, 338
Electrostatic pressure, 322
Electrostrictive behaviour, 296
Energy current, 225
Energy equation, 31, 32

for dipolar hard spheres, 356
for molecular fluids, 343, 345, 347

Ensemble average, 12, 19, 42
Enskog theory, 186–190, 194, 234, 241, see also

Kinetic equations
Ergodicity, 19, 37, 43, 179, 253, 285–289
Euler angles, 341
Euler–Lagrange equation, 56
Eutectic point, 175, 176
Excess thermodynamic properties, 22
EXP approximation, 131, 132
Expansions in perturbation theory

γ -expansion, 111, 124, 125, 131
λ-expansion, 111–116, 121–124, 126, 133
high-temperature, 112–114, 126, 129–132
optimised cluster, 131, 303

Exponentiation theorem, 69

f -sum rules, 197
Fick’s law, 184, 214, 220, 222, 252
Flocculation, 329
Fluctuation formulae, 25, 26, 35, 394
Fluctuation–dissipation theorem, 63, 191, 210, 211,

221, 296
Fourier’s law, 215, 220
Fragile glass formers, 250, 251
Free-energy functional, 49

and variational principle, 56, 151
correlation term, 57, 60
exact expressions, 56, 57, 60–62, 87, 320
fundamental-measure, 156, 161–164
ideal, 49
local-density, 152, 153, 155
mean-field, 60, 154, 320, 321
quadratic, 151, 154
square-gradient, 153, 154, 156–158

uniqueness, 55, 56, 61, 396
weighted-density, 154–156, 175, 322, 324,

327–329
Free-particle regime, 205, 219
Free-rotor behaviour, 385
Freezing, 170, 171, 250, 251

density-functional theory, 154, 171–176
of hard-sphere mixtures, 175, 176

Frequency matrix, 260
Friction coefficient, 190–194, 264, 273

and Stokes’s law, 192
Functional derivatives

of free energy, 53, 56, 57, 62, 126
of grand potential, 53–57

Functional differentiation, 50–53
diagrammatic representation, 69, 399

Fundamental-measure theory, 159–165
applications, 166–168, 170, 174

Gaussian approximation, 223, 224, 280
Generalised hydrodynamics, 241–245, 255, 276
Generating functional, 54, 55
Gibbs adsorption equation, 149
Gibbs dividing surface, 148, 149
Gibbs free energy, 22
Gibbs-Bolgoliubov inequalities, 114, 115, 396
Glass transition

calorimetric, 250, 251
kinetic, 251–254

Glass-forming liquids, 250, 251, 282
Gradient expansion, 153
Grand potential

definition, 23
diagrammatic expansion, 71
in presence of external field, 47–49

Green–Kubo formulae, 185
electrical conductivity, 215, 310, 311
for hard spheres, 232, 233
longitudinal viscosity, 238
self-diffusion coefficient, 185
shear viscosity, 231
thermal conductivity, 215, 238–240

Hamilton’s equations, 11, 14
Hankel transform, 354
Hard-rod fluid, 124
Hard-sphere fluid

and liquid metals, 110
and van der Waals model, 109–111
chemical potential, 27, 28
dimerising, 379–383
dynamical properties, 186–188, 234, 237, 241, 245
equation of state, 76, 93
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fluid–solid transition, 4
PY equation, 91–94, 133, 159–161, 164, 402–405

Harmonic expansions
for polar fluids, 346, 353–357
of molecular pair distribution function, 343–346

Heat current, 240
Helmholtz free energy

definition, 20
diagrammatic expansion, 125
ideal, 22
intrinsic, 48, 49

Hierarchical reference theory, 141–145
Hohenberg–Kohn–Mermin theorems, 395–397
H-theorem, 16
Hume–Rothery rule, 176
Hydrodynamic limit, 215
Hydrodynamic matrix, 228, 229
Hydrodynamic regime, 205, 219
Hydrodynamic variables, 220
Hydrogen bonding, 378, 379
Hypernetted-chain (HNC) approximation, see also

