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Chapter 1

General Flow

1.1 Introduction Fluid mechanics is concerned with the behaviour
of fluids (liquids or gases) in motion. One method, due to Lagrange, traces
the progress of the individual fluid particles in their movement. Each
particle in the continuum is labelled by its initial position vector (say)
a relative to a fixed origin O at time ¢t = 0. At any subsequent time ¢t > 0
this position vector becomes r = r(a, t) from which the particle’s locus or
pathline is determined. In general, this pathline will vary with each fluid
particle. Thus every point P of the continuum will be traversed by an
infinite number of particles each with its own pathline. In Figure 1.1 let
A;,A,, A, be three such particles labelled by their position vectors
a,,a,,a,, respectively, at time t = 0. Travelling along their separate

Pathlines

Pathline of 44 >

Figure [.1

pathlines, these fluid particles will arrive at P at different times and
continue to move to occupy the points A, A, A5, respectively, at some
time t = T. These points, together with P, lic on a curve called the streak-
line associated with the point P. If a dye is introduced at P a thin strand of
colour will appear along this streakline PA) 4, A} at time t = T. It is
obvious that this streakline emanating from P will change its shape with
time. A fourth fluid particle A, which at time t = O lies on the pathline
AP will, in general, have a different pathline A, A, which may never pass
through P. The situation created by the Lagrangian approach is com-
plicated and tells us more than we normally need to know about the fluid
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motion. Finally, the velocity and acceleration of the particle at any instant
are given by 0r/0t and 0°r/0t? respectively.

The method of solution mainly used is due to Euler. Attention is paid
to a point P of the fluid irrespective of the particular particle passing
through. In this case the solutions for velocity q, pressure p and density p
etc are expressed in the form q = q(r, ), p = p(r, 1), p = plr, t) respectively
where r = OP is the position vector of the point P referred to a fixed
origin and ¢ is the time. If these solutions are independent of time ¢, the
flow is said to be steady, otherwise the flow is unsteady and varies with
time at any fixed point in the continuum. In the Eulerian approach the
pathline is replaced by the streamline defined as follows.

Definition. A line drawn in the fluid so that the tangent at every point is
the direction of the fluid velocity at the point is called a streamline.

In unsteady flow these streamlines form a continuously changing
pattern, If, on the other hand, motion is time independent, i.e. steady, the
streamlines are fixed in space and in fact coincide with the pathlines.

Definition. A stream surface drawn in a fluid has the property that, at
every point on the surface, the normal to the surface is perpendicular to
the direction of flow at that point.

A stream surface, therefore, contains streamlines.

Definition. Given any closed curve C, a streamtube is formed by drawing
the streamline through every point of C.

Definition. A stream filament is a streamtube whose cross-sectional
area is infinitesimally small.

To obtain the equation of the streamlines or, as they are sometimes
called, the lines of flow we write

q(r, t) = u(r, i+ o, £)j+w(r, Ok
where i, j and k are the unit vectors parallel to the fixed coordinate axes

0X, 0Y and OZ respectively. Since, by definition, q is parallel to dr =

dxi+ dyj+dzk we have
dx dy dz

= = 1.1
uwd " oD W 12
Any integral of these equations must be of the form f(r,t) = constant,

which is a stream surface. Its intersection with a second independent
solution, g(r,t) = constant, gives the streamline at any .

Problem 1.1 Given that the Eulerian velocity distribution at any time ¢
in a fluid is q = iAr+ jcosat + ksinat where a is a constant (# * 1),
find the streamlines and pathlines. Discuss the special case a = 0.

Solution. Writing ¢ = ui+vj+wk, we find thatu = 0,v = —z+ cosat,
2

w = y+ sinat. So the streamlines at any given time ¢ are determined by
the equations

dx dy dz

0  —z+cosat y+sinat

One solution is x = F where F is arbitrary, i.e. a family of planes. The
solution of (y+ sinat)dy = (—z+ cosat)dz is the family of circular
cylinders forming the second system of stream surfaces whose equation is
y*+22+ 2ysinat — 2zcosat = G where G is arbitrary. The intersections
are circles, the required streamlines. When a ## 0 these form a continuously
changing pattern, the motion being time dependent. In the special case
a = 0, the flow is steady with q = (—z+1)j+ yk and the streamlines are
fixed circles given by the equations x = constant, y2+22—2z = constant.
The pathlines are the solutions of

u = ox/ot = 0, v = Jy/ét = —z+ cosat, w = 0z/0t = y+ sinat

from which we obtain x = constant. Eliminating dz/6t by differentiating,
the equation for y is

%y z . .
7 asinat = —y—(a+1)sinat
Since we are given that a # = 1, the solution is

y = Acost+Bsint+Csinat

where A and B are arbitrary constants and C = 1/(a—1). Also, from the
equation for v we have

0 .
z = —a—f+cosat = Asint—Bcost—Ccosat
In the special case a =0, C = —1, cosat =1, sinat =0, and
y*+(z—1)*> = A*+ B? = constant. Since also x = constant, the path-
lines are circles coincident with the streamlines in steady flow. m|

Next we consider the concept of pressure in a fluid. Referring to Figure
1.2, let P be any point in the fluid and 64 any infinitesimally small plane
area containing the point with PQ = n representing the unit normal from

n _@
SF==8Fn
Figure |.2




one side 84, of 84 into the fluid. Let 8F denote the force exerted by the
fluid on 84, .

The fluid is defined to be inviscid when SF has no component in the
plane of 34 for any orientation of n. If in addition OF is anti-parailel to n
and has a magnitude 8F = |8F| which in the limit as 84, — 0 is in-
dependent of the direction of n, the fluid is said to be perfect. Moreover,
the pressure at P is p = p(r,t) where

pn = lim 8F/8A, (1.2)

84+—0

When motion is steady p = p(r) instead.

1.2 The mobile operator D/Dt In the Eulerian system where the velocity
q = q(r, 1), 8q/0t does not represent the acceleration of a particle but is
simply the rate of change of q at a fixed point r which is being traversed
by different particles, To evaluate this acceleration we need to find the rate
of change of the velocity q momentarily following a labelled particle. We
write this rate of change as Dq/Dt. Similarly, if any other quantity, such as
temperature T, is carried by a fluid particle its rate of change would be
DT/Dt.

Suppose # = H(r,t) denotes any differentiable vector or scalar
function of r and ¢ then we may write, in Cartesian terms,

H = H,t) = H(x,y,z:1)
Hence, at time &t later the increase 8 in # is
SH = H(x+8x,y+3y,z+8z;t+0t)—H(x,y,z:1)
However, when we follow the fluid particle we must write 8x = u ot,

8y = v8t, 8z = wdt (correct to the first order in 51) where u = u(x,y,2;t)
etc. are the Cartesian components of the velocity q so that
8H = H(x+udt,y+vdt,z+wdt;t+3t)—H(x,y,z:1)
oA o oH o
= ——0t+ — — vOt+—— 2
3 t+ i udt+ 3 vot+ % w ot +0(5t°)
It follows that in taking limits,

DI _ K oA O K 0K

i -z = 4= 1.
T I A I TR (1.3
In vector terms, since V = i9/0x+j /0y +k 8/0z, we have
ud/x+v0/0y+wd/oz = q.V,
therefore
’ D# OH

Th'e first term on the right-hand side is the time rate of change at a fixed
point P anfl the second term (q.V)s# is the convective rate of change due
to the particle’s changing position. In particular, the fluid acceleration f is

f=20_21q.Vyq (1.5)

Mgreover,_ it can now be seen that in terms of this mobile operator the
fluid velocity in the Eulerian system is simply

q= q-Vr=gq

E =
since here dr/dt = 0.

Problem 1.2 A fluid flows steadily from infinity with velocity — Ui past
the ﬁqu sphere |r] = a. Given that the resultant velocity q of the fluid at
any point is q = —U(1 +a’r™3)i+3a% " SxUr, find the acceleration f at
any point r = bi (b > a) and evaluate the maximum value of |f| for
variation in b.

Solution. Since the motion is steady f = (q.V)q. At r = bi, q =
—U(1+a’b3)i+3a’h"3Ui = 2a°b™*—1)Ui. Hence, q.V = q §/ox,
f = U(2a*bh™ > 1) dq/ox. Differentiating q,

oq _40r\, a
i -Ul =3a’r 4a)l+3a3U<r'5r—5r‘Ga—;xr+xr_5(%)
But dr/0x = x/r and dr/0x = i so that atr = bi
oq 3p,-4:
ol —6Ua’b™% and f = 6UXb*>—2a%a’b i

The mgximum value of f = |f| occurs when (d/db)(b=*—2a%b"7) = 0
for which b = (72)*a; it is a maximum because (d?/db*)f is negative.
Finally, f ___ = 92/7)'U/a. O

1.3 Flux through a surface Given that # = #(r,?) is some physical

(scalar or vector) quantity per unit volume which is carried by the fluid

particles in their motion, the flux (rate of flow) of the quantity outward

through a fixed geometrical (nonsolid) surface S is j #(q.dS), where dS
N

is an outward normal elemental vector area of S. Choosing # =1,
the volume flux through S is | q.dS. With # = p, the mass flux is | pq.dS
S N

and the momentum flux is | pq(q .dS) when # = pq.
S




1.4 Equation of continuity This states that the total fluid mass is con-
served within any volume V bounded by a fixed geometrical surface S
provided V does not enclose any fluid source or sink (where fluid is
injected or drawn away respectively). Adding the contributions of mass
change due to density variation within V' to the outward flow across S we

have
op op
J‘EdH-J‘pq.dS = J‘{E—i-V.(pq)}dr =0
14 S 14

where Gauss’s theorem has been applied to the surface integral with dt
representing an element of volume. In the absence of sources and sinks the
result is true for all subvolumes of V in which case

dp
= P iv.(pg) =0 (1.6)

This is called the equation of continuity or the mass-conservation equation.
It must be satisfied at every point of a source-free region £, An alternative
form is found by appeal to the identities V. (pq) = pV.q+(q.V)p and
dp/0t+(q.V)p = Dp/Dr leading to

1
Driv.q=0 1)
p "Dt
This simplifies to
V.q=divgq=0 (1.8)

in the case of an incompressible liquid for which Dp/Dt = 0 because here
the density change of an element followed in its motion is zero. In Cartesian
coordinates, where r = xi+yj+zk, and q = ui+vj+wk for all time ¢
we have

ou v oOw

22y 20 19

0x +6 y+ 0z v (19)
at every point P € #. Whenever this relation is not satisfied, say at a set
of points Q, liquid must be inserted or extracted.

Problem 1.3 Find an expression for the equation of continuity in terms
of cylindrical coordinates r, 6, z defined by x = rcosf,y = rsinf,z = z

Solution. Here we write the velocity q = ur+v8+wk where r, 0 are
the radial and transverse unit vectors in the plane whose normal is
paraliel to OZ, the k-axis. We recall equation 1.7 for which we evaluate

o 00 5,
V.q= <r5+— %‘i—k > (ur +v0 + wk) (1.10)

Using suffixes to denote partial derivatives (9/0r) (ur) = u,r+ur, etc and
since r, =0, =k =1, =0, =k, =k, =0, whilst r, =0, 8, = —r
(proved in elementary textbooks on vectors) it follows that
Vig=r.(ur+0,0+wK)+0/r). (ur+v,0+wyk+ud—or)

+k.(u,r+0v,8+w,k)
= u,+{({vg+u)fr}+w,
From equation 1.7 the equation of continuity is
L9£+ru +utvy+rw, =0
p Dt r 6 z
or, since Dp/Dt = p,+(q.V)p = p,+up,+(v/r)p,+wp,, we have
ro,+r(up), +up+(@p),+riwp), = 0 O (.11

Problgm 1.4 If A is the cross-section of a stream filament show that the
equation of continuity is

0
?(pA)Jri(qu) =0

where ds is an element of arc in the direction of flow, g4 is the speed and P
is the density of the fluid.

Solution. If P is the section at s = s and Q the neighbouring section at
s = s+ds, the mass of fluid which enters at P during the time ¢ is Apg ot
and the mass which leaves at Q is Apq &t +(8/s) (Apq 5t)6s. The increase
in mass within PQ during the time ¢ is therefore —(d/8s)(Apq)dt ds.
Since at time t the mass of fluid within PQ is Ap ds the increase in time 8t
is also given by (6/81)(Apds) 6t = (8/é1)(Ap)dsdt. Hence

-

%(pA)+§(qu) =0 O (112

Problem 1.5 Evaluate the constants a, b and ¢ in order that the velocity

q = {(x+ani+y+bnj+(z+crk}/{rix+r)}, = J(x*+y*+2z%) may
satisfy the equation of continuity for a liquid.

Solution. Writing q = ui+vj+wk, the equation of continuity is
(Ou/0x)+(0v/0y)+(6w/0z) = 0. Using or/dx = x/r etc.,

ou i{ x+ar } 1+ a(x/r) X 1
ox  ox rHx+7r) r(x+r) (x+ar){—r3(x+r)—r2(x+r)}

gli d 1 y+br 1+b(y/r) y y
Oy @{r(ijr)} r(x+r) +b +br){ x4r) ﬁrz(x-w)z}

6_w 0 { z+cr 1+c(z/r) . z z
0z Oz |r(x+r) r(x+r) (z+cr){— mfmz}




Hence,
ou dv ow
r3(x+r)2:<5;+a—y+—a;)
= r(x+r)(r+ax+r+by+r+cz)—(x+r){x(x+ar)+ y(y+br)+ z(z + cr)}
—r{(x+7)(x+ar)+y(y+br)+z(z +cr)}
= Hx+7r)(Br+ax+by+cz)—r(x+r)(r+ax+by+cz)
~rX(r+ax+by+cz+x+ar)
= r*{r(1—a)+x(1 —a)—by —cz}
This expression will be identically zero if and onlyifa = 1 andb = ¢ = 0.
O

Problem 1.6 Show that the variable ellipsoid

x2 y? 22

5 + =
a’e'cos(t+1im) be'sin(t+3m) c?sect

is a possible form of boundary surface of a liquid for any time ¢ and
determine the velocity components u, v and w of any particle on this
boundary. Deduce that the requirements of continuity are satisfied.

Solution. Since any boundary surface with equation F(x,y,z,t) = 0 is
made up from a time-invariant set of liquid particles we must have
DF/Dt = 0 for all points on the boundary at any time ¢. Hence,

DF ¢F oOF oOF OF
D = 5+u5;+va—y+wgz— =0 foralltand(x,y,z)eF

But
x2 y2 22
F(x,y,z,1) = a—ze‘sec(t+in)+b—2e"cosec(t+i1t)+pcos 2t—-1=0

so that

DF

X2
D= ¢ {sec(t +4m)+ sec(t+4n) tan (t +im)}

2
+%e" { —cosec (t +4m)— cosec (¢ +im) cot (¢ +1m)}

2% Qux 2 2wz
——5-sin 2t + ?—e' sec (t+§n)+%e“ cosec (t+i1t)+7 cos 2t
¢
Putting y = 0 = z, DF/Dt = O for all x and ¢ if

u

it

— Ix{1+ tan(t+4m)} (sec(t+4m) cannot be zero)

Similarly, with z = 0 = x, DF/Dt = 0 for all y and ¢ if
v =3y {1+ cot(t+m)}
and finally, with x = 0 = y, we find the third velocity component
w = ztan2t.

For these components on the boundary we find that for all t

gg-l-j—:jﬁ-% = — {1+ tan (¢ +in)} +3{1+ cot (t+im)} + tan 2t
_1—tan®(t+4n)
- 2tan(t+1ln)
= cot (2t +3m)+ tan2t = 0

so that the equation of continuity is satisfied on the boundary. Moreover,
the total volume within this ellipsoid is V where

V2 = n?a’e ! cos(t +im)b2e’ sin (t + Lm)c? sec 2t
= Ln?a’b?c? sin (2t +1im) sec 2t

+ tan 2t

= In%a’b*c* = constant
i.e. continuity is satisfied within. O

1.5 Rate of change of momentum The momentum M at time ¢ of the

"“particles [ying within a volume ¥ contained by a closed geometrical surface

Sis M = | pq dr. Following these particles the rate of change of M is
o

DM

d
o =P dr+Jpq(q-dS)= J{a(pq)wqu(V-q)+(q-V)pq}dr
v v

by an extension of Gauss’s theorem (see Table 2). Invoking the equation
of continuity (1.6) the integrand on the right-hand side of this last expres-
sion is simply p Dq/Dt so that DM/Dt = | p(Dq/Dt) dr.

v

To obtain an equation of motion we equate this rate of change of
momentum to the total force acting upon the particles within V. If p
denotes the pressure and F the force per unit mass we have

DM Dq

_—= —dt = — S+ | Fpdr = | (Fp—Vp) dz.

Dr Jthr de+fpr J(p Vp) dt
Y

v S vV
In a continuum this is true for all subvolumes of V in which case we
arrive at the equation of motion

Dq
—“ =Fp-V 1.13
P D¢ p—Vp (1.13)




¥

Problem 1.7 By integrating the equation of motion find an expressipn
for p when p = constant, F = 0, assuming that flow is steady with
q = o Ar where o is a constant vector.

Solution Since dq/dt = 0 and p = constant,

Dq
=9 =~V - V(p)
Now (4.V)q = VGq*)—qA (VA Q)
where
Vaq =VA(@AT)
=r.Vo—(.V)r-rV.0)+(V.r
=0 -0 -0 430
=20
Hence
—V(p/p) = VEG*)+20 A (@ AT)

= V¢ +2@.neo 20’
Taking the scalar product with dr ,
—Vi(p/p).dr = —d(p/p) = d(3¢°)+d(®.1)* — d(e’r?)
Integrating
plp = —iq* +0’r*—(0.r)* +constant
or, since @*r —(@.1)> = @ Ar|? = |q|* = % we have, finally,
L 1o Ar|? + constant a

(1.6 YMotion of a fluid element Let (x,y,z) denote the Cartesian co-

ordinates of a point P in the fluid at which point the velocity is ¢ = ui+
vj+wk where u = u(x,,z) etc. Let Q be a neighbouring point whosg
coordinates are (x+8x,y+08y,z+08z). Assuming the velocity field is
continuous the corresponding velocity at @ will be of the form q-+8q
where 8q = 6ui+6vj+owk

10

and
on ou
dulx, y, z ;—~ Ox+ == 0y+— 0z
(x,5,2) = ix ay v+ (z
= e O0x+ (exy —o_)éy+(e + o, Y6z
where

e _ou e 1 @_'_?E au ow
= ox’ » "2\dy " ox) €xz = az Ox
o 517_% o Lo _dw
: ox oy) » "2\ 6z ox

Moreover, since curlq = <@_6v> +<a—u—g—“-)>j+<@—%>k
dy 0Oz 0z 0x ox oy)
o, =k.0, o, =j.0 whreo=1curlq
and
w,8z—w, 8y = j.odz—k.0dy = Brri).o
=i.(@Abr)
Hence 6u = dug+duy where

dug = e, Ox+e  dy+e, 5z, dup =i.(@Adr).

dug is the contribution to &u from the local rate of strain (change of shape)
of the element whereas Suy is the contribution due to the local angular
velocity @ = jcurlq. In fact, if the element were frozen it would rotate
with this angular velocity @ which varies throughout the medium with
the velocity curl. ¢

The vorticity vector € is defined by § = 2@ = curlq. Motion is said to
be irrotational when the vorticity € is zero in which case the local angular
velocity o is zero.

Denoting the whole of fluid space by #, the vortex-free space by R,
the remainder #F = #— 2, is the space occupied by particles possessing
vorticity, i.e. { # 0 when P e #*and { = 0 when P € &,. The rest of physi-
cal space may either be empty or occupied by solids.

A circuit (closed curve) € € £, is said to be reducible if it can be con-
tracted to a point without passing out of the region £.. If in the contraction
the circuit € intersects 2%, or a solid, or empty space the circuit is termed
irreducible.

A region #, for which every circuit € € 4, is reducible is said to be
simply connected. A region Z,, in general, can be made simply connected
by inserting barriers to prevent circuits having access to 2* or solids.

11




The necessary and sufficient condition for the irrotationality of a
region #, is the existence of a scalar point function ¢ from which the
velocity can be derived by grad ¢ = —q. This function ¢ is called the
velocity potential.

ens @
P

S

0
Figure 1.4

Proof. The condition is evidently sufficient for, when ¢ exists with
q = —grad o, curlq = —curlgrad ¢ = 0. To prove that the condition
is also necessary, let O be a fixed point (Figure 1.4) and P variable in the
vortex-free region #, in which curlq = 0. We assume also that #, is
simply connected. Join O to P by two paths OAP, OBP, both in #, and
construct a surface S in £, having the circuit 0APBO as rim. This circuit
OAPBO is denoted by € and is reducible. The circulation I in € is defined
by I' = j‘% qdr. By Stokes’s theorem applied to ¢ and its spanning
surface S, on which curlq = 0, we have

I={q.dr={curlq.dS =0
% S

(4 LJuans

[ q.dr = | q.dr = —p(OP)
OAP OBP

because, through the independence of the paths OAP, OBP, the integrals
are scalar functions of the point P only. If now we choose a second point
Q close to P with PQ = ey (|n| = 1, ¢ < 1) provided PQ € £,
{ q.dr— | q.dr = | q.dr = —¢(0OQ)+¢(OP)

O4P PQ

040

Hence,

or

= —en. Vo +0(?)
Denoting the fluid velocity at P by q,, on PQ we can write ¢ = q,+0(¢)

so that
{q.dr = jQ{qP+O(s)}.dr = &1.qp+O0(c?)
PO P
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Equating the two evaluations of | q.dr,
PQ

enqp = —en. Vo +0(e?)
Allowing ¢—0 with n arbitrary, we find that

q, = _V(P
i.e. we have shown that the condition is necessary. For the given reducible
circuit € the circulation I' is zero. In a simply connected region %, not
only does ¢ exist, it is also single valued and the ensuing fluid motion is
termed acyclic.

To discuss vortex fields we first define a vortex line by the property
that its tangent at every point is parallel to the vorticity vector ¢ at the
same point. It follows that every particle on this line is instantaneously
rotating about an axis coincident with the tangent. The equation of this
line will be of the same form as equation 1.1 with u(r,¢) etc. replaced by
the Cartesian components of &.

A vortex tube of finite cross-section with boundary C at some station
is constructed by drawing a vortex line through each and every point of
C (if they exist). If the area enclosed by C has negligible dimensions, the
tube becomes a vortex filament.

We can show that vortices cannot originate or terminate anywhere
other than on fluid boundaries or else they form closed circuits. Applying

Figure 1.5

Stokes’s theorem to the vortex space #* within the vortex tube (Figure
1.5) enclosed by the sections whose boundary curves are C and C’

.dr = | curlq.dS = }¢.dS
fa [eutlq {¢
where S spans C, i.e. S is the area A’ enclosed by C’ plus the vortex surface

between C and C'. However, by construction, ¢ .dS = 0 on the vortex
(curved) surface so that the circulation I'* around C satisfies

r* = [q.dr = | ¢.dS
C A’

13




Since the section C’ is arbitrary | .dS is constant along the vortex tube
¥

and is referred to as the strength of the tube. This result implies that {
cannot vanish in the interior of the fluid space £.
Any circuit % (Figure 1.6a) which encircles a vortex ring or similarly

Plan

Figure 3.67

Figure |.6a

shaped obstacle is irreducible since the circuit cannot be contracted
beyond (inside) C without moving outside #,. This region #, can be
made simply connected by the insertion of a barrier B with two sides
B, B_ bridging C with  as shown in Figure 1.6b representing a plan
through %. The shaded area A4 enclosed by C is the intersection of the
vortex ring with the plane. Consider the circuits ¥ made up as follows

¥Y=%'+B_1+C|+B,]|
& € R, and does not cross the barrier B, therefore the circulation in .2
is zero. Consequently,
dr =0 = + + ) + .dr
sj’q {VJ; B’-(r cjx Bgi}q <

In the limit when B, coincides with B_ the sum of the contributions of
these bridge passages to { q.dr is zero. Hence the circulation in % is

I={qdr= {qdr=Tr* 1.14
§q r fq r=r, (1.14)

where I'* is the vortex strength Alternatlvely, writing q | = —grade
q.dr = —gradg.dr = —do, ie.(l * [—do = —[ol3; —_! ¢, —¢_)n
crossing the barrier, ¢ increases by I'* in which case @ is not single valued
for an irreducible circuit. The motion is termed cyclic

It should be noticed that we obey the right‘-fi)ana screw rule for the
sense of integration for the line integral over C in relation to the sense of
direction of ¢. Hence, for the circuit C’ on the other arm of the vortex ring

14

we have
f q.dr = — f q.dr = —I'*
'l
consequently the circulatxon I'in%'is

f q.dr = j

We note also that the sum of the c1rcu1at10ns for the circuits € and 4" is.
[+ =T*-T* =0 T
Suppose 2 is a circuit (Figure 1.6a) which lies gutside both arms of the
vortex ring without threading either arm. Using Q;ldges Land M it is
+ f{/_}q.dr =0

seen that
I;q-dl' = {j( 1/

This is precisely what should have been expected since X is a reducible
circuit whose circulation is therefore zero. -

We have stated that the necessary and sufficient condition for irrota-
tional motion is the existence of a scalar point function ¢ such that
grad ¢ = —q. When the fluid is incompressible the equation of con-
tinuity for a source-free region is divq = 0 so that ¢, when it exists,
satisfies Laplace’s equation,

divgradeo = V?¢ = 0 (1.15)
If on the other hand { = constant then curlq = constant = 2w (say).

