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Preface

“It is impossible to exaggerate the extent to which modern
applied mathematics has been shaped and fueled by the gen-
eral availability of fast computers with large memories. Their
impact on mathematics, both applied and pure, is comparable
to the role of the telescopes in astronomy and microscopes in
biology.”

— Peter Lax, Siam Rev. Vol. 31 No. 4

Congratulations! You have chosen to study partial differential equations.
That decision is a wise one; the laws of nature are written in the language
of partial differential equations. Therefore, these equations arise as models
in virtually all branches of science and technology. Our goal in this book
is to help you to understand what this vast subject is about. The book is
an introduction to the field. We assume only that you are familiar with ba-
sic calculus and elementary linear algebra. Some experience with ordinary
differential equations would also be an advantage.
Introductory courses in partial differential equations are given all over

the world in various forms. The traditional approach to the subject is to
introduce a number of analytical techniques, enabling the student to de-
rive exact solutions of some simplified problems. Students who learn about
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computational techniques on other courses subsequently realize the scope
of partial differential equations beyond paper and pencil.
Our approach is different. We introduce analytical and computational

techniques in the same book and thus in the same course. The main reason
for doing this is that the computer, developed to assist scientists in solv-
ing partial differential equations, has become commonly available and is
currently used in all practical applications of partial differential equations.
Therefore, a modern introduction to this topic must focus on methods suit-
able for computers. But these methods often rely on deep analytical insight
into the equations. We must therefore take great care not to throw away
basic analytical methods but seek a sound balance between analytical and
computational techniques.
One advantage of introducing computational techniques is that nonlinear

problems can be given more attention than is common in a purely analytical
introduction. We have included several examples of nonlinear equations in
addition to the standard linear models which are present in any introduc-
tory text. In particular we have included a discussion of reaction-diffusion
equations. The reason for this is their widespread application as important
models in various scientific applications.
Our aim is not to discuss the merits of different numerical techniques.

There are a huge number of papers in scientific journals comparing different
methods to solve various problems. We do not want to include such discus-
sions. Our aim is to demonstrate that computational techniques are simple
to use and often give very nice results, not to show that even better results
can be obtained if slightly different methods are used. We touch briefly
upon some such discussion, but not in any major way, since this really be-
longs to the field of numerical analysis and should be taught in separate
courses. Having said this, we always try to use the simplest possible nu-
merical techniques. This should in no way be interpreted as an attempt to
advocate certain methods as opposed to others; they are merely chosen for
their simplicity.
Simplicity is also our reason for choosing to present exclusively finite

difference techniques. The entire text could just as well be based on finite
element techniques, which definitely have greater potential from an appli-
cation point of view but are slightly harder to understand than their finite
difference counterparts.
We have attempted to present the material at an easy pace, explaining

carefully both the ideas and details of the derivations. This is particularly
the case in the first chapters but subsequently less details are included and
some steps are left for the reader to fill in. There are a lot of exercises
included, ranging from the straightforward to more challenging ones. Some
of them include a bit of implementation and some experiments to be done
on the computer. We strongly encourage students not to skip these parts.
In addition there are some “projects.” These are either included to refresh
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the student’s memory of results needed in this course, or to extend the
theories developed in the present text.
Given the fact that we introduce both numerical and analytical tools, we

have chosen to put little emphasis on modeling. Certainly, the derivation
of models based on partial differential equations is an important topic, but
it is also very large and can therefore not be covered in detail here.
The first seven chapters of this book contain an elementary course in

partial differential equations. Topics like separation of variables, energy ar-
guments, maximum principles, and finite difference methods are discussed
for the three basic linear partial differential equations, i.e. the heat equa-
tion, the wave equation, and Poisson’s equation. In Chapters 8–10 more
theoretical questions related to separation of variables and convergence of
Fourier series are discussed. The purpose of Chapter 11 is to introduce
nonlinear partial differential equations. In particular, we want to illustrate
how easily finite difference methods adopt to such problems, even if these
equations may be hard to handle by an analytical approach. In Chapter 12
we give a brief introduction to the Fourier transform and its application to
partial differential equations.
Some of the exercises in this text are small computer projects involving

a bit of programming. This programming could be done in any language.
In order to get started with these projects, you may find it useful to pick
up some examples from our web site, http://www.ifi.uio.no/˜pde/, where
you will find some Matlab code and some simple Java applets.

Acknowledgments

It is a great pleasure for us to thank our friends and colleagues for a lot of
help and for numerous discussions throughout this project. In particular,
we would like to thank Bent Birkeland and Tom Lyche, who both partici-
pated in the development of the basic ideas underpinning this book. Also
we would like to thank Are Magnus Bruaset, Helge Holden, Kenneth Hvis-
tendahl Karlsen, Jan Olav Langseth, Hans Petter Langtangen, Glenn Terje
Lines, Knut Mørken, Bjørn Fredrik Nielsen, Gunnar Olsen, Klas Samuels-
son, Achim Schroll, Wen Shen, Jan Søreng, and Åsmund Ødeg̊ard for read-
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8.5 A Poincaré Inequality . . . . . . . . . . . . . . . . . . . . . 273
8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

9 Convergence of Fourier Series 285
9.1 Different Notions of Convergence . . . . . . . . . . . . . . . 285
9.2 Pointwise Convergence . . . . . . . . . . . . . . . . . . . . . 290
9.3 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . 296
9.4 Mean Square Convergence . . . . . . . . . . . . . . . . . . . 300
9.5 Smoothness and Decay of Fourier Coefficients . . . . . . . . 302
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

10 The Heat Equation Revisited 313
10.1 Compatibility Conditions . . . . . . . . . . . . . . . . . . . 314
10.2 Fourier’s Method: A Mathematical Justification . . . . . . . 319

10.2.1 The Smoothing Property . . . . . . . . . . . . . . . 319
10.2.2 The Differential Equation . . . . . . . . . . . . . . . 321
10.2.3 The Initial Condition . . . . . . . . . . . . . . . . . 323
10.2.4 Smooth and Compatible Initial Functions . . . . . . 325

10.3 Convergence of Finite Difference Solutions . . . . . . . . . . 327
10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

11 Reaction-Diffusion Equations 337
11.1 The Logistic Model of Population Growth . . . . . . . . . . 337

11.1.1 A Numerical Method for the Logistic Model . . . . . 339
11.2 Fisher’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 340
11.3 A Finite Difference Scheme for Fisher’s Equation . . . . . . 342
11.4 An Invariant Region . . . . . . . . . . . . . . . . . . . . . . 343
11.5 The Asymptotic Solution . . . . . . . . . . . . . . . . . . . 346
11.6 Energy Arguments . . . . . . . . . . . . . . . . . . . . . . . 349

11.6.1 An Invariant Region . . . . . . . . . . . . . . . . . . 350
11.6.2 Convergence Towards Equilibrium . . . . . . . . . . 351
11.6.3 Decay of Derivatives . . . . . . . . . . . . . . . . . . 352

11.7 Blowup of Solutions . . . . . . . . . . . . . . . . . . . . . . 354
11.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.9 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

12 Applications of the Fourier Transform 365
12.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . 366
12.2 Properties of the Fourier Transform . . . . . . . . . . . . . 368



Contents xv

12.3 The Inversion Formula . . . . . . . . . . . . . . . . . . . . . 372
12.4 The Convolution . . . . . . . . . . . . . . . . . . . . . . . . 375
12.5 Partial Differential Equations . . . . . . . . . . . . . . . . . 377

12.5.1 The Heat Equation . . . . . . . . . . . . . . . . . . . 377
12.5.2 Laplace’s Equation in a Half-Plane . . . . . . . . . . 380

12.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

References 385

Index 389



1
Setting the Scene

You are embarking on a journey in a jungle called Partial Differential Equa-
tions. Like any other jungle, it is a wonderful place with interesting sights
all around, but there are also certain dangerous spots. On your journey,
you will need some guidelines and tools, which we will start developing in
this introductory chapter.

1.1 What Is a Differential Equation?

The field of differential equations is very rich and contains a large vari-
ety of different species. However, there is one basic feature common to all
problems defined by a differential equation: the equation relates a function
to its derivatives in such a way that the function itself can be determined.
This is actually quite different from an algebraic equation, say

x2 − 2x+ 1 = 0,

whose solution is usually a number. On the other hand, a prototypical
differential equation is given by

u′(t) = u(t).

The solution of this equation is given by the function

u(t) = cet,
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where the constant c typically is determined by an extra condition. For
instance, if we require

u(0) = 1/2,

we get c = 1/2 and u(t) = 1
2e
t. So keep this in mind; the solution we seek

from a differential equation is a function.

1.1.1 Concepts
We usually subdivide differential equations into partial differential equa-
tions (PDEs) and ordinary differential equations (ODEs). PDEs involve
partial derivatives, whereas ODEs only involve derivatives with respect to
one variable. Typical ordinary differential equations are given by

(a) u′(t) = u(t),

(b) u′(t) = u2(t),
(c) u′(t) = u(t) + sin(t) cos(t),

(d) u′′(x) + u′(x) = x2,

(e) u′′′′(x) = sin(x).

(1.1)

Here (a), (b) and (c) are “first order” equations, (d) is second order, and
(e) is fourth order. So the order of an equation refers to the highest order
derivative involved in the equation. Typical partial differential equations
are given by1

(f) ut(x, t) = uxx(x, t),
(g) utt(x, t) = uxx(x, t),
(h) uxx(x, y) + uyy(x, y) = 0,

(i) ut(x, t) =
(
k(u(x, t))ux(x, t)

)
x
,

(j) utt(x, t) = uxx(x, t)− u3(x, t),

(k) ut(x, t) +
(1
2
u2(x, t)

)
x
= uxx(x, t),

(l) ut(x, t) + (x2 + t2)ux(x, t) = 0,
(m) utt(x, t) + uxxxx(x, t) = 0.

(1.2)

Again, equations are labeled with orders; (l) is first order, (f), (g), (h), (i),
(j) and (k) are second order, and (m) is fourth order.
Equations may have “variable coefficients,” i.e. functions not depending

on the unknown u but on the independent variables; t, x, or y above. An
equation with variable coefficients is given in (l) above.

1Here ut = ∂u
∂t
, uxx = ∂2u

∂x2 , and so on.
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Some equations are referred to as nonhomogeneous. They include terms
that do not depend on the unknown u. Typically, (c), (d), and (e) are
nonhomogeneous equations. Furthermore,

u′′(x) + u′(x) = 0

would be the homogeneous counterpart of d). Similarly, the Laplace equa-
tion

uxx(x, y) + uyy(x, y) = 0

is homogeneous, whereas the Poisson equation

uxx(x, y) + uyy(x, y) = f(x, y)

is nonhomogeneous.
An important distinction is between linear and nonlinear equations. In

order to clarify these concepts, it is useful to write the equation in the form

L(u) = 0. (1.3)

With this notation, (a) takes the form (1.3) with

L(u) = u′(t)− u(t).

Similarly, (j) can be written in the form (1.3) with

L(u) = utt − uxx + u3.

Using this notation, we refer to an equation of the form (1.3) as linear if

L(αu+ βv) = αL(u) + βL(v) (1.4)

for any constants α and β and any relevant2 functions u and v. An equation
of the form (1.3) not satisfying (1.4) is nonlinear .
Let us consider (a) above. We have

L(u) = u′ − u,

and thus

2We have to be a bit careful here in order for the expression L(u) to make sense. For
instance, if we choose

u =
{−1 x ≤ 0,

1 x > 0,

then u is not differentiable and it is difficult to interpret L(u). Thus we require a certain
amount of differentiability and apply the criterion only to sufficiently smooth functions.
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L(αu+ βv) = αu′ + βv′ − αu− βv

= α(u′ − u) + β(v′ − v)
= αL(u) + βL(v),

for any constants α and β and any differentiable functions u and v. So this
equation is linear. But if we consider (j), we have

L(u) = utt − uxx + u3,

and thus

L(u+ v) = utt − uxx + vtt − vxx + (u+ v)3,

which is not equal to L(u)+L(v) for all functions u and v since, in general,

(u+ v)3 �= u3 + v3.

So the equation (j) is nonlinear. It is a straightforward exercise to show
that also (c), (d), (e), (f), (g), (h), (l) and (m) are linear, whereas (b), (i)
and (k), in addition to (j), are nonlinear.

1.2 The Solution and Its Properties

In the previous section we introduced such notions as linear, nonlinear,
order, ordinary differential equations, partial differential equations, and
homogeneous and nonhomogeneous equations. All these terms can be used
to characterize an equation simply by its appearance. In this section we will
discuss some properties related to the solution of a differential equation.

1.2.1 An Ordinary Differential Equation
Let us consider a prototypical ordinary differential equation,

u′(t) = −u(t) (1.5)

equipped with an initial condition

u(0) = u0. (1.6)

Here u0 is a given number. Problems of this type are carefully analyzed in
introductory courses and we shall therefore not dwell on this subject.3 The

3Boyce and DiPrima [3] and Braun [5] are excellent introductions to ordinary differ-
ential equations. If you have not taken an introductory course in this subject, you will
find either book a useful reference.
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solution of (1.5) and (1.6) is given by

u(t) = u0e
−t.

This is easily checked by inspection;

u(0) = u0e
0 = u0,

and

u′(t) = −u0e
−t = −u(t).

Faced with a problem posed by a differential equation and some initial
or boundary conditions, we can generally check a solution candidate by
determining whether both the differential equation and the extra conditions
are satisfied. The tricky part is, of course, finding the candidate.4

The motivation for studying differential equations is—to a very large
extent—their prominent use as models of various phenomena. Now, if (1.5)
is a model of some process, say the density of some population, then u0
is a measure of the initial density. Since u0 is a measured quantity, it is
only determined to a certain accuracy, and it is therefore important to
see if slightly different initial conditions give almost the same solutions. If
small perturbations of the initial condition imply small perturbations of
the solution, we have a stable problem. Otherwise, the problem is referred
to as unstable.
Let us consider the problem (1.5)–(1.6) with slightly perturbed initial

conditions,

v′(t) = −v(t), (1.7)
v(0) = u0 + ε, (1.8)

for some small ε. Then

v(t) = (u0 + ε)e−t,

and

|u(t)− v(t)| = |ε|e−t. (1.9)

We see that for this problem, a small change in the initial condition leads to
small changes in the solution. In fact, the difference between the solutions
is reduced at an exponential rate as t increases. This property is illustrated
in Fig. 1.1.

4We will see later that it may also be difficult to check that a certain candidate is in
fact a solution. This is the case if, for example, the candidate is defined by an infinite
series. Then problems of convergence, existence of derivatives etc. must be considered
before a candidate can be accepted as a solution.
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u0 = 1 + 1
10

u0 = 1

t
�

�

FIGURE 1.1. The solution of the problem (1.5)–(1.6) with u0 = 1 and
u0 = 1+1/10 are plotted. Note that the difference between the solutions decreases
as t increases.

Next we consider a nonlinear problem;

u′(t) = tu(t)(u(t)− 2),
u(0) = u0,

(1.10)

whose solution is given by

u(t) =
2u0

u0 + (2− u0)et
2 . (1.11)

It follows from (1.11) that if u0 = 2, then u(t) = 2 for all t ≥ 0. Such a
state is called an equilibrium solution. But this equilibrium is not stable;
in Fig. 1.2 we have plotted the solution for u0 = 2 − 1/1000 and u0 =
2+1/1000. Although the initial conditions are very close, the difference in
the solutions blows up as t approaches a critical time. This critical time is
discussed in Exercise 1.3.

1.3 A Numerical Method

Throughout this text, our aim is to teach you both analytical and nu-
merical techniques for studying the solution of differential equations. We
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u0 = 2 + 1
1000

u0 = 2− 1
1000

t
�

�

FIGURE 1.2. Two solutions of (1.11) with almost identical initial conditions are
plotted. Note that the difference between the solutions blows up as t increases.

will emphasize basic principles and ideas, leaving specialties for subsequent
courses. Thus we present the simplest methods, not paying much attention
to for example computational efficiency.
In order to define a numerical method for a problem of the form

u′(t) = f
(
u(t)

)
,

u(0) = u0,
(1.12)

for a given function f = f(u), we recall the Taylor series for smooth func-
tions. Suppose that u is a twice continuously differentiable function. Then,
for ∆t > 0, we have

u(t+∆t) = u(t) + ∆tu′(t) +
1
2
(∆t)2u′′(t+ ξ) (1.13)

for some ξ ∈ [0,∆t]. Hence, we have5

u′(t) =
u(t+∆t)− u(t)

∆t
+O

(
∆t

)
. (1.14)

We will use this relation to put up a scheme for computing approximate
solutions of (1.12). In order to define this scheme, we introduce discrete

5The O-notation is discussed in Project 1.1.
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timelevels

tm = m∆t, m = 0, 1, . . . ,

where ∆t > 0 is given. Let vm, m = 0, 1, . . . denote approximations of
u(tm). Obviously we put v0 = u0, which is the given initial condition. Next
we assume that vm is computed for some m ≥ 0 and we want to compute
vm+1. Since, by (1.12) and (1.14),

u(tm+1)− u(tm)
∆t

≈ u′(tm) = f
(
u(tm)

)
(1.15)

for small ∆t, we define vm+1 by requiring that

vm+1 − vm
∆t

= f(vm). (1.16)

Hence, we have the scheme

vm+1 = vm +∆tf(vm), m = 0, 1, . . . . (1.17)

This scheme is usually called the forward Euler method. We note that it is
a very simple method to implement on a computer for any function f .
Let us consider the accuracy of the numerical approximations computed

by this scheme for the following problem:

u′(t) = u(t),
u(0) = 1.

(1.18)

The exact solution of this problem is u(t) = et, so we do not really need any
approximate solutions. But for the purpose of illustrating properties of the
scheme, it is worthwhile addressing simple problems with known solutions.
In this problem we have f(u) = u, and then (1.17) reads

vm+1 = (1 +∆t)vm, m = 0, 1, . . . . (1.19)

By induction we have

vm = (1 +∆t)m.

In Fig. 1.3 we have plotted this solution for 0 ≤ tm ≤ 1 using ∆t = 1/3,
1/6, 1/12, 1/24. We see from the plots that vm approaches u(tm) as ∆t is
decreased.
Let us study the error of this scheme in a little more detail. Suppose we

are interested in the numerical solution at t = 1 computed by a time step
∆t given by

∆t = 1/M,
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FIGURE 1.3. The four plots show the convergence of the numerical approxima-
tions generated by the forward Euler scheme.

where M > 0 is a given integer. Since the numerical solution at t = 1 is
given by

vM = (1 +∆t)M = (1 +∆t)1/∆t,

the error is given by

E(∆t) = |e− (1 + ∆t)1/∆t|.
From calculus we know that

lim
ε→0

(1 + ε)1/ε = e,

so clearly

lim
∆t→0

E(∆t) = 0,

meaning that we get convergence towards the correct solution at t = 1.
In Table 1.1 we have computed E(∆t) and E(∆t)/∆t for several values
of ∆t. From the table we can observe that E(∆t) ≈ 1.359∆t and thus
conclude that the accuracy of our approximation increases as the number
of timesteps M increases.
As mentioned above, the scheme can also be applied to more challenging

problems. In Fig. 1.4 we have plotted the exact and numerical solutions of
the problem (1.10) on page 6 using u0 = 2.1.
Even though this problem is much harder to solve numerically than the

simple problem we considered above, we note that convergence is obtained
as ∆t is reduced.
Some further discussion concerning numerical methods for ordinary dif-

ferential equations is given in Project 1.3. A further analysis of the error
introduced by the forward Euler method is given in Exercise 1.15.
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∆t E(∆t) E(∆t)/∆t
1/101 1.245 · 10−1 1.245
1/102 1.347 · 10−2 1.347
1/103 1.358 · 10−3 1.358
1/104 1.359 · 10−4 1.359
1/105 1.359 · 10−5 1.359
1/106 1.359 · 10−6 1.359

TABLE 1.1. We observe from this table that the error introduced by the forward
Euler scheme (1.17) as applied to (1.18) is about 1.359∆t at t = 1. Hence the
accuracy can be increased by increasing the number of timesteps.

1.4 Cauchy Problems

In this section we shall derive exact solutions for some partial differential
equations. Our purpose is to introduce some basic techniques and show ex-
amples of solutions represented by explicit formulas. Most of the problems
encountered here will be revisited later in the text.
Since our focus is on ideas and basic principles, we shall consider only

the simplest possible equations and extra conditions. In particular, we will
focus on pure Cauchy problems. These problems are initial value problems
defined on the entire real line. By doing this we are able to derive very sim-
ple solutions without having to deal with complications related to boundary
values. We also restrict ourselves to one spatial dimension in order to keep
things simple. Problems in bounded domains and problems in more than
one space dimension are studied in later chapters.

1.4.1 First-Order Homogeneous Equations
Consider the following first-order homogeneous partial differential equation,

ut(x, t) + a(x, t)ux(x, t) = 0, x ∈ R, t > 0, (1.20)

with the initial condition

u(x, 0) = φ(x), x ∈ R. (1.21)

Here we assume the variable coefficient a = a(x, t) and the initial condition
φ = φ(x) to be given smooth functions.6 As mentioned above, a problem of
the form (1.20)–(1.21) is referred to as a Cauchy problem. In the problem
(1.20)–(1.21), we usually refer to t as the time variable and x as the spatial

6A smooth function is continuously differentiable as many times as we find necessary.
When we later discuss properties of the various solutions, we shall introduce classes of
functions describing exactly how smooth a certain function is. But for the time being it
is sufficient to think of smooth functions as functions we can differentiate as much as we
like.
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FIGURE 1.4. Convergence of the forward Euler approximations as applied to
problem (1.10) on page 6.

coordinate. We want to derive a solution of this problem using the method
of characteristics. The characteristics of (1.20)–(1.21) are curves in the
x–t-plane defined as follows: For a given x0 ∈ R, consider the ordinary
differential equation

dx(t)
dt

= a
(
x(t), t

)
, t > 0,

x(0) = x0.
(1.22)

The solution x = x(t) of this problem defines a curve
{(

x(t), t
)
, t ≥ 0

}
starting in (x0, 0) at t = 0; see Fig. 1.5.
Now we want to consider u along the characteristic; i.e. we want to study

the evolution of u
(
x(t), t

)
. By differentiating u with respect to t, we get

d

dt
u
(
x(t), t

)
=ut + ux

dx(t)
dt

=ut + a(x, t)ux = 0,

where we have used the definition of x(t) given by (1.22) and the differential
equation (1.20). Since

d

dt
u
(
x(t), t

)
= 0,

the solution u of (1.20)–(1.21) is constant along the characteristic. Hence

u
(
x(t), t

)
= u(x0, 0)
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� �

�

xx0

x = x(t)
t

FIGURE 1.5. The characteristic starting at x = x0.

or

u
(
x(t), t

)
= φ(x0). (1.23)

This means that if, for a given a = a(x, t), we are able to solve the ODE
given by (1.22), we can compute the solution of the Cauchy problem (1.20)–
(1.21). Let us consider two simple examples illustrating the strength of this
technique.

Example 1.1 Consider the Cauchy problem

ut + aux = 0, x ∈ R, t > 0,
u(x, 0) = φ(x), x ∈ R,

(1.24)

where a is a constant. For this problem, the ODE (1.22) takes the form

x′(t) = a, x(0) = x0,

and thus

x = x(t) = x0 + at. (1.25)

Since, by (1.23), we have

u(x, t) = u
(
x(t), t

)
= φ(x0),

and by (1.25) we have

x0 = x− at,
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consequently

u(x, t) = φ(x− at). (1.26)

We conclude that the problem (1.24) is solved by the formula (1.26) for
any smooth φ and constant a. It is straightforward to check that (1.26)
actually solves (1.24);

u(x, 0) = φ(x),

and

ut = −aφ′(x− at)
ux = φ′(x− at)

}
=⇒ ut + aux = 0.

Hence both the initial condition and the differential equation are fulfilled.
�

Example 1.2 Consider the Cauchy problem

ut + xux = 0, x ∈ R, t > 0,
u(x, 0) = φ(x), x ∈ R.

(1.27)

Now the characteristics are defined by

x′(t) = x(t), x(0) = x0

so

x(t) = x0e
t and x0 = xe−t.

Since

u
(
x(t), t

)
= φ(x0)

(see (1.23)), we get

u(x, t) = φ
(
xe−t) . (1.28)

As above, it is a straightforward task to check that (1.28) solves (1.27). �

1.4.2 First-Order Nonhomogeneous Equations
The method of characteristics can also be utilized for nonhomogeneous
problems. Consider the Cauchy problem

ut + a(x, t)ux = b(x, t), x ∈ R, t > 0,
u(x, 0) = φ(x), x ∈ R.

(1.29)
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Here a, b, and φ are given smooth functions. Again we define the charac-
teristic by

x′(t) = a
(
x(t), t

)
,

x(0) = x0,
(1.30)

and study the evolution of u along x = x(t),

d

dt
u
(
x(t), t

)
=ut + ux

dx

dt
=ut + a(x, t)ux
= b

(
x(t), t

)
.

Hence, the solution is given by

u
(
x(t), t

)
= φ(x0) +

∫ t

0
b
(
x(τ), τ

)
dτ (1.31)

along the characteristic given by x = x(t). So the procedure for solving
(1.29) by the method of characteristics is to first find the characteristics
defined by (1.30) and then use (1.31) to compute the solutions along the
characteristics.

Example 1.3 Consider the following nonhomogeneous Cauchy problem:

ut + ux = x, x ∈ R, t > 0
u(x, 0) = φ(x), x ∈ R.

(1.32)

Here, the characteristics defined by (1.30) are given by

x(t) = x0 + t,

and along a characteristic we have

u
(
x(t), t

)
=φ(x0) +

∫ t

0
x(τ)dτ

=φ(x0) + x0t+
1
2
t2;

cf. (1.31). Since x0 = x− t, we get

u(x, t) = φ(x− t) +
(
x− t

2

)
t.

�



1.4 Cauchy Problems 15

1.4.3 The Wave Equation
The wave equation

utt(x, t) = uxx(x, t) (1.33)

arises in for example modeling the motion of a uniform string; see Wein-
berger [28]. Here, we want to solve the Cauchy problem7 for the wave
equation, i.e. (1.33) with initial data

u(x, 0) = φ(x) (1.34)

and

ut(x, 0) = ψ(x). (1.35)

But let us first concentrate on the equation (1.33) and derive possible
solutions of this equation. To this end, we introduce the new variables

ξ = x+ t and η = x− t,

and define the function

v(ξ, η) = u(x, t). (1.36)

By the chain rule, we get

ux = vξ
∂ξ

∂x
+ vη

∂η

∂x
= vξ + vη

and

uxx = vξξ + 2vξη + vηη.

Similarly, we have

utt = vξξ − 2vξη + vηη,

and thus (1.33) implies that

0 = utt − uxx = −4vξη.
Since

vξη = 0 (1.37)

we easily see that

v(ξ, η) = f(ξ) + g(η). (1.38)

7Initial-boundary value problems for the wave equation are studied in Chapter 5.
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solves (1.37) for any smooth functions f and g. In fact, all solutions of
(1.37) can be written in the form (1.38); see Exercise 1.12. Now it follows
from (1.36) that

u(x, t) = f(x+ t) + g(x− t) (1.39)

solves (1.33) for any smooth f and g. This can be verified by direct deriva-
tion:

utt = f ′′ + g′′

uxx = f ′′ + g′′

}
=⇒ utt = uxx.

Next we turn our attention to the initial data (1.33) and (1.34). We want
to determine the functions f and g in (1.39) such that (1.33) and (1.34)
are satisfied. Of course, φ and ψ are supposed to be given functions.
By (1.39) we have

u(x, t) = f(x+ t) + g(x− t)

and

ut(x, t) = f ′(x+ t)− g′(x− t).

Inserting t = 0, (1.34) and (1.35) imply that

φ(x) = f(x) + g(x) (1.40)

and

ψ(x) = f ′(x)− g′(x). (1.41)

By differentiating (1.40) with respect to x, we get

φ(x) = f ′(x) + g′(x). (1.42)

Combining (1.41) and (1.42) yields

f ′ =
1
2
(
φ′ + ψ

)
and

g′ =
1
2
(
φ′ − ψ

)
,

and thus, by integration, we have

f(s) = c1 +
1
2
φ(s) +

1
2

∫ s

0
ψ(θ)dθ (1.43)



1.4 Cauchy Problems 17

and

g(s) = c2 +
1
2
φ(s)− 1

2

∫ s

0
ψ(θ)dθ, (1.44)

where c1 and c2 are constants of integration. From (1.40) we note that

φ(x) = f(x) + g(x),

and thus by adding (1.43) and (1.44), we observe that

c1 + c2 = 0.

Putting s = x + t in (1.43) and s = x − t in (1.44), it follows from (1.39)
that

u(x, t) =
1
2
(
φ(x+ t) + φ(x− t)

)
+

1
2

∫ x+t

0
ψ(θ)dθ − 1

2

∫ x−t

0
ψ(θ)dθ,

or

u(x, t) =
1
2
(
φ(x+ t) + φ(x− t)

)
+

1
2

∫ x+t

x−t
ψ(θ)dθ. (1.45)

This formula is referred to as the d’Alembert solution. Let us use it to
compute the solution of one Cauchy problem.

Example 1.4 Consider the Cauchy problem

utt = uxx , x ∈ R , t > 0 ,
u(x, 0) = 0 , x ∈ R ,

ut(x, 0) = cos(x) , x ∈ R .

(1.46)

Since φ(x) = 0 and ψ(x) = cos(x), it follows by (1.45) that

u(x, t)=
1
2

∫ x+t

x−t
cos(θ)dθ

=
1
2
[
sin(θ)

]x+t
x−t

=
1
2
(
sin(x+ t)− sin(x− t)

)
,

so

u(x, t) = cos(x) sin(t). (1.47)

It is straightforward to check by direct computation that (1.47) in fact
solves (1.46). �



18 1. Setting the Scene

1.4.4 The Heat Equation
The heat equation,

ut(x, t) = uxx(x, t) , x ∈ R , t > 0 , (1.48)

arises in models of temperature evolution in uniform materials; see e.g.
Weinberger [28]. The same equation also models diffusion processes —
say the evolution of a piece of ink in a glass of water. It is therefore often
referred to as the diffusion equation.
Since our purpose in this introductory chapter is to explain basic features

of PDEs, we shall study (1.48) equipped with the simplest possible initial
data,

u(x, 0) = H(x) =

{
0 x ≤ 0,
1 x > 0.

(1.49)

Here H = H(x) is usually referred to as the Heavyside function. The
Cauchy problem (1.48)–(1.49) can be interpreted as a model of the tem-
perature in a uniform rod of infinite length. At t = 0, the rod is cold to the
left and hot to the right. How will the temperature evolve as t increases?
Intuitively you know approximately how this will develop, but let us

compute it.
First we observe that the solution of the Cauchy problem (1.48)–(1.49)

is actually only a function of one variable. To see this, define the function

v(x, t) = u(cx, ct2) (1.50)

for any c > 0. Then

v(x, 0) = u(cx, 0) =
{
0 x ≤ 0,
1 x > 0,

and

vt = c2ut
vxx = c2uxx

}
(1.48)
=⇒ vt = vxx,

so we conclude that also v solves the Cauchy problem for any c > 0.
However, the solution of the problem (1.48)–(1.49) is unique. Uniqueness
of the solution of the heat equation will be discussed later in the text. But
then, since v given by (1.50) solves (1.48)–(1.49) for any c > 0, the solution
u = u(x, t) has to be constant along the line parameterized by (cx, c2t) for
c running from zero to plus infinity. Thus, u is constant along lines where

x/
√
t = constant.

We therefore define y = x/
√
t, introduce

w(y) = w(x/
√
t) = u(x, t), (1.51)
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and observe that the initial condition (1.49) implies

w(−∞) = 0 and w(∞) = 1.

Using the chain rule, we get

ut=w′(y)
∂y

∂t
= −1

2
yt−1w′(y),

uxx=
∂

∂x

(
t−1/2w′(y)

)
= t−1w′′(y),

and since ut = uxx, we get the ordinary differential equation

w′′(y) + (y/2)w′(y) = 0 (1.52)

with boundary conditions

w(−∞) = 0 and w(∞) = 1. (1.53)

This problem can be solved analytically. Upon multiplying (1.52) by ey
2/4,

we get

0= ey
2/4w′′(y) +

y

2
ey

2/4w′(y)

=
(
ey

2/4w′(y)
)′

.

We integrate this relation and get

ey
2/4w′(y) = α,

where α is a constant of integration. If we now integrate

w′(z) = αe−z2/4

from −∞ to y, we obtain

[
w(z)

]y
−∞ =α

∫ y

−∞
e−z2/4dz

=2α
∫ y/2

−∞
e−θ2dθ.

Since w(−∞) = 0, we have

w(y) = 2α
∫ y/2

−∞
e−θ2dθ. (1.54)

Using the boundary condition w(∞) = 1, it follows from (1.54) that

1 = 2α
∫ ∞

−∞
e−θ2dθ = 2α

√
π
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or

2α = 1/
√
π;

see Exercise 1.11. Hence

w(y) =
1√
π

∫ y/2

−∞
e−θ2dθ

and

u(x, t) =
1√
π

∫ x/2
√
t

−∞
e−θ2dθ. (1.55)

We show in Exercise 1.13 that u tends to the Heavyside function as t → 0,
t > 0.
In Fig. 1.6 we have plotted this solution for x ∈ [−2, 2] and t = 0, 1/4, 1.

Note the smoothing property of this solution. Even when the initial function
u(x, 0) is discontinuous as a function of x, u(x, t) is continuous as function
of x for any t > 0; see Exercise 1.13. This feature is very characteristic for
the heat equation and other equations of the same form.
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FIGURE 1.6. The solution of the heat equation for t = 0, 1/4, 1.

1.5 Exercises

Exercise 1.1 Consider the following differential equations:

(i) u′(t) = etu(t),
(ii) u′′(x) = u(x)

√
x,

(ii) uxx(x, y) + uyy(x, y)esin(x) = 1,
(iv) ut(x, t) + ux(x, t) = uxx(x, t) + u2(x, t),
(v)

(
u′(t)

)2 + u(t) = et.
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Characterize these equations as:

(a) PDEs or ODEs,

(b) linear or nonlinear,

(c) homogeneous or nonhomogeneous.

Exercise 1.2 Consider

u′(t)=−αu(t),
u(0)=u0,

for a given α > 0. Show that this problem is stable with respect to pertur-
bation in u0.

Exercise 1.3 Consider the ordinary differential equation

u′(t) = tu(t)
(
u(t)− 2

)
,

u(0) = u0.
(1.56)

(a) Verify that

u(t) =
2u0

u0 + (2− u0)et
2

solves (1.56).

(b) Show that if 0 ≤ u0 ≤ 2, then 0 ≤ u(t) ≤ 2 for all t ≥ 2.

(c) Show that if u0 > 2, then u(t) → ∞ as

t →
(
ln

(
u0

u0 − 2

) )1/2

.

(d) Suppose we are interested in (1.56) for u0 close to 1, say u0 ∈ [0.9, 1.1].
Would you say that the problem (1.56) is stable for such data?
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Exercise 1.4 We have discussed the question of stability with respect to
perturbations in the initial conditions. A model which is expressed as a
differential equation may also involve coefficients based on measurements.
Hence, it is also relevant to ask whether a solution is stable with respect
to changes in coefficients. One example can be based on the problem of
Exercise 1.2,

u′(t) = −αu(t),
u(0) = u0.

(1.57)

We assume that α > 0 is a measured number, and we consider a slightly
perturbed problem

v′(t)=−(α+ ε)v(t),
v(0)=u0.

(a) We are interested in the solution at t = 1. Do small changes in α
imply small changes in the solution?

(b) Next we assume that both u0 and α are measured. Discuss the sta-
bility of the problem (1.57) in this context.

Exercise 1.5 Find the exact solution of the following Cauchy problems:

(a)

ut + 2xux=0 x ∈ R, t > 0,

u(x, 0)= e−x2
.

(b)

ut − xux=0 x ∈ R, t > 0,
u(x, 0)= sin(87x).

(c)

ut + xux=x x ∈ R, t > 0,
u(x, 0)= cos(90x).

(d)

ut + xux=x2 x ∈ R, t > 0,
u(x, 0)= sin(87x) cos(90x).
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Exercise 1.6 Compute the exact solution of the following Cauchy prob-
lem:

ut + ux=u, x ∈ R, t > 0,
u(x, 0)=φ(x), x ∈ R,

where φ is a given smooth function.

Exercise 1.7 We want to consider the stability of first-order nonhomoge-
neous Cauchy problems

ut + aux = b(x, t), x ∈ R, t > 0,
u(x, 0) = φ(x), x ∈ R.

(1.58)

We assume that a is a constant and that b and φ are given smooth functions.
Consider also the Cauchy problem

vt + avx = b(x, t), x ∈ R, t > 0,
v(x, 0) = φ(x) + ε(x),

where ε = ε(x) is a smooth function. Show that

sup
x∈R,t≥0

|u(x, t)− v(x, t)| = sup
x∈R

|ε(x)|,

and conclude that the Cauchy problem (1.58) is stable with respect to
perturbations in the initial data.

Exercise 1.8 Consider the wave equation

utt = c2uxx, x ∈ R, t > 0,
u(x, 0) = φ(x),
ut(x, 0) = ψ(x),

(1.59)

for a given c > 0. Follow the steps used to derive the solution in the case
of c = 1 and show that

u(x, t) =
1
2
(
φ(x+ ct)− φ(x− ct)

)
+

1
2c

∫ x+ct

x−ct
ψ(θ)dθ

solves (1.59).

Exercise 1.9 Use the solution derived above to solve the Cauchy problem

utt = 16uxx, x ∈ R, t > 0,
u(x, 0) = 6 sin2(x), x ∈ R,

ut(x, 0) = cos(6x), x ∈ R.
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Exercise 1.10 Find the solution of the Cauchy problem

ut = εuxx, x ∈ R, t > 0

u(x, 0) =
{
0 x ≤ 0
1 x > 0

for any given constant ε > 0. Use the solution formula to plot the solution
at t = 1 for x ∈ [−1, 1] using ε = 1/10, 1/2, 1, 10. In order to use the
solution formula you will have to apply numerical integration. Those not
familiar with this subject may consult Project 2.1.

Exercise 1.11 Let I denote the integral

I =
∫ ∞

−∞
e−x2

dx.

(a) Explain why

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

(b) Use polar coordinates to show that I =
√
π.

Exercise 1.12 Show that any solution of (1.37) can be written in the form
(1.38).

Exercise 1.13 Consider the function u(x, t) given by (1.55).

(a) Verify directly that u satisfies the heat equation (1.48) for any x ∈ R

and t > 0.

(b) Let t > 0 be fixed. Show that u(·, t) ∈ C∞(R), i.e. u is a C∞-function
with respect to x for any fixed t > 0.

(c) Show that

u(0, t) =
1
2

for all t > 0.

(d) Let x �= 0 be fixed. Show that

lim
t→0+

u(x, t) = H(x).

Exercise 1.14 Consider the initial value problem (1.59) for the wave
equation, i.e.

utt = c2uxx, x ∈ R, t > 0,
u(x, 0) = φ(x),
ut(x, 0) = ψ(x).

(1.60)
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The purpose of this exercise is to give an alternative derivation of the
d’Alembert solution (1.33), based on the method of characteristics for first
order equations.

(a) Assume that u = u(x, t) solves (1.60) and let v = ut+cux. Show that

vt − cvx = 0.

(b) Find v(x, t) expressed by φ and ψ.

(c) Explain why

u(x, t) = φ(x− ct) +
∫ t

0
v[x− c(t− τ), τ ] dτ.

(d) Derive the expression (1.33) for u(x, t).

Exercise 1.15 The purpose of this exercise is to perform a theoretical
analysis of the numerical experiments reported in Table 1.1. There we stud-
ied the forward Euler method applied to the initial value problem (1.18),
and the experiments indicated that the error E(∆t) at t = 1 satisfies

E(∆t) ≈ 1.359∆t.

(a) Let 0 ≤ (m + 1)∆t ≤ T and let u(t) be the solution of (1.18). Show
that if tm = m∆t, then

u(tm+1)− u(tm)
∆t

= u(tm) + τm,

where the truncation error τm satisfies

|τm| ≤ ∆t

2
eT for 0 ≤ (m+ 1)∆t ≤ T.

(b) Assume that {vm} is the corresponding forward Euler solution given
by

vm+1 = (1 +∆t)vm, v0 = 1,

and let wm = um − vm be the error at time tm = m∆t. Explain why
{wm} satisfies the difference equation

wm+1 = (1 +∆t)wm +∆t τm, w0 = 0.

(c) Use induction on m to prove that

|wm| ≤ ∆t

2
eT (etm − 1) for 0 ≤ tm ≤ T.

How does this result compare to what was obtained in Table 1.1?
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Exercise 1.16 Let u(x, t) be a solution of the heat equation (1.48) with
initial data

u(x, 0) = f(x).

(a) Let a ∈ R and define a function

v(x, t) = u(x− a, t).

Show that v solves the heat equation with initial data v(x, 0) = f(x−
a).

(b) Let k > 0 be given and define

w(x, t) = u(k1/2x, kt).

Show that w solves the heat equation with initial data w(x, 0) =
f(k1/2x).

(c) Assume that u1(x, t), u2(x, t), . . . , un(x, t) are solutions of the heat
equation (1.48) with initial functions

uk(x, 0) = fk(x) for k = 1, 2, . . . , n.

Furthermore, let c1, c2, . . . , cn ∈ R and define a new function u(x, t)
by

u(x, t) =
n∑
k=1

cku
k(x, t).

Show that u solves (1.48) with initial data

u(x, 0) =
n∑
k=1

ckf
k(x).

Exercise 1.17 Consider the function S(x, t) given by

S(x, t) =
1√
4πt

e− x2
4t for x ∈ R, t > 0.

This function is well known in probability theory. It corresponds to the
density function for the normal distribution with variance 2t. As we shall
see below, this function also appears naturally in the analysis of the Cauchy
problem for the heat equation. In the context of differential equations the
function S is therefore frequently referred to as the Gaussian kernel function
or the fundamental solution of the heat equation.

(a) Use the result of Exercise 1.11 to show that∫
R

S(x, t) dx = 1 for any t > 0.
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(b) Consider the solution (1.55) of the heat equation (1.48) with the
Heavyside function H as a initial function. Show that u(x, t) can be
expressed as

u(x, t) =
∫

R

S(x− y, t)H(y) dy.

(c) Let a ∈ R be given and define

v(x, t) =
∫

R

S(x− y, t)H(y − a) dy.

Use the result of Exercise 1.16 (a) to show that v solves (1.48) with
initial condition

u(x, 0) = H(x− a).

(d) Let a, b ∈ R, a < b, be given and define

χa,b(x) =

{
1 for x ∈ [a, b],
0 otherwise.

Show that the function

u(x, t) =
∫

R

S(x− y, t)χa,b(y) dy

solves (1.48) with initial condition

u(x, 0) = χa,b(x).

Hint: Observe that χa,b(x) = H(x−a)−H(x−b) and use Exercise 1.16
(c).

(e) Let f(x) be a step function of the form

f(x) =




0 for x ≤ a0,

c1 for x ∈ [a0, a1],
...
cn for x ∈ [an−1, an],
0 for x > an,

where c1, c2, . . . , cn and a0 < a1 < · · · < an are real numbers. Show
that the function u(x, t) given by

u(x, t) =
∫

R

S(x− y, t)f(y) dy (1.61)
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solves the heat equation (1.48) with initial condition

u(x, 0) = f(x).

In fact, the solution formula (1.61) is not restricted to piecewise con-
stant initial functions f . This formula is true for general initial func-
tions f , as long as f satisfies some weak smoothness requirements. We
will return to a further discussion of the formula (1.61) in Chapter 12.

1.6 Projects

Project 1.1 Convergence of Sequences

In dealing with numerical approximations of various kinds, we are often
interested in assessing the quality of the numerical estimates. Proving error
bounds in order to obtain such estimates might be a very difficult task,8 but
in many cases empirical estimates can be obtained using simple computer
experiments. The purpose of this project is thus to develop a “quick and
dirty” way of investigating the convergence of schemes under some fortu-
nate circumstances. More precisely, the exact solution has to be available
in addition to the numerical approximation. Of course, one might ask why
a numerical approximation is needed in such cases, but the general idea is
that if we know how one method converges for one particular problem, this
will guide us in learning how the scheme handles more delicate problems.
Let us start by defining some basic concepts concerning convergence of

an infinite sequence of real numbers {zn}n≥1.

Convergence of Sequences. If, for any ε > 0, there is an integer N such
that

|zn − z| < ε for all n ≥ N,

we say that the sequence {zn} converges towards z, and we write

lim
n→∞ zn = z.

Rate of Convergence. We say that the sequence {zn} converges towards
a real number z with the rate α if there is a finite constant c, not
depending on n, such that

|zn − z| ≤ c

(
1
n

)α
.

8Some argue strongly that this is the very core of numerical analysis.
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If α = 1, we have first-order, or linear convergence, α = 2 is referred
to as second-order, or quadratic convergence, and so on.

Superlinear Convergence. We say that the sequence {zn} converges su-
perlinearly towards a real number z if there is a sequence of positive
real numbers {cn} such that

lim
n→∞ cn = 0

and

|zn − z| ≤ cn/n.

The O-Notation. Let {yn}n≥1 and {zn}n≥1 be two sequences of positive
real numbers. If there is a finite constant c, not depending on n, such
that

yn ≤ czn for all n ≥ 1,

we say that the sequence {yn} is of order {zn}, and we write,

yn = O(zn)

(a) Estimate the rate of convergence, as n tends to infinity, for the fol-
lowing sequences:

1. zn =
√
1/n

2. zn = sin (1/n)

3. zn =
√
1/n sin2 (1/n)

4. zn = n(e(1/n) − 1− 1
n )

(b) Determine whether the following sequences converge linearly or su-
perlinearly toward zero as n tends to infinity:

1. zn = 1/n

2. zn = 1
n log (n)

3. zn = e1/n

n

(c) In some cases, we consider a parameter h tending to zero, rather than
n tending to infinity. Typically, h ≈ 1/n in many of our applications.
Restate the definitions above for sequences {zh} where h > 0, and es-
timate the rate of convergence, as h → 0, for the following sequences:

1. zh =
√
h sin (h)

2. zh =
√
h cos (h)
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3. zh =
√
heh

(d) Let f = f(x) be a smooth function, and show that for small h we
have9:

1. f(x+h)−f(x)h = f ′(x) +O(h)

2. f(x)−f(x−h)
h = f ′(x) +O(h)

3. f(x+h)−f(x−h)
2h = f ′(x) +O(h2)

4. f(x+h)−2f(x)+f(x−h)
h2 = f ′′(x) +O(h2)

(e) In many cases, the sequence {zn} is not known by a formula. It might
for example be given as the result of numerical experiments. In such
cases, we want a procedure for estimating the rate of convergence
numerically. To do this, we define the error by

eh = |zh − z|,

and assume that there exist real numbers c and α, which are inde-
pendent of h, such that

eh = chα. (1.62)

Let h1 �= h2, and use (1.62) to derive that the rate α can be estimated
by

α =
log (eh1/eh2)
log (h1/h2)

(1.63)

provided that the model (1.62) holds.

Consider the sequences given in (c) above, and compute eh for

h = 1/100, 1/200, 1/400, and 1/800,

and estimate the rate α given by (1.63) by comparing subsequent
values of eh. How do your results compare with those obtained in (c)
above?

(f) Use the procedure described above to estimate the rate of convergence
for the sequence given by

zh = |h log (h)|.

Try to explain the difficulties you encounter, and note the dangers of
blindly applying the procedure.

9The Taylor series is useful here.
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(g) In this course, Fourier series for approximating functions will be used
in the analysis of partial differential equations. One peculiar prop-
erty of these series is that they provide series expansions for some
irrational numbers. Try to estimate the order of convergence for the
following series by applying the technique developed above.

(i) z = π/4 and zn =
n∑
j=0

(−1)j
2j + 1

(ii) z = π2/8 and zn =
n∑
j=0

1
(2j + 1)2

(iii) z = π2/6 and zn =
n∑
j=1

1
j2

Project 1.2 Linear Algebra

Throughout this course we will need some basic concepts of linear alge-
bra; matrices, vectors, norms and so on. Familarity with elementary linear
algebra is assumed; this project is intended to refresh your memory. We
simply state a series of facts about matrices and vectors, followed by some
fairly simple problems showing possible applications of the results. Proofs
of the properties can be found in any introductory book on linear algebra;
see e.g. H. Anton [1].

Linear Independent Vectors. Let V = {v1, v2, . . . , vk} be a collection
of vectors in R

n. If there exist scalars c1, c2, . . . , ck such that at least
one of the cjs is nonzero and

c1v1 + c2v2 + · · ·+ ckvk = 0, (1.64)

we say that the collection of vectors V is a linearly dependent set. If
the requirement (1.64) implies that all the scalars c1, c2, . . . , ck have
to be zero, the vectors are referred to as a linearly independent set.

Problems

(a) Define the vectors

u1 =


 2

−1
0


 , u2 =


 −1

2
−1


 , and u3 =


 0

−1
2


 .

Show that {u1, u2, u3} is a linearly independent set of vectors.
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(b) Show that the vectors

v1 =


 1

2
3


 , v2 =


 4

5
6


 , and v3 =


 7

8
9




form a linear dependent set.

(c) Show that any collection of n + 1 vectors in R
n form linearly

dependent sets.

Singular and Nonsingular Matrices. Let A be an n × n matrix, i.e.
A ∈ R

n,n. Then A is said to be nonsingular if there is another n× n
matrix A−1 such that

A−1A = I.

where I ∈ R
n,n is the identity matrix. If no such matrix exists, A is

called singular.

There are several ways of characterizing a nonsingular matrix; the
following statements are equivalent:

• The matrix A is nonsingular.

• The determinant of A is nonzero.

• The vectors defined by the rows of A form a linearly independent
set.

• The vectors defined by the columns of A form a linearly inde-
pendent set.

• The linear system Ax = 0 has only one solution; x = 0.

• The linear system Ax = b has a unique solution x = A−1b for
any b ∈ R

n.

Similarly, a singular matrix can be characterized by the following
equivalent statements:

• The matrix A is singular.

• The determinant of A is zero.

• The vectors defined by the rows of A form a linearly dependent
set.

• The vectors defined by the columns of A form a linearly depen-
dent set.

• There exists at least one nonzero vector x ∈ R
n such that Ax =

0.

• There exists a vector b ∈ R
n such that the linear system Ax = b

has no solution.



1.6 Projects 33

The rank of a matrix is the number of linearly independent columns
(or rows) in the matrix. Obviously, the rank of a nonsingular n × n
matrix is n.

Problems (continued)

(d) Let

A1 =


 2 −1 0

−1 2 −1
0 −1 2


 , A2 =


 1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5


 ,

and

A3 =


 1 4 7

2 5 8
3 6 9


 .

Show that

A−1
1 =


 3/4 1/2 1/4

1/2 1 1/2
1/4 1/2 3/4


 , A−1

2 =


 9 −36 30

−36 192 −180
30 −180 180


 ,

and that A3 is singular.
(e) Solve the linear systems

A1x1 = b1 and A2x2 = b2

where b1 = (1, 2, 1)T and b2 = (−1, 2,−4)T .
(f) Show that the rank of A1, A2, and A3 is 3, 3, and 2 respectively.
(g) Show that if ad �= bc, then(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

The Euclidean Inner Product and the Associated Norm. For two
vectors x and y in R

n, the Euclidean inner product is defined by

(x, y) =
n∑
j=1

xjyj ,

and the associated norm is defined by

||x|| = 〈x, x〉1/2.
Two vectors x and y are said to be orthogonal if (x, y) = 0. A col-
lection of vectors {v1, v2 . . . , vk} is said to be an orthogonal set if
(vi, vj) = 0 for all i �= j. If, in addition, ||vi|| = 1 for all i = 1, 2, . . . , k,
the set is called orthonormal.

The norm || · || satisfies the following properties:
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1. ||x|| ≥ 0 for all vectors x ∈ R
n.

2. ||x|| = 0 if and only if x = 0.

3. ||αx|| = |α| ||x|| for all scalars α and vectors x ∈ R
n.

4. ||x+ y|| ≤ ||x||+ ||y|| for any vectors x, y ∈ R
n.

5. (x, y) ≤ ||x|| ||y|| for any vectors x, y ∈ R
n.

Here, (4) is referred to as the triangle inequality and (5) is the Cauchy-
Schwarz inequality.

Problems (continued)

(h) Consider the vectors defined in (a) and (b) above, and compute
the inner products (u1, u2), (u1, u3), (u2, u3), and (v1, v3). Com-
pute the norms ||u1||, ||u2||, ||v1||, and ||v3||.

(i) Suppose the vectors x ∈ R
n and y ∈ R

n are orthogonal. Show
that

||x+ y||2 = ||x||2 + ||y||2.
This is referred to as the theorem of Pythagoras.

(j) Show that a set of orthonormal vectors forms a linearly inde-
pendent set.

(k) Show that the usual basis of R
n forms a orthonormal set.

(l) Suppose Y = {y1, y2, . . . , yn} is an orthonormal set in R
n. Show

that any vector z ∈ R
n can be written as a linear combination

of the vectors in V . More precisely, determine the coefficients
{c1, c2, . . . , cn} such that

z =
n∑
j=1

cjyj .

Is this representation of the vector z in terms of the vectors in
V unique?

Eigenvalues and Eigenvectors. Let A ∈ R
n,n, and suppose that there

exists a scalar value λ and a nonzero vector x such that

Ax = λx.

Then λ is an eigenvalue and x is a corresponding eigenvector of the
matrix A. Basic facts about eigenvalues and eigenvectors:

• Any matrix A ∈ R
n,n has at most n eigenvalues.

• If the matrix is symmetric, i.e. AT = A, all the eigenvalues are
real and the corresponding eigenvectors form an orthogonal set.



1.6 Projects 35

• A matrix is nonsingular if and only if all eigenvalues are nonzero.

Problems (continued)

(m) Find the eigenvalues and the eigenvectors of the matrices

A4 =
(

2 −1
−1 2

)
, A5 =

(
1 −1
−1 1

)
,

and A1 above.

(n) Verify for the matrices A1 and A4 that the eigenvectors are
orthogonal.

(o) Suppose λ is an eigenvalue and x is the corresponding eigen-
vector for a nonsingular matrix A ∈ R

n,n. Define the matrix
B1 = I + α1A where I is the identity matrix and α1 is a scalar.
Show that µ1 = 1 + α1λ is an eigenvalue of the matrix B1, and
that x is the corresponding eigenvector.

(p) Let B2 = α0I + α1A + α2A
2, and show that µ2 = α0 + α1λ +

α2λ
2 is an eigenvalue of B2 and that x is the corresponding

eigenvector.

(q) Try to generalize these observations to find a formula for the
eigenvalues for a general matrix polynomial of the form

P (A) =
m∑
j=0

αjA
j .

(r) Show that 1/λ is an eigenvalue and x is an eigenvector for the
inverse of A, i.e. for A−1.

Positive Definite Matrices. A symmetric matrix A ∈ R
n,n is called pos-

itive definite if

xTAx > 0 for all nonzero x ∈ R
n.

Similarly, it is called positive semidefinite if

xTAx ≥ 0 for all x ∈ R
n.

Basic facts about positive definite matrices:

• A symmetric and positive definite matrix is nonsingular.

• A symmetric matrix is positive definite if and only if all the
eigenvalues are real and strictly positive.

• A symmetric matrix is positive semidefinite if and only if all the
eigenvalues are real and nonnegative.
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Problems (continued)

(s) Show that the matrices A1 and A4 are symmetric and posi-
tive definite, and that the matrix A5 is symmetric and positive
semidefinite.

(t) Show that a sum of symmetric and positive definite matrices is
also symmetric and positive definite.

(u) Let A ∈ R
n,n be a nonsingular matrix and define B = ATA.

Show that B is symmetric positive definite.
(v) A matrix A ∈ R

n,n, not necessarily symmetric, is called positive
real if

xTAx > 0 for all nonzero x ∈ R
n.

Show that if A is positive real, then the matrix B = A+ AT is
symmetric and positive definite.

Project 1.3 Numerical Methods for ODEs

The purpose of this project is to illustrate that there is more to life than
forward Euler. Numerical methods for ordinary differential equations is a
vast subject reaching far beyond our scope. However, some ideas applied
in that field will appear later in the text, so we use this project to present
them in a simple framework.
We start by considering the problem

u′(t) = −u(t),
u(0) = 1,

(1.65)

which we know has the analytical solution u(t) = e−t.

(a) Show that the numerical solution computed by the forward Euler
method (see (1.17) page 8) is given by

vm = (1−∆t)m, m = 0, 1, . . . (1.66)

(b) Show that vm converges toward the correct solution at t = 1 as ∆t
tends to zero.

(c) In the derivation of the forward Euler method on page 8, we argued
that

u(tm+1)− u(tm)
∆t

≈ u′(tm) = f
(
u(tm)

)
; (1.67)

see (1.15). Show, in a similar manner, that we have

u(tm+1)− u(tm)
∆t

≈ u′(tm+1) = f
(
u(tm+1)

)
. (1.68)
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(d) Use (1.68) to derive the backward Euler method,

vm+1 −∆tf(vm+1) = vm, m = 0, 1, . . . . (1.69)

(e) Apply the backward Euler method to the problem (1.65) and show
that

vm =
1

(1 + ∆t)m
, m = 0, 1, . . . (1.70)

(f) Explain why

u(tm+1)− u(tm)
∆t

≈ 1
2
(
f(u(tm+1)) + f(u(tm))

)
and use this to derive the scheme

vm+1 − 1
2
∆tf(vm+1) = vm +

1
2
∆tf(vm), m = 0, 1, . . . (1.71)

(g) Apply (1.71) to (1.65) and show that

vm =
(
2−∆t

2 + ∆t

)m
. (1.72)

(h) Compare the accuracy of the three methods by computing approxima-
tions to the solutions of (1.65) at t = 1. Use the technique displayed
in Table 1.1 and Project 1.1 to argue that the errors when using the
schemes (1.66), (1.70), and (1.72) are O

(
∆t

)
, O

(
∆t

)
, and O

(
(∆t)2

)
respectively.

(i) Implement the schemes discussed above for f(v) = −v. Check the
correctness of your implementation by using your code to generate
approximations of (1.65).

(j) Generalize your codes to the problem

u′(t) = −u2(t),
u(0) = 1.

(1.73)

(k) Derive the exact solution of (1.73) and use this to study the error of
three schemes at t = 1. Do the conclusions of (h) above also apply to
this nonlinear problem?



2
Two-Point Boundary Value Problems

In Chapter 1 above we encountered the wave equation in Section 1.4.3
and the heat equation in Section 1.4.4. These equations occur rather fre-
quently in applications, and are therefore often referred to as fundamental
equations. We will return to these equations in later chapters. Another
fundamental equation is Poisson’s equation, given by

−
n∑
j=1

∂2u

∂x2
j

= f,

where the unknown function u is a function of n spatial variables x1, . . . , xn.
The main purpose of this chapter is to study Poisson’s equation in one

space dimension with Dirichlet boundary conditions, i.e. we consider the
two-point boundary value problem given by

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0. (2.1)

Although the emphasis of this text is on partial differential equations, we
must first pay attention to a simple ordinary differential equation of second
order, since the properties of such equations are important building blocks
in the analysis of certain partial differential equations. Moreover, the tech-
niques introduced for this problem also apply, to some extent, to the case
of partial differential equations.
We will start the analysis of (2.1) by investigating the analytical proper-

ties of this problem. Existence and uniqueness of a solution will be demon-
strated, and some qualitative properties will be derived. Then we will turn
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our attention to numerical methods for solving this simple problem, and we
will carefully study how well the numerical solutions mimic the properties
of the exact solutions. Finally, we will study eigenvalue problems associated
with the boundary value problem (2.1). The results of this analysis will be
a fundamental tool in later chapters.
Although the equations investigated in this chapter are very simple and

allow analytical solution formulas, we find it appropriate to start our study
of numerical methods by considering these problems. Clearly, numerical
values of the solutions of these problems could have been generated without
the brute force of finite difference schemes. However, as we will encounter
more complicated equations later on, it will be useful to have a feeling for
how finite difference methods handle the very simplest equations.

2.1 Poisson’s Equation in One Dimension

In this section we will show that the problem (2.1) has a unique solution.
Moreover, we will find a representation formula for this solution.
We start by recalling a fundamental theorem of calculus: There is a

constant c1 such that

u(x) = c1 +
∫ x

0
u′(y) dy, (2.2)

and similarly, there is a constant c2 such that

u′(y) = c2 +
∫ y

0
u′′(z) dz. (2.3)

This is true for any twice continuously differentiable function u. Suppose
now that u satisfies the differential equation (2.1). Then (2.3) implies that

u′(y) = c2 −
∫ y

0
f(z) dz. (2.4)

Then, inserting this equation into (2.2), we obtain

u(x) = c1 + c2x−
∫ x

0

( ∫ y

0
f(z) dz

)
dy. (2.5)

In order to rewrite this expression in a more convenient form, we define

F (y) =
∫ y

0
f(z) dz,
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and observe that∫ x

0

( ∫ y

0
f(z) dz

)
dy =

∫ x

0
F (y) dy

= [yF (y)]x0 −
∫ x

0
yF ′(y) dy

= xF (x)−
∫ x

0
yf(y) dy

=
∫ x

0
(x− y)f(y) dy,

where we have used integration by parts. Now (2.5) can be rewritten in the
following form:

u(x) = c1 + c2x−
∫ x

0
(x− y)f(y) dy. (2.6)

Note that c1 and c2 are arbitrary constants, and that so far we have only
used the differential equation of (2.1) and not the boundary conditions
given by

u(0) = u(1) = 0.

These conditions are taken into account by choosing c1 and c2 properly.
The condition u(0) = 0 implies that c1 = 0, and then u(1) = 0 implies that

c2 =
∫ 1

0
(1− y)f(y) dy.

Hence, the constants c1 and c2 are uniquely determined from the boundary
conditions. This observation is an important one; since any solution of the
differential equation

−u′′(x) = f(x)

can be written on the form (2.6) and the constants involved in (2.6) are
uniquely determined by the boundary conditions of (2.1), it follows that
the problem (2.1) has a unique solution.
We observe that if we use the derived expressions for c1 and c2 in (2.6),

we are allowed to write the solution u in the following form:

u(x) = x

∫ 1

0
(1− y)f(y) dy −

∫ x

0
(x− y)f(y) dy. (2.7)

Example 2.1 Consider the problem (2.1) with f(x) = 1. From (2.7) we
easily obtain

u(x) = x

∫ 1

0
(1− y) dy −

∫ x

0
(x− y) dy =

1
2
x(1− x).

�
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Example 2.2 Consider the problem (2.1) with f(x) = x. Again, from (2.7)
we get

u(x) = x

∫ 1

0
(1− y)y dy −

∫ x

0
(x− y)y dy =

1
6
x(1− x2).

�

Further examples of how to compute the exact solution formulas for two-
point boundary value problems are given in the exercises. In Project 2.1
we will also see how the exact representation of the solution can be used
to derive numerical approximations when the integrals involved cannot be
evaluated analytically.

2.1.1 Green’s Function
The unique solution of (2.1) can be represented in a very compact way by
introducing an auxiliary function: the Green’s function.
Introduce the function

G(x, y) =
{

y(1− x) if 0 ≤ y ≤ x,
x(1− y) if x ≤ y ≤ 1. (2.8)

It follows that the representation (2.7) can be written simply as

u(x) =
∫ 1

0
G(x, y)f(y) dy. (2.9)

The function G is called the Green’s function for the boundary value prob-
lem (2.1), and it has the following properties:

• G is continuous,

• G is symmetric in the sense that G(x, y) = G(y, x),

• G(0, y) = G(1, y) = G(x, 0) = G(x, 1) = 0,

• G is a piecewise linear function of x for fixed y, and vice versa,

• G(x, y) ≥ 0 for all x, y ∈ [0, 1].

These properties follow directly from (2.8). The function is plotted in
Fig. 2.1.
Of course, the representation (2.9) is only a reformulation of (2.7). How-

ever, the representation (2.9) is very convenient when we want to derive
various properties of the solution u.
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FIGURE 2.1. Green’s function G(x, y) for two values of x. To the left we have
used x = 1/4, and to the right we have used x = 3/4.

2.1.2 Smoothness of the Solution
Having an exact representation of the solution, we are in a position to
analyze the properties of the solution of the boundary value problem. In
particular, we shall see that the solution is smoother than the “data,” i.e.
the solution u = u(x) is smoother than the right-hand side f .
Assume that the right-hand side f of (2.1) is a continuous function,

and let u be the corresponding solution given by (2.9). Since u can be
represented as an integral of a continuous function, u is differentiable and
hence continuous. Let C

(
(0, 1)

)
denote the set of continuous functions on

the open unit interval (0, 1). Then the mapping

f �→ u, (2.10)

where u is given by (2.9), maps from C
(
[0, 1]

)
into C

(
[0, 1]

)
.1 From (2.7)

we obtain that

u′(x) =
∫ 1

0
(1− y)f(y) dy −

∫ x

0
f(y) dy

and (not surprisingly!)

u′′(x) = −f(x).

Therefore, if f ∈ C
(
(0, 1)

)
, then u ∈ C2

(
(0, 1)

)
, where for an integerm ≥ 0,

Cm
(
(0, 1)

)
denotes the set of m-times continuously differentiable functions

on (0, 1). The solution u is therefore smoother than the right-hand side f .
In order to save space we will introduce a symbol for those functions that

have a certain smoothness, and in addition vanish at the boundaries. For
this purpose, we let

C2
0
(
(0, 1)

)
=

{
g ∈ C2((0, 1)) ∩ C

(
[0, 1]

)| g(0) = g(1) = 0
}
.

1A continuous function g on (0, 1) is continuous on the closed interval [0, 1], i.e. in
C

(
[0, 1]

)
, if the limits limx→0+ g(x) and limx→1− g(x) both exist.
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With this notation at hand, we notice that the formula for the exact
solution given by (2.9) defines a mapping from C

(
(0, 1)

)
into C2

0
(
(0, 1)

)
.

The following result is a summary of the discussion so far.

Theorem 2.1 For every f ∈ C
(
(0, 1)

)
there is a unique solution u ∈

C2
0
(
(0, 1)

)
of the boundary value problem (2.1). Furthermore, the solution

u admits the representation (2.9) above.

Having established this result, further smoothness of the solution can be
derived by using the differential equation. More precisely, if f ∈ Cm

(
(0, 1)

)
,

for m ≥ 1, then u ∈ Cm+2
(
(0, 1)

)
and

u(m+2) = −f (m),

Hence, the solution is always smoother than the “data,” and for f ∈ C∞,
we have u ∈ C∞.

Example 2.3 Consider the problem (2.1) with f(x) = 1/x. Note that
f ∈ C

(
(0, 1)

)
, but f /∈ C

(
[0, 1]

)
since f(0) does not exist. It is easy to

verify directly that the solution u is given by

u(x) = −x ln (x),

and

u′(x) = −1− ln (x).

Hence, u ∈ C2
0
(
(0, 1)

)
. However, note that u′ and u′′ are not continuous at

zero. �

2.1.3 A Maximum Principle
The solution of (2.1) has several interesting properties. First we shall con-
sider what is often referred to as a monotonicity property. It states that
nonnegative data, represented by the right-hand side f , is mapped into a
nonnegative solution. Secondly, we will derive a maximum principle for the
solution of the two-point boundary value problem. This principle states
how large the solution of the problem, measured by its absolute value, can
be for a given right-hand side f .
The following monotonicity property is derived using the representation

of the solution given by (2.9).

Proposition 2.1 Assume that f ∈ C
(
(0, 1)

)
is a nonnegative function.

Then the corresponding solution u of (2.1) is also nonnegative.

Proof: Since G(x, y) ≥ 0 for all x, y ∈ [0, 1], this follows directly from
(2.9). �
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In order to state the next property, we introduce a norm on the set
C

(
[0, 1]

)
. For any function f ∈ C

(
[0, 1]

)
, let

||f ||∞ = sup
x∈[0,1]

|f(x)|.

The scalar value ||f ||∞, which we will refer to as the sup-norm of f ,
measures, in some sense, the size of the function f . Let us look at some
examples clarifying this concept.

Example 2.4 Let f(x) = x, g(x) = x(1 − x), and h(x) = e
√
x. The sup-

norm of these functions, considered on the unit interval [0, 1], are given by
‖f‖∞ = 1, ‖g‖∞ = 1/4, and finally ‖h‖∞ = e. �
The following result relates the size of the solution u of the problem (2.1)

to the size of the corresponding data given by the right-hand side f .

Proposition 2.2 Assume that f ∈ C
(
[0, 1]

)
and let u be the unique solu-

tion of (2.1). Then

||u||∞ ≤ (1/8)||f ||∞.

Proof: Since G is nonnegative, it follows from (2.9) that for any x ∈ [0, 1],

|u(x)| ≤
∫ 1

0
G(x, y)|f(y)| dy.

From the definition of ||f ||∞ above, it therefore follows that

|u(x)| ≤ ||f ||∞
∫ 1

0
G(x, y) dy = ||f ||∞ 1

2
x(1− x),

and hence

||u||∞ = sup
x∈[0,1]

|u(x)| ≤ (1/8)||f ||∞.

�

2.2 A Finite Difference Approximation

The basic idea of almost any numerical method for solving equations of the
form (2.1) is to approximate the differential equation by a system of alge-
braic equations. The system of algebraic equations is set up in a clever way
such that the corresponding solution provides a good approximation of the
solution of the differential equation. The simplest way of generating such
a system is to replace the derivatives in the equation by finite differences.
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In fact, the basic idea of any finite difference scheme stems from a very
familiar definition; the definition of the derivative of a smooth function:

u′(x) = lim
h→0

u(x+ h)− u(x)
h

.

This indicates that in order to get good approximations, h must be suffi-
ciently small. Typically, the number of unknowns in the algebraic system is
of order2 O(1/h). Thus, in order to compute good approximations, we have
to solve very large systems of algebraic equations.3 From this point of view,
the differential equation may be regarded as a linear system of infinitely
many unknowns; the solution is known at the endpoints and determined
by the differential equation in the interior solution domain.
In this section we will introduce a finite difference scheme approximating

a two-point boundary value problem. We shall observe that such schemes
can provide quite accurate approximations, and that they are, in fact, very
simple to deal with on a computer. A more elaborate analysis of the ap-
proximation properties will be the topic of subsequent sections.

2.2.1 Taylor Series
In order to define the finite difference approximation of problem (2.1), we
first recall how Taylor’s theorem can be used to provide approximations of
derivatives. Assume that g = g(x) is a four-times continuously differentiable
function. For any h > 0 we have

g(x+ h) = g(x) + hg′(x) +
h2

2
g′′(x) +

h3

6
g(3)(x) +

h4

24
g(4)(x+ h1),

where h1 is some number between 0 and h. Similarly,

g(x− h) = g(x)− hg′(x) +
h2

2
g′′(x)− h3

6
g(3)(x) +

h4

24
g(4)(x− h2),

for 0 ≤ h2 ≤ h. In particular, this implies that

g(x+ h)− 2g(x) + g(x− h)
h2 = g′′(x) + Eh(x), (2.11)

where the error term Eh satisfies

|Eh(x)| ≤ Mgh
2

12
. (2.12)

2The O notation is discussed in Project 1.1.
3This is currently a very active field of research, and the advent of high-speed com-

puting facilities has dramatically increased the applicability of numerical methods. In
fact, the numerical solution of partial differential equations has been a major motivation
for developing high-speed computers ever since World War II. A thorough discussion of
this issue can be found in Aspray [2].
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Here the constant Mg is given by

Mg = sup
x

|g(4)(x)|.

We observe that for a fixed function g, the error term Eh tends to zero as
h tends to zero. In particular, if g is a polynomial of degree ≤ 3, such that
g(4) ≡ 0, the error term satisfies Eh(x) = 0 for all x. This property will
be discussed in Exercise 2.16. Further discussions on Taylor series can be
found in Project 1.1.

2.2.2 A System of Algebraic Equations
The first step in deriving a finite difference approximation of (2.1) is to
partition the unit interval [0, 1] into a finite number of subintervals. We
introduce the grid points {xj}n+1

j=0 given by xj = jh, where n ≥ 1 is an
integer and the spacing h is given by h = 1/(n+1). Typically n will be large,
and hence the spacing h is small. The solution v of the discrete problem is
defined only at the grid points xj where the values of the approximation
are given by vj . Between these points, an approximation can be defined by,
for example, piecewise linear interpolation.
As usual, we let u denote the solution of the two-point boundary value

problem

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

and we define the approximation {vj}n+1
j=0 by requiring

−vj−1 − 2vj + vj+1

h2 = f(xj) for j = 1, . . . , n, and v0 = vn+1 = 0.

(2.13)

Obviously, the second-order derivative in the differential equation is ap-
proximated by the finite difference derived above; see (2.11). The system
of n equations and n unknowns {vj}nj=1 defined by (2.13) can be written
in a more compact form by introducing the n× n matrix

A =




2 −1 0 . . . 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2




. (2.14)

Furthermore, let b = (b1, b2, . . . , bn)T be an n-vector with components
given by

bj = h2f(xj) for j = 1, 2, . . . , n.
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Grouping the unknowns in the vector v = (v1, v2, . . . , vn)T , the system
(2.13) can be rewritten as a system of equations in the standard form

Av = b. (2.15)

Below we will show that the matrix A is nonsingular,4 implying that the
system (2.15) has a unique solution. We will also discuss how systems of
this form can be solved numerically. However, for the time being, we find
it more interesting to turn to an example showing how the approximation
(2.13) actually works for a particular case.