Integral-equation theories
chemical potential, 89
for ionic fluids, 302, 305–307, 325
for polar fluids, 366, 367
thermodynamic consistency, 91, 306

Hypervertex, 127, 128

Indirect correlation function, 100
Inner product, 182, 255
Integral-equation theories

Born–Green, 84, 85
for associating liquids, 379
for ionic fluids, 302–307
for polar fluids, 362–368
generalised MSA, 304, 305
HNC, 88–91, 94, 97, 100–107, 302, 305–307, 325,

366, 367
HNC2, 105
MSA, 95, 96, 107, 303–306, 362–367
numerical results, 89, 93–95, 106, 302, 305, 307,

366, 374
PY, 90–97, 101–106, 305, 363, 364, 368, 402–405,

407
RHNC, 105–107, 366–368
RISM, 371–378
SCOZA, 107
soft-core MSA, 96, 97, 104, 105
thermodynamically consistent, 106, 107, 306

Interaction-site models, 8, 9, 370, 371, 374, 378–380
Interdiffusion coefficient, 222, 315
Interfacial thermodynamics, 147–151

Intermediate scattering function, 198
self part, 204, 222, 251–253
of supercooled liquids, 253, 282–289

Ionic polarisation, 292, 295, 316
Ionic screening number, 335
Irreducible diagram, 67

Jellium, 330–332, 334, 337

Kadanoff construction, 141
Kinetic equations, 15, 266, see also Enskog theory

Boltzmann, 16, 33, 187, 216, 234, 245
Enskog, 16, 33, 245
Vlasov, 15, 16

Kinetic glass transition, 251–254
mode-coupling theory, 282–289

Kinetic regime, 219
Kirkwood g-factor, 359, 360, 368
Kirkwood–Buff formula, 65, 299
Kohlrausch function, 253, 254, 289
Kramers–Kronig relations, 212, 213, 309

Landau–Placzek ratio, 236
Langevin equation, 190–194, 257, 258, 386

generalised, 193, 194, 258, 260
Lennard-Jones fluid

bridge function, 104
cavity distribution function, 98, 99
dynamical properties, 237, 265, 266, 269, 270,

274–277
equation of state, 94, 106, 123
for liquid metals, 333, 334, 337
liquid–vapour coexistence, 144, 145
static structure factor, 110
supercooled, 252, 253
triple point, 5

Light scattering, 9, 10, 137, 205
Lindemann rule, 173
Linear-response theory, 206–213

and computer simulation, 215, 216
and electrical conductivity, 214, 215
and mobility, 213, 214
for ideal gas, 216–218
for liquid metals, 334–337

Liouville equation, 12
Liouville operator, 12, 181, 182, 207

hermitian property, 182, 183
perturbed, 216
projected, 259, 281

Liouville space, 182, 255
Liouville theorem, 12
Liquid metals, 291, 330

effective potentials, 6, 7, 333–336
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equation of state, 332, 333
ionic dynamics, 205, 206, 243, 270, 274–276,

336–339
Liquid–vapour coexistence, see also Critical-point be-

haviour
density profile, 148, 149, 156–159
hierarchical reference theory, 141–145
mean-field theory, 132–139

Local thermodynamic equilibrium, 220, 226, 300
Local-density approximation, 152–155
Longitudinal collective modes, see also Dynamic

structure factor
generalised hydrodynamics, 244, 245
hydrodynamic limit, 234–238
of ionic fluids, 308, 311–314, 317, 318
of Lennard-Jones fluid, 205, 274–277
of liquid metals, 205, 206, 274–276, 336
of OCP, 293, 294
memory-function approximations, 270–277, 314

Longitudinal viscosity, 228, 238
generalised, 274

Long-time tails, 188, 189, 195, 245–250
experimental results, 249, 250
from computer simulation, 248, 249
mode-coupling theory, 246, 247, 250

Lyapunov exponent, 40

Markov chain, 43
Markovian approximation, 193, 194, 261
Maxwell construction, 134, 145, 174
Maxwell distribution, 17

local equilibrium, 221
Maxwell field, 357, 359
Maxwell relaxation time, 242, 250, 268
Mayer f -function, 65
Mean spherical approximation (MSA), see also