Writing ¢ = @ AT+4q,, since curl @ At = 20, we find that curl g, = 0,
therefore @ = @ A r—grad ¢, where ¢ is any scalar point function.

q.dr = —I*

.‘—Problem 1.8 Show that ¢ = xf(r) is a possible form for the velocity
potential of an incompressible liquid motion. Given that the liquid speed

g—0asr— oo,deduce that the surfaces of constant speed are (r? + 3x?)r =& =
constant.
Solution. When ¢ = xf(r), q = —grad¢ = — f(r) grad x — x grad ().

Hence, with primes denoting differentiation with respect to r,

q=—fi-xfrr  f=f) (1.16)
—divfi—~(xf"/r)dive —r.grad(xf"/r)

o L f (. d(f\r
N '(7‘”5(7)?)

—f’i—c— 3£x—,\"§ - xr<£ —f—;>

and

I

divg

[
|
|
|
W
|
|
~

Il

I
|
=
TN
=~
+
A
~ |~
~—
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For an incompressible liquid divq = 0, consequently,

4f/ f// 4
" _ = O, e - = 0
S+ " or 7 + .
Integrating, f = Ar~* where A = constant. Integrating again
f= —3Ar" 34 B where B = constant. Hence by equation 1.16,

A . Axr
q= (37—3>l—?—

When r — o0, q = — Biso that B = 0 leaving

A (. 3xr
qZ?;E l——rz—

5 A? 6rar.i 9x*r?

and

r r r

Hence g* = constant when r~8(r* +3x?) = constant. O

Problem 1.9 Examine the 11qu1d motions for which ¢ the velocity

potentlal equals
LTI
|r L[ Fax\r

DR
r l =

where m, m,, m,, u are constant scalars and r, and r, are constant vectors.

Solution. (i) ¢ = m/r,q = —grad(m/r) = mr/r®,divq = m(3r*=3r.r)/r®
— 0. Motion is irrotational everywhere except at r = 0 and the equation
of continuity is satisfied everywhere except at r = 0. Velocity is radial
from r = 0 with magnitude ¢ = |g| > Oasr — oo and g - © asr = 0.
Moreover, the flux of volume flow across the sphere |r| = a equals

0 1 q.dS =ma~® [r.dS dS = (r/a)dS

fr.rdS = ma~? [dS = 4nm.

The flux is independent of the radius a; this fact follows directly from the
equation of continuity for

[q.dS = [ di d{=0 ifV £ r=0 forthendivq = Oforall V
AN C YUY 4um iV cr=0 (just proved)
Thus ¢ = m/r corresponds to the liquid motion induced by a source
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of oquut 4nm at r = 0; this source is said to be of strength m. If m is
negative the source becomes a sink of strength —m.

ey,

0
(i) In Figure 1.7 let S, and S, be two nonintersecting spheres centred
at r=r, and r = r, respectively and enclosing volumes V, and v,

respectively. 2 is a surface enclosing a volume  containing both V, and
V,. We have

Figure |.7

q = —gradp = q;+q,
where

q = my(r, —r1)|r—r, P, q, = mylr—r,)[r—r,

Using the results proved in (i), divq, = Oexceptatr = r ,and div q, =
0 except at r = r,: hence,

| divqdr = 4nm,

Vi

§ divqdt = 4nm, because V, = r = r,,butV¢ r=r,
v
| divqdr = 0 since Q—-V,~V, ¢ r=r,orr =1,

Q-Vi-V,

because V; < r = r_, but V¢ r=r,

It follows that this flow corresponds to a source of output 4nm, at r, and
a source of output 4rcm2 atr,

(iii) When € = |e| is very small, neglecting €2, we have for constant m

m_ m m m _ me.r 1
r+el » ~ (@+2ref T T3 = me.V r

Now put € = d and m = p/e, then

5<1) im 4O _ (w9
Hax o Ur+d| 7

17




The right-hand side is the limit as ¢ — 0 of a source of strength‘ u/.e gt
r = —é together with a sink of equal strength p/e at r = 0. This limit
is termed a doublet of strength u with its axis parallel to i

# @Pressure equation From equation 1.13 the equation of motion is

or using

q.V)g = V34)—-q A (V A g
we have

0 1
S-an{=F-V0e)—Vn =Yg

At constant entropy, p is a function of p only so that Vp/p =V { dp/p.

If also F is derivable from a potential Q, F = —grad ©, and
R Z‘: g Ag=-—-Vy wherey = jdp/p+ 2rQ (1?

In steady motion g A §{ = Vy in which case the surfaces y = constant
contain both streamlines and vortex lines. When flow is irrotational

{ =curllg =0 so that q= —grade, 0/0(—Ve)= —Vy or
V(—0¢/ot+y) = 0. Integrating
- 6_(p+ = _@+ d_p+ Lg*+Q = A(t), A(r)is arbitrary (1.18)
ot ot p
For steady motion d¢/ét = 0, A(t) = constant leading to Bernoulli’s
equation
{dp/p +14*+Q = constant (1.19)
Problem 1.10 The velocity q at any point is expressed by q = — Vo +
JVyu where ¢, A and u are independent scalar point functions of position.

Show that vortex lines are at the intersections of surfaces 4 = constant
with u = constant. From the equation of motion deduce that when

H = 3¢/0t—Adp/ot—y, and y = | dp/p +1¢°,

then
VH = Vu(DJ/Dt)— VA(Du/Dt)

and prove that H is constant along a vortex line. Show also that
{.V(DJ/Dt) = 0 = {.V(DwDt) and deduce that Di/Dt, Du/Dt and VH
are all identically zero. Interpret this result.
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Solution. From q = —V@+iVyu, {=VAq = VA(AVy) = ;VAVu+
ViAVyor,since V A Vy is identically zero, { = VA A Vu. This means that
vortex lines lie at the intersections of the surface 4 = constant with
p = constant. Using the equation of motion from Section 1.7 in the form
0q/0t—qA § = —Vy, since

oq o oA o
ot V<8t> <c )VIH_W(&)

and
gAl = qA(VAAVE) = (q.VuVi—(q.VAVu

we have

op . du o ou

Vy = V(E— E) <at+q.Vi>Vu+<~§+q.Vu>Vl

or

op du _ Di Du

V<6z /16— x) =VH = D H ———Vi (1.20)

~Now, since { = VAAVyu, we have {.VH = 0 so that for each instant of

time H is constant along a vortex line. Also, from the identity VA VH = 0,
DA Du
VAl—=Vu]| = i v/
(%) - 7 (i)
DA Dy
AV = Vi
v<D> v<Dt>A :

Multiplying scalarly in turn by Vi and VA we have

C.V<%lt1> =0={. V(gf) (1.21)

We have already shown that a vortex line lies on a surface y = A =
constant but, by equation 1.21, this line is contained at the same time in
the surface u+Dyu/Dt = A which is possible only if Du/Dt = 0; similarly
we have DA/Dt = 0 and equation 1.20 reduces to VH = 0. Thus H is a
function of time ¢ only and any surface y = constant or A = constant
contains the same fluid particles, which leads to the fact that any vortex
line also contains the same fluid particles as it moves throughout the
fluid. |

or

Problem 1.11 An open-topped tank of height ¢ with base of length a and
width b is quarter filled with water. The tank is made to rotate with uniform
angular velocity w about the vertical edge of Iength c. To ensure that there
is no spillage show that w must not exceed 2{cg/(a®+b?)}*.
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Solution. Take axes OX and OY along the base edges of lengths a and
b respectively with OZ along the vertical axis of rotation. Assuming that
in the steady motion any liquid particle at (x, y, z) at some instant describes
a horizontal circle with centre on OZ and radius R = ,/(x?+ y?), the
liquid acceleration Dq/Dt = —®?R where R = xi+ yj. The body force
F = —gk so that the equation of motion becomes

—w’R = gk—Vp/p

Z
/ c
Y
L
/7 b
0 7 X
Figure 1.8

Multiplying throughout scalarly by dr = dxi+dyj+dzk and using
Vp.dr = dp we have
—wi(xdx+ydy) = —gdz—dpjp
Integrating,
p/p = 3’ (x> +y*)—gz+ A
where A = constant because motion is steady. On the liquid surface
p = the constant atmospheric pressure, in which case its equation is

Lw*(x*+y*)—gz = constant = B (say)
The minimum value of z(= h) on this surface will occur on the axis at
L where x = y = 0 and the maximum value of z (= H) will be reached

when x2+ y? is maximum, ie. on the vertical edge x = a, y = b. Hence,

the constant B = —gh = 1w*(a®+b*)—gH. We can evaluate H and h
in terms of  using the condition that volume is conserved in the absence
of spillage.

But

volume V = tabc =[f, zdxdy
where A is the base of the tank, z = h+A(x%+)?), 4 = w?/2g, ie.

20

a b a
V= jo dx jo (et AP+ ydy = J° b+ ax)b+1ib)dx
= ab{h+jMa*+b?)}
Since

V = tabc and h = H—-Ma®+b?),
H = jc+2Ma*+b?)
To prevent spillage H < c, hence
A= 0?*2g < 9c/{8(a*+b?)}

or
o < 3{cgfla®+b*)}? ]

Prol.)lem 1.12 A shell formed by rotating the curve ay = x? about a
vgrtlcal axis QY is filled with a large quantity of water. A small horizontal
circular hole of radius a/n is opened at the vertex and the water allowed
to escape. Assuming that (i) the flow is steady, (ii) the ensuing jet becomes
cyl_mdrical at a small depth c below the hole, (iii) this cylinder has a vertical
axis and cross-sectional area o< 1) times the area of the hole, show that
the time taken for the depth of water to fall from & to +h when h is very
large is approximately

n? [2h3\*
%<7> I+ =G+ E-B+1+BG+BY), = ch
Y e—
s x
Y
y=x%a
H Ka/n?
C X
J
Vo
Figure |.9

Solution. Since the radius of the hole H is a/n it is cut at a height y =
(a/n)*/a = a/n* above the vertex. The ensuing jet has area ana?/n? at level
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J, a depth ¢ below H. When the upper surface S of water is at a height
y—a/n* above the hole, assuming y is great enough, the surface will
remain plane and fall steadily with vertical speed v = — dy/dt. At the
same instant at J, where the exist jet becomes cylindrical, the vertical
speed is u. Applying the equation of continuity at levels S and J we have
nx%v = ana’u/n?
The pressures at levels S and J are equal to the atmospheric pressures
at those levels and we shall assume they are the same, i.e. the air density will
be neglected in comparison with the liquid density p. Hence Bernoulli’s
equation gives
O/p+3v?+gy = O/p+3u> —g(c—a/n?)

where IT is the common atmospheric pressure. Eliminating u we have

n*x* G
Uz(aza“_l =29 yHe=—3

dy (n*y? ¥ a \?
7(#7“ = \2temsa)

Hence the time from y = h+a/n* to y = th+a/n® is T where

th+ajin? n4y2 _o2q? ES
T=- 22 e
2gaa*(y+c—a/n?)

h+a/n2

" 2 2 2.2)%
- J {(’1—2;_;%)2(;%0)“—} dz wherez = y—a/n®
th

n? Bz
~ J(2gata?) Lh J(z+0) 4z +Oln)

Using z/\/(z+¢) = \/(z+¢)— ¢/ /(z+¢) and neglecting the term O(n) we
have, approximately,
2

or

r= m [z =2ez o7,
- 3—0(—(12:/% {(h+C)%-(%h+c)‘%_3C(h+c)%+6c(%h+c)%}
= 375\7—;25 {(h+ ) —Gh+ o)t} {h+c+(h+ ) Gh+ o) + 3h+c—3c}
n? (2h*\* L 4y (3 " .
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Problem 1.13 A liquid of constant density p flows steadily with speed
U under constant pressure P through a cylindrical tube with uniform circu-
lar section of area 4. A semi-infinite axisymmetric body is placed in the
cylinder with its axis along the axis of the tube. Given that the area of the
section of the body tends asymptotically to a show that the force on the
body is a{P —1pU?af(A —a)}.

Solution. From the equation of continuity the liquid speed downstream
will tend to a value V where AU = (4 —a)V. Moreover, by Bernoulli’s
equation the pressure downstream tends to P’ = P+1p(U?—V?). The
force on the body is, by symmetry, parallel to the common axis. If F
denotes this force in the downstream direction the reaction force on the
liquid is —F so that the total force on the liquid is PA~ P(4—a)—F
where the first two terms are the contributions from the upstream and
downstream pressures respectively. Equating this force to the momentum
flux we have

PA—P(A—a)—F = pV¥A—a)—pUA
UsingV = AU/(A—a)and P’ = P+4U*~V?) = P+iU*[1-{4/(A—a)}*]
we have,

—a A-—a
= Pa— ipU?a*/(A~a) O

A2 242
F=PA—P(A—a)—;pU2{A—a—A + —ZA}

1.8 One-dimensional gas dynamics We assume that a gas moves steadily
in an axisymmetric tube with OX as axis and 4 = A(x) is the normal
circular cross-sectional area of the tube at any station x. Using primes to
denote differentiation with respect to x we also assume that 4'(0) = 0,
A'(x)/x > 0 for all [x| > O with A’(x) everywhere small. In this case we
may neglect any component of velocity perpendicular to OX compared
with the parallel component « = u(x) so that q = wu(x)i. Henceforth we
shall refer to such a tube as a Laval tube. To solve any problem we need
the following equations:

(i) Equation of continuity. From equation 1.12 when flow is steady we
have

0
o (pud) = 0 or mass flux pud = constant = Q (1.22)

(i) Bernoulli’s equation. For steady flow with zero body force, equation
1.19 becomes

{dp/p +1u? = constant ordp+pudu = 0 (1.23)
23




(ili) Thermodynamic equations. For unit mass of gas
p = RpT, R = gasconstant = ¢,—¢, (1.24)
where ¢, ¢, are the specific heat capacities at constant pressure and
constant Volume respectlvely The acoustic speed is a where

= /(dp/dp) (1.25)
If entropy is constant along 2 line of flow then p and p are related by the
adiabatic law
p = kp? (k = constant,y = ¢,/c,) (1.26)
Such a flow is said to be isentropic.

Problem 1.14 Find an expression for the local acoustic speed in terms
of the fluid speed.

Solution. When p = kp?,

2 = dp/dp = kyp’™! = yp/p
Also, by equation 1.23, , s,
dp/p+1u? = constant = [ kyp’~? dp+;u
p/p+;

kyp? ™y~ D) +3u?

i

ie. a?/(y—1)+3u* = constant = 4
Ifa=a,whenu = 0,4 = a}f(y—1) and
a® = a}-iy—u? o 1.27)

Problem 1.15 Prove that if a gas moves unsteadily in a Laval tube
(described in Section 1.8) then 8%p/dt> = (8%/0x*)(p + pu?).

Solution. In this tube we have u = u(x,t), p = p(x,.t) and p = p(x,t).
With suffixes denoting partial differentiation, the equations of motion and
continuity are

u+uu, = —p,./p (1.28)
p,+ou), =0 (1.29)

Adding p times equation 1.28 to u times equation 1.29 we have
(pu),+(pu* +p), = 0 (1.30)

Differentiating equation 1.29 partially with respect to ¢ and equating with
the result of differentiating equation 1.30 partially with respect to x we
have

(pu),, = (pu),, = ~p, = —(P+pu), a

Problem 1.16 Deduce that for a steady isentropic flow of a gas in a
Laval tube the mass flux density j = pu is maximum when the fluid speed
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is sonic. Prove that this maximum in terms of stagnation values is
Poao{Z/(V + 1)}i(v+ Ditr—-1),

Solution. In steady flow we can regard pu as a function of u, hence,
differentiating and using Bernoulli’s theorem in the form dp+ pudu = 0,

we have

d dp dp u?

— = 1—u? =pll-=).

P =ptus = p( dp) p( p
For an extremum either p = 0 (ignored) or u = q, i.e. the speed is sonic.
Since d(pu)/du is positive or negative according as uis < or > a,j = pu
is a maximum j_, when u = a. Since a® = dp/dp = yp/p = ykp’~!
(p = kp”, k = constant), a*/al = (p/p,)’”* so that jmax pa = poa ><
(a/a, )2/” V. Again, using equation 1.27 with u = a, a* = a2 —1(y—1)a?
ora* = 2al/(y +1). Finally, in terms of the stagnation values,

2 $+1/(z-1)
-]max pO O<,y_+_l>

2 \Ao+iG-1)
= po“o(ﬁ) O

Problem 1.17 Investigate the variation of fluid speed u for steady flow
along a Laval tube.

Solution. From equation 1.22, (d/dx)In(pud) = 0, ie. p'/p+u'ju+
A'/A = 0 where primes denote differentiation with respect to x. From
Bernoulli’s equation and the definition of a, we have dp = — pudu = a?dp
so that p'/p = —u u'/a®. Substituting we have

ufu u A
S-1)==m2-1n==
u<a > u( ) A

where M = u/a is the local Mach number. At the throat of the tube x = 0
where A'(x) = 0, either ¥’ = 0 (an extreme value of u) or u = +a, ie.
the fluid speed is sonic. It is convenient to assume that when x < 0,u — 0
(=>A — oo)sothat p —» p, and p — p,, the stagnation values. As Q = puA,
the constant mass flux (as far as variation in x is concerned), is slowly
increased from zero, initially, we would have u < a for all x (flow is
entirely subsonic). The condition is expressed by
u* < a® = al-iy-?
or u* < 2aZ/(y+1).
In this case, at the throat, x = 0 where A’ = 0 the only possible root is
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u' = 0. Moreover, since ' and 4’ have opposite signs (because u < a)
this extreme value of # is a maximum u_ . This subsonic regime is ensured
by u? < w2 < 2a(y+1).

As Q is further increased u, will increase until u,, = a (for u = a can
occur only when A’ = 0). The channel is now choked because Q has
reached its maximum p,u, A, (see Problem 1.16, suffix ¢ denoting values at
the throat). For x > 0 the flow will be supersonic (# > a) or subsonic
(u < a) according to the exit pressure. For this region 4" > 0 so that
wW(M?*—1) > 0. If M > 1 (supersonic) ¥’ > 0, i.e. u increases with x
while (from Bernoulli’s equation) p and p decrease. If, on the other hand,
M < 1 (subsonic) in x > 0, ¥’ < 0, p’ > 0 and p’ > 0. Finally if the
external pressure cannot be adjusted to the correct value in terms of the
shape of the tube the continuous flow will break down and shocks will
occur.

Problem 1.18 A perfect gas flows steadily with subsonic speed in an
axisymmetric tube formed by rotating the curve y = 1+¢(x), |e(x)| < 1
for all x, €(0) = 0 about the axis OX. Neglecting second-order terms prove
() u=u{l=2e(1—MD)}, () M = M,{1—e2+G-)MD/(1-MD}
where u and M are the fluid speed and Mach number respectively at any
point, the suffix 1 denoting their values at x = 0. Find also an expression
for the temperature.

Solution. We write u = u,(1 4 4) and the acoustic speed a = a (1 +9),
where A and & will each be of order ¢ so that, to a first-order approximation,
we may neglect 42, 5> compared with unity. From equation 1.27,

a?+3(y—~1)u? = constant = a2 +3(y — 1)u?

Neglecting 6% and 42, a* = a?(1+26), u> = u}(1+24) so that
(1 +20)+ 4y — D1+ 242 = a®+1(r— 12
1e.
2002 + Ay — 2 = 0
or
26+ Ay—1)M? =0 where M, = u,/a, (131)

By equation 1.22, the equation of continuity is puA = constant where
A = ny? = n(1+2¢) neglecting ¢ Also a* = yp/p = kyp'™', k =
constant. Therefore,

a?*= V(14 2¢)u = constant = a2/~ Dy,
or

(148)20~ V(1 + 4)(1+2¢) = 1
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Neglecting second-order terms,

l+44+2¢+20/(y—1) = 1
Solving for ¢ and 4 using equation 1.31, subject to M, < 1 (the motion is
defined as subsonic),
4 = =2¢/(1-M}), 6 = eMi(y—Di(1-M?})
Hence
u o - 2¢
T 1-M?

1

u u(l1+4) 2+ (y—~1)M?
M=-="L"""_ M@1+4-6) = T
a” ags  Mil+4=9) Ml{l —Mm ¢
The corresponding expression for the temperature is found by combining
equation 1.24 with a®> = yp/p. Hence a®> = yRT or

T da 2e(y— 1)M?
Tl—g—1+25—]+4\1—Mf 0
1.9 Channel flow In problems of shallow channel flow with gravity
the nondimensional Froude number, F = U(gL)™* plays a dominant role.

The two following problems serve as illustrations. O

Problem 1.19 An open-channel flow is confined between two vertical
planesz = +candahorizontalbed y = 0. Upstream the flow has uniform
velocity u,i with constant depth y,. A hydraulic jump causes this stream
to attain a greater height y, and uniform velocity u,i. Deduce that (i)
v, = 39, {(1+8F3)*—1} where F, = u,(gy,)"*, the upstream Froude
number, exceeds unity, (ii) the downstream Froude number F, = uz(gyz)‘*
as aconsequence is less than unity, (iii) the speed of a tidal bore of amplitude
y,— Y, into still water of depth y, is {}(gy,)(4+ 4%)}* where 4 = y,/y,.
Using (iii) prove that the speed of infinitesimal waves on shallow water of
depth y, is (gy,)*.

Solution. With liquid density p everywhere constant, the equation of
continuity states that the volume flux Q parallel to i, the direction of flow,
is

Q = 2by,u, = 2by,u, (1.32)

The mean hydrostatic pressure at a cross-section of area 2by, normal
to the flow upstreamis p, = 1pgy, whereas downstream the corresponding
area and pressure values are 2by, and p, = ipgy, respectively. The
momentum flux equation is therefore

pl(zbyl)—pz(zbyz) = pQuz _pQul
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or, using the preceding expressions,

gb(y? —y3) = Qu,—u,) = 2bily (v, —¥,)/y,-

Thisis a cubicequation in y, of which y, = y, is one solution representing
the case of uniform flow without discontinuity. For the jump solution the
residual quadratic equation in y, is g(y, +y,)y, = 2u?y, . Ignoring the
unacceptable negative root we have

v, = v, {(1+8F3) -1},  FI =4i/igy,) (1.33)

so that y, > y,, u, > u, when F > 1. To evaluate the downstream
Froude number F,, we interchange y, and y, in equation 1.33 resulting
in y, =Ly, {(1+8F)—1}. Since y, >y,, (1+8F3)*—1 < 2 giving
F, <1

To prove (iii) we first find an expression for u, in terms of y, and y,.
Using equation 1.33 we have

8F2 _ 8“% _ 2y2 1 ? 1 = 4A2 A h a4 =
2 = 7 - y_+ —1 =44*+4), whered = y,/y,
1 1

Consequently, u, = {%(gyl)(A2 + 4)}* and represents the upstream speed
relative to a stationary hydraulic jump. If this discontinuity in height moves
it is called a tidal bore. Its speed relative to the upstream value remains the
same as if it were stationary and so u, is the speed of progress of a bore
into still water. Furthermore, if the height y, — y, tends to zero, 4 — 1 and
u, = (gy,)* which is then the speed of an infinitesimal wave on water of
constant depth y, (provided that this depth is small compared with the
wavelength).