Example 2.5 Let us consider the following two-point boundary value prob-
lem:

−u′′(x) = (3x+ x2)ex, x ∈ (0, 1), u(0) = u(1) = 0,

where the exact solution is given by

u(x) = x(1− x)ex.

For this problem, we let

bj = h2(3xj + xj
2)exj for j = 1, . . . , n,

and solve the system of equations defined by (2.15) for different grid sizes,
i.e. for some values of n. In Fig. 2.2 we have plotted the exact solution (solid
line) and numerical solution (dashed line). For the numerical solution we
used n = 5. We notice that, even for this very coarse grid, the finite dif-
ference approximation captures the form of the exact solution remarkably
well. In the next figure, the grid is refined using n = 15, and we notice
that, within the current scaling, the numerical and analytical solutions are
almost identical.
How good is the approximation actually? What is the rate of conver-

gence? Since the exact solution is available for this problem, the rate of
convergence can be estimated simply by running some experiments. We
define the error to be

Eh = max
j=0,... ,n+1

|u(xj)− vj | (2.16)

and compute this value for some grid sizes. The results are given in Table
2.1. We have also estimated the rate of convergence by comparing the
results of subsequent grid sizes. Exactly how this computation is done is
discussed in Project 1.1. From the table, we observe that the error seems
to satisfy a bound of the form

Eh = O(h2).

4The basic concepts of linear algebra are reviewed in Project 1.2.
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FIGURE 2.2. The figure shows the numerical solution (dashed line) and the exact
solution (solid line) of the boundary value problem. For the numerical scheme,
we have used n = 5 interior grid points, and drawn a linear interpolation between
the values on the grid. The solution at the grid points are marked by ‘o’.
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FIGURE 2.3. The figure shows the numerical solution (dashed line) and the exact
solution (solid line) of the boundary value problem. For the numerical scheme,
we have used n = 15 interior grid points.
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n h Eh Rate of convergence
5 1/6 0.0058853
10 1/11 0.0017847 1.969
20 1/21 0.0004910 1.996
40 1/41 0.0001288 2.000
80 1/81 0.0000330 2.000

TABLE 2.1. The table shows the maximum error measured at the grid points for
several values of h.

Later, we will return to the problem of determining the rate of convergence
for this numerical method and prove that the observed rate of convergence
in the present example holds for a wide class of functions f .

�

2.2.3 Gaussian Elimination for Tridiagonal Linear Systems
The purpose of this section is to derive a numerical algorithm which can
be used to compute the solution of tridiagonal systems of the form (2.14),
(2.15). Furthermore, we shall derive conditions which can be used to verify
that a given system has a unique solution. These criteria and the algorithm
developed in this section will be useful throughout this course. We warn
the reader that this section may be a bit technical — in fact Gaussian
elimination is rather technical — and we urge you to keep track of the
basic steps and not get lost in the forest of indices.
We consider a system of the form

Av = b, (2.17)

where the coefficient matrix A has the form

A =




α1 γ1 0 . . . 0

β2 α2 γ2
. . .

...

0
. . . . . . . . . 0

...
. . . βn−1 αn−1 γn−1

0 . . . 0 βn αn




. (2.18)
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This system can be equivalently written in component form, i.e.

α1v1 + γ1v2 = b1,
β2v1 + α2v2 + γ2v3 = b2,

β3v2 + α3v3 + γ3v4 = b3,
. . .

...
βn−1vn−2 + αn−1vn−1 + γn−1vn = bn−1,

βnvn−1 + αnvn = bn.

(2.19)

Here the coefficients β2, . . . , βn, α1, . . . , αn, γ1, . . . , γn−1, and the right-
hand side b1, . . . , bn are given real numbers and v1, v2, . . . , vn are the un-
knowns. Note that by choosing αj = 2, βj = γj = −1, we get the “second-
order difference” matrix defined in (2.14).
The basic idea in Gaussian elimination for this system is to use the first

equation to eliminate the first variable, i.e. v1, from the second equation.
Then, the new version of the second equation is used to eliminate v2 from
the third equation, and so on. After n−1 steps, we are left with one equation
containing only the last unknown vn. This first part of the method is often
referred to as the “forward sweep.”
Then, starting at the bottom with the last equation, we compute the

value of vn, which is used to find vn−1 from the second from last equation,
and so on. This latter part of the method is referred to as the “backward
sweep.”
With an eye to this overview, we dive into the details. Observe first that if

we subtract m2 = β2/α1 times the first equation in (2.19) from the second
equation, the second equation is replaced by

δ2v2 + γ2v3 = c2,

where

δ2 = α2 −m2γ1

and

c2 = b2 −m2b1 .

Hence, the variable v1 has been eliminated from the second equation.
By a similar process the variable vj−1 can be eliminated from equation

j. Assume for example that equation j − 1 has been replaced by

δj−1vj−1 + γj−1vj = cj−1 . (2.20)

Equation j of the original system (2.19) has the form

βjvj−1 + αjvj + γjvj+1 = bj .
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Then, if mj = βj/δj−1 times (2.20) is subtracted from this equation, we
get

δjvj + γjvj+1 = cj ,

where

δj = αj −mjγj−1 ,

cj = bj −mjcj−1 .

After k − 1 iterations of this procedure we obtain a system of the form

δ1v1 + γ1v2 = c1,
. . . . . .

...
δkvk + γkvk+1 = ck,

βk+1vk + αk+1vk+1 + γk+1vk+2 = bk+1,
. . .

...
βn−1vn−2 + αn−1vn−1 + γn−1vn = bn−1,

βnvn−1 + αnvn = bn.

(2.21)

Here the variables δj and cj are defined from the given coefficients αj , βj , γj ,
and bj of (2.19) by the recurrence relations

δ1 = α1 , c1 = b1 ,

mj =
βj

δj−1
, (2.22)

δj = αj −mjγj−1 , j = 2, 3, . . . , k ,

cj = bj −mjcj−1 .

Note that in the derivation of the system (2.21) from the original system
(2.19) we have implicitly assumed that the variables δ1, δ2, . . . , δk−1 will
be nonzero. Furthermore, if δ1, δ2, . . . , δk−1 are nonzero, the two systems
(2.19) and (2.21) are equivalent in the sense that they have the same solu-
tions.
If the computed values of the δks are always nonzero, we can continue

to derive a system of the form (2.21) until k = n. Hence, in this case we
obtain a system of the form

δ1v1 + γ1v2 = c1 ,
δ2v2 + γ2v3 = c2 ,

. . .
...

δn−1vn−1 + γn−1vn = cn−1 ,
δnvn = cn .

(2.23)
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However, from this bidiagonal system we can easily compute the solution
v. From the last equation, we have

vn =
cn
δn

, (2.24)

and by tracking the system backwards we find

vk =
ck − γkvk+1

δk
, k = n− 1, n− 2, . . . , 1 . (2.25)

Hence, we have derived an algorithm for computing the solution v of the
original tridiagonal system (2.19). First we compute the variables δj and
cj from the relations (2.22) with k = n, and then we compute the solution
v from (2.24) and (2.25).

Algorithm 2.1

δ1 = α1
c1 = b1
for k = 2, 3, . . . , n

mk = βk/δk−1
δk = αk −mkγk−1
ck = bk −mkck−1

vn = cn/δn
for k = n− 1, n− 2, . . . , 1

vk = (ck − γkvk+1)/δk

However, as we have observed above, this procedure breaks down if one
of the δks becomes zero. Hence, we have to give conditions which guarantee
that this does not happen.

2.2.4 Diagonal Dominant Matrices
One way to check whether a matrix is nonsingular is to see if the entries
on the main diagonal of the matrix dominate the off-diagonal elements in
the following sense:

Definition 2.1 A tridiagonal matrix A of the form (2.18) is said to be
diagonal dominant5 if

|α1| > |γ1|, |αk| ≥ |βk|+ |γk| for k = 2, 3, . . . , n,

where γn is taken to be zero.

5In numerical analysis, there are several different definitions of diagonal dominant
matrices. This definition is useful in the present course.
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Diagonal dominant matrices occur frequently in numerical analysis.

Example 2.6 The matrix given by (2.14), derived in the previous section,
is diagonal dominant. This follows since the desired inequality holds with
equality for all rows, except for the first and the last, while we have strict
inequality in these two rows. �

Lemma 2.1 Assume that the coefficient matrix A of the triangular system
(2.19) is diagonal dominant and that βk �= 0 for k = 2, 3, . . . , n. Then the
variables δk, k = 1, 2, . . . , n determined by Algorithm 2.1 are well defined
and nonzero.

Proof: We prove by induction that

|δk| > |γk| for k = 1, 2, . . . , n.

By assumption this holds for k = 1. Assume now

|δk−1| > |γk−1| for some k such that 2 ≤ k ≤ n .

Since δk−1 �= 0, mk, and hence δk, is well defined and

δk = αk − βk
δk−1

γk−1 .

By the induction hypothesis |γk−1/δk−1| < 1, and hence, since βk �= 0,

|βk||γk−1

δk−1
| < |βk|.

Therefore, by the triangle inequality and since the system is diagonal dom-
inant we obtain

|δk| ≥ |αk| − |βk||γk−1

δk−1
| > |αk| − |βk| ≥ |γk| .

�

Assume that the system (2.19) satisfies the assumptions given in Lemma
2.1 above. Then, if the vector b = 0, also the vector c = 0, and hence,
by tracking the system (2.23) backwards, the unique solution of (2.23) is
v = 0. However, since the systems (2.19) and (2.23) are equivalent, this
means that v = 0 is the only solution of (2.19) when b = 0. Hence, A is
nonsingular. We have therefore obtained the following result:

Proposition 2.3 Assume that the coefficient matrix A of (2.19) satisfies
the properties specified in Proposition 2.1 above. Then, the system has a
unique solution which can be computed by Algorithm 2.1.

As a direct consequence of this proposition, and the result of Example
2.6, we reach the following result:
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Corollary 2.1 The system of equations defined by (2.14)–(2.15), has a
unique solution that can be computed using Algorithm 2.1.

At this point it should be noted that this result is valid only in the pres-
ence of exact arithmetics. On computers with a fixed number of digits rep-
resenting each real number, round-off errors may accumulate and destroy
the results of the algorithm. Precise results are available stating sufficient
conditions on the matrix in order for Gaussian elimination to provide a
good approximation to the solution of the linear system. Techniques also
exist to reduce the effect of round-off errors. These issues are discussed in
books on numerical linear algebra. If you are interested, you should con-
sult e.g. Golub and van Loan [11]. In the present course we regard these
difficulties, or more precisely, potential difficulties, as beyond our scope.

2.2.5 Positive Definite Matrices
Above, we showed that if the system is diagonal dominant, then Algorithm
2.1 is applicable. Now we will show that a similar result holds for positive
definite matrices.
Let us first briefly recall some basic facts concerning positive definite

matrices.

• A symmetric matrix A ∈ R
n,n is referred to as positive definite if

vTAv ≥ 0 for all v ∈ R
n,

with equality only if v = 0.

• A symmetric and positive definite matrix is nonsingular.

• A symmetric matrix is positive definite if and only if all the eigenval-
ues are real and strictly positive.

These and other properties of matrices are discussed in Project 1.2, and
can, of course, be found in any textbook on linear algebra.6

The properties of symmetric and positive definite matrices are closely
connected to the similar properties for differential operators. These con-
nections will be studied below. In the present section we will prove that if
the matrix is symmetric and positive definite, the linear system of equations
can be solved by Algorithm 2.1.
Let us start by observing that a symmetric and positive definite matrix

is not necessarily diagonal dominant. Consider the 2× 2 matrix

A =
(

5 2
2 1

)
.

6The basic concepts of linear algebra are introduced e.g. in the book of H. Anton [1]
In numerical linear algebra, the book of Golub and van Loan [11] is a standard reference.
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This matrix is obviously symmetric, and one easily computes the eigenval-
ues

λ = 3± 2
√
2,

which are both positive. Hence A is positive definite. However, we observe
that A is not diagonal dominant. Therefore, Proposition 2.1 is not sufficient
to guarantee that Algorithm 2.1 will work for all positive definite systems.
But, as mentioned above, we shall prove that all symmetric tridiagonal
matrices that are positive definite can be handled by the method.

Proposition 2.4 Consider a tridiagonal system of the form (2.19) and
assume that the corresponding coefficient matrix (2.18) is symmetric and
positive definite. Then the system has a unique solution that can be com-
puted by Algorithm 2.1.

Proof: We claim that δk > 0 for k = 1, 2, . . . , n. Assume on the contrary
that δ1, δ2, . . . , δk−1 > 0 and that δk ≤ 0 for some index k, 1 ≤ k ≤ n. We
will show that this assumption leads to a contradiction.
Define the vector v ∈ R

n by

vk = 1 and vk+1 = vk+2 = · · · = vn = 0

and

vj = −γj
δj

vj+1 for j = k − 1, k − 2, . . . , 1.

This vector v satisfies the system (2.21) with

c1 = c2 = · · · = ck−1 = 0, ck = δk ≤ 0, bk+1 = βk+1, bk+2 = · · · = bn = 0.

However, since (2.19) and (2.21) are equivalent, we obtain by (2.22) that
Av = b, where

b1 = b2 = · · · = bk−1 = 0 and bk = ck = δk ≤ 0.

Since A is positive definite and vk = 1, we know that

vTAv > 0.

On the other hand, from the properties of the vectors v and b above, we
have

vTAv = vT b =
n∑
j=1

vjbj = bk ≤ 0.

This is the desired contradiction. �
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2.3 Continuous and Discrete Solutions

In the previous section, we saw that a finite difference scheme can produce
numerical solutions quite close to the exact solutions of two-point bound-
ary value problems. In this section, we shall go deeper into these matters
and show that almost all essential properties of the exact, or continuous,
solution are somehow present in the approximate solution. For this pur-
pose, we will need a bit more notation for the discrete solutions; in fact, we
find it useful to introduce a rather suggestive notation that can help us in
realizing the close relations. When this more convenient notation is intro-
duced, we will see that it is actually quite easy to derive properties such as
symmetry and positive definiteness in the discrete case simply by following
the steps of the proof for the continuous case. At the end of this section,
we will also prove that the finite difference solutions converge towards the
continuous solution as the mesh size h tends to zero.

2.3.1 Difference and Differential Equations
Let us start by recalling our standard two-point boundary value problem.
We let L denote the differential operator

(Lu)(x) = −u′′(x),

and let f ∈ C
(
(0, 1)

)
. Then, (2.1) can be written in the following form:

Find u ∈ C2
0
(
(0, 1)

)
such that

(Lu)(x) = f(x) for all x ∈ (0, 1). (2.26)

Recall here that u ∈ C2
0
(
(0, 1)

)
means that we want the solution to be

twice continuously differentiable, and to be zero at the boundaries. Thus,
we capture the boundary conditions in the definition of the class where we
seek solutions.
Now, let us introduce a similar formalism for the discrete case. First,

we let Dh be a collection of discrete functions defined at the grid points
xj for j = 0, . . . , n + 1. Thus, if v ∈ Dh, it means that v(xj) is defined
for all j = 0, . . . , n+ 1. Sometimes we will write vj as an abbreviation for
v(xj). This should cause no confusion. Next, we let Dh,0 be the subset of
Dh containing discrete functions that are defined in each grid point, but
with the special property that they are zero at the boundary.
Note that a discrete function y ∈ Dh has n + 2 degrees of freedom

y0, y1, . . . , yn+1. This means that we have to specify n+2 real numbers in
order to define such a function. A discrete function z ∈ Dh,0 has only n
degrees of freedom z1, . . . , zn, since the boundary values are known.
For a function w we define the operator Lh by

(Lhw)(xj) = −w(xj+1)− 2w(xj) + w(xj−1)
h2 ,
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which we recognize as the finite difference approximation of the second
derivative. Notice that this definition is valid both for discrete and contin-
uous functions.
Now we can formulate the discrete problem (2.13) as follows: Find a

discrete function v ∈ Dh,0 such that

(Lhv)(xj) = f(xj) for all j = 1, . . . , n. (2.27)

In this formulation, we take care of the boundary conditions in the re-
quirement that v ∈ Dh,0. This is exactly how we did it in the continuous
case.
Some of the properties of the two operators L and Lh that we shall

derive are connected to the inner product of functions. These inner products
are defined by integration for continuous functions and by summation for
discrete functions. For two continuous functions u and v, we define the
inner product of the functions by

〈u, v〉 =
∫ 1

0
u(x)v(x) dx. (2.28)

Similarly, for two discrete functions, i.e. for u and v in Dh, we define the
inner product to be

〈u, v〉h = h(
u0v0 + un+1vn+1

2
+

n∑
j=1

ujvj), (2.29)

where we have used the shorthand notation vj for v(xj). Clearly, (2.29) is
an approximation of (2.28). In the language of numerical integration, this is
referred to as the trapezoidal rule; you will find more about this in Exercise
2.20.
Having established a suitable notation for the continuous and the discrete

problem, we are in position to start deriving some properties.

2.3.2 Symmetry
The first property we will show is that both the operators L and Lh are
symmetric. For matrices we are used to saying that a matrix A ∈ R

n,n is
symmetric if the transpose of the matrix equals the matrix itself, i.e. if

AT = A.

It turns out that this is equivalent to the requirement7 that

(Ax, y) = (x,Ay)

7Note that (·, ·) denotes the usual Euclidean inner product of vectors in R
n; see

Exercise 2.21 on page 79 or Project 1.2 on page 31.
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for all vectors x and y in R
n. The problem of proving this equivalence is

left to the reader in Exercise 2.21.
As we turn our attention to operators not representable by matrices, the

latter requirement suggests a generalized notion of symmetry.

Lemma 2.2 The operator L given in (2.26) is symmetric in the sense that

〈Lu, v〉 = 〈u, Lv〉 for all u, v ∈ C2
0
(
(0, 1)

)
.

Proof: The property follows from integration by parts. For u, v ∈ C2
0
(
(0, 1)

)
we have

〈Lu, v〉 = −
∫ 1

0
u′′(x)v(x) dx = −u′(x)v(x)|10 +

∫ 1

0
u′(x)v′(x) dx

Since v(0) = v(1) = 0, this implies that

〈Lu, v〉 =
∫ 1

0
u′(x)v′(x) dx. (2.30)

However, by performing one more integration by parts, we obtain as above
that ∫ 1

0
u′(x)v′(x) dx = −

∫ 1

0
u(x)v′′(x) dx = 〈u, Lv〉,

which is the desired result. �

Before we derive a similar property for the discrete operator Lh, let us
look more closely at the main step of the proof above; no doubt the trick
is integration by parts. In order to derive a similar “summation by parts”
for discrete functions, we start by reminding ourselves how integration by
parts is derived. To this end, let u and v be continuously differentiable
functions and recall how we differentiate a product of two functions;

(u(x)v(x))′ = u′(x)v(x) + u(x)v′(x).

Now, by integrating this identity on the unit interval, we get

∫ 1

0
u′(x)v(x) dx = [uv]10 −

∫ 1

0
u(x)v′(x) dx.

Then we turn our attention to discrete functions and start by deriving a
product rule for differences. Let y and z be two members of Dh, i.e. discrete
functions, and observe that

yj+1zj+1 − yjzj = (yj+1 − yj)zj + (zj+1 − zj)yj+1.
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By summing this identity from j = 0 to j = n, we get

n∑
j=0

(yj+1 − yj)zj = yn+1zn+1 − y0z0 −
n∑
j=0

(zj+1 − zj)yj+1. (2.31)

This identity is referred to as summation by parts, and it is exactly the tool
we need to prove that Lh is symmetric.

Lemma 2.3 The operator Lh is symmetric in the sense that

〈Lhu, v〉h = 〈u, Lhv〉h for all u, v ∈ Dh,0.

Proof: Note that u0 = v0 = un+1 = vn+1 = 0, and define also u−1 =
v−1 = 0. Then, using summation by parts twice, we get

〈Lhu, v〉h = −h−1
n∑
j=0

((uj+1 − uj)− (uj − uj−1))vj

= h−1
n∑
j=0

(uj+1 − uj)(vj+1 − vj)

= −h−1
n∑
j=0

((vj+1 − vj)− (vj − vj−1))uj

= 〈u, Lhv〉h.
�

The next property we would like to establish is the fact that the two
operators L and Lh are positive definite.

Lemma 2.4 The operators L and Lh are positive definite in the following
sense:

(i) For any u ∈ C2
0
(
(0, 1)

)
we have

〈Lu, u〉 ≥ 0,

with equality only if u ≡ 0.

(ii) For any v ∈ Dh,0 we have

〈Lhv, v〉h ≥ 0,

with equality only if v ≡ 0.

Proof: Assume that u ∈ C2
0
(
(0, 1)

)
. From (2.30) we have that

〈Lu, u〉 =
∫ 1

0
(u′(x))2 dx,
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which is clearly nonnegative. Furthermore, if 〈Lu, u〉 = 0, then u′ ≡ 0.
Hence, u is a constant, and since u(0) = 0, we have u ≡ 0. This establishes
the desired property for the operator L.
The result for the operator Lh follows by similar discrete arguments.

From the proof of the symmetry property of Lh above, we note that

〈Lhv, v〉h = h−1
n∑
j=0

(vj+1 − vj)2 ≥ 0,

for any v ∈ Dh,0. Furthermore, if 〈Lhv, v〉h = 0, we have

vj+1 = vj for j = 0, 1, . . . , n.

and then, since v0 = 0, this implies that v ≡ 0. �

2.3.3 Uniqueness
We have already seen that the continuous problem (2.26) and the discrete
problem (2.27) have unique solutions. This is stated in Theorem 2.1, page
44, and Corollary 2.1, page 55, respectively. In this section, we shall use the
results on positive definiteness derived above to give an alternative proof
of these facts.

Lemma 2.5 The solution u of (2.26) and the solution v of (2.27) are
unique solutions of the continuous and the discrete problems, respectively.

Proof: Let f ∈ C
(
(0, 1)

)
be given and assume that u1, u2 ∈ C2

0
(
(0, 1)

)
are two solutions of (2.26), thus

Lu1 = f and Lu2 = f.

In order to show that u1 ≡ u2, we let e = u1 − u2. Then

Le = L(u1 − u2) = Lu1 − Lu2 = 0.

Hence, by multiplying this identity by the error e and integrating over the
unit interval, we get

〈Le, e〉 = 0.

By Lemma 2.4 we therefore derive that e(x) ≡ 0, and thus u1 ≡ u2.
A similar argument can be given in the discrete case. �

2.3.4 A Maximum Principle for the Discrete Problem
Let us recall the representation (2.8)–(2.9) of the solution u of problem
(2.26), i.e.

u(x) =
∫ 1

0
G(x, y)f(y)dy,
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where the Green’s function is given by

G(x, y) =
{

y(1− x) 0 ≤ y ≤ x,
x(1− y) x ≤ y ≤ 1.

In this section we shall derive a similar representation for the solution of
the discrete problem (2.27), and then use this to prove a discrete analog of
the maximum principle (see Proposition 2.1, page 44).
For a given grid point xk = kh define a grid function Gk ∈ Dh,0 by

Gk(xj) = G(xj , xk). Since G(x, y) is linear in x for x �= y, it follows by a
straightforward calculation that(

LhG
k
)
(xj) = 0 for j �= k,

while

(
LhG

k
)
(xk) = − 1

h2

(
(xk − h)(1− xk)− 2xk(1− xk) + xk(1− xk − h)

)
=

1
h
.

Hence,

LhG
k =

1
h
ek, (2.32)

where ek ∈ Dh,0 satisfies

ek(xj) =
{

1 if k = j,
0 otherwise.

For any arbitrary f ∈ Dh,0, define w ∈ Dh,0 by

w = h

n∑
k=1

f(xk)Gk.

By linearity of the operator Lh, we obtain from (2.32) that

Lhw = h

n∑
k=1

f(xk)(LhGk) =
n∑
k=1

f(xk)ek = f.

Hence, w is exactly the unique solution v of problem (2.27). We have there-
fore established the representation

v(xj) = h

n∑
k=1

G(xj , xk)f(xk) (2.33)

for the solution v of problem (2.27). This representation is the desired dis-
crete analog of (2.9). The following result is a discrete analog of Proposition
2.1 on page 44.

Administrator
ferret
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Proposition 2.5 Assume that f(x) ≥ 0 for all x ∈ [0, 1], and let v ∈ Dh,0
be the solution of (2.27). Then v(xj) ≥ 0 for all j = 1, . . . , n.

Proof: Since G(x, y) ≥ 0 this follows directly from (2.33). �

Let us recall from Exercise 2.16 that the solution of problem (2.27) with
f ≡ 1 is v(xj) = 1

2xj(1− xj). By combining this with (2.33), we obtain

h

n∑
k=1

G(xj , xk) =
1
2
xj(1− xj). (2.34)

Before we present the maximum principle, we introduce a norm on dis-
crete functions similar to the sup-norm of continuous function. For any
discrete function v ∈ Dh we define this norm by

||v||h,∞ = max
j=0,... ,n+1

|v(xj)|. (2.35)

In fact, we have met this norm8 before under the pseudonym Eh; cf. Ex-
ample 2.5 on page 48.
The following property corresponds to the property stated in Proposition

2.2 for the continuous problem.

Proposition 2.6 The solution v ∈ Dh,0 of (2.27) satisfies

||v||h,∞ ≤ (1/8)||f ||h,∞.

Proof: Since G(x, y) ≥ 0, it follows from (2.33) and (2.34) that

|v(xj)| ≤ h

n∑
k=1

G(xj , xk)|f(xk)|

≤ ‖f‖h,∞
(
h

n∑
k=1

G(xj , xk)

)

= ‖f‖h,∞ xj(1− xj)
2

≤ 1
8
‖f‖h,∞.

�

2.3.5 Convergence of the Discrete Solutions
So far we have established several similarities between the continuous prob-
lem (2.26) and the corresponding numerical approximation (2.27). Our final

8For continuous functions this is a seminorm. This is so because we can have
||g||h,∞ = 0 for a continuous function g not identically equal to zero.
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goal in this section is to show that the discrete solution v will indeed con-
verge to the continuous solution u when the spacing h approaches zero.
This problem was discussed in Example 2.5 on page 48, where we observed
that the error of the approximation was of order O(h2). Another example
indicating the same rate is given in Project 2.2. But in this section we shall
prove that this property holds for a large class of functions f .
Before we start proving convergence, we want to introduce the concepts

of truncation error and consistency. These terms are quite essential in the
general analysis of finite difference schemes.

Definition 2.2 Let f ∈ C
(
(0, 1)

)
, and let u ∈ C2

0
(
(0, 1)

)
be the solution of

(2.26). Then we define the discrete vector τh, called the truncation error,
by

τh(xj) = (Lhu)(xj)− f(xj) for all j = 1, . . . , n.

We say that the finite difference scheme (2.27) is consistent with the dif-
ferential equation (2.26) if

lim
h→0

||τh||h,∞ = 0.

�

You should note here that the truncation error is defined by applying the
difference operator Lh to the exact solution u. Thus, a scheme is consistent
if the exact solution almost solves the discrete problem.
For sufficiently smooth functions f , the scheme (2.27) is consistent.

Lemma 2.6 Suppose f ∈ C2
(
[0, 1]

)
. Then the truncation error defined

above satisfies

||τh||h,∞ ≤ ||f ′′||∞
12

h2.

Proof: By using the fact that −u′′ = f and −u′′′′ = f ′′, we derive from the
Taylor series expansion (2.11) and the error estimate (2.12) that

|τh(xj)| = |u(xj−1)− 2u(xj) + u(xj+1)
h2 + f(xj)|

≤ |u′′(xj) + f(xj)|+ ||u′′′′||∞
12

h2 =
||f ′′||∞
12

h2.

�

By using this bound on the truncation error, we can prove that the
numerical solution converges towards the exact solution as the grid size
tends to zero.
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Theorem 2.2 Assume that f ∈ C2
(
[0, 1]

)
is given. Let u and v be the

corresponding solutions of (2.26) and (2.27), respectively. Then

||u− v||h,∞ ≤ ||f ′′||∞
96

h2.

Proof:Define the discrete error function e ∈ Dh,0 by e(xj) = u(xj)−v(xj)
for j = 1, . . . , n. Observe that

Lhe = Lhu− Lhv = Lhu− fh = τh,

where fh denotes the discrete function with elements (f(x1), . . . , f(xn)).
Then it follows from Proposition 2.6 that

||e||h,∞ ≤ (1/8)||τh||h,∞ ≤ ||f ′′||∞
96

h2.

�

This theorem guarantees that the error measured in each grid point tends
to zero as the mesh parameter h tends to zero. Moreover, the rate of con-
vergence is 2. In Exercise 2.23, we study how to define an approximation
of the solution for values between the grid points.

2.4 Eigenvalue Problems

In this final section of this chapter we shall study eigenvalue problems
associated with the operators L and Lh. The results of this discussion will
be used frequently in later chapters.

2.4.1 The Continuous Eigenvalue Problem
A real number9 λ is said to be an eigenvalue associated with the boundary
value problem (2.1) if

Lu = λu (2.36)

for a suitable nonzero10 function u ∈ C2
0
(
(0, 1)

)
. Here, as above, Lu = −u

′′
.

The function u is referred to as an eigenfunction.

9In general, eigenvalues are allowed to be complex. However, due to the symmetry
property of L given in Lemma 2.2, all eigenvalues will be real in the present case; cf.
Exercise 2.28.

10The term “a nonzero function” refers to a function that is not identically equal to
zero. Thus it is allowed to vanish at certain points, and even on a subinterval, but not
for all x ∈ [0, 1]. Sometimes we also use the term “nontrivial” for such functions.
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At this point you should notice that this is quite similar to the eigen-
value/eigenvector relations for matrices. Suppose that A ∈ R

n,n and v ∈
R
n. Then, if

Av = λv

for some scalar value λ and nonzero vector v, we refer to λ and v as an
eigenvalue/eigenvector pair for the matrix A. We recall that if v is an
eigenvector for A, then, for any scalar c �= 0, the vector cv is also an
eigenvector with the same eigenvalue. The same property holds for the
eigenvalue problem (2.36). If u is an eigenfunction for (2.36) and c ∈ R, c �=
0, then, by the linearity of L, the function cu is also an eigenfunction with
the same eigenvalue. Hence, eigenfunctions are only determined modulo
multiplication by a constant.
Before finding the actual eigenvalues and eigenfunctions for the problem

(2.36), let us restrict the possible values that λ can attain by using the
properties of L derived in Lemma 2.4. Here we proved that the operator L
is positive definite, thus

〈Lu, u〉 > 0,

for all nonzero functions u ∈ C2
0
(
(0, 1)

)
. Suppose now that λ and u solve

(2.36). Then, upon multiplying both sides of the equation by u and inte-
grating, we obtain

〈Lu, u〉 = λ〈u, u〉.
Since the operator L is positive definite and the eigenfunction u is nonzero,
it follows that

λ > 0. (2.37)

Given the sign of the eigenvalue, we proceed by finding explicit formulas
for both the eigenvalues as well as the eigenfunctions.
Since we know that the eigenvalues are positive, we can define

β =
√
λ,

and study the equation

u′′(x) + β2u(x) = 0,

which has general solutions of the form

u(x) = c1 cos (βx) + c2 sin (βx). (2.38)

Here c1 and c2 are constants. Using the boundary condition u(0) = 0, we
get c1 = 0. The other boundary condition, u(1) = 0, implies that

c2 sin (β) = 0.
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FIGURE 2.4. The first four eigenfunctions uk(x).

Since we are only interested in nontrivial solutions, we have to choose β
such that sin (β) = 0, hence

β = βk = kπ for k = 1, 2, . . . . (2.39)

We can summarize these results as follows:

Lemma 2.7 The eigenvalues and eigenfunctions of the problem (2.36) are
given by

λk = (kπ)2 for k = 1, 2, . . . , (2.40)

and

uk(x) = sin (kπx) for k = 1, 2, . . . . (2.41)

We observe, in particular, that the eigenvalue problem (2.36) has in-
finitely many eigenvalues. The first four eigenfunctions are plotted in Fig. 2.4.
Let us make a remark concerning (2.39). Why do we only use positive

values of k? Of course, k = 0 is ruled out by requiring nontrivial solutions;
but what about negative values? Note that for any α ∈ R we have

sin (−α) = − sin (α).

Hence, negative values of k do not introduce new eigenfunctions. This sim-
ply corresponds to multiplying one of the eigenfunctions given above by
−1.
A fundamental property of the eigenfunctions {uk}∞

k=1 is that these func-
tions are orthogonal with respect to the inner product 〈·, ·〉. This property
will be very useful in later chapters, where we use these eigenfunctions to
derive analytical solutions of some linear partial differential equations.
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Lemma 2.8 The functions {sin (kπx)}k≥1 satisfy

〈sin (kπx), sin (mπx)〉 =
{

0 k �= m,
1/2 k = m.

(2.42)

Proof: Recall the following trigonometric identity:

sin (α) sin (β) =
1
2
(cos (α− β)− cos (α+ β)), (2.43)

which holds for any real numbers α and β. By using this identity, (2.42) is
proved by direct integration. Suppose k �= m; then∫ 1

0
sin (kπx) sin (mπx) dx

=
1
2

∫ 1

0
(cos ((k −m)πx)− cos ((k +m)πx)) dx

=
1
2

[
1

(k −m)π
sin ((k −m)πx)− 1

(k +m)π
sin ((k +m)πx)

]1

0
= 0,

since sin (lπ) = 0 for any integer l.
For k = m, the identity (2.43) gives∫ 1

0
sin2 (kπx) dx =

∫ 1

0

(
1
2
− cos (2kπx)

)
dx =

1
2

[
1− 1

kπ
sin (kπx)

]1

0
=

1
2
.

�

The proof above utilizes special identities for trigonometric functions.
However, the orthogonality of the functions {uk} can also be derived di-
rectly from the fact that these functions are eigenfunctions of the symmet-
ric operator L on the space C2

0
(
(0, 1)

)
. From the symmetry of L it follows

directly that

λk〈uk, um〉 = 〈Luk, um〉 = 〈uk, Lum〉 = λm〈uk, um〉,
or

(λk − λm)〈uk, um〉 = 0.

Hence, since λk �= λm when k �= m, we must have 〈uk, um〉 = 0.

2.4.2 The Discrete Eigenvalue Problem
We will now consider the discrete analog of the continuous eigenvalue prob-
lem (2.36). A real number µ is said to be an eigenvalue associated with the
difference method (2.13) if

Lhv = µv (2.44)
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for a suitable nonzero11 discrete function v ∈ Dh,0. We recall that the
difference operator Lh was defined in Section 2.3.1.
It follows directly from the definition of Lh that if µ is an eigenvalue of

(2.44), then µ is also an eigenvalue of the matrix

A =
1
h2




2 −1 0 . . . 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2




.

On the other hand, if µ ∈ R is an eigenvalue of A, then µ is an eigenvalue of
(2.44). Furthermore, since A is a symmetric matrix, any eigenvalue of A is
real, i.e. there are no complex eigenvalues (see Project 1.2). Therefore, the
eigenvalue problem (2.44) corresponds exactly to the eigenvalue problem
associated with the matrix A. In particular, this means that there are, at
most, n eigenvalues for (2.44).
Since the eigenfunctions of (2.36) are of the form sin(βx), it is reasonable

to check whether functions of the form v(xj) = sin(βxj) are solutions of
the finite difference equation (2.44). From the trigonometric identity

sin(x+ y) + sin(x− y) = 2 cos(y) sin(x)

we obtain

(Lhv)(x) =
2
h2 [1− cos(βh)]v(x).

Furthermore, from the identity

1− cos(y) = 2 sin2(y/2)

this can be written

(Lhv)(x) = µv(x),

where µ = 4
h2 sin2(βh2 ). Also, note that the function v(xj) = sin(βxj) is

in Dh,0 if β = kπ, where k is an integer. Therfore, if k is an integer, we
conclude that

µk =
4
h2 sin2(

kπh

2
)

is an eigenvalue for (2.44), with corresponding discrete eigenfunction vk ∈
Dh,0 given by

vk(xj) = sin(kπxj), j = 1, 2, . . . , n.

11A function v ∈ Dh,0 is referred to as nonzero if it is �= 0 in at least one grid point.
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FIGURE 2.5. The plots show the discrete and continuous eigenfunctions in the
case of n = 4. Note that the discrete eigenfunctions interpolate the corresponding
continuous eigenfunction.

Hence, it seems as if the eigenvalue problem (2.44) has infinitely many
eigenvalues. This contradicts our claim above that this problem has at
most n eigenvalues. However, from the periodicity of sin(x) it follows that

vn+1(xj) = 0, j = 1, 2, . . . , n

and therefore µn+1 is not an eigenvalue. In a similar way we also derive
that

µn+1+k = µn+1−k, k = 1, 2, . . . , n,

and

µ2(n+1)+k = µk.

Therefore, the n eigenvalues of (2.44) are given by

0 < µ1 < µ2 < · · · < µn <
4
h2 .

The discrete eigenfunctions, when n = 4, are plotted in Fig. 2.5.
We summarize the properties of the eigenvalue problem (2.44):

Lemma 2.9 The eigenvalues µk of the problem (2.44) are given by

µk =
4
h2 sin2 (kπh/2) for k = 1, . . . , n. (2.45)

The corresponding discrete eigenfunctions vk ∈ Dh,0, k = 1, . . . , n, are
given by

vk(xj) = sin (kπxj) for j = 1, . . . , n.
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Furthermore, the discrete eigenfunctions are orthogonal and satisfy

〈vk, vm〉h =
{

0 k �= m,
1/2 k = m.

(2.46)

Proof: We have already derived the eigenvalues µk and eigenvectors vk. As
in the continuous case above, the orthogonality property can be derived
directly from the symmetry of the operator Lh. Assume that k �= m and
consider 〈vk, vm〉h. It follows from Lemma 2.3 that

µk〈vk, vm〉h = 〈Lhvk, vm〉h = 〈vk, Lhvm〉h = µm〈vk, vm〉h,
and therefore, since µk �= µm, 〈vk, vm〉h = 0. An alternative proof of
the orthogonality property is given in Exercise 2.30. In the same exercise
〈vk, vk〉h = 1/2 is also established. �

Before we complete this chapter we will discuss an important consequence
of this final result. The functions v1, v2, . . . , vn ∈ Dh,0 are orthogonal, and,
more specifically, they are linearly independent. Therefore, since Dh,0 is a
linear space of dimension n, the set {v1, v2, . . . , vn} forms a basis for Dh,0.
Hence, any function g ∈ Dh,0 can be written in the form

g =
n∑
k=1

ckvk,

where c1, c2, . . . , cn are real coefficients. Furthermore, by Lemma 2.9,

〈g, vm〉h =
n∑
k=1

ck〈vk, vm〉h = cm
2

,

which implies that

cm = 2〈g, vm〉h.
Hence, since vk(xj) = sin(kπxj), we obtain that any function g ∈ Dh,0 can
be expressed in the form

g(xj) =
n∑
k=1

2〈g, vk〉h sin(kπxj), j = 1, . . . , n. (2.47)

This representation of g as a finite sum of sine functions is referred to as a
finite Fourier series.
Note that as the number of mesh points n tends to infinity, the distance

h between the mesh points will go to zero. Hence, in the limit we can guess
that any function f defined on [0, 1] can be written in the form

f(x) =
∞∑
k=1

ckuk =
∞∑
k=1

ck sin(kπx), (2.48)
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where the coefficients ck are given by

ck = 2〈f, uk〉 = 2
∫ 1

0
f(x)uk(x)dx.

Here the eigenfunctions uk are given by (2.41). As we shall see later, this hy-
pothesis is nearly correct, but, not surprisingly, we need some assumptions
on f in order to guarantee a representation of the form (2.48).
An infinite series of the form (2.48) is referred to as a Fourier series or a

sine series. Such series will be used frequently in later chapters, and their
properties will be studied carefully below.

2.5 Exercises

Exercise 2.1 Compute the sup-norm, on the unit interval, for the follow-
ing functions:

(a) f(x) =
√

x(1− x),

(b) f(x) = sin(100x),

(c) f(x) = x ln(x),

(d) f(x) = 200890x/(x+ 230187).

Exercise 2.2 Find the solution of the two-point boundary value problem

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

where the right-hand side f is given by

(a) f(x) = x2,

(b) f(x) = ex,

(c) f(x) = cos (ax), where a is a given real number.

Exercise 2.3 Consider the boundary value problem

−u′′(x) = f(x), x ∈ (a, b), u(a) = u(b) = 0,

where a < b are given real numbers. Find the Green’s function for this
problem; i.e. find a function G = G(x, y) such that the solution of the
boundary value problem can be written in the familiar way,

u(x) =
∫ b

a

G(x, y)f(y) dy.
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Use this representation to compute the solution for the following right-hand
sides:

(a) f(x) = 1

(b) f(x) = x

(c) f(x) = x2

Exercise 2.4 Construct a solution of the following two-point boundary
value problem:

−u′′(x) = f(x), x ∈ (0, 1), u(0) = α, u(1) = β,

where α and β are given real numbers.

Exercise 2.5 Find a Green’s function for the following two-point bound-
ary value problem:

−u′′(x) = f(x), x ∈ (0, 1), u(0) = 0, u′(1) = 0.

Is there a unique solution of this problem?

Exercise 2.6 Consider Poisson’s equation with Neumann-type boundary
values, i.e.

−u′′(x) = f(x), x ∈ (0, 1), u′(0) = 0, u′(1) = 0.

(a) Show that the condition

∫ 1

0
f(x) dx = 0, (2.49)

is necessary in order for this problem to have a solution.

(b) Assume that u is a solution and define v(x) = u(x) + c, where c is
some given constant. Is v a solution of the problem? Is the solution
of this problem unique?

(c) Assume that the condition (2.49) is satisfied. Show that the problem
then always has a solution. Furthermore, show that the solution is
uniquely determined by the extra condition

∫ 1

0
u(x) dx = 0, (2.50)
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Exercise 2.7 Repeat Exercise 2.6 for the following problem involving pe-
riodic boundary conditions:

−u′′(x) = f(x), x ∈ (0, 1), u′(0) = u′(1), u(0) = u(1).

Exercise 2.8 Consider the boundary value problem

−(u′′(x) + u(x)) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

Show that the solution of this problem can be written in the form (2.9)
where the Green’s function is given by

G(x, y) =
{

c sin (y) sin (1− x) if 0 ≤ y ≤ x,
c sin (x) sin (1− y) if x ≤ y ≤ 1,

where c = 1/ sin (1).

Exercise 2.9 The purpose of this exercise is to study the stability of the
solution of our standard problem:

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

Assume that this equation models some physical phenomena and that the
function f is obtained from certain measurements. Hence, inaccuracies can
be introduced into our model due to small errors in the measurements. It is
therefore important to study how such inaccuracies may effect the solution
of the problem. Suppose that F = F (x) is the exact data that we are trying
to measure, whereas f = f(x) is the function representing the data that
we have actually measured. Let U denote the solution of the problem

−U ′′(x) = F (x), x ∈ (0, 1), U(0) = U(1) = 0,

and show that

‖U − u‖∞ ≤ (1/8)‖F − f‖∞.

Thus, if the measurements are fairly accurate, so is the solution of our
model. This property is referred to as stability with respect to perturbation
in the data; a concept that is of fundamental importance in the use of
mathematical models.

Exercise 2.10 Consider the boundary value problem of Example 2.5, and
compute, by hand, the numerical approximation described in the example
for n = 1, 2, 3, and compare your results with the exact solution.
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Exercise 2.11 Write a procedure based on Algorithm 2.1 that solves the
linear system

Av = b,

where A is given by (2.18). The size of the system, n, and the vectors
containing α, β, γ, and b should be input and the solution v should be
output. Do not store more vectors than necessary.
In order to debug the procedure, define the vector z ∈ R

n by

zj = j, j = 1, . . . , n,

and the vector b ∈ R
n by

b = Az,

where the matrix A ∈ R
n,n is given by (2.14). Use your procedure to solve

the system

Av = b.

If v is not very close to z, there is something wrong in your code.

Exercise 2.12 Use the procedure implemented in the exercise above to
compute the numerical solutions of the boundary value problems of Ex-
ercise 2.2. Compare the exact and numerical solutions by computing the
error Eh defined in (2.16).

Exercise 2.13 In many applications we want to solve a series of linear sys-
tems with different right-hand sides, but where the matrix is kept fixed. In
such cases the computational effort can be reduced by changing Algorithm
2.1 slightly.
Suppose we want to solve

Av� = b�

for � = 1, . . . , N . Here the matrix A ∈ R
n,n is given by (2.18) and does not

depend on �. The right-hand side b� ∈ R
n is given for each value of �.

(a) Modify Algorithm 2.1 by introducing the following three steps:

1. Compute the factors mk, δk for k = 1, . . . , n.

2. Compute ck for k = 1, . . . , n.

3. Compute vk for k = 1, . . . , n.

Observe that for the system above, the first step can be done once
and for all, whereas steps 2 and 3 must be performed for each �.
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(b) Use the modified algorithm to generate numerical solutions of the
following problems:

−u′′(x) = ex/�, u(0) = u(1) = 0,

for � = 1, 2, . . . , 10. By doing further experiments, try to guess the
limit solution as � tends to infinity.

Exercise 2.14 Consider the boundary value problem

−u′′(x) = f(x), u(0) = 0, u′(1) = 1. (2.51)

(a) Define two finite difference schemes, S1 and S2, approximating the
solution of this problem. The differential equation and the left bound-
ary condition can be handled as usual, but the two schemes differ at
the approximation of the second boundary condition. In the scheme
S1, we use the approximation

un+1 − un
h

= 1,

and in S2 we introduce an auxiliary unknown un+2, and approximate
the boundary condition by

un+2 − un
2h

= 1.

For both these schemes, find the corresponding matrices A1 and A2,
and the right-hand sides b1 and b2, such that the two approximations
defined by the schemes S1 and S2 can be found by solving the linear
systems

A1v1 = b1 and A2v2 = b2.

(b) Are the matrices A1 and A2

1. symmetric and positive definite?

2. diagonal dominant?

(c) Let

f(x) = −ex−1,

and show that

u(x) = e−1(ex − 1)
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is the exact solution of (2.51). Compare the numerical approximations
generated by the schemes S1 and S2 for this example by computing
the error given by (2.16) for both schemes. What can you say about
the rate of convergence12 of the two approximations?

Exercise 2.15 In the Gaussian elimination Algorithm 2.1, the computa-
tion of δk is the most critical part. Consider the matrix A given by (2.14),
and show that for this particular matrix we have

δk =
k + 1
k

, k = 1, 2, . . . , n.

Exercise 2.16 The purpose of this exercise is to show that in some partic-
ular cases, the approximate solution defined by the finite difference scheme
(2.13) gives the exact solution of the boundary value problem evaluated at
the grid points.

(a) Consider the boundary value problem

−u′′(x) = 1, x ∈ (0, 1), u(0) = u(1) = 0,

with the exact solution given by u(x) = x(1 − x)/2. Show that for
this problem, the finite difference solution defined by (2.13) is given
by

vj = xj(1− xj)/2, j = 1, . . . , n,

which coincides with the exact solution at the grid points xj . Discuss
this result in view of (2.12).

(b) Assume that the solution of the problem

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0, (2.52)

is a polynomial of degree less than or equal to three. Show that the
finite difference solution then coincides with the exact solution at the
grid points.

(c) Describe the class of functions f such that the assumption in (b) is
valid.

12In Project 1.1, we discuss how to estimate the rate of convergence numerically.
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Exercise 2.17 Consider the problem (2.26) with

f(x) = 100e−10x.

The exact solution is given by

u(x) = 1− (1− e−10)x− e−10x.

We want to use this problem to investigate the sharpness of the error es-
timate given in Theorem 2.2. Make a table with three columns: one for h,
one for the actual error, and one for the error estimate provided by the
theorem. Fill in the table for h = 1/10, 1/20, 1/40, 1/80, 1/160, and use the
result to comment on the sharpness of the estimate.

Exercise 2.18 We want to solve the problem (2.26) numerically for a
right-hand side satisfying

||f ′′||∞ ≤ 1705,

and we want an approximation for which the error measured in absolute
values at the grid points is less than 1/80545.

(a) How large do we have to choose n in order to be sure that the ap-
proximate solution defined by (2.27) is sufficiently accurate?

(b) It turns out that we are only interested in the solution at x = 1/10
and at x = 9/10. Is this information of any help? Can we reduce the
number of grid points computed above?

Exercise 2.19 Consider the differential equation

−u′′(x) + u(x) = f(x)

and the difference approximation

−vj−1 − 2vj + vj+1

h2 + vj = f(xj).

(a) Identify the differential operator L and the difference operator Lh.

(b) Define and compute the truncation error τh.

(c) Show that the scheme is consistent provided that the solution u is
sufficiently smooth.
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Exercise 2.20 Let u, v ∈ C2
0
(
(0, 1)

)
. Prove that

|〈u, v〉 − 〈u, v〉h| ≤ h2

12
||(uv)′′||∞.

Exercise 2.21 Show that a matrix A ∈ R
n,n is symmetric, i.e.

AT = A,

if and only if

(Ax, y) = (x,Ay)

for all vectors x and y in R
n. Here, (·, ·) is the Euclidean inner product on

Rn, defined by

(x, y) =
n∑
j=1

xjyj .

Exercise 2.22 Show that the matrix A given by (2.14) on page 47 is
positive definite.

Exercise 2.23 In this exercise we shall define an approximation to the
solution of the two-point boundary value problem (2.26) for all x in the
unit interval. The approximation is based on a piecewise linear extension
of the solution v of the discrete problem (2.27).
For j = 0, 1, . . . , n, we let

v∆(x) = vj +
x− xj

h
(vj+1 − vj) for x ∈ [xj , xj+1].

This approximation simply draws a straight line between the points defined
by {xj , vj}. Show that

||u− v∆||∞ = O(h2),

where the norm covers the whole unit interval and not only the grid points.

Exercise 2.24 Consider the eigenvalue problem

−u′′ + αu = λu, x ∈ (0, 1), u(0) = u(1) = 0,

where α ∈ R is a constant. Find all eigenvalues and eigenvectors.
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Exercise 2.25 Consider the eigenvalue problem

−u′′ = λu, x ∈ (a, b), u(a) = u(b) = 0,

where a < b are given real numbers. Find all eigenvalues and eigenvectors.

Exercise 2.26 Find all the eigenvalues of the matrix

A =
(

2 −1
−1 2

)
.

Use the result to verify Lemma 2.9 when n = 2.

Exercise 2.27 Let µ1 = 4
h2 sin2 (πh/2) be the smallest eigenvalue of the

problem (2.44). Hence, µ1 = µ1(h), i.e. µ1 can be considered as a function
of h.

(a) Show that limh→0µ1(h) = λ1 = π2.

(b) Show that 4 ≤ µ1(h) ≤ π2 for 0 < h ≤ 1.

Exercise 2.28 The purpose of this exercise is to show that all eigennval-
ues of the problem (2.36) are real. Assume more generally that Lu = λu,
where

u(x) = v(x) + iw(x) and λ = α+ iβ.

Here i =
√−1, v, w ∈ C2

0
(
(0, 1)

)
and α, β ∈ R. In addition u should not be

the zero function.

(a) Show that

Lv = αv − βw and Lw = βv + αw.

(b) Use the symmetry of the operator L (see Lemma 2.2) to show that

β (〈v, v〉+ 〈w,w〉) = 0.

(c) Explain why β = 0 and why the real eigenvalue λ = α has a real
eigenfunction.

Exercise 2.29 In this problem we shall derive some properties for finite
Fourier series. Such series occur frequently for example in signal processing.
Consider finite Fourier series of the form

g(x) =
n∑
k=1

ck sin(kπx),

where c1, c2, . . . , cn are real coefficients. Furthermore, let, as usual, xj de-
note the grid points xj = j/(n+ 1) for j = 1, . . . , n.
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(a) Let z1, z2, . . . , zn be arbitrary real numbers. Show that the interpo-
lation conditions

g(xj) = zj for j = 1, . . . , n

are satisfied if and only if

ck = 2h
n∑
j=1

zj sin(kπxj) for k = 1, . . . , n.

(b) Let T ∈ R
n,n be the matrix with coefficients tj,k = sin(kπxj). Show

that T is symmetric and nonsingular.

(c) Show that T 2 = 1
2hI, where I ∈ R

n,n is the identity matrix.

(d) Write a program which computes the coefficients c1, c2, . . . , cn when
the values z1, z2, . . . , zn are given.

(e) Let

f(x) =
{

x if 0 ≤ x ≤ 1/2,
1− x if 1/2 ≤ x ≤ 1,

and let zj = f(xj). Make plots of the functions g(x) and f(x) for
different values of n. Does g approach f as n grows?

Exercise 2.30 The purpose of this exercise is to complete the proof of
Lemma 2.9 by showing that

〈vk, vk〉h = 1/2.

In addition we will derive an alternative proof of the orthogonality property.
The argument here is a discrete analog of the proof of Lemma 2.8. Recall
that the complex exponential function eix, where i =

√−1 and x is real, is
given by

eix = cos(x) + i sin(x).

As a consequence of this we obtain

cos(x) =
1
2
(eix + e−ix).

(a) Use the representation of the cosine function above to show that

Sk :=
n∑
j=0

cos (kπxj) =
1
2

n∑
j=0

(eikπxj + e−ikπxj ),

and use the formula for summation of a finite geometric series to show
that Sk = 0 for k even and Sk = 1 if k is odd.
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(b) Use the trigonometric formula

sin (α) sin (β) =
1
2
(cos (α− β)− cos (α+ β))

to show that

〈vk, vm〉h = 0

for k �= m.

(c) Show that

〈vk, vk〉h = 1/2.

2.6 Projects

Project 2.1 A Numerical Method

Both in the text and in the exercises above, we have seen the usefulness
of the formula (2.9) on page 42, based on Green’s function, for the exact
solution of two-point boundary value problems. Of course, when the integral
involved in (2.9) can be evaluated explicitly, we know everything about the
solution of the problem. But, as we know from basic calculus courses, we are
not always able to carry out the process of integrating elementary functions.
Furthermore, if the right-hand side of our problem, i.e. the function f , is
given to us through some kind of measurement, the function is simply not
known at every point, and a straightforward application of the solution
formula is impossible. In this project we shall use the solution formula to
derive a numerical method that can be applied in these cases.
Consider our standard problem

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0. (2.53)

We will find it convenient to write the solution formula (2.9) in the following
form:

u(x) = x

∫ 1

0
(1− y)f(y) dy −

∫ x

0
(x− y)f(y) dy; (2.54)

see (2.7) on page 41. Since we assume that the integrals involved here cannot
be computed directly, we will have to provide numerical approximations of
the integrals involved.
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(a) Find any elementary book in numerical analysis13 and read about the
trapezoidal rule for numerical integration. Explain the derivation of
the following approximation:∫ b

a

F (x) dx ≈ h(F (a)/2 +
n∑
i=1

F (xi) + F (b)/2). (2.55)

Here, n > 0 is a given integer, h = (b− a)/(n+ 1), and xi = a+ ih.

(b) Write a procedure that, for given a, b, F (x), and n, computes the
approximation defined by (2.55).

(c) Put F (x) = x5 and G(x) =
√
|x− 1

2 |. Compute the integrals

∫ 1

0
F (x) dx and

∫ 1

0
G(x) dx

analytically and provide numerical approximations by using the trape-
zoidal rule for some values of n, say n = 10, 20, 40, 80, 160. Use the
technique derived in Project 1.1 above to estimate the rate of conver-
gence for the approximations of these integrals. Discuss your results
in the light of the theory for numerical integration by the trapezoidal
rule.

(d) Next we consider how to use this type of numerical integration in
order to define an approximation to the solution u(x) of (2.53) given
by (2.54). Define the functions

α(x) =
∫ x

0
f(y) dy and β(x) =

∫ x

0
yf(y) dy,

and show that u(x) is given by

u(x) = x(α)(1)− β(1)) + β(x)− xα(x).

(e) We define an approximation of u(x) by integrating α and β numer-
ically. Let fi = f(xi) for i = 0, . . . , n + 1 where we recall that
xi = ih = i/(n + 1) for a given integer n ≥ 1. Similarly, we define
fi+1/2 = f(xi+1/2) = f(xi + h/2). Set α0 = β0 = 0, and define

αi+1 = αi +
h

2
(fi + 2fi+1/2 + fi+1),

βi+1 = βi +
h

2
(xifi + 2(xi+1/2fi+1/2 + xi+1fi+1),

for i = 0, . . . , n. Explain why αi ≈ α(xi) and βi ≈ β(xi).

13See, e.g., Conte and de Boor [7], Isaacson and Keller [14], Dahlquist and Bjørk [8],
or Burlisch and Stoer [24].
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(f) Define

ui = xi(αn+1 − βn+1) + βi − xiαi

for i = 1, . . . , n, and put u0 = un+1 = 0. Implement this approxi-
mation on a computer and test your procedure by applying it to the
exact solutions computed in Example 2.1, Example 2.2, and in Exer-
cise 2.2. Discuss how the accuracy of your approximation varies with
the value of n. Do these observations fit the theory of the trapezoidal
integration scheme?

(g) In the problems considered in this chapter, the function f has been
given explicitly, and the only reason for introducing numerical inte-
gration is to be able to solve problems outside the realm of directly
integrable functions. But, as we mentioned above, another motiva-
tion for introducing numerical integration is to be able to deal with
problems where the function f is obtained through measurements of
some kind, meaning that f is not known at each point in the inter-
val concerned. In such a case one cannot simply increase the value
of n in order to get a more accurate estimate for u, simply because
f is not available at more than a fixed number of points. Assuming
that the function that is measured is sufficiently smooth, how would
you then go about to increase the accuracy of the approximations?
We suggest that you once again return to the elementary books of
numerical analysis.

Project 2.2 Error Analysis: A Case Study

The purpose of this project is to carefully analyze the error of a finite
difference approximation for the two-point boundary value problem

−u′′ + α2u = α2, x ∈ (0, 1), u(0) = 1, u(1) = 0, (2.56)

where α > 0 is a given real number. The exact solution of this problem is
given by

u(x) = 1− sinh(αx)
sinhα

.

The problem is approximated by the following finite difference scheme:

−vj+1 − 2vj + vj−1

h2 + α2vj = α2, j = 1, . . . , n, (2.57)

with the boundary conditions v0 = 1 and vn+1 = 0.

(a) Find a tridiagonal matrix A ∈ R
n,n and a vector b ∈ R

n such that
the linear system (2.57) takes the form Av = b.
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(b) Prove that the system Av = b can be solved by the Algorithm 2.1.

(c) Write a computer program that solves the system Av = b, and use
this program to generate plots of the numerical and exact solutions
for α = 1, 5, 100 using n = 100.

(d) Use this program to estimate β such that

||u− v||h,∞ = O(hβ).

A technique for computing such estimates is discussed in Project 1.1.

The rest of this project is devoted to investigating the quality of this
estimate. We will do this for α = 1.

(e) Define θ > 0 by requiring

cosh(θ) = 1 +
1
2
h2 , (2.58)

and show that

vj = 1− sinh(jθ)
sinh((n+ 1)θ)

solves (2.57).

(f) Use the Taylor series of cosh(θ) to show that

θ < h for h > 0. (2.59)

(g) Define the error

ej = u(xj)− vj , j = 0, 1, . . . , n+ 1,

and show that

ej =
sinh(jθ) sinh((n+ 1)h)− sinh(jh) sinh((n+ 1)θ)

sinh((n+ 1)θ) sinh((n+ 1)h)
.

(h) Show that

sinh(jθ)− sinh(jh)
sinh(1)

≤ ej ≤ sinh((n+ 1)h)− sinh((n+ 1)θ)
sinh(1)

.

(Hint: sinh(x) ≤ sinh(y) for x ≤ y.)

(i) Show that

| ej |≤ 1
sinh(1)

[sinh((n+ 1)h)− sinh((n+ 1)θ)] . (2.60)
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(j) Show that there is a finite constant c̃ that is independent of h such
that

0 < h− θ ≤ c̃h3. (2.61)

(k) Show that there is a finite constant c that is independent of h such
that

||u− v||h,∞ ≤ ch2.

(l) Discuss how this result relates to the result of your numerical exper-
iments in (d).



3
The Heat Equation

The historical paths of mathematical physics, mathematical analysis, and
methods for solving partial differential equations are strongly interlaced,
and it is often difficult to draw boundaries between them. In particular, this
is the case in the field of Fourier analysis. This field was initiated by Joseph
Fourier (1768–1830), a French physicist who studied heat conduction. In
his analysis of this problem, he invented the most influential method for
solving partial differential equations to this day. For over 200 years his
work has been the foundation of certain areas of mathematical analysis.
Any student of engineering or of the natural sciences has to master his
techniques.
After two centuries of polishing, Fourier’s theory is very elegant and

comprehensible. But that has not always been the case. It took brilliant
mathematicians years to agree upon the validity of Fourier series. We highly
recommend that the interested student read about this story in the book
by Davis and Hersh [9].
In this chapter, we will introduce Fourier’s method for solving partial

differential equations. The method will be applied to the heat equation.
We will demonstrate how the solution of such problems can be expressed
in terms of an infinite series. To prove that we actually have a solution,
we must face the question of convergence of Fourier series. This issue is
discussed in Chapter 9.
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ut = uxx

x = 0 x = 1

u
(1

,t
) 
=
 0

u
(0

,t
) 
=
 0

u(x,0) = f(x)
x

t

FIGURE 3.1. The initial-boundary value problem.

3.1 A Brief Overview

Before we start deriving the details of Fourier’s method, let us take a brief
look at the basic principles involved. The problem is to find a solution of
the following partial differential equation

ut = uxx, for x ∈ (0, 1) t > 0, (3.1)

subject to the boundary conditions

u(0, t) = u(1, t) = 0, t > 0 (3.2)

and the initial condition

u(x, 0) = f(x), x ∈ (0, 1), (3.3)

see Fig. 3.1. Here f = f(x) is a given function.
In order to relate Fourier’s method to something familiar, let us consider

a linear system of ordinary differential equations of the form

vt = Av, v(0) = v0,

where A ∈ R
n,n and v0 ∈ R

n are given, and where the unknown func-
tion v(t) ∈ R

n. It is obvious to anybody who has a background in ordi-
nary differential equations that the key to finding the general solution of
this problem is the eigenvalue problem for the matrix A. Fourier’s method
generalizes this principle to linear partial differential equations. For the
problem (3.1)–(3.3) the general solution will be derived from the eigen-
value problem (2.36). The similarity between Fourier’s method and the
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eigenvalue/eigenvector method for linear systems of ordinary differential
equations will be clarified in Project 3.1.
The first step in Fourier’s method is to find several particular solutions

of the problem defined by (3.1) and (3.2). The initial condition (3.3) will
be taken into account later. In order to find a family of particular solutions
{uk(x, t)}, we simply guess that such solutions can be separated into their
x and t dependency. Thus, we make the ansatz

uk(x, t) = Xk(x)Tk(t), (3.4)

from which a set of ordinary differential equations can be derived. Luckily,
these ordinary differential equations can be solved explicitly, and hence
formulas for the family of particular solutions {uk(x, t)} are available. The
method of splitting the x and t dependency as in (3.4) is called separation
of variables; a very appropriate term which should help you remember the
idea of the method for the rest of your life. Summarizing this step, we have

Step 1: Find a family {uk(x, t)} of solutions satisfying the differential
equation (3.1) and the boundary condition (3.2).

Next, we appeal to the principle of superposition. This principle is far
from being as mysterious as it sounds; it simply states that the particular
solutions {uk(x, t)} can be added to get new solutions of (3.1) and (3.2).
Actually, we can form any linear combination of particular solutions

u(x, t) =
∑
k

ckuk(x, t), (3.5)

and the result is still a solution of (3.1) satisfying (3.2). Thus the collection
of particular solutions forms a vector space spanned by the basis {uk(x, t)}.
Summarizing the second step, we have

Step 2: Any linear combination of the form (3.5) is a new solution of (3.1)
and (3.2).

The next problem is to determine the coefficients {ck} of (3.5) such that
the initial condition (3.3) is satisfied. More precisely, we want to determine
the coefficients {cn} such that

f(x) =
∑
k

ckuk(x, 0). (3.6)

This is exactly what the Fourier series is about; determining coefficients
such that a given function is expanded as a series of particular functions.
The problem of deriving formulas for {ck} is quite straightforward, although
some nasty integrals may be introduced. We summarize this part as

Step 3: Find the coefficients {ck} such that the initial condition (3.3) is
satisfied.
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Here, one important question arises. When can a function f be expanded
in the way indicated in (3.6)? Obviously this is not possible for a completely
general family of functions {uk(x, t)}. Informally speaking, the family must
contain sufficiently many different functions in order to span a wide class
of functions. This is referred to as the problem of completeness, which will
be discussed in Chapters 8 and 9. Here we simply state that the family
{uk(x, t)} has an infinite number of members, and that it spans a very
large class of functions f
The observation that we need infinite series to expand initial functions

as in (3.6), has some serious implications. The arguments outlined above
assume finite linear combinations. When dealing with an infinite series, we
have to verify that this series converges towards a well-defined function u,
and that u is a solution of our problem. These tasks can be summarized as
follows:

Step 4:

(a) Verify that the series in (3.5) converges toward a well-defined
function u = u(x, t).

(b) Verify that the limit u solves the differential equation (3.1).

(c) Verify that the limit u satisfies the boundary condition (3.2).

(d) Verify that the limit u satisfies the initial condition (3.3).

The rest of this section will be devoted to the steps 1, 2, and 3. Here we
will simply leave the questions of convergence open, and just derive formal
solutions of our problems. When we refer to a solution as formal, it means
that not every step in the derivation of the solution is rigorously justified.
Formal solutions are often used in preliminary studies of problems, leaving
the justification to a later stage. This is often is a fruitful way of working.

3.2 Separation of Variables

Now we return to step 1 above, and the task is to find particular solutions
{uk(x, t)} of the form (3.4) satisfying the differential equation

(uk)t = (uk)xx for x ∈ (0, 1), t > 0, (3.7)

subject to the boundary conditions

uk(0, t) = uk(1, t) = 0. (3.8)

By inserting the ansatz

uk(x, t) = Xk(x)Tk(t) (3.9)
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into (3.7), we get

Xk(x)T ′
k(t) = X ′′

k (x)Tk(t).

Next, we divide both sides of this identity by Xk(x)Tk(t) and obtain

T ′
k(t)

Tk(t)
=

X ′′
k (x)

Xk(x)
. (3.10)

Here we notice that the left-hand side only depends on t, whereas the right-
hand side only depends on x. Hence, both expressions must be equal to a
common constant, i.e.,

T ′
k(t)

Tk(t)
=

X ′′
k (x)

Xk(x)
= −λk. (3.11)

As will become clear below, the minus sign here is introduced for reasons of
convenience. For the time being, we just note that (−λk) is some constant
for each pair of functions Xk and Tk.
From (3.11), we get the following two ordinary differential equations:

X ′′
k (x) + λkXk(x) = 0, (3.12)
T ′
k(t) + λkTk(t) = 0. (3.13)

We first consider (3.12). It follows from the boundary condition (3.8)
that we must have

Xk(0) = Xk(1) = 0. (3.14)

Hence, the functions Xk(x) are eigenfunctions of the problem (2.36), with
corresponding eigenvalues λk. Therefore, from the discussion in Section 2.4
we can conclude that

λk = (kπ)2 for k = 1, 2, . . . , (3.15)

and

Xk(x) = sin (kπx) for k = 1, 2, . . . . (3.16)

Having solved the second-order problem (3.12), we turn our attention to
the first-order problem (3.13), i.e.,

T ′
k(t) + λkTk(t) = 0.

This problem has a solution of the form

Tk(t) = e−λkt = e−(kπ)2t, (3.17)

where we have chosen the constant to be equal to one. Now it follows by
(3.16) and (3.17) that

uk(x, t) = e−(kπ)2t sin (kπx) for k = 1, 2, . . . . (3.18)

This is the family {uk} of particular solutions we have been looking for.
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3.3 The Principle of Superposition

In step 1 we found that the functions {uk(x, t)} given by (3.18) solve the
following problems:

(uk)t = (uk)xx for x ∈ (0, 1), t > 0,
uk(0, t) = uk(1, t)=0, (3.19)
uk(x, 0) = sin (kπx),

for k = 1, 2, . . . . Now, we want to use these solutions to solve more general
problems of the form

ut = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t)=0, (3.20)
u(x, 0) = f(x).

Suppose first that the initial function f can be written as a finite linear
combination of the eigenfunctions {sin (kπx)}. Thus, there exist constants
{ck}Nk=1 such that

f(x) =
N∑
k=1

ck sin (kπx). (3.21)

Then, by linearity, it follows that the solution of (3.20) is given by

u(x, t) =
N∑
k=1

cke
−(kπ)2t sin (kπx). (3.22)

You can easily check that this is a solution by explicit differentiation.

Example 3.1 Let us look at one simple example showing some typical
features of a solution of the heat equation. Suppose

f(x) = 3 sin (πx) + 5 sin (4πx);

then the solution of (3.20) is given by

u(x, t) = 3e−π2t sin (πx) + 5e−16π2t sin (4πx).

This solution is graphed, as a function of x, in Fig. 3.2 for t = 0, 0.01, 0.1.
Notice here that the maximum value of the solution is attained at t = 0,
and that the entire solution becomes smaller as t increases. We easily see,
both from the figure and from the formulas, that this solution approaches
zero as t tends to infinity.

�
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FIGURE 3.2. The solution of the heat equation with f(x) = 3 sin (πx)+5 sin (4πx)
for t = 0, 0.01, 0.1.

Now we are able to solve the heat equation for all initial data that can
be written in the form (3.21). By varying the coefficients ck and allowing
a large value of N , we can of course cover quite a large class of functions.
However, it turns out that this class is not wide enough. Let us look at
another example.

Example 3.2 Consider a uniform rod of length 1 with initial temperature
u of the entire rod equal to 1. Then, at t = 0, we start cooling the rod at
the endpoints x = 0 and x = 1. By an appropriate choice of scales, the
heat equation (3.20) with f(x) = 1 models the temperature distribution in
the rod for t > 0. In order to find the temperature by following the steps
outlined above, we have to represent the function f(x) = 1 as a finite sum
of sine functions. However, this is impossible and the procedure fails at the
simplest possible initial condition! On the other hand, if we allow infinite
linear combinations, it can be shown that1

1 =
4
π

∞∑
k=1

1
2k − 1

sin ((2k − 1)πx) (3.23)

for x in the unit interval. In Fig. 3.3, we have plotted the Nth partial
sum of this series for N = 3, 10, and 100. We easily see that the series
converge towards f(x) = 1 within the unit interval, and we notice that the
convergence is very slow near the boundaries.

1Here we have to embark on a major detour; the simplest possible function is ex-
pressed by an infinite series. It is essential that you understand the reason for this
detour.
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FIGURE 3.3. The first 3, 10, and 100 terms of the sine-series approximation of
f(x) = 1.

When allowing infinite series in the initial data, the solution given by
(3.22) also becomes an infinite series. For the present example, we get the
following formal solution:

u(x, t) =
4
π

∞∑
k=1

1
2k − 1

e−((2k−1)π)2t sin ((2k − 1)πx). (3.24)

Recall here that this solution is referred to as being formal since we have
not proved that the series and its derivatives converge and satisfy all the
requirements of the heat equation (3.20).
We have plotted the formal solution of this problem as a function of x

at t = 0, 0.01, 0.1 in Fig. 3.4. Note that the observations concerning the
qualitative behavior of the solution stated in Example 3.1 also apply to the
present solution.

�

The key observation of the example above is that finite linear combi-
nations of eigenfunctions are not sufficient to cover all interesting initial
functions f(x). Thus we are led to allow infinite linear combinations of the
form

f(x) =
∞∑
k=1

ck sin (kπx). (3.25)

By letting N tend to infinity in (3.22), we obtain the corresponding formal
solution of the problem (3.20),

u(x, t) =
∞∑
k=1

cke
−(kπ)2t sin (kπx). (3.26)
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FIGURE 3.4. The solution of the heat equation with f(x) = 1 for t = 0, 0.01, 0.1.

It will be established in Chapter 10 that this is not only a formal solution,
but a rigorous solution in a strict mathematical sense. In the next section
we will show how the coefficients {ck} can be computed from the initial
function f , and we will use these values to provide formal solutions for
some examples.

3.4 Fourier Coefficients

In this section we show how to compute the coefficients {ck} in (3.25). This
approach is identical to what was done for finite Fourier series in Section
2.4. The basic property we will use is that eigenfunctions {sin(kπx)}k≥1
are orthogonal with respect to the inner product 〈·, ·〉 defined by

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

More precisely, we have from Lemma 2.8 on page 68 that

〈sin (kπx), sin (mπx)〉 =
{

0 k �= m,
1/2 k = m.

(3.27)

By using this property of the eigenfunctions, we can easily find formulas
for the coefficients {ck} such that

f(x) =
∞∑
k=1

ck sin (kπx). (3.28)
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For any index m ≥ 1, we take the inner product of this expression with the
mth eigenfunction, i.e. with sin (mπx). Then by (3.27) we get

〈f(x), sin (mπx)〉 = ck〈sin (mπx), sin (mπx)〉 = cm
2

.