Integral-equation theories
for charged hard spheres, 303–306
for dipolar hard spheres, 355, 362–366
generalised, 304, 305

Mechanical linearity, 209
Memory effects, 187, 188
Memory functions, 257, 258, 261

and dielectric relaxation, 388–390
and electrical conductivity, 313
and velocity autocorrelation function, 193–195
continued-fraction representation, 260, 261
multi-variable case, 260, 261
spectral moments, 259

Memory-function approximations
and mode-coupling theory, 280–282
for ionic fluids, 314, 317, 318

longitudinal collective modes, 270–277
reorientational correlation functions, 386, 388–390
self correlation functions, 261–266
transverse collective modes, 243, 266–270

Metropolis algorithm, 44
Microscopic particle density, 30, 46

Fourier components, 78
Microscopic reversibility, 43
Mobility, 213–215
Mode-coupling theory, 244, 255, 266, 316

and long-time tails, 246, 247, 250, 277–282
and plasmon mode, 317, 318
of kinetic glass transition, 251, 282–289

Molecular chaos, 16
Molecular-dynamics simulation, 10, 36–42
Molten salts, 7, 291, 302, 304–306, 314–318, see also

Simple molten salt
Monte Carlo method, 10, 42–44
Multi-density formalism, 380

Navier–Stokes equation, 192, 227, 245
Nearest-neighbour convention, 37
Nernst–Einstein relation, 315, 316
Newton’s equations, 17, 38
Neutron scattering, 9

by molecular fluids, 351, 378
by molten salts, 318
coherent and incoherent, 81, 82, 204
elastic, 79–82
experimental results, 31, 63, 64, 205, 206, 265
inelastic, 201–206

Nodal circle, 67, 68

Ohm’s law, 309
One-component plasma (OCP), 293, 294

and liquid metals, 293, 332, 337, 338
charge–charge structure factor, 299, 300
Debye–Hückel theory, 101–103, 301

Optic modes
of molten salts, 316–318
of OCP, 294

Optimised random-phase approximation (ORPA),
130–132

Ornstein–Zernike relation, 59
for mixtures, 64
for molecular fluids, 342
three-particle, 85

Ornstein–Zernike-like relation, see RISM formalism

Packing fraction, 75
Pair correlation function, 34, 342

diagrammatic expansion, 97
partial, 64
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Pair direct correlation function
and compressibility equation, 60
and Ornstein–Zernike relation, 59
as functional derivative, 58
asymptotic behaviour, 60, 73, 74, 89
diagrammatic expansion, 73
of ionic fluids, 89
of Lennard-Jones fluid, 59
partial, 64

Pair distribution function: see also Site–site distribu-
tion function

δ-function representation, 30, 83
and functional expansions, 85–89
and thermodynamic properties, 31–33
as functional derivative, 57
definition, 29
diagrammatic expansion, 98
intramolecular, 369–372
low-density limit, 35, 98
molecular, 341–346
of hard-sphere fluid, 94
of ionic fluids, 298, 301, 302
of liquid argon, 31, 378, 379
of liquid sodium, 336
of molecular centres, 342
partial, 83

Pair potential, 3–9
for colloidal particles, 325–330
for ionic liquids, 292–295
for liquid metals, 333–336
for water, 378, 379
soft-sphere, 115

Particle densities, 28–30, 33, 34, see also Single-
particle density

as functional derivatives, 54
in presence of external field, 47
molecular, 341

Particle current, 196
Particle distribution functions, 28, 29, 34, 35, see also

Pair distribution function
Partition function

canonical, 20
grand, 24, 47, 48
isothermal–isobaric, 23
semi-grand, 326
single-particle, 22

Percus–Yevick (PY) approximation, see Integral-
equation theories, Hard-sphere fluid