Problem 1.20 Choosing axes 0X, OZ horizontal and OY vertically
upwards, an open waterway is cut with vertical sides defined by the
equations z = +b(x) and possesses an almost level bed y = h(x) ~ 0
forall x. It is assumed that the curvatures of both b(x) and h(x) are negligible
and that water flows steadily in this canal with a velocity which, to a first
approximation, is everywhere parallel to OX and has speed v = u(x). Find
the differential equation for the surface profiles and discuss these profiles
when h(x) = 0, b(x) = a(l—ecosinx), e < 1 when |x| <1, b(x) = a
when | x| > 1 given that the flux of volume flow is ,/(108ga°).

Solution. For steady flow p+gy+ju® = constant while on the free
liquid surface y = y(x), the pressure p has a constant atmospheric value
sothat y+u*/2g = constant. The equation of continuity for steady motion
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is Su = constant = Q, where Q is the volume flux and S(x) = 2b(y—h) is
the sectional area normal to the flow at a station x. Eliminating « we have,

QZ
YT 862y —hg
2 2b/ 2 r_h/
/_Q_ 3 3t 2(y )3 =0
8g \b (y—h)*  b*(y—h)
where y' = dy/dx etc, ie.

, 0? Q> (b_K
1-— = i
g < agiy—ir) " agro—mt\b y-n) Y
which is the required differential equation of the profiles. The different
shapes are generated by varying the upstream or downstream values of

y and u.
yl<1 < ) A (1.35)

= constant
Differentiating

y

If h(x) = O for all x
_4gb2y3 = 4gb3y2

from which it appears that y’ is undefined when Q? = 4gb%y®. We denote
this critical flow profile € by y = y (x) where

y2 = Q*/(4gb*) (1.36)
For this profile u = u, where u? = Q%/S? = Q%/(4b*)?) = gy, so that
u, is the wave speed referred to in the last problem. Thus for all points on
%, the Froude number F = 1. From the equation of continuity at any fixed
station x, Q> = 4b*u’y* = 4b*uy? or F? = u?/gy = v/y? ie. F < 1
ify >y andF > 1ify < y_.
In the given canal for which Q? = 108ga®, y* = 27a3(1 —ecos 1nx)~2
for |x| <1 or, correct to the first order in ¢, y, = a(3+2¢cos 1nx) for
|x| < 1 with y, = 3a otherwise. We can rewrite equation 1.35 in the form

Y (L= 32/y%) = yib/(yb) (1.37)
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Figure I.10—Pian

Figures 1.10 and 1.11 (not drawn to scale) illustrate the plan and eleva-
tion respectively of the canal for |x| < 1, the broken line %’ in the latter is
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the critical flow profile for which the Froude number F = 1. This profile

intersects OY in the point I(0, a(3 +2¢)). Using equation 1.37 and Figure

1.11 the various cases are:

1 Profile HH' (when depth is sufficient): y > y_(F < 1) for all x. By
equation 1.37,y' = 0 at x = 0 where b'(x) = 0 and y" and b’ have the
same sign.

2 Profile LL (low depth): y < y_ (F > 1) for all x. Here y" and b’ have
opposite sign with y = 0 at x = 0.

3 Profile AIA:y >y (F < )forx <0,y <y, (F>1)for x > 0. At
the interchange y = y_, unless y = oo, b’ = 0 so that the profile passes
through I.

4 Profile BIB: y <y, (F>1)for x <0, y>y (F<1)for x>0
With y # oo the profile passes through 1.

5 Profile UU': intersects & orthogonally without passing through I. This
profile is not physically possible since there would be two values of y
for one of x.

There are obviously an infinite number of profiles according to the

conditions upstream or downstream. For profile HH' any change down-

stream will propagate upstream since F < 1. If y is steadily decreased
downstream the profile will eventually attain the form AIA" when con-
ditions downstream will not penetrate beyond I. For profile LL the shape

is entirely dependent upon the upstream values. O

~oE SrT
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|

x

1.10 Impulsive mgtjon If @ = @ (x) is the impulsive pressure generated
at any point P (OP = r) of a liquid of constant density p the impulsive
equation of motion applied to the liquid of volume V enclosed by a
geometric surface S is

[pqdi = — | wdS = — | Vwdr (by Gauss’s theorem)
v N 14
Since V is arbitrary,
q = —V(op) = — Vg, where ¢ = @/p+ constant (1.38)
so that the resulting motion is irrotational.
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1.11 Kinetic energy Suppose that liquid of constant density moving
irrotationally with a single-valued velocity potential ¢ contains a solid
body of surface B moving with velocity U. The kinetic energy 7 of volume
V of the liquid, which is external to B and internal to some geometrical
surface X is

7= %p i[qz dv = %P J (Vo)? dt, whereq = — Vo
By Green’s theorem since V¢ 20

T =1p Bj ¢V<p.d5+§p£ @Vo.dS (1.39

Figure I.12

If as [r| = R - oo, ¢ ~ (p.r)r~3 where p is a constant, choosing =

as |r| = R, we have ){ oV .dS= O(R3) for large R. In this case, for an

infinite liquid (R — o0), the kinetic energy is

T=1p | oVe.dS (1.40)
where dS is into the solid. #

1.12 The boundary condition If n is the unit normal to any point of
B, the body, the boundary condition is simply

n.U=n.q = —-n.Vp (1.41)
In this case the kinetic energy .7 of the infinite liquid surrounding B, using
equation 1.40, is

T = —%pg oU.dS (142)
Problem 1.21 Find the kinetic energy of liquid lying in the region
a < [r| < b when motion is induced entirely by a source of output 4nm
located at the originr = 0.
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Solution. Using equation 1.39 the kinetic energy .7 is

T =13p | oV9.dS+1p [oVe.dS
E z

where E is the inner (nonsolid) boundary r = |r| = a and X the outer
boundary r = b. Now V¢.dS = (d¢/0n)dS where n =r on X and
n = —ron E, n being the outward normal from the liquid. Now for the
source ¢ = m/r so that on ¥

dp/on = d@/dr = —m/r? = —m/b?
whilst on E

0p/on = —0@/0r = m/r? = m/a®
Hence,

m? m? 1 1
=1p <— §>4nb3 +§p<;) 4na* = 2npm? <E - B) O

Problem 1.22 A sphere of radius a moves with velocity U in an infinite
liquid at rest at inifinity. Show that ¢ = Ja*(U.r)/r* is a possible velocity
potential of irrotational motion and find the kinetic energy of the liquid
in this case.

Solution. Withg = 3a*(U.nr™3,q = —Ve = La®{3(U.ryr *r—Ur 3}
and —V?¢ =divg=1a® 3(U.r)r >+9U.r)yr 5 —15(U.r)r.t)r "+
3U.r)r %} = 0 fulfilling the equation of continuity. Since q — 0 as
r — oo the condition of rest at infinity is also satisfied. On the sphere
the boundary condition is ¢.n = U.n or, since n = r/g, q.r = U.r.
From the above q.r = a*(U.r)r 3 so that when r = ¢ we have the
correct relation. Hence the given ¢ is a possible solution.

To find an expression for the kinetic energy we use equation 1.42.
On the sphere r = a, ¢ = (U.r),dS = —(r/a)dS, therefore

7= i(g)j(u.r)’- ds

B

Choosingtheaxis OX paralleltoU,U.r = Uxsothat7= (pU?%/a)[x*dS.
B

By symmetry of the sphere B, [x?dS = [)?dS = {z?dS =
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1 (x*+y*+2%)dS = %na*, since x>+ y*>+z* = a’. Hence
T = inpU%a® = ;M'U?
where M’ = mass of liquid displaced by B. m|

1.13 Expanding bubbles Gas occupies the region | r| <R, where R
is a function of time ¢, and liquid of constant density p lies outside in
|r|> R, We assume that there is contact between gas and liquid at all
time, and that all motion is symmetric about the origin r = 0. Hence, the
liquid velocity q at any point P, where OP = r, is of the form q = q(r)#,
(r = R). The equation of continuity, implying that the flux of volume
flow across |r| = r is independent of r but not necessarily independent
of time t, is given by
4nrlq = constant = 4nm

q = m/r*

q = mr/r? (1.43)
Here curlq = 0 (the vorticity is zero everywhere by symmetry), i.e. ¢
exists with q = — Vo where ¢ = m/r and m = m(t). This source strength

m can be expressed in terms of R and dR/dt = R, for at the gas-liquid
interface continuity of velocity means that ¢ = R when r = R, ie.
m/R?* = R.

The liquid pressure is found from equation 1.18 with @ = 0 and
dp/ct = (d/dt)(R?R)/r giving

p (RPRV 1 d _,.
p+2< - ) e (R*R) = A(») (1.44)
Problem 1.23 Given that a liquid extends to infinity and is at rest there
with constant pressure I1, prove that the gas-interface pressure is II +
1pR™2(d/dR)(R®R?). If the gas obeys the law pV''** = constant (x is a
constant) and expands from rest at R = ato a position of rest at R = 2a,
deduce that its initial pressure is 7alT/(1 —273%).

Solution. From equation 1.44 with r — oo, A(t) = II/p = constant.
When r = R
Poapge 1 dpopy 0
p +2 R dt( ) p

ie.
3 . p\ d
p=I+1p(2RR+3R? = H+§(—R2) g R'RY)
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To find the gas pressure we use pV'** = constant where volume V =
47R3.1fp = p,when R = a, then pR**3* = constant = p,a**>*. Apply-
ing continuity of pressure between the gas and liquid at the interface

3+3a d
ez

Multiplying throughout by 2R? and integrating,

2p,a@®t ¥ s 3p2
T T 34R3e = EHR +pR°R*+C, C = constant
R = 0 when R = a gives
29 &
R = 0 when R = 2q gives
2p a’
- 5;231 = ITGHGS-}-C

Subtracting, to eliminate C, we obtain the result
2p.a’ 1
(1 g) = e

Tall
1_2—3a'

or

Do = Q
Problem 1.24 A solid sphere centre O and radius a is surrounded by
liquid of density p to a depth (a® +b%)* —a. II is the external pressure and
and the whole lies in a field of attraction ur? per unit mass towards O.
Show that if the solid sphere is suddently annihilated the velocity R of the
inner surface when its radius is R is given by

IRZR3{(R3+b%* —R}p = 20311+ pub®)(a® — R3)(R> + b3)*

Solution. The volume of liquid is §m(a® +b%)—%na® = %nb>. Hence at
time t > O when the internal radius is R < a the extreme radius is E
where E3—R3 = b®. We shall apply the principle of energy starting at
time t = O after annihilation of the sphere.

The kinetic energy of the liquid at time ¢ using the result of Problem 1.21

is
1 1 A |
— 21 2 _ 2\ = ap2f _ _
= 2npm (R E) 2npR*R <R E)

since m = R*R. The work done by the external pressure when E, the
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external radius, reduces from E, = (a®+5%)* to E is
W, = - JE 4nllr? dr = $nll(E} ~ E3)
0

The work done by the attractlve force ur? per unit mass in a displacement
fromr = Otor = ris — —yr The total work done by this force to produce
the initial configuration of the liquid is J jE 4nr®p dr. Similarly the work
done to produce the configuration at time ¢ is 4y [§ 47r°p dr so that the
difference is

Ey

W, = trnup (Ji r’dr— r r dr) = Znup(R®—E®—a®+Ef)
= Znupb (—R*+E*+a*>+E})

since E*—R? = b3 = E} -4 the energy balance is finally 7= W, + W,,
ie.
. 1 1
2npR*R* <§ - E) = nIl(E} — E®)+ 2nupb*(a® + E} — R*>— E%)
= $nll(a® — R?)+ 2nppb>(2a® — 2R)
so that
9R?R*{(R*+b%) = R}p = 2031 + upb¥)(@ ~RHR>+ 5% [

EXERCISES

1. In a given fluid motion every particle moves on a spherical surface
on which its position is defined by the latitude « and longitude g. If w
and Qdenote the corresponding angular velocities deduce that the equation
of continuity may be written in the form

0

7;?) cos o + —(pa) cos &) + ﬁ(chosﬂ) =0
2. A gasforwhichp = kp moves in a conical pipe. Assuming the particle
paths are straight lines radiating from the vertex reaching an exit speed
v where the diameter is D, show that the particle speed is a’v when the
diameter is (D/o) exp {(«* — 1)v?/4k}.

3. Show that when the velocity potential ¢ exists the fluid acceleration
may be expressed in the form V{ —(8(0/6t)+§q2}. Using this result show
that for a source of variable strength m moving with variable speed along
the OX axis the fluid acceleration at a point distant x ahead of the source
is x = *(d/dt)(mx?)—2m2x 3,
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4. The gas within an expanding spherical bubble surrounded by liquid
at rest at infinity obeys the law pV* = constant. If initially its radius R is
a with R = 0 and p = Ap_ where p_ is the liquid pressure at infinity,
show that R will oscillate between a and ua where p is the positive root of
the cubic u(u*+p+1) = 34
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Chapter 2

“ Two-Dimensional Steady Flow

%**2.1 Fundamentals In this chapter we shall assume that everywhere

in the fluid @ﬂow is steady (6/0t = 0), @the fluid density p is constant,
(iii), flow is two-dimensional and independent of the z-coordinate
0/0z = 0), ‘@ volume quantities such as volume flux, forces on two-
dimensional bodies, kinetic energy etc. which do involve the z-dimension
are measured in terms of unit thickness parallel to OZ. Using suffixes
to denote partial differentiation, the main features of flow are:

the velocity vector

q = u(x, y)i+v(x, y)j+ 0k 2.1

"
the lines of flow € or streamlines, from equation 1.1, are integrals of
dx dy NC. 9

L 2.2
Wy vy @2)

orvdx—udy = 0.
In any source-free region #_ the mass-conservation equation or equation
of continuity from equation 1.9 is

c.6 ¥ urn =0 (2.3)

This is the necessary and sufficient condition that vdx —udy is the exact

total differential of some function ¥ = ¥(x, y), for then

vdx—udy = dy = y dx+y dy forallx,y

implies
e st

u= —y_, v=y, (24)
v 7
The lines of flow € are then given by vdx—udy = 0 = dy, i.e.

Y(x,y) = constant/
Y _is called the gtream function (or specifically, the Earnshaw stream

function).{[When it exists, the equation of continuity is automatically
satisfied and conversely ¥ exists at all points P of a source-free region £_.
Since, by assumption, the motion is steady, the streamlines y = constant
are fixed curves in two-dimensional space and coincide exactly with the

pathlinef/
/
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The flux of volume flow Q across any plane curve joining A4 (a,b) to Defining #_ as the region which is both source-free and vortex-free,

P (x,y) in Figure 2.1 is i.e. the intersection of regions #Z_and &, we have,
3 Forall P e #_both g and y exist, V2y = { = 0,V?p = —(u_+v) =0, ]
Y Q \ (z,y) by equation 2‘9, 1.€. ¢ and  are harmonic functions and .
—u=¢ =1y, —v=9, = -y, (2.8)
.“ . . V
as These constitute the Cauchy—Riemann equations which form the neces-
9+l sary and sufficient conditions tﬁat the harmonic functions ¢ and  are
Ala,b 2" the real and imaginary parts of (some) complex function w of the complex
g - variable z = x+1y, L.e.
o ' W2) = o(x, ) +iW(xy), z=xtiyforallPe®, — (29)
Figure 2.1 w(z) is called the complex poteritial of liquid motion; it ceases to exist
» P at points occupied by sources, sinks or vortices for which P ¢ #_ . Dif-
0=\ (—usinf+vcosh)ds = dy +y dx ds ferentiating with respect to z,
4 ) A\ Vds  Tds dw
; 2 = g +iv, = ¥,—ig
dz ¥ Ve
= | @ = ¥ix)-Plab) (25) .
A = —u+;v
Q is positive when measured in the sense right to left with respect to an =—qge * where u = gcosl, v = gsind (2.10) «/
‘observer at A looking towards P. In particular, the locus of points P g= |dw/dz )is the magnitude of the liquid velocity and A is its inclination
‘ satisfying the condition @ = 0.is ¥(x,y) = ¥(a,b) = constant, which is “to the positive axis. At points of liquid stagnation u = v = 0, given by
simply the streamline passing through A. dw/dz = 0 = dw/dz. The fact that any complex function w(z) represents
For two-dimensional flow the vorticity vector { is given by some liquid motion produces a convenient method of generating liquid
C=curlg= |i j k| =@ _—uk motions. )
T/ It should be noticed that the level curves ¢ = constant and ¥ =
d/ox d/oy O . - -
0 constant are orthogonal. Their gradients are respectively
u v
ie.{ = (k where { = VU, If  exists { may be expressed in terms of it, ‘_iX = — ﬁg d_y = — fz
fOI' dx @ =const (py ‘/ dx Yt = const l/Iy \/
{=v,—u =W),—(=¥), =¥, +¢, = vy (2.6) At the points of intersection, by the Cauchy—Riemann eguations (2.8)
v v’ we have
} V is the two-dimensional nabla operator because all quantities are @ v .
independent of z. <— J)( - = -
\ In a vortex-free region@g = curlq = 0 and motion is irrotational, ? Yy / - l l
w or all points P of this region a velocity potential ¢ = ¢(x, y) exists and In terms of plane =D_E_Ola:r coordinates r and 6, (P = o(r,0), ¥y = '
the velocity components are derived from it by ¢ = — grad ¢, which, for Y(r,0). We denote the radial and transverse components of the velocity *
two dimensions, gives by g, and g, respectively. From the , nd diagram of velocity representa-
U= —¢ b= —g @7 tion we Ha'l'\'/e!u+fv = (g, +1q,) ¢} hence taking the complex conjugate
To summarise, we have: - - and using equation 2.10, '
1 ForallPe R,y exists,u = —y ,v =y_, V3 = {. " dw . L\ ie
L S y x —_—_— = _— = —_ 1
W/\- 2 ForallPe R, ¢ exists,u = —@_,v = (py,C =0,V = —(ux+vy). dz u—iv = (q,~igye / 2.11)
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Again, from q = —grad g, we have ¢, —a<p/ar and q, = —0p/rdb.

Next, we express these velocity components in térms of ¥ as follows.

In Figure 2. ; let T (r+&r,0+80) be a point neighbouring P (r, ) such
-

Srqg T(r+dr, 8+38)

9=%r
Sr
/y r80 / W
B Q=38y
/ -
//f_o%q/(// P(r,8)
1,/// 9 9:0

Figure 2.2

that if i is the value of the stream function at P,y + & is the correspond-
ing value at T. By equation 2.5, the flux of volume flow across any curve
PT is 8. Complete the elemental polar triangle PNT where NT = dr is
drawn radially and PN = r&6 is drawn transversely. The flux, to the first
order, out of this triangle across NT is 8r g, and across NP the flux is
—rb&0q,. Therefore, in the absence of sources or sinks within PNT, for
all r, 6, we have

Sy = i —Or+— ud 80 = q,0r—q,r 89
L Or o0
leading to

oy 1y
v -- - %5 2.12)

¥k>k 2.2 Elementary complex %tentiggg
-? 2.2.1 Uniform stream Here u = Ucosa, v = Using_where U and «

are constants representing the magmtud% and 1ncl'?tlon respectively
of the stream. Since
dw = —u+1v = —U(cosa—isina) =
dZ [V e
integrating and acknowledging the physical insignificance of the constant
of integration,

—Ue-i)
e

W= - Ue““z 1!//

The real and imaginary parts are
¢ = —U(xcosa+ ysina), Y = U(xsina—ycosa)\/

The lines of equipotential and streamlines form mutually orthogo
networks of parallel straight lines.

?2.2.2 T imensional source Given that .z = (. is a source of volume
outpu y symmetry on the circle z = r, the velocity components due

to this source alone are g, = 0, g = 2mn/2rn = m/r. A is the whole of
the z-plane excluding z = 0. Both @ and  exist evervwhere except_at
z = 0. Using equations 2.11 and 2.12

V=2l _m_ e _ 1o

r or r oo Y
R 1 6(,0 Oy
W= T Y
Integrating
¢ = —mlnr, Y = —mb
or -
w=@+iy = —mlnz (2.13)

The singularity at z = 0 is due to the source there The test for the presence
of a source at any point is given by evaluating § dy =[] where Cis a

tight circuit enclosing the point. For z = 0, in th1s particular @ce,

we have [Y] = —2mn corresponding to a source of outpu or
rength m,
Similarly, a source of equal strengthmat z = z, has a complex potential
W = —mln(z—z,) from which —

= —mln|z— zolandlll = —marg(z—z,).
P2 v

7
7

8.

2 (gei)

0{(z=0)

B (-agel@)
Figure 2.3
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—> 2.2.3 Source and_sink of equal strengths The complex potential of 'f

a source of strength m at 4 (z = ae”) with an equal sink at B(z = —ae™®)
Y is Iw = —mIn(z—ae*)+min (z+ae“").l Writing arg(z—ae'®) = B and

arg(z+ae'®) = y it follows that ¥ = m(y—f) = —mw where o =
® "I BPA (Figure 2.3)=The streamlines ¥ = constant are circles through

A and B. If (u, v) are the Cartesian velocity components at P,
dw m m 2mae™

—u+iv,=— = —— — = — . -
7 dz‘// z+ae* z—ae" (z+ae®)(z—ae™)

from which the magnitude of the velocity is
dw
dz

2ma

~|apl.|Bp| V'

q=

since |z—ae®| = AP etc. We_can show that the uniform stream is the
limiting case of this source-sink pair when both a and m tend to infinite

Values with 2m/a remaining constant. When a is large compared with
[z] the above complex potential w is written in the form,
v @ mln {(z/a)e” +1} —mIn {1 —(z/a)e™} + constant
~ m{(z/a)e™*—...} —m{—(z/a)e”*—...} + constant

~ 2m(z/a)e”* + constant ,,

If a > oo and m — oo such that 2m/a = constant, we obtain the uniform_

stream, w = Uze 4 constant/

2

2.2.4 Two-dimensional doublet A two-dimensional doublet at z = z,

m — oo with ma = p, of a sink of strength m at z, with a source of equal

of strength ¢ and direction o is defined as the limit, in which a — 0,
\. strength at z +ae;The complex potential is, therefore,
=

)

——

@= lim { - (4/a)ln(z — 2, — ae™)+ (/@) In(z— z,

a—0

&

T \ws 2.14)

When z, = 0 we have
w = @+iy = p(cosa+isina)/(x+1iy)
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from which
H(x cos o+ ysin a) p(x sin ot — y cos ar)
= X2 +y? v Y = X247
The equipotentials and streamlines form mutually orthogonal systems
of circles.

» 2.2.5 Two-dimensional vortex Consider [w — ikIn z,‘ k_rea]. Putting

z = re'® and taking real and imaginary parts,

¢ = —k8, Y =kinr (2.15)

The streamlines are the circles,r = Lzl = constant and the equipoten-

tials are their radn 0 = constant,. The only smg‘far point in the finite
z-plane is the =0 Consequently, expecting possibly this point, “ ‘
the flow is everywhere source-free and vortex-free. The volume flux
across r = constant = a is zero since Y = constant on r = a for all a.
Hence (ﬂ;s/is the whole of the z-plane. On r = a,

oo 1de k

so that for the circuit r = a, {q.dr = {g,adf = 2nk. This result, which
is independent of a however small, implies a circulation I' = 21k about

any circuit containing the origin z = 0. This denotes the presence of a

vortex of strength k.at z = 0_Because ¢ exists and is single valued every-
where else, all other circuits not enclosing the origin will have zero circula- D
tion. Consequently #, is the whole of the z-plane excluding the point

z = 0 occupied by the vortex%

_Problem 2.1 Prove that for the complex potential tan™'z the stream- l
“Tines and eq equipotentials are circles. Determine the velocity at any point § |
and examine the singularities at z = +i.