Hence we have

ck = 2〈f(x), sin (kπx)〉 for k = 1, 2, . . . . (3.29)

These coefficients are referred to as Fourier coefficients, and the corre-
sponding series is called a Fourier series, or more specifically a Fourier
sine series. Fourier cosine series will be developed later.
In principle, having these coefficients we are able to express any function

in terms of the basis provided by the eigenfunctions {sin (kπx)}. For most
trivial functions this procedure works fine, but more complicated functions
may lead to problems related to convergence of the series defined by these
coefficients. Also, it might be difficult to find explicit formulas for the in-
tegrals involved.
As discussed above, a formal solution of the initial-boundary value prob-

lem (3.20) is now given by

u(x, t) =
∞∑
k=1

cke
−(kπ)2t sin (kπx), (3.30)

where the coefficients {ck} are given by (3.29).
Let us look at some examples of Fourier series and corresponding solu-

tions of the heat equation.

Example 3.3 Going back to Example 3.2 above, we want to express the
function f(x) = 1 in terms of a Fourier sine series. Using (3.29) above, we
get

ck = 2
∫ 1

0
sin (kπx) dx =

2
kπ

(1− cos (kπ)).

Hence

ck =
{ 4

kπ for k = 1, 3, 5 . . . ,
0 for k = 2, 4, 6 . . . ,

and we have

1 =
4
π

∞∑
k=1

1
2k − 1

sin ((2k − 1)πx).

This verifies the coefficients used in (3.23) above. �
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FIGURE 3.5. The first 5, 20, and 200 terms of the sine-series approximation of
f(x) = x.

Example 3.4 Next we want to compute the Fourier sine series of f(x) = x.
Using (3.29), we get

ck = 2
∫ 1

0
x sin (kπx) dx =

[
2

(kπ)2
sin (kπx)− 2x

kπ
cos (kπx)

]1

0
=

2
kπ

(−1)k+1.

Hence the Fourier sine series of f(x) = x on the unit interval is given by

x =
2
π

∞∑
k=1

(−1)k+1

k
sin (kπx). (3.31)

The Nth partial sums for N = 5, 20, and 200 are graphed in Fig. 3.5.
Having this expansion, it follows from the discussion above that a formal

solution of the heat equation with initial data given by f(x) = x is given
by

u(x, t) =
2
π

∞∑
k=1

(−1)k+1

k
e−(kπ)2t sin (kπx). (3.32)

�

3.5 Other Boundary Conditions

So far, we have been concerned with very simple boundary conditions for
the heat equation. We have only considered problems where the solution
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vanishes at the boundary. More generally, if the solution u is given specific
values at the boundaries, say

u(0, t) = a, u(1, t) = b, (3.33)

with a and b given, we have a Dirichlet-type boundary condition. In many
applications, other types of boundary conditions appear. If the deriva-
tives rather than the function itself are specified, we have a Neumann-type
boundary condition. Generally, Neumann conditions can be written in the
following form:

ux(0, t) = a, ux(1, t) = b, (3.34)

where a and b are given.
By combining the Dirichlet- and Neumann-type boundary conditions we

get a Robin-type boundary condition, which can be written in the form

aux(0, t) + bu(0, t) = c, αux(1, t) + βu(1, t) = γ, (3.35)

for given constants a, b, c, α, β, and γ.
Finally, we have the periodic boundary condition

u(0, t) = u(1, t), ux(0, t) = ux(1, t). (3.36)

We will not give detailed presentations of how to solve the model prob-
lems for all these different boundary conditions. Some of them will be ad-
dressed in the exercises, and in the next section we will derive a formal
solution of a Neumann-type problem along the lines sketched above.

3.6 The Neumann Problem

The purpose of this section is to illustrate the techniques discussed above
for another type of boundary conditions. Although the ideas remain more
or less the same, it might be useful to see the Fourier method applied to
a different type of boundary data. In this way we get a feeling of how the
method can be generalized to other more challenging problems.
Our aim is to derive a formal solution of the following problem:

ut = uxx for x ∈ (0, 1), t > 0,
ux(0, t) = ux(1, t)=0, t > 0, (3.37)
u(x, 0) = f(x), x ∈ (0, 1).

We notice that this initial-boundary value problem is identical to the prob-
lem (3.20), except for the choice of boundary values.
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As for the Dirichlet problem, we start in step 1 by searching for particular
solutions of the following problem:

(uk)t = (uk)xx for x ∈ (0, 1), t > 0, (3.38)

subject to the boundary conditions

(uk)x(0, t) = (uk)x(1, t) = 0. (3.39)

The particular solutions {uk} are found by separation of variables. Inserting
the ansatz

uk(x, t) = Xk(x)Tk(t) (3.40)

into (3.38), we derive the following ordinary differential equations:

X ′′
k (x) + λkXk(x) = 0, (3.41)
T ′
k(t) + λkTk(t) = 0. (3.42)

3.6.1 The Eigenvalue Problem
We start the analysis of these equations by considering (3.41). This is an
eigenvalue/eigenfunction problem; we want to find eigenvalues λk and cor-
responding eigenfunctions Xk such that

X ′′
k (x) + λkXk(x) = 0, X ′

k(0) = X ′
k(1) = 0. (3.43)

Here the boundary conditions stem from (3.39). Before we solve this prob-
lem, it is useful to determine what kind of values the eigenvalue λk can
attain. To this end, we multiply the differential equation by Xk and inte-
grate over the unit interval. Taking the boundary condition into account,
this gives

λk =
〈X ′
k, X

′
k〉

〈Xk, Xk〉 .

Hence we have shown that

λk ≥ 0. (3.44)

Suppose that λk = 0; then we seek a solution to the problem

X ′′
k (x) = 0, X ′

k(0) = X ′
k(1) = 0.

We easily see that any constant function satisfies these requirements, and
we therefore define

λ0 = 0 and X0(x) = 1. (3.45)
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Next, we turn to the case of λk > 0, and define

βk =
√

λk.

This leads to the equation

X ′′
k (x) + β2

kXk(x) = 0,

which has a general solution of the form

Xk(x) = c1 cos (βkx) + c2 sin (βkx). (3.46)

Now the boundary conditions X ′
k(0) = 0 forces c2 = 0, while the other

boundary condition implies that

c1 sin (βk) = 0.

Thus we have to choose

βk = kπ for k = 0, 1, . . . . (3.47)

We summarize these results as follows:

Lemma 3.1 The eigenvalues and eigenfunctions of the problem (3.43) are
given by

λk = (kπ)2 for k = 0, 1, 2, . . . , (3.48)

and

Xk(x) = cos (kπx) for k = 0, 1, 2, . . . . (3.49)

It should be noted here that this result differs from the Dirichlet case
in that k = 0 is allowed. As we observed above, a zero eigenvalue in the
Neumann case gives a nonzero eigenfunction. This is different from the
Dirichlet case, where all eigenvalues are strictly positive.2

3.6.2 Particular Solutions
Next we solve the first-order problem (3.42). The solution of this problem
is

Tk(t) = e−(kπ)2t for k = 0, 1, 2, . . . . (3.50)

Using (3.49) and (3.50), it follows that the family of particular solutions is
given by

uk(x, t) = e−(kπ)2t cos (kπx) for k = 0, 1, 2, . . . . (3.51)

2In terms of operators, we refer to the differential operator in the Dirichlet case as
positive definite, whereas the operator in the Neumann case is positive semidefinite.
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3.6.3 A Formal Solution
From this collection of particular solutions, we proceed by deriving a formal
solution of (3.37). The formal solution is defined through an infinite linear
combination of particular solutions3

u(x, t) =
c0
2
+

∞∑
k=1

cke
−(kπ)2t cos (kπx). (3.52)

Here the coefficients {ck} have to be determined by the initial data. This
means that we have to expand the initial function f(x) in a Fourier cosine
series, i.e. we have to determine the coefficients {ck} such that

f(x) =
c0
2
+

∞∑
k=1

ck cos (kπx). (3.53)

In order to find these coefficients, we have to apply the following properties
of the eigenfunctions:

Lemma 3.2 The functions {cos (kπx)} satisfy

〈cos (kπx), cos (mπx)〉 =



0 k �= m,
1/2 k = m ≥ 1,
1 k = m = 0.

(3.54)

These relations can be verified by direct integration; this task is left to the
reader in Exercise 3.14.
Given these orthogonality properties, we can derive the Fourier coeffi-

cients by taking the inner products of the eigenfunction on both sides of
(3.53). This gives

ck = 2〈f(x), cos (kπx)〉 for k = 0, 1, 2, . . . . (3.55)

Let us look at some examples of solutions to the heat equation with
Neumann-type boundary conditions.

Example 3.5 We want to solve (3.37) with the initial data

f(x) = 9 + 3 cos (πx) + 5 cos (4πx).

Since this function is written in the form (3.53), the Fourier coefficients are
easily found, and the solution of (3.20) is given by

u(x, t) = 9 + 3e−π2t cos (πx) + 5e−16π2t cos (4πx).

This solution is graphed, as a function of x, in Fig. 3.6 for t = 0, 0.01, 0.1.
You can observe from the figure that the Neumann-type boundary condi-
tions are satisfied.

�

3Putting 1
2 in front of c0 helps us in deriving a formula for ck which holds for all

k ≥ 0.
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FIGURE 3.6. The solution of the heat equation for t = 0, 0.01, 0.1.

Example 3.6 Next we want to solve the problem (3.37) with the initial
data given by f(x) = x.
We start by finding the Fourier cosine series of f(x) = x. Observe that

c0 = 2
∫ 1

0
x dx = 1,

and then, using integration by parts, we find

ck = 2
∫ 1

0
x cos (kπx) dx = 2

[
x sin (kπx)

kπ
+

cos (kπx)
(kπ)2

]1

0
= 2

(−1)k − 1
(kπ)2

,

for k = 1, 2, . . . . Hence, a formal solution of this problem is given by

u(x, t) =
1
2
+

2
π2

∞∑
k=1

(
(−1)k − 1

k2

)
e−(kπ)2t cos (kπx).

The solution, as a function of x, is plotted in Fig. 3.7 for t = 0, 0.05, 0.2.
�

3.7 Energy Arguments

So far in this chapter we have studied a technique, referred to as Fourier’s
method, which has enabled us to find a formula, or a representation, of the
solution u of the initial and boundary value problem (3.1)–(3.3). However,
it is often possible to derive certain properties of the solution of a differ-
ential equation without knowing the solution in detail. Such techniques
are particularly important in the analysis of nonlinear problems, where an
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FIGURE 3.7. The solution of the heat equation with Neumann-type boundary
conditions and initial data given by f(x) = x.

analytical representation of the solution is usually impossible to derive. En-
ergy arguments are typical examples of such techniques,4 and here we will
illustrate how such arguments can be applied to the problem (3.1)–(3.3):
Find a function u = u(x, t) which solves the differential equation

ut = uxx for x ∈ (0, 1), t > 0, (3.56)

subject to the boundary conditions

u(0, t) = u(1, t) = 0, t > 0 (3.57)

and the initial condition

u(x, 0) = f(x), x ∈ (0, 1). (3.58)

Throughout this section we assume that u = u(x, t) is a function such that

• u, ut, uxx ∈ C
(
[0, 1]× [0,∞)

)
,

• u satisfies (3.56)–(3.58).

For each t ≥ 0 let

E(t) =
∫ 1

0
u2(x, t)dx.

4Maximum principles are another set of properties that can be derived without ana-
lytical formulas for the solution. This is studied in Chapter 6.
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We now consider how E(t), which is a scalar variable, evolves in time. We
consider

E′(t) ≡ d

dt

∫ 1

0
u2(x, t)dx.

For smooth functions u we can interchange the order of differentiation and
integration such that for t > 0

E′(t) =
∫ 1

0

∂

∂t
u2(x, t)dx. (3.59)

In this case we then derive from equations (3.56)–(3.57) and integration by
parts that

E′(t) = 2
∫ 1

0
u(x, t)ut(x, t)dx

= 2
∫ 1

0
u(x, t)uxx(x, t)dx

= 2[u(x, t)ux(x, t)]10 − 2
∫ 1

0
(ux(x, t))

2
dx

= −2
∫ 1

0
(ux(x, t))

2
dx ≤ 0.

Hence, E(t) is a nonincreasing function, i.e.

E(t) ≤ E(0).

As pointed out above, the derivation of this inequality requires that we
can interchange the order of differentiation and integration such that the
identity (3.59) holds. This will in fact follow from Proposition 3.1, given in
the next section.
We summarize the result above as follows:

Theorem 3.1 If u is a solution of (3.56)–(3.58) such that u, ut, uxx ∈
C

(
[0, 1]× [0,∞)

)
, then

∫ 1

0
u2(x, t)dx ≤

∫ 1

0
f2(x)dx, t ≥ 0. (3.60)

An inequality of the form (3.60) is frequently referred to as a stability
estimate, since it expresses that the size of the solution, measured by the
integral E(t) can be bounded by the corresponding size of the initial data
f . A consequence of this result is also that small perturbations of the initial
function lead to small perturbations of the solution. In order to see this, we



3.7 Energy Arguments 105

assume that there are two solutions u1(x, t) and u2(x, t) of (3.56)–(3.58)
with initial functions f1 and f2. Let w = u1 − u2. Then

w(0, t) = w(1, t) = 0 and w(x, 0) = f1 − f2.

Furthermore,

wt = (u1)t − (u2)t = (u1)xx − (u2)xx = wxx.

Therefore w is a solution of (3.56)–(3.58) with initial function f1−f2. From
(3.60) we therefore obtain that

∫ 1

0
(u1 − u2)2(x, t)dx =

∫ 1

0
w2(x, t)dx ≤

∫ 1

0
(f1 − f2)2(x, t)dx. (3.61)

Therefore, the size of the difference of the solutions at time t is bounded
by the size of the difference of the initial functions.
The estimate (3.61) implies in particular that if f1 = f2, then u1(x, t) =

u2(x, t). Hence, for each initial function there is at most one solution of the
problem (3.56)–(3.58).

Corollary 3.1 Two solutions u1 and u2 of (3.56)–(3.58), of the form de-
scribed in Theorem 3.1, satisfy the stability estimate (3.61). In particular,
for each initial function f there is at most one solution.

At the beginning of this section, we claimed that energy arguments can
also be used for nonlinear problems since these arguments do not rely on a
representation of the solution. In order to illustrate this, consider instead
of (3.56)–(3.58) the nonlinear problem

ut = uxx − u3 for x ∈ (0, 1), t > 0, (3.62)

subject to the boundary conditions

u(0, t) = u(1, t) = 0 (3.63)

and the initial condition,

u(x, 0) = f(x). (3.64)

Because of the appearance of the nonlinear term u3, it is not possible to
apply Fourier’s method5 to this problem. However, as above let

E(t) =
∫ 1

0
u2(x, t)dx.

5Try!
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We then obtain

E′(t) = 2
∫ 1

0
u(x, t)ut(x, t)dx

= 2
∫ 1

0
u(x, t)(uxx(x, t)− u3(x, t))dx

= −2
∫ 1

0
(ux(x, t))

2
dx− 2

∫ 1

0
u4(x, t)dx ≤ 0.

Hence, even if the problem (3.62)-(3.64) is nonlinear, any solution u of the
problem satisfies6

∫ 1

0
u2(x, t)dx ≤

∫ 1

0
f2(x)dx, t ≥ 0.

This energy estimate does not, however, directly imply stability in the way
we observed for the linear case.

3.8 Differentiation of Integrals

Above we encountered the problem of computing the derivative of the en-
ergy E(t) given by

E(t) =
∫ 1

0
u2(x, t)dx

with respect to the time t. The problem of differentiating an integral with
respect to a parameter occurs frequently in the analysis of differential equa-
tions. We will therefore take the time to discuss the problem in a general
setting. Let

F (y) =
∫ b

a

f(x, y)dx. (3.65)

Our aim is to give a proper condition which guarantees that F is differen-
tiable and that

F ′(y) =
∫ b

a

fy(x, y)dx.

where fy = ∂
∂yf .

6A sharper estimate is derived in Project 11.2 on page 362.
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Proposition 3.1 Let F be given by (3.65) and assume that f and fy both
are continuous on [a, b]× [c, d]. Then F ′(y) exists for all y ∈ (c, d) and

F ′(y) =
∫ b

a

fy(x, y)dx.

Proof: By the definition of F ′(y) we must show that

lim
h→0

∣∣∣∣∣F (y + h)− F (y)
h

−
∫ b

a

fy(x, y)dx

∣∣∣∣∣ = 0.

Let us first recall that since fy is continuous on the compact set [a, b]×
[c, d], it follows that fy is uniformly continuous.7 In particular, this implies
that

lim
h→0

‖ fy(·, y + h)− fy(·, y)‖∞ (3.66)

= lim
h→0

sup
x∈[a,b]

|fy(x, y + h)− fy(x, y)| = 0

for any y ∈ (c, d). From the mean value theorem it follows that

1
h
(F (y + h)− F (y)) =

∫ b

a

f(x, y + h)− f(x, y)
h

dx

=
∫ b

a

fy(x, y + δ)dx,

where δ is between 0 and h and depends on x, y, and h. Hence, we have∣∣∣∣∣F (y + h)− F (y)
h

−
∫ b

a

fy(x, y)dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(fy(x, y + δ)− fy(x, y)) dx

∣∣∣∣∣
≤ (b− a) sup

|δ|≤|h|
‖fy(·, y + δ)− fy(·, y)‖∞.

However, by (3.66) the right-hand side of this inequality tends to zero as
h tends to zero. �

It is straightforward to check that Proposition 3.1 justifies the formula
(3.59). We have assumed that ∂

∂tu
2 = uut is continuous on [0, 1] × [0, T ]

for arbitrary T > 0. Therefore, by Proposition 3.1, formula (3.59) holds for
all t ∈ (0, T ). Since T > 0 is arbitrary, this mean that (3.59) holds for all
t > 0.

7Check your calculus book for the definition of uniform continuity and make sure you
understand why (3.66) follows.
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3.9 Exercises

Exercise 3.1 Find the Fourier sine series on the unit interval for the fol-
lowing functions:

(a) f(x) = 1 + x,

(b) f(x) = x2,

(c) f(x) = x(1− x).

Exercise 3.2 Find the Fourier cosine series on the unit interval for the
functions given in Problem (3.1).

Exercise 3.3 Write a computer program that computes the Nth partial
sums of Fourier series. Use the program to plot the function f(x) = x
and the corresponding Fourier sine and Fourier cosine series on the unit
interval. Then use the program to plot the series for x ∈ [−3, 3].
Exercise 3.4 Find the formal solution of the problem

ut = uxx for x ∈ (0, 1), t > 0
u(0, t) = u(1, t)=0
u(x, 0) = f(x),

for the initial functions

(a) f(x) = sin (14πx),

(b) f(x) = x(1− x),

(c) f(x) = sin3 (πx).

Exercise 3.5 Find a formal solution of the problem

ut = uxx for x ∈ (0, 1), t > 0,
ux(0, t) = ux(1, t)=0,
u(x, 0) = f(x),

for the initial functions

(a) f(x) = cos (14πx),

(b) f(x) = sin (πx),

(c) f(x) = x3.
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Exercise 3.6 Verify, by direct calculation, that the functions {un(x, t)}
given by (3.18) are solutions of (3.7),(3.8).

Exercise 3.7 Verify, by a direct calculation, that the functions {un(x, t)}
given by (3.51) are solutions of (3.38),(3.39).

Exercise 3.8 Find a family of particular solutions to the following prob-
lem:

ut = uxx − u for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t)=0.

Exercise 3.9 Find a family of particular solutions to the following prob-
lem:

ut = uxx + ux for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) =0.

Exercise 3.10 Find a formal solution of the following problem:

ut = uxx for x ∈ (0, �), t > 0,
u(0, t) = u(�, t)=0, (3.67)
u(x, 0) = f(x),

where � is a given constant greater than zero.

Exercise 3.11 Find a formal solution of the following problem:

ut = uxx for x ∈ (0, 1), t > 0,
u(0, t) = a, u(1, t)=b, (3.68)
u(x, 0) = f(x),

for given constants a and b. Here, you may find it helpful to introduce
v(x, t) = u(x, t) − (a + (b − a)x), and use the formal solution derived for
the problem (3.20) above.

Exercise 3.12 Find a formal solution of the following problem:

ut = uxx + 2x for x ∈ (0, 1), t > 0,
u(0, t) = 0, u(1, t)=0, (3.69)
u(x, 0) = f(x).

Here, you may find it helpful to introduce v(x, t) = u(x, t) + w(x) for a
suitable w which is only a function x.
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Exercise 3.13 Consider a nonhomogeneous problem of the form

ut = uxx + g for x ∈ (0, 1), t > 0, (3.70)
u(0, t) = u(1, t) = 0, (3.71)
u(x, 0) = f(x), (3.72)

where g = g(x, t) is a given function. Assume that f and g can be repre-
sented by Fourier sine series of the form

f(x) =
∞∑
k=1

ak sin(kπx),

g(x) =
∞∑
k=1

bk(t) sin(kπx).

(a) Derive a formal solution of the problem (3.70)–(3.72) of the form

u(x, t) =
∞∑
k=1

Tk(t) sin(kπx).

Let T > 0 be given. A T -periodic solution of the problem (3.70)–(3.72)
is a function u = u(x, t) which satisfies (3.70) and (3.71), and where the
initial function f is chosen such that

u(x, T ) = u(x, 0) = f(x).

(b) Show that when g is given, there is a unique formal T -periodic solu-
tion.

(c) Let g(x, t) = t sin(πx) and T = 1. Compute the unique T -periodic
solution in this case.

Exercise 3.14

(a) Prove the result stated in Lemma 3.2.

(b) Show that the functions {cos (kπx)}∞
k=0 and {sin (kπx)}∞

k=1 satisfy
the following orthogonality relations on [−1, 1]:∫ 1

−1
sin (kπx) sin (mπx)dx =

{
0 k �= m,
1 k = m.∫ 1

−1
cos (kπx) cos (mπx)dx =




0 k �= m,
1 k = m ≥ 1,
2 k = m = 0.∫ 1

−1
sin (kπx) cos (mπx)dx = 0.
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Exercise 3.15

(a) Consider the eigenvalue problem

−X ′′(x) = λX(x), x ∈ (−1, 1),
X(−1) = X(1), X ′(−1) = X ′(1).

These boundary conditions are referred to as periodic. Show that
the eigenfunctions of this problem are given by {cos (kπx)}∞

k=0 and
{sin (kπx)}∞

k=1. (cf. Exercise 3.14 (b)).

(b) Let f be a function defined on the interval [−1, 1] and assume that f
can be expanded in series of the form

f(x) =
a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) .

Show that

ak =
∫ 1

−1
f(x) cos (kπx)dx, k = 0, 1, 2, . . . ,

and

bk =
∫ 1

−1
f(x) sin (kπx)dx, k = 1, 2, . . . .

A series of the form above where f is expressed as a sum of sine and
cosine functions will be referred to as a full Fourier series.

(c) Find a formal solution of the following problem:

ut = uxx for x ∈ (−1, 1), t > 0,
u(−1, t) = u(1, t), ux(−1, t)=ux(1, t), (3.73)
u(x, 0) = f(x).

Note that these boundary data are periodic.

Exercise 3.16 Assume that u(x, t) is a solution of the Neumann problem
(3.37). Use energy arguments to show that

∫ 1

0
u2(x, t)dx ≤

∫ 1

0
f2(x)dx, t ≥ 0.
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Exercise 3.17 Let g = g(u) be a function u such that ug(u) ≤ 0 for all u.
Use energy arguments to show that any solution of the (possibly nonlinear)
problem

ut = uxx + g(u) for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x).

satisfies the estimate∫ 1

0
u2(x, t)dx ≤

∫ 1

0
f2(x)dx, t ≥ 0.

Exercise 3.18 Let a = a(x, t, u) be a strictly positive function. Use energy
arguments to show that any solution of the (possibly nonlinear) problem

ut = (a(x, t, u)ux)x for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x),

satisfies the estimate∫ 1

0
u2(x, t)dx ≤

∫ 1

0
f2(x)dx, t ≥ 0.

Exercise 3.19 Consider the nonlinear initial and boundary value prob-
lem (3.62)–(3.64). Assume that u1 and u2 are two solutions with initial
functions f1 and f2, respectively. Let w = u1 − u2.
Show that w solves a linear problem of the form

wt = wxx + aw (3.74)

with boundary conditions

w(0, t) = w(1, t)

and initial condition

w(x, 0) = f1(x)− f2(x),

where a = a(x, t) depends on u1 and u2.
You should compare the results here with the arguments used to prove

Corollary 3.1. In the present case, we observe a typical effect of nonlinear
problems. The differential equation (3.74) for the difference w is different
from the original equation (3.62).
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Exercise 3.20 Consider the problem

ut = uxx + u for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x).

Show that

d

dt

[
e−2t

∫ 1

0
u2(x, t)dx

]
≤ 0

and conclude that∫ 1

0
u2(x, t)dx ≤ e2t

∫ 1

0
f2(x)dx, t ≥ 0.

Use this estimate to bound the difference between two solutions in terms
of the difference between the initial functions. Does this problem have a
unique solution for each initial function f?

3.10 Projects

Project 3.1 Semidiscrete Approximation.

The purpose of this project is to illustrate the close relation between the
initial-boundary value problem (3.1)–(3.3) and systems of ordinary differ-
ential equations of the form

vt = Av, v(0) = v0. (3.75)

Here the matrix A ∈ R
n,n and the initial vector v0 ∈ R

n are given, and the
solution v(t) is a vector in R

n for each t.

(a) Let µ ∈ R be an eigenvalue of A, with corresponding eigenvector
w ∈ R

n. Verify that

v(t) = eµtw

satisfies (3.75) with v0 = w.

(b) Assume that the matrix A has n eigenvalues, µ1, µ2, . . . , µn ∈ R,
with corresponding linearly independent eigenvectors w1, w2, . . . , wn.
Show that a vector-valued function v(t) of the form

v(t) =
n∑
k=1

cke
µktwk, (3.76)
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where the coefficients c1, c2, . . . , cn ∈ R, is a solution of (3.75) with
initial vector

v0 =
n∑
k=1

ckwk.

(c) Assume that the matrix A has n real eigenvalues µ1, µ2, . . . , µn as
above. Explain why all solutions of (3.75) are of the form (3.76).

The solution procedure for linear systems of ordinary differential equa-
tions outlined above is often referred to as the eigenvalue/eigenvector method.
The method can also be extended to the case where some of the eigenval-
ues µk of A are complex. This is simply done by considering solutions of
the form (3.76), but where also the coefficients ck and eigenvectors wk are
allowed to be complex. The discussion below will illustrate that Fourier’s
method is a generalization of the eigenvalue/eigenvector method to linear
partial differential equations.
Recall that the problem (3.1)–(3.3) can be written in the form

ut(x, t) = −(Lu)(x, t) for x ∈ (0, 1), t > 0,
u(x, 0) = f(x),

where for each t > 0, u(·, t) ∈ C2
0 . Here, as in Chapter 2, Lu = −uxx.

From our discussion in Chapter 2 it seems reasonable to approximate this
problem with the semidiscrete system

vt(xj , t) = −(Lhv)(xj , t) for j = 1, 2, . . . , n,
v(xj , 0) = f(xj) for j = 1, 2, . . . , n,

(3.77)

where we assume that for each t ≥ 0, v(·, t) ∈ Dh,0. Here h = 1/(n + 1)
and xj = jh. We refer to Section 2.3.1 for the definition of the difference
operator Lh and the discrete space Dh,0. The system (3.77) is referred to as
a semidiscrete system since it is discrete with respect to x, but continuous
with respect to t.

(d) Assume first that n = 2. Show that (3.77) is equivalent to a system
of the form (3.75), where the matrix A is given by

A = −9
(

2 −1
−1 2

)
.

(e) Assume that f(x) = sin(πx)− 3 sin(2πx). Find the solution of (3.77)
when n = 2.

(f) Explain why the problem (3.77) in general is equivalent to a system
of the form (3.75). In particular, identify the matrix A in (3.75).



3.10 Projects 115

(g) Explain why any solution of (3.77) can be written in the form

v(xj , t) =
n∑
k=1

cke
−µkt sin(kπxj) for j = 1, 2, . . . , n, (3.78)

where µk = 4
h2 sin2(kπh/2).

The formula (3.78) can be used to define the semidiscrete solution v(x, t)
for all x ∈ [0, 1].

(h) Consider the initial function

f(x) = 3 sin (πx) + 5 sin (4πx)

used in Example 3.1 on page 92. Find the semidiscrete solution v(x, t)
when n = 2 and n ≥ 4. Compare the semidiscrete solution v(x, t) and
the analytical solution u(x, t) by plotting v(x, 0.01), for n = 2, 4, 6,
and u(x, 0.01).

(i) If v is a solution of (3.77), define the corresponding discrete energy
by

Eh(t) = 〈v(·, t), v(·, t〉h for t ≥ 0.

Here, the discrete inner product 〈·, ·〉h is defined in Section 2.3.1. Use
energy arguments, together with the result of Lemma 2.4, to show
that

Eh(t) ≤ Eh(0) for t ≥ 0.

In order to obtain a fully discrete finite difference method, where no dif-
ferential equation has to be solved, the semidiscrete system (3.77) must be
discretized with respect to time. The simplest time discretization is Euler’s
method. If we apply this to the system (3.77) we obtain, for m ≥ 0 and
j = 1, 2, . . . , n,

v(xj , tm+1)− v(xj , tm)
∆t

= −(Lhv)(xj , tm)
v(xj , 0) = f(xj)

(3.79)

where tm = m∆t. Here ∆t > 0 is the time step.

(j) Let the vectors vm ∈ R
n be given by

vmj = v(xj , tm) for j = 1, 2, . . . , n.

Show that

vm+1 = (I +∆tA)vm,

where I ∈ R
n,n is the identity matrix and A ∈ R

n,n is as above.
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(k) Show that any solution of the finite difference method (3.79) can be
written in the form

v(xj , tm) =
n∑
k=1

ck(1−∆tµk)m sin(kπxj),

where the coefficients c1, c2, . . . , cn ∈ R.



4
Finite Difference Schemes For The
Heat Equation

In the previous chapter we derived a very powerful analytical method for
solving partial differential equations. By using straightforward techniques,
we were able find an explicit formula for the solution of many partial differ-
ential equations of parabolic type. By studying these analytical solutions,
we can learn a lot about the qualitative behavior of such models. This
qualitative insight will also be useful in understanding more complicated
equations.
In this section we will turn our attention to numerical methods for solv-

ing parabolic equations. Having spent quite some time on deriving elegant
analytical formulas for solving such equations, you may wonder why we
need numerical methods. There are several reasons. We can summarize the
main difficulties of the Fourier method as follows:

Nonlinear problems. The Fourier method derived above cannot handle
nonlinear equations. Both separation of variables and the principle of
superposition will in general fail for such equations. This is quite an
important drawback, since many applications give rise to nonlinear
problems. There is a strong tradition for linearizing such equations
in order to apply linear techniques like the Fourier method discussed
above. But this approximation is in some cases very crude. Nonlinear
equations can be handled adequately using finite difference methods.
The basic ideas are exactly the same as for linear problems, but dif-
ficulties may arise in, for example, solving the nonlinear algebraic
equations involved.
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Variable coefficients. Even linear problems with variable coefficients may
be hard to solve using the Fourier method. In particular this is the
case for discontinuous coefficients. Variable coefficients are fairly easy
to handle with finite difference schemes.

Integrals. As mentioned above, some of the integrals involved in com-
puting the Fourier coefficients can be difficult or even impossible to
evaluate analytically. In such cases, numerical integration is needed.

Infinite series. In order to actually graph the Fourier solution of a prob-
lem, we have to compute the sum of the series. If the series is infinite,
we have to rely on an approximation based on a truncation of the se-
ries. Furthermore, except for some trivial cases, the partial sum has
to be computed numerically, i.e. on a computer.

We conclude that there are a lot of interesting problems that cannot be
solved by the Fourier method. And for most problems that can be solved,
we are dependent on some sort of numerical procedure in order to actu-
ally graph the solution. These observations clearly motivate the study of
numerical methods in a more general setting. However, you should not be
misled into believing that numerical methods solve every problem. There
are a lot of dangers in using these methods. The most important difficulties
will be pointed out here.
Although there are a lot of different numerical methods available for solv-

ing parabolic equations, we focus on finite difference schemes. The reason
for this is that they are very simple to understand and easy to generalize for
quite complicated problems. Furthermore, they are very easy to implement
on a computer.
In numerical analysis, much effort is spent on the search for efficient

schemes in the sense of optimizing accuracy and minimizing CPU time
and memory requirements.1 No claim is made here that finite difference
schemes are optimal in this respect. Often, the most powerful techniques
for solving partial differential equations use as much analytical informa-
tion as possible. The so-called spectral methods are illustrative examples
of this phenomenon. These methods are carefully constructed in order to
take advantage of all the analytical insight we have gained through the
development of Fourier techniques. You may consult the notes by Gottlieb
and Orszag [12] to read more about this topic.
The most popular method in applied areas is probably the finite ele-

ment method. Although in many respects it is quite similar to the finite

1For scalar computers, i.e., for computers where you only have access to one single
processor, it is fairly easy to rank different schemes with respect to these criteria. Just
compute, either a priori or run-time, the number of arithmetic operations needed for the
different schemes. In the era of parallel computing this issue is more complicated. On
such machines, the quality of a certain method has to be related to how well it exploits
the access to numerous processors.
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difference method, the finite element method is preferable when it comes to
complicated geometries in several space dimensions. You can find a friendly
introduction to this topic in the book by C. Johnson [15]. A mathematically
more advanced approach is given by Brenner and Scott [4], and engineers
seem to prefer the book by Zienkiewicz [31]. Further references can be found
in these books.

4.1 An Explicit Scheme

In this section we will derive a finite difference approximation of the fol-
lowing initial-boundary value problem:

ut = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t)=0, (4.1)
u(x, 0) = f(x).

The way we derive the finite difference scheme for (4.1) is very similar to
the way we derived a scheme for the two-point boundary value problem
in Section 2.2. The basic idea is again to replace the derivatives involved
in (4.1) by finite differences. But for this problem we have to approximate
both the space and the time derivatives.
Let n ≥ 1 be a given integer, and define the grid spacing in the x-

direction by ∆x = 1/(n + 1). The grid points in the x-direction are given
by xj = j∆x for j = 0, 1, . . . , n + 1. Similarly, we define tm = m∆t for
integers m ≥ 0, where ∆t denotes the time step. Finally, we let vmj denote
an approximation of u(xj , tm).
Before we define the scheme, let us recall that we have the following

approximations2

ut(x, t) =
u(x, t+∆t)− u(x, t)

∆t
+O(∆t),

and

uxx(x, t) =
u(x−∆x, t)− 2u(x, t) + u(x+∆x, t)

∆x2 +O(∆x2).

These approximations motivate the following scheme:

vm+1
j − vmj

∆t
=

vmj−1 − 2vmj + vmj+1

∆x2 for j = 1, . . . , n, m ≥ 0.

By using the boundary conditions of (4.1), we put

vm0 = 0 and vmn+1 = 0

2See Project 1.1, page 28.
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FIGURE 4.1. The computational molecule of the explicit scheme.

for all m ≥ 0. The scheme is initialized by

v0
j = f(xj) for j = 1, . . . , n.

Let r = ∆t/∆x2; then the scheme can be rewritten in a more convenient
form

vm+1
j = rvmj−1 + (1− 2r)vmj + rvmj+1, j = 1, . . . , n, m ≥ 0. (4.2)

When the scheme is written in this form, we observe that the values on the
time level tm+1 are computed using only the values on the previous time
level tm. Therefore we refer to this scheme as explicit. This is in contrast
to implicit schemes where we have to solve a tridiagonal system of linear
equations in order to pass from one time level to the next. Such schemes
will be discussed below.
In Fig. 4.1, we have sketched the basic structure of this scheme. We often

refer to such illustrations as the computational molecule3 of the scheme.
Before we start analyzing the properties of the scheme, we present some

examples illustrating how this scheme works.

Example 4.1 In the first example we look at how well this scheme approx-
imates one of the particular solutions derived in Section 3.2 above. Thus,
we let

f(x) = sin (2πx),

and recall from (3.18) that the exact solution is given by

u(x, t) = e−4π2t sin (2πx).

3Sometimes the term “stencil” is used for such illustrations.
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FIGURE 4.2. The finite difference solution (dashed line) and the Fourier-based
solutions (solid line) of the heat equation. For the finite difference scheme we used
a relatively coarse mesh; ∆x = 1/6 and ∆t = 1/80.

We choose ∆x = 1/6 and ∆t = 1/80 and compute the numerical solution
for 0 ≤ tm ≤ 1/10. The numerical and analytical solution at t = 1/10 is
plotted in Fig. 4.2. As usual we have used piecewise linear interpolation
between the grid points.
In Fig. 4.3 we have used a finer mesh, ∆x = 1/20 and ∆t = 1/800. Note

that the approximation is much better in this case.
�

Example 4.2 In our next example we consider the following initial data
for the problem (4.1):

f(x) =
{

2x x ≤ 1/2,
2(1− x) x ≥ 1/2.

A formal solution of this problem can be derived using Fourier’s method.
The solution is

u(x, t) =
8
π2

∞∑
k=1

(
sin (kπ/2)

k2

)
e−(kπ)2t sin (kπx). (4.3)

In Fig. 4.4 we have plotted the Fourier solution given by (4.3) as a func-
tion of x for t = 0.1. The series is truncated after 200 terms. We also plot
the numerical solution generated by the scheme (4.2) using ∆x = 1/50 and
∆t = 1/5000, hence r = 1/2. In Fig. 4.5, we have plotted the Fourier solu-
tion and the numerical solution again, but we have increased the time step
slightly; ∆t = 0.000201. This gives r = 0.5025 and we observe from the
plot that something is wrong; the numerical solution oscillates, whereas the
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FIGURE 4.3. The finite difference solution (dashed line) and the Fourier-based
solutions (solid line) of the heat equation. For the finite difference scheme we used
the mesh parameters ∆x = 1/20 and ∆t = 1/800.

analytical solution is smooth and very well behaved. This behavior of the
scheme is referred to as an instability problem. Much effort will be invested
below in deriving precise conditions to avoid such problems.

�

4.2 Fourier Analysis of the Numerical Solution

In our experiments above, we observed two interesting features of the nu-
merical solutions. First we noticed that the scheme may generate very good
approximations of the analytical solutions. And secondly, we saw that by
changing the grid parameters slightly, severe oscillations appeared in the
numerical solution. It is quite clear that such oscillations are unacceptable.
The analytical solution is smooth and well behaved, and we look for an
approximation which shares these properties.
Our aim in this section is to understand these observations. We want to

know when oscillations can appear and we want to know how to prevent
such behavior. Furthermore, we want to gain some insight into why the
scheme generates very good approximations for proper grid sizes. It is not
the purpose of this section to derive any rigorous error analysis for the
discrete solutions. The problem of determining the convergence rate of the
scheme will be addressed later. Here we will use our insight in the analytical
solution to try to understand in a qualitative way why the scheme works.
Our analysis of the numerical method will, step by step, follow the pro-

cedure outlined in Section 3.1. By using a discrete version of the Fourier
method, we will derive an explicit formula for the discrete solution. This
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FIGURE 4.4. The numerical (dashed line) and Fourier-based solution (solid line)
of the heat equation. For the numerical method we have used r = 1/2.

formula enables us to compare the analytical and the numerical solutions
term by term.
In the next section, we will present von Neumann’s stability analysis.

This is a versatile tool which is commonly used to investigate the stability
of numerical methods for solving time-dependent partial differential equa-
tions. The basis of von Neumann’s method is the term-by-term analysis
mentioned above. Both analytical and numerical methods can be decom-
posed into linear combinations of particular solutions. Thus, in order to
compare the solutions, it is sufficient to compare the particular solutions.
In this section we will do such a comparison thoroughly in order to prepare
for the next section. So if you feel that the present section is a bit lengthy
and full of details, we promise you that the von Neumann technique we
arrive at in the next section is very simple and powerful.

4.2.1 Particular Solutions
The first step in our discrete Fourier analysis is to derive a family of par-
ticular solutions of the following problem:

vm+1
j − vmj

∆t
=

vmj−1 − 2vmj + vmj+1

∆x2 for j = 1, . . . , n, m ≥ 0, (4.4)

with the boundary conditions

vm0 = 0 and vmn+1 = 0, m ≥ 0. (4.5)

The initial data will be taken into account later.
We are looking for particular solutions of the problem (4.4) and (4.5). In

the continuous case, we derived the particular solutions by guessing that
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FIGURE 4.5. The numerical (dashed line) and Fourier-based solution (solid line)
of the heat equation. For the numerical method we have used r = 0.5025. Note
that the numerical solution for this value of r oscillates.

the space and time dependency could be separated. Thus, we inserted an
ansatz of the form

u(x, t) = X(x)T (t)

into the equation. Exactly the same procedure will be applied in the discrete
case. Hence we seek particular solutions of the form

wmj = XjTm for j = 1, . . . , n, m ≥ 0. (4.6)

Here X is a vector of n components, independent of m, while {Tm}m≥0 is
a sequence of real numbers. By inserting (4.6) into (4.4), we get

XjTm+1 −XjTm
∆t

=
Xj−1Tm − 2XjTm +Xj+1Tm

(∆x)2
.

Since we are looking only for nonzero solutions, we assume that XjTm �= 0,
and thus we obtain

Tm+1 − Tm
∆tTm

=
Xj−1 − 2Xj +Xj+1

(∆x)2Xj
.

The left-hand side only depends on m and the right-hand side only depends
on j. Consequently, both expressions must be equal to a common constant,
say (−µ), and we get the following two difference equations:

Xj−1 − 2Xj +Xj+1

(∆x)2
= −µXj for j = 1, . . . , n, (4.7)

Tm+1 − Tm
∆t

= −µTm for m ≥ 0. (4.8)
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We also derive from the boundary condition (4.5) that

X0 = Xn+1 = 0. (4.9)

We first consider the equation (4.8). We define4 Tk,0 = 1, and consider the
difference equation

Tm+1 = (1−∆t µ)Tm for m ≥ 0. (4.10)

Some iterations of (4.10),

Tm+1 = (1−∆t µ)Tm = (1−∆t µ)2Tm−1 . . . ,

clearly indicate that the solution is

Tm = (1−∆t µ)m for m ≥ 0. (4.11)

This fact is easily verified by induction on m.
Next we turn our attention to the problem (4.7) with boundary condition

(4.9). In fact this is equivalent to the eigenvalue problem (2.44). Hence, from
Lemma 2.9 we obtain that the n eigenvalues µ1, µ2, . . . , µn are given by

µk =
4

(∆x)2
sin2 (kπ∆x/2) for k = 1, . . . , n (4.12)

and the corresponding eigenvectors Xk = (Xk,1, Xk,2, . . . , Xk,n) ∈ R
n,

k = 1, . . . , n, have components given by

Xk,j = sin (kπxj) for j = 1, . . . , n.

Hence, we obtain particular solutions wmk,j of the form

wmk,j = (1−∆t µk)m sin (kπxj). (4.13)

So far we have derived a family of particular solutions {wk}nk=1 with values
wmk,j at the grid point (xj , tm). Next, we observe that any linear combination
of particular solutions

v =
n∑
k=1

γkwk,

where the γks are scalars, is also a solution of (4.4) and (4.5). This obser-
vation corresponds to the second step in Section 3.1. Finally, we determine
the coefficients {γk} by using the initial condition

v0
j = f(xj) for j = 1, . . . , n.

4We are free to choose any nonzero constant; cf. the similar discussion in the contin-
uous case on page 91.
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Since wk = Xk at t = 0, we want to determine {γk} such that

n∑
k=1

γkXk,j = f(xj) for j = 1, . . . , n. (4.14)

Hence, it follows from (2.47) that

γk = 2∆x
n∑
j=1

f(xj)Xk,j for k = 1, . . . , n. (4.15)

There is an alternative procedure to derive the representation of the
general solution of the finite difference scheme (4.4)–(4.5). Let A ∈ R

n,n

be the matrix

A =
1

(∆x)2




2 −1 0 . . . 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2




, (4.16)

and for m ≥ 0 let vm ∈ R
n be the vector

vm = (vm1 , vm2 , . . . , vmn ).

The difference scheme (4.4)–(4.5) can then be equivalently written in the
form

vm+1 = (I −∆tA)vm, (4.17)

where I is the identity matrix. As a simple consequence of this, we obtain

vm = (I −∆tA)mv0. (4.18)

Recall from Section 2.4 that the eigenvalue problem (2.44) is equivalent to
the eigenvalue problem for the matrix A. Hence, the vectors Xk introduced
above are eigenvectors for the matrix A with corresponding eigenvalue µk.
Hence, Xk is also an eigenvector for the matrix (I−∆tA)m with eigenvalue
(1−∆t µk)m. Hence, if v0 = Xk, we derive from (4.18) that

vmj = (1−∆t µk)m sin (kπxj)

is a particular solution of (4.4)–(4.5). This solution corresponds exactly to
(4.13) above. In the same way as above, the general solution is obtained by
taking linear combinations of these solutions.
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4.2.2 Comparison of the Analytical and Discrete Solution
We now have explicit formulas of the solutions for both the continuous
problem (4.1) and the discrete problem (4.2). For ease of reference, we
repeat the formulas here. The solution5 of the continuous problem is given
by

u(x, t) =
∞∑
k=1

cke
−λkt sin (kπx), (4.19)

where λk = (kπ)2 and

ck = 2
∫ 1

0
f(x) sin (kπx) dx. (4.20)

We want to compare this analytical solution with the discrete solution given
by

vmj =
n∑
k=1

γk(1−∆t µk)m sin (kπxj), (4.21)

where

µk =
4

(∆x)2
sin2 (kπ∆x/2),

and

γk = 2∆x

n∑
j=1

f(xj) sin (kπxj).

for k = 1, . . . , n. In order to compare the analytical and numerical solution
at a grid point (xj , tm), we define umj = u(xj , tm), i.e.

umj =
∞∑
k=1

cke
−λktm sin (kπxj). (4.22)

Our aim is to give a rough, but instructive, argument for the fact that

vmj ≈ umj ,

under appropriate conditions on the mesh parameters ∆x and ∆t. To avoid
technicalities, we consider a fixed grid point (xj , tm) where tm ≥ t̄ for
t̄ > 0 independent of the mesh parameters. Furthermore, we assume that
the initial function f is smooth and satisfies the boundary conditions, i.e.

5...still formal.
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f(0) = f(1) = 0. Finally, we assume that the mesh parameters ∆t and ∆x
are sufficiently small.
In order to compare umj and vmj , we note that

umj =
∞∑
k=1

cke
−λktm sin (kπxj)

=
n∑
k=1

cke
−λktm sin (kπxj) +

∞∑
k=n+1

cke
−λktm sin (kπxj).

Here, we want to show that
∞∑

k=n+1

cke
−λktm sin (kπxj) ≈ 0. (4.23)

To do this we make the following observations:

• Since f is smooth, it is also bounded, and then the Fourier coefficients
ck given by (4.20) are bounded6 for all k. Hence there is a finite
constant c such that |ck| ≤ c for all k.

• Obviously, we have | sin (kπxj)| ≤ 1.

By using these observations, we get∣∣∣∣
∞∑

k=n+1

cke
−λktm sin (kπxj)

∣∣∣∣ ≤ max
k

|ck|
∞∑

k=n+1

e−(kπ)2tm

≤ c

∞∑
k=n+1

(e−π2 t̄)k

= c(e−π2 t̄)n+1 1
1− e−π2 t̄

≈ 0,

for large values of n. Here we have used the summation formula for a
geometric series, and we have exploited the fact that tm ≥ t̄. Since we have
verified (4.23), it follows that

umj ≈
n∑
k=1

cke
−λktm sin (kπxj). (4.24)

Now we want to compare the finite sums (4.24) and (4.21). Motivated by
the derivation of the solutions, we try to compare the two sums termwise.
Thus, we keep k fixed, and we want to compare

cke
−λktm sin (kπxj)

6The Fourier coefficients actually converge towards zero as k tends to infinity. This
is a consequence of Bessel’s inequality, which is discussed in Chapter 8 below. Here,
boundedness is sufficient.
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and

γk(1−∆t µk)m sin (kπxj).

Since the sine part here is identical, it remains to compare the Fourier
coefficients ck and γk, and the time-dependent terms e−λktm and (1 −
∆t µk)m.
We start by considering the Fourier coefficients, and note that γk is a

good approximation of ck because

2∆x
n∑
j=1

f(xj) sin (kπxj)

is the trapezoidal-rule7 approximation of

2
∫ 1

0
f(x) sin (kπx) dx.

In fact, by Exercise 2.1 on page 82, we have

|ck − γk| = O((∆x)2).

for f sufficiently smooth.

4.2.3 Stability Considerations
Finally, we must compare the time-dependent terms e−λktm and (1−∆tµk)m.
Before we compare the actual values of these expressions, let us briefly con-
sider the magnitudes involved. Since λktm is positive, we have

|e−λktm | ≤ 1

for all k = 1, . . . , n; it is reasonable to require that also

|1−∆t µk| ≤ 1

for all k = 1, . . . , n. From this requirement, it follows that ∆tµk ≤ 2, or
equivalently

4∆t

(∆x)2
sin2 (kπ∆x/2) ≤ 2

for all k = 1, . . . , n. This is always the case if the condition

7The trapezoidal method of numerical integration is discussed in Project 2.1 on page
82.
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∆t

(∆x)2
≤ 1/2 (4.25)

is satisfied.
Recall now that in Example 4.2 on page 121 we observed that by not

obeying the stability condition (4.25), severe oscillations appeared in our
solution. Now we see the reason; if |1 − ∆t µk| > 1 for some index k,
the term (1 −∆t µk)m blows up as m becomes large. Since such behavior
cannot appear in the analytical solution, we conclude that the condition
(4.25) must be satisfied in order to expect reliable numerical results. This
stability condition will be derived again later using other techniques.

4.2.4 The Accuracy of the Approximation
Let us now return to the accuracy considerations initiated above. Of course,
we assume from now on that the mesh sizes are chosen such that (4.25)
is satisfied. The remaining problem is to discuss how well the term (1 −
∆tµk)m approximates the term e−λktm . In order to study this question, we
simplify the problem a bit by choosing a fixed time tm, say tm = 1, and
we assume that ∆t = (∆x)2/2. As a consequence, we want to compare the
terms

αk = e−λk

and

βk = (1−∆tµk)1/∆t = (1− 2 sin2 (kπ
√
∆t/2))1/∆t.

Obviously, αk is very small for large values of k. The first three terms are
given by

α1 ≈ 5.172 · 10−5, α2 ≈ 7.157 · 10−18, α3 ≈ 2.65 · 10−39.

The values of βk depends both on k and the mesh parameters. By choosing
a relatively fine mesh, say ∆x = 1/100, we get

β1 ≈ 5.164 · 10−5, β2 ≈ 6.973 · 10−18, β3 ≈ 2.333 · 10−39.

These computations clearly indicate that both αk and βk become very small
when k is large. Furthermore, we observe that βk seems to approximate αk
adequately. We will consider this problem a bit more closely. Since both αk
and βk are very small for large values of k, it is sufficient to compare them
for small k.
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In order to compare αk and βk for small values of k, we start by recalling
that

sin (y) = y +O(y3).

Thus, we get

2 sin2 (kπ
√
∆t/2) ≈ (kπ)2∆t.

Furthermore, we have in general that

ey ≈ (1 + εy)1/ε,

for ε sufficiently small. By using these facts we derive

βk = (1− 2 sin2 (kπ
√
∆t/2))1/∆t

≈ (1− (kπ)2∆t)1/∆t

≈ e−(kπ)2

= αk.

This shows that also the time dependent term e−λktm is well approximated
by its discrete counterpart, (1−∆t µk)m.

4.2.5 Summary of the Comparison
In order to summarize our analysis, we go back to the exact solution given
by

u(x, t) =
∞∑
k=1

cke
−λkt sin (kπx),

and the representation of the discrete solution given by

vmj =
n∑
k=1

γk(1−∆t µk)m sin (kπxj).

We have seen that

(i) u(xj , tm) ≈
n∑
k=1

cke
−λktm sin (kπxj)

by truncating the Fourier series. In (i), the Fourier coefficients satisfy

(ii) ck = 2
∫ 1

0
f(x) sin (kπx) dx ≈ 2∆x

n∑
j=1

f(xj) sin (kπxj) = γk
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by the trapezoidal rule of numerical integration. Furthermore, if the mesh
parameters satisfy

∆t

(∆x)2
≤ 1/2,

then

(iii) e−λktm ≈ (1−∆t µk)m,

by the properties of the eigenvalues.
The observations (i), (ii), and (iii) imply that

u(xj , tm) ≈
n∑
k=1

γk(1−∆t µk)m sin (kπxj) = vmj .

This explains why we get good approximations for appropriate choices of
∆x and ∆t.
We have derived a stability condition (4.25) which has to be satisfied

in order to get well-behaved numerical approximations. Secondly, we have
utilized a discrete version of the Fourier method to show that each sig-
nificant term in the analytical solution is well approximated by a similar
term in the discrete solution. Although this analysis is rough and does not
supply a precise error estimate, it explains very well what is going on in
our computations. And furthermore, it is useful in order to prepare for the
von Neumann stability analysis that we will present in the next section.
The basic idea of this technique is exactly the same as in the present sec-
tion; stability of the entire approximation is studied by analyzing particular
solutions. It is important to note that this way of analyzing a scheme is
purely linear; no similar method is found for general nonlinear problems.
Therefore, we will come back to other ways of investigating the stability of
numerical methods later.

4.3 Von Neumann’s Stability Analysis

In the section above, we saw that a discrete version of the Fourier method
enabled us to understand important features of a numerical scheme. The
basic observation is that questions regarding stability and convergence can
be analyzed by comparing the analytical and numerical solutions term by
term. Thus, particular solutions of both problems become very important.
In this section we will continue along the same lines. Our aim is to generalize
this way of investigating the stability of a scheme to cover a wider class of
equations and boundary conditions.
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4.3.1 Particular Solutions: Continuous and Discrete
Let us start by recalling some particular solutions of the heat equation,

ut = uxx for x ∈ (0, 1), t > 0.

In the presence of Dirichlet boundary conditions,

u(0, t) = u(1, t) = 0, t ≥ 0,

the particular solutions are given by

FD = {Tk(t) sin (kπx)}∞
k=1,

where

Tk(t) = e−(kπ)2t.

For Neumann data,

ux(0, t) = ux(1, t) = 0, t ≥ 0,

the particular solutions are given by

FN = {Tk(t) cos (kπx)}∞
k=0;

see Section 3.6. And finally, for periodic boundary conditions

u(−1, t) = u(1, t) and ux(−1, t) = ux(1, t), t ≥ 0,

where the space variable x ∈ (−1, 1), we have

FP = FD ∪ FN ;

cf. Exercise 3.15 on page 111.
In order to be able to handle all these particular solutions in a uniform

manner, it is convenient to write them in a slightly different form. We know
from calculus that

eix = cos (x) + i sin (x), (4.26)

where i is the imaginary unit. Hence, we have

cos (x) =
1
2
(eix + e−ix)

and

sin (x) =
1
2i
(eix − e−ix).
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Using these formulas, all the functions in the families FD, FN , and FP can
be expressed as linear combinations of the following functions8

F = {Tk(t)eikπx}∞
k=−∞.

In a similar way, we can argue that the corresponding discrete problems
have a family of particular solutions of the form

F∆ = {(ak)meikπxj}∞
k=−∞,

where ak represents the time dependency of the discrete solutions. In the
explicit scheme for the heat equation, it is given by ak = 1 − ∆tµk; see
(4.21). This term is often referred to as the amplification factor of the
scheme.

4.3.2 Examples
The basic idea of von Neumann’s method is to compare the growth of
the analytical and discrete particular solutions. More precisely, we want
to derive conditions on the mesh parameters ∆x and ∆t such that the
growth of the discrete solutions are bounded by the growth of the analytical
solutions. Let us look at two examples to clarify this procedure.

Example 4.3 We consider the heat equation

ut = uxx. (4.27)

By inserting a particular solution of the form

uk(x, t) = Tk(t)eikπx

into (4.27), we get

T ′
k(t) = −(kπ)2Tk(t).

Hence,

Tk(t) = e−(kπ)2t, (4.28)

where we as usual have defined Tk(0) = 1. The solution of the partial
differential equation is approximated by the scheme

vm+1
j − vmj

∆t
=

vmj−1 − 2vmj + vmj+1

∆x2 .

8Why do we suddenly need complex functions? So far, everything has been real. Do
not worry too much about this; the introduction of complex variables here is merely a
tool to simplify our calculations. We can do this directly by using the sine and cosine
functions, or we can handle both at once by using the complex exponentials.
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By inserting a particular solution of the form

(ak)meikπxj ,

we get

(ak)m+1 − (ak)m

∆t
eikπxj =

eikπxj−1 − 2eikπxj + eikπxj+1

(∆x)2
(ak)m.

Since xj = j∆x, this implies

ak − 1
∆t

=
e−ikπ∆x − 2 + eikπ∆x

(∆x)2

= 2
cos (kπ∆x)− 1

(∆x)2

= − 4
(∆x)2

sin2 (kπ∆x/2).

Hence, we have

ak = 1− 4∆t

(∆x)2
sin2 (kπ∆x/2).

Since Tk, given by (4.28), satisfies

|Tk(t)| ≤ 1

for all k, we also require that

|(ak)m| ≤ 1

for all k. As above, cf. (4.25), this inequality holds if the following condition
is satisfied:

∆t

(∆x)2
≤ 1/2. (4.29)

Thus, for both Dirichlet, Neumann, and periodic boundary conditions, this
condition has to be satisfied in order to get reasonable numerical results.

�

Example 4.4 Let us apply the procedure to the following equation:

ut = uxx + u. (4.30)

Again, by inserting the particular solution

uk(x, t) = Tk(t)eikπx
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into the equation (4.30), we get

T ′
k(t) = (1− (kπ)2)Tk(t).

Hence

Tk(t) = e(1−(kπ)2)t

and thus, for all k, we have

|Tk(t)| ≤ et, t ≥ 0. (4.31)

The solution of equation (4.30) is approximated by the scheme

vm+1
j − vmj

∆t
=

vmj−1 − 2vmj + vmj+1

∆x2 + vmj .

By inserting

(ak)meikπxj ,

we get

ak − 1
∆t

=
e−ikπ∆x − 2 + eikπ∆x

(∆x)2
+ 1,

or

ak = 1 +∆t− 4∆t

(∆x)2
sin2 (kπ∆x/2). (4.32)

Based on the bound (4.31) for the analytical solution, it is reasonable to
require that the numerical solution satisfies

|(ak)m| ≤ etm

for all k. Suppose that the usual condition

∆t

(∆x)2
≤ 1/2 (4.33)

is satisfied. Then by (4.32) we get

|(ak)m| ≤ |ak|m

≤
(
|1− 4∆t

(∆x)2
sin2 (kπ∆x/2)|+∆t

)m
≤ (1 + ∆t)m

≤ em∆t = etm ,
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where we have employed the useful inequality

(1 + y)m ≤ emy, m ≥ 0, (4.34)

which holds for all y ≥ −1. The proof of this fact is left to the reader in
Exercise 4.27. The conclusion of this example is that, again, the condition
(4.33) must be satisfied in order to get stable results. �

We summarize our discussion so far by stating that a numerical solution
is said to be stable in the sense of von Neumann if the growth of the dis-
crete particular solutions can be bounded by the growth of the continuous
particular solutions. More precisely, if we let

T (t) = max
k

|Tk(t)|,

then we say that the scheme is stable in the sense of von Neumann if

max
k

|(ak)m| ≤ T (tm)

for all tm ≥ 0.

4.3.3 A Nonlinear Problem
As mentioned above, the method of von Neumann is only valid for lin-
ear problems with constant coefficients. That, of course, is a major draw-
back, because linear problems with constant coefficients are about the only
problems we can solve analytically. So, under the circumstances where we
badly need numerical methods, e.g. for nonlinear problems and problems
with variable coefficients, the method of von Neumann cannot be applied
directly. However, in practical computations, the method of von Neumann
is applied far beyond the family of problems where we have actually shown
that the method works. It is frequently applied to both linear problems with
variable coefficients and to nonlinear problems. The procedure is roughly
as follows: Given a nonlinear problem, we linearize the equation and freeze9

the coefficients by considering the problem locally. In this manner, we derive
a linear problem with constant coefficients. For this problem, the method
of von Neumann can be applied, and a stability condition can be derived.
Certainly, this condition will depend on the frozen coefficients involved.
The trick is then to choose a conservative time step, covering all possible
values of the frozen coefficient. More precisely, we try to find coefficient
values that lead to the most restrictive time step. In some cases, this can
be quite difficult, since we do not know any bounds for the coefficients. One

9Freezing the coefficient means to approximate the coefficients by a constant. Of
course, this can only be valid locally, and thus freezing of coefficients often leads to a
family of problems with different constant coefficients.
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practical solution of this problem, is to introduce a variable time step, and
update the bounds on the coefficients at each time step.10

Let us illustrate this procedure by an example.

Example 4.5 Consider the following nonlinear heat equation,

ut = (α(u)ux)x for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t)=0,
u(x, 0) = f(x),

where

α(u) =
1 + 3u2

1 + u2 .

An explicit finite difference scheme for this problem is given by

vm+1
j − vmj

∆t
=

αmj+1/2(v
m
j+1 − vmj )− αmj−1/2(v

m
j − vmj−1)

∆x2 , (4.35)

where αmj+1/2 = (α(vmj+1)+α(vmj ))/2. The derivation of this scheme will be
considered in Exercise 4.20.
Consider this problem locally, i.e. close to some fixed location (x0, t0).

If u is smooth, we can approximate the function α(u) by a constant value
α0 = α(u(x0, t0)) close to (x0, t0). This approximation leads to the equation

ut = α0uxx,

and the associated scheme

vm+1
j − vmj

∆t
= α0

vmj−1 − 2vmj + vmj+1

∆x2 for j = 1, . . . , n, m ≥ 0.

The particular solutions of the linearized equation are given by

Tk(t)eikπx,

where

Tk(t) = e−(kπ)2α0t

satisfies the usual bound

|Tk(t)| ≤ 1, t ≥ 0,

10The technique of linearizing the equation and freezing the coefficients can be carried
out in order to analyze amazingly complicated problems. An excellent introduction to
this procedure is given in the book by Kreiss and Lorenz [17]. A thorough discussion of
the practical use of von Neumann’s method for complicated problems can be found in
the book by Godunov and Ryabenkii [10].
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for all k since α0 ≥ 1. Consequently, we require that the particular solutions
of the corresponding finite difference scheme,

(ak)meikπxj ,

satisfy the bound

|ak| ≤ 1

for all k. By inserting the discrete particular solution into the scheme, we
find that

ak = 1− 4α0∆t

(∆x)2
sin2 (kπ∆x/2).

Thus we require that the mesh parameters satisfy the bound

α0∆t/(∆x)2 ≤ 1/2.

This heuristic argument indicates that for mesh parameters satisfying this
bound, the scheme is stable, at least locally. In order to derive a global
condition, we observe that

α(u) =
1 + 3u2

1 + u2 ≤ 3

for all u. Thus any frozen coefficient α0 is less than 3, and consequently
the most restrictive requirement on the time step is given by

∆t ≤ (∆x)2

6
. (4.36)

In Fig. 4.6, we have plotted the numerical solution when the initial data
is given by f(x) = sin (3πx), using the mesh parameters ∆t = 0.00005
and ∆x = 0.02. We observe that the solution seems to be well behaved.
The reader is encouraged to do further experiments using this scheme; see
Exercise 4.19.
We will return to the problem considered in this example later11 and

actually prove that the requirement (4.36) is a sufficient condition for the
numerical solutions to be stable. As indicated earlier, we will derive tech-
niques that are more suitable for nonlinear problems. However, the present
example indicates that by doing some rough arguments, the von Neumann
method can be used to derive reasonable time-step requirements even for
nonlinear problems. Of course, time steps derived by this procedure must
be applied with great care. �

Further examples of stability analysis based on von Neumann’s method
will be given in the exercises.

11See Section 6.3.2 on page 190.
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FIGURE 4.6. The finite difference solution of the nonlinear heat equation using
∆x = 0.02 and ∆t = 0.00005.

4.4 An Implicit Scheme

We have studied one particular numerical method for solving the heat equa-
tion. The method is given by (4.2) and is referred to as explicit. Obviously,
the scheme is very simple to implement on a computer, and we have seen
that it has some nice properties. Further properties will be derived below.
However, the explicit method suffers from one major drawback; it requires
very small time steps due to the stability condition.
Let us look a bit closer on the consequences of the stability conditions

(4.25), i.e.

∆t

(∆x)2
≤ 1/2. (4.37)

Suppose we want to compute a numerical solution of the heat equation at
time t = 1, and that accuracy requirements force us to choose a fairly fine
mesh, say n = 100. Then by the stability condition we must have

∆t ≤ 1
20402

.

Since we want the solution at time tM = 1, we must take M = 20 402
time steps. Refining the mesh by choosing n = 1000, we have to compute
M = 2004 002 time steps. Clearly, even this very simple problem can put
even our most powerful modern computers under strain. Of course, by
turning our interest towards two or three space dimensions, this situation
becomes even worse.
This unfortunate feature of the explicit scheme motivates us to search

for alternatives with higher computational efficiency. Indeed there are a
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lot of methods available. In this section, we will present the simplest and
probably most popular method: the standard implicit scheme. We do not
want to go too deep into the discussion of different methods here; the topic
is far too large and the interested reader may consult e.g. Thomee [27] and
references given there for further discussions.
Before we start presenting the implicit scheme, let us remind ourselves

of the basic difference between explicit and implicit schemes. We stated
above, on page 120, that a scheme is called explicit if the solution at one
time step can be computed directly from the solution at the previous time
step. On the other hand, we call the scheme implicit if the solution on the
next time level is obtained by solving a system of equations.
We want to derive an implicit scheme for the following equation:

ut = uxx for x ∈ (0, 1), t > 0,
u(0, t) = 0, u(1, t)=0, (4.38)
u(x, 0) = f(x).

Borrowing the notation from the explicit scheme, we apply the following
approximations:

ut(x, t+∆t) ≈ u(x, t+∆t)− u(x, t)
∆t

,

and

uxx(x, t+∆t) ≈ u(x−∆x, t+∆t)− 2u(x, t+∆t) + u(x+∆x, t+∆t)
∆x2 .

This leads to the following scheme:

vm+1
j − vmj

∆t
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2 for j = 1, . . . , n, m ≥ 0.

The computational molecule of this scheme is depicted in Fig. 4.7.
The boundary conditions of (4.38) imply that

vm0 = 0 and vmn+1 = 0

for all m ≥ 0, and the initial condition gives

v0
j = f(xj) for j = 1, . . . , n.

In order to write this scheme in a more convenient form, we introduce the
vector vm ∈ R

n with components vm = (vm1 , . . . , vmn )
T . Then we observe

that the scheme can be written as

(I +∆tA)vm+1 = vm, m ≥ 0. (4.39)
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FIGURE 4.7. The computational molecule of the implicit scheme.

where I ∈ R
n,n is the identity matrix, and where the matrix A ∈ R

n,n is
given by (4.16) above, i.e.

A =
1

(∆x)2




2 −1 0 . . . 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2




. (4.40)

In order to compute numerical solutions based on this scheme, we have
to solve linear systems of the form (4.39) at each time step. Hence, it is
important to verify that the matrix (I + ∆tA) is nonsingular such that
vm+1 is uniquely determined by vm. In order to prove this, we use the
properties of the matrix A derived in Lemma 2.9 on page 70.

Lemma 4.1 The matrix (I +∆tA) is symmetric and positive definite for
all mesh parameters.

Proof: The matrix (I+∆tA) is obviously symmetric, since A is symmetric.
Furthermore, the eigenvalues of (I+∆tA) are of the form 1+∆tµ, where µ
corresponds to eigenvalues of A. However, the eigenvalues of A, which are
given by (4.12), are all positive. Therefore, all the eigenvalues of (I +∆tA)
are positive, and hence this matrix is positive definite. �

Since (I+∆tA) is symmetric and positive definite, it follows from Propo-
sition 2.4 that the system (4.39) has a unique solution that can be computed
using the Gaussian elimination procedure given in Algorithm 2.1 on page
53. From a computational point of view, it is important to note that the
coefficient matrix (I +∆tA) in (4.39) does not change in time. This obser-
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FIGURE 4.8. The numerical solution (dashed line) computed by the implicit
scheme and Fourier-based solution (solid line) of the heat equation. For the nu-
merical method we have used r = 0.5025.

vation can be used to reduce the total amount of computational effort in
the scheme; see Exercise 2.13 on page 75.
Let us see how the implicit scheme works.

Example 4.6 In Example 4.2 we observed that for one choice of grid pa-
rameters, the explicit scheme produces very good approximations. However,
by increasing the timestep slightly, severe oscillations appear. Now we want
to see how the implicit scheme handles this situation.
In Fig. 4.8 we have plotted the analytical solution, computed as in Ex-

ample 4.2, and the numerical solution provided by the implicit scheme.
The grid parameters are given by ∆x = 0.02 and ∆t = 0.000201, thus
r = ∆t/(∆x)2 = 0.5025. We recall that these parameters gave an oscilla-
toric solution using the explicit scheme. From the figure, we observe that
the numerical solution computed by the implicit scheme is very well be-
haved.
This observation leads us to believe that reliable solutions can be com-

puted by this scheme without obeying the stability condition (4.37). Let us
go one step further and choose ∆t = ∆x = 0.02, which gives r = 50. The
results are given in Fig. 4.9, and we see that the numerical solution is still
nice and smooth.

�

4.4.1 Stability Analysis
We observed in the previous example that the stability condition derived for
the explicit scheme seems unnecessary for getting reasonable results using
the implicit scheme. Let us look closer at this phenomenon by applying
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FIGURE 4.9. The numerical (dashed line) and Fourier-based solution (solid line)
of the heat equation. For the numerical method we have used r = 50.

the von Neumann method derived above. Recall first that the particular
solutions of the heat equation (4.38) are given by

uk(x, t) = Tk(t)eikπx,

where

Tk(t) = e−(kπ)2t.

By inserting a particular solution of the form

(ak)meikπxj

into the implicit scheme (4.39), we get

ak − 1
∆t

=
e−ikπ∆x − 2 + eikπ∆x

(∆x)2
ak

= − 4ak
(∆x)2

sin2 (kπ∆x/2).

Consequently,

ak =
1

1 + 4∆t
(∆x)2 sin

2 (kπ∆x/2)
.

By observing that

|Tk(t)| ≤ 1
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for all k, we require

|(ak)m| ≤ 1. (4.41)

Since

ak =
1

1 +∆tµk
,

where all the µks are strictly positive, it follows that the requirement (4.41)
is fulfilled for all mesh parameters. This explain why oscillations did not
appear in the computations above.
Numerical methods that are well behaved for any choice of grid param-

eters are referred to as unconditionally stable. We have just seen that the
implicit scheme deserves this label. The explicit scheme is analogously re-
ferred to as conditionally stable.
It should be noted here that although we are able to compute approx-

imations using arbitrarily long time steps, the issue of accuracy has not
yet been discussed. Obviously, by choosing ∆t very large, the accuracy of
the computation is poor. In numerical analysis this issue is a topic of lively
discussion; should implicit or explicit schemes be used? The problem is of
course how to compute good approximations using as little CPU time and
memory resources as possible.12

4.5 Numerical Stability by Energy Arguments

In Section 3.7 we introduced energy arguments in order to derive a stability
property for the solution of the heat equation. A similar analysis can also
frequently be performed for finite difference solutions. It is possible to derive
certain properties of the solution of the finite difference method without
knowing the solution in detail. Here we shall illustrate these techniques by
studying the solution of the explicit finite difference method (4.4) applied to
the initial and boundary value problem (4.1). Recall that if r = ∆t/(∆x)2,
this difference scheme has the form

vm+1
j = vmj + r(vmj−1 − 2vmj + vmj+1), j = 1, . . . , n, m ≥ 0, (4.42)

with boundary conditions

vm0 = vmn+1 = 0, m ≥ 0. (4.43)

12You might think that with the extremely powerful computers of today, such consid-
erations are less important than earlier. This is not the case. We always strive for higher
accuracy and more complicated models far beyond the capacity of any known computer.
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Furthermore, we will assume throughout this section that the stability con-
dition (4.25) holds, i.e.

1− 2r ≥ 0. (4.44)

Along the same lines as in Section 3.7, we introduce, for each time level
m ≥ 0, the discrete energy

Em = ∆x

n∑
j=1

(vmj )
2, (4.45)

and we are interested in the dynamics of this scalar variable. More precisely
we want to show that E decreases with time, i.e.

Em+1 ≤ Em m ≥ 0. (4.46)

Instead of computing the time derivative of the energy, as we did in Section
3.7, we consider the corresponding time difference,

Em+1 − Em = ∆x

n∑
j=1

((vm+1
j )2 − (vmj )

2)

= ∆x

n∑
j=1

(vm+1
j + vmj )(v

m+1
j − vmj )

= r∆x

n∑
j=1

(vm+1
j + vmj )(v

m
j−1 − 2vmj + vmj+1) (4.47)

= r∆x

{ n∑
j=1

vmj (v
m
j−1 − 2vmj + vmj+1)

−2
n∑
j=1

vm+1
j vmj +

n∑
j=1

vm+1
j (vmj−1 + vmj+1)

}
,

where we have used the difference scheme (4.42).
We consider each of the three parts on the right-hand side separately.