Perfect screening, 297, 298
Periodic boundary condition, 36, 293
Perturbation theory, 57, see also Expansions in pertur-

bation theory
Barker–Henderson theory, 116–119, 122–124, 168
blip-function theory, 116–124

for associating liquids, 380–383
for inhomogeneous fluids, 167–169
for Lennard-Jones fluid, 121–124
for liquid metals, 332–335
for long-range potentials, 124–132
high-temperature approximation, 126, 131, 132
treatment of attractive forces, 124–132
variational method, 115, 116

Phase diagram, 1, 2, 175, 176, 329, 379
Phase space, 11
Phase trajectory, 11, 209
Phase-space distribution function, 13, 14, 17
Phase-space probability density, 12, 16, 17

canonical, 20
grand-canonical, 24
microcanonical, 19

Plasma frequency, 293, 294, 312
Plasmon mode, 312–314, 317, 318
Poisson–Boltzmann theory, 154, 321–325
Poisson’s equation, 296, 300, 319 , 328
Potential of mean force, 98, 99, 101, 102
Pressure equation, see Virial equation
Primitive model, 294, 303
Projection operators, 255–261

Quadrupolar interaction, 9, 353, 367, 368
Quasi-ergodic problem, 37

Radial distribution function, 29, see also Pair distribu-
tion function

Random force, 190, 191, 194, 257–260
Random packing, 171
Random-phase approximation (RPA) 60, 129, 130,

157, 294
Rayleigh expansion, 361
Rayleigh–Brillouin spectrum, 235–237
Reciprocity relations, 211
Rectilinear diameters, 136
Renormalisation-group theory, 139, 141–143
Renormalised potential, 102, 131, 372
Reorientational correlation functions

collective, 388–390
experimental results, 385
measurement, 384–386, 390
memory-function approximations, 386, 388–390
short-time expansion, 385, 386
single-molecule, 384–388

Resolvent operator, 256
Response functions, see also Density response function

analytic properties, 211–213
and dielectric permittivity, 357–361
dynamic, 210
electron-density, 334
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of ionic fluids, 296, 297, 308–310
of liquid metals, 337, 338
screened, 309, 337
static, 210

Restricted primitive model, 294, 295, 303–305, 324,
325

Rigid-ion model, 292, 295, 316
Ring collisions, 189, 246
RISM formalism

and angular correlations, 375–378
closure relations, 374, 375, 377, 378
direct correlation functions, 372, 373, 377, 378
for polymers (PRISM), 374, 375
RISM-OZ relation, 372, 373, 377, 378

Rotational-diffusion coefficient, 386, 387
Rotational invariant, 345

SAFT, 383
Scale invariance, 139, 141
Scaled-particle theory, 159, 163, 164, 406, 407
Scaling laws, see Critical-point behaviour
Scattering cross-section, 79, 82, 202, 203
Scattering length, 80
Scattering potential, 80, 81, 202
Screening, 292, 333, 335, 337
Self correlation functions, 221–225

memory-function approximations, 261–266
Self-diffusion coefficient, 9, 33

and mean-square displacement, 184
and mobility, 213, 214
and self correlation functions, 222, 223
and velocity autocorrelation function, 184, 185
Fick’s law, 184
generalised, 262
of hard spheres, 188, 189
of molten salts, 315, 316

Shear modulus, 242–244
Shear viscosity, 6, 9, 227, 230–234, 250, 251

generalised, 242–244, 267, 268
kinematic, 227
of hard spheres, 188, 189

Shear waves, 242, 243, 266–270
Shell model, 295
Simple molten salt, 294, 295

dynamical properties, 315–318
structure, 301, 302, 306

Single-particle density, 28, 29, 85, 86, see also Density
profile

Single-particle direct correlation function, 57, 58, 60,
125

diagrammatic expansion, 72, 73

Site–site distribution functions, 346, 347
and angular correlations, 348
cusps in, 352, 353
for ethylene, 352
for water, 378, 379
intramolecular, 369, 370

Small-step diffusion, see Debye approximation
Soft-sphere fluid, 119–121, 171, 184, 233, 234, 244,