MFromw = @+iy =tan 'z, w = ¢—iy = tan"!Z, we have
2y =tan"'z—tan"'Z = tan~! {(z—Z)/(1 +zZ)}
or
z—Z = 2iy = (1+z2)tan2iy = (1+x2+y?)itanh 2y
The streamlines ¥ = constant are the circles x>+y?+1 = 2ycoth 2y
or, in complex terms, |z—icoth 2| = cosech|2y/|. Similarly,
2¢ = tan"'z+tan"'z = tan~ ' {(z+2)/(1 —z2)}
or

1-x2=y? = 2xcot2¢ |z+cot 2| = cosec|2¢]

Consequently the equipotentials ¢ = constant are also circles which are
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orthogonal to ¥ = constant and form a coaxial system with limit points
at z = +1i. The velocity components (u, v) are given by

dw 1
dz 2+l
Since the denominator is zero at z = i, there are singularities at these
points. Near z = i put z = i+2 where |Z/| i
—u+iv=-ﬂ=dw P R e 1 =—1—
1+(—-142i) 2iZ

—u+iv =

dz ~ d7 -
Integrating, w = —3ilnz’. From equation 2.15 the singularity at z = i
is a vor;gé of strength k= —— with circulation —rk. Similarly, near
z= —i putting z = —i+2", w lilnz” so that the singularity at
z = —iis a vortex of strength k = l. O

Problem_2.2.,Show that when w = Vf(z)—aldlnf(z), where f(z) =
z-2 (az) , 4, a real), part of the streamline ¥ = —aAr is a parabola.
Interpret’ﬂie motion and prove that provided 0 < V < 24, the pressure

at infinity must exceed p(V —24)*>(4V + A)/544 to prevent cavitation on
the parabola.

lution. ~We have ¢ = Imw = VIm f(z)—aldarg f(z). When
Im f(z arg f(z) = 0 or = according as Re f(z) is positive or negative.

Puttlng z = re'%, f(re®) = r(cos+isin ) — 2\/(ar)(cosi(9+1s1n 10), so
that Im f(z) = O implies rsin§ = 2,/(ar)sin$0, ie. sin10 = 0 (6 = 0) or
rtcoslf = a?, a parabola with focus at r = 0. When rtcosif = at,
Re f(z) = r cos 2,/(ar) cos 10 = a cos 0 sec®> 360—2a = —a sec2 1 <0,
in which case arg f(z) = = leaving Y = —ain on the parabola.

=

1
récos %9=a

-
XK K —
r=0 r=4a
Figure 2.4/
To interpret the motion, we have, for large |z|, dw/dz ~ V, ie. the
flow at infinity behaves like a uniform stream u = —V, v = 0. The

singularities of w coincide with the zeros of f(z) which are (i) z = 0,
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inside the parabola, (ii) z = 44, a point outside. Near z = 44, put z =
4a+ 6e', where § is small. Then

f(z) = 4a+6¢°—2,/(4a* + ade”) =

16e+0(6%)
and

Yy =Imw = VIm f(z)—alarg f(z) = 36V sin 6— Aab.
For constant § and variation of 6 from 0 to 2rx, § dyy = —2niain which
case the singularity at z = 4a is a simple source of strength la. We ignore
the singularity at z = 0 inside the parabola. To find an expression for
the liquid speed on the parabola we have dw/dz = Vf'(z)—alf(z)/f'(2), i.e.

dw _ {1 _ (g)*} _ a1 —(/2)
dz z

z—2az)t
On the parabola, r* cos 10 = at, z = re’ = a(sec? 16)e”, hence

aw o A(cos? 1g)e %1

AW 1 am3i0 o6l _ Aeos73b)e

dz (1—e"* cos30) { v e*?—2cos 16
= ¢~ ¥(isin J0)(V + A cos*10)

so that g = |dw/dz| = s(V+A—1s?), s = sin1f. The maximum speed
q,, on the parabola occurs when s = /{(V +1)/34}, (dg/ds = 0). Since
0 <V < 24,|s| < 1in which case 0 is real and q_ = /{4(V + 1)>/274}.
At this speed the pressure will be a minimum p_ = p_+3ip(V*~g2) =
p.—p(V—22)*(4V+1)/54} by Bernoulli’s theorem where p_ is the
pressure at infinity. To prevent cavitation p,, > 0 or

P, > p(V—24) (4V+A)/54L/ O

Problem 2.3 Prove that for incompressible flow in a conservative force
field o(Z,¥)/d(x, y) = 0 and deduce that when { = constant, the pressure

b satisfies
| (0/p)+ 54>+ QLY = constant] where Q is the field potential,
Solution. By equation 1 A7, for steady motion the equations are
oA = g%, = -Q, p‘lp,c
’ uv +ov, = 3%, +ul = —Q —p~'p,
where ¢? = u? +v {=v,—u and (-Q_,—-Q) are the bodyforce
components for the conservatlve field. We can ehmmate g%, Q and p by
taking partial derivatives, giving
©0),+ @), =0
r?= lpx
Q)+ (=0v,), =3/,

uu, +vu
(2.16)

or,since u = —
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ie.

oL )/ox, y) = 0
If we multiply the first of equations 2.16 by dx and the second by dy and
add we have

1dg* +{udy—vdx) = —dQ—p~'dp

Integrating, after using the fact that { is constant and that udy—vdx =

—dy, gives the result

14—y = —Q—(dp/p)+ constant o @17

roblem 2.4 Liquid in the grglulgr _region a < |z| < b has constant
| 'Vorticity { and the liquid outside is at rest. The streamlines are the con-
| centric circles |z| = r = constant with the liquid speed zero on r = b

and a constant, V, on r = a. Show that { = 2aV/(a*—b?) and deduce
that the pressure difference between the two regions at rest is

_21_pV2{b4 —_ a4 —402 b2 ln (b/a)}/(b2 - az.}}

Solution. Here q = g0 where g = ¢(r), 0 being the transverse unit

vector, and { = curlq = r~1(d/dr)(rq)k, where k is the unit vector normal
to the plane. Since { = {.k is constant,
rq = 3{r? + constant
But g = 0 when r = b, hence
rg = 30" —b?)
Since g = V when r = g, the result { = 2aV/(a® — b?) follows.
V¥ is a function of r only; therefore,

q= dgl{rl- =3 <r—?> and ¢ = {{r*—4b*Inr
ignoring the irrelevant constant of integration. Using equation 2.17 the
pressure p with Q = 0 is given by
p—plY +31pg* = constant
For a <r < b, p—pl*Gr?—3ib*Inr)+4pl*(r—b*/r)* = constant. De-
noting the pressures at r = aand r = b by p, and p, respectively
—pl*(Ga* —4b? Ina)+ tpt*a—b%/a)® = p,— p(*(Gb2—1b%Inb)
Pyt = P{HB? — )+ Hb? — 0 — 30 In (b))
= 1pV2{b* —a* —44a*b*In (b/a)}/(b* — a?)*
Assuming continuity of pressure aci across the boundarles the result follows.
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e complex potential of motion in a liquid and
C)a simple closed curve enclosing a domain A of the liquid without
including any singularity of f(z) inside. The hydrodynamic image of f(z)
in C is the complex potential g(z) such that f(z)+g(z) is real on C and all
the singularities of g(z) are contained in A,

Consequently, writing the total complex potential w = f(z)+g(2),

¥ = Oon C (ie. C can represent a rigid boundary) and all the singularities

of w outside A4 coincide with those of f(z).

Case 1. C is the line Rez = a with A the domain Re z < a. Here,
o
9(2) = f(2a—2), \w = f(Z)+f(2a—Z), (2.18)

When a = 0 and f(z) = —mlIn(z—2zy), g(z) = —mIn (z+z ) Hconstant
ie. the image of a source in Rez = 0 is an ‘equal source at the image

") point of@/ln the imaginary axis.
Case 2. C is the line Im z = b with A the domain Imz < b. Here

9z) = fz-2bi), J|w = s+ J(z-2bi), (2.19)

Case 3. C is the circle |z| = a with 4 the domain |z| < a. Here _

9(2) = f(@®/z), |\w = f(2)+ f(a®/z) (2.2
z a‘/z “ z a Z/'.. /};

This is the circle theorem.

>Q Problem 2.5 Liquid occupies the region: Im&@ad;amm&_ﬂgggi_
wall along Im z = 0. Motion is due to a uniform stream of magnitude

U flowing parallel to the real axis and at z = ai there is a doublet of Y
strength 4a?AU inclined at an angle m to the stream. Show that when

A <1 the minimum and maximum speeds on the wall are respectively ) ¢
(1—A)U and (1 +84)U. In the case A = 1 show that the circles Iziai| = 2a

are dividing streamline% l

§olut£gg. The complex potential of the uniform stream flowing parallel - x'
to the positive real axis is — Uz Using equation 2.14 with & = & the ‘,

complex potential of the doublet is —4a*AU/(z— ai). Since the uniform t
stream_contains the rigid boundary Imz = O as a streamhne no image
is needed for this part of the motion. The image of the doublet, however, is
—4a ZAU/(z+ai) by equatlon 2. 19 Consequently, the final complex

potential is
@

/

-+ ;
z—al z+4+al

iy Py

w(z) = —Uz —4a21U<

1 1 > U 8a*AUz
Z



The velocity components are given by

._u+iv —_— = — +§EZ_U(Z__.2_—aZ)
dz (z2+a®? Z#
On the wall z = x+0i, on which v = 0 (proving that the wall is a r1g1d
boundary) and

&

u="U-—

8a2AU  16a*AU 2¢* 1)2 —
x2+a2+(x2+a2)2 = {m"z} +U( ).

Since 4 < 1, # is a minimum when {242/(x? +a2)—l} = 0, ie. when
x = +a/3. Th1s minimum is U(1 ~A). The maximum value of u occurs
when x = 0 and has a magnitude 4AU(3/2)2+U(1—4) = (1+8A)U.
When 4 =1 the streamlines are determined by ¥ = (w—w)/(2i) =
constant = A (say). Substituting,

8a? 8a%z .
W = _U<z_z+%_§2_f§> _ i

(z—2) 8a%zz —8a* ) 2iA
—2Z —_—— — = —
z (z22+a?)(EF*+ad) U

Factorising,

The streamline for which A = 0 will divide into separate branches on
which either z—z = 0, ie. Imz = 0, the rigid boundary, or
(z2+a?) (2% + a?) = 8a%27—8a*
ie.
(z2-3a%?* = —a?(z—2)?
or
2z—3a®> = +ia(z—2)
leading to the result

(z+ai)(E-T-ai) = |z+ai|? = 4a® O

2 Mb, 5o ?‘f
.6 ' Find the complex potential of motion due to a soiffce

g at z = z (Rez, > a) outsxde a rigid boundary C consisting
Aot the semicircle |z| = a, —3n < argz < In and part of the imaginary

axis for which |Im z] a. F1nd an expression for the 11qu1d speed on the

] semicircle when z,, is real and equal to ka(k > r)'ina find 1t Lts_m\a&@u\m/

ol he source alone is represented by the complex potential
z) = —mln(z—z,). Using equation(2.20)}its image in |z} = a is
f(az/z) —mln{(a*/2)—Z,} = —mIn(z—a?/z,)+minz+A
where 4 = —mln(—Z,) is a constant which can be ignored. The image
R
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e e

i

Figure 2.5 W

system consists of a source of strength m at the inverse point a?/Z, together
with an_equal sink at the origin. The new complex potential is

T fi2) = —@n(z zy)—mln(z— a*/z,)Hmlnz

: 1mage of f,(z) in Rez = 0. By equation 2.18, this image is 1\

f (—2) = —mIn(z+z,)— mln(z+a2/zo)+n/1i\z}+constant ‘
giving the final potential of motion as »

[_-_z) 1 z)+f1( z)ér —mln{(z— zo)(z+zo)(z a?/z)(z+a*[z,)z7 %} (1

oo

This complex poten@ﬁl continues to, Tulfi] filithe condition tha disa._
streamline because, in. reta1n1p§ the (smk at the origin m f] (—z); we have
ensured ‘that the algebralc sum of the' strengths of the sources w1th1n

the circular boundary is zero so that this semleircﬁcan remain solid,_ L
To find an expression for the speed w1th z, = ka (real), we have

?The\ma&nary axis can be made a: nrg_gld boun@ by introducing the

W= —min( — k) —mn( k)4 2mnz
so that
ey dw 2mz 2mz %T
3?)4"[ by E = _Zz_azkz_zz_azk—z z
On thewhere[z:;“b elf S
dw Ime-i® | 20 20 ]
dz 7 a T2 _ 2 2|2 ,7"‘1)[

2mk?\ e 0(e??—e~2if) 4mik?(sin 20) e~ /': ]

( >(e2"’ k2)(e 2 —k?)  a(l+k*—2k*cos20) q )

whergz q = 4mk? sin 20/a(1 + k* —2k? cos 26) > 0 for 0 < § < 3n/is the

liquid speed inclined at an angle. 3= s+ (for —ie ¥ = e"‘*"*"’ = |
e~ '*) which is tangent to the semicircle., When —1in < 6 < 0 we replace
gby —¢q and A by —A. To find the maximum value of g put 26 = o. Since

49



e

(d/do) {sin a/(1+k*—2k*cos o)} = 0 when  cosa (1+k*—2k? cos ) =
2k? sin? o, at/an extremum cos o = 2k%/(k*+1),sinc = +(k*—1)/(k*+ l)
the angles being real because k > 1. The_speed has a w
4mk?/a(k* — 1) at points on the semicircle for which_

6 = Jcos™! {2k2/(k4+1)}/ (]

* Problem 2.7 Find the complex potential for a source of strength m
V placed at z = ai between two rigid walls Imz = +b, |b > |a|. Express |

the answer 1n a closed form when ¢ = 0.
v /W\//'

y

Wall L

Imz=b6

)(zwi

o

Wall M Imz=-b6
/ AN

Figure 2.6

The source at z = ai has a complex potential fi(z) =
—mlr

z—ai) whose image [, in the wall L{Im z = b) is —mIn(z + ai —2bi)
and its image m, in the wall M (Imz = —b)is —mIn(z+ ai+ 2bi). This is
the first approximation to the flow for m, disturbs the condition on Land I,

XA

- disturbs the condition on M. To rectify this, as a second approximation,

we add on the image I, of m, in L, namely —mIn(z—ai—4bi) and the
image m, of I, in M which is —mIn(z—ai+4bi). Similarly, in the third
approximation we must add the image I, of m, in L and the image m, of
l, in M, and so on. The nth approximation for the complex potential is,
therefore,

—mln(z—ai)—m Y In{(z—ai)* +42k*b?}
k=1

w,(z) =

—m i In{(z+ai)*+ 42k — l)zb?}

k=1

All the image singularities are outside the walls and as n increases the
compensating images move further from the region of flow. Moreover
the magnitude of the difference in fluid velocity between the two successive
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approximations is
d

E(wn—wn_l) = 0(n %)

which tends to zero as n — oo in this sense the approximations converge.

k
Before taking the limit we add to w, the constant m Y. In(4°k*(2k—1)*b%)
k=1

which does not affect the flow so that .

w= limw,

n— o

_ —mln{(z i) 1‘[ (

(z—ai)?
42k2b2 1
Whena =0
w = —mln{z 11 (1+22/4k2b2)1
k=1 )
Since z [ (1 + z?/n*n?) = sinh z, we have, ignoring the constant,
n=1

(z +ai)? )}
T a1,

w = —mIlnsinh (nz/2b) O

- Problem on the cylinder |z| = g inserted into a flow
'hose velocity componen sare u = Qcosa—{y, v = Qsina, which des-
ribe a uniform shear flow superimposed: upo@a uniform stream_

FE’E”{H' ! Here v, ~u, =y +y¥, = constant = {, ie. for general
w with cOnstant shear C, Y = C(xi +y?)+y, where ¥ is any solution
of lﬁxx+ww = 0. Alternatively, we seek a solution for ¥ expressed in the
equivalent form

¥ = 1tz + Imf(2) 2.21)
Before inserting the cylinder,
u= -y, =Qcosa—{y, v=y_ =Qsina
ie.
Y = Q(xsina— ycosa)+3{y?
or
¥, =1Im f(z) = Q(xsina—ycosa)+5{(y* —x?)
so that f(z) = —Qze ¥—14i{z* and
Y = i—CzE+Im(—Qz e‘“‘—ii(zz) (2.22)

when the cylinder |z| = a is introduced, no image is required for the term
12z, since it is a constant ;{a® on the boundary. By the circle theorem
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(equation 2.20), the image of the term Im f(z) is Im f(a?/z). The final ¥
after adding the cylinder to the flow expressed by equation 2.22 is

¥ = Hzz+Im{—Qze " —1ilz® — Q(a?/z) e+ 1i{(a?/2)*}
which is in the form of equation 2.21. In terms of polar coordinates
(r, 0) putting z = re*

Y = Xr? — Qrsin(6— o)+ Q(a?/r) sin(0 — ) — 1¢r? cos 26+ 1{(a*/r?) cos 20
The radial component of the velocity (= —r“!po) is zero on r = a and
the transverse component (=y,) is

= 1la(1 —2cos 26)—2Q sin(6— ) (2.23)
The pressure at any point on r = a is p where p = constant—3pq* and
the force components on the cylinder are (X, Y) given by

X=- Lz)" plcos O)add = jap jz" g% cos 0 do
Y= — ["psin6)add = fap [ g*sin6d0

To evaluate the integrals, by equation 2.23,
q=C,+C,cosf+8, sin0+C,cos26
where C,,C,, S, C, are respectively ;{a, 2Q sina, —2Q cosa, —{a,
i 4 P
s T q* = A+ Z {4, cos nf+ B, sin nf}

4 ’ n=1

in which case, using the theory of Fourier coefficients,

X = japnA, and Y = lapnB,
But 4, = 2C,C,+C,C, = C,(2C,+C,) = 0,
ie.
X=0
and B, = 2C,§,—-S,C, = §,(2C,—C,) = —4Qalcosa

ie.
Y = —2rnQpa* coso/ [

7&**2.4 Blasius’s theorem _Given a steady liquid motion with complex
% potentialwina region containing a rigid boundary C, the force components

(X, Y) on an element 4B of C joining 4 (z = z,) to B(z = z,) are given
by
( “ X—i¥ = F = $ip | (w/doP dz—iP(z,~7,) (2.24)

a =
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ﬁ:'dw/dfil

., Also the moment M about z = 0 of

%) (2.25)
b

-

Figure 2}
/

To prove this result, consider a point P e AB (Figure 2,2} where arc
AP = s and the tangent to AB at P makes an angle 4 with OX. The thrust
on ds is pds where p is the liquid pressure at@The elemental force
components onl_‘@are, therefore, =

dX = —pdssini, dY = pdscos
v v

ie. : -
dF = dX—idY = —ipe *ds = iipe_zuc}z;—/————H",

since dx = dscosA, dy = dssinl or dz = dse* and dZ = dse™ . By}’
oulli’s theorem,[p+1pq® = gonstant = Pjwhile on the solid bound ,
dary AB,ge™™* = u—Tv = =z 7
P ;

7 pe *dz = Pe **dz—1p(dw/dz)*dz o

= — Pdz—iptiw/dz)* dz e [

ai

Hence, integrating the expression for dF,

X—i¥ = F = —iP [dz+ip j(dw/dz);dz
AB AB g
= —iPz,—z,)+ip [(dw/d2)? dz
P AB \/

The elemental moment about O {z = 0) of the force pds is
dM = (xcosA+ysin ))pds = Re(pe™**zds) = Re(pe~**zdz)
= Re{Bzdz —1p(dw/dz)* z dz}
v v
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¥ SinceRe(zd2) = xdx+ydy =

i

Ld(x* + y2) = %dlz/ﬁ the given expression for
= o
’Mn the quadrant 0 < 6 < in of the circle
z = ae'%placed in a uniform stream U whose direction is E&Ellel to the
real axfs § = 0 given that the Jiquid pressure at Infinity is jID//
o

The complex potential of the uniform stream i
From equationy hen the circle | z| = a is added, the complex poten-
tial becomes w = — ULz+a2/g),. Using equation 2.24, the force com-

M follows by integration over the arc A

ponents (X Y) on on the quadrant “AB are given by 57 At wath U=l
¥ X—1Y = tip |U*(1-d?/z%)? dz—lP(z z? " :
wu->=f/2)+j (a“/ZD Aj; 2 VAB (),,,,',
P = [1+1pU? ' E\ i_:_
Putting z = ae®, z, =_a.,,zB =ad ’ R 2
j(l —a¥2?)? dz = [ o—%n(l —e 202460 4 = a[ei0+ze—i8_%e—3i0]§n
e

F = X—1Y = 2apU?(1-2i)- a(l—l)(észz)

X = —apUZ—aH/ Y = 2apU? —aH/ m

Tind the force)on a closed solid cylinder whose section
foutsideywhich the liquid motion is defined by the complex
‘cmon, uzban ‘
w=Uze “+iklnz—min(z—a)+ Z Az*

k=1
. is a constant, the infinite suym is convergent, the vortex lies

ources are added c outside C:% (o

By equation 2.24 with z, = z the conjugate-complex force

FonCisjip [.( (dw]dz) dz.

;]“‘I‘gfa Let y be a small circle |z— al = ¢ centred at the source (see Figure 2.8)

Uw"/“ and let Ebe a large cucl%! ficiosing both C and . Since there are_
no singularities in the dofhain enclosed by E but excluding the interiors of
both C and 7y, Cauchy’s theorem gives

CI)(”;_W) &z =0
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he source lies gyiside C. What is the result when iurther\ M

b
C e

T

i
Mm%
“+
~Ne
<
0

Figure Zy
where@is the total contou Hence #
T ————

j (dw/dz)? dz = j (dw/dzy? dz— | (dw/dz)* dz = F/Cip)

CI/ ET’ vt < IX/
Now 7 / 7

Ry d—W=U - ~kz-k—1

Jm Luna ; Jaspe dz

“Therefors whéfe |z] is farge dw/dz = Ue “+(ik—m)/z+0("2) l
and (dw/dz) = U?e 24 2U¢" l"‘(1k m)z"1'+0(z‘2) so that
LEP TG
" (d_w) dz £ 41tU1(1k m)e”
Wv; % / g« ’af
\ dw/dz = mz—a)" '+ f(z) where f (z% is_regular’ w1ths1§13y and_ |

dz

: resentsThe conjugate complex veloc1ty u —1v wwan the source 1s .

mg; Tax ﬁzf
Al f%

‘Hence, F /X_:IY/— 2np(m—ik)U e *+2npmf(a) where Lf(a) =u,—
w ) Jthe conjugate complex velocity atZ = apmitting the sour?fHeTe ie.