Observe first that from the boundary condition (4.43) and by summation
by parts (cf. (2.31) on page 60) we obtain

n∑
j=1

vmj (v
m
j−1 − 2vmj + vmj+1) = −

n∑
j=1

(vmj+1 − vmj )
2.

Furthermore, by applying the difference scheme (4.42) and summation by
parts once more,

−2
n∑
j=1

vm+1
j vmj = −2

n∑
j=1

((vmj )
2 + 2r(vmj−1 − 2vmj + vmj+1)v

m
j )

= −2
n∑
j=1

(vmj )
2 + 2r

n∑
j=1

(vmj+1 − vmj )
2.
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Finally, we use the inequality13

ab ≤ 1
2
(a2 + b2)

to obtain
n∑
j=1

vm+1
j (vmj−1 + vmj+1) ≤

n∑
j=1

((vm+1
j )2 +

1
2
((vmj−1)

2 + (vmj+1)
2))

≤
n∑
j=1

((vm+1
j )2 + (vmj )

2).

Collecting these three inequalities, it follows from (4.47) that

Em+1 − Em ≤ r(Em+1 − Em)− r(1− 2r)∆x

n∑
j=1

(vmj+1 − vmj )
2

≤ r(Em+1 − Em),

where we have used the stability assumption (4.44). Hence,

(1− r)(Em+1 − Em) ≤ 0,

and by (4.44) this implies the desired inequality (4.46).
We summarize the result of the discussion above:

Theorem 4.1 Let {vmj } be a solution of the finite difference scheme (4.42)–
(4.43) and let the corresponding energy {Em} be given by (4.45). If the
stability condition (4.25) holds, then {Em} is nonincreasing with respect to
m.

Hence, we have seen that the stability condition (4.25), or (4.44), implies
that the explicit difference scheme admits an estimate which is similar to
the estimate (3.60) for the continuous problem. As for the continuous prob-
lem, this can be used to estimate the difference between two solutions, with
different initial data. This follows since the difference of two solutions of
the finite difference scheme is a new finite difference solution. We therefore
obtain

Corollary 4.1 Assume that the stability condition (4.25) holds and let
{vmj } and {wmj } be two solutions of the finite difference scheme (4.42)–
(4.43). Then, for all m ≥ 0,

∆x
n∑
j=1

(vmj − wmj )
2 ≤ ∆x

0∑
j=1

(v0
j − w0

j )
2.

13See Exercise 4.24.
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The interpretation of this result is that the difference scheme is a stable
dynamical system in the sense that an error in the initial data bounds
the error in the corresponding solutions. Energy arguments can also be
performed for the implicit scheme (4.39). This is discussed in Exercise 4.25
below.

4.6 Exercises

Exercise 4.1 Verify, by direct calculation, that the discrete functions
{wn} given by (4.13) are solutions of (4.4)–(4.5).

Exercise 4.2 Implement the scheme (4.2) for the heat equation and inves-
tigate the performance of the method by comparing the numerical results
with the analytical solution given by

(a) Example 3.1 on page 92.

(b) Example 3.2 on page 93.

(c) Example 3.4 on page 97.

Exercise 4.3 Repeat Exercise 4.2 using the implicit scheme (4.39). Com-
pare the numerical solutions provided by the explicit and the implicit
schemes.

Exercise 4.4 In this exercise we want to study the rate of convergence of
the explicit scheme by doing numerical experiments. Define the error by

e∆(tm) = max
j=0,... ,n+1

|u(xj , tm)− vmj |.

We want to estimate the rate of convergence for the scheme at time t = 1/10
for the problem considered in Exercise 4.2 (a).

(a) Estimate, using numerical experiments, α such that e∆(1/10) = O((∆t)α)
for ∆t = (∆x)2/2.

(b) Repeat the experiments in (a) using ∆t = (∆x)2/6.

(c) Try to explain the difference in the rate of convergence encountered
in the two cases above. Hint: Consider the truncation error discussed
in Exercise 4.15 below.
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Exercise 4.5 Consider the following initial-boundary value problem

ut = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u�(t), u(1, t)=ur(t),
u(x, 0) = f(x).

Here u�(t), ur(t), and f(x) are bounded functions satisfying u�(0) = f(0)
and ur(0) = f(1).

(a) Derive an explicit scheme for this problem.

(b) Derive an implicit scheme for this problem and show that the linear
system that arises can be solved by Gaussian elimination.

Exercise 4.6 Derive an explicit scheme for the following Neumann prob-
lem:

ut = uxx for x ∈ (0, 1), t > 0,
ux(0, t) = ux(1, t)=0,
u(x, 0) = f(x).

Use the analytical solution given in Example 3.5 on page 101 to check the
quality of your approximations.

Exercise 4.7 Repeat Exercise 4.6 by deriving an implicit approximation
of the problem. Compare the numerical solutions provided by the explicit
and the implicit schemes.

Exercise 4.8 Consider the problem

ut = αuxx for x ∈ (−�, �), t > 0,
u(−�, t) = a, u(�, t)=b,

u(x, 0) = f(x).

where a, b and �, α > 0 are given constants.

(a) Derive an explicit scheme.

(b) Derive an implicit scheme.

(c) Find the exact solution when α = 2, � = π, a = −π, b = π, and
f(x) = x+ sin (3x).

(d) Implement the schemes derived in (a) and (b) and compare the results
with the analytical solution derived in (c).
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Exercise 4.9 Consider the problem

ut = 4uxx − 10u+ q(x, t) for x ∈ (�1, �2), t > 0,
u(�1, t) = a(t), u(�2, t)=b(t),
u(x, 0) = f(x),

where �2 > �1 are given constants, and a(t), b(t), and q(x, t) are given
functions.

(a) Derive an explicit scheme.

(b) Derive an implicit scheme.

(c) Suppose

�1 = −2, �2 = 3, a(t) = et − 2, b(t) = et + 3, f(x) = 1 + x,

and

q(x, t) = 11et + 10x.

Show that

u(x, t) = et + x

is an exact solution of the problem.

(d) Implement the schemes derived in (a) and (b) and compare the results
with the analytical solution derived in (c).

Exercise 4.10 Consider the problem

ut = (α(x, t)ux)x + c(x, t)ux + q(x, t) for x ∈ (�1, �2), t > 0,
u(�1, t) = a(t), u(�2, t)=b(t),
u(x, 0) = f(x),

where �2 > �1 are given constants, and a(t), b(t), α(x, t), c(x, t), and q(x, t)
are given smooth functions.

(a) Derive an explicit scheme.

(b) Derive an implicit scheme.
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Exercise 4.11 Consider the problem

ut = (α(x, t)ux)x + c(x, t)ux + q(x, t)u for x ∈ (�1, �2), t > 0,
ux(�1, t) = a(t), ux(�2, t)=b(t),
u(x, 0) = f(x),

where �2 > �1 are given constants, and a(t), b(t), α(x, t), c(x, t), and q(x, t)
are given functions.

(a) Derive an explicit scheme.

(b) Derive an implicit scheme.

Exercise 4.12 Consider the equation

ut = αuxx,

with Dirichlet boundary conditions. Here α > 0 is a given constant. We
define an explicit scheme

vm+1
j − vmj

∆t
= α

vmj−1 − 2vmj + vmj+1

∆x2 for j = 1, . . . , n, m ≥ 0,

and an implicit scheme

vm+1
j − vmj

∆t
= α

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2 for j = 1, . . . , n, m ≥ 0.

(a) Derive a stability condition for the explicit scheme using the von
Neumann method.

(b) Show that the implicit scheme is unconditionally stable in the sense
of von Neumann.

Exercise 4.13 Consider the equation

ut = uxx,

with Neumann-type boundary conditions and the following explicit scheme

vm+1
j − vm−1

j

2∆t
=

vmj−1 − 2vmj + vmj+1

∆x2 for j = 1, . . . , n, m ≥ 0.

(a) Use the Taylor series to explain the derivation of this scheme.
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(b) For what mesh sizes is this scheme stable in the sense of von Neu-
mann?

Exercise 4.14 Consider the equation

ut = uxx − 9u,

with Dirichlet-type boundary conditions. Derive an explicit and an implicit
scheme for this equation. Use the von Neumann method to investigate the
stability of the methods.

Exercise 4.15 In Section 2.3.5 we introduced the concept of truncation
error for a finite difference approximation for a two-point boundary value
problem. Here we shall discuss a similar concept for difference approxima-
tions of the heat equation.
Observe that the scheme (4.4) can be written in the form

1
∆t

(vm+1 − vm) +Avm = 0,

where A ∈ R
n,n is given by (4.16).

The truncation vector τm ∈ R
n is given by

τm =
1
∆t

(um+1 − um) +Aum,

where um ∈ R
n is given by umj = u(xj , tm) for a solution of the continuous

problem (4.1).

(a) Show that under suitable smoothness assumptions on the solution u,

|τmj | = O
(
∆t

)
+O

(
(∆x)2

)
. (4.48)

In rest of this exercise we study a more general difference scheme of the
form

1
∆t

(vm+1 − vm) + θ(Avm+1) + (1− θ)Avm = 0, (4.49)

where θ ∈ [0, 1] is a parameter. Note that if θ = 0, this corresponds to the
explicit scheme (4.4), while if θ = 1, it corresponds to the implicit scheme
studied in Chapter 4.4 above.

(b) Sketch the computational molecule for the scheme when θ ∈ (0, 1).

(c) Show that for all θ ∈ [0, 1] the estimate (4.48) holds, and that the
choice θ = 1/2 leads to an improved estimate of the form

|τmj | = O
(
(∆t)2

)
+O

(
(∆x)2

)
.

(Hint: Consider Taylor expansions at the point (xj , (tm+1 + tm)/2).)
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Exercise 4.16 Motivated by the result of Exercise 4.15, we study, in this
exercise, the difference scheme 4.49 with θ = 1/2. This difference scheme
is usually referred to as the Crank-Nicholson scheme. In component form
the scheme is given by

vm+1
j − vmj

∆t
=

1
2

(
vm+1
j−1 − 2vm+1

j + vm+1
j+1

(∆x)2
+

vmj−1 − 2vmj + vmj+1

(∆x)2

)

for j = 1, 2, . . . , n and m ≥ 0.

(a) Show that this implicit scheme is unconditionally stable in the sense
of von Neumann.

(b) Discuss how the vectors vm+1 ∈ R
n can be computed from vm.

(c) Show that the solution of the Crank-Nicholson scheme for the initial-
boundary value problem (4.1) admits the representation

vmj =
n∑
k=1

γk
(
a(µk)

)m sin(kπxj),

where a(µ) =
(
1− ∆t

2 µ
) (

1 + ∆t
2 µ

)−1
and γk = 2∆x

∑n
j=1 v0

j sin(kπxj).

(d) Show that the amplification factor of the difference scheme, a(µ),
satisfies

|a(µ)− e−µ∆t| = O
(
(∆t)3

)
.

How does this result relate to the corresponding result for the explicit
scheme (4.4)? Compare your result with the conclusions you derived
in Exercise 4.15.

(e) Implement the Crank-Nicholson scheme. Choose the initial function
f(x) as in Example 4.2 and try to verify that the scheme is uncondi-
tionally stable by varying the parameter r = ∆t

(∆x)2 .

Exercise 4.17 Consider the general scheme (4.49). Use the von Neumann
method to discuss the stability for any θ ∈ [0, 1].

Exercise 4.18 Consider the equation

ut + cux = uxx,

with Dirichlet-type boundary conditions. Here c ≥ 0 is given constant.

(a) Show that this problem has a family of particular solutions of the
form

e−(ikπc+(kπ)2)teikπx.
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(b) Show that

Tk(t) = e−(ikπc+(kπ)2)t

satisfies the bound14

|Tk(t)| ≤ 1 t ≥ 0,

for all k.

Derive stability conditions for the following numerical methods by applying
the von Neumann method.

(c)

vm+1
j − vmj

∆t
+ c

vmj+1 − vmj−1

2∆x
=

vmj−1 − 2vmj + vmj+1

∆x2

(d)

vm+1
j − vmj

∆t
+ c

vmj − vmj−1

∆x
=

vmj−1 − 2vmj + vmj+1

∆x2

(e)

vm+1
j − vmj

∆t
+ c

vmj+1 − vmj
∆x

=
vmj−1 − 2vmj + vmj+1

∆x2

(f)

vm+1
j − vmj

∆t
+ c

vmj − vmj−1

∆x
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2

(g)

vm+1
j − vmj

∆t
+ c

vm+1
j − vm+1

j−1

∆x
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2 .

Exercise 4.19 In Example 4.5 on page 138, we derived a stability condi-
tion (see (4.36)) based on some rough considerations. The purpose of this
exercise is to perform a numerical study of the quality of this condition.
Consider the initial condition f(x) = 100x(1 − x)|x − 1/2|, and run the
scheme (4.35) with several different grids. For this initial function, is the
condition (4.36) sufficient in order to guarantee well-behaved numerical
solutions?

14Recall that for a complex number z = x+ iy, the absolute value, or the modulus, is
given by |z| = (x2 + y2)1/2. It is also useful to note that |eiθ| = 1 for any θ ∈ R.
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Exercise 4.20 The purpose of this exercise is to derive a finite difference
scheme for the following problem:

ut = (α(u)ux)x for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x),

where α(u) is a given strictly positive and smooth function.

(a) Put v = α(u)ux and justify the following approximations:

ut(x, t) ≈ u(x, t+∆t)− u(x, t)
∆t

,

vx(x, t) ≈ v(x+∆x/2, t)− v(x−∆x/2, t)
∆x

.

(b) Show that

v(x+∆x/2, t) ≈ 1
2
(α(u(x+∆x, t)) + α(u(x, t)))

u(x+∆x, t)− u(x, t)
∆x

.

(c) Use these approximations to derive the scheme15

vm+1
j − vmj

∆t
=

αmj+1/2(v
m
j+1 − vmj )− αmj−1/2(v

m
j − vmj−1)

∆x2 ,

where αmj+1/2 = (α(vmj+1) + α(vmj ))/2.

Exercise 4.21 Consider the initial-boundary value problem in Exercise
4.20. Derive an implicit scheme and investigate the stability of the method
by the technique discussed in Example 4.5 on page 138.

Exercise 4.22 Consider the nonlinear heat equation

ut = (αε(u)ux)x for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = sin (3πx).

Here αε(u) = 2 + ε cos (u), where ε is a small parameter, |ε| � 1.

(a) Derive an explicit finite difference scheme for this problem and find
a stability condition using the technique discussed in Example 4.5.

15We will study the stability, or more precisely, a maximum principle for the numerical
solutions generated by this scheme in Section 6.3.2 on page 190.
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(b) Implement the scheme and plot the solution at time t = 1/10 for
ε = 1/8, 1/16, 1/32, 1/64.

(c) We want a rough estimate of the solution at time t = 1/10 for
ε = 1/100. Use the approximation αε(u) ≈ 2 to derive an estimate.
Can you use the results of the computations above to argue that
the explicit formula you obtain is a good approximation of the exact
solution?

Exercise 4.23 Consider the nonlinear heat equation

ut = (α(u)ux)x for x ∈ (0, 1), 0 < t ≤ 1,
u(0, t) = a(t), u(1, t)=b(t),
u(x, 0) = f(x).

Here α(u) is a given strictly positive function, and the boundary conditions
a(t) and b(t) are given functions.

(a) Implement the following explicit numerical method:

vm+1
j − vmj

∆t
=

αmj+1/2(v
m
j+1 − vmj )− αmj−1/2(v

m
j − vmj−1)

∆x2 ,

where αmj+1/2 = (α(vmj+1) + α(vmj ))/2.

(b) Let

α(u) = u, a(t) = t, b(t) = 1 + t, and f(x) = x.

Show that u(x, t) = x+ t is an exact solution of this problem.

(c) Show, by induction, that the explicit scheme gives the exact solution
at each grid point, i.e. show that vmj = xj + tm, for any grid sizes.

(d) Compute the numerical solution at t = 1 using the scheme imple-
mented in (a) for the problem defined in (b). Try the following grid
parameters:

– n = 4 and ∆t = 1/65.
– n = 30 and ∆t = 1/10.

Discuss your observations in light of the result in (c).

(e) From the numerical results obtained in (d), it is clear that some kind
of stability condition is needed. Use the procedure discussed in Exam-
ple 4.5 on page 138 to derive a stability condition for this problem.
Run some numerical experiments with mesh parameters satisfying
this condition. Are the numerical solutions well-behaved if the con-
dition on the mesh parameters is satisfied?
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Exercise 4.24 Use the fact that (a− b)2 ≥ 0 to show that

ab ≤ 1
2
(a2 + b2)

for all real numbers a and b.

Exercise 4.25 Use an energy argument and the fact that the matrix A
given by (4.40) is positive definite to show that the implicit difference
scheme (4.39) satisfies an estimate of the form (4.46) for all mesh parame-
ters.

Exercise 4.26 Similar to the discussion in Chapter 2 we introduce a dis-
crete inner product which is an analog of the inner product 〈·, ·〉 for con-
tinuous functions. For a vectors v, w ∈ R

n we define16

〈v, w〉∆ = ∆x

n∑
j=1

vjwj .

Hence, this inner product is just the ordinary Euclidean inner product
multiplied by the scaling factor ∆x. We recall from Chapter 2 that this
inner product arises naturally when the vector v has the interpretation of a
discrete function defined on the grid points xj = j∆x. We let || · ||∆ denote
the corresponding norm, i.e.

||v||2∆ = 〈v, v〉∆.

As above we let Xk = (Xk,1, Xk,2, . . . , Xk,n) ∈ R
n, k = 1, . . . , n, be the

vectors with components given by

Xk,j = sin (kπxj) for j = 1, . . . , n.

Recall that these vectors are orthogonal with respect to the inner product
〈·, ·〉∆ and that ||Xk||2∆ = 1/2 (see Lemma 2.30).

(a) Explain why any vector v ∈ R
n can be written in the form

v =
n∑
k=1

ckXk,

where

ck = 2〈v,Xk〉∆.

16In Chapter 2 we used h to indicate the spacing in the x–variable, and hence we used
this subscript to indicate the corresponding discrete inner product. Here, where we have
two grid parameters ∆x and ∆t, we use ∆ for the same purpose.
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(b) Show that

||v||2∆ =
1
2

n∑
k=1

c2k.

(c) Let {vm}m≥0 be a sequence of vectors generated by the finite differ-
ence scheme (4.39). As above, in Exercise 4.25, let

Em = ||vm||2∆.

Show that

Em ≤ (
1

1 + ∆tµ1
)mE0,

where µ1 = 4
∆x2 sin

2(π∆x/2).

(d) Explain why

lim
m→∞Em = 0,

and compare this result with what you derived in Exercise 4.25 above.

Exercise 4.27 Show that

(1 + y)m ≤ emy

for all m ≥ 0 and y ≥ −1.



5
The Wave Equation

The purpose of this chapter is to study initial-boundary value problems
for the wave equation in one space dimension. In particular, we will derive
formal solutions by a separation of variables technique, establish uniqueness
of the solution by energy arguments, and study properties of finite difference
approximations.
The wave equation models the movement of an elastic, homogeneous

string which undergoes relatively small transverse vibrations. The wave
equation is of second order with respect to the space variable x and time
t, and takes the form

utt = c2uxx. (5.1)

Here the constant c is called the wave speed. Since the equation is of second
order with respect to time, an initial value problem typically needs two
initial conditions. Hence, in addition to the differential equation (5.1) we
specify two initial conditions of the form

u(x, 0) = f(x) and ut(x, 0) = g(x). (5.2)

If we study the pure initial value problem, i.e. where x varies over all of R,
then the solution of (5.1)–(5.2) is given by d’Alembert’s formula

u(x, t) =
1
2
(f(x+ ct) + f(x− ct)) +

1
2c

∫ x+ct

x−ct
g(y)dy; (5.3)

cf. page 16. However, in most practical applications, for example in model-
ing the movement of a guitar string, we are facing an initial and boundary
value problem.
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Throughout this chapter we shall consider the following initial and bound-
ary value problem:

utt = uxx for x ∈ (0, 1) , t > 0,
u(0, t) = u(1, t) = 0, t > 0, (5.4)
u(x, 0) = f(x) , ut(x, 0) = g(x) , x ∈ (0, 1).

We note that we have assumed that the wave speed c is set equal to 1. In
fact, any problem with c �= 0 can be transformed to a problem with c = 1
by introducing a proper time scale (see Exercise 5.2). Therefore, we set
c = 1 for simplicity.

5.1 Separation of Variables

Let us try to find solutions of problem (5.4) of the form

u(x, t) = X(x)T (t).

By inserting this ansatz into the wave equation, we obtain

X(x)T ′′(t) = X ′′(x)T (t)

or

T ′′(t)
T (t)

=
X ′′(x)
X(x)

. (5.5)

As in Section 3.2 we can argue that since the left-hand side is independent
of x and the right-hand side is independent of t, both expressions must be
independent of x and t. Therefore,

T ′′(t)
T (t)

=
X ′′(x)
X(x)

= −λ (5.6)

for a suitable λ ∈ R. In particular this means that the functions X(x)
satisfy the eigenvalue problem

−X ′′(x) = λX(x), x ∈ (0, 1),
X(0) = X(1) = 0,

(5.7)

where the boundary conditions follow from (5.4). Of course, this eigenvalue
problem is by now familiar to us. From Lemma 2.7 we conclude that

λ = λk = (kπ)2 for k = 1, 2, . . . (5.8)

with corresponding eigenfunctions

Xk(x) = sin (kπx) for k = 1, 2, . . . . (5.9)
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On the other hand, the functions Tk(t) must satisfy

−T ′′
k (t) = λkTk(t) = (kπ)2Tk(t).

This equation has two linearly independent solutions given by

Tk(t) = eikπt and Tk(t) = e−ikπt. (5.10)

The general real solution is therefore of the form

Tk(t) = ak cos (kπt) + bk sin (kπt),

where ak, bk ∈ R are arbitrary constants. Hence, we conclude that the
functions

uk(x, t) = sin(kπx)
(
ak cos (kπt) + bk sin (kπt)

)
(5.11)

satisfy the differential equation and the boundary values prescribed by the
initial-boundary value problem. Furthermore, these solutions satisfy the
initial conditions

uk(x, 0) = ak sin(kπx) and (uk)t(x, 0) = bkkπ sin (kπx).

In order to obtain more solutions, we can add solutions of the form (5.11)
and obtain

u(x, t) =
N∑
k=1

sin (kπx)
(
ak cos (kπt) + bk sin (kπt)

)
(5.12)

with initial conditions

u(x, 0) =
N∑
k=1

ak sin (kπx) and ut(x, 0) =
N∑
k=1

bkkπ sin (kπx). (5.13)

Example 5.1 Consider the problem (5.4) with f(x) = 2 sin (πx) and g(x) =
− sin (2πx). Hence, the initial data is of the form (5.13) with

a1 = 2 , ak = 0 for k > 1

and

b2 = − 1
2π

, bk = 0 for k �= 2.

The solution u(x, t) is therefore given by

u(x, t) = 2 sin (πx) cos (πt)− 1
2π

sin (2πx) sin (2πt).

This solution is plotted in Fig. 5.1. �
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FIGURE 5.1. The solution u(x, t) derived in Example 5.1 for (x, t) ∈ ([0, 1]×[0, 3]).

In order to cover a larger class of initial functions, we allow general
Fourier sine series as initial functions, i.e. we let N tend to infinity in
(5.12) and (5.13). Hence, if

f(x) =
∞∑
k=1

ak sin (kπx) and g(x) =
∞∑
k=1

bk sin (kπx), (5.14)

then we obtain a formal solution of the initial-boundary value problem (5.4)
given by

u(x, t) =
∞∑
k=1

sin (kπx)
(
ak cos (kπt) +

bk
kπ

sin (kπt)
)

. (5.15)

Example 5.2 Consider the initial-boundary value problem (5.4) with

f(x) = x(1− x) and g(x) = 0.

We recall from Exercise 3.1(c) on page 108 that the Fourier sine series of
f is given by

f(x) =
∞∑
k=1

8
π3(2k − 1)3

sin
(
(2k − 1)πx

)
.

Hence, by (5.4) the formal solution is given by

u(x, t) =
∞∑
k=1

8
π3(2k − 1)3

sin
(
(2k − 1)πx

)
cos

(
(2k − 1)πt

)
.
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FIGURE 5.2. The solution u(x, t) derived in Example 5.2 for (x, t) ∈ ([0, 1]×[0, 3])
using the first 20 terms of the series.

In Fig. 5.2 we have plotted this formal solution by using the first 20 terms
of this infinite series.

�

5.2 Uniqueness and Energy Arguments

Above we derived formal solutions of the initial-boundary value problem
(5.4) by separation of variables. We will continue the study of the wave
equation by applying energy arguments in this case. One of the conse-
quences of this analysis is that the problem (5.4) has at most one smooth
solution.
Assume that u(x, t) is a solution of (5.4) such that u ∈ C2

(
[0, 1] ×

[0,∞)
)
.1 For each t ≥ 0 we define the “energy,” E(t), by

E(t) =
∫ 1

0

(
u2
x(x, t) + u2

t (x, t)
)
dx.

Note that for t = 0 the energy is known from the initial functions f and g.
The idea is to consider how this nonnegative scalar variable evolves with

1Here u ∈ C2(
[0, 1] × [0,∞)

)
means that all partial derivatives of order less than or

equal 2 are continuous on [0, 1]× [0,∞), i.e., u, ux, ut, uxx, uxt, utt ∈ C
(
[0, 1]× [0,∞)

)
.
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time. By differentiating E(t) with respect to time, we obtain

E′(t) =
d

dt

∫ 1

0

(
u2
x(x, t) + u2

t (x, t)
)
dx

= 2
∫ 1

0

(
ux(x, t)uxt(x, t) + ut(x, t)utt(x, t)

)
dx. (5.16)

Here we have assumed that the energy can be differentiated by differentiat-
ing under the integral sign. However, if u ∈ C2

(
[0, 1]× [0,∞)

)
, this can be

justified by applying Proposition 3.1 on page 107. The term uxt appearing
on the right-hand side of (5.16) should be interpreted as

uxt =
∂

∂t

(
∂

∂x
u

)
.

However, it is a well-known result from calculus that if u is a C2-function,
then we can change the order of differentiation, i.e.

uxt =
∂

∂t

(
∂

∂x
u

)
=

∂

∂x

(
∂

∂t
u

)
= utx.

Hence, using integration by parts, we obtain
∫ 1

0
uxuxtdx =

∫ 1

0
uxutxdx = ux(x, t)ut(x, t)

∣∣x=1
x=0 −

∫ 1

0
uxxutdx.

If u solves (5.4), it now follows that ut(x, t) = 0 for x = 0, 1, and therefore
we have ∫ 1

0
uxuxtdx = −

∫ 1

0
uxxutdx = −

∫ 1

0
uttutdx,

where last equality follows from the differential equation. By inserting this
into (5.16) we simply obtain

E′(t) = 0,

or

E(t) = E(0) for t ≥ 0. (5.17)

Hence, for the wave equation the energy E(t) is preserved for all time.
In the same way as for the heat equation in Section 3.7, we can use the
equality (5.17) to obtain a stability estimate for the problem (5.4).
Let u1 and u2 be two solutions of (5.4) with initial functions (f1, g1)

and (f2, g2), respectively, and let w = u1 − u2. It is a straightforward
consequence of the linearity of the problem that w is a solution of (5.4)
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with initial functions f = f1 − f2 and g = g1 − g2. Hence, it follows from
the equality (5.17), applied to the solution w, that

∫ 1

0

[(
(u1 − u2)x(x, t)

)2 +
(
(u1 − u2)t(x, t)

)2
]
dx

=
∫ 1

0

[(
(f1 − f2)x(x)

)2 +
(
(g1 − g2)(x)

)2
]
dx (5.18)

This equality tells us that if the initial data of the two solutions are close,
then the solutions will stay close for all time. In particular, we have the
following uniqueness result:

Theorem 5.1 If u1, u2 ∈ C2
(
[0, 1]×[0,∞)

)
are two solutions of the initial-

boundary value problem (5.4) with the same initial data, then u1 ≡ u2.

Proof: If the initial data are the same, then the right-hand side of (5.18) is
zero. Hence, the left-hand side is zero, and as a consequence (u1)x = (u2)x
and (u1)t = (u2)t. Hence, the two solutions can only differ by a constant.
However, since they have the same initial and boundary data, this implies
that u1 ≡ u2. �

5.3 A Finite Difference Approximation

In this section we shall study an explicit finite difference approximation
of the initial value problem (5.4). An alternative implicit method will be
studied in Exercise 5.9.
In order to derive the difference method, let us first recall that the prob-

lem (5.4) takes the form

utt = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0, (5.19)
u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ (0, 1).

Let us also repeat some of the notation introduced in Chapter 4. The grid
spacing in the x-direction is ∆x = 1/(n + 1), where n ≥ 1 is an integer,
and the associated grid points are xj = j∆x for j = 0, 1, 2, . . . , n+ 1. The
discrete time levels are given by tm = m∆t for integers m ≥ 0, where ∆t >
0 is the time step. Furthermore, the grid function v, with vmj = v(xj , tm),
approximates u.
The difference schemes for the heat equation studied in Chapter 4 were

based on the approximation

uxx(x, t) =
u(x−∆x, t)− 2u(x, t) + u(x+∆x, t)

(∆x)2
+O

(
(∆x)2

)



166 5. The Wave Equation

� � �

�

�

j-1 j j+1

m-1

m

m+1

FIGURE 5.3. The computational molecule of the scheme (5.20).

for the spatial derivative ∂2/∂x2. In the present case it seems rather natural
to use a similar approximation also for the second-order derivative with
respect to time. Hence, we have motivated the difference scheme

vm−1
j − 2vmj + vm+1

j

(∆t)2
=

vmj−1 − 2vmj + vmj+1

(∆x)2
. (5.20)

The computational molecule for this scheme is illustrated in Fig. 5.3.
The difference scheme (5.20) will be assumed to hold for all interior grid

points in x-direction, i.e. for j = 1, 2, . . . , n, and for m ≥ 1. Of course,
we also require the discrete solution to satisfy the boundary conditions in
(5.19), i.e.

vm0 = vmn+1 = 0 for m ≥ 0.

It is easy to see that if {vmj }nj=1 and {vm−1
j }nj=1 are known, then the so-

lutions {vm+1
j }nj=1 can be computed directly from (5.20). Therefore, the

scheme is explicit, i.e. we do not need to solve linear systems. However, we
note that in order to start the process, we need to know v at the first two
time levels. We obviously choose

v0
j = f(xj) for j = 1, 2, . . . , n. (5.21)

In order to obtain approximations v1
j for u(x,∆t) we use a Taylor’s expan-

sion with respect to time to obtain

u(x,∆t) = u(x, 0) + (∆t)ut(x, 0) +
(∆t)2

2
utt(x, 0) +O

(
(∆t)3

)
= f(x) + (∆t)g(x) +

(∆t)2

2
f ′′(x) +O

(
(∆t)3

)
.



5.3 A Finite Difference Approximation 167

Here the last equality follows from (5.19), since

utt(x, 0) = uxx(x, 0) = f ′′(x).

Hence, we have motivated the following approximation v1
j for u(xj ,∆t):

v1
j = v0

j + (∆t)g(xj) +
(∆t)2

2(∆x)2
(
v0
j−1 − 2v0

j + v0
j+1

)
. (5.22)

In order to write the finite difference scheme in a more compact form, we
let vm ∈ R

n be the vector vm = (vm1 , vm2 , . . . , vmn )
T and A ∈ R

n,n the
tridiagonal matrix

A =
1

(∆x)2




2 −1 0 . . . 0

−1 2 −1 . . .
...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2




. (5.23)

Then the difference scheme above can be written

vm+1 =
(
2I − (∆t)2A

)
vm − vm−1 for m ≥ 1, (5.24)

where the initial approximations v0 and v1 are determined by (5.21) and
(5.22).

Example 5.3 Consider the initial-boundary value problem studied in Ex-
ample 5.2, i.e.

f(x) = x(1− x) and g(x) = 0.

We will compare the exact solution derived in Example 5.2 with solutions
obtained by the finite difference scheme above. First we choose ∆x = ∆t =
1/20. The numerical solution for t = 1.00 is compared to the analytical
solution, obtained in Example 5.2, in the left part of Fig. 5.4. As we observe,
the two solutions are so close that we cannot see the difference between
them. Next we change the parameters in the numerical scheme to ∆x =
1/21 and ∆t = 1/20. This has the effect of modifying the mesh ratio ∆t/∆x
from 1 to 1.05. The result is given in the right part of Fig. 5.4. We observe
that the numerical solution now contains undesired oscillations not present
in the analytical solution.
Hence, it appears that there is a stability condition for the scheme (5.20)

which has been violated in the second computation. We will investigate the
stability properties of the difference scheme further in the next section. �
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FIGURE 5.4. The function u(x, t) for 0 ≤ x ≤ 1 and t = 1 using r = 1 (left) and
r = 1.05 (right). The numerical solutions are dashed, while the analytic solution
is solid.

5.3.1 Stability Analysis
In order to explain the instability phenomenon observed in Example 5.3
above, we will perform a stability analysis of the finite difference scheme
(5.20). In order to motivate our approach, let us recall the particular solu-
tions (5.11) for the continuous problem (5.19). If we use the complex form
(5.10) for the functions Tk(t), then these solutions take the form

uk(x, t) = sin (kπx)e±ikπt. (5.25)

As before we let Xk ∈ R
n be the vector with components Xk,j = sin(kπxj).

For the finite difference scheme (5.24) we will consider possible solutions of
the form

vm = Xka
m or vmj = Xk,ja

m, (5.26)

where a is a complex number.
In order to see that this will define particular solutions of the difference

scheme, we simply need to recall that if 1 ≤ k ≤ n, Xk is an eigenvector
of the matrix A given by (5.23). Furthermore, from Lemma 2.9 it follows
that the corresponding eigenvalues µk = 4

(∆x)2 sin
2(kπ∆x/2). Therefore, if

we insert the ansatz (5.26) into (5.24), we obtain

a2 − (2− s)a+ 1 = 0, (5.27)

where s = (∆t)2µk = 4 (∆t)2

(∆x)2 sin(kπ∆x/2). Hence, if we let r be the mesh
ratio, r = ∆t/∆x, then s ∈ (0, 4r2).
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The particular solutions given by (5.25) will always have the property
that ∣∣uk(x, t)∣∣ ≤ 1.

It is therefore reasonable to demand that the particular solutions (5.26)
of the difference scheme have a corresponding property. We shall therefore
require that

|a| ≤ 1. (5.28)

To be more precise, let us note that the roots a of (5.27) will depend on s,
i.e. a = a(s). Since s ∈ (0, 4r2), we will therefore define the scheme to be
stable as long as the roots a(s) satisfy (5.28) for all s ∈ (0, 4r2).

Lemma 5.1 Let s ≥ 0 be given. The roots of (5.27) satisfy (5.28) if and
only if s ≤ 4.

Proof: The roots of (5.27) are given by

a =
2− s± √

s(s− 4)
2

. (5.29)

If s = 0, there is a double root for a = 1, and if s = 4, the only root is
−1. If s ∈ (0, 4), there are two complex roots a1 and a2. Written in polar
coordinates, these are of the form

a1 = ρeiθ and a2 = ρe−iθ

for ρ > 0 and θ ∈ (0, π). Furthermore, from (5.27) it follows that the
product of the roots is 1, i.e.

a1a2 = ρ2 = 1.

Hence, the roots are of the form e±θ, and therefore the bound (5.28) holds.
On the other hand, if s > 4, there are two distinct real roots a1 and a2,
with a1a2 = 1. Hence, one of them must have absolute value greater than
1 in this case. �
As a consequence of this Lemma, the roots will satisfy (5.28) for all

s ∈ (0, 4r2) if and only if

r = ∆t/∆x ≤ 1. (5.30)

We recall that this stability bound is consistent with the observation done
in Example 5.3. If the mesh parameters satisfy this bound, the numerical
solution behaves qualitatively as the exact solution. However, if the bound
is violated, we observe oscillations in the numerical solution which are not
present in the exact solution.
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5.4 Exercises

Exercise 5.1 Find the formal solutions of the problem

utt = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x), ut(x, 0) = g(x),

for the initial functions

(a) f(x) = 3 sin (2πx), g(x) = sin(πx),

(b) f(x) = 3 sin (2πx), g(x) = x(1− x),

(c) f(x) = 3 sin (2πx), g(x) = sin(x) cos(4x).

Exercise 5.2 (a) Assume that u = u(x, t) solves a wave equation of the
form

utt = c2uxx,

where c is a constant. Let v(x, t) = u(x, αt). Determine α > 0 such
that v satisfies the corresponding equation with c = 1, i.e.

vtt = vxx.

(b) Find the formal solution of the problem:

utt = c2uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x), ut(x, 0) = g(x),

when

f(x) =
∞∑
k=1

ak sin(kπx), g(x) =
∞∑
k=1

bk sin(kπx).

Exercise 5.3 (a) Find the formal solution of the problem:

utt = uxx for x ∈ (0, 1), t > 0,
ux(0, t) = ux(1, t) = 0,
u(x, 0) = f(x), ut(x, 0) = g(x),

when

f(x) =
∞∑
k=1

ak sin(kπx); g(x) =
∞∑
k=1

bk sin(kπx).

(Note that the boundary conditions are of Neumann-type.)
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(b) Show that the energy

E(t) =
∫ 1

0

(
u2
x(x, t) + u2

t (x, t)
)
dx

is constant in time if u is a smooth solution of the problem above.

Exercise 5.4 Find the formal solution of the following problem:

utt = uxx for x ∈ (0, 1), t > 0,
u(0, t) = a , u(1, t) = b,

u(x, 0) = f(x), ut(x, 0) = g(x),

for given constants a and b.

Exercise 5.5 Find the formal solution of the following problem:

utt = uxx + 2x for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x), ut(x, 0) = g(x).

Exercise 5.6 Implement the scheme (5.20) for the initial-boundary value
problem (5.19). Investigate the performance of the method by comparing
the numerical results with the analytical solutions given in

(a) Example 5.1,

(b) Example 5.2.

Exercise 5.7 In this problem we study the wave equation as a two-point
boundary value problem with respect to time. For T > 0 consider the
problem

utt = uxx for x ∈ (0, 1), 0 < t < T,

u(0, t) = u(1, t) = 0,
u(x, 0) = f(x), u(x, T ) = g(x).

(a) Assume that

f(x) =
∞∑
k=1

ak sin(kπx); g(x) =
∞∑
k=1

bk sin(kπx).

Find a formal solution of the problem when T = 1/2.
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(b) Assume T = 1. Does the problem have a unique solution in this case?

Exercise 5.8 Consider a damped wave equation of the form

utt + ut = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = f(x), ut(x, 0) = g(x).

(a) Find a formal solution of the problem.

(b) Assume that u = u(x, t) is a smooth solution of the problem above
and let

E(t) =
∫ 1

0

(
u2
x(x, t) + u2

t (x, t)
)
dx.

Show that

E(t) ≤ E(0) for t ≥ 0.

Exercise 5.9 In this problem we shall study an implicit finite difference
scheme for the problem (5.19). Instead of the scheme (5.24) we consider a
finite difference scheme of the form

vm+1 − 2vm + vm−1 = − (∆t)2

4
A

(
vm+1 + 2vm + vm−1), (5.31)

where the matrix A is given by (5.23).

(a) Write the difference scheme in component form (i.e. similar to (5.20))
and sketch the computational molecule for the scheme.

(b) Assume that vm−1, vm ∈ R
n are known. Explain how we compute

vm+1 from (5.31) and show that vm+1 is uniquely determined.

(c) Perform a stability analysis for the scheme (5.31). Show that the
scheme is stable independent of the mesh ratio ∆t/∆x.

Exercise 5.10 Implement the implicit scheme (5.31) for the initial-boundary
value problem (5.19). By doing experiments similar to those in Example 5.3
for the explicit method (5.20), try to verify that the method is stable in-
dependent of the mesh ratio ∆t/∆x.
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Exercise 5.11 In this problem we shall study first-order initial-boundary
value problems of the form

ut + cux = 0, x ∈ (0, 1), t > 0,
u(0, t) = g(t), (5.32)
u(x, 0) = f(x),

where c is a constant. If c > 0, the unique solution of this problem is given
by

u(x, t) =
{

f(x− ct) for x > ct,
g(t− x/c) for x < ct;

cf. the discussion in Example 1.1 on page 12. From this formula we easily
derive ∣∣u(x, t)∣∣ ≤ max

{|f(x)|, |g(τ)| : x ∈ [0, 1], τ ∈ [0, t]
}
.

A finite difference method will be called stable if its solution satisfies a
bound similar to this.

(a) Consider the explicit finite difference method

vm+1
j − vmj

∆t
+ c

vmj − vmj−1

∆x
= 0 (5.33)

for m ≥ 0 and j = 1, 2, . . . , n + 1, where, as usual, ∆x = 1/(n + 1).
Sketch the computational molecule for the scheme.

(b) Assume that c > 0. Explain how we can use the difference scheme
(5.33), together with the initial and boundary values, to compute vmj
for m ≥ 0 and j = 1, 2, . . . , n+ 1. Show that the scheme is stable if

c
∆t

∆x
≤ 1.

(c) Assume that c < 0. Show that the scheme is never stable in the
sense defined above. How does this correspond to properties of the
continuous problem (5.32)?

(d) Assume that c > 0 and consider the implicit scheme

vm+1
j − vmj

∆t
+ c

vm+1
j − vm+1

j−1

∆x
= 0.

Sketch the computational molecule, explain how vmj for m ≥ 0 and
j = 1, 2, . . . , n+1 can be computed from data. Show that the scheme
is always stable.



6
Maximum Principles

The purpose of this chapter is to study maximum principles. Such principles
state something about the solution of an equation without having to solve
it.
We will start by studying two-point boundary value problems. For a class

of such problems, we will prove that the solution does not have any interior
maxima or minima; thus the extreme values are attained at the boundaries.
The method for proving this fact can readily be generalized to the case of
time-dependent problems, and we will study the heat equation. Finally, we
will consider Poisson’s equation in the case of two space dimensions.

6.1 A Two-Point Boundary Value Problem

Before we start studying the maximum principle for the heat equation, let
us take one step back and consider a similar problem in a simpler frame-
work. We consider a two-point boundary value problem of the form

u′′(x) + a(x)u′(x) = 0, x ∈ (0, 1),

where a is a given function and u is known at the endpoints x = 0 and
x = 1. For this problem, we will prove that the solution cannot exceed the
boundary values.
The basic idea in deriving maximum principles is usually the following

elementary property of functions well known from calculus; in a local max-
imum x0 of a smooth function v(x), we have v′(x0) = 0 and v′′(x0) ≤ 0;
see Fig. 6.1.
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xx0

v
v′′(x0) ≥ 0
v′(x0) = 0

FIGURE 6.1. A smooth function v = v(x) close to a local maximum.

We will use this property of a smooth function to prove a maximum
principle for the solution of a two-point boundary value problem. In order to
do this, we start by considering a differential inequality. Let v ∈ C2

(
(0, 1)

)∩
C

(
[0, 1]

)
be a function satisfying the following inequality:

v′′(x) + a(x)v′(x) > 0, x ∈ (0, 1), (6.1)

where a is continuous on [0, 1]. Suppose now that v has a local maximum
in an interior point x0, i.e. x0 ∈ (0, 1). Then, as explained above, we have

(a) v′(x0) = 0 and

(b) v′′(x0) ≤ 0.

But clearly (a) and (b) imply that v′′(x0) + a(x0)v′(x0) ≤ 0 which is a
contradiction of (6.1). Consequently, a smooth function v satisfying the
strict inequality (6.1) cannot have a local maximum in the interval (0, 1).
We have the following result:

Lemma 6.1 A function v ∈ C2
(
(0, 1)

) ∩ C
(
[0, 1]

)
satisfying (6.1), where

a ∈ C
(
[0, 1]

)
, satisfies the following maximum principle:

v(x) ≤ V for all x ∈ [0, 1],

where V = max(v(0), v(1)).

This is a nice result, but not exactly what we are looking for. Our aim
is to replace the inequality of (6.1) with an equality and still get the same
conclusion. The argument given above almost covers this case, but not
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completely. However, by introducing an auxiliary function, we can use the
result of Lemma 6.1 to prove the result we are aiming at.
Consider the two-point boundary value problem

u′′(x) + a(x)u′(x) = 0, x ∈ (0, 1), (6.2)

with boundary conditions

u(0) = u0 and u(1) = u1. (6.3)

Here u0 and u1 are given constants and a = a(x) is a given continuous
function on [0, 1].
We want to prove that if u ∈ C2

(
(0, 1)

) ∩ C
(
[0, 1]

)
is a solution of

(6.2),(6.3), then u cannot exceed max(u0, u1) in the interval (0, 1). We
do this by constructing a sequence of functions vε = vε(x) satisfying the in-
equality (6.1) and converging towards u as ε tends to zero. For this purpose,
let c = supx∈[0,1] |a(x)|, and define

vε(x) = u(x) + εe(1+c)x (6.4)

for ε ≥ 0. Observe that

v′′
ε (x) + a(x)v′

ε(x) = ε(1 + c)(1 + c+ a(x))e(1+c)x,

thus,

v′′
ε (x) + a(x)v′

ε(x) > 0

for all ε > 0. Hence, it follows from Lemma 6.1 that

vε(x) ≤ max(vε(0), vε(1)). (6.5)

Going back to (6.4), we observe that

u(x) = vε(x)− εe(1+c)x

≤ vε(x)
≤ max(vε(0), vε(1))
= max(u0 + ε, u1 + εe1+c).

Now, by letting ε → 0 from above, we get1

u(x) ≤ max(u(0), u(1)) = max(u0, u1). (6.6)

1Here you may wonder how on earth we found such a smart auxiliary function vε.
The answer is that we found it in the book of Protter and Weinberger [21]. But how can
such a trick be invented if you do not know the answer? The basic idea here is of course
to exploit the fact that we already have a maximum principle for functions satisfying
v′′+av′ > 0, and we want to use this in order to derive a similar maximum principle for
u satisfying u′′ + au′ = 0. Thus we want to change u slightly such that the perturbed
function satisfies an inequality rather than an equality. If we put vε(x) = u(x) + εy(x),
we get v′′

ε + av′
ε = ε(y′′ + ay′). Hence, any function y satisfying y′′(x) + a(x)y′(x) > 0

for all x ∈ [0, 1] will do the job. Now, it is not too hard to see that it is reasonable to
try some kind of exponential function for y.
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So far we have only been concerned with upper bounds for u. Of course,
lower bounds are equally important. In order to derive a similar lower
bound, we could go through the same steps once more. However, a slick
trick enables us to use the result we have already obtained.
Define

w(x) = −u(x),

and observe that

w′′(x) + a(x)w′(x) = 0.

Then, by the argument given above, we get

w(x) ≤ max(w(0), w(1)).

Hence

−u(x) ≤ max(−u0,−u1) = −min(u0, u1),

and consequently

u(x) ≥ min(u0, u1).

By summarizing our observations, we have the following result:

Theorem 6.1 Suppose u ∈ C2
(
(0, 1)

) ∩ C
(
[0, 1]

)
is a solution of (6.2)–

(6.3). Then u(x) satisfies

min(u0, u1) ≤ u(x) ≤ max(u0, u1)

for all x ∈ [0, 1].

We observe that the derivation of the maximum principle given above is
done without finding a formula for the solution u. However, for the rather
simple problem above, it is easy to find an explicit formula for u, and this
formula can be used to give a direct proof of Theorem 6.1 (see Exercise 6.1).
The main reason for presenting the argument above is that this proof may
serve as a guidline for how to construct similar proofs for more complex
problems, where a simple explicit formula is not available.

6.2 The Linear Heat Equation

In the section above, we saw that a maximum principle can be derived for
the solution of a two-point boundary value problem by applying only ele-
mentary properties of smooth functions. In this section we will use exactly
the same technique in order to derive a maximum principle for the linear
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heat equation. We will prove that the maximum value of the solution can-
not be attained in the interior of the solution domain; a maximum value
must be attained either initially or at one of the boundaries. In the next
section, we go one step further and apply this technique to the nonlinear
heat equation.
When reading this section, it may be useful to have a physical interpre-

tation of the heat equation in mind. Consider a uniform rod of unit length
with an initial temperature given by f(x). The temperatures at the left
and right boundaries are given by u�(t) and ur(t) respectively. Then the
temperature u = u(x, t) in the rod is governed2 by the following model:

ut = uxx for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u�(t), u(1, t) = ur(t), t ∈ [0, T ], (6.7)
u(x, 0) = f(x), x ∈ [0, 1],

for an appropriate choice of scales. Here T > 0 is a finite constant. We
assume that at t = 0 the boundary conditions coincide with the initial
data at the endpoints, i.e. we assume u�(0) = f(0) and ur(0) = f(1).
Let us start by considering the special case u�(t) = ur(t) = 0, i.e. the

temperature is kept equal to zero at the endpoints. Furthermore, we assume
that the initial temperature is positive throughout the rod. Then, just from
experience, we would expect the temperature to decrease in the rod and
eventually converge towards zero. Also, it would come as a bit of a surprise
if we found a spot within the rod that is hotter than the highest initial
temperature of the rod. Carrying this a bit further by allowing nonzero
temperature on the boundaries, we would expect the highest temperature
to appear either initially or at one of the boundaries. For instance, if we have
a rod with the temperature initially equal to zero and then start heating the
left endpoint but keep the temperature at the right endpoint equal to zero,
we expect, for some fixed time greater than zero, to see a monotonically

2In the field of applied mathematics we often say that a physical phenomenon is
“governed” by a certain mathematical model. Obviously, this should not be interpreted
literally; what we mean is usually that the model gives a reasonable description of the
phenomenon under consideration. Keep in mind that we are only capable of deriving
models. In some fortunate situations, they may provide very accurate predictions, but
they are still models.
On the other hand, you should also be aware of the fact that results from physical

experiments and observations can never, with any rigor, be used as evidence for prop-
erties of the mathematical model. Thus, although we know that there exists a physical
temperature in the rod we are considering, we cannot use this as an argument for the
existence of a solution of the mathematical problem. If the modeling has been properly
done, one may certainly hope that properties that are apparent in the real-world physical
situation may be carried over to our model, but such similarities are not evident.
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decreasing temperature profile. These rather obvious properties3 will be
proved for the heat equation in this section.
As for the boundary value problem, we will also consider a finite dif-

ference scheme and prove the proper maximum principle for the discrete
solutions.

6.2.1 The Continuous Case
Our aim is to derive a maximum principle for the solution of (6.7). But as
for the two-point boundary value problem, we find it convenient to start
by considering a differential inequality. Then, through a regularization4 of
the problem (6.7), we prove the maximum principle by letting the regular-
ization parameter go to zero.
Define R to be the rectangle in the (x, t) plane given by

R = {(x, t) : x ∈ [0, 1], t ∈ [0, T ]}. (6.8)

Let v = v(x, t) be a smooth function satisfying the inequality

vt < vxx for 0 < x < 1, 0 < t ≤ T. (6.9)

Here we refer to v as a smooth function if v is continuous on the closed
rectangle R, with vt, vx and vxx continuous for x ∈ (0, 1) and t > 0. We will
show that v cannot have any maximum in the interior of R. More precisely,
a maximum of v has to be attained at the “lower” boundary of R. The
“lower” boundary is defined by

B = {(x, t) : x = 0, 0 ≤ t ≤ T} ∪ {(x, t) : t = 0, 0 ≤ x ≤ 1} (6.10)
∪ {(x, t) : x = 1, 0 ≤ t ≤ T};

see Fig. 6.2.
We will prove the maximum principle by assuming that v has a maximum

in the interior of R, and then derive a contradiction to (6.9).
Suppose that (x0, t0) is a local maximum of v in the interior of R, i.e.

x0 ∈ (0, 1) and t0 ∈ (0, T ). Then, by the properties discussed in the previous
section, we have

(i) vt(x0, t0) = 0 and

3Albeit obvious from a physical point of view, the maximum principle is not at all
trivial from a mathematical point of view. One natural way to try to prove the principle
is to consider the Fourier solution derived in Chapter 3. This attempt fails; it is very
hard to prove a maximum principle based on such a series expansion.

4The term “regularization” is often used in mathematics. Usually, it means to change
something slightly in a favorable direction. For instance, looking at the two-point bound-
ary value problem above, we “regularized” the problem by adding a little term such that
a differential equation was changed to a differential inequality which we know something
about.
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FIGURE 6.2. Definition of the rectangle R and the lower boundary B.

(ii) vxx(x0, t0) ≤ 0.

But now (i) and (ii) imply that

vt(x0, t0) ≥ vxx(x0, t0),

which clearly contradicts (6.9). Consequently, we cannot have an interior
maximum for a smooth function satisfying the inequality (6.9). But what
about the upper boundary, i.e. t = T ; can we have a local maximum for
some x0 ∈ (0, 1) and t0 = T? Suppose that is the case. Then it follows that

(iii) vt(x0, t0) ≥ 0 and

(iv) vxx(x0, t0) ≤ 0,

which again contradicts (6.9). Thus we have derived the following result:

Lemma 6.2 A function v ∈ C
(
R

)
, with vt, vx, vxx ∈ C

(
(0, 1) × (0, T ]

)
,

satisfying the inequality (6.9) obeys the following maximum principle:

v(x, t) ≤ V for all x ∈ [0, 1], t ∈ [0, T ],

where

V = sup
(x,t)∈B

v(x, t).

This lemma is exactly the tool we need to prove the maximum principle
for the heat equation (6.7). As for the boundary value problem, we uti-
lize this result by introducing a regularization of the solution of the heat
equation.
Let u be a smooth solution of (6.7). With a smooth solution we mean that

u is continuous on the closed rectangle R with ut, ux, and uxx continuous
for x ∈ (0, 1) and t > 0. Define

vε(x, t) = u(x, t) + εx2 (6.11)
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for ε > 0. Then

vεt = vεxx − 2ε.

Hence, for any ε > 0, we have

vεt < vεxx,

and it follows from the lemma that

vε(x, t) ≤ V ε, (6.12)

where V ε denotes the maximum of vε on the boundary B. Now, it follows
from (6.11) that

u(x, t) = vε(x, t)− εx2 ≤ vε(x, t).

Hence, for any ε > 0, we have5

u(x, t) ≤ V ε = sup
(x,t)∈B

(f(x) + εx2, u�(t), ur(t) + ε).

By letting ε tend to zero from above, we get

u(x, t) ≤ sup
(x,t)∈B

(f(x), u�(t), ur(t)). (6.13)

In order to derive a similar lower bound for u, we apply the same trick
as for the two-point boundary value problem. Let w(x, t) = −u(x, t). Then
wt = wxx and, using (6.13), we have

w(x, t) ≤ sup
(x,t)∈B

(−f(x),−u�(t),−ur(t)) = − inf
(x,t)∈B

(f(x), u�(t), ur(t)),

and consequently

u(x, t) = −w(x, t) ≥ inf
(x,t)∈B

(f(x), u�(t), ur(t)).

We can summarize these observations as follows:

Theorem 6.2 Suppose u ∈ C
(
R

)
, with ut, ux, uxx ∈ C

(
(0, 1)× (0, T ]

)
, is

a solution of (6.7). Then u satisfies the maximum principle6

inf
(x,t)∈B

(f(x), u�(t), ur(t)) ≤ u(x, t) ≤ sup
(x,t)∈B

(f(x), u�(t), ur(t)).

for all (x, t) ∈ R.

5Note that supy(a(y), b(y), c(y)) is shorthand for max(supy a(y), supy b(y), supy c(y)).
A similar notation is used for inf.

6Recall that the domain R and its lower boundary B are defined in Fig. 6.2.
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We should remark here that the proof above requires that u is smooth,
i.e. u is continuous on the closed rectangle R. In particular, this implies
that u is continuous at (x, t) = (0, 0) and (x, t) = (1, 0) or

u�(0) = f(0) and ur(0) = f(1).

Later, in Chapter 10, we shall refer to these relations as compatibility
conditions for the data. Note that these conditions are not satisfied for the
problem studied in Example 3.2. Hence, the maximum principle has not
been established for this case.

6.2.2 Uniqueness and Stability
A maximum principle for a linear differential equation will frequently imply
a uniqueness and stability result for the solution (see Exercise 6.2). This is
also the case for the present model. In order to derive this result, we let u
denote a solution of

ut = uxx for x ∈ (0, 1), t ∈ [0, T ],
u(0, t) = u�(t), u(1, t) = ur(t), t ∈ [0, T ], (6.14)
u(x, 0) = f(x), x ∈ [0, 1],

and similarly, ū denotes a solution of

ūt = ūxx for x ∈ (0, 1), t ∈ [0, T ],
ū(0, t) = ū�(t), ū(1, t) = ūr(t), t ∈ [0, T ], (6.15)
ū(x, 0) = f̄(x), x ∈ [0, 1].

Furthermore, we let e denote the difference between these solutions, i.e.
e = u − ū. Then e is a solution of the following initial-boundary value
problem:

et = exx for x ∈ (0, 1), t ∈ [0, T ],
e(0, t) = ∆u�(t), e(1, t) = ∆ur(t), t ∈ [0, T ], (6.16)
e(x, 0) = ∆f(x), x ∈ [0, 1],

where ∆u�(t) = u�(t)− ū�(t), ∆ur(t) = ur(t)− ūr(t) and ∆f(x) = f(x)−
f̄(x). By Theorem 6.2 above, we get

inf
(x,t)∈B

(∆f(x),∆u�(t),∆ur(t)) ≤ e(x, t) ≤ sup
(x,t)∈B

(∆f(x),∆u�(t),∆ur(t)),

and then we have the following result:
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Corollary 6.1 The problem (6.14) has at most one smooth solution. Fur-
thermore, the solution is stable with respect to perturbations in the sense
that

sup
(x,t)∈R

|u(x, t)− ū(x, t)| ≤ sup
(x,t)∈B

(|f(x)− f̄(x)|, |u�(t)− ū�(t)|, |ur(t)− ūr(t)|)

where u is the solution of (6.14) and ū is the solution of (6.15). Here, the
domain R and the lower boundary B are defined in Fig. 6.2.

6.2.3 The Explicit Finite Difference Scheme
Having derived the proper maximum principle for the heat equation, we
proceed by analyzing a numerical method for this initial-boundary value
problem. In the present section we will consider the explicit scheme in-
troduced in Section 4.1. Using a discrete version of Fourier’s method, we
derived a certain stability condition for this scheme. The same type of sta-
bility condition was derived for several other problems in Section 4.3 using
the method of von Neumann. Now we will prove that the stability condition
derived earlier is sufficient in order for the numerical solutions to satisfy a
discrete version of the maximum principle.
In the next section we will address the same question for the implicit

finite difference scheme introduced in Section 4.4. It turns out that the
numerical solutions generated by the implicit scheme satisfy the discrete
maximum principle for any relevant choice of grid parameters.
We consider the explicit finite difference scheme for the initial boundary

value problem (6.7). Let us start by briefly recapitulating the basic nota-
tion. Let vmj denote an approximation to the exact solution u at the grid
point (xj , tm). As usual, xj = j∆x, where ∆x = 1/(n + 1) for a given
integer n ≥ 1, and tm = m∆t, where ∆t > 0 is referred to as the time step.
The explicit scheme derived in Section 4.1 applied to the initial-boundary

value problem (6.7) can be written in the following form:

vm+1
j = rvmj−1 + (1− 2r)vmj + rvmj+1, j = 1, . . . , n, m ≥ 0, (6.17)

where r = ∆t/∆x2. The boundary conditions of (6.7) give

vm0 = u�(tm) and vmn+1 = ur(tm) (6.18)

for m ≥ 0, and the initial condition leads to

v0
j = f(xj) for j = 1, . . . , n. (6.19)

Our aim is now to prove that the discrete solution vmj defined by this
explicit scheme satisfies a maximum principle similar to the result in the
continuous case. In order to prove this, we will need some notation which
is very closely related to the notation we used in the continuous case. We
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define B∆ to be the grid points located on the lower boundary B, and
R∆ to be the collection of grid points in the rectangle R. Here B and R
are sketched in Fig. 6.2 above. More specifically, we define the “discrete
rectangle”

R∆ = {(xj , tm) : xj ∈ [0, 1], tm ∈ [0, T ]} (6.20)

and the associated “lower boundary”

B∆ = {(xj , tm) : xj = 0, 0 ≤ tm ≤ T} ∪ {(xj , tm) : tm = 0, 0 ≤ xj ≤ 1}
∪{(xj , tm) : xj = 1, 0 ≤ tm ≤ T}; (6.21)

see Fig. 6.3. For brevity, we define7

V − = min
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk))

and

V + = max
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk)).

We want to show that a numerical solution generated by the scheme (6.17)–
(6.19) is bounded below by V − and above by V +. This will be done under
the assumption that the grid parameters satisfy the following condition:

r =
∆t

(∆x)2
≤ 1/2. (6.22)

This is exactly the condition we derived in Section 4.1 using discrete Fourier
analysis; see (4.25) on page 130.

Theorem 6.3 Suppose that the grid sizes ∆x and ∆t satisfy the condition
(6.22), and let vmj be the numerical approximation of (6.7) generated by
the scheme (6.17)–(6.19). Then

V − ≤ vmj ≤ V +

for all grid points (xj , tm) ∈ R∆.

Proof: The proof of the lower and the upper bound, are similar, so we
concentrate on the upper bound, which is verified by induction on the time
level. Consider one fixed time level tm, and assume that

vmj ≤ V + for j = 1, . . . , n.

7Here mini(ai, bi, ci) is shorthand for min(mini ai,mini bi,mini ci). We use a similar
notation for max.
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FIGURE 6.3. Definition of the rectangle R∆ and the lower boundary B∆.

By (6.17) we have

vm+1
j = rvmj−1 + (1− 2r)vmj + rvmj+1, for j = 1, . . . , n,

and by (6.22), we have 1− 2r ≥ 0. These facts imply that

vm+1
j ≤ rV + + (1− 2r)V + + rV + = V +.

Since this holds for any j = 0, . . . , n+ 1, the result follows by induction
on m. �

As in the continuous case, we can use this result to prove stability of the
numerical solutions with respect to perturbations in the initial or boundary
data. You are asked to formulate and prove such a result in Exercise 6.10.

6.2.4 The Implicit Finite Difference Scheme
We recall from the discussion in Section 4.4 that explicit schemes tend
to become very CPU-time demanding as ∆x is reduced. This is due to
the stability condition (6.22) which forces the number of time steps to be
of order O(n2), where n is the number of grid points in the x direction.
This fact motivated the development of an implicit scheme in Section 4.4.
According to the von Neumann method, the implicit scheme is stable for
any positive values of the grid parameters. In this section we will look
at this problem once more, and prove that the scheme indeed satisfies the
discrete maximum principle for any relevant choice of grid parameters. You
should note that this is not a consequence of the von Neumann method,
which merely guarantees that each of the discrete particular solutions are
well behaved.
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Using the same notation as for the explicit scheme, we recall that the
implicit scheme has the following form:

vm+1
j − vmj

∆t
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2 for j = 1, . . . , n, m ≥ 0.

(6.23)

The boundary conditions and initial data lead to

vm0 = u�(tm) and vmn+1 = ur(tm), m ≥ 0, (6.24)

and

v0
j = f(xj) for j = 1, . . . , n (6.25)

respectively. In Section 4.4 we proved that this scheme is well defined;
see in particular Exercise 4.5 on page 149. Now we want to show that
the numerical solution generated by this scheme satisfies the maximum
principle. As above, it is sufficient to consider the problem of deriving an
upper bound, since the lower bound can be derived in exactly the same
manner. Thus we want to show that

vki ≤ V + = max
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk))

for all grid points (xi, tk) ∈ R∆.
Note that the scheme can be rewritten in the form

(1 + 2r)vm+1
j = vmj + r(vm+1

j−1 + vm+1
j+1 ), j = 1, . . . , n, m ≥ 0,

(6.26)

where we recall that r = ∆t/(∆x)2. Consider a fixed time level tm and
assume that vmj ≤ V + for j = 0, . . . , n+ 1. Then

(1 + 2r)vm+1
j ≤ V + + 2r max

i=0,... ,n+1
vm+1
i , (6.27)

for all j = 1, . . . , n. Since both vm+1
0 and vm+1

n+1 are bounded by V +, it fol-
lows that the inequality (6.27) holds for all j = 0, . . . , n+1. Consequently,

(1 + 2r) max
i=0,... ,n+1

vm+1
i ≤ V + + 2r max

i=0,... ,n+1
vm+1
i ,

and thus

max
i=0,... ,n+1

vm+1
i ≤ V +.

Now the upper bound is proved by induction on m. A similar argument
leads to a lower bound, and we have the following result:
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Theorem 6.4 Let vmj be the numerical approximation of (6.7) generated
by the implicit scheme (6.23)–(6.25). Then

V − ≤ vmj ≤ V +

for all grid points (xj , tm) ∈ R∆.

It is important to note that this result holds for any positive values of ∆x
and ∆t.

6.3 The Nonlinear Heat Equation

In the previous section we studied the linear heat equation. In the derivation
of this equation, one major simplification has been made: the parameters
describing the physical properties of the rod are assumed to be constants.
Thus, the parameters do not change as the temperature varies along the
rod. For small variations in the temperature, such approximations can be
justified, but for large variations it is a dubious assumption. For large vari-
ations it is desirable, from a modeling point of view, to allow physical
quantities like the thermal conductivity to be a function of the tempera-
ture. This refinement of the model leads to a nonlinear heat equation, and
it motivates the analysis of problems of the following form:

ut = (k(u)ux)x for x ∈ (0, 1), t ∈ (0, T ], (6.28)
u(0, t) = u�(t), u(1, t) = ur(t), t ∈ [0, T ], (6.29)
u(x, 0) = f(x), x ∈ [0, 1]. (6.30)

From physical considerations it is reasonable to assume that the function
k = k(u) is smooth and strictly positive. Specifically, we assume that there
exist constants k0 and K0 such that

0 < k0 ≤ k(u) ≤ K0 (6.31)

for all u. Problems of this form are usually referred to as nonlinear heat
equations. In this section we prove that solutions of the problem (6.28)–
(6.30) satisfy a maximum principle of the same type as the one we derived
in the linear case.
It is important to note that in this section we leave the space of exactly

solvable problems. The Fourier technique derived in Chapter 3 no longer
applies, and there is, in general, no technique available for solving non-
linear heat equations explicitly. Luckily, the finite difference schemes still
work fine, and we will show that a numerical solution generated by an ex-
plicit finite difference scheme satisfies a discrete version of the maximum
principle. Certainly, a stability condition must be satisfied in the discrete
case, and as in the linear case, this implies very short time steps. Thus, we
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want to consider implicit schemes. However, implicit schemes in the non-
linear case lead to tridiagonal systems of nonlinear algebraic equations. We
consider the analysis of such equations to be slightly beyond our scope and
thus we shall confine ourselves to the analysis of explicit schemes. Some
computations showing typical features of implicit schemes will be given,
but no analysis will be presented.

6.3.1 The Continuous Case
We start by considering the continuous case, using the same technique as
above.
Suppose that u = u(x, t) is a smooth solution of (6.28)–(6.30) and define

vε by

vε(x, t) = u(x, t)− εt (6.32)

for any ε > 0. Since, by (6.28),

ut = k(u)uxx + k′(u)(ux)2,

we have

vεt = k(vε + εt)vεxx + k′(vε + εt)(vεx)
2 − ε,

and thus

vεt < k(vε + εt)vεxx + k′(vε + εt)(vεx)
2 (6.33)

because ε > 0.
Let the rectangle R and the lower boundary B be as above (see page

180). Furthermore, we assume that vε has a local maximum in the interior
of R, say in (x0, t0) ∈ R\B with t0 ≤ T . Then

0 = vεt (x0, t0) = vεx(x0, t0) ≥ vεxx(x0, t0). (6.34)

But since k(vε + εt) ≥ k0 > 0, it follows that (6.34) contradicts (6.33), and
consequently there is no local maximum in the interior of R. The upper
boundary (t = T ) can be excluded as in the linear case, and thus we have

vε(x, t) ≤ sup
(x,t)∈B

vε(x, t)

for all (x, t) ∈ R. Since v = u− εt, it follows that

u(x, t)− εt ≤ sup
(x,t)∈B

(f(x), u�(t)− εt, ur(t)− εt)

for all (x, t) ∈ R. By letting ε tend to zero from above, we get the desired
upper bound for u. As usual, a corresponding lower bound is derived by
considering w = −u and using the upper bound for w. We leave the details
of this to the reader, and state the maximum principle for the nonlinear
heat equation:
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Theorem 6.5 Suppose u ∈ C
(
R

)
, with ut, ux, uxx ∈ C

(
(0, 1)× (0, T ]

)
, is

a solution of (6.28)–(6.30). Then u satisfies the maximum principle8

inf
(x,t)∈B

(f(x), u�(t), ur(t)) ≤ u(x, t) ≤ sup
(x,t)∈B

(f(x), u�(t), ur(t))

for all (x, t) ∈ R.

Note that, in contrast to the linear case, this theorem cannot be used
to derive a stability result for the initial-boundary value problem. This
indicates a property that is true quite generally; it is much harder to prove
properties of the nonlinear problems than of their linear counterparts.

6.3.2 An Explicit Finite Difference Scheme
Obviously, we would like to be able to solve the nonlinear problem (6.28)–
(6.30) numerically. Furthermore, we would like to compute numerical so-
lutions that satisfy a discrete version of the maximum principle given in
Theorem 6.5. We have briefly touched upon this problem earlier. In Exam-
ple 4.5 on page 138 we studied a numerical method for a nonlinear heat
equation. We derived there, somewhat heuristically, a stability condition by
freezing the coefficients in the scheme and then applying von Neumann’s
method. Here we will show that the condition we arrived at using this tech-
nique is sufficient to imply a maximum principle for the discrete solutions.
We consider the following explicit finite difference scheme:

vm+1
j = rkmj−1/2v

m
j−1 + (1− r(kmj−1/2 + kmj+1/2))v

m
j + rkmj+1/2v

m
j+1 (6.35)

for j = 1, . . . , n, m ≥ 0. The initial values and the boundary conditions
are handled as in the linear case (see (6.18)–(6.19) on page 184). As usual
we have r = ∆t/∆x2, and in addition we have defined

kmj+1/2 =
1
2
(k(vmj ) + k(vmj+1)).

The derivation of this scheme is discussed in Exercise 4.20 on page 155.
In order to state the maximum principle for a discrete solution generated

by this finite difference scheme, we recall the definition of V − and V +,

V − = min
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk))

and

V + = max
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk)),

8The domain R and its lower boundary B are sketched in Fig. 6.2 on page 181; see
also (6.8) and (6.10).
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where B∆ is defined in (6.21). As in the linear case, a certain stability
condition has to be satisfied. We assume that ∆t and ∆x satisfy

K0
∆t

(∆x)2
≤ 1/2, (6.36)

where K0 is a upper bound for k(u); see (6.31).
As in the linear case, the discrete maximum principle is derived by in-

duction on the time level. Consider a given time level tm and assume that

vmj ≤ V + for j = 1, . . . , n.

Then by using the scheme (6.35) we get

vm+1
j ≤ rkmj−1/2V

+ + (1− r(kmj−1/2 + kmj+1/2))V
+ + rkmj+1/2V

+ = V +,

where we have utilized the fact that, by (6.36),

(1− r(kmj−1/2 + kmj+1/2)) ≥ 0.

Since this holds for j = 0, . . . , n + 1, it follows by induction that the
numerical solution is bounded above by V +. In a similar way we can prove
that the discrete solution is bounded below by V −. We summarize these
observations in the following theorem:

Theorem 6.6 Suppose that the grid sizes ∆x and ∆t satisfy the condition
(6.36) and that the function k = k(u) satisfies the requirement (6.31).
Furthermore, we let vmj be the numerical approximation of (6.28)–(6.30)
generated by the scheme (6.35) with boundary conditions and initial data
given by (6.18) and (6.19). Then

V − ≤ vmj ≤ V +

for all grid points (xj , tm) ∈ R∆.

In this theorem we only consider functions k = k(u) which satisfy the
requirement (6.31) for all values of u. Thus, the theorem covers the case of
e.g. k(u) = 2 + sin (u) but not k(u) = eu. This requirement is too strong,
and we will discuss how to weaken it in Exercise 6.12.

6.4 Harmonic Functions

Recall that in Chapter 2 we studied two-point boundary value problems
for the differential equation

−uxx = f,
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defined on a bounded interval. In particular, if f ≡ 0, we obtain the homo-
geneous equation

−uxx = 0. (6.37)

Of course, the solutions of this equation are all linear functions of x. In
this section we shall study an analog of the equation (6.37) in two space
dimensions.
The differential equation will be studied on a bounded, connected, and

open domain, Ω, in R
2. The boundary of Ω will be denoted ∂Ω, and Ω̄ will

be the corresponding closed set given by

Ω̄ = Ω ∪ ∂Ω.

For the one-dimensional problems studied in Chapter 2, the open interval
(0, 1) corresponds to the domain Ω, with the two endpoints as its boundary.
Hence, the closed interval [0, 1] corresponds to Ω̄ in this case.

Example 6.1 Assume that Ω = {(x, y) | x2 + y2 < 1}. Then
∂Ω = {(x, y) | x2 + y2 = 1} and Ω̄ = {(x, y) | x2 + y2 ≤ 1}.

�

The Laplace operator ∆, in two space dimensions, is defined by

∆u = uxx + uyy ≡ ∂2u

∂x2 +
∂2u

∂y2 .