251–253
Solvation force, 150, 168, 169, 323–325
Sound waves, 205, 229, 230, 235, 270, 274–276, 339
Sound-attenuation coefficient, 229, 230
Spectroscopic methods, 9, 181, 384–386, 390
Spinodal curve, 134, 135
Square-gradient approximation, 153, 154, 158
Square-well fluid, 95, 96, 135
Star product, 68
Star-irreducible diagram, 68
Static structure factor, 63, 78, 79

as response function, 63, 110
free-rotation approximation, 350
intramolecular, 349–351
long-wavelength limit, 63
measurement, 63, 79–82, 351, 352
molecular, 349–352
of ionic fluids, 295, 296, 299
of Lennard-Jones fluid, 110
of liquid nitrogen, 351
of liquid sodium, 64
of OCP, 294
partial, 64, 65, 83
single-chain, 375

Steady-state condition, 43
Stillinger–Lovett sum rules, 298
Stokes’s law, 3, 192, 234
Stress tensor, 224, 227, 231–234, 242, 245, 308, 323
Stretched exponential relaxation, see Kohlrausch func-

tion
Strong glass formers, 250, 251
Structural arrest, 253

and feedback mechanism, 282
Subdiagram, 68
Subtraction technique, 215, 216
Supercooled liquids, 9, 250–254, 282–289
Superposition approximation, 84, 85
Surface excess properties, 148–150
Surface tension, 147, 148, 158, 159
Susceptibility, see Response functions
Symmetry number, 66

Tangent hard spheres, 383
Terminal circle, 97
Thermal conductivity, 215, 238–240, 272

of hard spheres, 241
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Thermal diffusivity, 229
Thermodynamic consistency, 91, 95, 106, 375
Thermodynamic fluctuation theory, 26, 220, 235, 236,

393, 394, 406
Thermodynamic limit, 25
Thermodynamic potential, 20
Three-particle direct correlation function, 85, 105
Time average, 12, 17–19, 36
Time-correlation functions

as inner product, 182
autocorrelation function, 179
definitions and properties, 178–183, 196, 197
power spectrum, 180
short-time expansion, 181, 182, 186, 200, 201,

224
stationary character, 179

Time–temperature superposition, 253
Topological reduction, 69, 70, 126, 381
Transverse collective modes, see also Shear waves

generalised hydrodynamics, 241–244
hydrodynamic limit, 228–231, 241, 242
memory-function approximations, 243,

266–270
of ionic fluids, 318
of Lennard-Jones fluid, 269, 270
of liquid metals, 243, 336
spectral moments, 201
viscoelastic model, 242–244

Triplet direct correlation function, 85, 105, 174
Triplet distribution function, 32, 84, 85
Trotter expansion, 39

van der Waals equation, 109, 110, 114, 124, 131
van der Waals loop, 133, 134, 144
van Hove function, 197–199, 201, 203, 204, 221–224,

251, 252
Variational method

in density-functional theory, 56
in perturbation theory, 115, 116, 121

Velocity autocorrelation function
and mode-coupling theory, 278–282
and self correlation functions, 224, 249, 250
and self-diffusion coefficient, 183–185
Enskog theory, 186–189, 194
long-time tail, 188, 245–250, 278, 279
memory-function approximations, 194, 195,

263–266
numerical results, 183, 184, 265, 281, 316
of brownian particle, 193
of simple molten salt, 315, 316
short-time expansion, 185, 186

Velocity-field approach, 279–282
Verlet algorithm, 38–40
Vertex function, 282, 285
Virial coefficients, 6, 74–77

for hard spheres, 75, 76, 92, 93
Virial equation, 18, 19, 21, 32

for hard spheres, 32, 33
for molecular fluids, 343, 345

Virial expansion, 33, 74–77, 162
Virial function, 18
Viscoelastic model, 242–244, 266, 269, 270, 274–276,

317
Vortex formation, 245

Wall-fluid potential, 165
Water, 170, 375–380
Weighted-density approximation, 154–156, 175, 322,

324
Wetting, 169, 176

X-ray scattering, 9, 82, 137, 205, 206, 274, 351, 352,
378, 379

YBG hierarchy, 83, 84, 298
Yukawa fluid, 95, 107
Yvon equation, 63, 87
Yvon theorem, 185, 186, 201, 284
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