= 2npm(U cos a+u,)—2npkU sin o

= 2npm(U sina+ v, )+ 2npkU cos o (2.26) @

When further sources are added w d to enclose each of them with a
circle Vm centred on the singularity. The extension to the result is obviously

= 2np ), m(U cos a+u,)—2npkU sina
4] (2.% ‘)

Y = 2np Y m(Usina+v,)+2npkU coea/
5

romt ¢ flow. Then

RER Ry




X

t

1
oints z = b, and z = b, respectively when both lie on thf al ax1é; ),0// (

gSolutlgé;gThe complex potential for the sources alone is f(z) =

m, In(z—b,)—m,(z—b,). Introducing |z| = a, the complex potential,
using equation 2.20, is

w(z) = —m, In(z—b,)—m, In(z—b,)—m, In(z—a?/b,) —m, In(z— a?/b,)
+(m,+m,)Inz
so that
dw mm,  mb  mb, m+m,

dz -z——bl z—b,
If (u,,v,) are the velocity components at z = b, excluding the source
there
. d m
—u, +iv, = (_w+ 1 ) - M ':’11712_ m,b, ]
dz z-b/,_, b,—b, bi—a* bb,—a
m, +m,
bl
Similarly if (u,,v,) are the velocity components at z = b, excluding its
source,

2 2
b,z—a* b,z—a z

m, ) m, m,b, myb,
z=b;y

. dw
— [ _ _ _
R <dz+z—b2 b,—b, bb,—a* bl-a

.-;le—{—m,f
f hich 0. Usi tion 2.26 'h/u’k\o\' 11)12
romw ich v, = v, = 0. Using equation 2.26 with = k = 0,)we have
— 0 and .%;
O 2np(m u, +myu,)

m,m,(b, +b,) m} :
+ |
b,b(b.b,—a?) | b -a))
/

m

= 2mpa® {bl(bf—a2)+

¥, 2.5 Orthogonal coordinates, A flow in the z-plane is defined by the
complex potentlai w =@+ = f(2), z =x+iy so that ¢ = ¢(x,y),

¥ = Y(x, y). Using the function z = ¢({), { = £+in we transform to the
{-plane with w taking the same values at corresponding points. The new
shapes of the streamlines and equipotentials are determined by

w=o+iy = f{gQ)} = F©),
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3-%2.6 Boundary condition on a moving cylinder In Figure 2,

¥ =y, n =ImF(Q)

Since dw/dz = (dw/d{)(d{/dz) except at points where dz/d{ or d{/dz vanish,
in general the fluid will have different velocities at the corresponding points

of the transformation. The g;ggggy_—g;egagg equations are

o = ¢(¢,n) = ReF()),

(i) &=mn, & = -n, from z = g({)

(ll) q’g = lp,,a (P" = _wg fromw = F(C)
(iii) o, =V, @, =Y, fromw = f(2) (2.28)
Moreover, when VZ¢ = ¢, t9, =0wehave ¢, +¢, =0 and simi-

larly ¢, +¥,, = 0 except at the smgular points of the transformatlon
namely, the zeros of dz/d{ or dC/d%

C represents

the cross-section of a cylinder moving with velocity (U, V) and angular
velocity Q referred to fixed axes Oxy. With ds the element of C at a point
P(x, y) on it, the boundary condition states that the velocity component
of P normal to C equals the liquid velocity component in the same direc-

tion, i.e.

dy dx

y C
0 P
\ > T
o
Figure 2.9
Z
By integration along the boundary, on C, y satisfies
Y = Vx—Uy+1Q(x*+y*)+constant (2.29)
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%% 2.7 Kinetic energy Using the result in Section 1. \}&the kinetic energy

_we have ¢,
npk | Vo .ds.

per unit thickness of two-dimensional liquid motion‘is

(2.30)

=5pi£<pV<p-/

where & is the total boundary surrounding the liquid (Figure 2.10), ds =
dsm, n being the unit outward normal to % and ds an element of &.

Figure 2,10

The total length % is made up of the following components
= body(C|)+envelope(ET)+bridge out(B )+ bridge in(B_;)
from which the separate contributions to J are respectively 7 ., 7,
T . T p_ -
(1) If @ is univalent (one-valued) then 7y +9, = 0.
(ii) If ¢ is not univalent then, denoting by Q. thé value of ¢ on B, etc.
—@_ = 2mk, the circulation, so that I, +J, =

B4
(i11) If the liquid extends to infinity and is at rest there, then 7, = 0.
(iv) When conditions (i) and (iii) hold together, we have

— 8 op &
(7= o5ies (ven-3-3)
Ci

=1p J pdy = —3p J Y do (integration by parts)

Cl C}

= *pf«pdt//—t//dqo) = —

Cl

(2.%
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since wdw = id(p* +y?)+i( do — o dy).

Problem 2.12 The elliptic cylinder (x/a)*+(y/b)*> =1 moves with
constant veIoc1ty components (Q cosa,Qsina) through a liquid at rest
at infinity. Find the stream function of the motion.

%From the transformation z = ccosh{ where z = x+iy and
{ = &E+1n, we have x = ccosh&cosy, y = csinh¢sing. Eliminating #,
{x/(ccosh &)}2+{y/(csinh &)}* = 1, ie. & = constant are ellipses. The
given ellipse is defined by ¢ = &, where ccoshé;, = a, csinh&, = b,
¢? = a*—b? Using Sections 2.5 and 2.6 we seek a solution ¢ = y(&,7)
such that (i) Y., +¥,, = 0, whilst (ii) on the ellipse & = &,

¥ =Vx—
U =Qcosqa,

Uy = Vccosh & cosny—UcsinhEsing
V = Qsina

or ¥ = Qc(cosh &, sinacosn—sinh &;cosasiny) for all ». Finally, (iii)
as |z| - oo, dw/dz — 0 since the liquid is at rest there. However, from the
transformation formula, |z| — oo corresponds to taking ¢ — oo (for
both cos 7 and sin 5 are bounded) and dw/dz — 0 corresponds to dw/d{ — 0.
Condition (ii) suggests that we seek a solution of (i) of the form y =
f(©)(Acosn+Bsinn), A, B constants. Substituting into (i) we find this
equation identically satisfied when f(¢&) = Ce®+De™ " To satisfy (iii)
we must choose C = 0 and when both 4 and B are arbitrary we may
choose D =1 so that y = e (4 cosn+ Bsiny). Finally, to satisfy (ii)
putting ¢ = &, and equating coefficients of cosn and sin#n respectively,
Ae™% = Qccosh ¢, sina, Be™% = —Qcsinh & cosa so that the required
solution for ¥ is

Y = Qce” ¢~ (cosh &, sin a cos n—sinh ¢ cos asinn) O (232 |

- Problem 2.13 Find the kinetic energy of the liquid motion in the pre-
\"\ ceding problem.

Solution_The kinetic energy is given by formula 2.31. For this we need
to evaluate w, complex potential, the imaginary part of which is given by

equation 2.32. Now e~ % = e %(cosn—isinyn), ie. e cosn = Im(ie™9),
e ¢siny = Im(—e~¢) so that
w = Qce°(ie *cosh &, sin a+e ¢ sinh &; cos a)
= Qce**%(sinh &, cosa+i cosh &, sin a)
= Q(a+b)eCsinh (&, +i) (2.33)
since ce®® = c(cosh &y +sinh&;) = a+b.
The kinetic energy of the liquid is 7 = —}pi j wdwwhereonC¢& = £
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and n increases from 0 to 2z. Using equation 2.33
wdw = Q*a+b)? sinh (&, +ia)sinh (¢, —ix)e ~4(—e ¢ dT)
where, on C, { = &,+in, d = —idn. Hence,
T = Lp0¥a+b)*(cosh 2¢,, — cos 2a)e 2% Sz dn

= InpQ*(a+b)*(cosh 2¢,— cos 2a)e ™ 2%
Using, a+b = ce®, c?cosh2¢, = c*(cosh? £, +sinh? ¢) = a+ b2, and
c?cos2a = (a®—b?)(cos? a—sin? o), we have, finally,
T = inpQ*(a®sin® a+ b* cos? o) O (2349

2.8 Rotating cylinders By equation 2.29 the boundary condition on a
cyliﬁ%ﬁﬁfangﬂm velocity Q is = $Qzz. If the equation of
C can be expressed in the form zz = f(z)+ f(Z) this boundary condition
is satisfied by taking ¢ = Imw where

w=iQf (z% (2.35)
When f'(z) has no singularities inside C, w will represent the complex
potential of liquid motion inside C_ (for in this case there are no singu-
larities of the velocity due to sources or vortices etc.) whereas if f'(z)
has no singularities outside C, w will represent the motion outside C.
Example 1. When f(z) = {4(a*—b*)z*+a’b?}/(a® +b?), C, represented
by the equation zz = f(z)+ f(2), is the ellipse (x/a)® +(y/b)?* = 1.
Example 2. When f(z) = (4a®—z>)/6a, C has the equation x> —3xy?+
3alx* ¥ y)—3a® = (x—y/3+2a)(x+ ¥4/3+24)(x—a) = 0 the three sides
of an equilateral triangle of side 2a,/3 with centroid at z = 0/

Problem 2.14 A prism whose section is an equilateral triangle of side
2a./3 contains liquid and rotates about a generator through a vertex.
Find the effective radius of gyration of the liquid.

B
2av3
2
2a
o G
2a/3
A
Figure 2.1I
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Solution. With the centroid G as origin, the equation of the triangular

section is defined by 2z = f(z)+ f(2) where f(z) = (4a®—z3)/6a. Choosing
a vertex O as origin where OG = 2a, the equation becomes

(z—2a)(z—2a) = {4a® —(z—2a)* +4a®—(z—-2a)*}/6a

ie. zzZ = g(z)+g(2) where g(z) = z2 —(2%/6a).

By Section 2.8 the complex potential of the liquid motion when the
prism rotates with angular velocity 2 about O is w = iQz%(6a— z)/6a.
Using equation 2.31 and changing the sign because the liquid lies wzthm
the boundary, the kinetic energy of the liquid is

2 72
T = ipi J wdw = LpiQ? J (z ——{)(22—%) dz
Cct c?

On OA, z = re ¥, on AB z = 3a+iy and on BO, z' = ret™. We denote
these respective contributions to J by 7 ,,, 7 ,, and J ,,. Writing
o =¢t"on0A4,z=r/vz=ro,

2a/3 T2 r3 7'2602
T o = Lpif? ———— ) 2rw— d
N S

2ay3 e
= 1,i0? L S o T
4Pl fo (Zr 3w 7a + 122 2) dr

Similarly, inverting « and the limits of integration,

2ay3 e
1,02 p_rTe_r
i f ( "3 2aw 12a2> ar

[

4 BO =
Adding,

1 o) (2a/3)
T oat+T po = 1pi? <6aw 7) \5/ = 2pa*Q%./3

Since w—w™! = 2isinin =i  Again

Loz [ (2,3 12, WY(3a, . ¥ ;
T . = LpiQ o 20"+ aaiy+3y | iyt oo (—1)dy

a3 4
p? %a3+§ay2+y— dy
a3 2 12a

™

(odd powers of y give no contribution)
= pa*Q*./3
Adding, the final J is (33/5)pa*Q?/3 = jmk?*Q* where m = 3,/3a%p is
the liquid mass within C per unit thickness. Hence, k, the effective radius
of gyration, is a,/ (22% O
/ 61
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XK¥eX 2.9 Conformal mapping. A mapping from the z-plane to the ¢-plane is
g_eﬁna] Ey Z = 7:2; wﬁere f(2) is finite and single valued in some domain

A enclosed by a contour C in the z-plane. Any point P within A is trans-
formed pniquely. into a definite point Q of the {-plane. We write this as
P - Q To %, tEere corresponds a contour I' in the {-plane enclosing a

domain A. We shall assume that the mapping is one-to-one between

l

domains so that in the inverse transformation for which z = g({), 2 - P
uniquely. This implies conditions (which cannot be proved in the space
available here) on the derivative df/dz = f'(z), namely, for all z in A,
f'(z) must be finite and nonzero. The zeros of 1/f'(z), f'(z) are singu-
larities of the transformation and are normally cut off from the domain//

Y

{—plane

\/ N

Z-plane
\/) Figure 2.|%

Let P(z), P, (z,), P,(z,) be three neighbouring points in 4. Under trans-

\ formation P - Q(), P, » Q,(,), P, » 2,((,), where {, = f(z,) etc/

When |z, —z| is small,
-0 _ flz)-f@)
z

Z,~2 zZ,—

= f(2)+O(|z, —z]), 52:

e S nd 2

¢ f'(@+0(z,—2|).
2y

Taking moduli and argument, provided |f’(z)| < oo and f'(z) # 0 we

have to a fizst order of approximation,
QQ,  QQ,
PP, ~ PP, = |1 )|

arg QQ, — arg PP, = arg QQ,—arg PP, = argfgzl, or L Q QQ

L P, PP,. Hence, subject to the stated restrictions, the mapping preserves §

:_E the angles between elemental lines when transformed and Q the

imilarity of corresponding infinitesimal triangles. The term conlormal

mapping is applied to this representation.

Suppose w = g({) is the complex potential of a liquid motion in the
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_P and Q. The new motion in the z-plane is then described by w = g{f (z)%iy .

Cplane We can_construct a corresponding motion in the z-plane by v

arrangmg that w takes the same (complex) value at corresponding points

Since w, = w, implies Y, = Y, a streamline in A maps into a streamln

along the corresponding curve in A. In particular, if I’ were a streamline

_C_would also be a streamline.

/If g is the liquid speed at 2 and g, the speed at P, we have q7 = |dw/d(|?,
|dw/dz|2 so that v
v ) dC
q. 2
=5 = /'@ (2.36)
qc2 dz =| | / L0 d

except at the singular points of the transformation where either speed is
zero,, he kinetic energy is preserved in transformation, for if dS,, and

das, are corresponding elements of area at Q and P, we have dSC/dS = ‘
(QQ1 /PP,y = |f'(z)]* since the elements are geometrically similar. | -«
Using (2.3 df ds, = g?dS, implying conservation of kinetic energy

in transformation. - o
P
-y Problem 2.15 @es of strength m, and m, are placed at points [j

z = 0) and P(z = z,) of the z-plane respectively. Examine the cor-
responding motion in the {-plane when { = 2" (n is a positive integer). ,

Solution. For the source m, at z = z, in the z-plane | dy = —2mm,
_— Cct

where C is the circle |z—z, | = ¢; ¢ is small. Under the transformation
{ = " this circle becomes the circle I':|{—{,| = & in the {-plane with

radius 8 = 0(¢) and centre at{ = {, = z}. Moreover, _[ dw = | dy since
xt
I' corresponds to C and by definition s takes the same values at corres-

ponding points of the two planes. The singular points of the transformation

are the zeros of d{/dz = nz"" ! and dz/d{ = z' ""/n, ie. z = 0 = { and

the points at infinity in the two planes. When z, is finite and nonzero

i.c. a nonsingular point of the transformation, unit description of C

produces unit description of I'. Hence j dy = —2mm, meaning that a
r

source of strength m, at z, transforms into a source of equal strength
m; at{, = z}.
For the source myatz = 0, | dy = —2mm, where C is the circle |z| = ¢,
C

t
¢ is small, for which the corresponding circle I'is |{| = € Sincez = 0 = {
is a singularity and arg{ = nargz, I' is described n times for a single
circuit of C in which case n _[ dy = —2nm, or the corresponding source

rt
at { = 0 has strength m, /n. a
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)k Problem 2.16 Liquid in the z-plane is contained in the sector with
Vertex at z = 0 and bounded by lines argz = +3m/n (n is a positive
integer) and an arc of the circle |z| = a. A source of strength 2nm is
placed at the vertex together with a sink of strength m at z = b(<a) on
the real axis. Find an expression for the velocity on the curved boundary.

Figure 2.13

Solution. The total volume output into the sector due to the source
2nm at 0 1s 2n(2nm)(1/2n) = 2mm which balances the input of the sink
inside; hence the sector boundary can be rigid. Applying the transforma-
tion { = 7" where arg{ = nargz, the lines argz = +in/n become
arg{ = +in and the arc of |z| = a becomes the semicircular arc of the
circle |{| = a" = c. The inside of the sector is mapped onto the inside of
the semicircle of radius ¢ in the {-plane.

Using the results of Problem 2.15 the source 2nm at z = 0 is trans-
formed into a source of strength 2nm/n = 2m at { = 0 and the sink of
strength m at z = b is transformed into an equal sink at { = b". In the
{-plane, to make Re{ = 0 a rigid boundary, we introduce the image
sink —m at { = — b".This makes the complex potential

O = -2mln{+min({—b)+mn((+b") = mIn(1-b*"{"?).

To find its image in the circle (| = ¢ = 4" we use the circle theorem
(13 {2.20) which gives the final complex potential

w = )+ F(c*/0) = min(1-b*"{"%)+mIn(1—-b*>"c™*(?)
In terms of z,
w = mln {(1— b2z~ 27)(1 —b2ng~ 4727}
= mln {1—(z/a)*"—(a/z)*"} +constant, where 1 = (a/b)*"+(b/a)™
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Consequently, on the arc, where z = ae'®,

dW 2nm(a2nz—2n—1_a—2n22n~1)

dz }.—22"0_2"—(12"2_2"

2nme ¢

p g(0)

z=ael®

o) = e —e _ 2i sin 2nf
g( ) - i_eZniG_e—ZniB - 1 —2cos 2nb
i0

where
- 2ni@ 2nif

On writing dw/dz = —(u—iv) = —(q,—ig,)e”° where ¢, and g, are
respectively the radial and transverse components of the liquid velocity
we find that

_ 4nm sin 2nf
% = a(2.—2 cos 2nb)’

%%2.10 Joukowski transformati or ((—20)/(+2¢) =

{(z—c)/(z+c)§lizl s called the Joukowsk transformation mapping function.
“The singularities are z = 0, +c¢, oo at which { = o0, +2¢, . The inverse f
transformation is z = %{Ci:?(cz—%z)}' so that one value of { corres-
ponds to two values of z. If we choose the positive sign associated with
the square root then for large £, z ~ { so that infinities in the two planes
will correspond. Choosing the negative sign, z ~ 2c2/{, i.e. the infinity
of the { plane will transform into the neighbourhood of z = 0.

Case 1, If C:circle z = fe¥ (f > c) then I':ellipse (¢/a)*+(n/b)* = 1;
a=f+cf,b=f-cf.

Case 2, If C:circle z = ce' then I':straight line ¢ = 2c cosf,n = 0.

Case3 If C:circle|z—z,| = rwhere|c—z,| = r,ie.z = clieson C and
|—c—2z,] <1, 1e. z = —c Ties inside C then I':aerofoil section with
acuspat{ = 20/

K32.11 Kutta conditi% In Cage 3 of the last section the liguid speed

g, at the cusp { = 2¢ where d(/dz_= Q will be infinite (see equation 2.36) ”

g9, =0, A = (a/b)*"+(b/a)*" m]

unless the speed ¢ = |dw/dz| at the corresponding point z = ¢ on C

is zero. Normally it is possible to achieve this condition by introducing a

circulation about C and adjusting its strength accordingly,
justing gt : gy,

an azive t0d ' AT
mHere z = —c(fiedon C and : = c lies withiDC (Figyre 2.14).
1ithz = (c + A)e’® + A the Joukowski transformation {=¢+in = z+c%/z

. = N i

e XY 65
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produces the symmefrical profile with a cusp at { = —
e+ Ne 0+ )

{c+ e+ A} {(c+A)e 0+ 2}

ie. ¢ = {(c+,1)cost9+/1}{1+f(9)} n = (c+A)(sinO){1- 1 (0)},

where f( f) = c*/{(c+ AP+ A2 +2A(c+ 1) cos B).

= §+in = (c+ A+ 1+

(/J?, zn plane 2 | C—plane 0 A= pUKmE
3 Figure 2.14 Y

S = A"

To make the infinities in the two planes correspond we choose the

inverse transformation as z = 1{{ +\/(C2——4c2)} then z ~ { for large

|2| or |¢] articular the uniform stream in tfe z-plane with complex
potent1a1 ei*z)for large 7 beha NG s like U ‘“C, i.e. the uniform stream has
the same magnitude and d 1rection bot lanes. To find the flow past o

the Circle in the z- -plane we represent il By the equation [Z = c+4 where- 'W
'Z = z—J. By the circle theorem @,gﬁ) and adding a circulatién _term
!1K{2n) In Z, the complex potenn

i —ia 2
wZ) = Ue“(Z+A)+Ue {(c+2)*Z" +)}+(1K/27t)an/

Hil w(z) =__Uei“z:Ue_’°‘(cz+;;)2‘( )111(2 A)‘*'COHW

L - ——%

dw

wt 1K

-pfane is found by ehmmatmg z using z = Z{C +
J(¢- 4c2)} The complex force F on this aerofoil is given by the Blasius

formula (2.24). Writing F = A +iQ, we have
dw k dz W
dZ dc / -

F = A—-iQ = }pi <ZC> d¢ = 1pi é
66 e~/ . ‘2 "~ 2'0/ 16/‘)-
CLAW 9/4/ ,/;/ 2 g ) AZ —
{,,,) 7 ) S Az / (7 A5k =

,

- (2 s G

¥ 2.12 The Schwarz_Christoffel transformag'gn Here the boundary of a
polygon in the z-plane with vertices z,,z,,...,z, and internal angles

JR————

‘S:O' ¥ u 3{0“’ e
_Sf,gnvthere are po, singylarities olitside C we can deform this circle into
the circle E defined by |z| = R where R is large. For large |z|
dw iK dz b

elay 2 1 —2 !
% L{X/+2 +0(z]72),. and 2 = 1+0(2|7%), (e

VAR :
F = A-iQ = Lpi (Ue‘“+l—+0(|z|‘2)> dz %pi(2ni)(%) ¢ W
S LR “) o
| / ) ) War & A '
so that

_ "y
A= pUKsina,, Q = pUKcosa ///

which give a resultant lift force R of y@ﬁ@gﬁﬁp&g@% to
— AR : E —ﬁ—

the unif t
e uniform st E&}In%

a7, %y, .., o, is mapped onto Im { = 0 by

d ay — a2~ 1 _ 2y —
EZ_L(C 0 R (P9 RPN (ST )/ (2.37) “

where the vertices of the polygon become the points ¢,,%,,...,¢,,
respectively on Im{ = 0. Furthermore when the polygon is simple its
interior is mapped onto Im{ > 0//

LProblem 2.18 Liquid streams in the region Imz > 0 with velocity U
parallel to the real axis. Assuming that the real axis is solid together
with that part of the imaginary axis for which 0 < Imz < q, find the
complex potential of IIlOthIV

olu eferring to Figure 2.15, A, A, 4, is an isosceles triangle of
h&%%m;gmlmz>0wnhltsbaseA A, on the real axis, 4,0 =
OA, where O is the origin, LA 4,4, = (2—a2)1t, and /_A2A1A3 =
LAAZ A = (1—a )m.

4 4
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Figure 2.15
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The domain of the actual liquid motion is the region Im z > 0 outside
the triangle whose base is then allowed to shrink to zero into coincidence
with the origin O, i.e. ¢, — 4 and a, — 2. This domain is mapped by the
Schwarz—Christoffel transformation onto Im{ > 0 where 4, ({ = —1),
A,(( =0), A5 = 1) are the points on Im{ = 0 corresponding re-
spectively to the limits of the points A, (z = 0—), 4, (z, = ai), A5 (z = 0+).
By equation 2.37 the mapping function is

dz/d{ = LE—-1D)~*(C+1)7*
which, integrated, gives
z = L{*-1)*+M, L, M are constants,

Since { = 1 when z = 0+, M =0 and { = O when z = di gives L = a.
Hence z = a({*>—1)* and { = (a®+z*)*/a. For large |{|, z ~ a so that
w = — Uz, the uniform stream in the z-plane, becomes w = — Ua{ in the
{-plane or the streaming speed here is aU. Moreover, since Im{ = 0
is a rigid boundary w = —Ua{. In terms of z, w = — U(z% +a?)%. O

¥%X%2.13 Impulsive motion The impulsive pressure w at any point of a

liquid set in motion impulsively from rest is pg where ¢ = —grad ¢.
Since divq = 0 by the equation of continuity, V2¢ = 0. Therefore, in

N
'ﬁ ' polar coordinates, ¢ = Y, ¢, (r,0) where
n=1

@, (r,0) = (A, cosnB+ B, sin nf)r" +(C, cos nf + D, sinnf)r—".
A, B, C,D,are constants./

Problem 2.19_ A circular cylinder |z| = a lies at rest in a liquid which is )
set in motion from rest with the velocity potential ¢ defined in Section é

2.13. Show that the component of the impulsive liquid thrust (per unit

thick the cylinder in the direction § = ais — % , ).
ickness) on the cylinder in the directio pap, (a al/

§2¢¥ﬂ2% The impulsive thrust on an element adf of the cylinder at
P(z = ae®) is —pag(a,0)do along OP where O is the centre z = 0. If
I, J are the components of the total thrust parallel to the real and imaginary
axes respectively, we have, on integration, I +iJ

= —pa r" (cos 8+15sin 6) ¢(a, 0) do
0
N
= —pa j: (cosO+isinf) ¥ {(A,cosnd+ B, sinnf)a”
r=1
+(C,cosnf+ D, sin nf)a™"} do
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Inverting the order of summation with integration and using

r"cosnﬂsinf)d() =0= jz" sinnfcosfdo for all n
0

0
jzn cosnfcosfdf = 0 = jzn sinnfsin0df for all nexceptn =1
0

0

jz" cos?0d)  =m = j“ sin? 049

0 0
we have,

I+iJ = —npa(A,a+iB,a+C,a '+iD,a™?)
The impulsive thrust component along § = o is, therefore,
Icosa+Jsina = —npa{(A;a+C,a ")cosa+ (B, a+D,a ")sina}
= —npay, (a,x) 0O (239

- Problem 2.20 Liquid of density p lies at rest in the annular region
extern

o the uniform cylinder |z| = a of mass m and internal to the
uniform shell |z| = b > a of mass M. (Both masses are measured per
unit thickness perpendicular to the z-plane.) The inner cylinder is suddenly
given a velocity (u4,0) and at the same time the outer shell is given a

velocity (0, v). Show that the liquid motion is initially of the form

¢ = (Acos 0+ Bsin )r+(C cos 8+ D sin O)/r.
=

4

Figure 2.16

Solution, The given ¢ satisfies V¢ = 0. At P(z = ae'®) the boundary
conﬁltlon ior the initial motion is

= —Acosf—Bsinf+(CcosO+Dsinf)a~? = ucos¥b,

for all 8. Hence,
—A+Ca % =y,

—B+Da"* =0
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Similarly at Q(z = be*’) the boundary condition is % Prove that the impulse on the solid cylinder |z| = a due to the

dp . ) _ ) “sudden application of a source of strength m at a point z = b outside on
oo, = —Acos—Bsinf+(Ccosf+Dsin6)b™* = vsinb, the real axis is 2tmp?/b away from the source.
for all 6. Hence, 4/ Obtain the relations between the constants a, h, b, A, H, B, in order that
—A4+Chb™%2 =0, —B+Db™ 2=y i v ax? +2hxy+by? _ Ax?+2Hxy+ By?