Definition 6.1 A function u ∈ C2
(
Ω

) ∩ C
(
Ω̄

)
is said to be harmonic in

Ω if

∆u = 0 for all (x, y) ∈ Ω. (6.38)

Here the statement u ∈ C2
(
Ω

)
means that all partial derivatives of total

order ≤ 2 are continuous, i.e. the functions u, ux, uy, uxx, uxy, and uyy are
all continuous in Ω. The equation (6.38) is frequently referred to as the
Laplace equation. Hence, a a function u ∈ C2

(
Ω

)
is harmonic in Ω if it

satisfies the Laplace equation in Ω and if it is continuous in the closed
domain Ω̄. The corresponding inhomogeneous equation

−∆u = f,

where f = f(x, y) is a given function, is usually called Poisson’s equation.

Example 6.2 Let u(x, y) be a polynomial function of the form

u(x, y) = a+ bx+ cy + dxy,

where a, b, c, d are real coefficients. Then it is straightforward to check that
∆u = 0. Hence, u is harmonic in any domain Ω. �
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We recall that in one dimension the set of harmonic functions is exactly
all linear functions. From the example above we might think that also in
two dimensions it will be the case that any harmonic function is necessarily
a polynomial function. However, the next example shows that this is not
true.

Example 6.3 Let r = r(x, y) =
√

x2 + y2 and define

u(x, y) = ln(r(x, y)).

This function is continuous in all of R
2 except for the origin where it is not

defined. A direct calculation shows that

uxx =
1
r2 (1−

2x2

r2 ) and uyy =
1
r2 (1−

2y2

r2 ),

and this implies that ∆u = 0. Hence, the function u is harmonic in any
domain which is bounded away from the origin. �

This example indicates that the set of harmonic functions in two space
dimensions is a more complicated and richer set of functions than the cor-
responding set in one dimension. In fact, as will be clearer below, the set of
harmonic functions in a two-dimensional domain Ω can be identified with
(smooth) functions defined on its boundary ∂Ω.

6.4.1 Maximum Principles for Harmonic Functions
We will now focus our attention on the maximum principle for harmonic
functions. Recall first that if u = u(x) is a linear (or harmonic) function of
one variable, then it clearly satisfies the inequality

min(u(a), u(b)) ≤ u(x) ≤ max(u(a), u(b)) for all x ∈ (a, b).

This inequality is in fact also a special case of the more general result given
in Theorem 6.1. The maximum principle for harmonic functions in two
space variables states that a similar inequality holds for such functions.

Theorem 6.7 Assume that u is harmonic in Ω. Then u satisfies the in-
equality

M0 ≤ u(x, y) ≤ M1 for all (x, y) ∈ Ω,

where

M0 = min
(x,y)∈∂Ω

u(x, y) and M1 = max
(x,y)∈∂Ω

u(x, y).
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Proof: The proof is rather similar to the proof of Theorem 6.2 in the
sense that the argument requires a similar regularization of the function u.
For any ε > 0 define

vε(x, y) = u(x, y) + ε(x2 + y2).

Then, since ∆u = 0, it follows that

∆vε = 4ε > 0 for all (x, y) ∈ Ω. (6.39)

However, if vε has a maximum at an interior point (x0, y0) of Ω, then by
the second derivative test of calculus, it follows that

∆vε = vεxx + vεyy ≤ 0

at the point (x0, y0). Since this contradicts (6.39), we conclude that vε has
no interior maximum point. Therefore,

vε(x, y) ≤ M ε
1 for all (x, y) ∈ Ω,

where M ε
1 = max(x,y)∈∂Ω vε(x, y). By letting ε → 0 we obtain

u(x, y) ≤ M1.

The desired lower bound can be demonstrated by similar arguments. �

If we inspect the proof above, we will discover that the upper bound,
u ≤ M1, will follow as long as u satisfies ∆u ≥ 0 in Ω. Functions with this
property are referred to as subharmonic functions.

Corollary 6.2 Assume that u is subharmonic, i.e. (∆u)(x, y) ≥ 0 for all
(x, y) ∈ Ω. Then

u(x, y) ≤ M1 for all (x, y) ∈ Ω.

Proof: Since ∆u ≥ 0, we still have (6.39), i.e. ∆vε > 0. The desired
inequality is therefore derived exactly as in the proof above. �

Corollary 6.3 If u is harmonic in Ω, then

|u(x, y)| ≤ M for all (x, y) ∈ Ω,

where M = max(x,y)∈∂Ω |u(x, y)|.
Proof: From Theorem 6.7 we have

|u(x, y)| = max(u(x, y),−u(x, y)) ≤ max(M1,−M0) = M.

�
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As an application of the maximum principle, we will consider the Dirich-
let problem for Poisson’s equation. For a given function f , defined on Ω,
and a given function g, defined on the boundary ∂Ω, this problem takes
the form

−∆u = f in Ω, (6.40)
u = g on ∂Ω.

The function f will be referred to as the right-hand side, and g is called
the Dirichlet data. Under proper conditions on the domain Ω and on the
functions f and g, it can be established that there always exists a solution
u of this problem. Furthermore, the solution is unique. These facts explain
our claim above that the set of harmonic functions on Ω can, in some sense,
be identified with the set of functions on the boundary ∂Ω. The solution of
the problem (6.40), with f = 0, will exactly be a harmonic function with
its restriction to ∂Ω prescribed to be g.
We will return to the construction of solutions of problems of the form

(6.40) in later chapters. However, here we shall use the maximum principle
for harmonic functions to show that this problem can have at most one
solution.

Theorem 6.8 Assume that u1, u2 ∈ C2
(
Ω

) ∩ C
(
Ω̄

)
are two solutions of

the problem (6.40) with the same right-hand side f and the same Dirichlet
data g. Then u1 ≡ u2.

Proof: Let v = u1 − u2. Then

∆v = 0,

i.e. v is harmonic. Furthermore, since u1 = u2 = g on ∂Ω, it follows that
v ≡ 0 on ∂Ω. Hence, we derive from Corollary 6.3 that v ≡ 0 in Ω. �

6.5 Discrete Harmonic Functions

The purpose of this section is to study a finite difference approximation of
Poisson’s equation (6.40). In particular, we shall establish a maximum prin-
ciple for the numerical solution defined by this difference scheme. The finite
difference approximation will be the obvious generalization of the scheme
introduced for the corresponding one-dimensional problem in Section 2.2.
Even if one of the main advantages of numerical methods is that they can

be adopted to rather general domains, in this section we shall, for notational
simplicity, restrict ourselves to a rectangular domain. More precisely, we let
Ω be the unit square, i.e.

Ω =
{
(x, y)

∣∣ 0 < x, y < 1
}
.
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FIGURE 6.4. Definition of Ω̄h and Ωh.

If n ≥ 1 is an integer, then the spacing is given by h = 1/(n+ 1), and the
grid points are (xj , yk) = (jh, kh) for 0 ≤ j, k ≤ n + 1. The set of all the
grid points will be denoted by Ω̄h, i.e.

Ω̄h =
{
(xj , yk)

∣∣ 0 ≤ j, k ≤ n+ 1
}
,

while the set of interior grid points, Ωh, is given by

Ωh =
{
(xj , yk)

∣∣ 1 ≤ j, k ≤ n
}
;

see Fig. 6.4.
The grid points on the boundary, ∂Ωh, are then given by

∂Ωh = Ω̄h\Ωh.
For a grid function v, defined on Ω̄h, we frequently write vj,k instead of
v(xj , yk). For such functions the finite difference operator Lh, approximat-
ing the negative Laplace operator −∆, is now defined by

(
Lhv

)
(xj , yk) =

1
h2

[
(−vj+1,k + 2vj,k − vj−1,k) + (−vj,k+1 + 2vj,k − vj,k−1)

]
=

1
h2

[
4vj,k − vj+1,k − vj−1,k − vj,k+1 − vj,k−1

]
for all interior grid points (xj , yk); see Fig. 6.5. This operator is usually
referred to as the five-point operator , since the value of (Lhv) at an interior
grid point is defined from the value of v at the same point and at the
four neighboring grid points. A finite difference approximation of Poisson’s
equation (6.40) is now defined by(

Lhv
)
(x, y) = f(x, y) for all (x, y) ∈ Ωh,

(6.41)
v(x, y) = g(x, y) for all (x, y) ∈ ∂Ωh.
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FIGURE 6.5. The computational molecule of the five-point operator.

Since the values of v at the grid points on the boundary are given explicitly,
the system (6.41) is a linear system of n2 equations with n2 unknowns
given by {vj,k}nj,k=1. We will return to the study of the system (6.41) and
its relations to Poisson’s problem (6.40) in the next chapter. Here, we will
focus the attention on maximum principles for this system which will be
discrete analogs of the properties derived above for harmonic functions and
for the problem (6.40).

Definition 6.2 A grid function v is called a discrete harmonic function if

Lhv = 0 for all (x, y) ∈ Ωh.

It turns out that discrete harmonic functions satisfy a maximum principle
similar to their analytical counterparts.

Theorem 6.9 If v is a discrete harmonic function, then

M0 ≤ v(x, y) ≤ M1 for all (x, y) ∈ Ω̄h,

where

M0 = min
(x,y)∈∂Ωh

v(x, y) and M1 = max
(x,y)∈∂Ωh

v(x, y).

Proof:We will only show the upper bound, since the lower bound follows
by a completely analogous argument. Assume the contrary: that there exists
an interior grid point (x̄, ȳ) ∈ Ωh such that

v(x̄, ȳ) = max
(x,y)∈Ω̄h

v(x, y) > M1. (6.42)

Since v is a discrete harmonic function, we derive from (6.42) that

v(x̄, ȳ) =
1
4
[
v(x̄+ h, ȳ) + v(x̄− h, ȳ) + v(x̄, ȳ + h) + v(x̄, ȳ − h)

]
≤ max

(x,y)∈Ω̄h

v(x, y) = v(x̄, ȳ). (6.43)
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We conclude that the inequality has to be an equality, and therefore the
value of v at the four grid points which are neighbors to (x̄, ȳ) must also be
v(x̄, ȳ). By repeating this argument until we reach a boundary point, we
conclude that there must be a grid point (x̃, ỹ) ∈ ∂Ωh such that v(x̃, ỹ) =
v(x̄, ȳ). However, this contradicts (6.42). �

In the corollary below, the upper bound in Theorem 6.9 is proved under
a weaker hypothesis on v. This result will be useful below.

Corollary 6.4 If Lhv ≤ 0 for all (x, y) ∈ Ωh, then

v(x, y) ≤ M1 = max
(x,y)∈∂Ωh

v(x, y) for all (x, y) ∈ Ω̄h.

Proof:We can use the same proof as above. From the assumption Lhv ≤ 0
we conclude that (6.43) still holds if the first equality is replaced by ≤ .
The rest of the argument can be used unchanged. �

Corollary 6.5 If v is a discrete harmonic function, then

|v(x, y)| ≤ M for all (x, y) ∈ Ω̄h,

where M = max(x,y)∈∂Ωh
|v(x, y)|.

Proof: Argue exactly as in the proof of Corollary 6.3. �

A consequence of these results is that the discrete system (6.41) will
always have a unique solution.

Corollary 6.6 There is a unique grid function v which solves the discrete
Poisson’s problem (6.41).

Proof: Recall that the system (6.41) can be viewed as a linear system
with n2 equations and n2 unknowns {vj,k}nj,k=1. However, for a square
linear system existence and uniqueness of the solution will follow if we can
show that the corresponding homogeneous system only has the solution
v ≡ 0 (see Project 1.2).
Hence, assume that the grid function v satisfies(

Lhv
)
(x, y) = 0 for all (x, y) ∈ Ωh,

v(x, y) = 0 for all (x, y) ∈ ∂Ωh.

We have to show that v ≡ 0 is the only solution of this system. However,
this is now a direct consequence of Corollary 6.5. �

Recall that in Chapter 2 we were able to prove precise results about the
error between the exact solution of a two point boundary value problem
and the corresponding solution of a finite difference scheme (see Theorem
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2.2). Our aim is to establish a similar bound for the difference between
the solution of Poisson’s equation (6.40) and the corresponding discrete
solution of (6.41). This is achieved in the next chapter.
In order to derive such an error bound, we shall use a stability prop-

erty for the difference scheme (6.41) which is a generalization to two space
dimensions of Proposition 2.6. This result will be established below. The
following bound represents a preliminary step in the derivation of the de-
sired stability property.

Lemma 6.3 Assume that v is a grid function such that v ≡ 0 on ∂Ωh and

Lhv = 1 for all (x, y) ∈ Ωh.

Then

0 ≤ v(x, y) ≤ 1/8 for all (x, y) ∈ Ω̄h.

Proof: We first observe that the grid function −v satisfies Lh(−v) ≤ 0
on Ωh. Therefore, it follows from Corollary 6.4 that −v(x, y) ≤ 0, or

v(x, y) ≥ 0 for all (x, y) ∈ Ω̄h.

In order to obtain the upper bound, we will compare v with the grid func-
tion w defined by

w(x, y) =
1
2
x(1− x) for all (x, y) ∈ Ω̄h.

Since w is independent of y, it follows directly from Exercise 2.16 that

Lhw = 1 for all (x, y) ∈ Ωh.

Hence, w − v is a discrete harmonic function. Since w − v ≥ 0 on ∂Ωh, we
therefore obtain from Theorem 6.9 that

w − v ≥ 0 for all (x, y) ∈ Ω̄h.

However, since

max
(x,y)∈Ω̄h

w(x, y) ≤ 1/8,

we then have

v(x, y) ≤ w(x, y) ≤ 1/8 for all (x, y) ≤ Ω̄h.

�
This result is easily generalized to any constant right-hand side.
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Lemma 6.4 Assume that w is a grid function such that w = 0 on ∂Ωh
and (

Lhw
)
(x, y) = q for all (x, y) ∈ Ωh,

where q ∈ R is constant. Then

min(0, q/8) ≤ w(x, y) ≤ max(0, q/8) for all (x, y) ∈ Ω̄h.

Proof: This follows directly from Lemma 6.3. In fact the linearity of
Lh implies that w = qv, where v is specified in Lemma 6.3. The bounds
therefore follow from the bound given in Lemma 6.3. �

We now have the following generalization of Proposition 2.6:

Proposition 6.1 Assume that v is a grid function which solves the system
(6.41) with g ≡ 0. Then

‖v‖h,∞ ≤ 1/8 ‖f‖h,∞,

where ‖v‖h,∞ = max(x,y)∈Ω̄h
|v(x, y)|.

Proof: Let w be a grid function such that w = 0 on ∂Ωh and

Lhw = ‖f‖h,∞ for all (x, y) ∈ Ωh.

Hence, v − w = 0 on ∂Ωh and

Lh(v − w) = f − ‖f‖h,∞ ≤ 0 on Ωh.

From Corollary 6.4 we therefore obtain that

v − w ≤ 0 on Ω̄h

and, as a consequence of Lemma 6.4,

v(x, y) ≤ w(x, y) ≤ 1
8
‖f‖h,∞ for all (x, y) ∈ Ω̄h.

A similar argument, using a grid function w satisfying w = 0 on ∂Ωh and

Lhw = −‖f‖h,∞ on Ωh,

now implies

v(x, y) ≥ −1
8
‖f‖h,∞.

�
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6.6 Exercises

In these exercises we use the notation defined in this chapter. In particular,
we use R,B,R∆, and B∆, which are defined in Fig. 6.2 on page 181 and
Fig. 6.3 on page 186.

Exercise 6.1

(a) Find the solution of problem (6.1)–(6.2) by multiplying the equation
(6.2) by a proper integrating factor.

(b) Use this formula for u to establish Theorem 6.1.

Exercise 6.2 Consider a two-point boundary value problem of the form

u′′(x) + a(x)u′(x) = f(x),
u(0) = u0, u(1) = u1.

Here a ∈ C
(
[0, 1]

)
and f ∈ C

(
(0, 1)

)
are given functions.

Assume that u, ū ∈ C2
(
(0, 1)

) ∩ C
(
[0, 1]

)
are two solutions of this prob-

lem, with the same functions a and f , but with boundary values u0, u1 and
ū0, ū1 respectively. Show that

‖u− ū‖∞ ≤ max
(|u0 − ū0|, |u1 − ū1|

)
,

where

‖g‖∞ = sup
x∈[0,1]

|g(x)|.

Exercise 6.3 Let a = a(u) be a uniformly bounded function and suppose
that u is a solution of the following two-point boundary value problem:

u′′ + a(u)u′ = 0, x ∈ (0, 1),

with boundary conditions

u(0) = u0 and u(1) = u1.

Show that u satisfies the following maximum principle:

min(u0, u1) ≤ u(x) ≤ max(u0, u1)

for all x ∈ [0, 1].
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Exercise 6.4 Suppose that u is a solution of the following two-point
boundary value problem:

u′′ + sin (u)u′ = 1, x ∈ (0, 1), (6.44)

with boundary conditions

u(0) = u(1) = 0.

Show that u(x) ≤ 0 for all x ∈ [0, 1].

Exercise 6.5 Consider the equation

ut = αuxx for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0, t ∈ [0, T ],
u(x, 0) = f(x), x ∈ [0, 1],

where α > 0 is a given constant. We define an explicit scheme

vm+1
j − vmj

∆t
= α

vmj−1 − 2vmj + vmj+1

∆x2 for j = 1, . . . , n, m ≥ 0,

and an implicit scheme

vm+1
j − vmj

∆t
= α

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2 for j = 1, . . . , n, m ≥ 0.

(a) State and prove a maximum principle for the continuous problem.

(b) Derive a stability condition for the explicit scheme such that the nu-
merical solutions satisfy a discrete version of the maximum principle
derived in (a).

(c) Show that the implicit scheme is unconditionally stable in the sense
that the numerical solutions generated by this scheme satisfy the
discrete version of the maximum principle for any relevant mesh sizes.

(d) Compare the results derived in (b) and (c) with the results obtained
by the method of von Neumann in Exercise 4.12 on page 151.

Exercise 6.6 Consider the following initial-boundary value problem:

ut = a(x, t)uxx + b(x, t)ux for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u�(t), u(1, t) = ur(t), t ∈ [0, T ],
u(x, 0) = f(x), x ∈ [0, 1],

where a(x, t) ≥ a0 > 0 for all (x, t) ∈ R and where b = b(x, t) is a bounded
function.
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(a) State and prove a maximum principle for this initial-boundary value
problem.

(b) Derive an explicit finite difference scheme for this problem and prove
a maximum principle for the discrete solutions.

(c) Derive an implicit scheme and investigate whether numerical solu-
tions generated by this scheme satisfy a discrete maximum principle
for all positive mesh parameters.

Exercise 6.7 Consider the following initial-boundary value problem:

ut + cux = uxx for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0, t ∈ [0, T ],
u(x, 0) = f(x), x ∈ [0, 1],

where c ≥ 0 is a given constant and where f(0) = f(1) = 0.

(a) Show that a solution of this problem satisfies the following maximum
principle:

inf
x∈[0,1]

f(x) ≤ u(x, t) ≤ sup
x∈[0,1]

f(x)

for all (x, t) ∈ R.

Derive stability conditions for the following numerical methods such that
the corresponding discrete solutions satisfy a discrete version of the maxi-
mum principle stated in (a).

(b)

vm+1
j − vmj

∆t
+ c

vmj+1 − vmj−1

2∆x
=

vmj−1 − 2vmj + vmj+1

∆x2

(c)

vm+1
j − vmj

∆t
+ c

vmj − vmj−1

∆x
=

vmj−1 − 2vmj + vmj+1

∆x2

(d)

vm+1
j − vmj

∆t
+ c

vmj+1 − vmj
∆x

=
vmj−1 − 2vmj + vmj+1

∆x2
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(e)

vm+1
j − vmj

∆t
+ c

vmj − vmj−1

∆x
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2

(f)

vm+1
j − vmj

∆t
+ c

vm+1
j − vm+1

j−1

∆x
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

∆x2 .

(g) Compare the results derived in (b)–(f) with the results obtained in
Exercise 4.18 on page 153, using the method of von Neumann.

Exercise 6.8 Consider the following initial-boundary value problem:

ut = a(x, t)uxx + αu(x, t) for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0, t ∈ [0, T ],
u(x, 0) = f(x), x ∈ [0, 1],

where a(x, t) ≥ a0 > 0 for all (x, t) ∈ R and where α is a given constant.

(a) Show that

||u(·, t)||∞ ≤ eαt||f ||∞ for 0 ≤ t ≤ T, (6.45)

where we recall

||u(·, t)||∞ = sup
x∈[0,1]

|u(x, t)|.

Here you may find it useful to consider w = e−αtu.

(b) Discuss how the stability with respect to perturbations in the initial
data depends on the parameter α.

(c) Derive an explicit finite difference scheme and prove that the numer-
ical solutions generated by this scheme satisfy a discrete version of
(6.45) provided that the proper condition on the mesh sizes is satis-
fied.

(d) Consider an implicit scheme and show that a discrete version of (6.45)
is satisfied for any relevant values of the mesh parameters.
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Exercise 6.9 Consider the following nonlinear initial-boundary value prob-
lem:

ut + f(u)x = uxx for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u�(t), u(1, t) = ur(t), t ∈ [0, T ],
u(x, 0) = h(x), x ∈ [0, 1],

where f = f(u) is a smooth given function.

(a) Show that a solution of this problem equation satisfies the following
maximum principle:

inf
(x,t)∈B

(h(x), u�(t), ur(t)) ≤ u(x, t) ≤ sup
(x,t)∈B

(h(x), u�(t), ur(t)).

(b) Consider the following numerical scheme:

vm+1
j − vmj

∆t
+

f(vmj+1)− f(vmj−1)
2∆x

=
vmj+1 − 2vmj + vmj−1

∆x2 .

The boundary conditions give

vm0 = u�(tm) and vmn+1 = ur(tm)

for m ≥ 0, and the initial condition leads to

v0
j = h(xj) for j = 1, . . . , n.

Suppose that the grid parameters are chosen such that

r = ∆t/∆x2 ≤ 1/2, (6.46)

and

∆x

2
max

U−≤u≤U+
|f ′(u)| ≤ 1, (6.47)

where

U−= inf
(x,t)∈B

(h(x), u�(t), ur(t)) and U+= sup
(x,t)∈B

(h(x), u�(t), ur(t)).

Show that if these conditions are satisfied, the numerical solutions
generated by this scheme satisfy a discrete version of the maximum
principle in (a).
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Exercise 6.10 Consider the finite difference scheme (6.17)–(6.19). Formu-
late and prove a discrete version of Corollary 6.1 for this difference scheme.

Exercise 6.11 Consider the finite difference scheme (6.23)–(6.25). Formu-
late and prove a discrete version of Corollary 6.1 for this difference scheme.

Exercise 6.12 In Theorem 6.6 we assume that the function k = k(u)
satisfies the bound k0 ≤ k(u) ≤ K0 for all values of u. Obviously, this is a
rather strict requirement, and it is the purpose of this exercise to weaken
this assumption considerably.
As usual we define

V − = min
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk))

and

V + = max
(xi,tk)∈B∆

(f(xi), u�(tk), ur(tk)).

Furthermore, we let

k0 = inf
u∈[V −,V +]

k(u) and K0 = sup
u∈[V −,V +]

k(u).

Suppose that 0 < k0 ≤ K0 < ∞, and that ∆x and ∆t satisfy the inequality
(6.36) on page 191.

(a) Prove that the numerical solution generated by the scheme (6.35)
with boundary conditions and initial data given by (6.18) and (6.19)
satisfies

V − ≤ vmj ≤ V +

for all grid points (xj , tm) ∈ R∆.

(b) Let k(u) = eu and u�(t) = ur(t) = for t ≥ 0. Furthermore, we
define the initial condition f(x) = x(1−x). State a precise maximum
principle for the discrete solution of this problem.

Exercise 6.13 Assume that u is a solution of Poisson’s equation (6.40)
with f ≥ 0 and g ≥ 0. Show that

u(x, y) ≥ 0 for all (x, y) ∈ Ω̄.
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Exercise 6.14 Let Ω be the unit square, i.e. Ω =
{
(x, y)

∣∣ 0 < x, y < 1
}
.

Assume that u solves (6.40) with f ≡ 1 and g ≡ 0. Show that 0 ≤ u ≤ 1/8
in Ω̄. (Hint: Compare u with w(x, y) = 1

2x(1−x) as in the proof of Lemma
6.3 above.)

Exercise 6.15 Let Ω be as in Exercise 6.14 and assume that u ∈ C2
(
Ω

)∩
C

(
Ω̄

)
solves (6.40) with g ≡ 0. Show that

‖u‖∞ ≤ 1
8
‖f‖∞,

where ‖u‖∞ = sup(x,y)∈Ω̄ |u(x, y)|.
Exercise 6.16 In this problem we shall study Poisson’s equation (6.40)
in a general domain Ω. We assume that Ω ⊆ {

(x, y)
∣∣ x2 + y2 < r2

}
for a

suitable r > 0.

(a) Assume that v = 0 on ∂Ω and satisfies −∆v = 1 in Ω.

Show that

0 ≤ v(x, y) ≤ r2/4 for all (x, y) ∈ Ω̄.

(Hint: Compare v with w(x, y) = 1
4 (r

2 − x2 − y2). )

(b) Assume that u ∈ C2
(
Ω

) ∩ C
(
Ω̄

)
is a solution of (6.40) with g ≡ 0.

Show that

‖u‖∞ ≤ r2

4
‖f‖∞.



7
Poisson’s Equation in Two Space
Dimensions

Poisson’s equation is a fundamental partial differential equation which
arises in many areas of mathematical physics, for example in fluid flow,
flow in porous media, and electrostatics. We have already encountered this
equation in Section 6.4 above, where we studied the maximum principle for
harmonic functions. As a corollary of the maximum principle we have in
fact already established that the Dirichlet problem for Poisson’s equation
has at most one solution (see Theorem 6.8).
The main focus in this chapter will therefore be on how to construct

solutions of this problem. We shall also derive a new qualitative property
of harmonic functions, the mean value property, which in fact will lead to
an alternative proof of the maximum principle. We shall start by utilizing
the separation of variables technique for Poisson’s equation. We will see
that if the geometry of the domain has certain simple structures, then this
method leads to exact (formal) solutions. In the final section of this chapter
we shall also discuss properties of corresponding finite difference solutions.

7.1 Rectangular Domains

Recall that Poisson’s problem, with Dirichlet boundary conditions, takes
the form

−∆u = f in Ω, (7.1)
u = g in ∂Ω.
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�
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u = g

u = 0

FIGURE 7.1. Dirichlet boundary conditions on the unit square.

Here the domain Ω ⊂ R
2 is assumed to be bounded, connected, and open.

Furthermore, ∂Ω denotes the boundary of Ω. The purpose of this section is
to show how we can use separation of variables to solve this problem when
the domain Ω is a rectangle. In fact, we will only carry out the analysis
when Ω is the unit square,

Ω =
{
(x, y)

∣∣ 0 < x, y < 1
}
,

but the techniques can be adapted to any rectangle. Furthermore, we shall
only consider the homogeneous problem, i.e. f ≡ 0. Other examples will be
treated in the exercises (see Exercises 7.2 and 7.18). In order to simplify
the analysis below, we shall consider boundary conditions of the form (see
Fig. 7.1)

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 1, (7.2)
u(x, 0) = 0, 0 ≤ x ≤ 1, (7.3)

u(x, 1) = g(x), 0 < x < 1. (7.4)

We now make the ansatz that the solution has the form

u(x, y) = X(x)Y (y).

Substituting this in the equation ∆u = 0, we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0,

or, by dividing with XY,

−X ′′(x)
X(x)

=
Y ′′(y)
Y (y)

.

Since the left-hand side only depends on x, while the right-hand side de-
pends on y, we conclude as before that both sides have to be equal to a
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constant λ, independent of x and y. For the function X(x) we therefore
obtain the eigenvalue problem

−X ′′(x) = λX(x), 0 < x < 1,
X(0) = X(1) = 0,

(7.5)

where the boundary conditions are derived from (7.2). The eigenvalue prob-
lem (7.5) is by now familiar to us, and we conclude immediately from
Lemma 2.7 that the eigenvalues are

λk = (kπ)2, k = 1, 2, . . . ,

with corresponding eigenfunctions given by

Xk(x) = sin(kπx), k = 1, 2, . . . .

In particular this means that λ = β2 > 0 for a suitable β > 0.
The function Y (y) has to satisfy

Y ′′(y) = λY (y), 0 < y < 1,
Y (0) = 0.

(7.6)

Here the boundary condition at y = 0 is derived from (7.3), while the
nonhomogeneous conditions (7.4) will be incorporated later.
The general solution of (7.6), with λ = β2, (observe that there is no

minus sign in front of Y ′′ in this case) is linear combinations of eβy and
e−βy. Furthermore, from the boundary condition at y = 0 we conclude that
Y has to be a multiple of the function1

Y (y) = sinh(βy).

Hence, with β = kπ, we obtain particular solutions uk(x, y) of the form

uk(x, y) = sin(kπx) sinh(kπy) for k = 1, 2, . . . .

All these solutions will be harmonic and satisfy the boundary conditions
(7.2) and (7.3). Furthermore, the same properties will carry over to linear
combinations; i.e. we obtain formal solutions

u(x, y) =
∞∑
k=1

ck sin(kπx) sinh(kπy), (7.7)

where ck denotes arbitrary real coefficients.

1We recall that sinh(z) = (ez − e−z)/2.
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Consider now the final boundary condition (7.4). Assume that the func-
tion g(x) admits a Fourier sine series

g(x) =
∞∑
k=1

gk sin(kπx), (7.8)

where, as before, the Fourier coefficients gk are given by

gk = 2
∫ 1

0
g(x) sin(kπx) dx.

By comparing the series (7.7), with y = 1, and the series (7.8), we obtain
from (7.4) that

ck = gk/ sinh(kπ) for k = 1, 2, . . . . (7.9)

The formulas (7.7) and (7.9) give the complete formal solution of the prob-
lem given by the homogeneous equation ∆u = 0 and the boundary condi-
tions (7.2)–(7.4). More general Dirichlet boundary conditions are consid-
ered in Exercise 7.3 below.

7.2 Polar Coordinates

If the geometry of the domain Ω is naturally described in polar coordinates,
then it is convenient to consider the unknown function u as a function of
the polar coordinates r and φ, where

x = r cosφ and y = r sinφ,

or equivalently

r =
√

x2 + y2 and φ = arctan
(y

x

)
.

Here r ≥ 0 and φ ∈ (−π, π).
The Jacobian matrix of this transformation is given by(

∂r/∂x ∂r/∂y
∂φ/∂x ∂φ/∂y

)
=

(
cosφ sinφ

−(sinφ)/r (cosφ)r

)
. (7.10)

Hence we obtain2

ux = ur
∂r

∂x
+ uφ

∂φ

∂x
= (cosφ)ur −

(
sinφ

r

)
uφ,

2It would have been more precise to distinguish the function of r and φ from the orig-
inal function u = u(x, y). For example, we could have used U(r, φ) = u(x, y). However,
as is more or less standard, we use u to denote both functions.
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and, with some effort (see Exercise 7.6),

uxx =
∂

∂x

[
(cosφ)ur − sinφ

r
uφ

]

=
(
cos2 φ

)
urr +

sin2 φ

r2 uφφ − 2
sinφ cosφ

r
urφ (7.11)

+
sin2 φ

r
ur + 2

sinφ cosφ
r2 uφ.

A similar calculation gives

uyy =
(
sin2 φ

)
urr +

cos2 φ

r2 uφφ + 2
sinφ cosφ

r2 urφ (7.12)

+
cos2

r
ur − 2

sinφ cosφ
r2 uφ.

By adding the identities (7.11) and (7.12), we therefore obtain that

∆u = uxx + uyy = urr +
1
r2uφφ +

1
r
ur. (7.13)

Example 7.1 Assume we want to find a harmonic function which is ro-
tation invariant, i.e. u is independent of φ. In polar coordinates u = u(r),
and from (7.13) we obtain that u(r) has to satisfy the ordinary differential
equation

urr +
1
r
ur = 0.

After multiplication by r this can be written

(rur)r = 0.

Hence, we obtain that any harmonic function which only depends on r has
to be of the form

u(r) = c1 ln(r) + c2,

where c1 and c2 are arbitrary real coefficients. We recall that we have al-
ready encountered the harmonic function ln(r) in Example 6.3 on page 193.

�

7.2.1 The Disc
In order to illustrate the application of the representation (7.13) of the
Laplace operator in polar coordinates, we shall consider a problem of the
form

∆u = 0 in Ω,

u = g on ∂Ω,
(7.14)
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FIGURE 7.2. The Dirichlet problem on a disc.

where Ω is the disc of radius ρ > 0 with center at the origin, i.e.

Ω =
{
(x, y)

∣∣ x2 + y2 < ρ2} ,

(see Fig. 7.2).
Our aim is to show that the problem (7.14) on this domain Ω can be

solved by separation of variables with respect to r and φ.
Let us first observe that it is reasonable to assume that the function g

is a 2π-periodic function with respect to φ. We therefore assume that g is
written in a Fourier series of the form

g(φ) =
a0

2
+

∞∑
k=1

[
ak cos(kφ) + bk sin(kφ)

]
, (7.15)

where3

ak =
1
π

∫ π

−π
g(φ) cos(kφ) dφ and bk =

1
π

∫ π

−π
g(φ) sin(kφ) dφ.

We now make the ansatz that u(r, φ) has the form

u(r, φ) = R(r)Φ(φ).

Substituting this into the equation urr + 1
rur +

1
r2 uφ,φ = 0, we obtain

0 = ∆u = R′′Φ+
1
r
R′Φ+

1
r2RΦ

′′,

which implies

r2R
′′

R
+ r

R′

R
= −Φ′′

Φ
.

3See section 8.1.4.
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Since the left-hand side only depends on r and the right-hand side only
depends on φ, we must have

−Φ′′ = λΦ (7.16)

and

r2R′′ + rR′ − λR = 0, (7.17)

where λ is independent of r and φ. Since u should be smooth around the
negative x-axis, we must require that Φ is 2π-periodic with respect to φ.
We therefore impose the periodic boundary conditions

Φ(−π) = Φ(π) and Φ′(−π) = Φ′(π)

to the differential equation (7.16). Hence we obtain the eigenvalues

λk = k2, k = 0, 1, 2, . . . ,

with possible eigenfunctions of the form

Φk(φ) = c1 cos(kφ) + c2 sin(kφ), k = 0, 1, . . . .

Here c1 and c2 are arbitrary constants. The equation (7.17) is an ordinary
differential equation with respect to r. The equation is linear, but with
variable coefficients. An equations of the form (7.17) is usually said to be
of Euler type. These equations can be solved analytically; see Exercise 7.7.
The solutions are of the form

R(r) = rβ .

Substituting this ansatz into (7.17), together with the fact that λ = k2 we
immediately obtain

β(β − 1)rβ + βrβ − k2rβ = 0,

which implies that

β = ±k.

Hence, for k ≥ 1 we obtain the two linearly independent solutions r−k and
rk. For k = λ = 0, the equation (7.17) has already been studied in Example
7.1 above. There we found that any solution in this case is of the form

R(r) = c1 ln(r) + c2.

Observe however that if R(r) is of the form r−k, for k > 0, or ln(r), then
u(r, φ) → ∞ as r → 0. Since the origin is in the interior of the domain Ω,
this is not acceptable. We therefore adopt the boundary condition

lim
r→0

R(r) is finite
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π/b
Ω

FIGURE 7.3. Wedge with angle π/b.

for the equation (7.17). Hence, the solutions ln(r) and r−k are rejected,
and we are left with the solutions

Rk(r) = rk for k = 0, 1, 2, . . . .

By taking linear combinations of the particular solutions of the form RkΦk,
we obtain

u(r, φ) =
a′
0

2
+

∞∑
k=1

rk
(
a′
k cos(kφ) + b′

k sin(kφ)
)
, (7.18)

where a′
k and b′

k are constants to be determined. Comparing this with
the representation (7.15) for g(φ) we derive, from the boundary condition
u(ρ, φ) = g(φ), that

a′
k = ρ−kak, b′

k = ρ−kbk,

and hence the solution (7.18) is determined.

7.2.2 A Wedge
Another interesting application of polar coordinates arises when the domain
Ω is a wedge. Let Ω be of the form

Ω =
{
(r, φ)

∣∣ 0 < r < ρ, 0 < φ < π/b
}
,

where b > 1
2 (see Fig. 7.3).

Assume that we want to find a function u which is harmonic in Ω and
satisfies the boundary conditions

u(r, 0) = u(r, π/b) = 0, 0 < r < ρ, (7.19)

and

u(ρ, φ) = g(φ), 0 < φ < π/b. (7.20)

Again we are looking for solutions of the form

u(r, φ) = R(r)Φ(φ).
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As above, we derive the equations (7.16) and (7.17) for Φ and R. Further-
more, equation (7.16) should be associated with the boundary conditions

Φ(0) = Φ(π/b) = 0

obtained from (7.19). Hence, we obtain the eigenfunctions

Φk(φ) = sin(kbφ) for k = 1, 2, . . .

and the associated eigenvalues

λk = (bk)2 for k = 1, 2, . . . .

The corresponding solutions of (7.17), satisfying |Rk(0)| < ∞, are given by

Rk(r) = rbk, k = 1, 2, . . . .

Therefore, by taking linear combinations of the particular solutions, we
obtain solutions of the form

u(r, φ) =
∞∑
k=1

akr
bk sin(kbφ). (7.21)

These solutions are harmonic and satisfy the two boundary conditions
(7.19). From the boundary condition (7.20) we derive that the coefficients
ak should be determined by g such that

g(φ) =
∞∑
k=1

akρ
kb sin(kbφ).

7.2.3 A Corner Singularity
There is one special property of the solution (7.21) we should be aware of.
Consider the first particular solution u1(r, φ) given by

u1(r, φ) = rb sin(bφ).

If we differentiate this function with respect to r, we obtain

∂u1

∂r
(r, φ) = brb−1 sin(bφ).

Hence, if b < 1, the first derivative with respect to r is unbounded as
r → 0. For example, if b = 1/3, then ∂u1

∂r behaves like r−2/3 as r → 0. The
function rb, for b = 1/3 and b = 2, is graphed in Fig. 7.4. Observe that
b < 1 corresponds to a wedge with angle greater than π (see Fig. 7.5). It
is well known that corners which form angles greater than π will generally
create such singularities in the derivatives of the solution, and that special
care should be taken when such problems are solved numerically.
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�
r

�
rb

FIGURE 7.4. The function rb for b = 1/3 (solid) and b = 2 (dashed).

π/b

FIGURE 7.5. Wedge with angle greater than π.

7.3 Applications of the Divergence Theorem

In the two first sections of this chapter we used separation of variables to
find formal solutions of Poisson’s problem when the geometry of the do-
main Ω is simple. However, for more complex domains this approach does
not work. The purpose of the present section is to establish that even if
an analytical expression of the solution is not available, Poisson’s problem
in two space dimensions still has qualitative properties which resemble the
one dimensional case studied in Chapter 2. These properties are for exam-
ple useful for the understanding of numerical approximations of Poisson’s
problem. Such approximations will be studied later in this chapter.
Recall that integration by parts is a very useful tool in the study of Pois-

son’s equation in one space dimension. In particular, in Section 2.3 we use
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FIGURE 7.6. The vector n is not defined at the two points where ∂Ω is nonsmooth.

integration by parts to establish the symmetry and the positive definiteness
of the operator L = − d2

dx2 defined on a suitable space of functions. In two
space dimensions applications of the divergence theorem, well known from
any calculus course, will replace the use of integration by parts.
We will use the divergence theorem with respect to the domain Ω. Hence,

in order for the divergence theorem to hold, we need to assume that the
boundary of Ω, ∂Ω, satisfies some smoothness assumptions. For example,
it will be sufficient to assume that ∂Ω is a piecewise C1-curve. Hence, we
will allow domains with a smooth boundary, for example a disc, and also
domains with piecewise smooth boundaries like a triangle or a rectangle, or
in fact any polygonal domain.4 We will not state these requirements on ∂Ω
explicitly below. Throughout this section we will simply implicitly assume
that ∂Ω allows the divergence theorem to hold.
Assume first that

F = F(x, y) =
[

F1(x, y)
F2(x, y)

]

is a differentiable vector-valued function defined on Ω. At each point (x, y) ∈
∂Ω, where ∂Ω is C1, let n = n(x, y) be the unit outer normal vector (see
Fig. 7.6).
Recall that

divF = F1,x + F2,y ≡ ∂

∂x
F1 +

∂

∂y
F2.

The divergence theorem now states that∫ ∫
Ω
divF dx dy =

∫
∂Ω
F · n ds, (7.22)

4A polygonal domain is a domain where the boundary consists of a collection of
straight lines.
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where s denotes the arc length along ∂Ω. Now let F(x, y) be a vector-valued
function of the form

F = v∇u,

where u and v are scalar functions defined on Ω. Here ∇u denotes the
gradient of u given by

∇u =
(

ux
uy

)
.

Then

divF = v∆u+∇v · ∇u

= v(uxx + uyy) + (vxux + vyuy).

Therefore, it follows from (7.22) that∫ ∫
Ω
(v∆u+∇v · ∇u) dx dy =

∫
∂Ω

v
∂u

∂n
ds. (7.23)

Here ∂u∂n denotes the normal derivative of u on ∂Ω given by

∂u

∂n
= ∇u · n.

The formula (7.23) is frequently referred to as Green’s first identity .
The following observation is a simple consequence of (7.23).

Lemma 7.1 If u is harmonic in Ω, then∫
∂Ω

∂u

∂n
ds = 0.

Proof: Apply the identity (7.23) with v ≡ 1. Since ∆u = 0 and ∇v = 0,
we obtain the desired result. �

The identity (7.23) can be written in the form∫ ∫
Ω
∇u · ∇v dx dy = −

∫ ∫
Ω
v∆u dx dy +

∫
∂Ω

v
∂u

∂n
ds.

Furthermore, by changing the role of u and v we also obtain∫ ∫
Ω
∇u · ∇v dx dy = −

∫ ∫
Ω
u∆v dx dy +

∫
∂Ω

u
∂v

∂n
ds.

Hence, since the two expressions for
∫∫

Ω ∇u · ∇v dx dy must be equal, we
have ∫ ∫

Ω
(u∆v − v∆u) dx dy =

∫
∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
ds. (7.24)



7.3 Applications of the Divergence Theorem 221

This formula is usually referred to as Green’s second identity .
Consider Poisson’s equation with homogeneous Dirichlet boundary con-

ditions, i.e.

−∆u = f in Ω,

u = 0 on ∂Ω.
(7.25)

We shall let L denote the negative Laplace operator, i.e.

L = −∆.

Furthermore, let

C2
0
(
Ω

)
=

{
v ∈ C2(Ω) ∩ C

(
Ω̄

) ∣∣ u|∂Ω = 0
}
.

Hence, roughly speaking, C2
0
(
Ω

)
consists of all functions in C2

(
Ω

)
which are

zero on the boundary of Ω. With this notation the homogeneous Poisson’s
equation (7.25) can be written as follows: Find u ∈ C2

0
(
Ω

)
such that

Lu = f, (7.26)

where the right-hand side f ∈ C
(
Ω

)
. For functions u and v defined on Ω,

we let 〈·, ·〉 denote the inner product

〈u, v〉 =
∫ ∫

Ω
u(x, y)v(x, y) dx dy.

Recall that the operator L is a generalization of the operator − d2

dx2 studied
in Section 2.3. The following result generalizes corresponding results for
the one-dimensional operator given in the Lemmas 2.2 and 2.4.

Lemma 7.2 i) The operator L is symmetric in the sense that

〈Lu, v〉 = 〈u, Lv〉 for all u, v ∈ C2
0
(
Ω

)
.

ii) Furthermore, the operator L is positive definite in the sense that

〈Lu, u〉 ≥ 0 for all u ∈ C2
0
(
Ω

)
,

with equality only if u ≡ 0.

Proof: If u, v ∈ C2
0
(
Ω

)
, then it follows from Green’s second identity (7.24)

that ∫ ∫
Ω
(u∆v − v∆u) dx dy = 0,

or

〈Lu, v〉 = 〈v, Lu〉.
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On the other hand, Green’s first identity (7.23) implies that if u ∈ C2
0
(
Ω

)
,

then

−
∫ ∫

Ω
u∆u dx dy =

∫ ∫
Ω
∇u · ∇u dx dy =

∫ ∫
Ω
(u2
x + u2

y) dx dy

or

〈Lu, u〉 =
∫ ∫

Ω

(
u2
x + u2

y

)
dx dy ≥ 0.

Furthermore, if 〈Lu, u〉 = 0, then ux and uy are zero throughout Ω. There-
fore u is constant in Ω̄, and since u = 0 on ∂Ω, we conclude that u ≡ 0. �

A consequence of this result is that Poisson’s problem (7.25) has at most
one solution. Hence, we obtain an alternative proof of Theorem 6.8.

Lemma 7.3 Assume that u1, u2 ∈ C2
(
Ω

) ∩ C
(
Ω̄

)
are two solutions of

Poisson’s problem (7.1) with the same data f and g. Then u1 ≡ u2.

Proof: Let v = u1 − u2. Then Lv = 0 in Ω and v ∈ C2
0 (Ω). Since

〈Lv, v〉 = 0, it therefore follows from Lemma 7.2 that v ≡ 0. �

7.4 The Mean Value Property for Harmonic
Functions

The purpose of this section is to derive the mean value property, or Pois-
son’s formula, for harmonic functions defined on a domain in R

2. In order
to motivate the mean value property, let us first explain the corresponding
property for functions u of one variable. Obviously, the requirement u′′ = 0
implies that u is a linear function. Therefore, u is harmonic if and only if
u is of the form

u(x) = c1 + c2x

for c1, c2 ∈ R. For any x and a > 0, we compute the mean value

1
2
(
u(x− a) + u(x+ a)

)
= c1 + c2

(
1
2
(x− a) +

1
2
(x+ a)

)
= u(x).

Hence, u(x) is always equal to the mean value 1
2

(
u(x− a) + u(x+ a)

)
; see

Fig. 7.7. The mean value property for harmonic functions is a generalization
of this identity to higher dimensions.
In this section it will be more convenient to refer to a point in R

2 as a
vector x = (x1, x2) instead of the coordinates (x, y) as we have used above.
Let x ∈ R

2 be fixed. For any real a > 0 let

Ba(x) =
{
y ∈ R

2
∣∣ |x− y| < a

}
.



7.4 The Mean Value Property for Harmonic Functions 223

��
��
��
��

x− a x x+ a
x

u

FIGURE 7.7. The mean value property.

a

x

Ba(x)

FIGURE 7.8. The disc Ba(x)

Here |x| denotes the Euclidean distance given by

|x| =
√

x2
1 + x2

2.

Hence, the set Ba(x) is the disc with center at x and with radius a; see
Fig. 7.8.
Assume now that u is a harmonic function in Ba(x), i.e. ∆u = 0 in Ω.

From the discussion in Section 7.2 above, we can conclude that u must
be determined by its values on the boundary of Ba(x). This follows since
the solution of problem (7.14) appears to be uniquely determined by the
Dirichlet data g. In fact, there is a simple formula for u at the center
x expressed with respect to the boundary values of u. The mean value
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property for harmonic functions states that

u(x) =
1

2πa

∫
|x−y|=a

u(y) ds. (7.27)

Hence, the value of the harmonic function u at the center of the disc Ba(x)
is equal to the average of u on its circumference. We state this beautiful
relation as a theorem.

Theorem 7.1 If u is harmonic in the disc Ba(x), then u satisfies the
identity (7.27).

Proof: In order to establish (7.27), it is sufficient to consider the case
when x = 0 = (0, 0), since a translated harmonic function is harmonic; see
Exercise 7.4. Hence, it is sufficient to show that if u is harmonic in Ba(0),
then

u(0) =
1

2πa

∫
|x|=a

u(x) ds, (7.28)

or by introducing polar coordinates

u(0) =
1
2π

∫ π

−π
u(a, φ)dφ. (7.29)

For each r ∈ (0, a] define

U(r) =
1
2π

∫ π

−π
u(r, φ)dφ.

Hence, the desired formula (7.29) will follow if we can show that

u(0) = U(r) for 0 < r ≤ a. (7.30)

Since u is continuous at the origin, we obviously have

lim
r→0

U(r) = u(0).

Therefore, (7.30) will follow if U ′(r) = 0 for 0 < r < a. In order to see this,
note first that Lemma 7.1 implies that∫ π

−π

∂u

∂r
(r, φ)dφ = 0.

Furthermore, Proposition 3.1 on page 107 implies that

U ′(r) =
1
2π

∫ π

−π

∂u

∂r
(r, φ)dφ = 0.
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Hence (7.30) follows. �

The mean value property can be used to prove the maximum principle
for harmonic functions, which we have already established in Section 6.4
(see Theorem 6.7 on page 193). In fact, we can prove a stronger form of
the maximum principle. Assume that u is harmonic in Ω and that there is
a point z ∈ Ω (i.e. in the interior) such that

u(z) ≥ u(x) for all x ∈ Ω̄.

Then the mean value property implies that u is constant in Ω̄. The details
in the derivation of this strong form of the maximum principle from the
mean value property are discussed in Exercise 7.11.

7.5 A Finite Difference Approximation

On a general domain Ω it is not possible to find an analytical expression of
the solution of Poisson’s equation. Therefore, such problems are frequently
replaced by a corresponding discrete problem.
The purpose of this section is to discuss a finite difference approximation

of Poisson’s equation. In fact, the difference scheme we shall study was
already introduced in Section 6.5.

7.5.1 The Five-Point Stencil
For notational simplicity we shall again consider the case where the domain
Ω is the unit square. We first recall some of our notation introduced in
Section 6.5. The domain Ω is given by

Ω =
{
(x, y)

∣∣ 0 < x, y < 1
}
,

while the set of grid points, Ω̄h, is of the form

Ω̄h =
{
(xj , yk)

∣∣ 0 ≤ j, k ≤ n+ 1
}
.

Here xj = jh, yk = kh for a suitable spacing h = 1/(n+ 1); see Fig. 7.9.
The set of interior grid points is

Ωh =
{
(xj , yk)

∣∣ 1 ≤ j, k ≤ n
}
,

while ∂Ωh = Ω̄h \ Ωh is the set of grid points on ∂Ω.
To be consistent with the notation used in Section 2.3, we let Dh denote

the set of all grid functions defined on Ω̄h, i.e.

Dh =
{
v

∣∣ v : Ω̄h → R
}
,
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FIGURE 7.9. The grid points Ω̄h.

while Dh,0 is the subset

Dh,0 =
{
v ∈ Dh

∣∣ v|∂Ωh
= 0

}
.

Hence a function in Dh,0 is specified by its values on the interior grid points
Ωh.
We consider a finite difference approximation of Poisson’s equation on Ω

with homogeneous Dirichlet boundary conditions, i.e.

Lu = −∆u = f in Ω,

u = 0 on ∂Ω.
(7.31)

The finite difference operator Lh, approximating the differential operator
L, is of the form (see Fig. 7.10)

(
Lhv

)
(xj , yk) =

1
h2

[
4vj,k − vj+1,k − vj−1,k − vj,k+1 − vj,k−1

]
(7.32)

where, as usual, vj,k = v(xj , yk).
When we approximate a problem with homogeneous boundary conditions

as in (7.31), it is natural to consider (Lhv) for functions v ∈ Dh,0 (i.e. with
zero boundary conditions). The values

(
Lhv

)
(xj , yk) are then defined for

all interior grid points (xj , yk) ∈ Ωh.
We recall that the finite difference approximation of the problem (7.31)

can be formulated as follows:
Find v ∈ Dh,0 such that(

Lhv
)
(xj , yk) = f(xj , yk) for all (xj , yk) ∈ Ωh. (7.33)

This is a system of n2 linear equations in the n2 unknowns {vj,k}nj,k=1.
Furthermore, the existence of a unique solution of this problem was already
established in Corollary 6.6 as a consequence of the maximum principle for
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FIGURE 7.10. The computational molecule for the operator Lh.

discrete harmonic functions. Here we shall establish that the operator Lh
has symmetry and positive definite properties which are discrete analogs
of the properties for the continuous operator L given in Lemma 7.2 above.
Define the discrete inner product 〈·, ·〉h by

〈u, v〉h = h2
n∑

j,k=1

uj,kvj,k

for u, v ∈ Dh,0. Then we have:

Lemma 7.4 i) The operator Lh is symmetric in the sense that

〈Lhu, v〉h = 〈u, Lhv〉h for all u, v ∈ Dh,0.

ii) Furthermore, the operator Lh is positive definite in the sense that

〈Lhv, v〉h ≥ 0 for all v ∈ Dh,0,

with equality only if v ≡ 0.

Proof: Using the summation by parts formula (2.31), it is straightforward
to show that (see Exercise 7.12)

〈Lhu, v〉h =
n∑
j=0

n∑
k=0

[
(uj+1,k − uj,k)(vj+1,k − vj,k)

+ (uj,k+1 − uj,k)(vj,k+1 − vj,k)
]

(7.34)
= 〈u, Lhv〉h

for u, v ∈ Dh,0. This establishes part i).
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Furthermore, (7.34) implies that

〈Lhv, v〉h =
n∑
j=0

n∑
k=0

[
(vj+1,k − vj,k)2 + (vj,k+1 − vj,k)2

] ≥ 0.

Also, if 〈Lhv, v〉h = 0, then vj+1,k = vj,k and vj,k+1 = vj,k for 0 ≤ j, k ≤ n.
Since v0,k = 0 and vj,0 = 0, we conclude that v ≡ 0. �

As in the continuous case, the positive definite property of the operator
Lh immediately implies that the discrete system has at most one solution.
Hence, we obtain an alternative proof of Corollary 6.6. You are asked to
complete this proof in Exercise 7.13.

7.5.2 An Error Estimate
Finally, in this section we shall establish an error estimate for the finite
difference scheme (7.33). More precisely, we shall give a bound for the
error between the solution u of the continuous Poisson problem (7.31) and
the solution v of the discrete Poisson problem (7.33). In order to motivate
this result, we will first consider a numerical example.

Example 7.2 Let us consider Poisson’s problem (7.31) with Ω = (0, 1)×
(0, 1) and

f(x, y) =
[
(3x+ x2)y(1− y) + (3y + y2)x(1− x)

]
ex+y.

The function f is chosen such that the solution u of (7.31) is known. It is
straightforward to check that u is given by

u(x, y) = x(1− x)y(1− y)ex+y.

In the same way as we did in Example 2.5 on page 48, we compare u and
the corresponding solution v of (7.33). For different values of h we compute
the error

Eh = max
(x,y)∈Ω̄h

|u(x, y)− v(x, y)|.

Furthermore, these values are used to estimate the rate of convergence; see
Project 1.1. The results are given in Table 7.1.
From the table we observe that the error seems to satisfy a bound of the

form

Eh = O(h2).

This will in fact be established theoretically in Theorem 7.2 below. �



7.5 A Finite Difference Approximation 229

n h Eh Rate of convergence
5 1/6 0.00244618
10 1/11 0.00076068 1.926
20 1/21 0.00021080 1.9846
40 1/41 0.00005533 1.9992
80 1/81 0.00001418 1.9996

TABLE 7.1. Maximum error and estimated rate of convergence

For the discussion in this section we will assume that the solution u of
Poisson’s problem (7.31) is four-times differentiable, i.e. u ∈ C4

(
Ω̄

)
. Let α

be the finite constant given by

α = max
0≤j+k≤4

∥∥∥∥ ∂j+ku

∂xj∂yk

∥∥∥∥
∞

, (7.35)

where, as usual, ‖u‖∞ = sup(x,y)∈Ω̄ |u(x, y)|. Hence, α bounds all partial
derivatives of u of total order less than or equal to 4. In correspondence
with the notation used in Chapter 2, we also let

‖v‖h,∞ = max
(x,y)∈Ω̄h

|v(x, y)|

for any grid function v. As in Section 2.3, we introduce the truncation error

τh(xj , yk) =
(
Lhu− f

)
(xj , yk)

for all (xj , yk) ∈ Ωh. The following result is a generalization of Lemma 2.6
on page 64.

Lemma 7.5 Assume that u ∈ C4(Ω̄). The truncation error τh satisfies

‖τh‖h,∞ ≤ αh2

6
,

where α is given by (7.35).

Proof: This can be proved exactly the same way as we proved Lemma
2.6 and follows essentially from the error bound (2.12) on page 46. You are
asked to carry this out in Exercise 7.14. �

The following error estimate for the finite difference method (7.33) is a
generalization of Theorem 2.2 on page 65.

Theorem 7.2 Let u and v be corresponding solutions of (7.31) and (7.33),
respectively. If u ∈ C4

(
Ω̄

)
, then

‖u− v‖h,∞ ≤ αh2

48
,

where α is given by (7.35).
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Proof: The proof follows the same pattern as the proof of Theorem 2.2
on page 65. Define the error function e ∈ Dh,0 by

e(xj , yk) =
(
u− v

)
(xj , yk)

for all (xj , yk) ∈ Ω̄h. Then

Lhe = Lh(u− v) = f + τ − f = τ

for all (x, y) ∈ Ωh. From the stability property for the operator Lh, estab-
lished in Proposition 6.1 on page 200, it therefore follows that

‖e‖h,∞ ≤ 1
8
‖τh‖h,∞.

The proof is completed by applying the bound for τh presented in Lemma
7.5 above. �

7.6 Gaussian Elimination for General Systems

In Chapter 2.2 we studied Gaussian elimination for tridiagonal systems.
However, the system (7.33) will not be tridiagonal. In order to solve such
systems on a computer, we therefore need a more general algorithm than
Algorithm 2.1 on page 53. You have probably already encountered Gaussian
elimination in a linear algebra course. We will give a brief reminder of the
algorithm here, focusing particularly on computational issues.

7.6.1 Upper Triangular Systems
Consider an n× n system of linear equations of the form

Av = b, (7.36)

where the matrix A is of the form

A =




a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n


 . (7.37)

Alternatively, this system can be written in component form, i.e.

a1,1v1 + a1,2v2 + · · · + a1,nvn = b1
a2,1v1 + a2,2v2 + · · · + a2,nvn = b2

...
...

...
...

an,1v1 + an,2v2 + · · · + an,nvn = bn.

(7.38)
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We recall that this system is referred to as a tridiagonal system if ai,j = 0
for |i− j| > 1. We refer to the system as a general system, or a full system,
if all the elements are allowed to be nonzero.
In order to derive an algorithm for a general system, let us start with

a special example. The system (7.38) is called upper triangular if ai,j = 0
for i > j, i.e. all elements below the diagonal are zero. Hence, an upper
triangular system is of the form

a1,1v1 + a1,2v2 + · · · + a1,nvn = b1
a2,2v2 + · · · + a2,nvn = b2

. . .
...

...
an−1,n−1vn−1 + an−1,nvn = bn−1

an,nvn = bn.

(7.39)

Furthermore, this system is nonsingular if and only if ai,i �= 0 for i =
1, 2, . . . , n; see Exercise 7.22.
A nonsingular upper triangular system can easily be solved by so-called

back substitution, given in Algorithm 7.1 below. We simply compute vn
from the last equation in (7.39), then vn−1 from the previous equation and
so on.

Algorithm 7.1

for i = n, n− 1, . . . , 1
vi = bi
for j = i+ 1, i+ 2, . . . , n

vi = vi − ai,jvj
vi = vi/ai,i.

7.6.2 General Systems
The main strategy in Gaussian elimination is to transform the general
system (7.38) into upper triangular form, and then use the algorithm above
on this transformed system.
A system Av = b is said to be upper k-triangular if ai,j = 0 for i > j and

j < k, i.e. all the elements below the diagonal in the first (k − 1) columns
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are zero. Hence, an upper k-triangular system is of the form

a1,1v1 + a1,2v2 + · · · + a1,nvn = b1
. . .

. . .
ak,kvk + · · · + ak,nvn = bk
ak+1,kvk + · · · + ak+1,nvn = bk+1

...
...

...
an,kvk + · · · + an,nvn = bn

(7.40)

If ak,k �= 0, we can transform this system to an equivalent system, i.e. with
the same solutions, which is upper (k+1)-triangular. We just keep the first
k equations, while for i > k we replace equation i by

( equation i ) − mi,k ( equation k ) ,

where the multiplier is given by mi,k = ai,k/ak,k. The new coefficients a′
i,j

and b′
i are given by

a′
i,j = ai,j −mi,kak,j and b′

i = bi −mi,kbk (7.41)

for i > k. In particular, a′
i,k = 0 for i > k and hence the new system is

upper (k + 1)-triangular.
Observe that the original system (7.38) is upper 1-triangular, while an

upper n-triangular system is upper triangular, i.e. of the form (7.39). Hence,
if we perform the transformation above (n−1) times, we obtain a sequence
of equivalent systems

A(1)v = b(1), A(2)v = b(2), . . . , A(n)v = b(n)

where the first system is the original one and the final system is upper
triangular. Thus the final system can be solved by Algorithm 7.1.
Let a(k)

i,j denote the elements of the matrix A(k). The formulas (7.41) lead
to the following recurrence relations for those elements:

mi,k = a
(k)
i,k /a

(k)
k,k

a
(k+1)
i,j = a

(k)
i,j −mi,ka

(k)
k,j (7.42)

b
(k+1)
i = b

(k)
i −mi,kb

(k)
k

for i, j > k. These algebraic formulas are the basic identities defining the
Gaussian elimination algorithm.
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Algorithm 7.2

for k = 1, 2, . . . , n− 1
for i = k + 1, k + 2, . . . , n

mi,k = ai,k/ak,k
for j = k + 1, k + 2, . . . , n

ai,j = ai,j −mi,kak,j

This algorithm carries out part of the transformation (7.42) by storing all
the elements a

(k)
i,j in the original matrix A. In order to save storage we can

also use the positions ai,k to store the multipliers mi,k. These multipliers
are needed in order to perform the transformation (7.42) on the right-hand
side b. This part of the transformation (7.42) is usually carried out by a
separate algorithm referred to as forward substitution. The reason for this is
that in many practical applications one needs to solve many systems with
the same coefficient matrix A, but with different right-hand sides b. By
separating the calculations for A and b, Algorithm 7.2 is then only needed
once. As we can see below, the algorithm for forward substitution is similar
to Algorithm 7.1 for backward substitution.

Algorithm 7.3

for k = 1, 2, . . . , n− 1
for i = k + 1, k + 2, . . . , n

bi = bi −mi,kbk

Here we assume that the multipliers mi,k are obtained from Algorithm 7.2.
When the complete triangular system is computed by the Algorithms 7.2
and 7.3, we finally apply the back substitution algorithm, Algorithm 7.1,
to find the solution v.
The Gaussian elimination process will succeed in reducing the general

system (7.38) to upper triangular form as long as all the elements a
(k)
k,k �= 0

(see (7.42)). Below we shall show that if the original matrix A is symmetric
and positive definite, then this will in fact be the case.
If the number of unknowns n in a linear system is very large, then the

Gaussian elimination process above will be impractical, due to either the
required computer time or lack of sufficient storage. The amount of com-
puter time is roughly proportional to the number of arithmetic operations
which are required, i.e. the sum of multiplications, divisions, additions, and
subtractions. By this measure, the cost of carrying out Algorithm 7.2 is ap-
proximately 2n3/3 (see Exercise 7.24). Hence, if we need to solve a system
with 106 unknowns on a computer which can perform 1

3 · 109 operations
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per second,5 the computing time will be approximately 2 · 109 seconds, or
about 63 years.

7.6.3 Banded Systems
For many linear systems occuring in practice, one can obtain more effective
algorithms by exploiting structures of the system. A simple property which
can be utilized in Gaussian elimination is a so-called banded structure. An
n× n system is called banded, with bandwidth d, if

ai,j = 0 if |i− j| > d.

Hence, the coefficient matrix A of a banded system has the form

A =




a1,1 · · · a1,d+1 0 · · · · · · · · · 0
...

. . . . . . . . .
...

ad+1,1
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . an−d,n
...

. . . . . . . . .
...

0 · · · · · · · · · 0 an,n−d · · · an,n




.

You can convince yourself (see (7.42)) that when Gaussian elimination is
applied to a banded system, then all the elements a(k)

i,j and mi,j are zero for
|i− j| > d. Hence, the computation can be restricted to the data structure
required to represent the nonzero elements of the original coefficient matrix.
Therefore, we obtain the following banded version of Algorithm 7.2.

Algorithm 7.4 : Banded matrix

for k = 1, 2, . . . , n− 1
for i = k + 1, k + 2, . . . ,min (k + d, n)

mi,k = ai,k/ak,k
for j = k + 1, k + 2, . . . ,min (k + d, n)

ai,j = ai,j −mi,kak,j

The number of multiplications required by this algorithm is approximately
2nd2; see Exercise 7.24. In order to compare the algorithm for a full matrix
with the banded version above, we consider an example.

5This is, approximately, the performance of the R8000 processor from Silicon Graph-
ics. The CPU time indicated here does not reflect the memory limitations for such a
large, full system.
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Example 7.3 Consider the system (7.33), i.e. the discrete Poisson’s equa-
tion. We let h = 1/(n̄+1) be the spacing, such that the number of unknowns
is given by n = (n̄)2. This system can be written as a linear system in the
form Aw = b, where the vector w ∈ R

n is related to the unknowns {vj,k}
by

vj,k = wk+(j−1)n̄.

This corresponds to storing the unknowns {vj,k} row by row in the vector
w. By multiplying each equation in (7.34) by h2, we obtain the linear system
Aw = b, with a banded coefficient matrix given by

A =




4 β1 −1
β1 4 β2

. . .

β2
. . . . . . . . .
. . . . . . . . . . . .

−1 . . . . . . . . . . . .
. . . . . . . . . . . . −1

. . . . . . . . . . . .
. . . . . . . . . . . .

. . . . . . 4 βn−1
−1 βn−1 4




.
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
��

Here we have only indicated the nonzero elements, and the solid lines
indicate the boundary of the band. The coefficients βj are given by

βj =

{
0 if jn̄ = integer,
−1 otherwise.

The symmetric matrix A is a banded n × n matrix with bandwidth6 n̄ =√
n. If this system is solved as a full system, the number of operations in

Algorithm 7.2 is approximately 2
3n

3. However, if we use the banded version
of the algorithm, this is reduced to 2n2. Thus, in the case of n = 106 ( or n̄ =
103), with the computer considered above, the computing time is reduced
from about 63 years to about 1 hour and 40 minutes.

6Note that the matrix A has only five nonzero diagonals, while the band contains
2n̄+ 1 diagonals. However, only the elements outside the band will remain zero during
the Gaussian elimination process. Therefore, we need to update all the elements inside
the band.
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Assume that we solve the system above with Algorithm 7.4 for a fixed
h > 0, and that the computing time is approximately 1 second. If we
instead use the spacing h/4, then the number of unknowns n = n̄2 is
roughly multiplied by 16, and hence the estimated CPU time is increased
with a factor of 256. This predicts that the CPU time for h/4 is more than
4 minutes. If the spacing is further decreased to h/8, the CPU time will be
more than an hour. �

7.6.4 Positive Definite Systems
We shall show that if the coefficient matrix A of the original system (7.38)
is symmetric and positive definite, then all the elements a

(k)
k,k, defined by

(7.42), are nonzero. Hence, the elimination process will not break down and
the solution v can be computed.
We recall here that a symmetric n× n matrix A is positive definite if

vTAv ≥ 0 for all v ∈ R
n,

with equality only if v = 0. The proof of the proposition below is a gener-
alization of the proof of Proposition 2.4 on page 56.

Proposition 7.1 If A is symmetric and positive definite, then the ele-
ments a

(k)
k,k, defined by (7.42), are strictly positive for k = 1, 2, . . . , n.

Proof: Assume that a(1)
1,1, a

(2)
1,1 . . . , a

(k−1)
k−1,k−1 > 0, but that a(k)

k,k ≤ 0. We shall
show that this assumption leads to a contradiction. For any vector b ∈ R

n

the linear system Av = b is transformed by (7.42) to an equivalent upper
k-triangular system A(k)v = b(k) or (see (7.40))

a
(k)
1,1v1 + · · · + a

(k)
1,k−1vk−1 + a

(k)
1,kvk + · · · + a

(k)
1,nvn = b

(k)
1

. . .
a
(k)
k−1,k−1vk−1 + a

(k)
k−1,kvk + · · · + a

(k)
k−1,nvn = b

(k)
k−1

a
(k)
k,kvk + · · · + a

(k)
k,nvn = b

(k)
k

...
a
(k)
n,kvk + · · · + a

(k)
n,nvn = b

(k)
n .

It follows from (7.42) (see Exercise 7.25) that the vectors b and b(k) are
related by

bi = b
(k)
i +

min (i−1,k−1)∑
j=1

mi,jb
(k)
j . (7.43)
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The proof will be completed by constructing a nonzero vector v ∈ R
n such

that

vTAv ≤ 0,

which will contradict the assumption that A is positive definite. Choose
vk = 1 and vk+1 = · · · = vn = 0. Furthermore, since a

(k)
j,j = a

(j)
j,j > 0

for j < k, it follows that we can find unique values vk−1, . . . , v1 such that
b
(k)
1 = b

(k)
2 = · · · = b

(k)
k−1 = 0. Hence, from (7.43) we obtain that b = Av

satisfies

b1 = b2 = · · · = bk−1 = 0 and bk = b
(k)
k = a

(k)
k,k.

The vector v is nonzero, since vk = 1 and

vTAv =
n∑
i=1

vibi = vkbk = a
(k)
k,k ≤ 0.

This is the desired contradiction, and consequently we conclude that

a
(k)
k,k > 0 for k = 1, 2, . . . , n.

�
We end this section with a warning. Although Gaussian elimination,

in theory, can be used to solve linear systems arising from discretizations
of partial differential equations, they are not commonly applied to large
systems of practical interest. They are simply too slow. There are much
faster iterative methods available for these problems, which also require
less storage. An introduction to such methods can be found in Hackbusch
[13].

7.7 Exercises

Exercise 7.1 Let Ω be the unit square. Find a function u(x, y) which
is harmonic in Ω and satisfies the boundary conditions (7.2)–(7.4) with
g(x) = x(1− x) (see Exercise 3.1).

Exercise 7.2 Let Ω be the unit square. Consider the problem

−∆u = 0 in Ω,

together with the boundary conditions (7.2)–(7.3) and

uy(x, 1) = g(x), 0 ≤ x ≤ 1.

Explain how this problem can be solved by separation of variables.
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Exercise 7.3 Consider the Laplace equation

∆u = 0

with inhomogeneous boundary conditions

u(0, y) = g1(y), 0 ≤ y ≤ 1,
u(1, y) = g2(y), 0 ≤ y ≤ 1,
u(x, 0) = g3(x), 0 ≤ x ≤ 1,
u(x, 1) = g4(x), 0 ≤ x ≤ 1.

Explain how we can obtain a formal solution of this problem from formal
solutions of simpler problems with boundary conditions similar to (7.2)–
(7.4), i.e. with an inhomogeneous boundary condition at only one edge.

Exercise 7.4 (Invariance under rigid motions.)

(a) (Translation) Let

x′ = x+ a, y′ = y + b

for fixed real numbers a and b and let u and v be functions such that
v(x′, y′) = u(x, y). Explain why ∆u = ∆v, i.e.(

uxx + uyy
)
(x, y) =

(
vx′x′ + vy′y′

)
(x′, y′).

(b) (Rotation) Let

x′ = x cos(φ) + y sin(φ),
y′ = −x sin(φ) + y cos(φ).

Explain why this corresponds to a rotation of the coordinate system,
and show that if v(x′, y′) = u(x, y), then ∆v = ∆u.

Exercise 7.5 Let Ω be the rectangle

Ω =
{
(x, y)

∣∣ 0 < x < L, 0 < y < M
}
,

where L and M are positive constants. Assume that u is harmonic in Ω
and let

v(x, y) = u(xL, yM)

for (x, y) in the unit square. Show that v satisfies the equation

vxx +
L2

M2 vyy = 0.
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Exercise 7.6 Give a detailed derivation of the identities (7.10), (7.11),
and (7.12).

Exercise 7.7 Consider the Euler equation (7.17), i.e.

r2R′′(r) + rR′(r)− k2R(r) = 0, (7.44)

where r > 0.
Define a new function v(z) = R(ez) for z ∈ R.

(a) Show that

v′′(z) = k2v(z).

(b) Find the general solution of equation (7.44).

Exercise 7.8 Let Ω be a wedge with angle π/b and radius ρ > 0, i.e.

Ω =
{
(r, φ)

∣∣ 0 < r < ρ, 0 < φ < π/b
}
.

(a) Explain how we can use separation of variables to find a harmonic
function u(r, φ) which satisfies boundary conditions of the form

uφ(r, 0) = uφ(r, π/b) = 0

and

u(ρ, φ) = g(φ).

(b) Does this type of boundary condition imply a singularity in the so-
lution of the form discussed for the Dirichlet condition in Section
7.2.3?

Exercise 7.9 Consider a Poisson problem with Neumann boundary con-
ditions of the form

−∆u = f in Ω, (7.45)
∂u

∂n
= g on ∂Ω.

(a) Show that a necessary condition for this problem to have a solution
is that ∫ ∫

Ω
f dx dy = −

∫
∂Ω

g ds. (7.46)



240 7. Poisson’s Equation in Two Space Dimensions

(b) Consider the problem (7.45) for two given functions f and g satisfying
(7.46). Show that there is at most one solution of this problem such
that ∫ ∫

Ω
u dx dy = 0.