Referring to the general expression for ¢ given in Section 2.13, only the (x*+y)? v= (x2 + y%)?

@, (r,6) so chosen can possibly satisfy these boundary conditions. Solving may represent a possible liquid motion. Show by any means that this

for the four unknown constants and writing b>—a® = A we see that all motion is also irrotational, and the streamlines are circles.

conditions are satisfied by the given ¢ with
A = ud®/d, B = —vb*/4, C = ua’b?/4,
D = —va’b?/A O (239
¥ \\Problem 2.21 Find the external impulses which must be applied to |
“ proﬁuoe the motion of Problem 2.2.0/

o=
E%lutio%g Let I,,J, be the external impulse components (per unit
thickness) applied to the cylinder |z| = a. The corresponding components

of the impulsive liquid thrust, using equation 2.38, are {—mnpag(a,0),
— npag(a, 3n)}. The impulsive equations of motions of the inner cylinder are

I, —mpap(a,0) = mu, J, —npag(a,37) =0
Using equation 2.39,
I, = mu+mnpa(Aa+Ca™') = mu+mpua’® {(a> +b2)/(b*—a?)}
J, = mpa(Ba+Da™') = —2mnpvab*/(b*—a?)
Similarly if I,,J, are the external impulsive components on z = b, we

have
1, = mpbe(b,0) = npb(Ab+Cb™ ') = 2mpua®b/(b*—a*)
J, = Mv+mnpbe(b,in) = Mv—npvb*{(a*+b*)/(b*— az,);///(, o
EXERCISES
AN
_L~Given a complex potential w = —mln {(z2 = b*)(b*2* - a*)/(b*z%)},

> a, show that y =0 when x =0, y = 0, or x2+y* = a* where
z = x+iy. Interpret the motion, express dw/dz in a closed form and
hence show that the magnitude of the liquid speed at z = ae® is
|(2m/a) sin 26/(cos 26 — 2)| where 2a®b?) = a* +b*.

A solid cylinder |z| < a is placed in a liquid whose velocity potential
f two-dimensional motion is originally A(x?>+x—y?). Show that the
force on the cylinder is 4npa2i?.
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Chapter 3

Two-Dimensional Unsteady Flow

3.1 Fundamentals In this chapter we adopt the same assumptions (ii),
(iii), and (iv) defined in the first paragraph of Section 2.1 of the previous
chapter, but we replace (i) by the new condition that flow is, in general,
unsteady. Consequently, all or some quantities are time dependent. Again
suffixes are used to denote partial differentiation. The main features of
flow are:
The velocity vector is
q = u(x,y, )i+ o(x,y, )j+0k 3.1
The equation of continuity, since p is constant, is the same as in the case

of steady flow, i.e. u +v, = 0.
The equations of motion are derived from the results of Section 1.7.

For two-dimensional motion we have qAf = (ui+vj)A Tk = {vi—{uj
whilst Vy = g, i+y,j where y = p/p+}(u*+v*)+Q. Hence

u+x, =, v+yx,=—{u (3.2)
are one form of the equations.

Eliminating y from these equations using (x ), = (, ), we have
(Cv)y+(Cu)x—uyt+vxt = 0. Using the equation of continuity and { =
v, —u, we arrive at the result

{+ul +v{, = D{/Dt = 0 (3.3)

This means that vorticity following (i.e. attached to) any point which
moves with the liquid remains invariant. In particular, a point vortex
for which w = ikIn(z—z,) will, if free (i.e. not tied on a boundary), move
with the liquid particle associated with the point z,. This principle is
illustrated in the next problem.

Problem 3.1 Discuss the motion of two vortex filaments in a uniform
stream U.

Solution. Choose the real axis parallel to the uniform stream and let
the vortex filaments of strengths k, and k, occupy the points 4, (z = z,)
and A,(z = z,) respectively at time t = 0. The complex potential at
this instant is

w= ~Uz+ik, In(z—z,)+ik,In(z~2z,)
Note that this satisfies — | dp = 2nk, where y, is any small circle centre
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A, and — | dp = 2mk, where y, is any small circle centre A , - The particle

Y2
at A, which carries the vorticity k, will have a velocity (u, ,v, ) induced
in it'by the uniform stream and by the vortex 4, ie.

. d
—iv, = ——(w—ik,In(z—z =U-— 2
1 1 dz ( 1 ( 1 ))z=z1 U 21 _22 (34)
u,,v, are not constant since z, and z, will vary with time. Similarly, the

velocity (u,,v,) induced in 4, isU—ik, /(z,—z,). Hence
ky(u, —iv, )+k,(u,—iv,) = (k, +k,)U

U

or
kiu +k,u, =(k,+k,)U and k,v +k,v, = 0.

Since u, +iv, = z,(=dz, /dt) and wu,+iv, = z, then k z +k,z, =
(ky+k,)U. If z is the centre of gravity associated with masses k ,k, at
z, and z, respectively, provided k, +k, = 0,z = (k, z, +k, 2, )k, +k,).
Therefore, 2, = U, i.e. the centre of gravity moves with constant velocity
of magnitude U parallel to the real axis. It should be emphasised that the
liquid velocity under z is not Z, but (dw/dz),_ . . To find the positions of
the vortices at any instant we use equation 3.4 et seq., giving

2, =u

ik . . ik
2 and %, =u,-iv, = U——2
—z z,—z
2 2 1

=, = U~
zl

Writing z, —z, = re*%, substituting and taking conjugates we have
z, = U+i(k, /r)e*, z, = U—i(k, /r)e*
from which

(d/dt)(re’®) = (F+irf)e® = i(k, +k, )e'%/r

ie.f = Qorr = A;A, = constant, and 6 = (k, + k,)/r* = constant = o,
sothat§ = wt+awhere 0 = awhent = 0.Again,z, = U—i(k, /r)e'®*®.
Givenz, = {att = 0, integration leads to the result

24772,

z, = {+ Ut—(k, ro)e*(e —1)
Also
z, = z,+re'@t9,

In the special case when k, +k, = O, referred to as a vortex couple, it
follows from the above analysis that # = 0 = 6, i.e. both r and 6 are
constant so that 4, 4, has constant velocity of translation only. Denoting
the constant 0 by « we have w =0 and 2z, = U — i(k,/r)e* from which
z, = {+(U~ik, €/r)t, z, = z,+re" Both vortices will remain at rest
ifrU = ik, e”orcosa = 0(ax = jnorim)andsine = —rU/k (a = in =
U= —k,,o=3n=rU = k) O
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Problem 3.2 A sink of strength m is fixed at the origin r = 0 whilst
two vortices of strengths k and —k are free to move in the liquid. If
(r,,8,)and (r,,0,) denote thelr respectlve polar coordinates of position
at any instant, deduce that rZ —rZ = constant. If initially r, = r, deduce
the equation of the path of the vortex k.

Solution. The complex potential of the motion at any instant is
w = ikln(z—z,)—ikIn(z—z,)+minz, z, = re?,

The velocity of the vortex at z, has components u, ,v, where

— i6>
ZZ = rz [

d ik m
—u,+iv, = —(w—ikln(z~z = — —
1 1 dZ( ( ))z z1 Zl —zz Zl
But u, +iv, = 7, = (d/dt)(r, ") = (¢ +ir, 0,). Hence,
. ik m
o ieus _ B
u,—iv, = e (@, —ir, 91) = r e’ —r, i r e
ike™®  (r.—r, e me "
= e ) me <,

(r,—r,eh (r,—r,e” r

Dividing throughout by e~ ! followed by separating real and imaginary
parts.
. m  kr, k
Fo= —r—l—Fsml rlé1 =F(r2cosl—rl),
R* = r2+r2—2r,r,cosi
Similarly, replacing k by —k and interchanging r, with r, and 0, with 6,
so that A becomes — A.

. m  kr, k
Fp = —g—-ﬁfsml r,0, = —F(rlcosl-rz)

It follows that r F, —r,7, =0, ie. ri—r = constant = A. If r, = r,
initially, A = 0 or r, = r, permanently and R? = 2r2(1—cos A). Hence
r 0, = kr (cosA—1)/[2r’(1—cosA)] or 0, = —Lkr?
Similarly 6, = ikr;2 = —6, so that 6,+6, = constant = 2 (say).
We can now eliminate both r, and 6, terms from the above equations

giving

;o _m___ksind o 1p.-2 o _a 3
T+ = r 2r1 (l—cosl)’ 1= zkr1 ’ A= 02 01 = 2(a 01)
from which
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f _lfiﬁ 2m otd _2m
o, <0> k+ t3A = k cot (6, —a)

Integrating, the path (r, ,0, ) of the vortex k is
Inr, = (2mf, /k)—Insin(f, —a) = constant

—2mb, [k

ie r sin(f, —a)e = constant. O

Problem 3.3 n vortices each of strength k are placed at equal intervals
along the circumference of a circle of radius a. Show that the configuration
rotates as a rigid system with angular velocity 3(n— 1)k/a®.

Solution. The complex potential w for n vortices atz = z, = ae*™/" is
w =ik Z In(z-z,) = ikIn H (z—ae*™M) = ik In(z"—a"). The velocity

of the vortex atz = a(ie. z = z,) is determined from
w* = w—ikln(z—a) = ikIn {(z"—a")/(z—a)}
=ikln(z" '+2" %2a+...4+a""})
The velocity components u, v satisfy
aw* L f(n=1)z""24(n—=2)z""3a+...+a"?
dz =lk< A ARE R >z=a

C ik nn=1)\ _ik(n—1)
B na Y

ie. u=0, v =}n—1)k/a so that the vortex moves tangentially to
|z| = a with speed v or angular velocity {(n— 1)k/a®. By symmetry the
other vortices move with this same speed tangential to the circle and
therefore the system of vortices moves as a rigid system on the circle
|z} = a with angular velocity 4(n— 1)k/a®. O

—u+iv =

z=a

Problem 3.4 Attimet = 0,n vortices each of strength k occupy positions
z =1z, = ae®™" (r = 1,2,...,n) whilst a similar set of n vortices are
placed at points z = z_ = be'®* 2™/ (s = 1,2,..., n). Show that members
of the second set will remain equidistant from z = 0 and determine the
initial values of db/dt and do/dt.

Solution. A vortex at z_ has the tangential velocity 3(n— 1)k/b induced
in it by the members of its own circle as proved in the previous problem.
The vortices on z = a will also induce a velocity calculated from the
complex potential w = ikIn(z"—a"). Denoting this contribution by
its radial and transverse components g and g, respectively, we have,
using equation 2.11,
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dw ikz" "1 . ) )
WM _gigge™,  z=be', 0= atlnhn
z=2zg s_a

Since e*™ = 1,
tig. = nikzi"le ™ nikb" e me _ nikb"~ }(b"—a"e ")
4, rviqy = Zz_an - bne—nia_an - R2
where R? = (b"e™"*—a")(b"e"*— a") = a*"—2a"b" cos na+ b*". Since g, +
ig, 1s independent of s, each vortex of the ring has the same induced velocity,
and will, therefore, remain equidistant from O (z = 0). This distance,
however, changes with time t and initially
db nikb"~!(b"— a"e ~"¥)
E =4, = Re{ R2
Again, . .
de g, (n—Dk 1 nikb" (" —a"e ™) (n—1k
_— = — —_— = - +
i~ ™ R 257
_ nkb"*(b" —a" cos na) N (n—1k
B R? 2b*
Problem 3.5 A thin plate of width 2a is placed perpendicular to a
uniform stream of magnitude U. Assuming the absence of cavitation,
show that two vortices of strengths k and —k can remain at rest down-
stream of the plate and find their positions given that the liquid speed
is nowhere infinite.

nkb"~ a"sin no.
_ =3

0

Solution. Choosing the z-plane as the region of flow with the stream
parallel to the positive real axis and the plate lying in the imaginary axis
between z = ai and z = —ai, the flow in the absence of vortices is repre-
sented by w = —U(z%? +a?)* as solved in Problem 2.18. By symmetry,
the vortices —k, +k will lie at the image points z, and Z, respectively,
so that we need only consider the flow in Imz > 0. Referring to Figure
2.15, provided z,, is not a singular point, the hydrodynamic image of the
vortex —k at z;, is an equal vortex —k at the corresponding point (.
In order that the real axis in the {-plane remains a solid boundary in
correspondence with the solid boundary in the z-plane, we must introduce
an image vortex of strength k at {,. The complex potential of motion in
the {-plane is then

w= —Ual—ikIn({—{,)+ikIn((={;).
The vortex at {, will remain at rest if

ik

Co _zo

d . -
d_c{_U“C+1kln(C_C0)}C=Co =0= —Ua+
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Writing {, = ¢, +in, this becomes 2Uan, = k. When this condition is
satisfied the vortex —k at z, in the z-plane will also be stationary since
{, is a nonsingular point. Again by Problem 2.18 the mapping function
is z = a((*—1)* where dz/d{ =0 when { = 0. The velocity will be
infinite at the point z = ai unless dw/d{ = 0 when { = 0 (Kutta condi-
tion—Section 2.11). This implies —Ua+ik{y'—ik{;* = 0 or aU((3+
ng) = 2kn,. With k = 2Uan, we have &, = k/3/2Ua), n, = k/(2Ua)
from which z, = a({Z — 1)* is determined. Writing z, = x, +iy, we have
‘ 25 = (xo+iy,)? = a*(E2—nZ—1+2i,n,)
ie.
Xo—ve = a* & —mo—=1)  x,¥, = a*¢yn,

from which

x5 = 30 {(E*+4&Ind)* +E},  y2 = 1a*{(E*+4&2n2)t—E}
where E = £} —n2—1. Substituting for &, and 7, the result follows. [J

Problem 3.6 Liquid lying at rest in Rez > 0 is bounded by rigid walls
coincident with the real and imaginary axes and Imz = n/A(4 > 0). Show
that a vortex of strength k can remain at rest at a point midway between
the two parallel walls. Find this point and evaluate the force on the wall
Rez = 0 in this case. (Assume the stagnation pressure is p,, .)

K
(z=im/X) g A (Tgo
L @ )
2 e -1 0O 1
e 20 A . t +
| © e :- ¢
(27 ’ lgo
I e A
z—-plane {—plane
Figure 3.1

Solution. Referring to Figure 3.1, we use the Schwarz—Christoffel
transformation of Section 2.12 to map the region A BCD  occupied
by the liquid in the z-plane onto the upper half of the {-plane with B(z =
in/2) and C(z = 0) represented by { = —1 and +1 respectively on

Im{ = 0.Byequation 2.37, witha, = a, = in,{, = —1,{, = 1 wehave
dz -1 -1 2_1y-4
ran LE+DF -1 = L(2-1)
Integrating, z = Lcosh™*{+M or { = cosh{(z—M)/L} where L .M
are constants. Since { = 1 when z = 0, M = 0 and with { = —1 when
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z = infA —1 = cosh (in/AL) = cos (n/AL) or L = 1/4 giving { = cosh Az.
A vortex of strength k placed at a nonsingular point z, (say) in the z-plane
transforms into a vortex of the same strength at the corresponding point
{ = {, = coshiz, of the {-plane. Since A_ BCD_ is a rigid boundary
so is Im{ = 0. Therefore we must insert the image vortex of strength
—k at , in the {-plane so that the complex potential of liquid motion is
w = ikIn({—{,)—ikIn((—{,) in the {-plane and in the z-plane where
¢ = cosh Az, w = ikIn(cosh Az —cosh Az, ) —ik In (cosh Az—cosh 1z, ). The
velocity components u, v induced in the vortex at z,, by the image system
are given by

i d .
—u+1iv = E[W—lkln(znzo)]z=20

S Asinh Az 1 Asinh Az
= ik lim

z-w\cosh iz—cosh Az, z—z, cosh Az—cosh iz,

— ik lim Asinh (Az, +¢) A Asinh(izg+e)
~ o \cosh(dz,+e)—coshiz, ¢ cosh(dz,+€)— cosh iz, )

. sinh Az,
= lk}, (Coth j.zo - COSh ).Zo — Cosh AEO>

A point midway between the parallel walls can be represented by z, =
(a+3mi)/A for which cosh Az, = isinha and sinh Az, = icosha leading to

‘ —u+iv = ikA(tanha—3 cotha)
Hence, u = 0 and the vortex will remain stationary provided tanh?oa = 1.
Since o > 0, sinha = 1,cosha = /2, o =In(/2+1).
The velocity (4, v) on BC is given by

. daw .. . 1 1
THr = T ikd sinh 4z (cosh Jz—cosh Az, coshAz—cosh ,120>

with, z = iy. Since cosh Az, = cosh (« + 37i) = isinha = i, cosh iz =
cos Ay, etc.

—u+iv = —klsin).y(

1 > _ 2klisindy

cosAy—i cosAy+i " cosZ Ay+1

or u=0, v=—2kAsinAy/(cos*Ay+1). By Bernoulli’s equation the
pressure p on BC is p, — 1pv? where p, is the stagnation pressure. The
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thrust P on BC is, therefore,
A 2pk?* 2% sin? } *  sin?
P= f {p _.&_y}d —nPo_ppp2; | _SIn°0
o L% (cos?iy+1)? y=ry TP o (cos? 0+1)? o,
8 =1y
To evaluate the integral consider

" do ® dt T
laa=| —— =2 - _
@ L 1+acos®6 L l+a+2  (1+aF t = tan6

and
_0l@ (" cos*6do n
da ), (1+acos?0)?  2(1+ay
Hence
" sin0df j" do * cos?0df n n T
o (1+cos?0)? |, (1+cos?6) J; (1+cos?0)? J2 2\/—2 - 2—\—/_2
. n 2172
¢ P=3(n"5) .

3.2 Pressure and forces in unsteady flow When flow is unsteady, the
pressure p = p(r,t) is no longer given by Bernoulli’s equation. Instead,
the pressure is determined by integrating the equation of motion Dq/Dt =
F —grad p/p. Assuming that F = —grad Q and curl q = 0, in which case
@ exists with q = —grad ¢, we have

p/p = (0p/0t)—3q" — Q+ A(1)
where A(¢) is an arbitrary function.

Probl'em 3.7 Find the stream function ¥ and pressure p due to a vortex
field in which the vorticity { = 0 for all |z| = r > a, and { = r+2a for
r < a. Discuss the incidence of cavitation within the vortex.

Solution. Since Y = yY(r), we have V2 = ¢y +y/'/r = { where ' =
d:///z{r etc. For r <a, Y = ¥, where ¥ +y/r = (ry})/r = r+2a. Inte-
grating

r, = 3+ar’+c, ¢ = constant
For finite speed (=y)) at r =0, ¢ = 0, ie. Y, = 3r*+ar and y, =
§r3+§ar.2+e, e = constant. For r>a, ¥ =y, where (ry,) = 0.
Integrating, nj, = constant = f and
Yo = flnr+g, g = constant
Fornoslipatr = a,y;, = y/,ie.3a’+a* = $a® = f. Also for continuity
in Y (the absence of sources onr = a), Ja>+3a*>+e = fIna+g. Choosing
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g+ flna = 0, we have e = —114%/18. Hence, when

r>a, Y, =%’In(/a)
and for

r<a y,=@2r+9%ar*-11a%/18
Next we determine the pressure. Outside the vortex where r > a, 4
exists and equals —§a3 arg(z/a). Using Section 3.2, the pressure p, 1s
given by p, = p{(0p/0t)—Lq*+ A1)}, g = ¥, = 3a°/r, 09/t = 0. Given
that as r — oo, p — p, = constant, A(t) = 0, ie. for

r>a, p,=p,—8pa’/9r’
When r < a, ¢ does not exist in which case we find the pressure p,
directly from the equation of motion. An element at a distance r(<a)
having a speed q = ¥, moves in a circle of radius r with acceleration
q*/r towards r = 0. Hence,

ie. "
(3-8
Integrating,

p, = =p(r*+8ar®+18a’r’)+h,  h = constant

For continuity of pressure across the boundary r = a
Po = P, —Spa* = 2pa*+h

which determines A, leading to
p, = p,+2p(r*+8ar® +18a%r* — 59a*)

Finally, to consider the incidence of cavitation within the vortex, we
need to evaluate the minimum pressure p_ for r < a. We note that
dp, /dr = pr(r+3a)*/9 and d’p, /dr* = 3p(r+a)(r+3a) from which p,
is a minimum at » = 0. This minimum value is p_ = p_ —59pa*/36. To
prevent cavitation within r < a, p, >0, or, p, > 59pa*/36. If this
condition is not fulfilled, cavitation of radius R < a could occur when
p, = Oatr = R(<a)whichisarootoftheequation R*R*+8aR + 18a.2)=
59a*—36p_/p. The vortex will be completely hollow if R = a, i.e. provided
p, = 11pa*/18. |

Problem 3.8 Find the pressure on a circular cylinder |z| = a due to an
external vortex of strength 3k placed at a point z = 2a on the real axis
given that the total circulation about the cylinder is 4nk.
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Solution. The complex potential ofthe vortex 3kat z = 2ais 3ik In (z - 2a).
After inserting |z| = a, the complex potential is

3ikIn(z—2a)—3ikIn {(a*/z) - 2a}

= 3ikIn(z—2a)—3ik In(z —3a)+ 3ik In z— 3ik In (- 2a)
by the circle theorem (2.20). This result gives zero circulation about the
circle since the algebraic sum of the vortices inside, i.e. —3k at z = %a
and 3k at z = 0, is zero. To produce the required circulation we add the

term 2ik In z which does not upset the rigid boundary condition on z = a.
Ignoring the constant term the complex potential w, at time t = 0is then

wo = 3iklIn(z —2a)—3ikIn(z—La)+ SikInz
This expression does not persist because the vortex at z = 2a has a
velocity (i, v) induced in it by the image vortices. We have
. d . 3ik S5k ik
— = —(wy—3tkln(z--20a)),_,, = ~——+— = —,
u+1iv dz(wo ik In(z--2a)),_,, 2a—%a+ 22 = 2
Hence, u = 0 and v = k/2a or the vortex at z = 2a moves in a circle
of radius 2a centred at z = 0 with angular velocity w = k/4a®. At time
t = 0, its position in the plane is defined by z = 2¢e'®* and therefore
the complex potential of this external vortex for ¢ > 0 is 3ik In (z — 2ae®").

Applying the circle theorem to find its image in |z| = a and adding the
circulation term 2ik In z, the final complex potential for all t is

w = 3ikln (z—2ae*”)—3ik In {(a*/z)— 2ae "} + 2ikIn z
= 3ikIn(z —2ae'") - 3ikIn (z — 2a€)+ 5ik In z
ignoring the term independent of z. Putting t = 0 we obtain w, again.
The pressure p = p{(0¢/0t)—3q°} + A(1). q is determined by |dw/dz| where
dw 3ik 3ik 5ik

dz  z—2aeé® z-—lge ' ;
Also

do ow

— = Re— = Re

ot ot
As |z| -0, g = |dw/dz| — 0, dp/dt — 0 so that A(t) = pp_ where p_ is
the pressure at infinity. Since we are evaluating the pressure on the circle
when the vortex is in its initial position, we can put ¢t = 0 and z = ae'®

in which case,
ki
0_¢=3ka€< 2 1 )=_9_2

ot ef—2 26_1 n?

6kwae'™  3kwae
z—2ae'*  2z—gel®
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where n2 = e (2 —¢'%) (2¢®—1) = 5—4cos 0 (na is the distance between
z = ae'® and z = 2a).

dw 3ik( 1 2 +5ike'“’ _ ike 0 5__9_
dz a \e?—2 2e°—1 a  a n?
Hence
k? 9?2 ) dp 9k?
g = ?(S_n—z> and since w = k/4a?, 5 s
we have, finally,
oo 4,
p - pw+p<3t_ 2q
pk% {9 9\?
= pw—@{P+2<5_F , n? = 5—4cosf O

@’gﬂm of liquid particles These are found by integrating the velocity

q = dr/dt to find the position vector r of a specific particle, from which ¢,
the time, can then be eliminated to find its path. The next two problems

illustrate the method.

Find the paths of particles for uniform streaming past a
circular cylinder with circulation.

Solution, Choosing the real axis parallel to the uniform stream U and
the circular cylinder represented by the equation |z| = a the complex
potential w of liquid motion is

w = U(z+a%/z)+ikInz
where k is the strength of circulation. The velocity components u, v are

found from
dw . a®\ ik
E = —u+1v = U(l _Z—2>+;

For this solution it is easier to work in polar coordinates (r, 6). Therefore,
we put z = re? so that u—iv = z = (F—irf)e™, ie.

2 .—2i6 3 —i@
——irfpeio = U195 ") ke
r r

or

2 ., —if o
F—ird = —U(e“’—a ° >—§
r r
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Separating real and imaginary parts,
F= —U(l—d*r*cos0, r0 = Ul+a*/r*)sin0+k/r
To eliminate t, we have
19 _ rfig __UG*+a*)sinf+kr
F dr U(r* — a®)cos

Rearranging to give

2 2
sin 9<1 +a—2>dr+(r—a—>cos9d0 LIPS
r r Ur

the equation is an exact differential whose integral, a particle path, is

a\ . k
r——|Jsinf@+—Inr = constant = 4
r U

This, of course, is simply the family of streamlines y = Im w = constant =
UA. O

‘ Problemg.lo ) In the preceding problem find expressions for the time ¢
taken by a particle in moving along the cylinder from z = ae'*to z = ae®.

Solutioy, Using the results of the last problem, since r = constant = a
we have afl = 2U sin 0 + k/a. Therefore,
L J' ¢ a%db
. 2Uasinf6+k
or putting tan 36 = x, tanja = x,, 2Ua/k = 4,
; 2a* J‘ * dx
k (x+AP+1-42

Xo

There are three cases to consider dependent upon the value of A.
Case 1. 1 = 2Ua/k < 1; large circulation.
Putting 1 — A*= w?,

t = 2—02 tan_1 ﬁ_% g
kw w o
= —2—{ tan~! x+h —tan~! Xo+4
kew w w

= Etan“1 (x — X
ko xXXo+Ax+x5)+1
22* an-t w(tan3f — tan 1a)
1+taniftanja+ A(tan36 +tanlo)
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Case 2.} = 2Ua/k = 1.

Here
Ur (¥ dax | 1F
a o e+ 1) B x+1],
_ x—x, _ tan;f—tanja
T (x+1D(x,+1)  (tanif+1)(tania+1)
provided tania+1 s 0, ie. o« # 3n. The point z = ae'?" is a point of
stagnation of the flow since § = 0 here. We must not allow tani6+1 = 0
either. This means that the time to or from a point of liquid stagnation is
infinite.

Case 3. A = 2Ua/k > 1; small circulation.
Putting A2 —1 = Q2

t = a [~ L L dx
T kQ w0 \XFA=Q x+1+Q
_a | tan 360+ 41— Q) [tanja+ 1+ Q
ke " \tanl0+i+2/\tanla+i-Q
provided neither tan$6+ A +Q nor tan o + A+ Q vanishes. From tan ;6 +
A1 Q = 0 we find that
2tanjfd 20 1k
1+tan?0 ~  24A+Q) i 2Ua
Since A > 1, 0 is real. Assuming both k and U are positive, § = n+ 8,
or —B where § = sin™*{k/(2Ua)}. These are the points of stagnation on
the cylinder. Hence ¢, the time, is finite provided the liquid particle is not

entering or leaving (when tan Ja+ A+ Q = 0) either point of stagnation.
O

3.4 Surface waves To examine the characteristics of small constant-
amplitude waves propagated over the surface of still water of constant

sinf =

Y
Plz,h+n,1)
B eV S N
| =
7
h 5 :
7 L Rlzy)
|
Y
0 X
Figure 3.2
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depth h choose the axis OX in the horizontal bed (Figure 3.2) and let
P(x, h+n) be a point on the wave profile at any time t where n = #(x, t).
In the case of a simple monochromatic wave of amplitude a, wavelength
A = 2r/m and period t© = 2n/n propagated with speed ¢ = n/m, n will be
of the form n = a cos(mx —nt). Let # denote the fluid region and R(x, y) a
typical point within; £ is bounded by the profile #" and bed y = 0. We
assume that due to the surface wave (i) liquid motion in £ is irrotational
with velocity potential ¢ = ¢@(x, y,t), (ii) the pressure on the profile #~
is a constant IT for all x and ¢, (iii) 1, ¢ and speed g = |grad ¢ | are all small,
(iv) the profile slope is everywhere small.

On the profile #” applying (i) and (ii) to the pressure equation (1.18)
with p = constant, Q = gy = g(h+n),

m o ,,

—— h = Alt

> "o T4 HebhEn )
where A(t) is arbitrary. By (iii) we neglect q2. Also we may replace ¢ by
¢ — B(t) where dB/dt = A(t)—gh—1II/p since the velocity field q =
—grad ¢ due to either ¢ is the same. In terms of the modified ¢,

op(x, h+n,t
_ 0ol htn0)

E gn=0 for all Pe#

When 7 is small

oo(x, y,t
d(x, h+n,t) = (p(x,h,t)+r/|:—(p%] 4.
y=h

Invoking (iv), the above surface condition on the unknown profile #” can
be replaced by an equivalent condition

) A
- 5—?(36, ht)y+gn =0 (3.5)

evaluated on the still water surface y = h, i.e. for all P’ (x, h, t). Using (iv),
0On/ot is approximately — ée(x, h, t)/dy. Hence,

Fiade) on op
2z =97 = —95;, ¢ = @(x,h,t) (3.6)

is the final (equivalent) surface condition applied at loints P'(x, h, t). Using
suffixes to denote partial derivatives, motion is solved by

Foralltand R(x,y)e #, V3¢ =¢_+ ¢,, =0 (3.7a)
Condition 3.6 (3.7b)
Normal velocity — d¢/0y = 0 when y = 0 for all x,¢, (3.7¢)
By equation 3.5, n = d¢(x, h, t)/gdt for all x,t. (3.7d)
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Problem 3.11 Using the above theory, find the speed of propagation
of a monochromatic surface wave of wavelength A over still water of
uniform depth h. Deduce the complex potential of motion relative to the
wave.

Solution. We assume that n = asin (mx —nt) for which 4 = 2n/m and
the speed ¢ = n/m. Using (3.7d), for all x,¢,

0(x, h, 1)
ot

from which we deduce that ¢ has the form ¢ = f(y) cos (mx —nt). Using
(3.7a), V2 = (f,,—m?f)cos(mx—nt) = O for all x,¢, implies f, —m’f =
0 or f = Acoshmy+ Bsinhmy where A and B are arbitrary constants.
Invoking condition (3.7c) we must have B = 0, giving ¢ = A coshmy x
cos (mx—nt) and, by equation 3.8, n4 coshmh = ag. Finally, the surface
condition (3.6) gives the speed for, when y = h, for all x,t, d*p/ot* =
—n?A coshmhcos(mx—nt) = —g(dp/0y) = —gmA sinh mh cos(mx —nt)
ie. c? = (n/m)? = (g/mytanhmh, m = 2n/A (3.9)
To find the complex potential of relative motion we have ¢ =
Acoshmycos(mx—nt) = Rew where w = Acos(mz—nt) or w=
Acosm(z—ct) with A = ac cosech mh from equations 3.9. Replacing
z—ct by z and imposing a velocity —ci on the whole system, the axes
and wave profile are brought to rest whilst the liquid has a velocity —ci.
Choosing the new origin z = 0 in the free surface, the required complex
potential becomes
w = ¢z +ac cosech mh cos m(z +ih) (3.10)

= gn = agsin(m—nt) (3.8)

Moreover it is easily verified that the corresponding ¥ is
Y = cy—ac cosech mh sinh m(y+ h) sin mx

so that the bed y = —h is the streamline = —ch and neglecting a?
(compared with a) the surface y = asinmx corresponds to ¢ = 0. (]

Problem 3.12 A liquid of density p, fills the region 0 < y < h, and
flows with velocity U,i over an immiscible liquid of density p,(>p,)
which fills the region —h, < y < 0 flowing with velocity U ,i. Assuming
that rigid walls lie along y = h, and y = —h,, find an expression for the
speed of propagation of a small surface wave at the interface of the two
liquids.

Solution. We assume the wave has an elevation n = asin(mx—nt)
above the interface y = 0. Following the method of the last problem we
superimpose on the whole system a velocity — ci which reduces the wave
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to rest and changes the streaming velocities to (U, — )i, (U, —c)i. Using
equation 3.10, the complex potential of the lower liquid in —h, < y <0
is

w, = —(U, —c)z—a(U,—c)cosech mh, cos m(z +ih,)

where 1 = asinmx is the streamline ¢, = 0. The liquid speed is g, where
d dw
7 = <%> <%> = (U, —¢)*{1 —macosechmh, sinm(z+ihy)} x
{1 —ma cosech mh, sin m(z —ih,)}
= (U, —¢)*{1—2ma cosech mh, cosh m(y+ h,) sin mx} + O(a?)

Neglecting a?, at the interface y = 0 the speed is g,, where

42, = (U, —c)*(1 —2ma coth mh, sin mx)
We find the corresponding result for the upper liquid by writing U, for
U, and —h, for h,, ie. the speed ¢3, is given by

4%, = (U, —)*(1+2macoth mh, sin mx)
Since the pressure must be continuous across the interface for all x

P,, = constant—3p g3, —p,gasin mx
= constant—3p,q2,— p,gasinmx = p,,
The coefficients of sin mx on either side must equate in which case
mp, (U, —¢)* cothmh, +mp,(U, —c)* cothmh, = g(p, — p;)

the required result. ]

EXERCISES

1. A two-dimensional vortex of strength k is placed at the origin z = 0
in a liquid confined between the two parallel walls Imz = +Ja. Show
that the complex potential of the liquid motion due to the vortex is
w = ik In tanh (nz/2a). Prove that the vortex will remain at rest and that the
streamline which passes through the point z = aai (0 < & < 3) will
intersect the real axis at the points z = +(a/n)In(tan arn + sec an).

2. A vortex of circulation 2nk is at rest at the point z = aseca (« is real
and 0 < a < 1m) in the presence of the circular boundary |z| = a, around
which there is a circulation 2nk’. Show that k' = k cot® a. Prove that there
are two stagnation points on the boundary z = ae” symmetrically
placed about the real axis in the guadrants nearest to the external vortex
given by 2 cosf = cosa (3 —cos?a), and deduce that 0 is real.
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3. Three vortex filaments, each of strength k are symmetrically placed
inside a fixed circular cylinder of radius a, and pass through the corners
of an equilateral triangle of side 1a,/3. Given that there is no circulation
in the liquid apart from the effect of the vortices, prove that they will
revolve about the axis of the cylinder with angular velocity 88k/21a?.

4. Find the complex potential for vortices of strengths k and —k at
{, and —T, respectively outside the cylinder |{| = c at rest in uniform
streaming motion of magnitude U parallel to the imaginary axis when
there is no circulation about the cylinder. Apply the transformation
iz = {+c*/{, ¢ = 1a, to show that the complex potential of motion due
to vortices +k at z,, z, behind a plate of length 2a is

w = —Uda(2)+ikIn{(o(z)— o(z,))(a(z) — 6(2,))}, o(z) = (2*+ a®)*

Deduce that in order that the vortices remain at rest z2o(z,) must be purely
imaginary.
5. A source, of strength m, move along the axis OX with velocity U
relative to the undisturbed liquid. Show that the equations to the paths
of the liquid particles can be expressed in the form x— Ut = Rcos#,
y = Rsinf, R = {(x—Ut)>+y*}* = (Usin0)/0 = r(0—0a)/sin 0, sin%0 =
r(0— )0 where r = m/U2. Prove that

t/r = —(0—a)cot 8 +Insin 6+ constant
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Chapter 4

Three-Dimensional Axisymmetric Flow

s

4.1 Fundamentals We assume that (i) density p is constant, (ii) the
geometry of any immersed obstacle together with the flow is symmetrical

about OX, the axis of symmetry, (iii) using cylindrical coordinates
(x, @, 0) where x = x, y = wcos 0, z = wsin b, the flow is independent

of 8, 1.e(0/00 ;.Q./)
The velocity vector is q = ¢ 1+m + q90 where i, @, 0, are the unit
vectors parallel to OX and perpendictlarte-QX in the radial and transverse

directions respectively. These components g % and g, are functions of
wxf,?
In any soufce-free region %, the equation of continuity is

g, 1
0 = divq = a‘i + — o (go) @.1)

The stream function Y = Y(x,®) exists in &, by virtue of equation 4.1
and satisfies

13¥ r (9 / r
U.=
"= 5% o & vi = e @ @2)
‘3;-3 — - " @ @A/
Vs called the Stokes stream function. r

Alternatively, we have q = curl (—y8) where Y is a component of a

vector potential function.
The vorticity

i o ol
110 @
= 1q = —|— — 4.3
§ = curlg w 0x Ow 0 “3)
4, 4, 4,

When g, = 0,6 = O where
_ 84, 0q, _ (1 &y 1oy 1
(=T ax< >+ aw< ) —EW) (44

0x Ow w Ox w 0w

and '/ /

L ¢ 1
0x®  ow? w@t?/

)
E =

When flow is irrotational { = curiq = 0, for which ¢ exists with
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[
q= @rad (p//, By equation 4.4, i satisfies the equation
! 0(1 o (1 ¢
E(W)=O=———'/I+———¢ 4.5
ox\w 0x) Ow\w Ow /
The flux of volume flow Q across the curved surface formed by the
complete rotation of the meridian plane curve joining A(a, b) to P(x, @)

in Figure 4.1 (where ds is an element of AP and is inclined to OX at an
angle 1) is

@z NO Plx,@) g
Ala,b)
X

’ 7

9z

Figure 4.

P
Q = |@, cosA—g,sin A)2nw ds

A
Proy dx oY do
=27 \[4 <‘a; £+55 X)ds
P
=MJd¢=mw—¢)
A r\M/f/WA"-//

where Q is taken as positive measured in the sense right to left for an
observer at A looking towards P. When P lies on the stream surface
through 4,Q = Ooryy, = ¥ ,.

To find the velocity in terms of i let P(x,w) and Q(x+ dx, w+ 8w) be
neighbouring points belonging to surfaces y = constant and ¥ +8y =
constant and respectively. The volume flux across the surface (a conical
frustrum) formed by the revolution about OX of PQ = s is 2n(y +
oY —y) = 2n8y. Referring to Figure 4.2 the area Of this frustrum is
2nw s so that if g, is the average normal component of velocity across
PQ we have

2nw 8s g, + O(8s?) = 2n dy
90

0 (x,0)

ie.
~ 1% (1 o)

Putting

B =3myq, = -4 =

o] P
(X,ﬁ)eC;, S 7

which are the relations (4.2).

- 4.2 Spherical polar coordinates In terms of cylindrical coordinates
(x, ). The polar coordinates (r,0) are defined by x = rcosg,m = rsin 0/
“Tn axisymmetrical flow we write the velocity q = q,r+4,8,7,0 being unit
vectors in the radial and transverse directions. Thése components can
be expressed in terms of ¥ using equation 4.5. With ds =780, —g, =

@: —r~ %(cosec 9)(6!//@ and with 8s = &r, g, =g, = r™'(cosec ) x
(8¢/or))IT a velocity potential ¢ exists then q = —grad p)giving g, =
—dg/or, and g, = —d¢/r0b. Replacing the variable 6 by u whereui;—'

cos 0,\we have x
e .= T =y, M e
rsm6q9=(1-—u)<pﬂ=l/// r

. &\5
where the suffixes attached to ¢ and ¥ only denote partial differentiation.
Eliminating y the equation for ¢ is (*9, ), + {(1— )¢, }, = 0. A solution
is

¢ = {Ar"+Br""'}P (W, P = 23n1< di,,)(u’—l)"’/ 4.7)

where n is a positive integer, 4 and B are constants and P (p)isa LegenC}re
_polynomial of order n. The equation for y is (1— W, +r2y,, = 0 with
a solution satisfying equations 4.6 and 4.7 given by

¥ = {An+ 1) —Bn~ Yr (1 — u?)dP (w)/dp 4.8)
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% 4.3 Elementa
#*4.3.1 Umf____o;r_n_sg_ea.lg/ Given/ verywhere, ¢ = —Ux
and by equations 4.2 alp/aw = -U, = —iUo? (ignoring

the constant of integration). =

H-4.3.2 Point source A point source at r = 0 has constant volume output
Amm, 1e. of strength_m. Here | q.dS = 4mn for all simple surfaces §
enclosmg_ 0. Choosing S as the sphere |r| = r = constant, on which,

by s symmetry, =gq (r) 4, gwe have 4mn = 4nr?q,. From equations
4.6, ~—-~"'7/

r’g, =m= —r’g, =y,
rsinfg,=0=(1—pp, =y,

Solving,
@ = m/r and Yy =mu = mx/r = mfi. r)/r
¥ of course exists everywhere except at the origin r = 0. If the source is
placed at a point r = a instead, we have
Q= m/|r—a|y Y = mi.(r—a)/|r—a| (4.9)
The resultant flow flow is ggg_axisymmetric about an axis throughr = g/

% 4.3.3 Doublet _A doublet whose strength and axial direction is given by
p at r = 0 15™defined as the combination of a sink of strength m atr = 0
with a source of equal strength at r = ¢p where ¢ = 0 and m — oo with
me = 1. Using equations 4.9

¢ = lim {m —m——}
m—w.e—~0 Irl 'r_q‘ll

= lim (—ep. V)— —(p.V)_i =

m—ow. €0

(Note that dr . Vf = df(r) = f(r+dr)-- f(r) and the direction of dr is fi).
Since, by equations 4.9, when ¢ = l/r, ¥ = x/r, the corresponding

solution for y is,
x x\ o (rfi—xr)
Y —(u-V);— —u-V<r>—u- 3

= [mrinr]/r? ; @.11)

p.r

(4.10)

¢ 4.4 _Butler’s sphere theorem o (r, ) is the stream function of an axi-
symmetric irrotational flow devoid of rigid boundaries and ¥, = 0 at
r = 0. If a rigid sphere |r| = a is introduced into this flow and none of
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its singularities is covered by the sphere, the new motion is represented
by the stream function

¥ = Yo (r, ) —(r/aW, (a*/r, 1) (4.12)

Denoting the image stream function —(r/a)y,(a®/r, ) by ¥ there are
four steps to establish in the proof:

1 Since motion is irrotational, by Section 4.2, i, satisfies (1 — 2)t// +
r*y, = 0 in which case ¥, also satisfies this condition for 1rrotat10nahty

(The verification is left to the reader.)

2 Yla,u) = O for all y, i.e. the sphere |r| = a is a stream surface.

3 Since r and a*/r are inverse points with respect to |r| = a all singu-

larities of y, lie inside |r| = a given those of ¥, lie outside, i.e. no new
singularities are introduced into the fluid by the image system.

4 Withy, regularin [r| < aand ¥, = 0 whenr = 0 we have y, = O(r)
for small r so that y, = O(1/r)+ constant, or by equations 4.6, the velocity
at infinity due to y, is O(1/r3) which tends to zero as r — 0. Moreover,

the volume flux across the sphere at infinity is O(1/r) which vanishes as
r —» oo.

The verification is therefore established.

- Problem 4.1 Find the liquid speed on a solid sphere due to an external
source.

olution. We assume that a source of strength m lies at r = bi outside
the sphere [r| = a. The axis OX is the axis of symmetry. Using equations
49 the stream function of this source is ¥, = m(x—b)/{(x—b)*+w*}*.
However, near r = 0 this expression behaves like —m. Consequently, to
ensure the correct conditions at infinity in Butler’s_theorem we must -
arrange that y = O atr = 0 by adding a constant m to . In the notation
of Section 4.4 with u = cos 0, x = ru, w = r(1 —p?)?,

Yo = m+y, = m+mrp—Db)/(r* —2bru+b?)*
Hence, using equation 4.12, the final stream function in the presence of
the sphere is
mr m(ru--b) mr{a®y—br)

V= P 2bra s 0 ala® —24%bri s B

The radial component of the liquid velocity on |r| = a must be zero so .
that the required speed is s1mply the transverse component g, = r~' x
cosec 0y,. Now, writing (r2—2bru+b%)* = A(r), (a* —2a2br/4+b2 ) =
B(r)
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m my mru—b)bu—r) m(a?u— 2br)

SRV VR C aB()

mr(a®u—br)(a®bu—br)
- aB3(r)
When r = a, A(a) = (a*—2abu+b?)?,  B(a) = aAla), so that
m 2mb m(b*-a*)(au—>b)
Vo = at aA(a)+ aA3(a)
giving the speed g, on r = a as

m {b(3a2 +b*)—au(3b* +a?

, b—a < A(a) < b+a

-—1}, U = cos@ O

B = 21—y A%(a)
1%
Z?’Foﬁ” @ how that@— 1Uw?{1-24/[x+/(x*+w%)]}isa  possible|

stream fu

&

%

is zero_show that th‘gpr point P(x, w)|of the surfacg varies
inversely with 2a— x% oz e Fospnd

LI . nott
,4,3/,; fitet éyﬂ/oﬁd]

. By equation 4.5,  must satisfy the equation

LDy /
0 G 0
o ox\w 0Ox o\w o / /

Slnce){x+\/(x +o?)}™! = {\/(x +w?)— x}/wj,, the given ¥ can be
written as, § = J-Uw - Ua{\/(x +w?)—x}., The first term which repre:

tion in irrotational motion and deduce that it represents’ W
streaming motion past Egra Qlng! Given that the pressure at mﬁmty§

ents a unifo is an obvious solution of the equation and so is
Ll_,/_agiAgam wrltmg V&2 +od) (= g, 9 x(x*+@?) 74, x, = w(x +
2 ot :
6)1rs(;)that6 1 6x F ‘Ma
[ox >= —{(x 2+w2) t_x(x2 + )" a}}
ox\w: 6 0, 2 s
7 /(x T—okx*+w )b{//_ Q)(/

in which wand ie. the gi_\f_@_@%&rﬁm

function. N
Vpp iTo interpret the motion we have yhen @ _= 0, the axis, @

‘x+/(x*+@?) = 2a so that Z+o £x) or w?
Which s the equation of a paraboloid with focus at (0,0) and vertex at

(a,0). M680TEY; when /(x? + w?) is large, y ~ $Uw?, iy behaves like

a uniform stream — Ui _at infinity. Jfhe motlon t erefore is a uniform
\ “stream of magnitude U moving patﬁllel to the axis nd<towards tl}'g vertex

of the paraboloid deﬁned‘t',y the above equation. n o= g3 2* o

94 4a

= —4a(x—a), X,

DLV EEESS
. . = A /

The pressure p is given by p+1pg® —/‘\ constant where from the evalua-

tions at infinity, the constant 1s ;pU%, On_the paraboloid where w? =
—4a(x— a), %

1w _ _va /“”) _ 2a(a-x \
qm/_w x o {x_(\x2+w27)ﬂ* 1= o <2a—x>V’ Vi
and mﬂ’ﬂ' g}
)

q =__1_%_ —U+Ua(x*+@?) % = _U<G—X> ' o

R Zamx VWM’

2 _ q5+qi/=b <2Z__§>2<1+%‘22> - %%\ W

S Iy ’
— U2 ~ aw
=Lour_Lour( 27X ) o1 M
P 2 <2a+x zp“za—x/u @

Problem 4.3 A uniform straight-line sink of total volume flux input

12ra*U lying on OX between x = —a to x = 0 is followed by a com-
pensating uniform line source of total output 12ra?U stretching from
x =0 to x = a. If a uniform stream — Ui is introduced, show that the
resultant flow is equivalent to a streaming motion past a solid of revolu-
tion of length 4a which is symmetrical about the equatorial plane x = 0.
Prove also that the radius of the equatorial section is sa where ¢ is a
root of 6*(c +24) = 144 and deduce that the liquid speed on the equator
is U(18 +0)/(12+ o).