Why do we need this extra condition ?

Exercise 7.10 Consider a Poisson problem with Robin boundary condi-
tions of the form

−∆u = f in Ω,

∂u

∂n
+ αu = g on ∂Ω,

where α > 0 is a constant.
Show that this problem has at most one solution.

Exercise 7.11 The strong maximum principle states that if a harmonic
function u reaches its maximum in the interior of the domain Ω, then u is
necessarily constant on Ω.
Explain how this property follows from the mean value property for

harmonic functions. Does this argument put restrictions on the domain Ω?

Exercise 7.12 Use the identity (2.31) on page 60 to establish the identity
(7.34).

Exercise 7.13 Let Ω be the unit square. Use the result of Lemma 7.4 to
show that a discrete Poisson problem(

Lhv
)
(x, y) = f(x, y), (x, y) ∈ Ωh,

v(x, y) = g(x, y), (x, y) ∈ ∂Ωh,

has a unique solution.

Exercise 7.14 Use the bound (2.12) on page 46 to prove Lemma 7.5.

Exercise 7.15 Assume that Ω is the unit square. State and prove a strong
maximum principle for discrete harmonic functions (see Problem 7.11).

Exercise 7.16 Consider the Poisson problem

−∆u = 2x(1− x) + 2y(1− y) (7.47)

with u = 0 on ∂Ω.
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(a) Show that the exact solution is given by

u = x(1− x)y(1− y).

(b) Use the numerical approximation (7.32) to establish a linear system

Aw = b (7.48)

of the form considered in Example 7.3.

(c) Implement Algorithm 7.4 for the linear system (7.48).

(d) Use the program developed in (c) to analyze the sharpness of the
estimate given in Theorem 7.2 for the problem (7.47).

Exercise 7.17 Assume that Ω is the unit square and consider and eigen-
value problem of the form

−∆u = λu in Ω,

u = 0 on ∂Ω,
(7.49)

where the eigenfunction u �≡ 0.

(a) Use Green’s first identity to show that λ > 0.

(b) Assume that for each x ∈ (0, 1), u(x, ·) can be written in a sine series
with respect to y of the form

u(x, y) =
∞∑
k=1

ak(x) sin(kπy).

Explain that this leads to eigenfunctions of the form

u(x, y) = sin(jπx) sin(kπy) for j, k = 1, 2, . . .

and eigenvalues

λj = (jπ)2 + (kπ)2.

Exercise 7.18 Let Ω be the unit square and consider an inhomogeneous
Poisson problem of the form

−∆u = f in Ω,

u = 0 on ∂Ω.
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Assume that the right-hand side f has a representation of the form

f(x, y) =
∞∑
j,k=1

aj,k sin(jπx) sin(kπy),

where {aj,k} are suitable constants. Find a formal solution u(x, y) of the
form

u(x, y) =
∞∑
j,k=1

bj,k sin(jπx) sin(kπy).

Exercise 7.19 Consider the heat equation in two space variables x and
y. Hence, for a given domain Ω ⊂ R

2 we consider

ut = ∆u in Ω, t > 0,
u(x, y, t) = 0 for (x, y) ∈ ∂Ω,
u(x, y, 0) = f(x, y) for (x, y) ∈ Ω.

(7.50)

(a) Use energy arguments to show that any solution of this problem sat-
isfies ∫ ∫

Ω
u2(x, y) dx dy ≤

∫ ∫
Ω
f2(x, y) dx dy.

(Hint: In the same way as in Section 3.7, consider ddt
∫ ∫

u2(x, y, t)dxdy.
In addition, Green’s first identity (7.23) will probably be useful.)

(b) Explain why the initial and boundary value problem (7.50) has at
most one solution.

(c) Assume that Ω is the unit square. Try to use the results of Exercise
7.17 above to construct a formal solution of (7.50).

Exercise 7.20 Assume that Ω is the unit square. Consider the following
eigenvalue problem:
Find v ∈ Dh,0 such that

Lhv = λv.

Find all eigenvalues and eigenvectors. (Hint: The problem has at most n2

eigenvalues. Try to consider eigenfunctions v of the form sin(jπx) sin(kπy).)
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Exercise 7.21 Let u ∈ C2
(
Ba(0)

) ∩ C
(
Ba(0)

)
be a solution of the prob-

lem

−∆u = 0 in Ba(0),
u = g on ∂Ba(0),

for a > 0. Here g is a continuous function on ∂Ba(0). The purpose of this
exercise is to derive Poisson’s formula for this solution; the formula states
that

u(x) =
a2 − |x|2

2πa

∫
∂Ba(0)

g(y)
|x− y|2 ds. (7.51)

Observe that this formula reduces to the mean value property (7.27) when
x = 0.
Define

v(x) =
a2 − |x|2

2πa

∫
∂Ba(0)

g(y)
|x− y|2 ds.

(a) Assume we can show that v is harmonic inBa(0) and that v
∣∣∣
∂Ba(0)

= g.

Explain why this implies that (7.51) holds.

(b) Show by direct computations that the function

a2 − |x|2
|x− y|2

is harmonic in Ba(0) as a function of x if |y| = a.

(c) Use Proposition 3.1 on page 107 to show that v is harmonic in Ba(0).

Let

w(x) =
a2 − |x|2

2πa

∫
∂Ba(0)

ds

|x− y|2 .

Hence w corresponds to the function v with g ≡ 1.

(d) Show that w is rotation invariant, i.e. w = w(|x|) = w(r).

(e) Use the fact that w is harmonic and rotation invariant to show that
w ≡ 1.

(f) Let z ∈ ∂Ba(0). Use the fact that g(z) = w(x)g(z) to show that

lim
x→z

v(x) = g(z).
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Exercise 7.22 Show that an upper triangular matrix of the form (7.39) is
nonsingular if and only if the diagonal elements ai,i �= 0 for i = 1, 2, . . . , n.

Exercise 7.23 Give an example of a nonsingular linear system which has
the property that Gaussian elimination will fail, i.e Algortithm 7.2 will
break down.

Exercise 7.24

(a) Consider the Algorithm 7.2. Show that the required number of oper-
ations is approximately 2n3/3 +O(n2).

Hint: You can use the identities

n−1∑
k=1

k =
1
2
n(n− 1) and

n−1∑
k=1

k2 =
1
6
n(n− 1)(2n− 1).

(b) Consider the Algorithm 7.4 for a banded matrix. Show that the num-
ber of operations is approximately 2nd2.

Exercise 7.25 Consider the recurrence relations (7.42) and assume that
a
(i)
i,i �= 0 for i = 1, 2, . . . , k − 1.

(a) Show the identity (7.43).

(b) Show a similar relation for the qth columns of A and A(k), i.e.

ai,q = a
(k)
i,q +

min (i−1,k−1)∑
j=1

mi,jaj,k.

(c) Assume that a
(k)
k,k �= 0 for k = 1, 2, . . . , n − 1. Show that A = LU ,

where L is a nonsingular lower triangular matrix and U is upper
triangular. (This factorization is frequently referred to as an LU -
factorization of A).



8
Orthogonality and General Fourier
Series

In the previous chapters Fourier series have been the main tool for obtain-
ing formal solutions of partial differential equations. The purpose of the
present chapter and the two following chapters is to give a more thorough
analysis of Fourier series and formal solutions. The Fourier series we have
encountered in earlier chapters can be thought of as examples of a more
general class of orthogonal series, and many properties of Fourier series
can be derived in this general context. In the present chapter we will study
Fourier series from this point of view. The next chapter is devoted to con-
vergence properties of Fourier series, while we return to partial differential
equations in Chapter 10. There the goal is to show that the formal solutions
are in fact rigorous solutions in a strict mathematical sense.
Let us first recall some of our earlier experiences with Fourier series.

For example, in Sections 3.3–3.4 we expanded the initial function f of the
initial and boundary value problem (3.1)–(3.3) for the heat equation in a
Fourier sine-series of the form (cf. (3.25))

f(x) =
∞∑
k=1

ck sin (kπx) (8.1)

to obtain the formal solution

u(x, t) =
∞∑
k=1

cke
−(kπ)2t sin (kπx).

A similar procedure was carried out in Section 3.6, where the corresponding
Neumann problem was solved by expanding the initial function f in a
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Fourier cosine series of the form

f(x) =
c0
2
+

∞∑
k=1

ck cos(kπx), (8.2)

while in Exercise 3.15 we used a full Fourier series of the form

f(x) =
a0

2
+

∞∑
k=1

(
ak cos (kπx) + bk sin (kπx)

)
(8.3)

to solve a corresponding problem with periodic boundary conditions.
In all the three examples mentioned above, a key property is that we

are expanding the function f as a linear combination of orthogonal basis
functions. For example, in (8.1) the set of basis functions,

{
sin (kπx)

}∞
k=1,

is an orthogonal set in the sense that∫ 1

0
sin (kπx) sin (mπx)dx =

{
0 k �= m,
1/2 k = m,

(cf. Lemma 2.8). This immediately leads to the formula

ck = 2
∫ 1

0
f(x) sin (kπx)dx

for the coefficients. Similar formulas hold for the coefficients in (8.2) and
(8.3).
Below we shall see that the Fourier sine series (8.1) and the Fourier cosine

series (8.2) are in fact special cases of the full Fourier series (8.3).

8.1 The Full Fourier Series

Let f be a function defined on [−1, 1]. The full Fourier series of f is given
by

f(x) =
a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) , (8.4)

where

ak =
∫ 1

−1 f(x) cos (kπx)dx, k = 0, 1, . . . ,
bk =

∫ 1
−1 f(x) sin (kπx)dx, k = 1, 2, . . . .

(8.5)

We will assume that f is a piecewise continuous function on [−1, 1].
Definition 8.1 A function f is called piecewise continuous on an interval
[a, b] if it is continuous in all but a finite number of interior points {xj},
where limx↘xj

f(x) and limx↗xj
f(x) both exist1 (see Fig. 8.1) �
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a b
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FIGURE 8.1. A piecewise continuous function.

Since f is assumed to be piecewise continuous on [−1, 1], the coefficients
ak and bk given by (8.5) are well defined. However, at this point we would
like to be more careful with the equality sign used in (8.4). Since we have
an infinite sum on the right-hand side, this equality sign indicates that the
partial sums

SN (f)(x) =
a0

2
+

N∑
k=1

(ak cos (kπx) + bk sin (kπx))

converge to f(x) as N → ∞. However, so far we have not discussed this
convergence. All we have argued is that if f can be represented in the
form (8.4), then the coefficients must be given by (8.5). The question of
convergence of Fourier series will be discussed in detail in the next chapter.
With the purpose of being more precise, we shall therefore write

f(x) ∼ a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) (8.6)

instead of (8.4). Here the symbol ∼ should be read as “has the Fourier
series.”

1Here limx↘xj
= limx→xj ,x>xj and limx↗xj

= limx→xj ,x<xj .
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�

FIGURE 8.2. Periodic extension of a function.

Definition 8.2 Let f be piecewise continuous2 on [−1, 1] and let the coef-
ficients ak and bk be given by (8.5). The infinite series

a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx))

is referred to as the full Fourier series of f . The notation in (8.6) will be
used to indicate the relation between f and its Fourier series. �

Let us observe that since the trigonometric functions sine and cosine are
defined on all of R, the partial sum SN (f) can naturally be considered to
be functions on all of R. Furthermore, since the trigonometric functions
are 2π-periodic, the functions SN (f) are 2-periodic. Here, we recall that a
function defined on R is called p-periodic, with period p, if

g(x+ p) = g(x). (8.7)

On the other hand, if g is defined on an interval of length p then it can be
uniquely extended to a p-periodic function defined on all of R (see Fig. 8.2)
by enforcing (8.7). This function is called the p-periodic extension of g.
Let us return to the situation for Fourier series. If SN (f) converges to f

on [−1, 1], it will in fact converge to the 2-periodic extension of f on all of
R. Therefore the full Fourier series can either be considered as an expansion

2Throughout this book we will discuss Fourier series for piecewise continuous func-
tions. Fourier series for less regular functions will not be considered.
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of a function defined on [−1, 1] or as an expansion of a 2-periodic function
defined on all of R.

8.1.1 Even and Odd Functions
Before we consider an example of a full Fourier series, let us recall that a
function f is called an even function if f(−x) = f(x). Similarly, f is called
an odd function if f(−x) = −f(x). Typical examples of even functions are
x2 and cos(x), while x3 and sin(x) are odd. Furthermore, the product of
two even or odd functions is even, while the product of an even and an odd
function is odd. Finally, if f is odd, then∫ 1

−1
f(x)dx = 0,

and if f is even, then ∫ 1

−1
f(x)dx = 2

∫ 1

0
f(x)dx.

You are asked to discuss these properties of even and odd functions in
Exercise 8.2.

Example 8.1 Let f(x) = x for x ∈ [−1, 1]. In order to find the full Fourier
series of f , we have to compute the coefficients ak, bk. Since f is an odd
function and cos (kπx) is an even function, we conclude that ak = 0 for
k = 0, 1, 2, . . . .
Furthermore, integration by parts implies that for k ≥ 1,

bk =
∫ 1

−1
x sin (kπx)dx

= − 1
kπ

[x cos (kπx)]1−1 +
1
kπ

∫ 1

−1
cos (kπx)dx

= − 1
kπ

(cos (kπ) + cos (−kπ))

=
2
kπ

(−1)k+1.

Hence, we have

x ∼
∞∑
k=1

2
kπ

(−1)k+1 sin (kπx).

The 2-periodic extension of x is plotted on Fig. 8.3. Hence, if the Fourier
series converges to x on [−1, 1], it converges to this extension on all of R.

�
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FIGURE 8.3. Periodic extension of f(x) = x.

In the example above we found that the full Fourier series of the function
f(x) = x is the same as the Fourier sine series of this function (cf. Example
3.4 on page 97). In fact, this will be the case for any odd function.

Lemma 8.1 If f is an odd function defined on [−1, 1], then

f(x) ∼
∞∑
k=1

bk sin (kπx),

where

bk = 2
∫ 1

0
f(x) sin (kπx)dx.

Proof: Since f(x) is odd and cos (kπx) is even, f(x) ·cos (kπx) is odd and

ak =
∫ 1

−1
f(x) cos (kπx)dx = 0.

Furthermore, since f(x) · sin (kπx) is even, we have

bk =
∫ 1

−1
f(x) sin (kπx)dx = 2

∫ 1

0
f(x) sin (kπx)dx. �

We observe that the coefficients bk given above coincide with the coef-
ficients in the Fourier sine series. (see (3.29)). Hence, we have established
that full Fourier series of an odd function is the same as its Fourier sine
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FIGURE 8.4. Odd extension of a function.

series. On the other hand, if f is a function defined on [0, 1], then f can be
extended to an odd function on [−1, 1] by letting

f(−x) = −f(x);

see Fig. 8.4.
Furthermore, the full Fourier series of the odd extension is exactly the

sine series of f .
Similar observations can be made for even functions. The full Fourier

series of an even function is exactly the cosine series of f . Furthermore, the
cosine series of any function f defined on [0, 1] is the full Fourier of its even
extension defined by

f(−x) = f(x);

see Fig. 8.5.

Example 8.2 Consider the function f(x) = 1. Note that this function
already has the form of a full Fourier series. By directly computing the
coefficients ak and bk in (8.5), we easily conclude that

1 ∼ 1;

i.e. the full Fourier series has only one term. Since f is an even function,
the full Fourier series is also the cosine series of f . However, in Example 3.3
on page 96 we also computed the sine series of this function. Hence, since
sign(x) is the odd extension of f , it follows that

sign(x) ∼ 4
π

∞∑
k=1

1
2k − 1

sin ((2k − 1)πx) .
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FIGURE 8.5. Even extension of a function.

Here

sign(x) =



−1 for x < 0,
0 for x = 0,
1 for x > 0.

This Fourier series will potentially converge to the 2-periodic extension
of sign(x) plotted in Fig. 8.6. �

Example 8.3 In Example 3.6 on page 102 we found that the function
f(x) = x had the cosine series

1
2
− 4

π2

∞∑
k=1

(
1

2k − 1

)2

cos ((2k − 1)πx).

Since the even extension of f is |x|, we have

|x| ∼ 1
2
− 4

π2

∞∑
k=1

(
1

2k − 1

)2

cos ((2k − 1)πx).

�

8.1.2 Differentiation of Fourier Series
One of the important applications of Fourier series is solving differential
equations. In such applications we typically like to express the coefficients
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FIGURE 8.6. Periodic extension of sign(x).

of the Fourier series of f ′(x) by the coefficients of the Fourier series of f(x).
Let us assume that f ′(x) is piecewise continuous and that

f ′(x) ∼ α0

2
+

∞∑
k=1

(αk cos (kπx) + βk sin (kπx)) . (8.8)

Similarly

f(x) ∼ a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) . (8.9)

Hence, from the definition of the full Fourier series we have

αk =
∫ 1

−1
f ′(x) cos (kπx)dx, βk =

∫ 1

−1
f ′(x) sin (kπx)dx,

and ak, bk are given by (8.5).
Assume that we have ordinary equality (instead of ∼) in (8.9) and that

we can differentiate the series term by term. Then we obtain from (8.9)
that

f ′(x) =
∞∑
k=1

(−kπak sin (kπx) + kπbk cos (kπx)) ,

or

αk = kπbk and βk = −kπak. (8.10)

However, in general these identities are not true. Assume for example that
f(x) = x. From Example 8.1 we have

x ∼
∞∑
k=1

2
kπ

(−1)k+1 sin (kπx).
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Therefore, if (8.10) were true, it would follow that

1 ∼ 2
∞∑
k=1

(−1)k+1 cos (kπx).

However, this is not true since 1 ∼ 1.
On the other hand, recall that in Example 8.3 we derived

|x| ∼ 1
2
− 4

π2

∞∑
k=1

(
1

2k − 1

)2

cos ((2k − 1)πx).

Furthermore, d
dx (|x|) = sign(x) for x �= 0, and from Example 8.2 we have

sign(x) ∼ 4
π

∞∑
k=1

1
2k − 1

sin ((2k − 1)πx) ,

which is exactly in agreement with formula (8.10).
The following result gives a criteria for when the Fourier coefficients of f ′

can be determined from term-by-term differentiation of the Fourier series
of f .

Theorem 8.1 Assume that f is continuous on [−1, 1], f ′ is piecewise con-
tinuous,3 and f(−1) = f(1). If the Fourier series of f ′ and f are given by
(8.8) and (8.9), then α0 = 0 and

αk = kπbk and βk = −kπak

for k = 1, 2, . . . .

We observe that the condition f(1) = f(−1) is satisfied for the function
f(x) = |x|, but not for f(x) = x. Therefore, this theorem is consistent with
what we observed above for these two examples.
Proof of Theorem 8.1: Since f(−1) = f(1), we have

α0 =
∫ 1

−1
f ′(x)dx = f(1)− f(−1) = 0.

3Here the phrase “f ′ piecewise continuous” means that f is differentiable everywhere,
except for a finite number of points {xj} where the one-sided derivatives both exist.
Furthermore, the function f ′ is required to be piecewise continuous.
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Furthermore, by using integration by parts we obtain for k ≥ 1

αk =
∫ 1

−1
f ′(x) cos (kπx)dx

= [f(x) cos (kπx)]1−1 + kπ

∫ 1

−1
f(x) sin (kπx)dx

= kπ

∫ 1

−1
f(x) sin (kπx)dx

= kπbk.

The formula for βk follows by a completely similar argument. �

8.1.3 The Complex Form
The full Fourier series can be written in a more elegant, and slightly more
compact, form by introducing the complex exponential function. Recall
that if y ∈ R then

eiy = cos (y) + i sin (y),

where i =
√−1. Since cos (y) is an even function and sin (y) is odd, this

also gives

e−iy = ei(−y) = cos (y)− i sin (y),

and hence we obtain

cos (y) =
1
2

(
eiy + e−iy) and sin (y) =

1
2i

(
eiy − e−iy) . (8.11)

Consider now the full Fourier series (8.4). By using the complex represen-
tation (8.11), we obtain

f(x) ∼ a0

2
+

∞∑
k=1

(
ak
2

(
eikπx + e−ikπx) + bk

2i
(
eikπx − e−ikπx)) =

∞∑
k=−∞

cke
ikπx,

where

ck = (ak − ibk)/2 for k > 0,

c0 = a0/2,

c−k = (ak + ibk)/2 for k > 0.

(8.12)

It is straightforward to show (see Exercise 8.7) that the coefficients ck can
alternatively be expressed as

ck =
1
2

∫ 1

−1
f(x)e−ikπxdx.
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Furthermore, from the expressions for ck above it follows that if f is a
real-valued even function, then

ck = c−k =
ak
2

.

In particular, the coefficients ck are all real. On the other hand, if f is a
real-valued odd function then c0 = 0 and

ck = −i
bk
2

= −c−k.

Hence, in this case all the coefficients ck are purely imaginary, i.e. of the
form ir, where r is real.

8.1.4 Changing the Scale
An obvious question to ask is how do we define the Fourier series of func-
tions defined on intervals other than [−1, 1]. For example, let l > 0 be
arbitrary and assume that f is a given piecewise continuous function on
[−l, l]. In fact, the Fourier series of f can be defined by a simple rescaling
of the x-axis. Define a new function f̃ on [−1, 1] by

f̃(y) = f(yl).

Hence, we can use Definition 8.2 to define the Fourier series of f̃ in the
form

f̃(y) ∼ a0

2
+

∞∑
k=1

(ak cos (kπy) + bk sin (kπy)) .

Introducing x by y = x/l and f(x) = f̃(x/l), we obtain

f(x) ∼ a0

2
+

∞∑
k=1

(ak cos (kπx/l) + bk sin (kπx/l)) . (8.13)

Expressed in terms of the function f , the coefficients ak and bk will be
given by (see Exercise 8.8)

ak =
1
l

∫ l

−l
f(x) cos (kπx/l)dx,

(8.14)

bk =
1
l

∫ l

−l
f(x) sin (kπx/l)dx.

We should note that the functions {cos (kπx/l)}∞
k=0 and {sin (kπx/l)}∞

k=1
are orthogonal with respect to the natural inner product for functions de-
fined on [−l, l]. This follows by the corresponding property for l = 1 and a
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simple change of variable. We should also note that these functions corre-
spond to eigenfunctions of the eigenvalue problem

−X ′′(x) = λX(x), x ∈ (−l, l)
X(−l) = X(l), X ′(−l) = X ′(l) (8.15)

i.e. the periodic problem for the operator − d2

dx2 on the interval [−l, l].
The complex form of the Fourier series on [−l, l] is

f(x) ∼
∞∑

k=−∞
cke

ikπx/l,

where

ck =
1
2l

∫ l

−l
f(x)e−ikπx/ldx.

8.2 Boundary Value Problems and Orthogonal
Functions

In the previous section we studied the full Fourier series of piecewise con-
tinuous functions. A key tool for obtaining the formulas (8.5) for the
coefficients is the orthogonality property for the trigonometric functions
{cos (kπx)}∞

k=0 and {sin (kπx)}∞
k=1 on [−1, 1] (cf. Exercise 3.15). At first

sight this property may seem to be a mere coincidence. However, already
in Section 2.4.1 it was indicated that this is not an accident, but is closely
related to the fact that the trigonometric functions are eigenfunctions of a
proper boundary value problem. In this section we will study this connec-
tion more systematically.

8.2.1 Other Boundary Conditions
So far in this chapter we have essentially studied three sets of orthogonal
functions {Xk}. If Xk(x) = sin (kπx), then the set {Xk}∞

k=1 is orthogonal
with respect to the inner product on the interval [0, 1]. Furthermore, these
functions are the eigenfunctions of the eigenvalue problem

−X ′′ = λX (8.16)

with homogeneous Dirichlet boundary conditions. Similary, the orthogonal
set {Xk}∞

k=0, where Xk(x) = cos (kπx) for x ∈ [0, 1], corresponds to the
eigenfunctions of (8.16) with Neumann boundary conditions. Finally, the
set

{Xk}∞
k=0 = {1, cos (πx), sin (πx), cos (2πx), sin (2πx), . . . }
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consists of all the eigenfunctions of (8.16) with periodic boundary condi-
tions with respect to the interval [−1, 1]. Hence, all these three orthogonal
sets are generated by the eigenvalue problem (8.16), but with different
boundary conditions. However, there are more possible boundary condi-
tions.

Example 8.4 Consider the eigenvalue problem (8.16) with “mixed bound-
ary conditions” of the form

X(0) = X ′(1) = 0. (8.17)

We will show that the problem (8.16)–(8.17) generates a set of orthogonal
eigenfunctions {Xk}. It is straightforward to check by integration by parts
that if X(x) and Y (x) both satisfy the boundary conditions (8.17), then
the symmetry relation

〈LX, Y 〉 =
∫ 1

0
X ′(x)Y ′(x)dx = 〈X,LY 〉 (8.18)

holds, where L = − d2

dx2 and the inner product is given by

〈X,Y 〉 =
∫ 1

0
X(x)Y (x)dx.

If λ �=µ are two distinct eigenvalues of the problem (8.16)–(8.17), with cor-
responding eigenfunctions X(x) and Y (x), then (8.18) implies that

λ〈X,Y 〉 = 〈LX, Y 〉 = 〈X,LY 〉 = µ〈X,Y 〉,

or, since λ �= µ,

〈X,Y 〉 = 0.

Hence, two eigenfunctions corresponding to different eigenvalues must be
orthogonal. Furthermore, (8.18) implies that

λ〈X,X〉 =
∫ 1

0
(X ′(x))2 dx > 0

for any eigenvalue λ with associated eigenfunction X. Here the strict in-
equality follows since the eigenfunctions X(x) must satisfy X(0) = 0 and
X �≡ 0, which implies X ′ �≡ 0. Therefore all eigenvalues are positive.
All eigenvalues and eigenfunctions can now be determined by calculations

similar to those we have performed earlier. If λ = β2, where β > 0, the
equation (8.16) implies that X(x) takes the form

X(x) = c1 cos (βx) + c2 sin (βx),
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while the condition X(0) = 0 forces c1 to be zero. Hence, up to multiplica-
tion by a constant, X has to be given by

X(x) = sin (βx).

The second boundary condition X ′(1) = 0 will be satisfied if β =
(
k + 1

2

)
π,

where k ≥ 0 is an integer. Hence, we conclude that the set of functions
{Xk}∞

k=0, where Xk(x) = sin
((

k + 1
2

)
πx

)
, are eigenfunctions of the prob-

lem (8.16)–(8.17) with eigenvalues λk =
(
k + 1

2

)2
π2. Furthermore, since

eigenfunctions corresponding to different eigenvalues are orthogonal, we
conclude that the set {Xk}∞

k=0 is orthogonal, i.e.

〈Xk, Xm〉 = 0 for k �= m.

�

Example 8.5 In this example we consider the eigenvalue problem

LX = −X ′′ = λX (8.19)

with the boundary conditions

X ′(0) = X(0), X ′(1) = −X(1). (8.20)

These conditions are an example of what is usually referred to as Robin
boundary conditions. Using integration by parts, we have

〈LX, Y 〉 = −X ′(x)Y (x)
∣∣1
0+

∫ 1

0
X ′(x)Y ′(x)dx. (8.21)

However, if the functions X and Y both satisfy (8.20), then

X ′(x)Y (x)
∣∣1
0= X(x)Y ′(x)

∣∣1
0.

From this relation and (8.21) we again obtain

〈LX, Y 〉 = 〈X,LY 〉. (8.22)

By arguing exactly as in the previous example, the symmetry relation (8.22)
implies that eigenfunctions corresponding to different eigenvalues must be
orthogonal. Furthermore, from (8.20) and (8.21) we find that

λ〈X,X〉 = (X(1))2 + (X(0))2 +
∫ 1

0
(X ′(x))2 dx > 0

for any eigenfunction X with eigenvalue λ, and hence all eigenvalues must
be positive.
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If λ = β2, where β > 0, then (8.16) implies that the eigenfunction X has
the form

X(x) = c1 cos (βx) + c2 sin (βx).

Hence,

X ′(x) = −c1β sin (βx) + c2β cos (βx).

The condition X(0) = X ′(0) therefore implies that c1 = c2β. Hence, up to
multiplication by a constant, we must have

X(x) = β cos (βx) + sin (βx). (8.23)

With this expression for X, the second boundary condition X ′(1) = −X(1)
can be written as

tan(β) =
2β

β2 − 1
. (8.24)

Hence, solving the eigenvalue problem (8.19)–(8.20) is equivalent to finding
the positive roots β of the nonlinear equation (8.24).
If numerical values for these roots are needed, we must solve the equa-

tion (8.24) by a numerical method, e.g. the bisection method or Newton’s
method.4 However, qualitative information can be derived from a graphical
analysis. In Fig. 8.7 we have plotted the functions tan(β) and 2β/(β2 − 1)
for β ≥ 0. It follows from these plots that there is a sequence of roots
{βk}∞

k=0 of the equation (8.24) such that

βk ∈
(
kπ,

(
k +

1
2

)
π

)
.

Hence, there is an increasing sequence of eigenvalues λk = β2
k with corre-

sponding eigenfunctions

Xk(x) = βk cos (βkx) + sin (βkx).

Furthermore, the orthogonality property derived above for the eigenfunc-
tions implies that the set {Xk}∞

k=0 is an orthogonal set of functions on
[0, 1].
We finally remark that the results of this example can be used to derive

formal solutions of the heat equation with Robin boundary conditions. This
discussion is left as an exercise; see Exercise 8.13. �

4Newton’s method for solving nonlinear algebraic equations is discussed in Exercise
8.9 For the bisection method, consult any introductory text in numerical analysis.
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FIGURE 8.7. The stars ′′∗′′ denote the eigenvalues determined as solutions of
the equation tan (β) = 2β

β2−1 . In the plot we have used the notation: — : tan(β)
and - - -: 2β

β2−1

8.2.2 Sturm-Liouville Problems
In the previous section we derived different sets of orthogonal functions by
studying the eigenvalue problem (8.16) with different boundary conditions.
However, in many applications we are forced to study more complicated
problems than the simple equation (8.16).
Assume that we want to solve an initial and boundary value problem of

the form

ut = (pux)x − qu, x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0, (8.25)
u(x, 0) = f(x), x ∈ (0, 1),

where p = p(x) and q = q(x) are functions of x. If p ≡ 1 and q ≡ 0, the
differential equation in (8.25) reduces to the heat equation. However, in
many physical applications we are forced to study more general problems,
where p and/or q are not constants.
In order to derive formal solutions of (8.25), we have to consider a more

general eigenvalue problem than (8.16).
Let L denote the differential operator of the form

(Lu)(x) = −(p(x)u′(x))′ + q(x)u(x). (8.26)

Here q∈C1
(
[0, 1]

)
and p∈C(

[0, 1]
)
are given functions of x. Furthermore,

the function p is strictly positive, while q is nonnegative, i.e. there exists a
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positive number α such that

p(x) ≥ α > 0 for all x ∈ [0, 1] (8.27)

and

q(x) ≥ 0 for all x ∈ [0, 1]. (8.28)

The operator L is often referred to as a Sturm-Liouville operator.
We observe that if p ≡ 1 and q ≡ 0, the operator L reduces to the

operator − d2

dx2 .
An eigenvalue problem of the form

(LX) (x) = λX(x), X(0) = X(1) = 0 (8.29)

is referred to as a Sturm-Liouville problem with Dirichlet boundary condi-
tions.
The eigenvalues and eigenfunctions of the problem (8.29) can be used

to find formal solutions of the initial and boundary value problem (8.25).
The details of this discussion are outlined in Exercise 8.14. Here, we shall
restrict ourselves to deriving some of the fundamental properties of the
Sturm-Liouville problem (8.29).
A fundamental property of the problem (8.29) is that eigenfunctions

corresponding to different eigenvalues are orthogonal. This result will be
established in Corollary 8.1 below, and is in fact a simple consequence of
the symmetry property for the Sturm-Liouville operator L. As above, let
〈·, ·〉 denote the inner product

〈u, v〉 =
∫ 1

0
u(x)v(x)dx.

We now have the following generalizations of the results given in Lemmas
2.3 and 2.4:

Lemma 8.2 The operator L is symmetric and positive definite in the sense
that for any u, v ∈ C2

0
(
(0, 1)

)
,5

〈Lu, v〉 = 〈u, Lv〉

and

〈Lu, u〉 ≥ 0,

with equality only if u ≡ 0.

5The space C2
0
(
(0, 1)

)
is introduced in Section 2.1.2 on page 44.
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Proof: As above, these properties follow from integration by parts. For
u, v ∈ C2

0
(
(0, 1)

)
we derive

〈Lu, v〉 =
∫ 1

0
{−(p(x)u′(x))′ + q(x)u(x)}v(x)dx

=
∫ 1

0
{p(x)u′(x)v′(x) + q(x)u(x)v(x)}dx

= 〈u, Lv〉,
where all the boundary terms have disappeared due to the boundary con-
ditions on u and v. In particular, this implies that

〈Lu, u〉 =
∫ 1

0
{p(x) (u′(x))2 + q(x) (u(x))2}dx ≥ α

∫ 1

0
(u′(x))2dx,

where we have used (8.27) and (8.28). Hence, if 〈Lu, u〉 = 0, we must have
u′ ≡ 0. Therefore u is constant, and since u(0) = 0, we get u ≡ 0. �

Corollary 8.1 If X and Y are eigenfunctions of (8.29), corresponding to
distinct eigenvalues λ and µ, then 〈X,Y 〉 = 0.

Proof: Since L is symmetric, we have

λ〈X,Y 〉 = 〈LX, Y 〉 = 〈X,LY 〉 = µ〈X,Y 〉
or

(λ− µ)〈X,Y 〉 = 0.

Since λ− µ �= 0, we have 〈X,Y 〉 = 0. �

From the positive definite property of the operator L, we also obtain
that all eigenvalues of (8.29) are positive. For if λ is an eigenvalue with
corresponding eigenfunction X, then

λ〈X,X〉 = 〈LX,X〉 > 0,

and since 〈X,X〉 > 0 for an eigenfunction, we conclude that λ > 0.

Corollary 8.2 All eigenvalues of the problem (8.29) are positive.

For most problems of the form (8.29), where p or q are not constants, it is
impossible to derive analytical expressions for the eigenfunctions. However,
for a few problems this can be done.

Example 8.6 Consider the eigenvalue problem (8.29) with p(x) = (1+x)2

and q(x) = 0. Hence, we consider the eigenvalue problem

−(
(1 + x)2X ′(x)

)′ = λX(x),
X(0) =X(1) = 0.

(8.30)



264 8. Orthogonality and General Fourier Series

Let

Xk(x) =
1√
1 + x

sin
(
kπ

log(1 + x)
log(2)

)
for k = 1, 2, . . . . (8.31)

It is straightforward to check that these functions are eigenfunctions of

problem (8.30) with eigenvalues λk =
(

kπ
log(2)

)2
+ 1

4 . In fact, in Exercise 8.15
you are asked to show that all the eigenfunctions are given by (8.31). In
particular, it follows that the set {Xk}∞

k=1 is an orthogonal set of functions
with respect to the inner product 〈·, ·〉. �

8.3 The Mean Square Distance

The purpose of the next section is to start the discussion of convergence
of Fourier series. However, first we will introduce the mean square dis-
tance function.6 The convergence of Fourier series is intimately related to
properties of this distance function.
Let f and g be two piecewise continuous functions defined on an interval

[a, b]. Already in Chapter 2 (see page 58) we introduced an inner product
of the form

〈f, g〉 =
∫ b

a

f(x)g(x)dx.

The corresponding distance function, or norm, is defined by

‖f‖ = 〈f, f〉1/2 =
(∫ b

a

f2(x)dx

)1/2

.

In general, the quantity

‖f − g‖ =
(∫ b

a

(f(x)− g(x))2 dx

)1/2

is a measure of the distance between two functions f and g. We will refer
to ‖f − g‖ as the mean square distance between f and g. In particular, ‖f‖
is a measure of the size of f , or the distance from f to the zero function.
The quantity ‖f‖ has properties which resemble corresponding properties
of the absolute value of real numbers, or more generally the Euclidian norm
of a vector (cf. Project 1.2). For example, ‖f‖ ≥ 0, with equality if and
only if f is identically zero. Furthermore, if α ∈ R then

‖αf‖ = |α|‖f‖.

6In more advanced courses in analysis or partial differential equations, this distance
function will usually be referred to as the L2-norm.
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We shall also see below that the mean square distance satisfies a triangle
inequality of the form

‖f + g‖≤‖f‖+ ‖g‖. (8.32)

This will in fact be a consequence of the following version of Cauchy-
Schwarz inequality.

Lemma 8.3 If f and g are piecewise continuous functions on [a, b], then

|〈f, g〉|≤ ‖f‖‖g‖.
Proof: If f≡0 then we have zero on both sides of the desired inequality,

which therefore holds. Since this case is covered, we will assume in the rest
of the proof that ‖f‖ > 0. For any t ∈ R consider

p(t) =
∫ b

a

(tf − g)2 dx

= t2
∫ b

a

f2(x)dx− 2t
∫ b

a

f(x)g(x)dx+
∫ b

a

g2(x)dx

= t2‖f‖2 − 2t〈f, g〉+ ‖g‖2
.

Hence, p(t) is a second-order polynomial with respect to t which has the
property that

p(t) ≥ 0 for all t∈R.

In particular, p(t0)≥ 0, where t0 is chosen such that p′(t0) = 0, i.e.

t0 =
〈f, g〉
‖f‖2 .

Hence,

0≤ p(t0) =
〈f, g〉2
‖f‖2 − 2

〈f, g〉2
‖f‖2 + ‖g‖2 = −〈f, g〉2

‖f‖2 + ‖g‖2

or

〈f, g〉2 ≤‖f‖2‖g‖2
.

The desired inequality now follows by taking the square roots. �

Observe that

‖f + g‖2 =
∫ b

a

(
f2(x) + 2f(x)g(x) + g2(x)

)
dx

= ‖f‖2 + 2〈f, g〉+ ‖g‖2
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Therefore, it follows from the Cauchy-Schwarz inequality above that

‖f + g‖2 ≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2

= (‖f‖+ ‖g‖)2 ,

and hence the desired triangle inequality (8.32) follows by taking square
roots. The inequality of Lemma 8.3 also implies the inequality∫ b

a

|f(x)||g(x)|dx≤‖f‖‖g‖, (8.33)

which appears to be a stronger inequality since, in general, |∫ fg|≤∫ |f ||g|.
However, (8.33) follows if we apply Lemma 8.3 to the functions |f | and |g|.
A useful generalization of Cauchy-Schwarz inequality is Hölder’s inequal-

ity, which states that

∫ b

a

|f(x)||g(x)|dx≤
(∫ b

a

|f(x)|pdx
)1/p(∫ b

a

|g(x)|qdx
)1/q

, (8.34)

where p, q are real numbers such that p, q > 1 and 1
p +

1
q = 1. Note that

the choice p = q = 2 gives (8.33). A proof of Hölder’s inequality is outlined
in Exercise 8.16.
Let us recall that ‖f − g‖ can be interpreted as the distance between the

two functions f and g. This distance can therefore be used to define the
concept of mean square convergence.

Definition 8.3 A sequence {fN}∞
N=1 of piecewise continuous functions on

[a, b] is said to converge in the mean square sense to a piecewise continuous
function f if

lim
N→∞

‖fN − f‖ = 0.

In the next chapter we will discuss the convergence of sequences of func-
tions in more detail. In particular, we will compare mean square conver-
gence to other concepts of convergence. However, in the present chapter we
will restrict ourselves to mean square convergence, which in some sense is
the natural notion of convergence for Fourier series.

Example 8.7 Let fN (x) = xN for x ∈ [0, 1]. Then

‖fN‖2 =
∫ 1

0
x2Ndx =

1
2N + 1

→ 0

as N → ∞. Hence {fN} converges to the function f ≡ 0 in the mean square
sense. Observe that fN (1) = 1 for all N . Hence, {fN (x)} does not converge
to f(x) for all x∈[0, 1]. The mean square convergence simply means that
the area bounded by x = 0, x = 1, y = 0, and the curve y = x2N tends to
zero as N tends to infinity (see Fig. 8.8).

�
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FIGURE 8.8. Plot of x2N for N = 1, 3 and 5.

Example 8.8 Let fN (x) = N/(1 +N2x2) for x∈ [0, 1]. Hence

lim
N→∞

fN (x) = 0 for x > 0,

while fN (0) = N→∞.
Does {fN} converge to zero in the mean square sense? We have∫ 1

0
(fN (x))

2
dx =

∫ 1

0

(
N

1 +N2x2

)2

dx

= N

∫ 1

0

(
1

1 +N2x2

)2

Ndx

= N

∫ N

0

(
1

1 + y2

)2

dy → ∞

as N→∞. Hence, we do not have mean square convergence to the zero
function. �

8.4 General Fourier Series

In this section we will start the discussion of convergence of Fourier series.
If SN (f) is the partial sum

SN (f) =
a0

2
+

N∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
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corresponding to the full Fourier series (8.6) of f , we like to know if the
sequence of functions {SN (f)} converges to f in the mean square sense.
Below we will derive some partial answers to this question. However, the
discussion here will only depend on basic orthogonality properties of Fourier
series. Therefore, the results will be true for a more general class of orthog-
onal series which is introduced below. In the next chapter we will return
to the more specific Fourier series of the form (8.6).
As above, let 〈·, ·〉 denote the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)dx

and ‖·‖ the corresponding norm

‖f‖ = 〈f, f〉1/2.

Throughout this section {Xk}∞
k=1 will be an orthogonal set of piecewise

continuous functions with respect to the inner product 〈·, ·〉. Furthemore,
none of the functions Xk are allowed to be identical to the zero function,
i.e. ‖Xk‖ > 0 for all k.
We recall that in Sections 8.1 and 8.2 above we discussed several examples

of sets of orthogonal functions. The theory below will only depend on the
assumption that the set {Xk} is orthogonal, and hence the theory applies
to all the examples discussed above.
If f is a piecewise continuous function on [a, b], then the general Fourier

series of f with respect to the orthogonal set {Xk} are series of the form∑∞
k=1 ckXk. We note that if the identity f =

∑∞
k=1 ckXk holds, then it

follows from the orthogonality property of the set {Xk} that

〈f,Xk〉 = ck‖Xk‖2.

Hence, we have motivated the following definition:

Definition 8.4 The infinite series
∑∞
k=1 ckXk(x), where ck = 〈f,Xk〉

‖Xk‖2 , is
called the general Fourier series of f with respect to the orthogonal set
{Xk}.
The most fundamental problem for Fourier series is the question of con-

vergence. Will the partial sums SN (f), where

SN (f) =
N∑
k=1

ckXk , ck =
〈f,Xk〉
‖Xk‖2 , (8.35)

converge to the function f?
In general the answer to this question will depend on the choice of orthog-

onal set {Xk}. The purpose of the discussion here is to give an important
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partial answer, (see Theorem 8.2 below), which will be used in the next
chapter to derive complete convergence results.
We first establish the following formula for the norm of a finite linear

combination of the basis functions {Xk}.

Lemma 8.4 Let PN be any function of the form PN =
∑N
k=1 αkXk, αk ∈

R. Then

||PN ||2 =
N∑
k=1

α2
k ||Xk||2. (8.36)

Proof: From the orthogonality property of the set {Xk} we get

||PN ||2 =
∫ b

a

P 2
N (x) dx =

N∑
k=1

N∑
m=1

αkαm 〈Xk, Xm〉 =
N∑
k=1

α2
k ||Xk||2. �

Next we derive an orthogonality property for the difference between f
and its finite general Fourier series SN (f).

Lemma 8.5 If f is piecewise continuous on [a, b] and SN (f) is given by
(8.35), then

〈f − SN (f), PN 〉 = 0

for any function PN of the form PN =
∑N
k=1 αkXk, αk ∈ R.

Proof: If 1 ≤ k ≤ N , then

〈SN (f), Xk〉 =
N∑
m=1

cm 〈Xm, Xk〉 = ck||Xk||2 = 〈f,Xk〉.

Therefore,
〈f − SN (f), Xk〉 = 0 for k = 1, 2, . . . , N.

By linearity of the inner product we therefore obtain

〈f − SN (f), PN 〉 =
∫ b

a

(
f − SN (f)

)( N∑
k=1

αkXk
)
dx

=
N∑
k=1

αk〈f − SN (f), Xk〉 = 0. �

The two simple results above have immediate consequences. First, by
letting PN = SN (f) in Lemma 8.5, we get

〈f, SN (f)〉 = ||SN (f)||2.
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Hence, by using (8.36) we derive the identity

||SN (f)||2 = 〈f, SN (f)〉 =
N∑
k=1

c2k ||Xk||2, (8.37)

where the coefficients ck are given by (8.35).
Note that any piecewise continuous function f can be written as the sum

of the finite Fourier series SN (f) and the error f − SN (f), i.e.

f = SN (f) +
(
f − SN (f)

)
.

Furthermore, it is a direct consequence of Lemma 8.5 that this decomposi-
tion is orthogonal, i.e.

〈f − SN (f), SN (f)〉 = 0.

This orthogonality property is illustrated in Fig. 8.9. As a consequence of
this property, the decomposition will satisfy a “Pythagoras theorem” of the
form

||f ||2 = ||SN (f)||2 + ||f − SN (f)||2. (8.38)

This identity follows since

||f − SN (f)||2 = 〈f − SN (f), f − SN (f)〉 = 〈f − SN (f), f〉 − 〈f − SN (f), SN (f)〉
= 〈f − SN (f), f〉 = ||f ||2 − ||SN (f)||2,

where the final equality follows from (8.37). Hence, (8.38) is established. By
using (8.37) to express ||SN (f)||2 with respect to the Fourier coefficients,
this final identity can be rewritten in the form

||f − SN (f)||2 = ||f ||2 −
N∑
k=1

c2k ||Xk||2. (8.39)

This formulation of the Pythagoras identity is very useful.

Since ‖f − SN (f)‖2 ≥ 0 it follows directly from (8.39) that

N∑
k=1

c2k‖Xk‖2 ≤‖f‖2

for all N . Hence, since the partial sums only contain positive terms, the
series

∑∞
k=1 c2k‖Xk‖2 converges and satisfies

∞∑
k=1

c2k‖Xk‖2 ≤‖f‖2
. (8.40)
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f − SN (f)
f

SN (f)

FIGURE 8.9. An orthogonal decomposition of f .

This inequality holds for any orthonormal set {Xk} and any piecewise
continuous7 function f . The inequality (8.40) is usually referred to as
Bessel’s inequality. If this inequality becomes an identity, i.e. if

∞∑
k=1

c2k‖Xk‖2 = ‖f‖2
, (8.41)

then this identity is called Parseval’s identity. From the identity (cf. (8.39))

‖f − SN (f)‖2 = ‖f‖2 −
N∑
k=1

c2k‖Xk‖2,

we see that Parseval’s identity will hold, if SN (f) converges to f in the mean
square sense. Alternatively, if Parseval’s identity holds, then this implies
the mean square convergence of SN (f) to f . We summarize this important
result:

Theorem 8.2 Let f be a piecewise continuous function on [a, b]. A gener-
alized Fourier series of f with respect to an orthogonal set {Xk} converges
to f in the mean square sense if and only if the corresponding Parseval’s
identity (8.41) holds.

A set of orthogonal functions {Xk}∞
k=1, defined on [a, b], is called complete

if Parseval’s identity holds for all piecewise continuous functions on [a, b].
We will show below (see Corollary 9.1) that the orthogonal set

{1, cos(πx), sin(πx), cos(2πx), sin(2πx), . . . },

7In fact, it holds as long as
∫ b

a f
2(x)dx is finite.
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corresponding to the full Fourier series, is complete with respect to the
interval [−1, 1]. Similarly, the sets {sin(kπx)}∞

k=1 and {cos(kπx)}∞
k=0 are

complete on [0, 1]. However, these sets of functions are not complete on
[−1, 1] (see Exercise 8.19).
Example 8.9 Assume that f is a piecewise continuous function on [−1, 1]
and let

a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx))

be the full Fourier series of f . What do we obtain from Bessel’s inequality
in this case?
In order to see this, we define

X0(x)≡ 1

and

X2k(x) = cos (kπx) , X2k−1(x) = sin (kπx) for k≥1.
Hence ‖X0‖2 = 2, while

‖Xk‖2 =
∫ 1

−1
X2
k(x)dx = 1 for k ≥ 1.

Furthermore, by letting c0 = a0
2 and

c2k = ak, c2k−1 = bk for k ≥ 1,

the full Fourier series is rewritten as
∑∞
k=0 ckXk. Hence, Bessel’s inequality

gives

2c20 +
∞∑
k=1

c2k ≤‖f‖2

or

a2
0

2
+

∞∑
k=1

(
a2
k + b2k

)≤∫ 1

−1
f2(x)dx. (8.42)

�

Example 8.10 Let f be piecewise continuous on [0, 1] with Fourier sine
series

∞∑
k=1

ck sin (kπx).
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Since the sine series is the full Fourier series of the odd extension of f , we
obtain from the previous example that

∞∑
k=1

c2k ≤ 2
∫ 1

0
f2(x)dx. (8.43)

This is the proper form of Bessel’s inequality in this case. �

Example 8.11 Recall from Example 8.1 that

x ∼ 2
π

∞∑
k=1

(−1)k+1

k
sin (kπx).

Since
∫ 1

−1 x2dx = 2
∫ 1
0 x2dx = 2/3, we obtain from (8.42) (or (8.43)) that

4
π2

∞∑
k=1

1
k2 ≤ 2

3

or
∞∑
k=1

1
k2 ≤ π2

6
.

The results of the next chapter will in fact imply that this inequality is an
identity. �

8.5 A Poincaré Inequality

We will end this chapter by deriving a simple version of what is usually
referred to as a Poincaré inequality. The main tool for obtaining this in-
equality is the Cauchy-Schwarz inequality (8.33). As an application of the
Poincaré inequality, we will improve the energy estimates for the heat equa-
tion derived in Chapter 3.7.
Let f be a function defined on [a, b] such that f is differentiable and

f ′ is piecewise continuous. Furthermore, assume that f(a) = 0. Note that
this last condition implies that if f ′ ≡ 0, then f ≡ 0. More generally, since
|f(x)| can be large only if |f ′| is large, it is reasonable to believe that an
inequality of the form

∫ b

a

f2(x)dx≤λ

∫ b

a

(f ′(x))2 dx

holds, for a suitable positive constant λ. In fact, we have the following
result:
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Lemma 8.6 Let f : [a, b] → R be such that f(a) = 0, f ′ exists and is
piecewise continuous. Then

‖f‖ ≤ (b− a)√
2

‖f ′‖.

Proof: Since f(a) = 0 we have from the fundamental theorem of calculus
that

f(x) = 2
∫ x

a

f ′(y)dy.

Hence, we obtain from the Cauchy-Schwarz inequality (8.33) that

|f(x)|2 ≤
∫ x

a

1dy
∫ x

a

|f ′(y)|2dy = (x− a)‖f ′‖2

or

‖f‖2 ≤
∫ x

a

(x− a)dx‖f‖2 ≤ (b− a)2

2
‖f ′‖2.

The desired result is obtained by taking sqare roots. �

Example 8.12 As an illustration of the use of Poincaré’s inequality we will
reconsider the study of energy arguments for the heat equation (cf. Chapter
3.7). Recall that we studied the solution u(x, t) of the heat equation on the
interval [0, 1], with Dirichlet boundary conditions. The idea was to study
the dynamics of the scalar variable

E(t) =
∫ 1

0
u2(x, t)dx.

Above we found that E(t) is nonincreasing with time. Here we shall show
that

E(t)≤ e−4tE(0) for t ≥ 0. (8.44)

In particular, this will imply that limt→∞ E(t) = 0.
In Chapter 3.7 (see page 104) we showed that

E′(t) = −2
∫ 1

0
u2
x(x, t)dx ≤ 0.

However, from the Poincaré inequality given in Lemma 8.6, we have

∫ 1

0
u2(x, t)dx≤ 1

2

∫ 1

0
u2
x(x, t)dx,
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and hence we obtain

E′(t) = −2
∫ 1

0
u2
x(x, t)dx≤− 4E(t). (8.45)

If instead of this inequality we have the equality E′(t) = −4E(t), then we
immediately obtain

E(t) = e−4tE(0).

Hence, it seems reasonable that the inequality (8.45) implies (8.44). In order
to see this, let

z(t) = E(t)e4t.

Then

z′(t) = e4t (E′(t) + 4E(t)) ≤ 0,

where the last inequality follows from (8.45). Hence, z(t) is nonincreasing,
i.e.

z(t)≤ z(0) for t≥ 0.

From the definition of z(t) we therefore obtain (8.44). Since the definition
of E(t) implies that E(t) is nonnegative, we therefore have

0≤E(t)≤ e−4tE(0) for t≥0,
which implies that limt→∞ E(t) = 0. �

An even sharper upper bound for E(t) will be derived in Chapter 10
from an improved Poincaré inequality (see Example 10.2).
A main part of the discussion above was how the estimate (8.44) was

obtained from the differential inequality (8.45). Such a result is usually re-
ferred to as Gronwall’s inequality. For later references we state the following
result.

Lemma 8.7 Let y : [0, b]→R be continuous, differentiable, and satisfy

y′(t)≤αy(t), t∈ (0, b),

for a suitable α ∈ R. Then

y(t)≤ eαty(0) for t∈ [0, b].

Proof:We repeat the argument used in Example 8.12. Let z(t) = e−αty(t).
Then

z′(t) = e−αt (y′(t)− αy(t)) ≤ 0.

Hence, z(t)≤ z(0) or

y(t)≤ eαty(0) for t∈ [0, b].

�
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8.6 Exercises

Exercise 8.1 Sketch the periodic extension of the function

(a) f(x) = |x| defined on [−1, 1]
(b) g(x) = sin(x) defined on [0, π]

(c) h(x) = x2 defined on [0, 1].

Exercise 8.2 (a) Show that the product of two functions which are ei-
ther both even or both odd is even.

(b) Show that the product of an even and an odd function is odd.

(c) Show that if f is an odd function defined on [−1, 1], then
∫ 1

−1
f(x)dx = 0.

Exercise 8.3 Find the full Fourier series of the functions

(a) f(x) = x2

(b) f(x) = ex

defined on [−1, 1].
Exercise 8.4 Find the full Fourier series of the functions

(a) f(x) = sin2(x)

(b) f(x) = cos2(x)

defined on [−π, π].

Exercise 8.5 Let f(x) be piecewise continuous on [−1, 1] and assume that

f(x) ∼
∞∑
k=1

(αk cos (kπx) + βk sin (kπx)) .

Let g(x) satisfy g′(x) = f(x); i.e. g is an integral of f . Show that the Fourier
series of g can be obtained from term-by-term integration, i.e.

g(x) ∼ a0

2
+

∞∑
k=1

(
αk
kπ

sin (kπx)− βk
kπ

cos (kπx)
)

,

where a0 =
∫ 1

−1 g(x)dx.
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Exercise 8.6 Let f(x) = 1
2 − x for x ∈ [0, 1].

(a) Find the Fourier sine series of f .

(b) Find the Fourier cosine series of f .

(c) Use the results above and the result of Exercise 8.5 to find the Fourier
sine series of

g(x) =
1
2
(1− x)x.

Exercise 8.7 Consider the complex form of the Fourier series:

f(x) ∼
∞∑

k=−∞
cke

ikπx.

Derive the formula

ck =
1
2

∫ 1

−1
f(x)e−ikπxdx

from (8.12).

Exercise 8.8 Derive the formulas (8.14) from the corresponding formulas
(8.5).

Exercise 8.9 The purpose of this exercise is to derive Newton’s method
for solving nonlinear algebraic equations, and to apply the method to the
equation (8.24), i.e.

tan (β) =
2β

β2 − 1
.

But we begin by considering a general equation f = f(β), and we want to
find β∗ such that

f(β∗) = 0. (1)

Newton’s method is an iterative procedure for computing numerical ap-
proximations of solutions of (1). The first step in the procedure is to guess
an initial value β0. Now we can use a Taylor series to obtain that

f(β) = f(β0) + (β − β0)f ′(β0) +O
(
(β − β0)2

)
.

(a) Explain why it is reasonable to choose

β1 = β0 − f(β0)
f ′(β0)

.
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Newton’s method is defined by the following algorithm:

1. Choose ε, β0 and put n = 0.
2. While |f(βn)| > ε do

βn+1 = βn − f(βn)/f ′(βn)
n = n+ 1.

Here ε > 0 is a given tolerence.

(b) Implement the scheme above and apply it to solve the equation

f(β) = eβ − e = 0

using β0 = 3/4 and ε = 10−6.

(c) Apply the same procedure for

f(β) = x2 − 4

with β0 = 3 and ε = 10−6.

(d) Explain the geometric interpretation of Newton’s method given in
Fig. 8.10, and use this interpretation to discuss the speed of conver-
gence observed in the two examples above.

�

�

β∗ βn+1 βn

f(β)

FIGURE 8.10. A geometric view of Newton’s method.

(e) Use the program developed above to compute the first 100 eigenvalues
of the operator considered in Example 8.5. In other words, compute
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the first 100 roots of the equation

f(β) = tan(β)− 2β
β2 − 1

.

Here the first root β∗
0 is in the interval [1, π/2], β∗

1 is in [π/2, π], and
in general

β∗
k ∈

(
kπ,

(
k +

1
2
π

))
for k ≥ 1.

Discuss the following choices of initial values:

(i) β0
0 = 1.3, β0

k =
(
k +

1
4

)
π, k ≥ 1

(ii) β0
0 = 1.3, β0

1 = 5π/4, β0
k = β∗

k−1 + π, k ≥ 2.

Again you can choose ε = 10−6.

Exercise 8.10 Consider the eigenvalue problem

−X ′′(x) = λX(x), 0 < x < 1,
X ′(0) = 2X(0), X ′(1) = X(1).

(8.46)

(a) Show that if λ is an eigenvalue with eigenfunction X, then

λ

∫ 1

0
X2(x)dx =

∫ 1

0
(X ′(x))2 dx+ 2(X(0))2 − (X(1))2.

Can we conclude from this that all eigenvalues are positive?

(b) Show that λ = −µ2 < 0 is a negative eigenvalue of (8.46) if and only
if µ > 0 satisfies

tanh(µ) =
µ

2− µ2 .

(c) Show that the problem (8.46) has exactly one negative eigenvalue.

(d) Compute this negative eigenvalue by Newton’s method.
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Exercise 8.11 Consider the initial and boundary value problem

ut = uxx, x ∈ (0, 1), t > 0,
ux(0, t) = 2u(0, t), ux(1, t) = u(1, t), t > 0,
u(x, 0) = f(x)

Explain why the solution of this problem does not satisfy an energy
estimate of the form∫ 1

0
u2(x, t) dx ≤

∫ 1

0
f2(x) dx for t > 0.

(Hint: Use the results of Exercise 8.10.)

Exercise 8.12 Consider the eigenvalue problem

X ′(x) = λX(x), 0 < x < 1,
X(0) = X(1).

(a) Show that λ = 0 is the only real eigenvalue of this problem.

(b) Derive complex eigenvalues of this problem by considering eigenfunc-
tions of the form

X(x) = eiβx = cos (βx) + i sin (βx),

where β ∈ R.

Exercise 8.13 Consider the heat equation with Robin boundary condi-
tions, i.e.

ut = uxx, x ∈ (0, 1), t > 0,
ux(0, t) = u(0, t), ux(1, t) = −u(1, t), t > 0, (8.47)
u(x, 0) = f(x).

(a) For each t ≥ 0 let

E(t) =
∫ 1

0
u2(x, t) dx.

Use energy arguments to show that

E(t) ≤ E(0) for t ≥ 0.

Here you are allowed to assume that

E′(t) =
∫ 1

0

∂

∂t

(
u2(x, t)

)
dx; cf. Proposition 3.1.
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(b) Discuss how you can use the eigenvalues and eigenfunctions of the
problem (8.19)–(8.20) to find a representation of the solution u.

Exercise 8.14 Consider the initial and boundary value problem (8.25),
where we assume that p ∈ C

(
[0, 1]

)
and q ∈ C

(
[0, 1]

)
satisfy the conditions

(8.27) and (8.28).

(a) Use energy arguments to show that∫ 1

0
u2(x, t) dx ≤

∫ 1

0
f2(x) dx for t ≥ 0.

(b) Discuss how you can use the eigenvalues and eigenfunctions of the
problem (8.29) to find a formal representation of the solution u.

(Hint: Use the ansatz u(x, t) =
∑
k Tk(t)Xk(x), where {Xk} are the

eigenfunctions of (8.29).)

Exercise 8.15 Consider the second-order differential equation(
(1 + x)X ′(x)

)′ = β2X(x)

for x > 0, where β > 0 is a parameter.

(a) Show that the functionsX1(x) = 1√
1+x cos (β log (1 + x)) andX2(x) =

1√
1+x sin (β log (1 + x)) are both solutions of this equation.

(b) Explain why any solution of the equation is of the form

c1X(x) + c2Y (x),

where c1, c2 ∈ R.

(c) Show that all the eigenfunctions of problem (8.30) are given by (8.31).

Exercise 8.16 The purpose of this exercise is to prove Hölder’s inequality
(8.34). Let p, q > 1 be real numbers such that

1
p
+

1
q
= 1

and consider the function

φ(x) =
λp

p
+

xq

q
− λx

for x≥ 0, where λ≥ 0 is a parameter.
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(a) Show that φ′(x) = 0 if and only if x = λ
1

q−1 .

(b) Show that the inequality

λµ≤ λp

p
+

µq

q
(8.48)

holds for any λ, µ≥0.
(c) Apply the inequality (8.48), with

λ = |f(x)|
(∫ b

a

|f(x)|pdx
)−1/p

and µ = |g(x)|
(∫ b

a

|g(x)|qdx
)−1/q

,

to establish Hölder’s inequality.

Exercise 8.17 Consider the sequence of functions {fN}∞
N=1, where fN (x) =

N3/2xe−(Nx)2 for x ∈ [−1, 1].
(a) Show that fN (x) → 0 for all x ∈ [−1, 1].
(b) Show that fN does not converge to zero in the mean square sense.

Exercise 8.18 Use Bessel’s inequality and the full Fourier series for the
function sign(x) to derive the inequality

∞∑
k=1

(
1

2k − 1

)2

≤ π2

8
.

Exercise 8.19

(a) Show that

∫ 1

−1
sin(kπx) dx = 0 for k = 1, 2, . . .

and explain why this implies that the set {sin(kπx)}∞
k=1 is not com-

plete on [−1, 1].
(b) Show that the set {cos(kπx)}∞

k=0 is not complete on [−1, 1].
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Exercise 8.20 The purpose of this exercise is to derive a result which is
usually referred to as “the best approximation property” for general Fourier
series. Let {Xk}∞

k=1 be an orthogonal set of piecewise continuous functions
defined on [a, b]. Furthermore, let f be an arbitrary piecewise continuous
function with general Fourier series with respect to {Xk} given by

f ∼
∞∑
k=1

ckXk.

For N ≥ 1, let SN (f) be the partial sums

SN (f) =
N∑
k=1

ckXk

and PN an arbitrary function of the form PN =
∑N
k=1 αkXk. Show that

||f − SN (f)|| ≤ ||f − PN ||,

where || · || is the mean square distance function with respect to the interval
[a, b]. Give a geometric interpretation of this result.

Exercise 8.21 The purpose of this exercise is to derive a generalization
of Gronwall’s inequality given in Lemma 8.7.
Let y(t) be a continuous and differentiable function defined for t ≥ 0

which satisfies
y′(t) ≤ ay(t) + b for t > 0,

where a, b ∈ R, a �= 0. Show that

y(t) ≤ eat
(
y(0) +

b

a

) − b

a
for t ≥ 0.

Exercise 8.22 Consider a two-point boundary value problem of the form

Lu = f for 0 < x < 1,
u(0) = u(1) = 0,

(8.49)

where f ∈ C
(
[0, 1]

)
is given. Here the differential operator L is the Sturm-

Liouville operator (8.26), and we assume that the conditions (8.27) and
(8.28) are satisfied.

(a) Explain why Lemma 8.2 implies that the problem (8.49) has at most
one solution.
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(b) Consider the initial value problem

Lw = 0, w(0) = 0, w′(0) = 1.

Show that the solution of this problem is strictly positive in [0, 1].

(c) Consider initial value problems of the form

Lu = f, u(0) = 0, u′(0) = z,

where z ∈ R. Show that there exists a unique choice of z such that u
solves (8.49).

Exercise 8.23 Throughout this exercise we assume that the functions
p(x) and q(x) satisfy the conditions (8.27) and (8.28). The Sturm-Liouville
operator L, given by (8.26), can be approximated by the finite difference
operator

(Lhv)(x) =
p(x+ h

2 )
(
v(x+h)−v(x)

h

)
− p(x− h

2 )
(
v(x)−v(x−h)

h

)
h

+ q(x)v(x),

where h > 0. Consider the finite difference approximation of the two-point
boundary value problem (8.49) given by

(Lhv)(xj) = f(xj) for j = 1, 2, . . . , n,
v(0) = v(1) = 0,

(8.50)

where n ≥ 1 is an integer, h = 1
(n+1) and where {xj = jh}n+1

j=0 are the grid
points.

(a) Let v, b ∈ R
n be the vectors given by

v =
(
v(x1), v(x2), . . . , v(xn)

)T
and b = h2

(
f(x1), f(x2), . . . f(xn)

)T
.

Identify an n×nmatrix A such that the problem (8.50) can be written
in the form Av = b. Is the matrix A symmetric and tridiagonal?

(b) Show that the matrix A is positive definite.

(c) Explain why all eigenvalues of A are real and positive.

(d) Explain why the system (8.50) always has a unique solution.

(e) Can we use Algorithm 2.1 on page 53 to compute the solution of the
systen (8.50)? Justify your answer.
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Convergence of Fourier Series

Let f be a piecewise continuous function defined on [−1, 1] with a full
Fourier series given by

a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) .

The main purpose of this chapter is to discuss the convergence question for
Fourier series, i.e. “Do the partial sums

SN (f) =
a0

2
+

N∑
k=1

(ak cos (kπx) + bk sin (kπx))

converge to the function f ?” If we here refer to convergence in the mean
square sense, then a partial answer to this question is already established
by Theorem 8.2. At least we have seen that we have convergence if and only
if the corresponding Parseval’s identity holds. However, we like to establish
convergence under assumptions which are easier to check. Also, frequently
we are interested in notions of convergence other than convergence in the
mean.

9.1 Different Notions of Convergence

In Chapter 8 we defined mean square convergence of a sequence of piece-
wise continuous functions. Before we continue the study of convergence
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of Fourier series, a few different concepts of convergence for sequences of
functions will be discussed.
Let {fN}∞

N=1 be a sequence of piecewise continuous functions defined on
[a, b]. Recall that the sequence converges to a piecewise continuous function
f in the mean square sense if

lim
N→∞

‖fN − f‖ = 0,

where ‖ · ‖ is the mean square norm given by

‖f‖ =
(∫ b

a

f2(x)dx

)1/2

.

Another norm, or distance function, which we encountered several times
before is the uniform norm, ‖ · ‖∞, given by

‖f‖∞ = sup
x∈[a,b]

|f(x)|.

This distance function leads to the notion of uniform convergence.

Definition 9.1 The sequence {fN} converges to f uniformly in [a, b] if

lim
N→∞

‖fN − f‖∞ = 0.

In addition to the two notions of convergence described above, we also
mention pointwise convergence. A sequence {fN} defined on an interval I
(closed or open) is said to converge pointwise to f on I if

lim
N→∞

fN (x) = f(x)

for all x ∈ I.

Example 9.1 In Example 8.8 we studied the sequence {fN} given by

fN (x) =
N

1 +N2x2 for x ∈ [0, 1].

We found that {fN} converges to the zero function pointwise in (0, 1], but
not in the mean square sense on [0, 1]. Furthermore, fN (0) = N. Therefore,

‖fN‖∞ ≥ N,

and we do not have uniform convergence to the zero function on [0, 1]. �

Example 9.2 Let

fN (x) =
{ −1 + (1 + x)N for x ∈ [−1, 0],

1− (1− x)N for x ∈ [0, 1].



9.1 Different Notions of Convergence 287

�
x

�y

1−1

f5

FIGURE 9.1. f5(x) and f(x).

Hence, {fN} is a sequence of continuous functions defined on [−1, 1],
with values in [−1, 1]. From the fact that

lim
N→∞

yN = 0

for |y| < 1, it follows that {fN} will converge pointwise to the function

f(x) =




−1 for x ∈ [−1, 0),
0 for x = 0,
1 for x ∈ (0, 1].

(see Fig. 9.1).
Furthermore, a straightforward calculation shows that

‖fN − f‖2 = 2
∫ 1

0
(1− x)2Ndx = 2

∫ 1

0
z2Ndz =

2
2N + 1

,

and hence mean square convergence follows. However, for each N we have

‖fN − f‖∞ = sup
x∈[−1,1]

|fN (x)− f(x)| = 1.

Therefore, we do not have uniform convergence.
We conclude that {fN} converges to f pointwise and in the mean square

sense, but not uniformly on [−1, 1]. �

The following result shows that uniform convergence will always imply
pointwise and mean square convergence.
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Proposition 9.1 Assume that {fN}∞
N=1 is a sequence of piecewise contin-

uous functions which converges uniformly to a piecewise continuous func-
tion f on [a, b]. Then the sequence also converges pointwise and in the mean
square sense on [a, b].

Proof: Recall that uniform convergence means

lim
N→∞

‖fN − f‖∞ = 0.

However, for each x ∈ [a, b] the inequality

|fN (x)− f(x)| ≤ ‖f − fN‖∞

holds. Therefore,

lim
N→∞

fN (x) = f(x)

for all x ∈ [a, b], i.e. {fN} converges to f pointwise. Similarly, mean square
convergence follows since

‖fN − f‖2 =
∫ b

a

|fN (x)− f(x)|2 dx ≤ (b− a) ‖fN − f‖2
∞.

�

The next result shows that if a sequence {fN} converges to f uniformly,
and all the functions fN are continuous, then the limit function f also
has to be continuous. We note that such a result will not contradict the
results of Example 9.2. There the sequence {fN} converges pointwise (and
in mean) to a discontinuous function f . However, we observed that the
convergence is not uniform.

Proposition 9.2 Assume that {fN}∞
N=1 is a sequence of continuous func-

tions on [a, b] which converges uniformly to f . Then f is continuous on
[a, b].

Proof: Let x ∈ [a, b] be arbitrary. In order to show that f is continuous
at x, we have to show that for each ε > 0 there is a δ > 0 such that

|x− y| < δ implies |f(x)− f(y)| < ε.

Let ε > 0 be given. Since {fN} converges uniformly to f , there exists a
function fN0 such that

‖fN0 − f‖∞ < ε/3.

Furthermore, since fN0 is continuous there is a δ > 0 such that

|x− y| < δ implies |fN0(x)− fN0(y)| < ε/3.
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Now, for |x− y| < δ we have

|f(x)− f(y)| ≤ |f(x)− fN0(x)|+ |fN0(x)− fN0(y)|+ |fN0(y)− f(y)|
≤ 2‖f − fN0‖∞ + |fN0(x)− fN0(y)|
< ε. �

The result above states that a uniform limit of continuous functions
is continuous. The next result, which will be useful in the application of
Fourier series to differential equations, states that a proper uniform limit
of continuous differentiable functions is continuously differentiable.

Proposition 9.3 Assume that {fN}∞
N=1 is a sequence of continuously dif-

ferentiable functions on [a, b] which converges uniformly to a continuous
function f . Suppose furthermore that {f ′

N} converges uniformly to a con-
tinuous function g. Then f is continuously differentiable and f ′ = g.

Proof: From the fundamental theorem of integral calculus we have

fN (x) = fN (a) +
∫ x

a

f ′
N (y)dy (9.1)

for each x ∈ [a, b]. Our purpose is to take the limit of this identity. From
the uniform convergence of {fN} it follows that

lim
N→∞

fN (x) = f(x) and lim
N→∞

fN (a) = f(a).

Furthermore, from the uniform convergence of {f ′
N} it follows that

|
∫ x

a

f ′
N (y)dy −

∫ x

a

g(y)dy| ≤
∫ x

a

|f ′
N (y)− g(y)|dy

≤ (b− a)‖f ′
N − g‖∞

−→ 0

as N tends to infinity. Therefore

lim
N→∞

∫ x

a

f ′
N (y)dy =

∫ x

a

g(y)dy.

By letting N tend to infinity in (9.1), we now obtain

f(x) = f(a) +
∫ x

a

g(y)dy,

and hence f ′ = g. �
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9.2 Pointwise Convergence

Let f be a piecewise continuous function on [−1, 1] with full Fourier series

a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) .

Hence, the coefficients ak and bk are given by

ak =
∫ 1

−1
f(y) cos (kπy)dy,

bk =
∫ 1

−1
f(y) sin (kπy)dy.

(9.2)

We will start by investigating pointwise convergence of the Fourier series.
More precisely, if

SN (f) =
a0

2
+

N∑
k=1

(ak cos (kπx) + bk sin (kπx)) (9.3)

are the partial sums, then we will give conditions which guarantee that
{SN (f)} converges pointwise to f on [−1, 1].
As a preliminary step in this discussion we will derive an alternative

representation of the functions SN (f). By combining (9.2) and (9.3), we
obtain

SN (f)(x) =
∫ 1

−1

[
1
2
+

N∑
k=1

(cos (kπx) cos (kπy) + sin (kπx) sin (kπy))

]
f(y)dy.