Solution. For the line source of total output 12na?U in 0 < x < aq,
thm per unit length is A = 12na?U/(4na) = 3Ua. By equations 4.9
the stream function dy for an element of this source of length d¢ at x = ¢
is Ax—&{(x—¢&)?+w?}~*dé. Hence integrating, the stream function
¥, due to the line source is

Ve = [ A== 0t} e = —A[(x—{+ 0?1,
= M{(x*+o) —(x—a)?+o?)?}, 1=3Ua
Similarly the stream function due to the line sink is
Y_ = A[{x-&*+o*}]°, = H{(x*+ o)t -((x+a)* +@?)?}, 1= 3Ua
adding to the stream function 1Uw? of the uniform stream the final i is
¥ =3Uo’+y, +y_
= ;Uo? +3Ua{2(x* + 0} — ((x + a)* + ©?)* — (x — a)* + w?)}}
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It is important to realise that all the square roots must be given their
positive values, e.g. when @ = 0

for x > a, Y = 3Va{2(x)—(x+a)—(x—a)} =0

forx < —a, Y = 3Ua{2(—~x)—(—x—a)—(a—x)} = 0

for —a < x < a, ¥ = 3Ua{2|x|—(a+x)—(a—x)} = 6Ua{|x|—a} # 0

Y = 0 is a dividing stream surface giving the axis of symmetry as one
branch (provided |x| > a) and a closed surface as another. If (x,®) lies
on this surface so does (—x,w), i.e. the surface is symmetrical about the
plane x = 0. The equation of the body is,

YAUD? = 0 = 1+6a{2(x* +0?) - ((x +a)* + ©)} — (x— a)” + ©°)}} /@’
It'meets the axis at the value of x for which w = 0. For small @w and
x > a we have

6a w? w?
—1+2 - 14—
0 1+w2{2x<1+2x2> (x—+-a)< +2(x+a)2>

—(x—a)| 1+ o’ +O0(w*)
2Ax—a)®
In the limit as w— 0, x satisfies

11 1
0= 1+6“<§ 2(x+a)"2(x—a)>

or x(x*—a®) = 6a>, giving one real root x = 2a, which is a half length
of the body. Alternatively, we could find this point from the condition
that it must be a point of liquid stagnation, ie. g, = —w~ ' dy/0w = 0
when o = 0 and x = 2a.

At x = 0, the radius of this equatorial section is oa. From the body
equation putting @ = oa with x = 0,

0 = 1+6a{20a—a(l+06>)*—a(l +0%)*}/(6%a?)
ie.
(1+0)t—0g = {50?
or
o3(c +24) = 144

By symmetry, g, = @~ 'dy/6x = 0 at x = 0 so that the equatorial
liquid speed is (in the negative sense),
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2 1 |
=U 3Ual=— -
. + a{m (a2+w2)‘} (a2+w2)‘¥}’

-(qx)x=0 = ’

0w
W = ac
1 1
=U+6U<——— 5
+ {a (1+o*2)%}
But (1 +0¢%)* = o(1 +50), hence
q 1 12 1840
4 _1+6 -

U (o 0(12+a)> 1240 =

Problem 4.4 In the case of steady axisymmetric motion show that the

vorticity { and stream function ¥ satisfy the Jacobian a(y, {/w)/é(x,w) = 0.
Deduce that there exists a solution { = Aw with = {B+ A(x*+@?)/
10}@* where A and B are constants. Interpret this solution when B =
—a?4/10.

Solution. From equation 1.17 of Section 1.7 for steady flow
QAL = Vy wherey = [p 'dp+ig*+Q

so that curl(q A §) = curlgrad y = 0. In the case of axisymmetric motion
q = g, i+g_w. From equation 4.3,

{=curlgq = (0 = %—@1 0
0x Ow W
so that
qrl =g, i-{q w
and
1 w o
1] ¢ 0 \
1 = — = - =
curl(@A Q) =5 p 0 ‘ 0
{g, -lq, O
Thus - T
9 _ AN
o (qu)+ (Zq,,,) 0 or —592<E £>+%<E a)_o
which is
oW, /o) _
o(x, m)

The Jacobian is obviously zero when (/w = constant = 4. Using
equation 4.4  must then satisfy the equation

2 2
Ey) = <8 0 1 a)w Aa?

8117 w8
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Substituting ¥ = C(x*w?+w*) where C is constant as a trial solution,
we have E(Y) = C2o*+ 1202 —2x%2—4w?) = 10Cw>. Hence, choosing
C = A/10, we have a particular integral. Substituting y = Bw?, E() = 0,
so that Y = {B+ A(x>+@?)/10}w? is a solution for arbitrary constants
A and B. Choosing B = —a%A4/10 and writing x = rcosf, w = rsin 0,
we have ¥ = —(A4/10)(a®>—r*)yr*sin? @ for which ¥ =0 when r = a.
Consequently, a vortex for which { = Aw = Arsin 6 can be contained

! within the sphere r = g, This is known as Hill’s spherical vorteJy O

Problem 4.5 An inviscid incompressible liquid moves irrotationally

with velocity potential ¢, = Ux where U is constant. Verify that the

perturbation in ¢, when a sphere r = a is introduced with its centre
at the origin r = 0 is £U(a/r)*x. If the sphere is divided into two hemi-
spheres by a plane passing through the axis OX prove that the force on
either portion due to the liquid pressure is {(11/32)pU?—p_}na® where
p,, is the liquid pressure at infinity.

Solution. If ¢, denotes the perturbation potential then ¢ = @, +¢,
must satisfy the conditions (i) V2¢ = 0 in the liquid, (ii) 0¢/0r = 0 when
r=a,l(i)q= —gradg = —Uiasr — 0.

Since ¢, = Ux = Urcos¥, Vip, =0, dp,/0r = Ucos®, grad ¢, =
— Ui. Hence we seek a solution ¢, of V2@, = 0 where gradg, - 0 as
r - oo and 0¢, /0r = —U cos@ when r = a for all 0. Using equations
4.7 the first two conditions are fulfilled by choosing ¢, = ZB,r™""!x
P_(cos9). Finally, to satisfy the boundary condition on the sphere, we
must have n = 1 and 2B, = Ud® giving ¢, = ;Ua’r"?cos#, as the
result.

On the sphere, r = a(cos i+ sin 6 cos w j+sin Osinwk), dS = a?sin @ x
dw df. We choose the hemisphere for which z =r.k 20,0 < § < 7,
0 < w < n. By symmetry the force on this hemisphere is —Z along the
z-axis and is given by Z = — [{ pn.k dS evaluated over the surface where
p is the liquid pressure and n = r/a the unit outward normal to the surface
at the element dS. Using Bernoulli’s equation we have p+3pq® =
P, +3pU? = P where g is the liquid speed on r = g, i.c.

q=4q,=(r"'09/00),_, = —3Usin,
from ¢ = U cos 6(r+3a’r~?). Hence
Z=—a"{f (P—1pg®r.k dS
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= -a| |, (P—3pU?sin6)sin? Osinw do do

w=0

= 4g2 j j @pU%in’0—P)sin2 0d6 = na*(ELpU? - P)

na’(3}pU ~p,, —3pU%) = na’G3pU%-p,) =

& _Problem 4.6 _ A sphere with centre O and radius a moves through an

infinite inviscid liquid of constant density p at rest at infinity. The velocity
of O at any instant ¢ is V(¢)i where i is a unit vector in a fixed direction.
Show that when there are no body forces, the pressure p at a point P on
the sphere whose position vector is r referred to the centre O is given by

p=Dp, — gpV*(5a* — 9x* — 184x)/a?

yvherp x =r.i, and 1 = (2/9)(a®/V?)(dV/dy), p, being the pressure at
infinity. Obtain conditions that ensure the absence of cavitation on the
sphere.

.‘S\'glution. Using the result proved in the previous problem and denoting
AN N

the position vector of the centre O referred to a fixed origin by R, the
velocity potential of the liquid motion is

_ 3@’V .r—R)

|r—R|3 whereV = Vi

The pressure anywhere in the liquid is p = p{(d¢/0t)— 1% + A(t)} where
A(t) is some function of time to be determined. Writingr—R = d, |d| =d

q= —gradp = 3a*{d"3V-3(V.d)d"°d}
0pfot = 1a*{(V.d)d =3 -V 3+ 3(V.dPd"%)
As r =|r| > o, d - oo so that both g = |q| and 8¢/dt - 0 giving
A(t) = p,/p- Moreover, on the sphere |d| = a or d = an where |n| = 1,

q=3{V-3(V.nm}, ¢’ =4q.q9={V +3(V.n?}
and 8¢/t = 1{aV.n—V?+3(V.n)?}. Therefore,
(P—p,)/p = 1{aV.n—V2+3(V.n)*} —5{VZ+3(V.n)%}
= LaV.n—3V24+2(V.n)?
a result which is true for all V and V. In the given problem V and V have

the same fixed direction. Writing V = Vi, V=vin.i= x/a we have
with V = 94V?/24?, the result

(p—po)p = —LV*(5a*—9x* - 184x)/a?
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To ensure no cavitation the pressure p must be positive everywhere.
To find the minimum value of p on the sphere we have, differentiating
dp/dx = 9V?(x+ A)/4a?, d*p/dx* = 9V?/4a®. Provided that |A| < a,pisa

minimum p, when x = —A and p, = p,—§pV?(5a*+94%)/a’, which is
positive provided p, > p(45V*+4a2V?)/72V2. When |A|>a, p is a
minimum p,_ when x = —a, with p = p,~;pV*494—2a)a which is

positive when p, > Lp(aV — V% a

4.5 Impulsive motion The method is illustrated in the following problem
and solution.

Problem 4 Liquid at rest is bounded externally by a spherical shell

[r| =b an( ternally by the spherical shell |r| = a < b. If the shells
are instantaneously given velocities V and U respectively, verify that
the resulting irrotational motion is described instantaneously by a velocity
potential @ of the form p.r+(A.r)|r| 3 Prove also that the impulse
experienced by the internal shell from the liquid is —%mp(a’p+ 4), and
write down an expression for the external impulse which must be applied
to this shell of mass M to produce the motion.

Solution ;The given ¢ does satisfy Laplace’s equation V2 = 0 since
the first #rm p.r corresponds to a uniform stream and the second to a
doublet whose strength and direction is A. The liquid velocity q determined
from ¢ is

q=—grado = —{p+rir 3=30h.00r" %}, =1
The boundary condition on the shell [r| = aisn.q =n.U wheren is the
unit normal to the shell. Since n = r/a the equivalent condition isr.q =
r.U for all r when |r| = g, ie.

r.q,.,= —p.r+2r.ra”* =r.U forallr
This is satisfied when —p+2Aa~3 = U. Similarly, the boundary con-
dition on the outer shell isr.q = r.V for all r when |r| = r = h. This is
satisfied when —p+24b~3 = V. Solving, we have,
p= (@ U=V -a’), 4=3aU-V)b’—a’)

This solution is of course only instantaneously true for the symmetry
is instantly destroyed by the ensuing motion.
The impulse of the liquid on the internal shell is

=—§p(pdS——p§{ur+).ra3}(B dS=ndS, n=r/a

The simplest way to evaluate the surface integral is to convert it into a
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volume integral using the Gauss divergence theorem. We have

§ p.r)ds = jV(u.r)dr = jpdt = $na’p

Hence )
I = —plina’p+indh} = —$np(@p+1)

If J is the external impulse we have

J+I=MU
ie.
3= MU+-T% U bV LU V)b
3(b3__a3) 2
_ 2n pa’ 3 p3 3

4.6 Miscellaneous examples In conclusion two examples will be
considered in which motion of the liquid is not necessarily axisymmetric.

Problem 4.8 Given a closed geometrical surface § within a moving
liquid show that the integral H = { 1q* dS—q(dS . q) has the same value
S

for every surface S’ reconcilable with S. Interpret H when S is a fixed
solid surface. Also, evaluate H for a sphere S centred on r = 0, where
there is a source of output 4nm, given that (i) the sphere encloses no other
singularity and (ii) the liquid velocity at r = 0 due to all other effects
excluding the source is U.

Solution. We shall assume that §’ is a nonintersecting surface reconcil-
able with S and V is the volume enclosed between. By Gauss’s theorem
and its extension we have, integrating over the total surface S+ S’ enclos-
ing V,

| ie?¢S—q@s.g) =

S+8’

[ [v30* - {a(V-9)+ (. VIg}] &z
= [[ar(VAQ—qV.q] dc

Since S and S’ are reconcilable surfaces, no singularities of the liquid
motion exist within V. In the absence of vortices and sources VAq = 0
and V.q = 0 respectively. Consequently, since the volume integral
is zero, the total surface integral is zero so that the component integrals
of H over S and §" are equal.

From Bernoulli’s equation for steady motion, p+1pg® = P where
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1

P is a constant. For any closed surface S, j P dS = 0, hence we can write
5 .
pH = —[[pdS+ pq(dS.q)].For any solid surface, —{ p dS is the force F
3 5

on it whilst q .dS = 0 by the boundary condition when S is a fixed surface.
Hence in this case H = F/p.

Onasphere|r| = ¢ we can write the liquid velocity q = me™*n+ U +O(e)
where n is the unit outward normal to S the sphere, the first term being
the source velocity and the third term, O(¢), the correction to U due to the
evaluation on S. Again @2 = m?¢"*+ U?+2me™?n. U+ O0(c™ ') so that

H= [{mPe*+jU*+me *@m.U)} dS
— [{me"n+U+0(e)} {me~*n.dS+ U.dS+O(¢) dS}
= Ym?c*+U? [8S—-U [U.dS—m*¢"* | (n.dS)n
+me2{ {n.U)dS— {n(U.dS)-U [n.dS}+O(e)

where the integrals are taken over the surface of the sphere [r| = e
For any closed surface S, {dS = 0, {U.dS = 0. Also, {(n.dSm = [dSn =
{dS = 0. For the given S, | n.dS = | dS = 4ne®. Again | (n.U)dS—
{n(U.dS) = { U(dS An) = 0since dS = dSn. Hence,

H = —me 2U4ne’ +0(¢) = —4nmU +O0(e)
However, by the result proved in the first part of the problem, H must be

independent of ¢, i.e. the term O(e) must be identically zeroorH = —4nmU.
O

Problem Using the results of the previous problem prove that the
force on a sphere |r| = a due to an external point source of output 47nm
placed at r = bi is 4npm?a®i/b(b* —a*)*.

Figure 4.3
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Solution. In Figure 4.3, B denotes the solid sphere |r| = a, S the sphere
|r—bi| = € of small radius ¢ enclosing the source of output 4wm at r = bi
and E is an enclosing envelope |r| = R where R is large. If V is the volume
of liquid internal to E and external to both B and S, there are no singu-
larities of the liquid motion within V. By the extension to Gauss’s theorem
we have

JlarnVre—qv.@lde =0 = { [+ +]}[ia* $5—q@s.q]
|4 E B N
or

0 = H,+H,+H

Using the results of Problem 4.8, H, = F/p where F is the required
force on B and Hg = —4nmU where U is the velocity at r = bi due to all
effects excepting the source there, i.e. U is the velocity at r = bi due to the
image of the source in the sphere B. Hence
F = pH, = 4mtmpU—pH,

We now show that H, — 0 when R — oo. For large R the velocity q
at a point r =R on E due the source at r = bi is of the form
q = mR/R®+O(R3). Since the image in the solid sphere B can have
no resultant source inside (i.. the sum of the source and sink there must
be zero or else there will be a flow across B), the q due to this image
system will behave, at most, like O(R™3) on E. On the envelope we may,
therefore, write q = mR/R*+O(R™?) and since dS = O(R?), H, =
O(R™?) at most. (In fact Hy = O(R™?)). It appears that H, — 0 as
R — o0 so that F = 4nmpU. To evaluate U we use Problem 4.1 from
which the image of the source in r = ¢ has a Stokes stream function
given by

_mr mr(a®u— br)
Vi=¥—¥o = T a ala*—2a%bru+ bt
where 4 = cos 6. Now U = i(q,),_, ,., where

Ly md{ a*u—br }

TP T Tar a0 —2d%bruta’y
m (a?(b%r? —2a%bru+ a*)+(a*p— br)a’br
-7 { (b%r? —2a%bru+ b3t }
When ¢ = 1 and r = b, remembering that we choose the positive value
to the square root, since b > a,

_m a(b*—a®)’ - (b*-ad)a’h?]  ma?
q9. = ab (b2 _a2)3 - b(bz _a2)2

ar
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so that finally we have the result for the force as

dm*adnpi
EXERCISES

1. Show thaty = w?(Ar?+ Bx)r 3 is a possible Stokes stream function.
Given that 0 < ¢ < 1 verify that y = Uw*(r® —r? +3ex)r ™ represents,
to a first approximation in ¢, the streaming motion past an ellipsoid of
revolution.

2. A source and sink of equal strengths m are placed on the axis OX a
distance 2a apart. A uniform stream of magnitude 8m/(9a?) flows parallel
to the axis from source to sink. Show that the flow corresponds to a
streaming motion past a solid of revolution which is symmetrical about
an equatorial section and is of length 4a. Deduce that the radius of the
equatorial section is ai? where 4 is a root of the equation 44%(1 + 1) = 81
and prove that the liquid speed at the equator is 1+243/81 times the
magnitude of the uniform stream.

3. Prove that a solid sphere of radius a moving with velocity Ui sin wt
through a liquid otherwise at rest experiences a resistance %n pwa’U cos wt.

4. A doublet i is placed at S(r = bi) in the presence of a fixed sphere
r| = a. Find the stream function and show that the speed at a point P
on the surface of the sphere is

3ur~3(b%*—a?)sin @
wherer = SPand 6 = ~ SOP.
Deduce that the resultant force on the sphere is
24upra’b(b® —a?)~*
towards §.

Table 1. List of the main symbols used

i,j,k, constant unit vectors parallel to fixed Cartesian axes, 0X, OY,
OZ respectively

= xi+yj+2zk position vector

= ui+vj+wk velocity vector

= curlq vorticity vector

pressure

=B ]

fluid density

adiabatic constant
- = ,/(dp/dp) acoustic speed

fluid space

source-free fluid region

source field of #

vortex-free fluid region

vortex field of #

source-free and vortex-free region, i.e. intersection of R, with &,
belongs to

contains

velocity potential where ¢ = —grad ¢
stream function

mobile operator

w »
R * 0

NTYILY|YLEED

SR
S

Table 2. Some useful results in vector calculus

Gauss’s theorem:
[Fas=[v.Far o [paS=[veu a
S 14 s 14
(Surface S encloses volume V, dr is an element of V,dSis an elemental
vector area outward from V)
Extension to Gauss’s theorem:

jG(F.dS) - j[G(V.F)+(F.V)G] dt
Green’s theorem:
j Vo .Viydr = j YV .dS—j YVip dt
1 4 S 14

Stokes’ theorem:

jcurlF.dS=jF.dr |
€

S
(S is a surface spanning %)
grado = ¢, i+9¢ j+o,k (¢, =0p/oxetc), grade.dr = do
grad oy = ¢ grad Y+ grad ¢, grad f(r) = f'(r)x/r
divq = u+v,+w, (u=1.q, u, =ou/oxetc) divr= 2//
divoF = ¢divF+F.gradg, (q.V)q = V(Gq®)—qAcurlq
VAFAG) = (G.VVF-(F.V)G-G(V.F)+F(V.G)
&
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Acceleration 2, 5
Acoustic speed 24, 26
Acyclic motion 13
Adiabatic 24

Aerofoil 65

Angular velocity 11, 19
Attraction 34, 35
Axisymmetric 23, 26

Bernoulli’s equation 18, 22-25, 45, 78
Blasius’s theorem 52, 66

Bore 27, 28

Boundary condition 31, 32, 57, 60, 70
Boundary surface 8

Bubble 33

Butler’s theorem 92, 93

Cauchy-Riemann equations 39, 57

Cavitation 44, 45, 76, 80

Channel flow 27

Circle theorem 47, 51, 64, 66, 81

Circulation 12-15, 43, 44, 66, 80-84, 87-88

Complex potential 39-43, 47, 49, 50, 54,
56, 59-62, 64, 67, 68, 70, 72, 74-76, 78,
81, 82, 86-88

Conformal mapping 62

Continuity equation 6-9, 16, 22, 23, 26,
29, 32, 33, 37, 72, 89

Convection 5

Critical flow 29, 30

Cyclic motion 14

Cylindrical coordinates 6, 8, 9

D/Dt operator 4, 10, 18, 19
Density 2
Doublet 18, 42, 47, 92

Earnshaw 37

Elliptic cylinder 59, 60

Entropy 18, 24

Equation of continuity (see continuity)

Equations of motion 9, 10, 18, 19, 20, 24,
72

Equipotentials 41, 43, 56

Euler 2

Fluid element 10, 11
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Flux

Mass §, 24

Momentum 5, 9, 23, 27

Volume 35, 16, 27-29, 33, 38, 40, 90, 95
Froude number 27-30

Gas 23, 24, 26, 33, 34, 35, 36

Harmonic functions 39
Hydraulic jump 27, 28

Image 47, 49-52, 76, 81, 93

Impulsive pressure (motion) 30, 68, 70

Incompressible 6

Inviscid 4

Irreducible circuit 11, 14

Irrotational (motion) 11, 12, 15, 16, 18, 30
32, 38, 85, 89, 93, 94

Isentropic 24

Joukowski 65

Kinetic energy 31, 32, 34, 35, 58, 59, 61-63
Kutta 65, 66, 77

Lagrange 1

Laplace equation 15
Laval tube 23-25
Legendre polynomial 91

Mach number 25, 26

Mass conservation (see continuity
equation)

Mass flux (see flux)

Mobile operator D/Dt (see D/Dt)

Momentum flux (see flux)

Orthogonal coordinates 56

Pathline 1, 3, 82, 83, 88

Perfect fluid 4

Pressure 2, 3, 4, 10, 20-22, 23, 26, 33, 34,
45, 52, 53, 78-80, 85, 87, 95
Equation 18, 33, 80, 85

Reducible circuit 11, 13, 15
Rotating cylinders 60

Schwarz-Christoffel 67, 77
Shear flow 51
Shock 26
Simply connected 11-14
Singular points 43, 57, 60, 62, 63, 65, 93
Sink (see source)
Sonic 25, 26, 27
Source
Three dimensional 6, 16-18, 31-33, 41,
63, 92
Two-dimensional 39-42, 45, 47, 49, 50,
54-56, 63, 64, 71
Specific heats 24
Spherical coordinates 91
Stagnation 25, 39, 84
Strain 11
Streakline 1
Steady flow 2, 37
Stream
Filament 2, 7
Function (two dimensions—Earnshaw)
37,40,41,79
Function (three dimensions—Stokes)
89, 93-95
Line 2, 3, 18, 37, 41-43, 46, 48, 56, 71,
83, 86
Surface 2, 3, 90, 93

Tube 2

Uniform 40, 42, 44, 51
Strength of

Doublet 18, 92

Source 17, 41

Vortex tube 14

Thermodynamic equations 24

Unsteady flow 2, 24, 72, 79

Velocity 2, 37-39, 89
Velocity potential 12, 15, 16, 31, 32, 35,
38, 68, 70, 85, 91
Volume flux (see flux)
Vortex
Couple 73
Filament 13
Line 13, 18, 19
Ring 14, 15
Tube 13
Two-dimensional 39, 43, 44, 54, 72-81.
87, 88
Vorticity 11, 13, 33, 38, 46, 89

Waves 27, 28, 84, 85
Wavelength 85, 86
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