Furthermore, by using the trigonometric identity

cos(u) cos(v) + sin(u) sin(v) = cos(u− v),

this expression simplifies to

SN (f)(x) =
1
2

∫ 1

−1

[
1 + 2

N∑
k=1

cos(kπ(x− y))

]
f(y)dy.

Hence, if we let

KN (z) = 1 + 2
N∑
k=1

cos(kπz), (9.4)

we obtain the representation

SN (f)(x) =
1
2

∫ 1

−1
KN (x− y)f(y)dy (9.5)
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for the partial sums SN (f). The function KN (z) is called the Dirichlet
kernel. The next step in our convergence analysis is to study the properties
of this function.
Observe that the periodicity of the trigonometric functions implies that

∫ 1

−1
cos (kπz)dz = 0 for k≥ 1.

Hence, we obtain from (9.4) that

1
2

∫ 1

−1
KN (z)dz = 1. (9.6)

In addition to this the series for KN (z) can be summed.

Lemma 9.1 The function KN (z) has the alternative representation

KN (z) =
sin

((
N + 1

2

)
πz

)
sin

(
πz
2

) . (9.7)

Proof: We use the complex representation (8.11) of sine and cosine. Fur-
thermore, let θ = πz. If i =

√−1, we obtain from (9.4) that

KN (z) = 1 + 2
N∑
k=1

cos (kθ) = 1 +
N∑
k=1

(
eikθ + e−ikθ)

=
N∑

k=−N
eikθ =

N∑
k=−N

(
eiθ

)k
or

KN (z) = e−iθN
2N∑
k=0

(
eiθ

)k
.

However, the sum of this finite geometric series is given by

KN (z) = e−iθN ei(2N+1)θ − 1
eiθ − 1

=
ei(N+ 1

2 )θ − e−i(N+ 1
2 )θ

e
iθ
2 − e− iθ

2

=
sin

((
N + 1

2

)
πz

)
sin

(
πz
2

) .

�

In addition to the properties (9.6) and (9.7), it is also easy to see that
KN is a 2-periodic function. It will also be convenient to assume that the
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function f , which we have assumed to be given on [−1, 1], is extended to a
2-periodic function on R. Hence, substituting z = y − x, we have

SN (f)(x) =
1
2

∫ 1

−1
KN (x− y)f(y)dy

=
1
2

∫ 1−x

−1−x
KN (−z)f(x+ z)dz.

However, since KN is an even function and since KN ·f is 2-periodic, this
can be written as

SN (f)(x) =
1
2

∫ 1

−1
KN (z)f(x+ z)dz. (9.8)

Furthermore, by (9.6) we can rewrite f(x) as

f(x) = f(x)·1 = 1
2

∫ 1

−1
KN (z)f(x)dz.

Therefore, the error SN (f)− f admits the representation

SN (f)(x)− f(x) =
1
2

∫ 1

−1
KN (z) (f(x+ z)− f(x)) dz. (9.9)

From this error representation it is straightforward to establish pointwise
convergence of the Fourier series under proper assumptions on the function
f . In order to avoid unnecessary technical difficulties, we will first assume a
rather strong condition on f , i.e. we will assume that the periodic extension
of f is continuous and differentiable. Later the conditions on f will be
relaxed.

Theorem 9.1 Let f be a function defined on [−1, 1] such that its 2-periodic
extension is continuous and differentiable for all x ∈ R. Then {SN (f)}
converges pointwise to f on [−1, 1], and hence to the periodic extension of
f on R.

Proof: Although it may seem unlikely, this theorem will be derived from
Bessel’s inequality (8.40).
Let x ∈ [−1, 1] be fixed. We have to show that

lim
N→∞

SN (f)(x) = f(x).

From (9.7) and (9.9) we obtain that the error can be written in the form

SN (f)(x)− f(x) =
1
2

∫ 1

−1
g(z) sin

((
N +

1
2

)
πz

)
dz, (9.10)
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where

g(z) =
f(x+ z)− f(x)

sin
(
πz
2

) .

Of course, in addition to z, g also depends on x. However, since x is fixed
throughout the proof, this dependence is suppressed. Note that the function
g is obviously continuous at all points in [−1, 1], with the exception of the
origin, where it is not defined. However, since

lim
z→0

g(z) = lim
z→0

2
π

f(x+ z)− f(x)
z

πz/2
sin (πz/2)

=
2
π
f ′(x),

it follows that g can be defined to be continuous in all of [−1, 1]. Hence, g
is bounded and, in particular,

‖g‖2 = 〈g, g〉 =
∫ 1

−1
g2(z)dz < ∞. (9.11)

Next let us consider the functions

Zk(z) = sin
((

k +
1
2

)
πz

)
for k = 1, 2, . . .

Recall from Example 8.4 that these functions are orthogonal on [0, 1].
Hence, since these functions are odd they will also be orthogonal on [−1, 0]
and, as a consequence of this, they are orthogonal on [−1, 1]. Furthermore,
a straightforward calculation using the formula

sin2(α) =
1
2
(1− cos (2α))

shows that ‖Zk‖2 = 1. You are asked to verify this in Exercise 9.9. Hence,
from Bessel’s inequality (8.40) with respect to the function g and the or-
thogonal set {Zk}, we derive from (9.11)

∞∑
k=1

〈g, Zk〉2 ≤‖g‖2 < ∞.

In particular, this means that

〈g, ZN 〉 =
∫ 1

−1
g(z) sin

((
N +

1
2

)
πz

)
dz−→0

as N tends to infinity, and by (9.10) this implies that

lim
N→∞

SN (f)(x) = f(x). �
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We would like to extend the argument above such that it also applies
when the 2-periodic extension of f is only piecewise continuous. For such
functions let1

f(x−) = lim
h↘0

f(x− h) and f(x+) = lim
h↘0

f(x+ h).

Hence, f is continuous at x if f(x−) = f(x+).

Definition 9.2 A piecewise continuous function f is said to be “one-sided
differentiable” at x if the two limits

lim
h↘0

f(x−)− f(x− h)
h

and lim
h↘0

f(x+ h)− f(x+)
h

both exist.

Example 9.3 The function f(x) = |x| is one-sided differentiable at x = 0
since

lim
h↘0

|0| − | − h|
h

= −1 and lim
h↘0

|h| − |0|
h

= 1.

�

Example 9.4 The function f(x) = sign(x) is one-sided differentiable at
x = 0 since

lim
h↘0

sign(0−)− sign(−h)
h

= 0 and lim
h↘0

sign(h)− sign(0+)
h

= 0.

�

We now have the following stronger pointwise convergence theorem:

Theorem 9.2 Let f be a piecewise continuous function on [−1, 1] such
that its 2-periodic extension is one-sided differentiable for all x ∈ R. Then
the sequence {SN (f)(x)} converges pointwise to 1

2 [f(x−) + f(x+)] for all
x ∈ R.

Proof: We will do a proper modification of the proof of Theorem 9.1
above. First we write (9.8) as

SN (f) =
1
2

[∫ 0

−1
KN (z)f(x+ z)dz +

∫ 1

0
KN (z)f(x+ z)dz

]
. (9.12)

Furthermore, since KN (z) is an even function, it follows from (9.6) that

1
2

∫ 0

−1
KN (z)dz =

1
2

∫ 1

0
KN (z)dz =

1
2
.

1Here the symbol limh↘0 means limh→0, h>0 .
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Let f(x) be the average value

f(x) =
1
2
[f(x−) + f(x+)].

We obtain

f(x) =
1
2

[∫ 0

−1
KN (z)f(x−)dz +

∫ 1

0
KN (z)f(x+)dz

]
.

Together with (9.12) this means that we can rewrite (9.10) in the form

SN (f)(x)− f(x) =
1
2

[∫ 0

−1
g−(z)ZN (z)dz +

∫ 1

0
g+(z)ZN (z)dz

]
, (9.13)

where

g±(z) =
f(x+ z)− f(x±)

sin
(
πz
2

) .

However, since f is one-sided differentiable at x, the two functions g−

and g+ are continuous on the two intervals [−1, 0] and [0, 1], respectively.
Therefore, we have∫ 0

−1
|g−(z)|2dz,

∫ 1

0
|g+(z)|2dz < ∞.

Furthermore, we recall that the functions {Zk(x)} are orthogonal on each
of the two intervals [−1, 0] and [0, 1]. Hence, by applying Bessel’s inequal-
ity with respect to each interval, we conclude, as above, that each of the
two integrals on the right-hand side of (9.13) tends to zero as N tends to
infinity. �

Example 9.5 Recall from Example 8.3 on page 252 that

|x| ∼ 1
2
− 4

π2

∞∑
k=1

(
1

2k − 1

)2

cos ((2k − 1)πx).

Since the 2-periodic extension of |x| is continuous and one-sided differen-
tiable, the Fourier series will converge to |x| for each x ∈ [−1, 1]. Hence, by
letting x = 0 we have

0 =
1
2
− 4

π2

∞∑
k=1

(
1

2k − 1

)2

or
∞∑
k=1

(
1

2k − 1

)2

= 1 +
1
9
+

1
25

+ · · · = π2

8
.

�
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Example 9.6 The Fourier series of sign(x) is derived in Example 8.2 on
page 251. We have

sign(x) ∼ 4
π

∞∑
k=1

1
2k − 1

sin ((2k − 1)πx) .

Since sign(x) is piecewise continuous and one-sided differentiable, we obtain
for x = 1

2 that

1 =
4
π

∞∑
k=1

1
2k − 1

(−1)k−1

or

∞∑
k=1

(−1)k−1

2k − 1
= 1− 1

3
+

1
5
− 1

7
+ · · · = π

4
.

�

9.3 Uniform Convergence

In this section we shall establish necessary conditions which will guaran-
tee that the Fourier series converges uniformly to f . Recall from Propo-
sition 9.1 above that uniform convergence always implies pointwise con-
vergence. Therefore, we would expect that the conditions required on f to
guarantee uniform convergence must be at least as strong as those required
for pointwise convergence. The conditions below are slightly stronger than
those assumed in Theorem 9.2.

Theorem 9.3 Let f be a function defined on [−1, 1] such that its periodic
extension is continuous and let f ′ be piecewise continuous. Then SN (f)
converges uniformly to f on [−1, 1].
Proof: Let us first observe that since the conditions on f above are

stronger than the ones given in Theorem 9.2, we have, for any x ∈ [−1, 1],
that

f(x) = lim
N→∞

SN (f)(x) =
a0

2
+

∞∑
k=1

(ak cos (kπx) + bk sin (kπx)) ,

where the Fourier coefficients are given by

ak =
∫ 1

−1
f(y) cos (kπy)dy, bk =

∫ 1

−1
f(y) sin (kπy)dy.
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Therefore,

‖f − SN (f)‖∞ = sup
x∈[−1,1]

∣∣∣∣∣
∞∑

k=N+1

ak cos (kπx) + bk sin (kπx)

∣∣∣∣∣
≤

∞∑
k=N+1

(|ak|+ |bk|) .

The proof will be completed by showing that the right-hand side of this
inequality tends to zero as N tends to infinity. In fact, we will show that

∞∑
k=1

(|ak|+ |bk|) < ∞, (9.14)

i.e. this series converges to a finite number. This will immediatly imply the
desired convergence.
In order to establish (9.14) let

αk =
∫ 1

−1
f ′(y) cos (kπy)dy and βk =

∫ 1

−1
f ′(y) sin (kπy)dy

be the Fourier coefficients of f ′. Since f ′ is assumed to be piecewise con-
tinuous, it follows from Bessel’s inequality (8.42) that

α2
0

2
+

∞∑
k=1

(
α2
k + β2

k

) ≤ ‖f ′‖2 =
∫ 1

−1
(f ′(x))2 dx < ∞. (9.15)

Furthermore, since f(1) = f(−1), it follows from Theorem 8.1 that α0 = 0
and

αk = kπbk , βk = −kπak.

For any integer N > 0 we therefore have

N∑
k=1

(|ak|+ |bk|) = 1
π

N∑
k=1

1
k
(|αk|+ |βk|) .

By applying the Cauchy-Schwarz inequality, (cf. Project 1.2 in Chapter 1),
we obtain

N∑
k=1

1
k
|αk| ≤

(
N∑
k=1

1
k2

)1/2 (
N∑
k=1

α2
k

)1/2

≤
(
N∑
k=1

1
k2

)1/2 (
N∑
k=1

(α2
k + β2

k)

)1/2

.
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FIGURE 9.2. S2(f) (dashed) and S7(f) when f(x) = |x|.

Together with a similar inequality for
∑N
k=1

1
k |βk| we now have

N∑
k=1

(|ak|+ |bk|) ≤ 2
π

(
N∑
k=1

1
k2

)1/2 (
N∑
k=1

(α2
k + β2

k)

)1/2

≤ 2
π

π√
6
‖f ′‖

≤ ‖f ′‖,

(9.16)

where we have used (9.15) and the inequality

N∑
k=1

1
k2 ≤

∞∑
k=1

1
k2 ≤ π2

6

derived in Example 8.11. Hence, by letting N tend to infinity in (9.16), we
have established (9.14). The proof is therefore completed. �

Example 9.7 Let f(x) = |x| for x ∈ [−1, 1]. Then the periodic extension
of f is continuous and f ′ = sign(x) is piecewise continuous. Theorem 9.3
therefore implies that SN (f) converges uniformly to f on [−1, 1]. This
convergence is illustrated in Fig. 9.2, where we have plotted SN (f) for
N = 2, 7. �

Example 9.8 Let f(x) = sign(x). Since this function is not continuous,
we cannot conclude that SN (f) converges to f uniformly on [−1, 1]. In fact,
from Proposition 9.2 we know that it is impossible that SN (f) converges
uniformly to f , since this would imply that f itself is continuous. Still, it
may seem reasonable to belive that SN (f)(x) always takes values in the
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FIGURE 9.3. S2N−1 for different values of N when f(x) = sign(x).

interval [−1, 1]. However, this is not the case. In Fig. 9.3 we plotted the
functions

S2N−1(f)(x) =
4
π

N∑
k=1

1
2k − 1

sin ((2k − 1)πx)

for N = 1, 2, 3, 5, 10, 15.
We see that SN (f)(x) takes values larger than 1 and smaller than -1 for x

close to zero. This overshoot is usually referred to as the Gibbs phenomenon.
It can in fact be shown that there is a δ > 0 such that

lim
N→∞

sup ‖SN (f)‖∞ ≥ 1 + δ,

i.e. ‖SN (f)‖∞ does not converge to 1. We refer for example to Strauss [25]
for a further discussion of this phenomenon. �
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9.4 Mean Square Convergence

Finally, we shall consider mean square convergence of Fourier series. Re-
call from Proposition 9.1 that uniform convergence implies mean square
convergence. Hence, if the periodic extension of f is continuous, with f ′

piecewise continuous, it follows from Theorem 9.3 that SN (f) converges in
the mean square sense to f . However, these conditions are unnecessarily
strong. In fact, we have mean square convergence for any piecewise contin-
uous function f .

Theorem 9.4 Let f be a piecewise continuous function on [−1, 1]. Then
SN (f) converges to f in the mean square sense.

Proof: The idea is to approximate f by a smoother function fδ which
satisfies the hypothesis of Theorem 9.3.
First we extend f to a 2-periodic function on R. For each δ > 0 let fδ(x)

be defined by averaging the original function f around the point x. More
precisely,

fδ(x) =
1
2δ

∫ x+δ

x−δ
f(y)dy.

Since f is 2-periodic, fδ will be 2-periodic. The fundamental theorem of
integral calculus implies that

f ′
δ(x) =

1
2δ

[
f
(
(x+ δ)−) − f

(
(x− δ)+

)]
.

Hence, f ′
δ is piecewise continuous, and since any differentiable function is

continuous, fδ is continuous. We have therefore verified that fδ satisfies the
hypothesis of Theorem 9.3, i.e. SN (fδ) converges uniformly to fδ asN tends
to infinity. Since uniform convergence implies mean square convergence (see
Proposition 9.1), we therefore obtain

lim
N→∞

‖SN (fδ)− fδ‖ = 0. (9.17)

Furthermore, it can be shown that

lim
δ→0

‖fδ − f‖ = 0. (9.18)

In fact, you are asked to establish this convergence in Exercise 9.17.
Observe now that the Fourier series SN (f) depends linearly on f . This

follows since the Fourier coefficients depend linearly on f . Therefore,

SN (f)− SN (fδ) = SN (f − fδ).

From the Pythagoras identity (8.38) it follows that ||Sn(f)|| ≤ ||f || for any
piecewise continuous function f . In particular,

‖SN (f − fδ)‖ ≤ ‖f − fδ‖. (9.19)
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Now write

SN (f)− f = SN (f − fδ) + (SN (fδ)− fδ) + (fδ − f) .

By using the triangle inequality for the mean square norm and (9.19), we
therefore obtain

‖SN (f)− f‖ ≤ 2‖f − fδ‖+ ‖SN (fδ)− fδ‖. (9.20)

In order to show that SN (f) converges to f in the mean square sense, we
have to show that ‖SN (f)− f‖ can be made arbitrarily small by choosing
N sufficiently large.
Let ε > 0 be given. Since fδ converges to f (see (9.18)), it follows that

we can choose a δ such that

‖f − fδ‖ <
ε

3
.

Furthermore, with δ fixed, it follows from (9.17) that we can choose N0
such that

‖SN (fδ)− fδ‖ <
ε

3
for N ≥N0.

Hence, by (9.20)

‖SN (f)− f‖ < ε for N ≥N0.

Since ε > 0 is arbitrary, this shows that

lim
N→∞

‖SN (f)− f‖ = 0.

�

We recall from Theorem 8.2 that mean square convergence of the Fourier
series implies Parseval’s identity

a2
0

2
+

∞∑
k=1

(
a2
k + b2k

)
= ‖f‖2. (9.21)

Hence, the following result is a simple consequence of Theorem 9.4 above.

Corollary 9.1 If f is piecewise continuous on [−1, 1], then Parseval’s
identity (9.21) holds.

Example 9.9 In Example 8.11 on page 273 we studied the full Fourier
series of f(x) = x and we concluded from Bessel’s inequality that

∞∑
k=1

1
k2 ≤ π2

6
.

By Corollary 9.1 this inequality is an identity. �
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Example 9.10 Recall from Example 8.2 on page 251 that the full Fourier
series of f(x) = sign(x) is given by

sign(x) ∼ 4
π

∞∑
k=1

1
2k − 1

sin((2k − 1)πx).

Hence, since f is piecewise continuous and ‖f‖2 = 2, it follows from Par-
seval’s identity that

16
π2

∞∑
k=1

(
1

2k − 1

)2

= 2

or

∞∑
k=1

(
1

2k − 1

)2

=
π2

8
.

In fact, this formula was also derived in Example 9.5 above as a consequence
of the pointwise convergence of the Fourier series of |x| at x = 0. �

9.5 Smoothness and Decay of Fourier Coefficients

We will end this chapter with a short discussion of the relation between
the smoothness of a function f and how fast its Fourier coefficients ak and
bk tend to zero as k tends to infinity. Recall from Corollary 9.1 that if f is
piecewise continuous, then

a2
0

2
+

∞∑
k=1

(
a2
k + b2k

)
= ‖f‖2 < ∞.

Since the infinite series converges this implies, in particular, that

ak , bk −→ 0 as k → ∞.

We shall see below that the smoother f is the faster the Fourier coefficients
will converge to zero. Here, the rate at which the Fourier coefficients tend
to zero will be measured by checking if

∞∑
k=1

k2m (
a2
k + b2k

)
< ∞

for positive integers m. Larger values of m indicate faster convergence to
zero for the Fourier coefficients.
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Throughout this section we let Cmp denote the set of functions on R such
that f, f ′, . . . , f (m) are all continuous and 2-periodic. Hence, if f ∈ Cmp ,
then

f (j)(−1) = f (j)(1) for j = 0, 1, . . . ,m. (9.22)

In fact, since any 2-periodic function is uniquely determined by its values
in [−1, 1], the space Cmp can be alternatively defined as all functions f ∈
Cm

(
[−1, 1]) which satisfy (9.22).

Assume first that f ∈ C0
p and that f ′ is piecewise continuous. Let αk

and βk denote the Fourier coefficients of f ′. From Theorem 8.1 we have

αk = kπbk and βk = −kπak. (9.23)

Furthermore, Parseval’s identity (9.21) implies that
∞∑
k=1

(
α2
k + β2

k

)
= ‖f ′‖2,

or by using (9.23),
∞∑
k=1

k2 (
a2
k + b2k

)
=

‖f ′‖2

π2 .

The following theorem is a generalization of this identity.

Theorem 9.5 Let m≥ 1 be an integer. Assume that f ∈ Cm−1
p and f (m)

is piecewise continuous. Then
∞∑
k=1

k2m (
a2
k + b2k

)
= π−2m‖f (m)‖2,

where ak and bk are the Fourier coefficients of f .

Proof: We prove this by induction on m. For m = 1 the result was
established above. Assume the result holds for m. If f ∈ Cmp with f (m+1)

piecewise continuous, then f ′ ∈ Cm−1
p with dm

dxm f ′ = f (m+1) piecewise
continuous. Therefore, the induction hypothesis applied to f ′ gives

∞∑
k=1

k2m (
α2
k + β2

k

)
= π−2m‖f (m+1)‖2,

where αk and βk are the Fourier coefficients of f ′. From the identities (9.23)
we obtain

π2
∞∑
k=1

k2(m+1) (
a2
k + b2k

)
= π−2m‖f (m+1)‖2,

which is the desired result for m+ 1. �
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Example 9.11 Let f(x) = sign(x). Recall from Example 9.10 above that
the Fourier series is given by

4
π

∞∑
k=1

1
2k − 1

sin((2k − 1)πx).

We have already checked Parseval’s identity (9.21) in Example 9.10. How-
ever, we observe that the series

∞∑
k=1

k2b2k =
∞∑
k=1

(
4
π

)2

diverges. But this does not contradict Theorem 9.5 above since f /∈ C0
p . �

Example 9.12 Let f(x) = |x|. Then f ∈ C0
p and f ′(x) = sign(x) is piece-

wise continuous. Hence, Theorem 9.5 predicts that

∞∑
k=1

k2 (
a2
k + b2k

)
= π−2‖f ′‖2 =

2
π2 .

On the other hand we recall from Example 9.5 on page 295 that

|x| ∼ 1
2
− 4

π2

∞∑
k=1

(
1

2k − 1

)2

cos ((2k − 1)πx),

and that
∞∑
k=1

( 1
2k − 1

)2
=

π2

8
.

This gives

∞∑
k=1

k2 (
a2
k + b2k

)
=

16
π4

∞∑
k=1

(
1

2k − 1

)2

=
2
π2 .

We have therefore confirmed the theorem for this example. �

The interpretation of Theorem 9.5 is that the smoother f is, the faster
the Fourier coefficients will decay to zero. However, we can also show the
converse, i.e. that fast decay of the Fourier coefficients implies that f is
smooth. In fact, the argument needed to prove this has already been intro-
duced in the proof of Theorem 9.3. Assume first that {ak}∞

k=0 and {bk}∞
k=1

are real coefficients such that
∞∑
k=1

k2 (
a2
k + b2k

)
< ∞. (9.24)
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For N ≥ 1 let

SN (x) =
a0

2
+

N∑
k=1

(ak cos(kπx) + bk sin(kπx)) .

We like to show that SN converges to a function f ∈ C0
p . Since all the

functions SN ∈ C0
p , this will follow if we can show that SN converges

uniformly to a function f ; see Proposition 9.2.
Let x ∈ [−1, 1] be arbitrary. If M > N , then

|SM (x)− SN (x)| ≤
M∑

k=N+1

(|ak|+ |bk|)

=
M∑

k=N+1

1
k
(k(|ak|+ |bk|))

≤ 2

(
M∑

k=N+1

1
k2

)1/2 (
M∑

k=N+1

k2 (
a2
k + b2k

))1/2

.

Here, the final inequality follows from the Cauchy-Schwarz inequality. Hence,

|SM (x)− SN (x)| ≤ 2

( ∞∑
k=N+1

1
k2

)1/2 ( ∞∑
k=1

k2 (
a2
k + b2k

))1/2

.

Since
∑
k 1/k

2 < ∞ (see Example 9.10 above), it follows that
limN→∞

∑∞
k=N+1 1/k

2 = 0. Together with (9.24) this implies that

lim
M,N→∞

|SM (x)− SN (x)| = 0.

Therefore, since {SN (x)} is a Cauchy sequence, SN (x) converges. We call
the limit f(x). Furthermore, by replacing SM (x) by f(x) in the calculation
above, and by taking supremum over x ∈ [−1, 1], we derive

‖f − SN‖∞ ≤
∞∑

k=N+1

(|ak|+ |bk|)

≤ 2

( ∞∑
k=N+1

1
k2

)1/2 ( ∞∑
k=1

k2 (
a2
k + b2k

))1/2

−→ 0 as N → ∞.

Therefore SN converges uniformly to f , and by Proposition 9.2 we can
conclude that f ∈ C0

p . Furthermore, it is straightforward to show that
SN = SN (f), or equivalently, that

f ∼ a0

2
+

∞∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
.
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You are asked to establish this in Exercise 9.13.
The following result is a generalization of this observation.

Theorem 9.6 Letm≥ 1 be an integer and assume that {ak}∞
k=0 and {bk}∞

k=1
are real coefficients such that

∞∑
k=1

k2m (
a2
k + b2k

)
< ∞.

Let

SN (x) =
a0

2
+

N∑
k=1

(ak cos(kπx) + bk sin(kπx)) . (9.25)

Then there exists a function f ∈ Cm−1
p such that

S
(j)
N −→ f (j) uniformly as N → ∞

for 0 ≤ j ≤ m− 1. Furthermore, the Fourier series of f is given by

a0

2
+

∞∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
. (9.26)

Proof: We will use induction on m to establish the uniform convergence
of the functions S

(j)
N . For m = 1 the result is derived above. Assume that

the result holds for m, where m ≥ 1, and that

∞∑
k=1

k2(m+1) (
a2
k + b2k

)
< ∞.

Since this assumption is stronger than (9.24), we can conclude from the
discussion above that there is a function f ∈ C0

p such that SN converges
uniformly to f . We have to show that f ∈ Cmp and that

S
(j)
N −→ f (j) uniformly for 0 ≤ j ≤ m as N → ∞.

Let

TN (x) = S′
N (x) =

N∑
k=1

(αk cos(kπx) + βk sin(kπx)) ,

where αk = kπbk and βk = −kπak. The coefficients αk and βk satisfy

∞∑
k=1

k2m (
α2
k + β2

k

)
= π2

∞∑
k=1

k2(m+1) (
a2
k + b2k

)
< ∞.
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Hence, the induction hypothesis implies that there is a function g ∈ Cm−1
p

such that

T
(j)
N = S

(j+1)
N −→ g(j) for 0 ≤ j ≤ m− 1.

From Proposition 9.3 on page 289 we can also conclude that g = f ′ and
hence the desired uniform convergence is established. Finally, we have to
show that the Fourier series of f is given by (9.26). However, this is a
consequence of the fact that the functions SN , given by (9.25), converge
uniformly to f . You are asked to verify this in Exercise 9.13. �

Note that the two theorems established in this section are close to pro-
viding an equivalence between the property that the Fourier coefficients of
f satisfies

∞∑
k=1

k2m (
a2
k + b2k

)
< ∞ (9.27)

and the property that f ∈ Cm−1
p . In fact, Theorem 9.6 states that the

convergence of the series (9.27) implies that f ∈ Cm−1
p . On the other hand,

Theorem 9.5 implies that if f ∈ Cm−1
p , and if in addition f (m) is piecewise

continuous, then the series (9.27) converges. However, strict equivalence
between convergence of the series (9.27) and smoothness properties of f
would require the introduction of Lebesgue integration and Sobolev spaces.
This is beyond the scope of this book.

9.6 Exercises

Exercise 9.1 Let fN (x) = 1/(N + x) for x ∈ [0, 1]. Show that {fN}
converges uniformly to zero as N tends to infinity.

Exercise 9.2 Let fN (x) = e−x/N for x ∈ [−1, 1]. Show that fN → 1
uniformly as N → ∞.

Exercise 9.3 Let fN (x) = e−|x|N .

(a) Show that fN (x) → 0 as N → ∞ for all x �= 0.

(b) Consider the functions fN on [−1, 1]. Does {fN} converge to zero in
the mean square sense?

(c) Does {fN} converge uniformly to zero on [−1, 1]?
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Exercise 9.4

(a) Let fN (x) = 1/(Nx + 1) for x ∈ [0, 1]. Show that fN (x) → 0 for all
x ∈ (0, 1], but that the convergence is not uniform on [0, 1].

(b) Show that {fN} converges to zero in the mean square sense.

(c) Let gN (x) = x/(Nx + 1). Show that {gN} converges uniformly to
zero on [0, 1].

Exercise 9.5 Let fN (x) = x/(1 +Nx2) for x ∈ R.

(a) Find the two pointwise limits

f(x) = lim
N→∞

fN (x) and g(x) = lim
N→∞

f ′
N (x).

(b) Show that f ′(x) exists for all x, but that f ′(0) �= g(0).

(c) Explain why this does not contradict Proposition 9.3.

Exercise 9.6 Let fN (x) = N−1e−N2x2
for x ∈ R.

(a) Show that fN (x) → 0 as N tends to infinity and that the convergence
is uniform on any closed interval.

(b) Show that f ′
N (x) → 0 for all x ∈ R, but that the convergence is not

uniform on any closed interval containing the origin.

Exercise 9.7 Let ||f ||∞ be the uniform norm given by

||f ||∞ = sup
x∈[a,b]

|f(x)|

for f ∈ C
(
[a, b]

)
.

(a) Establish the triangle inequality

||f + g||∞ ≤ ||f ||∞ + ||g||∞
for f, g ∈ C

(
[a, b]

)
.

(b) Use the triangle inequality to show that∣∣∣||f ||∞ − ||g||∞
∣∣∣ ≤ ||f − g||∞

for f, g ∈ C
(
[a, b]

)
.
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(c) Show that || · ||∞ is continuous with respect to uniform convergence,
i.e if {fn} ⊂ C

(
[a, b]

)
converges uniformly to f , then

lim
N→∞

||fN ||∞ = ||f ||∞.

(d) Let {fN} be a sequence of piecewise continuous functions on an in-
terval [a, b] which converges to a piecewise continuous function f in
the mean square sense. Show that

lim
N→∞

||fN || = ||f ||,

where ||f || =
(∫ b
a
f2(x) dx

)1/2
.

Exercise 9.8 Use a computer program to plot the Dirichlet kernel KN (z)
for increasing values of N .

Exercise 9.9 Consider the functions

Zk(z) = sin
(
(k +

1
2
)πz

)
for k = 1, 2, . . .

appearing in the proofs of Theorems 9.1 and 9.2. Use the trigonometric
identity

sin2(α) =
1
2
(
1− cos(2α)

)
to show that

‖Zk‖2 =
∫ 1

−1
Z2
k(z) dz = 1.

Exercise 9.10

(a) Use the full Fourier series of f(x) = x2 and Parseval’s identity to
show that

∞∑
k=1

1
k4 =

π4

90
.

You can use the result from Exercise 3.2 that

x2 ∼ 1
3
+

4
π2

∞∑
k=1

(−1)k
k2 cos(kπx).

(b) Use the full Fourier series of f(x) = |x| and Parseval’s identity to
compute

∞∑
k=1

(
1

2k − 1

)4

.
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Exercise 9.11

(a) Recall from Example 8.1 on page 249 that the Fourier series of f(x) =
x is

x ∼
∞∑
k=1

bk sin(kπx),

where bk = 2
kπ (−1)k+1.

Find the largest integer M ≥ 0 such that

∞∑
k=1

k2mb2k < ∞.

Explain how your conclusion relates to the results of Theorems 9.5
and 9.6.

(b) Repeat the problem above with f(x) = x2.

Exercise 9.12 Let f(x) be the 2-periodic function defined by

f(x) = x3 − x for x ∈ [−1, 1].

(a) Show that f ∈ C1
p , but f /∈ C2

p .

(b) Let ak and bk denote the Fourier coefficients of f . Explain why

∞∑
k=1

k4(a2
k + b2k) < ∞,

without calculating ak and bk. Is the sum
∑∞
k=1 k6(a2

k + b2k) finite?

(c) Use the fact that f ′′(x) = 6x to compute the Fourier series of f .
Compare the results with your conclusions above.

Exercise 9.13 Let {ak}∞
k=0 and {bk}∞

k=1 be real coefficients such that
(9.24) holds, and let f ∈ C0

p be the function derived from Theorem 9.6, i.e.
f is the uniform limit of the sequence {SN} defined by (9.25). Show that

f ∼ a0

2
+

∞∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
.
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Exercise 9.14

(a) Find the full Fourier series of the function

f(x) = cos (ax)

with respect to the interval [−π, π]. Here a ∈ R, but a is not an
integer. You will probably find the formula

2 cosu cos v = cos (u+ v) + cos (u− v)

useful.

(b) Use the Fourier series above to establish the formula

cos(πa)
sin(πa)

=
1
πa

− 2
a

π

∞∑
k=1

1
k2 − a2 .

(c) Use Theorem 8.1 to find the full Fourier series of g(x) = sin (ax).

(d) Find a formal series for cos(ax) by differentiating the full Fourier
series of g term by term. Compare the result with the full Fourier
series for f . Explain what you observe.

Exercise 9.15 Let f : [−1, 1] → R be defined by

f(x) =
{

a− |x| for |x| < a,
0 for |x| ≥ a,

where a ∈ R satisfies 0 < a < 1.

(a) Find the full Fourier series of f .

(b) Perform a term-by-term differentiation of the Fourier series above.
Explain why this series converges for all x ∈ R. Sketch the graph of
the sum g(x) for x ∈ [−2, 2]. What is the value of g(a) and g(0)?

Exercise 9.16

(a) Let f be a piecewise continuous function defined on [0, 1] with Fourier
sine series ∞∑

k=1

ck sin(kπx).

Use Corollary 9.1 to explain why Parseval’s identity,
∞∑
k=1

c2k = 2
∫ 1

0
f2(x) dx,

holds.
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(b) Formulate the corresponding result for Fourier cosine series.

Exercise 9.17 The purpose of this exercise is to establish the convergence
(9.18). Hence, for a given 2-periodic piecewise continuous function f , we
like to show that the functions fδ(x) given by

fδ(x) =
1
2δ

∫ x+δ

x−δ
f(y)dy for δ > 0

converge in the mean square sense to f as δ tends to zero.

(a) Let H(x) be the 2-periodic function defined by

H(x) =
{

1 for x ∈ (0, 1]
0 for x ∈ (−1, 0].

Note that the function H is piecewise continuous.
Show that limδ→0 ‖Hδ−H‖ = 0, where || · || denotes the mean square
norm on [−1, 1].

(b) Let g be a 2-periodic continuous function. Show that limδ→0 ‖gδ −
g‖ = 0.

(c) Explain why any 2-periodic piecewise continuous function can be
written in the form

f(x) = g(x) +
M∑
j=1

cjH(x− xj),

where g is continuous, M is a finite positive integer and cj are suitable
coefficients.

(d) Use the results above and the triangle inequality for the mean square
norm to show that limδ→0 ‖fδ − f‖ = 0 for any 2-periodic piecewise
continuous function f .



10
The Heat Equation Revisited

The two previous chapters have been devoted to Fourier series. Of course,
the main motivation for the study of Fourier series was their appearance
in formal analytic solutions of various partial differential equations like the
heat equation, the wave equation, and Poisson’s equation.
In this chapter we will return to partial differential equations. We will

reinvestigate formal solutions derived above and discuss the consequence
of the results on Fourier series for these formal solutions. The convergence
results for Fourier series, derived in the previous chapter, will be used
to show that, under proper assumptions, the formal solutions are in fact
rigorous solutions in a strict mathematical sense.
In order to avoid this discussion becoming too long, we shall concentrate

on the solution of the heat equation in one space dimension with Dirichlet
boundary conditions.
Other formal solutions can be treated in a similar manner, and some

examples are discussed in the exercises. In the final section of this chapter
we shall also derive a rigorous error estimate for a finite difference method
for the heat equation.
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10.1 Compatibility Conditions

Consider the initial and boundary value problem

ut = uxx for x ∈ (0, 1), t > 0
u(0, t) = u(1, t) = 0, t > 0 (10.1)
u(x, 0) = f(x), x ∈ (0, 1).

Recall that if

f(x) =
∞∑
k=1

ck sin(kπx)

is the Fourier sine series of the initial function f , then the formal solution
of this problem is given by

u(x, t) =
∞∑
k=1

cke
−(kπ)2t sin (kπx). (10.2)

The purpose of the next section will be to show that the solution (10.2)
is not only a formal solution, but a rigorous mathematical solution. How-
ever, before we start this discussion, we will focus attention on a possible
difficulty.
Assume that u is a solution of (10.1) which is continuous in the domain

[0, 1] × [0,∞). In particular, this means that u is continuous at the origin
(x, t) = (0, 0). Hence,

0 = lim
t→0

u(0, t) = u(0, 0) = lim
x→0

u(x, 0) = f(0).

A similar argument shows that f(1) = 0. Therefore, if u is a solution of
(10.1) which is continuous in the entire domain [0, 1] × [0,∞), then the
initial function f must satisfy the compatibility condition

f(0) = f(1) = 0. (10.3)

Example 10.1 Consider the problem (10.1) with f ≡ 1. Note that the
function f does not satisfy (10.3). Hence, it follows from the discussion
above that there is no solution u which is continuous in the entire domain
[0, 1]× [0,∞).
On the other hand, a formal solution of this problem was derived already

in Example 3.2 on page 93. There we computed the formal solution

u(x, t) =
4
π

∞∑
k=1

1
2k − 1

e−
(
(2k−1)π

)2
t sin

(
(2k − 1)πx

)
. (10.4)

In fact, it will follow from the discussion in the next section (see Exer-
cise 10.11) that the series (10.4) defines a solution of (10.1). However,
this solution will not be continuous at the corners (x, t) = (0, 0) and
(x, t) = (1, 0). �
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x1−1

f

f̃

FIGURE 10.1. f and the odd extension f̃ .

The compatibility condition (10.3) is closely related to the space C0
p

introduced in Section 9.5 above. We recall that the space Cmp consists of
functions defined on [−1, 1] such that the 2-periodic extension is m-times
continuously differentiable, i.e. f ∈ Cmp if and only if f ∈ Cm

(
[−1, 1]) and

f (j)(−1) = f (j)(1) for j = 0, 1, . . . ,m.

In order to see the relation between the space C0
p and the condition (10.3),

let us first recall from Chapter 8 that the Fourier sine series of a function
f defined on [0, 1] is simply the full Fourier series of the odd extension of
f . Let f̃ denote the odd extension of f , i.e.

f̃(−x) = −f(x) for x ∈ (0, 1].

Hence, it follows that f̃ ∈ C0
p if and only if f is a continuous function on

[0, 1] which satisfies (10.3); see Fig. 10.1.
In general, from the chain rule we derive

f̃ (j)(−x) = (−1)j+1f (j)(x) for x ∈ [0, 1].

As a consequence of this identity we conclude that we always have

f̃ (j)(−1) = f̃ (j)(1) and f̃ (j)(0−) = f̃ (j)(0+)

if j is odd. On the other hand, if j is even then

f̃ (j)(−1) = −f̃ (j)(1) and f̃ (j)(0−) = −f̃ (j)(0+)

Therefore, f̃ ∈ Cmp if and only if f ∈ Cm
(
[0, 1]

)
with

f (2j)(0) = f (2j)(1) = 0 for 0 ≤ 2j ≤ m. (10.5)
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This result motivates the definition of the space

Cmp,o =
{
f ∈ Cm

(
[0, 1]

) | f (2j)(0) = f (2j)(1) = 0 for 0 ≤ 2j ≤ m
}
,

where m ≥ 0 is an integer. For example, the space C2
p,o is given by

C2
p,o = {f ∈ C2([0, 1])|f(0) = f ′′(0) = f(1) = f ′′(1) = 0}.

The discussion above can be summarized as follows:

Lemma 10.1 Let f̃ be the odd extension of a function f defined on [0, 1].
Then f̃ ∈ Cmp if and only if f ∈ Cmp,o.

Hence, the space Cmp,o corresponds exactly to all the odd functions in Cmp .
Recall that in Section 9.5 above we studied the relation between the

smoothness of f and decay to zero of the Fourier coefficients. As a conse-
quence of Lemma 10.1 and the fact that the Fourier sine series of a function
is the full Fourier series of its odd extension, these relations can be trans-
lated to sine series.
The theorem below follows directly from the Theorems 9.5 and 9.6. In

this chapter, ‖f‖ is defined with respect to [0, 1], i.e.

‖f‖2 =
∫ 1

0
f2(x)dx.

Theorem 10.1 Let f be a piecewise continuous function defined on [0, 1]
with Fourier sine series

f(x) ∼
∞∑
k=1

ck sin (kπx)

and let m ≥ 1 be an integer.

(i) If f ∈ Cm−1
p,o and f (m) is piecewise continuous, then

∞∑
k=1

k2mc2k = 2π−2m‖f (m)‖2.

(ii) If
∞∑
k=1

k2mc2k < ∞

then f ∈ Cm−1
p,o . Furthermore, S(j)

N (f) converges uniformly to f (j) for
0 ≤ j ≤ m− 1, where

SN (f) =
N∑
k=1

ck sin(kπx).
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Note that the condition (10.5) reduces to (10.3) when m = 0. Further-
more, recall that the condition (10.3) has to be satisfied if the solution
u of the problem (10.1) is continuous at the corners (x, t) = (0, 0) and
(x, t) = (1, 0). The more general condition (10.5) also arises naturally in
connection with the initial and boundary value problem (10.1).
If ut and uxx are both continuous at the origin, we must have

0 = lim
t→0

ut(0, t) = lim
x,t→0

ut(x, t) = lim
x,t→0

uxx(x, t) = lim
x→0

uxx(x, 0) = f ′′(0).

In this manner we can argue that if ∂j

∂tj u and ∂2j

∂x2j u for 0 ≤ j ≤ k all are
continuous at the origin, then

f (2j)(0) = 0 for 0 ≤ j ≤ k.

A similar discussion applies to the other endpoint x = 1. The conditions
(10.5) for the initial function f are therefore referred to as compatibility
conditions of order m for the initial and boundary data of the problem
(10.1).
Before we end this section we will reconsider Poincaré’s inequality (see

Lemma 8.6 on page 274) and the use of this inequality in obtaining energy
estimates for the problem (10.1). In fact, from Theorem 10.1 we obtain the
following strong version of Poincaré’s inequality:

Corollary 10.1 Assume that f ∈ C0
p,o with f ′ piecewise continuous. Then

‖f‖ ≤ 1
π
‖f ′‖. (10.6)

Proof: From Parseval’s identity (see Exercise 9.16) we have

‖f‖2 =
1
2

∞∑
k=1

c2k,

and from Theorem 10.1

‖f ′‖2 =
1
2
π2

∞∑
k=1

k2c2k.

Therefore,

2π−2‖f ′‖2 =
∞∑
k=1

k2c2k ≥
∞∑
k=1

c2k = 2‖f‖2,

which implies the desired inequality. �

We note that this result represents an improvement over Lemma 8.6, in
the sense that the constant appearing in front of ‖f ′‖ is smaller. Further-
more, by taking f(x) = sin(πx) we obtain equality in (10.6). Therefore, the
constant in front of ‖f ′‖ in (10.6) is the smallest possible.
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Example 10.2 We will consider energy estimates for the problem (10.1)
once more. Recall that this has been studied in Section 3.7, where we
derived that the energy

E(t) =
∫ 1

0
u2(x, t) dx

is nonincreasing with time, and in Example 8.12 on page 274, where we
established the decay estimate

E(t) ≤ e−4tE(0) for t ≥ 0.

However, by assuming that u(·, t) ∈ C0
p,o, with ux(·, t) piecewise continuous

for any t > 0, and using (10.6), this decay estimate can be improved further.
In fact, we have

E(t) ≤ e−2π2tE(0). (10.7)

To see this, we recall from Example 8.12 (see (8.45)) the identity

E′(t) = −2
∫ 1

0
u2
x(x, t) dx.

However, (10.6) implies that

−2
∫ 1

0
u2
x(x, t) dx ≤ −2π2E(t)

and therefore

E′(t) ≤ −2π2E(t).

Hence, the estimate (10.7) follows from Gronwall’s inequality (see Lemma 8.7
on page 275). It is also easy to see that the decay estimate (10.7) cannot
in general be improved. In fact, if we consider the problem (10.1) with
f(x) = sin(πx), then we have equality in (10.7) (see Exercise 10.4). �

We remark that in the discussion above, the estimate (10.7) is derived
by energy arguments, i.e. no representation of the solution u is used. All
we have used is the fact that u is a solution of problem (10.1). For the
present problem, the estimate (10.7) can also be derived directly from the
representation (10.2); see Exercise 10.6. However, the advantage of energy
arguments is that they can be used for more complex problems, where no
representation of the solution is available. This will for example be illus-
trated by the study of nonlinear reaction-diffusion equations in Chapter 11.
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10.2 Fourier’s Method: A Mathematical
Justification

The purpose of this section is to show that the formal solution (10.2) is a
rigorous solution in a strict mathematical sense. We shall also discuss the
smoothing property of the heat equation.
We will assume that the initial function f is just a piecewise continuous

function. Compatibility conditions of the form (10.5) will not be assumed.
In particular, we will allow f(0) and f(1) to be different from zero. Hence,
we will permit the initial function f ≡ 1, studied in Example 10.1, and also
a discontinuous function like

f(x) =
{

1 for 0 ≤ x ≤ 1/2,
−1 for 1/2 < x ≤ 1.

For this function, f ′′ is not defined at x = 1/2. Hence, for t = 0 the
differential equation ut = uxx cannot be satisfied. However, in (10.1) we
only require this equation to hold for t > 0. We shall see below that this
will in fact be the case, even if the initial function f is discontinuous.
Let us also note that the maximum principle stated in Theorem 6.2 on

page 182 requires that u be continuous down to t = 0. Hence, in general
we cannot apply the result of Theorem 6.2 to our solution.

10.2.1 The Smoothing Property
Let

∑
k ck sin(kπx) be the Fourier sine series of the piecewise continuous

function f . It follows from Parseval’s identity that
∞∑
k=1

c2k = 2‖f‖2 < ∞. (10.8)

Below we will show that even if f is just piecewise continuous, the series
(10.2) for t > 0 will define a C∞-function u(·, t) as a function of x. In fact,
we will show that u(·, t) ∈ C∞

p,o, where C∞
p,o =

⋂∞
m=0 Cmp,o. Alternatively,

the space C∞
p,o can be defined by

C∞
p,o = {g ∈ C∞(

[0, 1]
) | g(2j)(0) = g(2j)(1) = 0 for j = 0, 1, 2, . . . }.

The following technical result will be useful:

Lemma 10.2 Let a and b be positive real numbers. There is a positive
constant M , depending on a and b, such that

0 ≤ xae−bx ≤ M for x ≥ 0.

Proof: Let g(x) be the function

g(x) = xae−bx.
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We note that g(x) ≥ 0 for x ≥ 0 and that

g(0) = 0 and lim
x→∞ g(x) = 0.

Furthermore,

g′(x) = xa−1e−bx (a− bx) ,

which implies g′(x) = 0 only if x = a/b. Hence, we can take

M = g
(a

b

)
=

(a

b

)a
e−a.

�

Consider the series for u(x, t), i.e.

∞∑
k=1

cke
−(kπ)2t sin(kπx). (10.9)

For each fixed t ≥ 0 we can view this as a Fourier sine series with respect
to x, where the Fourier coefficients are given by cke

−(kπ)2t.

Theorem 10.2 Assume that f is piecewise continuous. For each t > 0 the
series (10.9) converges uniformly to a function u(·, t) ∈ C∞

p,o.

Proof: Consider the Fourier sine series (10.9). For each integer m ≥ 1
and t > 0 the Fourier coefficients cke

−(kπ)2t satisfy

∞∑
k=1

k2mc2ke
−2(kπ)2t ≤ M

∞∑
k=1

c2k < 2M ||f ||2 < ∞, (10.10)

where we used Lemma 10.2 to obtain the bound

k2me−2(kπ)2t ≤ M.

Here M depends on m and t, but is independent of k. Hence, we can
conclude from Theorem 10.1 that for any t > 0

u(·, t) ∈ Cm−1
p,o .

However, since m ≥ 1 is arbitrary, this must imply that u(·, t) ∈ C∞
p,o. �

Let u(x, t) be the function defined by (10.9), i.e.

u(x, t) =
∞∑
k=1

cke
−(kπ)2t sin(kπx). (10.11)



10.2 Fourier’s Method: A Mathematical Justification 321

It follows from the theorem above that for any t > 0, u is a C∞-function
as a function of x. Furthermore, for t > 0

∂2ju(0, t)
∂x2j =

∂2ju(1, t)
∂x2j = 0 for j = 0, 1, 2, . . . . (10.12)

In particular, this means that u satisfies the boundary conditions

u(0, t) = u(1, t) = 0 for t > 0. (10.13)

The property that u(·, t), for t > 0, is a C∞-function, even when the
initial function f is just piecewise continuous, is frequently referred to as
the smoothing property of the heat equation. A similar property for the
Cauchy problem for the heat equation was observed in Section 1.4.4 of
Chapter 1.

10.2.2 The Differential Equation
Above we observed that the function u(x, t), defined by (10.11), satisfies
the boundary conditions u(0, t) = u(1, t) = 0 for t > 0. Next, we shall show
that u satisfies the differential equation in (10.1), i.e we shall show that

ut = uxx for x ∈ (0, 1), t > 0.

We can conclude from Theorem 10.1 and the bound (10.10) that the
derivatives of u with respect to x can be obtained as a uniform limit of
corresponding derivatives of the partial sums, i.e. for t > 0

∂2j

∂x2j u(x, t) =
∞∑
k=1

ck
(−(kπ)2)j e−(kπ)2t sin(kπx). (10.14)

Here, the equality sign means that the right-hand side, as a function of x,
converges uniformly to the C∞-function ∂2j

∂x2j u(·, t).
Next, we would like to establish that ut(x, t) exists and that

ut(x, t) = −
∞∑
k=1

ck (kπ)
2
e−(kπ)2t sin (kπx).

In order to show this, let uN (x, t) be defined by the finite sum

uN (x, t) =
N∑
k=1

cke
−(kπ)2t sin(kπx).

It is straightforward to check that (uN )t = (uN )xx. In order to establish
the corresponding identity for uN replaced by u, we first show the following
preliminary result:
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Lemma 10.3 Let x ∈ [0, 1] and δ, T > 0, δ < T, be arbitrary. For each
integer j ≥ 0 consider the sequence { ∂j

∂tj uN (x, ·)}∞
N=1 as a function of t.

This sequence converges uniformly to ∂2j

∂x2j u(x, ·) in the interval [δ, T ].
Proof: Throughout the proof x, δ, T, and j will be fixed, and with prop-

erties as described in the lemma. In order to simplify the notation we let

g(t) =
∂2j

∂x2j u(x, ·)

and

vN (t) =
∂j

∂tj
uN (x, ·).

Our goal is to show that {vN}∞
N=1 converges uniformly to g in [δ, T ].

Since uniform convergence implies pointwise convergence, we obtain from
(10.14) that

g(t) =
∞∑
k=1

ck
(−(kπ)2)je−(kπ)2t sin(kπx)

for any t > 0. Furthermore, by differentiating the finite series for uN with
respect to t j-times, we get

vN (t) =
N∑
k=1

ck
(−(kπ)2)je−(kπ)2t sin(kπx)

and hence,

vN (t)− g(t) = −
∞∑

k=N+1

ck
(−(kπ)2)je−(kπ)2t sin(kπx).

For any t ∈ [δ, T ] we therefore have the bound

|vN (t)− g(t)| ≤
∞∑

k=N+1

|ck| (kπ)2je−(kπ)2δ.

At this point we use Lemma 10.2 to conclude that there is a constant M ,
independent of k, such that

k2j+1e−π2δk2 ≤ M for k ≥ 0.

Hence, by letting M1 = Mπ2j , we have

|vN (t)− g(t)| ≤ M1

∞∑
k=N+1

|ck|
k
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for any t ∈ [δ, T ]. By applying the Cauchy-Schwarz inequality, this implies

sup
t∈[δ,T ]

|vN (t)− g(t)| ≤ M1

( ∞∑
k=N+1

c2k

)1/2( ∞∑
k=N+1

k−2
)1/2

≤ M1
π√
6

( ∞∑
k=N+1

c2k

)1/2
,

where we have used the bound
∑

k−2 ≤ π2/6 (see Example 8.11 on
page 273). However, the identity (10.8) implies that

lim
N→∞

( ∞∑
k=N+1

c2k

)
= 0,

and hence the desired uniform convergence is established. �

An immediate consequence of the lemma above and Proposition 9.3 is
the following desired result.

Theorem 10.3 Let the function u(x, t) be defined by (10.11). For each
t > 0 and x ∈ [0, 1], the partial derivative ut(x, t) exists. Furthermore,

ut(x, t) = uxx(x, t) for t > 0, x ∈ [0, 1].

Proof: Let x ∈ [0, 1] be fixed and consider the sequence {uN (x, ·)}∞
N=1 as

functions of t. It follows from Lemma 10.3, with j = 0, that this sequence
converges uniformly to u(x, ·) in any interval of the form [δ, T ], where δ > 0.
Similarly, by applying Lemma 10.3 with j = 1 we obtain that {(uN )t(x, ·)}
converges uniformly to uxx(x, ·) in [δ, T ]. However, by Proposition 9.3 this
implies that ut(x, t) exists, and is equal to uxx(x, t) for any t ∈ [δ, T ]. Since
δ > 0 can be chosen arbitrarily small and T > 0 arbitrarily large, we must
have

ut(x, t) = uxx(x, t)

for any t > 0. �

10.2.3 The Initial Condition
Recall that the purpose of this section is to show that the formula (10.11)
defines a strict mathematical solution of the initial-boundary value problem
(10.1). Up to now we have shown that (10.11) defines a function u which
solves the differential equation for t > 0 (see Theorem 10.3), and by (10.13)
u satisfies the boundary conditions for t > 0. However, so far we have not
discussed the initial condition. Hence, we have to show that

u(·, t) −→ f as t → 0, t > 0. (10.15)
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Recall that we are only assuming that f is piecewise continuous. Therefore,
in general, we cannot expect the convergence (10.15) to be uniform for
x ∈ [0, 1], since Proposition 9.2 will then imply that f is continuous. Instead
we shall establish the convergence (10.15) in the mean square sense.
From Parseval’s identity (10.8) we obtain that for t > 0

‖u(·, t)− f‖2 =
1
2

∞∑
k=1

c2k

(
1− e−(kπ)2t

)2

≤ 1
2

(
N∑
k=1

c2k

(
1− e−(kπ)2t

)2
+

∞∑
k=N+1

c2k

)

for any integer N ≥ 1. Let ε > 0 be given. Since the sum
∑

c2k converges,
by (10.8) we can choose N so large that

∞∑
k=N+1

c2k < ε/2.

Furthermore, when N is fixed it follows from (10.8) that the finite sum is
bounded by

N∑
k=1

c2k

(
1− e−(kπ)2t

)2
≤ 2

(
1− e−(Nπ)2t

)2
‖f‖2 −→ 0

as t tends to zero. Therefore, by taking t > 0 sufficiently small we obtain

‖u(·, t)− f‖2 < ε.

Since ε > 0 was arbitrary, this implies that

lim
t↘0

‖u(·, t)− f‖ = 0.

We summarize the discussion above in the following theorem:

Theorem 10.4 Assume that the initial function f is piecewise continuous.
Let the function u(x, t) be defined by (10.11), where the coefficients ck are
the Fourier coefficients in the sine series of f . Then

lim
t↘0

||u(·, t)− f || = 0.

The results obtained in this section, up to this point, establish that
(10.11) defines a solution u of the initial-boundary value problem (10.1)
under the weak assumption that f is just piecewise continuous. The dif-
ferential equation holds as a consequence of Theorem 10.3, the boundary
conditions are verified in (10.13) and the initial condition is satisfied in the
sense described in Theorem 10.4.
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10.2.4 Smooth and Compatible Initial Functions
Before we end our discussion on the justification of Fourier’s method, we
would like to show that if we assume slightly stronger conditions on the
initial function f , then we can show that the convergence (10.15) is uniform.
In fact, this will follow from the maximum principle derived for smooth
solutions of the heat equation (see Theorem 6.2). Assume that f ∈ C0

p,o

with f ′ piecewise continuous. We would like to show that

lim
t↘0

||u(·, t)− f ||∞ = 0,

where ‖f‖∞ = supx∈[0,1] |f(x)| . Under the present assumptions on f it
follows from Theorem 9.3 that

lim
N→∞

‖SN (f)− f‖∞ = 0, (10.16)

where the finite series SN (f) is given by

SN (f) =
N∑
k=1

ck sin(kπx).

As above, let

uN (x, t) =
N∑
k=1

cke
−(kπ)2t sin (kπx),

i.e. the solution of (10.1) with initial function SN (f). We recall from The-
orem 10.2 above that uN (·, t) converges uniformly to u(·, t) for any t > 0.
Furthermore, since uN is defined from a finite series, it is easy to see that

lim
t→0

‖uN (·, t)− SN (f)‖∞ = 0, (10.17)

for every fixed N . This follows since

‖uN (·, t)− SN (f)‖∞ ≤
(
1− e−(Nπ)2t

) N∑
k=1

|ck| −→ 0 as t → 0.

Next, we apply the maximum principle for the heat equation to the
smooth solutions uN (x, t). Let N,M ≥ 1 be integers. From Corollary 6.1
we obtain

‖uN (·, t)− uM (·, t)‖∞ ≤ ‖SN (f)− SM (f)‖∞.

By letting M tend to infinity, we can replace uM (·, t) by u(·, t) and SM (f)
by f in this inequality. This follows since uM (·, t) and SM (f) converge
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uniformly to u(·, t) and f respectively, and since || · ||∞ is continuous with
respect to uniform convergence (see Exercise 9.7). Hence, we have

‖uN (·, t)− u(·, t)‖∞ ≤ ‖SN (f)− f‖∞ (10.18)

for t ≥ 0. From (10.18) and the triangle inequality we now have for t ≥ 0

‖u(·, t)− f‖∞ ≤ ‖u(·, t)− uN (·, t)‖∞ + ‖uN (·, t)− SN (f)‖∞ + ‖SN (f)− f‖∞

≤ ‖uN (·, t)− SN (f)‖∞ + 2‖SN (f)− f‖∞.

In order to see that we can get ‖u(·, t)−f‖∞ less than any ε > 0 by choosing
a small t, first choose N so large that

‖SN (f)− f‖∞ <
ε

3
.

This is possible by (10.16). But when N is fixed it follows from (10.17) that

‖uN (·, t)− SN (f)‖ <
ε

3

for t sufficiently small. Hence,

‖u(·, t)− f‖∞ < ε

or

lim
t↘0

‖u(·, t)− f‖∞ = 0.

Hence, we have established that if f ∈ C0
p,o, with f ′ piecewise continuous,

then u(·, t), given by (10.11), converges uniformly to f as t tends to zero.
We summarize this discussion in the following theorem:

Theorem 10.5 Assume that the initial function f ∈ C0
p,o and that f ′ is

piecewise continuous. Let the function u(x, t) be defined by (10.11), where
the coefficients ck are the Fourier coefficients in the sine series of f . Then

lim
t↘0

||u(·, t)− f ||∞ = 0 (10.19)

Before we end this section we shall also note that the discussion above
has implications for the maximum principle for the solution u defined by
(10.11). The maximum principle for a solution u of (10.1) will imply that

‖u(·, t)‖∞ ≤ ‖f‖∞ for t ≥ 0 (10.20)

(see Corollary 6.1).
However, the derivation of this inequality relies on the assumption that

u is continuous in the domain {(x, t) : x ∈ [0, 1], t ≥ 0}, and, in general,
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the solution u will not have this property (see Example 10.1 above.) As
we observed in Section 10.1, a necessary condition for continuity at the
endpoints x = 0 and x = 1 for t = 0 is that the compatibility conditions

f(0) = f(1) = 0

are satisfied. On the other hand, we have seen above that if f ∈ C0
p,o,

with f ′ piecewise continuous, then (10.19) holds. Hence, u is continuous in
[0, 1]× [0,∞) and the maximum principle (10.20) holds.
In fact, we have the following result:

Corollary 10.2 Let j ≥ 0 be an integer and assume that the initial func-
tion f in (10.1) is such that f ∈ C2j

p,o with f (2j+1) piecewise continuous. If
u is given by (10.11), then the estimate

‖ ∂j

∂tj
u(·, t)‖∞ = ‖ ∂2j

∂x2j u(·, t)‖∞ ≤ ‖f (2j)‖∞ for t ≥ 0

holds.

Proof: For j = 0 the estimate corresponds to (10.20), and the result
follows from the discussion above. For j > 0 we just note that v = ∂ju

∂tj =
∂2ju
∂x2j is a solution of (10.1) with v(·, 0) = f (2j). �

10.3 Convergence of Finite Difference Solutions

The purpose of the final section of this chapter is to establish a rigorous
error bound for finite difference approximations of the initial-boundary
value problem (10.1). Recall that we have derived such error bounds in
earlier chapters for other problems. In Chapter 2 (see Theorem 2.2 on
page 65) we considered the finite difference approximations of the one-
dimensional Poisson’s equation, while the corresponding problem in two
space dimensions was discussed in Chapter 7 (see Theorem 7.2 on page 229).
If you look at the proofs of these theorems, you will discover that they are

quite similar. The main strategy in both cases is to characterize the solution
of the differential equation as a solution of the difference equation, but with
an extra forcing term referred to as “the truncation error.” If the truncation
error has the property that it tends to zero as the grid becomes finer, we
call the difference scheme “consistent” with the differential equation. The
desired error bound is then derived from a proper “stability estimate” for
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the finite difference scheme. To summarize, we have1

consistency + stability =⇒ convergence.

This approach to deriving error estimates is rather general. Here we shall
apply this methodology to the heat equation, or more precisely, the system
(10.1).
We shall study the implicit finite difference scheme introduced in Chapter

4.4. Assume we consider the initial-boundary value problem (10.1) with a
nonhomogeneous forcing term in the differential equation, i.e. we consider

ut = uxx + g(x, t) for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0, (10.21)
u(x, 0) = f(x), x ∈ (0, 1),

where g is assumed to be a continuous function in x and t. The correspond-
ing implicit finite difference approximation is given by

vm+1
j − vmj

∆t
=

vm+1
j−1 − 2vm+1

j + vm+1
j+1

(∆x)2

+ g(xj , tm+1) j = 1, . . . , n, m ≥ 0 (10.22)
vm0 = vmn+1 = 0, m ≥ 0,
v0
j = f(xj) for j = 1, 2, . . . , n,

where vmj approximates u(j∆x,m∆t) = u(xj , tm) and where ∆x = 1
n+1 .

Our goal is to show that vmj tends to u(xj , tm) as the grid parameters ∆x
and ∆t tend to zero.
We introduce the notation

‖f‖∆,∞ = max
1≤j≤n

|f(xj)| .

The following stability result for the difference scheme (10.22) is closely
related to the maximum principle for this scheme discussed in Section 6.2.4.

Lemma 10.4 A solution of the finite difference scheme (10.22) satisfies
the estimate

‖vm‖∆,∞ ≤ ‖f‖∆,∞ + tm max
1≤k≤m

‖g(·, tk)‖∆,∞.

Proof: The difference scheme can be rewritten in the form

(1 + 2r)vm+1
j = vmj + r(vm+1

j−1 + vm+1
j+1 ) + ∆tgm+1

j ,

1In fact, if formulated properly this implication can also be reversed, i.e. conver-
gence implies stability and consistency. This result is then known as the Lax equivalence
theorem. We refer to [26] and references given there for a further discussion.
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where r = ∆t
(∆x)2 and gmj = g(xj , tm). Hence, if we let

V m = ‖vm‖∆,∞ and Gm = ‖gm‖∆,∞,

we obtain

(1 + 2r)
∣∣vm+1
j

∣∣ ≤ V m + 2rV m+1 +∆tGm+1.

However, by taking the maximum with respect to j on the left-hand side,
this implies

V m+1 ≤ V m +∆tGm+1.

Hence, by repeated use of this inequality,

V m ≤ V 0 +∆t
m∑
k=1

Gk

≤ V 0 + tm max
1≤k≤m

Gk.

�

The lemma above contains the stability estimate we will use to derive
convergence. Next, we will study the truncation error, or consistency.
Let u be a solution of (10.1), i.e. (10.21) with g ≡ 0. Define a grid function

{umj } by letting umj = u(xj , tm) = u(j∆x,m∆t). Obviously, this function
will satisfy the boundary conditions and initial conditions given in (10.22).
Furthermore, we recall (see Chapter 2.2 on page 46) that Taylor’s theorem
implies that∣∣∣∣u(xj−1, t)− 2u(xj , t) + u(xj+1, t)

(∆x)2
− uxx(xj , t)

∣∣∣∣ ≤ (∆x)2

12
‖∂

4u(·, t)
∂x4 ‖∞.

(10.23)

A corresponding result for the time difference is (see formula (1.13) on
page 7) that∣∣∣∣u(x, tm+1)− u(x, tm)

∆t
− ut(x, tm+1)

∣∣∣∣ ≤ ∆t

2
sup

t∈[tm,tm+1]
|utt(x, t)| . (10.24)

Assume now that the initial function f = u(·, 0) is in C4
p,o with f (5) piece-

wise continuous. From Corollary 10.2 above it then follows that

‖utt(·, t)‖∞, ‖∂
4u(·, t)
∂x4 ‖∞ ≤ ‖f (4)‖∞ (10.25)



330 10. The Heat Equation Revisited

for t ≥ 0. As a consequence of the estimates (10.23)–(10.25) above, we
therefore conclude that {umj } satisfies a difference equation of the form

um+1
j − umj

∆t
− um+1

j−1 − 2um+1
j + um+1

j+1

(∆x)2
= τ∆(xj , tm+1), (10.26)

where

|τ∆(xj , tm)| ≤
(
∆t

2
+

(∆x)2

12

)
‖f (4)‖∞. (10.27)

We now have all the information needed to derive the desired error estimate.

Theorem 10.6 Let f ∈ C4
p,o, let f

(5) be piecewise continuous, and let u be
the solution of (10.21) with g ≡ 0. Furthermore, let v be the corresponding
solution of the difference scheme (10.22). Then for any m ≥ 0

‖u(·, tm)− vm‖∆,∞ ≤ tm

(
∆t

2
+

(∆x)2

12

)
‖f (4)‖∞. (10.28)

Proof: This result follows more or less directly from the stability estimate
given in Lemma 10.4 and the estimate (10.27) of the truncation error. Let
emj = umj − vmj . Then, by subtracting the first equation of (10.22), with
g ≡ 0, from (10.26) we obtain that {emj } is a solution of the difference
scheme

em+1
j − emj

∆t
=

em+1
j−1 − 2em+1

j + em+1
j+1

(∆x)2
+ τ∆(xj , tm+1),

em0 = emn+1 = 0,
e0
j = 0.

Hence, it follows from Lemma 10.4 and (10.27) that

‖em‖∆,∞ ≤ tm max
1≤k≤m

‖τ∆(·, tk)‖∆,∞

≤ tm

(
∆t

2
+

(∆x)2

12

)
‖f (4)‖∞.

�
The theorem above implies that if tm is fixed, for example tm = 1, then

the error ‖u(·, tm)− vm‖∆,∞ tends to zero as the grid parameters ∆t and
∆x tend to zero. This is exactly the desired convergence result.
However, there is a weakness in the estimate given above. If ∆t and

∆x are fixed, the right-hand side of the estimate (10.28) tends to infinity
as tm tends to infinity. This result cannot be sharp, since obviously both
‖u(·, t)‖∞ and ‖vm‖∆,∞ are bounded by the maximum principle. In fact,
in proper norms both the continuous and discrete solutions tend to zero as
t tends to infinity.
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An alternative error estimate, which is an improvement on the estimate
given above when t is large, will be derived in Exercise 10.14. The main
difference in the argument is that we use a discrete mean square norm to
measure the error.

10.4 Exercises

Exercise 10.1 Let f be a continuous function on an interval [0, l], with
f(0) = f(l) = 0 and f ′ piecewise continuous. Show the Poincaré inequality

∫ l

0
f2(x) dx ≤ l2

π2

∫ l

0
[f ′(x)]2 dx.

Exercise 10.2 Let f be a continuous 2-periodic function with f ′ piecewise
continuous. Furthermore, assume that∫ 1

−1
f(x) dx = 0.

(a) Show that if f ′ ≡ 0, then f ≡ 0.

(b) Establish Poincaré’s inequality∫ 1

−1
f2(x) dx ≤ 1

π2

∫ 1

−1
[f ′(x)]2 dx.

Exercise 10.3 Find a function f ∈ C1
(
[0, 1]

)
, with f(0) = 0, such that

||f || > 1
π
||f ′||.

Explain why your result does not contradict Corollary 10.1. Compare your
result with the inequality established in Lemma 8.6 on page 274.

Exercise 10.4 Consider the initial-boundary value problem (10.1) with
f(x) = sin(πx). Show that in this case the inequality (10.7) becomes an
equality.

Exercise 10.5 Consider the problem (10.1), but with the Dirichlet bound-
ary conditions replaced by the corresponding Neumann conditions, i.e.

ux(0, t) = ux(1, t) = 0.

Does the decay estimate (10.7) hold in this case? Justify your answer.
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Exercise 10.6 Consider the initial and boundary value problem (10.1).
Assume that the initial function f is piecewise continuous. Use the repre-
sentation (10.11) and Parseval’s identity to establish the energy estimate
(10.7).

Exercise 10.7 In this problem we study the heat equation with periodic
boundary conditions (see Exercise 3.15 on page 111). Hence, we consider

ut = uxx for x ∈ (−1, 1), t > 0,
u(−1, t) = u(1, t), ux(−1, t) = ux(1, t) = 0,
u(x, 0) = f(x),

where the initial function f is assumed to be piecewise continuous. If the
Fourier series of f is given by

a0

2
+

∞∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
,

then the formal solution is given by

u(x, t) =
a0

2
+

∞∑
k=1

e−(kπ)2t(ak cos(kπx) + bk sin(kπx)
)
. (10.29)

(a) Show that (10.29) defines a function u with the property that u(·, t) ∈
C∞
p for any t > 0. Here C∞

p =
⋂∞
m=1 Cmp , and the spaces Cmp are

defined in Section 9.5.

(b) Let E(t) denote the corresponding energy given by

E(t) =
∫ 1

−1
u2(x, t) dx.

Explain why it is not true, in general, that

lim
t→∞E(t) = 0.

(c) Assume that the initial function f is such that
∫ 1

−1
f(x) dx = 0.

Show that

E(t) ≤ e−2π2tE(0).
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Exercise 10.8 In this problem we shall study a procedure for defining
C∞-approximations of a piecewise continuous function f . Let f be a piece-
wise continuous function defined on [0, 1] with Fourier sine series

f(x) =
∞∑
k=1

ck sin(kπx).

For each t > 0 define

ft(x) =
∞∑
k=1

cke
−kt sin(kπx).

(a) Show that ft ∈ C∞
p,o for any t > 0.

(b) Show that limt↘0 ||ft − f || = 0.

The two properties above show that the functions ft, t > 0, are all C∞-
functions, but at the same time they can be arbitrarily close to the piecewise
continuous function f in the mean square sense. Another set of functions
which has this property is the functions u(·, t) given by (10.11), i.e. the
solution of the heat equation. The two properties are in fact a consequence
of the Theorems 10.2 and 10.4.

Exercise 10.9 In this exercise we shall study the formal solution of the
wave equation with Dirichlet boundary conditions. In order to simplify the
discussion, we only consider problems with ut(·, 0) = 0. Hence, we consider
the initial and boundary value problem

utt = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = f(x), ut(x, 0) = 0, x ∈ (0, 1).

If the initial function f has a Fourier sine series given by

∞∑
k=1

ak sin(kπx),

then the formal solution is given by

u(x, t) =
∞∑
k=1

ak cos(kπt) sin(kπx); (10.30)

see formula (5.15) on page 162. Throughout this problem we assume that
f ∈ C2

p,o with f ′′′ piecewise continuous.

(a) Show that the function u(x, t) defined by (10.30) has the property
that u(·, t) ∈ C2

p,o for any t ∈ R.



334 10. The Heat Equation Revisited

(b) Show that

lim
t→0

||u(·, t)− f || = 0.

(c) Show that u(x, ·) ∈ C2(R) for any x ∈ [0, 1].

(d) Show that utt = uxx for x ∈ [0, 1], t ∈ R.

(e) Show that

lim
t→0

||ut(·, t)|| = 0.

Exercise 10.10 This exercise is a continuation of Exercise 10.9 above.
Here we again study the wave equation, but with nonzero data for ut(·, 0).
We consider the initial and boundary value problem

utt = uxx for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = 0, ut(x, 0) = g(x), x ∈ (0, 1).

Throughout the problem we assume that g ∈ C1
p,o with g′′ piecewise con-

tinuous. If

g(x) =
∞∑
k=1

bk sin(kπx)

is the Fourier sine series of g, then the formal solution u(x, t) is given by

u(x, t) =
∞∑
k=1

bk
kπ

sin(kπt) sin(kπx); (10.31)

see formula (5.15) on page 162.

(a) Show that u(x, t), defined by (10.31), has the property that u(·, t) ∈
C2
p,o for any t ∈ R.

(b) Show that

lim
t→0

||u(, ·, t)|| = 0.

(c) Show that u(x, ·) ∈ C2(R) for any x ∈ [0, 1].

(d) Show that utt = uxx for x ∈ [0, 1], t ∈ R.
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(e) Show that

lim
t→0

||ut(·, t)− g|| = 0.

Exercise 10.11 Consider the problem (10.1) with f ≡ 1, i.e. the problem
studied in Example 10.1. The formal solution u(x, t) is given by (10.4).

(a) Explain why u(·, t) ∈ C∞
p,o for any t > 0, and explain why

lim
t↘0

||u(·, t)− f || = 0.

(b) Explain why

||u(·, t)− f ||∞ ≥ 1 for t > 0.

(c) Show that

lim
t↘0

u(x, t) = 1 for any x ∈ (0, 1).

You should compare the results of the exercise with the plots of the solution
u(·, t), for t = 0, 0.01 and 0.1, presented in Fig. 3.4 on page 95.

Exercise 10.12 Assume that the initial-boundary value problem (10.1)
is approximated by the corresponding explicit finite difference scheme, i.e
the scheme (4.2) on page 120. Show that if the stability condition r =
∆t/(∆x)2 ≤ 1/2 is satisfied, then the error estimate (10.28) holds.

Exercise 10.13 Let {vmj } denote the finite difference solution for the non-
homogeneous problem (10.21) obtained by replacing the scheme (10.22) by
the Crank-Nicholson scheme studied in Exercise 4.16 on page 153.

(a) Show that the estimate given in Lemma 10.4 holds for this difference
solution.

(b) Assume that the initial function f in (10.1) is in C8
p,o with f (9) piece-

wise continuous and that this problem is approximated by the Crank-
Nicholson scheme. Establish the error estimate

||u(·, t)− vm||∆,∞ ≤ tm

( (∆x)2

12
||f (4)||∞ +

(∆t)2

12
||f (8)||∞

)
.

We note that, compared to the estimate (10.28), this error estimate is of
second order with respect to both ∆x and ∆t. However, stronger assump-
tions on the initial function f are required.
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Exercise 10.14 For a grid function v let ‖·‖∆ denote the discrete version
of the mean square norm, i.e.

‖v‖∆ =
(
∆x

n∑
j=1

v2
j

)1/2

,

where, as above, ∆x = 1
n+1 .

(a) Show that ‖v‖∆ ≤ ‖v‖∆,∞ for any grid function v.

(b) Let v = {vmj } be a solution of the finite difference scheme (10.22).
Show that v satisfies the stability estimate

‖vm‖∆ ≤
(

1
1 + µ1∆t

)m
‖f‖∆ + µ−1

1 max
1≤k≤m

‖g(·, tk)‖∆,

where µ1 = µ1(h) = 4
h2 sin2 (

πh
2

)
.

We note that this result generalizes the result of Exercise 4.26c for an
equation where g �= 0. Furthermore, compared to the stability estimate
given in Lemma 10.4 we observe that tm does not appear in front of the
term max1≤k≤m ‖g(·, tk)‖∆. However, we have replaced ‖ · ‖∆,∞ by ‖ · ‖∆.

(c) Let u, v, and f be as in Theorem 10.6. Use the results above and the
fact that µ1 ≥ 4 (see Exercise 2.27) to establish the error estimate

‖u(·, tm)− vm‖∆ ≤
(
∆t

8
+

(∆x)2

48

)
‖f (4)‖∞

for any m ≥ 0.

Note that the right-hand side of this estimate is independent of m. This
result therefore represents an improvement of the result given in Theorem
10.6 when tm is large.



11
Reaction-Diffusion Equations

Reaction-diffusion equations arise as mathematical models in a series of
important applications, e.g. in models of superconducting liquids, flame
propagation, chemical kinetics, biochemical reactions, predator-prey sys-
tems in ecology and so on. Both numerical and mathematical analysis of
reaction-diffusion equations are currently very active fields of research. Ob-
viously, we cannot study the subject at an advanced level in the present
text, but we can get a general feeling of what these problems are about. Our
aim is merely to present some simple models and to explore some of their
properties using finite difference schemes and energy estimates. Further
examples can be found in the exercises.1

11.1 The Logistic Model of Population Growth

We start our discussion of reaction-diffusion equations by considering a
simple model arising in mathematical ecology. In order to understand the
foundation of this model, we first recapture the logistic model of population
growth. This model states that the growth of a population facing limited

1If you want to read more about reaction-diffusion equations, the book by Smoller [23]
is an excellent source. This book is a standard reference in this field. Another excellent,
yet less demanding, guide to these problems can be found in the book by Logan [19].
For those interested in models arising in biology, Murray [20] presents a huge collection
of interesting models.



338 11. Reaction-Diffusion Equations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

v(
t)

Population growth

FIGURE 11.1. The solution of the logistic model of population growth for various
initial values f0. We have used A = α = 1 in these computations.

resources is governed by the following ordinary differential equation:

v′(t) = αv(t)(A− v(t)), v(0) = f0. (11.1)

Here v = v(t) is the population density, α > 0 is the growth rate, and A > 0
is the so-called carrying capacity of the environment. The model states
that for small populations, we get exponential growth governed by v′(t) ≈
αAv(t). But as v increases, the term −αv2 becomes significant, the growth
slows down, and the population gradually reaches the carrying capacity of
the environment. The problem (11.1) can be solved analytically,2

v(t) =
Af0

f0 + (A− f0)e−αAt , t ≥ 0, (11.2)

and we note that v = A is the asymptotic solution as t → ∞ for any
initial data f0 > 0. We have plotted this solution3 for some values of f0 in
Fig. 11.1.

2The solution formula (11.2) is derived in most courses in ordinary differential equa-
tions. If you are not familiar with this formula, you should take a look at Exercise 11.1.

3You can read about applications of this model in the book by Braun [5]; see also
Murray [20].
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11.1.1 A Numerical Method for the Logistic Model
Below we will study the properties of the logistic model when spatial varia-
tions in the population are taken into account. This will result in a diffusion
term added to the right-hand side of (11.1). In order to prepare ourselves
for the study of this model, we shall derive some results for the discrete
version of the purely logistic model.
We consider the case of α = A = 1, i.e.

v′(t) = v(t)(1− v(t)), v(0) = f0, (11.3)

and the associated explicit scheme

vm+1 = vm +∆tvm(1− vm), v0 = f0. (11.4)

Here vm denotes an approximation of v at time t = tm = m∆t.
Since the solution of (11.3) is given by

v(t) =
f0

f0 + (1− f0)e−t , t ≥ 0,

the asymptotic solution is v = 1 for any f0 > 0. It is also easy to see that if
0 ≤ f0 ≤ 1, then 0 ≤ v(t) ≤ 1 for all t ≥ 0. Moreover, v(t) is nondecreasing
for all t ≥ 0.
Now, we want to prove similar properties for the discrete solutions gen-

erated by (11.4), and we start by considering the invariance property, i.e.
that data in [0, 1] imply solutions in [0, 1]. We assume that

∆t < 1, (11.5)

and define the polynomial

G(v) = v +∆tv(1− v). (11.6)

Then

G′(v) = 1 +∆t(1− 2v) ≥ 1−∆t > 0 (11.7)

for all v ∈ [0, 1].
Consequently, by assuming that 0 ≤ vm ≤ 1 for a given time tm, we get

vm+1 = G(vm) ≤ G(1) = 1

and

vm+1 = G(vm) ≥ G(0) = 0.

Hence it follows by induction that if f0 is in the unit interval, then vm is
in the unit interval for all tm ≥ 0. It is also easy to see that f0 = 0 implies
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that vm = 0 for all tm ≥ 0, and that {vm} is nondecreasing for initial data
in the unit interval.
Next we want to show that, also in the discrete case, v=1 is the asymp-

totic solution for any 0 < f0 ≤ 1. Since vm is in the unit interval for all m,
we have

vm+1 = vm +∆tvm(1− vm) ≥ vm,

and thus

0 < f0 = v0 ≤ v1 ≤ v2 ≤ · · · ≤ 1.

By using this property, we get

1− vm+1 = 1− vm −∆tvm(1− vm)
= (1− vm)(1−∆tvm)
≤ (1− vm)(1−∆tf0),

and consequently

1− vm ≤ (1− v0)(1−∆tf0)m

by induction. This implies that

1− (1− f0)(1−∆tf0)m ≤ vm ≤ 1, for m ≥ 1,

and then, since f0 > 0, we conclude that vm converges towards 1 as m goes
to infinity. We can summarize our observations concerning vm as follows:

Lemma 11.1 Let vm be the approximate solution of (11.3) generated by
the scheme (11.4), and assume that ∆t < 1. Then {vm} has the following
properties:

(a) If 0 ≤ f0 ≤ 1, then 0 ≤ vm ≤ vm+1 ≤ 1 for all m ≥ 1.

(b) If f0 = 0, then vm = 0, and if f0 = 1, then vm = 1 for all m ≥ 0.

(c) If 0 < f0 ≤ 1, then vm −→ 1 as m −→ ∞.

These results will be valuable in the discussion of the reaction-diffusion
model below.

11.2 Fisher’s Equation

In deriving the logistic model (11.1), it is assumed that spatial variation in
the density of the population is of little importance for the growth of the



11.2 Fisher’s Equation 341

population. Thus, one simply assumes that the population is evenly dis-
tributed over some area for all time. For real populations, this assumption
is often quite dubious. In the next level of sophistication, it is common to
take into account the tendency of a population to spread out over the area
where it is possible to live. This effect is incorporated by adding a Fickian
diffusion term to the model. Then we get the following partial differential
equation:

ut = duxx + αu(A− u). (11.8)

Here d is a diffusion coefficient and u = u(x, t) is the population density. In
mathematical ecology, this model of population growth is called Fisher’s
equation. Obviously, the introduction of a diffusion term leads to a partial
differential equation which in contrast to the ordinary differential equation
(11.1) cannot in general be solved analytically.
We mentioned that the term duxx models the diffusion of the population.

Similar terms arise in a lot of applications where we want to capture the
tendency of nature to smooth things out. For instance, if you drop a tiny
amount of ink into a glass of water, you can watch how the ink spreads
throughout the water by means of molecular diffusion. This situation is
modeled by the diffusion equation where Fick’s law is used to state that
there is a flux of ink from areas of high concentration to areas of low con-
centration. Similarly, if you consider a long uniform rod and start heating
it at some fixed location, Fourier’s law of heat conduction states that there
is a flux of heat from hot areas to cold areas. Similarly again, a Fickian
diffusion term in a model of population density states that there is a mi-
gration from areas of high population density to areas of low population
density.4

Usually Fisher’s equation (11.8) is studied in conjunction with a Neu-
mann-type boundary condition, i.e.

ux(0, t) = ux(L, t) = 0, (11.9)

where L denotes the length of the domain. The reason for this boundary
condition is that we assume the area to be closed, so there is no migration
from the domain. We may consider a valley surrounded by mountains, or
we can simply think of an island.
Since we are interested in the qualitative behavior of this model rather

than the actual quantities, we simplify the situation by putting d = α =
A = L = 1, and study the following problem:

ut = uxx + u(1− u) for x ∈ (0, 1), t ∈ (0, T ],
ux(0, t) = ux(1, t) = 0, t ∈ [0, T ], (11.10)
u(x, 0) = f(x), x ∈ [0, 1],

4Human beings do not always obey this sound principle.
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where f = f(x) denotes the initial distribution of the population. Since
A = 1, we assume that the initial data satisfy5

0 ≤ f(x) ≤ 1 (11.11)

for all x ∈ [0, 1].

11.3 A Finite Difference Scheme for Fisher’s
Equation

We want to study Fisher’s equation using a finite difference scheme. Let
umj denote an approximation of u(xj , tm); then an explicit finite difference
scheme can be written as follows:

um+1
j = rumj−1 + (1− 2r)umj + rumj+1 +∆tumj (1− umj ), j = 1, . . . , n,

(11.12)

where r = ∆t/∆x2 and m ≥ 0. We initialize the scheme by

u0
j = f(xj), j = 0, . . . , n+ 1. (11.13)

The boundary conditions of (11.10) at x = 0 and x = 1 are incorporated
by introducing the auxiliary points x−1 = −∆x and xn+2 = 1+∆x. Since
ux(0, t) = ux(1, t) = 0, we use the following discrete boundary conditions:

um1 − um−1

2∆x
= 0 and

umn+2 − umn
2∆x

= 0. (11.14)

Combining (11.12) and (11.14), we get

um+1
0 = (1− 2r)um0 + 2rum1 +∆tum0 (1− um0 ), m ≥ 0 (11.15)

at the left boundary and

um+1
n+1 = 2rumn + (1− 2r)umn+1 +∆tumn+1(1− umn+1), m ≥ 0 (11.16)

at the right boundary. The finite difference scheme is now fully specified by
the initial condition (11.13), the scheme (11.12), and the boundary condi-
tions (11.15) and (11.16). For ease of reference we summarize the scheme
as follows:

5Note that it is perfectly reasonable to study this problem with initial population den-
sities exceeding the carrying capacity. Negative initial conditions are, however, beyond
any reasonable interpretation.
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u0
j = f(xj), j = 0, . . . , n+ 1 for m ≥ 0

um+1
0 = (1− 2r)um0 + 2rum1 +∆tum0 (1− um0 ),

(11.17)
um+1
j = rumj−1 + (1− 2r)umj + rumj+1 +∆tumj (1− umj ), 1 ≤ j ≤ n,

um+1
n+1 = 2rumn + (1− 2r)umn+1 +∆tumn+1(1− umn+1),

In Fig. 11.2 we have plotted an approximate solution of the problem
(11.10) using the scheme above with the data

∆t = 0.001, ∆x = 0.05, and f(x) = cos2 (πx).

The numerical solution is plotted as a function of x for different values of
t, and we observe that the approximate solution seems to remain within
the unit interval. Furthermore, the approximate solution seems to converge
towards the value u = 1 for all x as t increases. The fact that umj remains
in the unit interval indicates a kind of a maximum principle. Let us look
at one more example of the same flavor in order to investigate this issue a
bit further. In Fig. 11.3 we have solved the problem again using the same
grid parameters, but we have changed the initial condition to read

f(x) =
1
10

cos2 (πx).

Again we note that the numerical solution remains within the unit interval
and that it seems to converge towards u = 1.

11.4 An Invariant Region

Both the numerical experiments discussed above and also the origin of the
model suggest that the solution always will stay within the unit interval;
thus the unit interval is referred to as an invariant region for this model.
We will prove this property provided that the mesh parameters satisfy the
requirement

∆t <
(∆x)2

2 + (∆x)2
, (11.18)

which is slightly more restrictive than the corresponding condition for the
heat equation; r ≤ 1/2 or ∆t ≤ (∆x)2/2.
We start by considering a fixed time level tm and assume that

0 ≤ umj ≤ 1 for j = 0, . . . , n+ 1. (11.19)
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FIGURE 11.2. An approximate solution of the nonlinear population model using
the initial distribution f(x) = cos2 (πx). The numerical solution is plotted as a
function of x for t = 0, 0.05, 0.5, 5.

Furthermore, we define the following auxiliary functions:

K(u) = 2r + (1− 2r)u+∆tu(1− u)

and

H(u) = (1− 2r)u+∆tu(1− u).

Now it follows, using the scheme defined by (11.17) and the assumption
(11.19), that

um+1
j ≤ 2r + (1− 2r)umj +∆tumj (1− umj ) = K(umj ) (11.20)

and that

um+1
j ≥ (1− 2r)umj +∆tumj (1− umj ) = H(umj ). (11.21)

Observe that the stability condition (11.18) implies that

1− 2r −∆t > 0,

hence

K ′(u) = H ′(u) = (1− 2r) + (1− 2u)∆t ≥ 1− 2r −∆t > 0



11.4 An Invariant Region 345

0 0.5 1
0

0.2

0.4

0.6

0.8

1

t=0

x

u

0 0.5 1
0

0.2

0.4

0.6

0.8

1

t=0.05

x

u

0 0.5 1
0

0.2

0.4

0.6

0.8

1

t=3

x

u

0 0.5 1
0

0.2

0.4

0.6

0.8

1

t=7

x

u

FIGURE 11.3. An approximate solution of the nonlinear population model using
the initial distribution f(x) = 1

10 cos
2 (πx). The numerical solution is plotted as

a function of x for t = 0, 0.05, 3, 7.

for all u ∈ [0, 1]. Since K and H are strictly increasing functions, it follows
from (11.20) and (11.21) that

um+1
j ≤ K(umj ) ≤ K(1) = 1,

and that

um+1
j ≥ H(umj ) ≥ H(0) = 0.

Thus we have

0 ≤ um+1
j ≤ 1

for j = 0, . . . , n+ 1. By induction on the time level, we have the following
result.

Theorem 11.1 Suppose umj is generated by the scheme (11.17) and that
the mesh parameters satisfy the condition (11.18). Furthermore, we assume
that the initial data satisfy

0 ≤ f(x) ≤ 1 for x ∈ [0, 1].

Then

0 ≤ umj ≤ 1

for j = 0, . . . , n+ 1 and m ≥ 0.
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As mentioned above, the unit interval is referred to as an invariant region
for the scheme.6 You should note that a maximum principle and an invari-
ant region are not exactly the same. For the heat equation, which is known
to satisfy a maximum principle, the values that the solution can attain are
bounded by the data given initially or at the boundaries. Thus, by giving
small data, say less than a given ε � 1 in magnitude, we know that the
absolute value of the solution itself is bounded by ε. Conversely, for the
nonlinear model (11.10), we noticed in the computations presented above
that an initial condition bounded by 1/10 gives a numerical solution that
converges towards u = 1 as time increases. Generally, maximum principles
imply the existence of an invariant region, but an invariant region does not
necessarily imply a maximum principle.

11.5 The Asymptotic Solution

In the numerical experiments discussed above, we observed that the ap-
proximate solutions always stayed within the unit interval and that they
approached the state u = 1 as time increased. The first observation is fully
explained in the light of Theorem 11.1, where it is proved that the unit
interval is an invariant region for the discrete solutions. But what about
the asymptotics? Is it correct that as t increases, the limiting solution is
always u = 1? Before we start analyzing this issue, let us challenge this
hypothesis.

Example 11.1 Motivated by a similar problem above, we choose the ini-
tial function

f(xj) = rand(xj), j = 0, . . . , n+ 1,

where “rand” is a random number in the unit interval. We have used the
“rand” function in Matlab. This function generates uniformly distributed
random numbers in the unit interval. In Fig. 11.4 we have plotted the
numerical solution as a function of x at time t = 0, 0.05, 1.5, 5. In the
experiment we have used ∆t = 0.001 and ∆x = 0.05, which satisfy the
stability condition (11.18). Note that the initial condition is evaluated sim-
ply by calling the rand function for each grid point xj and assigning the
result to f(xj). From the figure, we observe that even for this wild initial
distribution the population is smoothed out and converges towards u = 1
for all x ∈ [0, 1] as time increases.

�

6The notion of invariant regions plays a fundamental role in the mathematical theory
of reaction-diffusion equations. This is carefully discussed in Chapter 14 of Smoller’s book
[23].
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FIGURE 11.4. The numerical solution of Fisher’s equation using random numbers
as the initial condition. The numerical solution is plotted as a function of x for
t = 0, 0.05, 1.5, 5.

Motivated by the numerical experiments, we want to prove that u = 1 is
the asymptotic solution of the finite difference scheme. We start analyzing
this issue by considering some particular cases. First we observe that if the
initial density is identically equal to zero, i.e, f(x) = 0 for all x ∈ [0, 1],
then it follows from the scheme that umj = 0 for all j and m. It also follows
from (11.10) that u = 0 is a solution of the continuous problem. Thus, in
order to prove that u = 1 is the asymptotic solution, we have to assume
that the initial data is nonzero.
Next we consider the case of nonzero but constant initial data, i.e. f(x) =

f0 = constant. Then it follows by induction that umj = vm, where vm is
computed by (11.4). Consequently, the properties of the discrete solution
are given by Lemma 11.1.
Finally, we turn our attention to the problem of asymptotic behavior

in the case of nonconstant initial data. Our aim is now to prove that the
approximate solution of the partial differential equation (11.10) converges
towards u = 1 as time increases. In order to avoid technical difficulties of
limited interest, we assume that the initial density distribution f satisfies
the following requirement:

0 < f(x) ≤ 1 (11.22)
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for all x ∈ [0, 1]. In Exercise 11.2 we will study what happens if we allow
the initial density to be zero or greater than one in parts of the domain.
Let us first recall that by Theorem 11.1, the assumption (11.22) on the

initial data implies that

0 ≤ umj ≤ 1

for j = 0, . . . , n+1 and m ≥ 0. In order to analyze the scheme (11.17), we
define

ūm = min
j=0,... ,n+1

umj (11.23)

and observe that, obviously, 0 ≤ ūm ≤ 1 for all m ≥ 0. By the assumption
(11.22), it also follows that

ū0 > 0,

and by the scheme (11.17), we have

um+1
j ≥ 2rūm + (1− 2r)umj +∆tumj (1− umj )

for j = 0, . . . , n + 1. By assuming that the mesh parameters ∆x and ∆t
satisfy the stability condition (11.18), it follows that the polynomial

Pm(u) = 2rūm + (1− 2r)u+∆tu(1− u)

satisfies

P ′
m(u) = 1− 2r +∆t(1− 2u) ≥ 1− 2r −∆t > 0

for all u ∈ [0, 1], and then

um+1
j ≥ Pm(umj ) ≥ Pm(ūm) = ūm +∆tūm(1− ūm).

Since this holds for all j = 0, . . . , n+ 1, it follows that

ūm+1 ≥ ūm +∆tūm(1− ūm) (11.24)

for m ≥ 0.
Now we can prove that ūm tends to 1 as m tends to infinity by comparing

ūm with vm generated by the discrete logistic model, i.e.

vm+1 = vm +∆tvm(1− vm), v0 = ū0 > 0. (11.25)

Assuming that ūm ≥ vm, we get

ūm+1 − vm+1 ≥ G(ūm)−G(vm) = G′(ṽm)(ūm − vm) ≥ 0,

and thus it follows by induction that

ūm ≥ vm

for any m ≥ 0. By using part (c) of Lemma 11.1, we conclude that ūm
tends to 1 as m tends to infinity. We have derived the following result:



11.6 Energy Arguments 349

Theorem 11.2 Suppose umj is generated by (11.17) and that the mesh
parameters satisfy the condition (11.18). Furthermore, we assume that the
initial condition satisfies

0 < f(x) ≤ 1 for x ∈ [0, 1].

Then, for all j = 0, 1, . . . , n+ 1,

umj −→ 1

as m −→ ∞.

The case of 0 < f(x) ≤ 1 is covered by this theorem. Generalizations are
studied computationally in Exercise 11.2.

11.6 Energy Arguments

Above we have studied some properties of discrete approximations of Fisher’s
equation,

ut = uxx + u(1− u) (11.26)

with boundary data

ux(0, t) = ux(1, t) = 0 (11.27)

and initial condition

u(x, 0) = f(x). (11.28)

In this section we will derive some results for the continuous model. Through-
out this section we will assume that a smooth solution exists7 and derive
properties of such a solution.
Above, we studied discrete approximations of this problem, and some

interesting properties were recorded. First we noted that the discrete solu-
tions are bounded in an invariant region. This property was analyzed for
the discrete solutions in Section 11.4. Secondly, we noted that u = 1 is
the asymptotic solution as proved in Section 11.5. A final observation is
that the derivatives seem to decay rapidly as time increases. This effect is
particulary apparant in the computations graphed in Figure 11.4 on page
347.
In this section, all these three observations will be discussed for the con-

tinuous model.

7For existence arguments we refer the interested reader to Chapter 14 of Smoller [23].
These arguments are beyond the scope of the present text.
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11.6.1 An Invariant Region
As mentioned above, we assume that the problem (11.26)–(11.28) has a
solution. More precisely, we assume that there is a unique smooth function8

u satisfying the requirements (11.26)–(11.28).
We will show that the interval

[ε, 1 + ε], 0 < ε < 1, (11.29)

is an invariant region for u. To this end, we assume that

0 < ε ≤ f(x) ≤ 1 + ε (11.30)

for all x ∈ [0, 1].
In order to prove that u will remain in the interval [ε, 1 + ε], we assume

the opposite; specifically, we assume that u exceeds the value 1 + ε. Then,
by the regularity of u, there must exist a time t0 such that

u(x, t) ≤ 1 + ε

for all x ∈ [0, 1] and t < t0. Furthermore, at t = t0 there must be a location
x = x0 such that

(i) ut(x0, t0) ≥ 0,

(ii) uxx(x0, t0) ≤ 0,

(iii) u(x0, t0) = 1 + ε;

(see Fig. 11.5). Using (11.26), (ii) and (iii) we get

ut(x0, t0) = uxx(x0, t0) + u(x0, t0)(1− u(x0, t0))
≤ (1 + ε)(1− (1 + ε))
= −ε(1 + ε) < 0,

which contradicts (i). Hence, there is no such point (x0, t0), and conse-
quently u remains in [ε, 1 + ε].
By a similar argument, it follows that u cannot become smaller than ε.

We have derived the following result:

Theorem 11.3 Suppose that u, satifying u, ux, uxx, ut ∈ C
(
[0, 1]×[0,∞)

)
,

solves (11.26)–(11.28). Then, if the initial condition f satisfies (11.30), we
have

0 < ε ≤ u(x, t) ≤ 1 + ε

for any x ∈ [0, 1], t ≥ 0.

8We assume that u, ux, uxx, ut ∈ C
(
[0, 1]× [0,∞)

)
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FIGURE 11.5. The solution u close to a local maximum.

11.6.2 Convergence Towards Equilibrium
We showed above that the discrete solutions generated by the scheme
(11.17) converge towards unj = 1 as tn → ∞. Now we want to show a
similar result for the continuous model using an energy estimate.
Let u be the solution of (11.26)–(11.28) for initial data f satisfying

(11.30), and define

E(t) =
∫ 1

0
(u(x, t)− 1)2dx (11.31)

for t ≥ 0. By using the equation (11.26) and the boundary conditions
(11.27), we obtain

E′(t) = 2
∫ 1

0
(u− 1)utdx

= 2
∫ 1

0
(u− 1)uxx − u(1− u)2dx

= −2
∫ 1

0
(ux)2dx− 2

∫ 1

0
u(1− u)2dx.
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Now it follows from Theorem 11.3 that

u(x, t) ≥ ε > 0

for all x ∈ [0, 1], t ≥ 0, and consequently

E′(t) ≤ −2ε
∫ 1

0
(1− u(x, t))2dx = −2εE(t). (11.32)

Hence, Gronwall’s inequality (see Lemma 8.7) implies that

E(t) ≤ e−2εtE(0), (11.33)

and we have the following result:

Theorem 11.4 Let u be the solution of (11.26)–(11.28) with initial data
f satisfying

0 < ε ≤ f(x) ≤ 1 + ε

for all x ∈ [0, 1]. Then u approaches the asymptotic solution u = 1 in the
sense that ∫ 1

0
(u(x, t)− 1)2 dx ≤ e−2εt

∫ 1

0
(1− f(x))2 dx (11.34)

for t ≥ 0.

11.6.3 Decay of Derivatives
Our final discussion of Fisher’s equation concerns the decay of the deriva-
tives exposed in Figure 11.4 above. To study this effect, we define

F (t) =
∫ 1

0
(ux(x, t))

2
dx, t ≥ 0, (11.35)

where again u solves (11.26)–(11.28). By differentiating the equation

ut = uxx + u(1− u)

with respect to x, we get

(ux)t = (ux)xx + (ux − 2uux).

Hence, if we define

v = ux,

it follows that v satisfies

vt = vxx + (1− 2u)v (11.36)
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with boundary conditions

v(0, t) = v(1, t) = 0. (11.37)

Now,

F ′(t) =
d

dt

∫ 1

0
v2(x, t)dx

= 2
∫ 1

0
v(x, t)vt(x, t)dx

= 2
∫ 1

0
vvxx + (1− 2u)v2dx (11.38)

= 2[vvx]10 − 2
∫ 1

0
(vx)2dx+ 2

∫ 1

0
(1− 2u)v2dx

≤ −2
∫ 1

0
(vx)2dx+ 2

∫ 1

0
v2dx,

where we have used the fact that ε ≤ u(x, t) ≤ 1 + ε for all x ∈ [0, 1] and
t ≥ 0. Next we recall Poincaré’s inequality stating that if w(0) = w(1) = 0,
then

π2
∫ 1

0
(w(x))2 dx ≤

∫ 1

0
(w′(x))2 dx (11.39)

for any continuously differentiable function w = w(x); see Corollary 10.1
on page 317.
Due to the boundary conditions (11.37), it follows by (11.39) that∫ 1

0
(vx(x, t))

2
dx ≥ π2

∫ 1

0
(v(x, t))2 dx,

and then (11.38) implies that

F ′(t) ≤ −2π2
∫ 1

0
v2dx+ 2

∫ 1

0
v2dx

= 2(1− π2)F (t). (11.40)

From Gronwall’s inequality we therefore obtain

F (t) ≤ e2(1−π2)tF (0),

and thus we have the following result:

Theorem 11.5 Let u be a smooth solution of (11.26)–(11.28) for a con-
tinuously differentiable initial function f = f(x) satisfying (11.30). Then
the spatial derivative of u decays as follows:∫ 1

0
(ux(x, t))

2
dx ≤ e2(1−π2)t

∫ 1

0
(f ′(x))2 dx.
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11.7 Blowup of Solutions

So far we have used energy-type arguments to derive various upper bounds
for the solutions of reaction-diffusion equations. This strategy will be pur-
sued even further in Project 11.2, where a precise decay estimate is derived.
Here, we will take the opposite view and use a kind of energy estimate to
show that the solution of a reaction-diffusion equation can blow up in the
sense that u goes to infinity for a finite time t = t∗ < ∞. Such behavior is
of course important to characterize.
For a Neumann problem,

ut = uxx + g(u),
ux(0, t) = ux(1, t) = 0, (11.41)
u(x, 0) = f(x),

it is easy to see that the solution can blow up for certain choices of g. To
see this, we note that if the initial condition f is constant, e.g.

f(x) = f0 (11.42)

for all x ∈ [0, 1], then

u(x, t) = v(t), x ∈ [0, 1], t > 0,

where v is the solution of

v′(t) = g(v), v(0) = f0.

Hence the solution of (11.41) is given by the solution of an ordinary differ-
ential equation which is known to blow up in finite time for some functions
g. Let, for instance,

g(v) = v3 and f0 > 0,

then

v(t) =
f0√

1− 2tf2
0

,

and we note that

v(t) −→ ∞ as t −→ 1
2f2

0
.

Hence, the solution of (11.41) blows up in finite time for data satisfying
(11.42) when g(u) = u3 and f0 > 0.
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Next we consider the Dirichlet problem

ut = uxx + u3, (11.43)
u(0, t) = u(1, t) = 0, (11.44)
u(x, 0) = f(x), (11.45)

for x ∈ [0, 1], t ≥ 0.
Obviously, because of (11.44), we cannot use the argument above to show

that the solution may blow up; a more sophisticated analysis is needed.
As above we assume that u is a smooth solution and that

f(x) ≥ 0, x ∈ (0, 1). (11.46)

Then it follows that

u(x, t) ≥ 0 (11.47)

for any (x, t) where the solution exists. This feature is left as an exercise
for the reader; see Exercise 11.9. Next we define the quantity

α(t) =
∫ 1

0
u(x, t) sin(πx)dx, (11.48)

and we assume that

α(0) =
∫ 1

0
f(x) sin(πx)dx > 2. (11.49)

It is our aim to prove that α(t) blows up in finite time. Due to the properties
of the sine function, this implies that u also blows up in finite time.
In order to prove that α blows up, we consider

α′(t) =
∫ 1

0
ut(x, t) sin(πx)dx.

By (11.43), we get

α′(t) =
∫ 1

0
uxx sin (πx)dx+

∫ 1

0
u3 sin (πx)dx,

and thus integration by parts implies

α′(t) = −π2α(t) +
∫ 1

0
u3 sin (πx)dx. (11.50)

Here we want to relate ∫ 1

0
u3 sin (πx)dx
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and α(t). To do this, we need Hölder’s inequality,

∫ b

a

|y(x)z(x)|dx ≤
(∫ b

a

|y(x)|pdx
)1/p(∫ b

a

|z(x)|qdx
)1/q

, (11.51)

where 1
p +

1
q = 1; see (8.34) on page 266. Choosing p = 3/2 and q = 3, we

get

α(t) =
∫ 1

0
u sin (πx)dx

=
∫ 1

0

(
sin2/3(πx)

) (
u sin1/3(πx)

)
dx (11.52)

≤
(∫ 1

0

(
sin2/3(πx)

)3/2
dx

)2/3 (∫ 1

0

(
u sin1/3(πx)

)3
dx

)1/3

=
(
2
π

)2/3 (∫ 1

0
u3 sin (πx)dx

)1/3

,

and consequently

∫ 1

0
u3(x, t) sin(πx)dx ≥ π2

4
α3(t) (11.53)

for t ≥ 0.
By using (11.53) in (11.50), we get

α′(t) ≥ −π2α(t)
(
1− (

α(t)
2

)2
)
. (11.54)

Hence, if α(t) > 2, then α′(t) > 0. Since α(0) > 2, this implies that
α(t) > 2 for all t > 0 where the solution exists. If the inequality in (11.54)
had been an equality, this nonlinear differential equation could be linearized
by defining

β(t) = 1/α2(t); (11.55)

see Exercise 11.1. By using this definition of β in the inequality (11.54), we
obtain

β′(t) = −2 α′(t)
α3(t)

≤ 2π2(α(t)− α3(t)
4

)
/α3(t),

and thus

β′(t) ≤ 2π2
(
β(t)− 1

4

)
.
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From this differential inequality we immediately obtain an upper bound on
β(t); see Exercise 8.21. Multiplying this inequality by e−2π2t and integrating
in time, we get

β(t) ≤ 1
4
+ e2π2t (β(0)− 1/4) . (11.56)

By (11.49) and (11.55), we have that

0 < β(0) < 1/4,

and then it follows from (11.56) that there is a finite time t0 such that

β(t) ≤ 0

for t ≥ t0. Consequently, there is a time t∗ ∈ [0, t0] such that

α(t) −→ ∞ as t −→ t∗ < ∞.

This proves that the solution of (11.43)–(11.46) blows up in finite time
if the condition (11.49) is satisfied.

11.8 Exercises

Exercise 11.1 Consider the nonlinear ordinary differential equation

v′(t) = av(t) + b
(
v(t)

)2
.

Here a and b are given constants.

(a) Assume that v(t) �= 0 and define w(t) = 1/v(t). Show that w(t)
satisfies a linear differential equation.

(b) Verify formula (11.2).

(c) Assume that v(t) satisfies a differential equation of the form

v′(t) = av(t) + b
(
v(t)

)n
.

Explain how this equation can be linearized by a proper change of
variables.

Exercise 11.2 The purpose of this exercise is to study the asymptotic
behavior of the numerical solution of Fisher’s equation generated by the
scheme (11.17). In particular, we are interested in initial data not satisfying
the requirements of Theorem 11.2.
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(a) Implement the scheme (11.17).

(b) Use your computer program to investigate the asymptotic behavior
of the initial function defined by f(x) = 0 for x < 3/7 and for x > 5/7
and f(x) = 1/2 for x ∈ [3/7, 5/7].

(c) Repeat (b) for the initial function given by f(x) = 10(1+cos (10πx)).

Exercise 11.3 Consider the problem

ut = uxx + u(1− u) for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 1, t ∈ [0, T ], (11.57)
u(x, 0) = f(x), x ∈ [0, 1],

where f = f(x) denotes the initial data, which we assume to be in the unit
interval.

(a) Define an explicit finite difference scheme for this problem.

(b) Show that under appropriate conditions on the mesh parameters, the
unit interval is an invariant region for the discrete solutions.

(c) Show that u = 1 is the asymptotic solution of the scheme.

(d) Use an energy estimate to show that u = 1 is also the asymptotic
solution for the continuous model.

Exercise 11.4 Consider the problem

ut = uxx − u2 for x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0, t ∈ [0, T ], (11.58)
u(x, 0) = f(x), x ∈ [0, 1],

where f = f(x) denotes the initial data, which we assume to be bounded.

(a) Derive a maximum principle for this problem.

(b) Define an explicit finite difference scheme and derive, under appro-
priate conditions on the mesh parameters, a discrete version of the
maximum principle.

(c) Show that u = 0 is the asymptotic solution of the scheme.
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Exercise 11.5 The following reaction-diffusion equation arises in the mod-
eling of the electrical activity in the human heart:

ut = uxx + u(3u− 1)(1− u). (11.59)

Here, we consider this model equipped with boundary data

u(0, t) = u(1, t) = 0 (11.60)

and an initial condition

u(x, 0) = f(x) (11.61)

satisfying

0 ≤ f(x) ≤ 1 (11.62)

with f(0) = f(1) = 0.
Put α = ∆t/(∆x)2, p(u) = u(3u−1)(1−u), and consider the two schemes

vm+1
j = αvmj−1 + (1− 2α)vmj + αvmj+1 +∆tp(vmj ), (11.63)

wm+1
j = αwmj−1 + (1− 2α)wmj + αwmj+1 +∆tp(wm+1

j ). (11.64)

These schemes are referred to as explicit and semi-implicit respectively.

(a) Derive a bound on ∆t such that [0, 1] is an invariant region for {vmj }
generated by (11.63).

(b) Derive a similar bound for {wmj }.
(c) Discuss the properties of these two schemes with respect to the sta-

bility condition and the complexity of the implementation.

Exercise 11.6 Prove the following discrete version of Jensen’s inequality:

g

(
1
n

n∑
i=1

vi

)
≤ 1

n

n∑
i=1

g(vi)

for a convex function g. A continuous version of this inequality is derived
in Project 11.2 below.

Exercise 11.7 The purpose of this exercise is to prove a discrete version
of Gronwall’s inequality (cf. Lemma 8.7).
Suppose that

vn+1 ≤ vn +∆tαvn, n ≥ 0, ∆t > 0, tn = n∆t,

for a constant α. Show that

vn ≤ eαtnv0.
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Exercise 11.8 We observed above that the derivatives of the solution of
Fisher’s equation decayed rapidly; see Fig. 11.4 and Theorem 11.5. The
purpose of this exercise is to show that this is a feature of the solution of
many reaction-diffusion equations in the presence of Neumann-type bound-
ary data.
Consider the problem

ut = Duxx + p(u),
ux(0, t) = ux(1, t) = 0,
u(x, 0) = f(x), (11.65)

where D > 0 is a constant and where we assume that

sup
u

|p′(u)| ≤ M < ∞.

(a) Show that if

F (t) =
∫ 1

0
(ux(x, t))

2
dx,

we have

F ′(t) ≤ 2
(
M −Dπ2)F (t).

(b) Show that if

sup
u

|p′(u)| < Dπ2,

then ux decays to zero as t goes to infinity.

Exercise 11.9 Show that the solution of (11.43)–(11.45), under the as-
sumption of (11.46), satisfies (11.47) whenever u exists.

11.9 Projects

Project 11.1 Population models

As explained above, Fisher’s model can be used to study the evolution
of a single species in the presence of limited resources. In this project we
will consider some more complicated models. For simplicity, we consider
only prototypical models and do not care about the scaling of the variables
involved.



11.9 Projects 361

Throughout this project u and v denote the density of two populations
residing in a common district. A large class of models can be written in the
following form:

ut = uxx + uM(u, v), u(x, 0) = u0(x),
vt = vxx + vN(u, v), v(x, 0) = v0(x),

where M and N are given functions.

(a) Consider the system above on the unit interval and with the boundary
conditions ux = vx = 0 for x = 0 and x = 1. Generalize the scheme
(11.17) in order to handle this problem.

(b) Implement the finite difference scheme derived above.

(c) Consider an interaction of two predator-prey type species. Let u de-
note the density of the prey, and let v be the density of the predator.
Explain why it is reasonable to assume

Mv < 0 and Nu > 0

in this model.

(d) Put M = 1 − v and N = u − 1. Derive, under proper conditions on
the mesh parameters, an invariant region for the scheme generalized
in (a).

(e) Implement the scheme and try to answer the following questions by
doing numerical experiments:

• What is the asymptotic solution of the scheme if u0(x) = 0 for
all x?

• What is the asymptotic solution of the scheme if u0(x) = 1 and
v0(x) = cos2 (5πx)?

(f) Consider next a situation of two competing species; u denotes the
density of species S1 and v denotes the density of species S2. Ex-
plain why the competition of the two species leads to the following
requirements:

Mv < 0 and Nu < 0.

(g) Put M = (A1 − u − v) and N = (A2 − u − v). Here A1 and A2
are given positive constants representing the environmental capacities
for feeding species S1 and S2 respectively. Show that the rectangle
defined by 0 ≤ u ≤ A1 and 0 ≤ v ≤ A2 is invariant for the scheme
generalized in (a).
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(h) Explore, using numerical experiments, how the asymptotic behavior
of the scheme depends on the values of A1 and A2.

(i) Finally, we consider the case of symbiosis. Explain why such an in-
teraction leads to the following requirement:

Mv > 0 and Nu > 0.

(j) Put M = (1 + v − u) and N = (1 + u − v) and prove that for this
model, the unit square is invariant for the discrete solutions generated
by the scheme derived in (a).

Project 11.2 More on Asymptotics

The purpose of this project is to show that energy estimates can be ap-
plied to get accurate information about the solution of a reaction-diffusion
equation. On page 105 we considered the problem

ut = uxx − u3, x ∈ (0, 1), t > 0, (11.66)

with boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0, (11.67)

and initial condition

u(x, 0) = f(x). (11.68)

It was proved there that∫ 1

0
u2(x, t)dx ≤

∫ 1

0
f2(x)dx (11.69)

for any t ≥ 0.
In this project our aim is to sharpen this result.

(a) Define an explicit finite difference scheme for the problem (11.66)–
(11.68).

(b) Show that under suitable assumptions on the mesh parameters, the
interval [−1, 1] is invariant for the numerical solutions.

(c) Define

E∆(tn) = ∆x

n∑
j=1

(unj )
2,

where {unj } is the numerical solution, and plot this quantity as func-
tion of t for some grid sizes using
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(i) f(x) = sin (πx),

(ii) f(x) = x5(1− 2x)6esin (3x),

(iii) f(xj) = sin (10rand(xj)).

Here the “rand” function in (iii) is as described in Example 11.1 on page
346. Use these computations to conclude that the estimate (11.69) seems
a bit weak. We will now try to sharpen it.

(d) Show that [−1, 1] is an invariant region for the continuous solution of
(11.66)–(11.68).

(e) Define

E(t) =
∫ 1

0
u2(x, t)dx,

and show that

E(t) = −2
∫ 1

0
(ux(x, t))

2
dx− 2

∫ 1

0
u4(x, t)dx. (11.70)

Of course, (11.70) directly implies (11.69), but now we want a more accurate
estimate. We shall use the inequalities of Poincaré and Jensen to bound the
right-hand side of (11.70).

(f) Use Poincaré’s inequality to show that

E′(t) ≤ −2π2E(t)− 2
∫ 1

0
u4(x, t)dx, (11.71)

and conclude that

E(t) ≤ e−2π2tE(0). (11.72)

We note that (11.72) is a much sharper bound than (11.69). But an even
better result can be obtained by also taking the second term on the right-
hand side of (11.71) into account. In order to do so, we use the inequality
of Jensen. This states that if g is a smooth convex function, then

g

(∫ 1

0
v(x)dx

)
≤

∫ 1

0
g (v(x)) dx. (11.73)

This inequality will be derived below.

(g) Use (11.73) to show that

(∫ 1

0
u2(x, t)dx

)2

≤
∫ 1

0
u4(x, t)dx. (11.74)
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(h) Use (11.71) and (11.74) to conclude that

E′(t) ≤ −2π2E(t)− 2E2(t). (11.75)

(i) Show that

E(t) ≤ π2E(0)
π2 + E(0)

(
1− e−2π2t

)e−2π2t. (11.76)

(j) Plot E∆ defined in (c) together with the bounds defined by (11.72)
and (11.76) for the initial conditions (i), (ii), and (iii) also defined in
(c). Comment on the sharpness of (11.76) for these initial conditions.

(k) Finally we have to prove the inequality of Jensen. Let g be a smooth
convex function. Use a Taylor-series approximation to show that

g(t) + (s− t)g′(t) ≤ g(s) (11.77)

for any s, t ∈ R. Put

s = z(x), t =
∫ 1

0
z(y)dy,

and integrate (11.77) with respect to x and conclude that

g

(∫ 1

0
z(x)dx

)
≤

∫ 1

0
g (z(x)) dx, (11.78)

which is Jensen’s inequality.



12
Applications of the Fourier Transform

In this chapter, we briefly discuss the Fourier transform and show how this
transformation can be used to solve differential equations where the spatial
domain is all of R.
In the same way as Fourier series arise in the analysis of linear partial

differential equations on an interval, the Fourier transform is an appropriate
tool for the corresponding problems when the spatial domain is extended to
the whole real line. This can for example be illustrated by the heat equation

ut = uxx. (12.1)

We have seen (see Chapter 3) that when the spatial variable x is restricted
to an interval, then separation of variables leads to eigenvalue problems of
the form

−X ′′(x) = λX(x) (12.2)

with proper boundary conditions. For example, the eigenvalue problem
(12.2), with Dirichlet boundary conditions, leads directly to Fourier sine
series. As we shall see below, the Fourier transform can be used in a similar
way to study the pure initial value problem for (12.1), i.e. the initial value
problem where the spatial variable x is defined for all of R.
In deriving the properties of the Fourier transform below, we will assume

that the functions are sufficiently well behaved to justify our calculations.
We will not specify clearly for which class of functions the formulas hold.
This would lead to a more technical discussion which is beyond our current
scope. Therefore, the present chapter should be seen more as an informal
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illustration of how the Fourier transform can be applied to partial differen-
tial equations, and not as a rigorous discussion of properties of the Fourier
transform. The solution formulas for certain differential equations which
we derive here are therefore only formal solutions. However, by direct in-
spection we can of course check the validity of these solutions.

12.1 The Fourier Transform

If f is a function defined on R, then the Fourier transform, f̂(ω), is a new
function defined on R given by1

f̂(ω) =
∫ ∞

−∞
f(x)e−iωxdx, (12.3)

where i =
√−1.

We note that even if f(x) is real for all x, the new function f̂ will in
general not be real valued. Also, since the integral in (12.3) is over all of
R, the value f̂(ω) will not exist unless the function f(x) behaves properly
for x near ±∞. However, for well-behaved functions, which tend to zero
sufficiently fast at ±∞, the integral in (12.3) will be well defined.

Example 12.1 Let H(x) be the Heaviside function given by

H(x) =
{

0 x ≤ 0,
1 x > 0,

and let

f(x) = H
(
a− |x|),

where a > 0 is a parameter. Alternatively,

f(x) =
{

1 for |x| < a,
0 otherwise.

The function f , which is usually referred to as a square pulse, is plotted in
Fig. 12.1. Since f(x) ≡ 0 for |x| > a, the Fourier transform f̂(ω) is given
by

f̂(ω) =
∫ a

−a
e−iωxdx = − 1

iω
e−iωx∣∣x=a

x=−a =
2
ω
sin(aω).

�

1You may find slightly different definitions of the Fourier transform in other texts.
In particular, f̂(ω) will frequently be defined with the scaling factor 1√

2π
in front of the

integral.
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−a a

f

x

FIGURE 12.1. A square pulse.

Example 12.2 Let a > 0 be a parameter and let

f(x) = 2H(x)−H(x+ a)−H(x− a).

Alternatively (see Fig. 12.2),

f(x) =




0 for x ≤ −a,
−1 for x ∈ (−a, 0],
1 for x ∈ (0, a],
0 for x > a.

−a a
x

f

FIGURE 12.2. A square wave.
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The Fourier transform f̂(ω) is given by

f̂(ω) = −
∫ 0

−a
e−iωxdx+

∫ a

0
e−iωxdx

=
1
iω

e−iωx∣∣x=0
x=−a −

1
iω

e−iωx∣∣x=a
x=0

=
2
iω

(
1− cos(aω)

)
= −4i

ω
sin2(aω/2

)
.

�

In both the examples above, the function f(x) is real valued. In Example
12.1 we also obtained a real-valued function f̂(ω), while f̂(ω) is purely
imaginary in Example 12.2. In fact, by rewriting (12.3) in the form

f̂(ω) =
∫ ∞

−∞
f(x) cos(ωx) dx− i

∫ ∞

−∞
f(x) sin(ωx) dx,

we easily see that if f is a real-valued even function, then f̂(ω) is real.
On the other hand, if f is a real-valued odd function, then f̂(ω) is purely
imaginary.

Example 12.3 Let f be the real-valued even function

f(x) = e−b|x|,

where b > 0 is a parameter. Then f̂(ω) is given by

f̂(ω) =
∫ ∞

−∞
e−b|x|e−iωxdx

=
∫ 0

−∞
e(b−iω)xdx+

∫ ∞

0
e−(b+iω)xdx

=
1

b− iω
+

1
b+ iω

=
2b

b2 + ω2 ,

which is real. �

12.2 Properties of the Fourier Transform

The Fourier transform can be considered as a map which takes functions
f(x) into its transform f̂(ω). To indicate more clearly that the function f̂

is derived from f , we sometimes write F(
f
)
(ω) instead of f̂(ω).

From the definition of F(
f
)
(ω) it follows that the map F is linear, i.e.

F(
αf + βg

)
= αF(

f
)
+ βF(

g
)
, (12.4)

where f, g are functions and α, β ∈ R.



12.2 Properties of the Fourier Transform 369

Example 12.4 Let

f(x) = e−b|x| − 4H(a− |x|).
Together with the results of Examples 12.1 and 12.3, the property (12.4)
leads to

F(
f
)
(ω) = f̂(ω) =

2b
b2 + ω2 − 8

ω
sin(aω).

�

The property (12.4) is derived directly from the definition (12.3). We
have

F(
αf + βg

)
=

∫ ∞

−∞

(
αf(x) + βg(x)

)
e−iωxdx

= α

∫ ∞

−∞
f(x)e−iωxdx+ β

∫ ∞

−∞
g(x)e−iωxdx

= αF(
f
)
ω + βF(

g
)
ω.

When the Fourier transform is used to solve differential equations, we
need a relation between F(

f
)
and F(

f ′). From integration by parts we
have

F(
f ′)(ω) = ∫ ∞

−∞
f ′(x)e−iωxdx

= f(x)e−iωx∣∣∞
x=−∞ + iω

∫ ∞

−∞
f(x)e−iωxdx.

Hence, if we assume that |f(x)| tends to zero as x tends to ±∞ such that
the boundary terms disappear, we have

F(
f ′)(ω) = iωF(

f
)
(ω) = iωf̂(ω). (12.5)

This formula expresses that differentiation of f is transformed into a
multiplication with the function iω by the Fourier transform.

Example 12.5 Let us assume that u = u(x) satisfies a differential equa-
tion of the form

au′′(x) + bu′(x) + cu(x) = f(x), (12.6)

where f is a given function and a, b, c ∈ R. Assume we can take the Fourier
transform of each side of the identity (12.6). By using the properties (12.4)
and (12.5), we then obtain

(−aω2 + biω + c)û(ω) = f̂(ω). (12.7)
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Hence, the differential equation (12.6) is transformed into the algebraic
equation (12.7). Since algebraic equations usually are easier to solve, this
example clearly indicates that the Fourier transform is potentially useful
in solving differential equations. �

The property (12.5) has a counterpart which states that the Fourier
transform of the function xf(x) is given by if̂ ′(ω), i.e.

F(
xf

)
(ω) = i

d

dω
F(

f
)
(ω) = if̂ ′(ω). (12.8)

At this point we should be a little careful with our notation. In (12.8)
the function f̂ ′(ω) = d

dωF
(
f
)
(ω) is obtained by first computing f̂(ω) =

F(
f
)
(ω) and then differentiating this function with respect to ω. This is

not the same as F(
f ′)(ω), which is obtained by first differentiating f with

respect to x and then computing the Fourier transform.
The property (12.8) follows by differentiating the expression for F(

f
)
(ω)

with respect to ω. If we assume that we can differentiate under the integral,
then we obtain

d

dω
F(

f
)
(ω) =

d

dω

∫ ∞

−∞
f(x)e−iωx dx

= −i

∫ ∞

−∞
xf(x)e−iωx dx = −iF(

xf
)
(ω).

Property (12.8) follows by multiplying both sides of this equality by i.
Another useful property of the Fourier transform is the following scaling

property (a �= 0):

F(
f(ax)

)
(ω) =

1
a
F(

f
)
(
ω

a
). (12.9)

This follows from a change of variables, since

F(
f(ax)

)
(ω) =

∫ ∞

−∞
f(ax)e−iωxdx

=
∫ ∞

−∞
f(y)e−iωy/a dy

a
=

1
a
F(

f
)
(
ω

a
).

The properties (12.5) and (12.8) are fundamental to the use of the Fourier
transform in differential equations. A less obvious application of these prop-
erties is given in the following important example.

Example 12.6 Consider the function

f(x) = e−x2/2.
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We want to compute f̂(ω). A direct evaluation of the integral

f̂(ω) =
∫ ∞

−∞
e−x2/2eiωxdx

can be done by using the “residue theorem” of complex analysis. Here,
we shall instead use an indirect differential equation argument, which is
based on the properties (12.5) and (12.8) of the Fourier transform. It is
straightforward to check that the function f(x) satisfies the linear initial
value problem

f ′(x) = −xf(x), f(0) = 1. (12.10)

Furthermore, f(x) is the unique solution of this problem. In fact, by mul-
tiplication of the integral factor ex

2/2, the differential equation is reduced
to (

ex
2/2f(x)

)′
= 0.

If we take the Fourier transform of both sides of (12.10), we obtain from
(12.5) and (12.8) that

iωf̂(ω) = −if̂ ′(ω) = −i
d

dω
f̂(ω)

or

f̂ ′(ω) = −ωf̂(ω). (12.11)

We note that this equation corresponds exactly to the differential equation
in (12.10). Furthermore, from the formula∫ ∞

−∞
e−y2dy =

√
π (12.12)

(see Exercise 1.11 on page 24), we obtain

f̂(0) =
∫ ∞

−∞
e−x2/2dx =

√
2
∫ ∞

−∞
e−y2dy =

√
2π.

But the unique solution of (12.11) with f̂(0) =
√
2π is given by

f̂(ω) =
√
2πe−ω2/2.

Hence, up to a multiplication of the factor
√
2π, the functions f and f̂ are

equal. �
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Example 12.7 Let g(x) = e−ax2 , where a > 0. We would like to compute
ĝ(ω). If f(x) = e−x2/2, as in Example 12.6 above, then

g(x) = f(x
√
2a).

By property (12.9) we therefore obtain

ĝ(ω) =
1√
2a

f̂

(
ω√
2a

)
=

√
π

a
e−ω2/(4a).

�

12.3 The Inversion Formula

As explained in Example 12.5 above, the Fourier transform will replace
certain differential equations by corresponding algebraic relations for the
transforms. For example, the differential equation

−u′′(x) + u(x) = f(x)

implies the relation

(ω2 + 1)û(ω) = f̂(ω)

for the corresponding Fourier transforms, and hence

û(ω) =
1

1 + ω2 f̂(ω).

However, in order to obtain the solution u(x) from this expression, we need
to know how we can derive a function from its Fourier transform. In fact,
so far in our discussion it is not even clear that a function is uniquely
determined by its Fourier transform.
The tool we seem to need is an inverse transform which describes how a

function f(x) can be computed from f̂(ω). The proper inversion formula
is given by

f(x) =
1
2π

∫ ∞

−∞
f̂(ω)eiωxdω. (12.13)

We should note the similarity between this inversion formula and the def-
inition (12.3) of the Fourier transform. The formula nearly states that f

is the Fourier transform of f̂ . However, we note the missing minus sign
in the term eiωx and the extra factor 1/(2π) in front of the integral. An
alternative formulation of (12.13) is therefore

f(x) =
1
2π

F(
f̂
)
(−x). (12.14)

Before we try to justify the inversion formula, let us show that it is consis-
tent with the result of Example 12.7.
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Example 12.8 For any a > 0 let

fa(x) = e−ax2 .

In Example 12.7 we showed that

f̂a ≡ F(
fa

)
=

√
π

a
f1/(4a) =

√
π

a
fb,

where b = 1/4a. Hence, since a = 1/4b and ab = 1/4, this implies

F(
f̂a

)
=

√
π

a
F(

fb
)
=

√
π

a

√
π

b
f1/(4b) = 2πfa

or

fa(x) =
1
2π

F(
fa

)
(x).

Since fa(x) = fa(−x), this is consistent with (12.14). �

In order to try to justify the inversion formula (12.13), we first recall the
complex form of the Fourier series; see Sections 8.1.3 and 8.1.4. If f(x) is
a function defined on the interval (−l, l) which can be represented by its
Fourier series, then

f(x) =
∞∑

k=−∞
cke

ikπx/l, (12.15)

where the coefficients are given by

ck =
1
2l

∫ l

−l
f(y)e−ikπy/l dy. (12.16)

We shall see that the inversion formula (12.13) arises formally as a limit of
the Fourier series as l → ∞.
Let

f̂l(ω) =
∫ l

−l
f(y)e−iωydy.

Then for sufficiently regular functions f we clearly have

f̂l(ω) −→ f̂(ω) as l → ∞. (12.17)

Furthermore, the Fourier series (12.15)–(12.16) can be written in the form

f(x) =
1
2l

∞∑
k=−∞

f̂l(ωk)eiωkx, (12.18)
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where ωk = kπ/l.
Let ∆ω = π/l denote the distance between these points. The “grid

points,”
{
ωk = k(∆ω)

}∞
k=−∞, define a uniform partition of the real line.

Therefore, it is more convenient to rewrite (12.18) in the form

f(x) =
1
2π

[
∆ω

∞∑
k=−∞

f̂l(ωk)eiωkx

]
. (12.19)

We observe that this expression for f(x) resembles the inverse formula
(12.13).
Of course, an expression of the form

∆ω

∞∑
k=−∞

g(ωk)eiωkx

is just a “trapezoidal approximation” of the integral∫ ∞

−∞
g(ω)eiωxdω.

Note also that if l tends to infinity, then ∆ω tends to zero. Hence, together
with (12.17) this suggests that

∆ω

∞∑
k=−∞

f̂l(ωk)eiωkx −→
∫ ∞

−∞
f̂(ω)eiωxdω as l → ∞.

By combining this with (12.19), we therefore obtain the inversion formula

f(x) =
1
2π

∫ ∞

−∞
f̂(ω)eiωxdω.

The derivation of the inversion formula outlined above is far from being
a strict mathematical proof. We shall not provide a rigorous proof here.
However, it is interesting to note that the main tool in a rigorous proof
is frequently the fact that the inversion formula holds for the functions
e−ax2 studied in Example 12.8 above. The reason for this is roughly that
any smooth function can be approximated to any accuracy by weighted
integrals of translations of such functions. For a proof of the inversion
formula which essentially uses such an argument we refer for example to
Rauch [22].
The inversion formula can be used to compute Fourier transforms which

may be hard to compute directly.

Example 12.9 Let us recall from Example 12.3 that the function

f(x) = e−b|x|,
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where b is positive, has the Fourier transform

f̂(ω) =
2b

b2 + ω2 .

Since f(−x) = f(x), we therefore obtain from the inversion formula that

f =
1
2π

F(
f̂
)
.

Hence, by reversing x and ω, if

g(x) =
1
π

b

b2 + x2 then ĝ(ω) = e−b|ω|.

�

12.4 The Convolution

Let us consider the pure initial value problem for the heat equation (12.1),
i.e. ,

ut = uxx for x ∈ R, t > 0,
u(x, 0) = f(x) , x ∈ R.

(12.20)

For each t ≥ 0 let û(ω, t) = F(
u(·, t))(ω) be the Fourier transform of u(·, t).

Here u(·, t) denotes the function x �→ u(x, t) for a fixed value of t. Hence,

û(ω, t) =
∫ ∞

−∞
u(x, t)e−iωxdx. (12.21)

It follows from property (12.5) that

F(
uxx(·, t)

)
(ω) = −ω2û(ω, t). (12.22)

Furthermore, by differentiation under the integral sign (see Proposition 3.1
on page 107) we obtain

F(
ut(·, t)

)
(ω) =

∫ ∞

−∞
ut(x, t)e−iωxdx =

∂

∂t
û(ω, t). (12.23)

However, since we know that ut = uxx from the differential equation
(12.20), we can conclude from (12.22) and (12.23) that

∂

∂t
û(ω, t) = −ω2û(ω, t), t > 0. (12.24)
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This last equation can be regarded as an ordinary differential equation with
respect to t, where ω is just a parameter. The solution is given by

û(ω, t) = e−ω2tû(ω, 0) = e−ω2tf̂(ω). (12.25)

Let now S(x, t) be the function

S(x, t) =
1√
4πt

e−x2/4t, (12.26)

and let Ŝ(ω, t) = F(
S(·, t)) be the Fourier transform with respect to x. It

follows directly from Example 12.7, with a = 1/(4t), that

Ŝ(ω, t) = e−ω2t.

Hence, the identity (12.25) can be rewritten in the form

û(ω, t) = Ŝ(ω, t)f̂(ω), (12.27)

which states that the Fourier transform of the solution u is the product of
two Fourier transforms. Furthermore, the function S (and Ŝ) is explicitly
known, while f is the given initial function. Therefore, the Fourier trans-
form of u is the product of the Fourier transforms of two known functions.
From this information we would like to obtain u.
Let us consider a slightly more general situation. Let f(x) and g(x) be

given functions. We would like to identify a function h such that ĥ = f̂ · ĝ.
From the definition of the Fourier transform we have

f̂(ω)ĝ(ω) =
∫ ∞

−∞
f(y)e−iωydy

∫ ∞

−∞
g(z)e−iωzdz

=
∫ ∞

−∞

∫ ∞

−∞
f(y)g(z)e−iω(y+z)dy dz

=
∫ ∞

−∞

∫ ∞

−∞
f(x− z)g(z)e−iωxdx dz,

where the last identity is obtained from the substitution x = y+z. However,
by changing the order of integration we obtain

f̂(ω)ĝ(ω) =
∫ ∞

−∞

∫ ∞

−∞
f(x− z)g(z) dz e−iωxdx

=
∫ ∞

−∞
h(x)e−iωxdx = ĥ(ω),

(12.28)

where

h(x) =
∫ ∞

−∞
f(x− z)g(z) dz.



12.5 Partial Differential Equations 377

The function h is usually referred to as the convolution of the functions
f and g, and is usually denoted by f ∗ g. Hence, the function

(
f ∗ g

)
(x) is

given by

(
f ∗ g

)
=

∫ ∞

−∞
f(x− y)g(y) dy =

∫ ∞

−∞
f(y)g(x− y) dy, (12.29)

where the last identity follows by a change of variables. From (12.28) we
obtain that the Fourier transform of f ∗ g is the product of f̂ and ĝ, i.e.

F(
f ∗ g

)
(ω) = F(

f
)
(ω)F(

g
)
(ω) = f̂(ω)ĝ(ω). (12.30)

Let us now return to the pure initial value problem for the heat equation
(12.20). As a consequence of (12.27) and (12.30), we obtain the solution
formula

u(x, t) =
(
S(·, t) ∗ f

)
(x) =

∫ ∞

−∞
S(x− y, t)f(y) dy, (12.31)

where the function S(x, t) is defined by (12.26). Hence, we have obtained
a formal solution of the pure initial value problem (12.20).
We should remark here that we have encountered the function S(x, t) and

the formula (12.31) already in Chapter 1. In Exercise 1.17 we established
the solution formula (12.31) when the initial function f is a step function.
Below we will check the validity of this solution for more general initial
functions.

12.5 Partial Differential Equations

In the discussion above we have derived most of the important properties of
the Fourier transform which are used in differential equations. In this final
section of this chapter we will illustrate the use of the Fourier transform by
considering two examples. First we will complete the discussion of the pure
initial value problem for the heat equation, and afterwards we will study
Laplace’s equation in a half-plane.

12.5.1 The Heat Equation
The formal solution u(x, t) of the pure initial value problem for the heat
equation (12.20) is given by (12.31) above, i.e.

u(x, t) =
∫ ∞

−∞
S(x− y, t)f(y)dy =

1√
4πt

∫ ∞

−∞
e− (x−y)2

4t f(y)dy. (12.32)

The function S(x, t), given by

S(x, t) =
1√
4πt

e−x2/4t, (12.33)
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is usually referred to as the fundamental solution of the heat equation. We
observe that when the initial function f is known, u(·, t) can be derived
from a convolution of f and the fundamental solution S(·, t).
Before we check the validity of the solution (12.32), let us observe some

properties of the function S(x, t).
For any t > 0 we have

S(x, t) > 0 and
∫ ∞

−∞
S(x, t) dx = 1. (12.34)

The first of these claims is obvious, while the integral property follows
since ∫ ∞

−∞
S(x, t)dx =

1√
π

∫ ∞

−∞
e−x2/4t dx√

4t

=
1√
π

∫ ∞

−∞
e−z2dz =

1√
π

√
π = 1.

Here we have used the identity (12.12).
Because of the two properties (12.34), the formula (12.32) has the inter-

pretation that u(x, t) is a proper weighted average of the initial function
f .
Another interesting property of the function S is that

lim
t→0

S(x, t) = 0 for x �= 0, (12.35)

while

lim
t→0

S(0, t) = ∞.

Hence, as t tends to zero, the “mass” of the function will be concentrated
close to zero. In Fig. 12.3 the function S(x, t) is plotted for three different
values of t.
A final property we shall note is that the function S(x, t) satisfies the

heat equation, i.e.

St(x, t) = Sxx(x, t) for t > 0. (12.36)

This property should be of no surprise, since its Fourier transform

Ŝ(ω, t) = e−ω2t

satisfies the equation

Ŝt = −ω2Ŝ,

and by the property (12.5) this is consistent with (12.36). A direct verifica-
tion of (12.36) is also straightforward and is left to the reader as an exercise
(see Exercise 12.5).
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x

S

FIGURE 12.3. The function S(x, t) for t = 0.1 (· · · ), t = 1.1 (—), and
t = 2.1(−−).

In order to verify that the formal solution (12.32) is a solution of the pure
initial value problem (12.20), we have to show that this solution satisfies the
differential equation and the initial condition. Observe that the integral in
(12.32) is with respect to y. Hence, the variables x and t act as parameters
with respect to this integral, and for proper functions f we should have
that

ut(x, t)=
∫ ∞

−∞
St(x− y, t)f(y) dy,

uxx(x, t)=
∫ ∞

−∞
Sxx(x− y, t)f(y) dy.

(12.37)

In fact, the proper tool for verifying these formulas is a generalization
of Proposition 3.1 on page 107 to integrals over all of R (instead of a
bounded interval). Such a generalization is fairly straightforward and will
not be discussed further here. However, if the formulas (12.37) hold, then it
follows immediately from (12.36) that u given by (12.32) satisfies the heat
equation ut = uxx. We can therefore conclude that the formal solution
(12.32) satisfies the heat equation in a strict mathematical sense as long as
the initial function f allows differentiation under the integral sign in the
variables x and t.
We also have to check that the function u(x, t) satisfies the initial con-

dition. It is of course straightforward to see that as long as the Fourier
transforms û(·, t) and f̂ exist, then

lim
t↘0

û(ω, t) = lim
t↘0

e−ω2tf̂(ω) = f̂(ω).
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FIGURE 12.4. The upper half-plane.

Hence, the Fourier transform of u(·, t) converges pointwise to the Fourier
transform of the initial function f . However, a more reasonable requirement
seems to be that

lim
t↘0

u(x, t) = f(x) for x ∈ R, (12.38)

i.e. we require that u converges pointwise to f . In Exercise 12.10 an outline
of a proof for (12.38) is given under proper assumptions on the initial
function f .

12.5.2 Laplace’s Equation in a Half-Plane
In this section we will use the Fourier transform to obtain a formal solution
of Laplace’s equation

∆u = uxx + uyy = 0 for x ∈ R, y > 0. (12.39)

Hence, the solution will be a harmonic function in the upper half-plane;
see Fig. 12.4. On the x-axis we require Dirichlet boundary conditions of
the form

u(x, 0) = f(x). (12.40)

Furthermore, u should tend to zero as y tends to infinity in the sense∫ ∞

−∞
|u(x, y)| dx −→ 0 as y → ∞. (12.41)
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In order to find a formal solution of the problem (12.39)–(12.41), we let

û(ω, y) =
∫ ∞

−∞
u(x, y)e−iωxdx.

Hence, û is the Fourier transform of u with respect to x. The differential
equation (12.39) will be transformed into

−ω2û(ω, y) + ûyy(ω, y) = 0. (12.42)

For each fixed value of ω this is an ordinary differential equation with
respect to y, with general solution

û(ω, y) = c1(ω)e−ωy + c2(ω)eωy. (12.43)

We note that c1 and c2 are allowed to depend on ω.
The “boundary condition” (12.41) implies that

|û(ω, y)| ≤
∫ ∞

−∞
|u(x, y)| dx −→ 0 as y → ∞.

Therefore, we must choose

c1(ω) = 0 for ω < 0

and

c1(ω) = 0 for ω > 0.

Furthermore, since the boundary condition (12.40) implies that û(ω, 0) =
f̂(ω), this leads to the representation

û(ω, y) = e−|ω|y f̂(ω). (12.44)

Let P (x, y) be given by

P (x, y) =
1
π

y

x2 + y2 .

From Example 12.9 we recall that

P̂ (ω, y) =
∫ ∞

−∞
P (x, y)e−iωxdx = e−|ω|y.

Hence, the formula (12.44) can be written as

û(ω, y) = P̂ (ω, y)f̂(ω),
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and by property (12.30) this implies that

u(x, y) =
(
P (·, y) ∗ f

)
(x) =

∫ ∞

−∞
P (x− z, y)f(z) dz. (12.45)

The function P (x, y) is called the Poisson kernel. This function has prop-
erties which resemble the properties of the fundamental solution S(x, t) for
the heat equation. For example, it is straightforward to show that

P (x, y) ≥ 0 and
∫ ∞

−∞
P (x, y) dx = 1. (12.46)

Therefore the formula (12.45) has the interpretation that u(x, y) is a proper
weighted average of the boundary function f . The reader is asked to verify
a number of properties of the Poisson kernel P and of the solution formula
(12.45) in Exercise 12.11.

12.6 Exercises

Exercise 12.1 Find the Fourier transform of the following functions (a > 0):

(a)

f(x) =
{

cos(x) |x| < π
2 ,

0 otherwise.

(b)

f(x) =
{

x |x| < a,
0 otherwise.

(c)

f(x) =
{

a− |x| |x| < a,
0 otherwise.

Exercise 12.2 Compute the function g(x) =
(
f ∗ f

)
(x) when (a > 0).

(a)

f(x) =
{

1 |x| < a,
0 otherwise.

(b)

f(x) = e−|x|.
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Exercise 12.3 Assume that f̂(ω) = e−ω2
/(1 + ω2). Determine f(x).

Exercise 12.4 Let f(x) be a given function and define g(x) by

g(x) = f(x− a),

where a is constant. Show that ĝ(ω) = e−iωaf̂(ω).

Exercise 12.5 Let S(x, t) be the fundamental solution of the heat equa-
tion given by (12.26). Show by a direct computation that

St = Sxx for t > 0.

Exercise 12.6 Use formula (12.31) to find the solution of the pure initial
value problem (12.20) when

(a)

f(x) = H(x) =
{

0 x ≤ 0,
1 x > 0.

(b)

f(x) = e−ax2 , where a > 0.

Compare your solution in (a) with the discussion in Section 1.4.4.

Exercise 12.7 Let a be a constant. Use the Fourier transform to find a
formal solution of the problem

ut = uxx + aux for x ∈ R, t > 0
u(x, 0) = f(x).

Exercise 12.8 Consider the Laplace problem (12.39)–(12.41). Assume that
the Dirichlet condition (12.40) is replaced by the Neumann condition

uy(x, 0) = f(x), x ∈ R.

Use the Fourier transform to find a formal solution in this case.

Exercise 12.9 Consider the Laplace problem:(
∆u

)
= 0 for x ∈ R, 0 < y < 1,

u(x, 0) = 0, x ∈ R,

u(x, 1) = f(x), x ∈ R.

Use the Fourier transform to find a formal solution of this problem.
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Exercise 12.10 The purpose of this exercise is to analyze the pointwise
limit (12.38). We assume that f(x) is a continuous and bounded function,
i.e.

|f(x)| ≤ M for x ∈ R,

where M is a positive constant.

(a) Show that u(x, t)− f(x) has the representation

u(x, t)− f(x) =
∫ ∞

−∞

(
f(x− y)− f(x)

)
S(y, t)dy.

(b) Show that

lim
t↘0

u(x, t) = f(x).

(Hint: |u(x, t)− f(x)| ≤ ∫ ∞
−∞|f(x− y)− f(x)|S(y, t)dy. Break the integral

up into two pieces, |y| ≤ δ and |y| ≥ δ.)

Exercise 12.11

(a) Show that the Poisson kernel P (x, y) satisfies the properties (12.46).

(b) Show by a direct computation that

∆P = 0 for (x, y) �= (0, 0).

(c) Discuss the validity of the formal solution (12.45) of the boundary
value problem (12.39)–(12.41).
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