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Preface

This book has its origins in a set of lecture notes, assembled at UCLA for a graduate
course on the optical studies of solids. In preparing the course it soon became
apparent that a modern, up to date summary of the field is not available. More than
a quarter of a century has elapsed since the book by Wooten: Optical Properties of
Solids – and also several monographs – appeared in print. The progress in optical
studies of materials, in methodology, experiments and theory has been substantial,
and optical studies (often in combination with other methods) have made definite
contributions to and their marks in several areas of solid state physics. There
appeared to be a clear need for a summary of the state of affairs – even if with
a somewhat limited scope.

Our intention was to summarize those aspects of the optical studies which have
by now earned their well deserved place in various fields of condensed matter
physics, and, at the same time, to bring forth those areas of research which are
at the focus of current attention, where unresolved issues abound. Prepared by
experimentalists, the rigors of formalism are avoided. Instead, the aim was to
reflect upon the fact that the subject matter is much like other fields of solid state
physics where progress is made by consulting both theory and experiment, and
invariably by choosing the technique which is most appropriate.

‘A treatise expounds, a textbook explains’, said John Ziman, and by this yard-
stick the reader holds in her or his hands a combination of both. In writing the book,
we have in mind a graduate student as the most likely audience, and also those not
necessarily choosing this particular branch of science but working in related fields.
A number of references are quoted throughout the book, these should be consulted
for a more thorough or rigorous discussion, for deeper insight or more exhaustive
experimental results.

There are limits of what can be covered: choices have to be made. The book
focuses on ‘mainstream’ optics, and on subjects which form part of what could be
termed as one of the main themes of solid state physics: the electrodynamics or

xi



xii Preface

(to choose a more conventional term) the optical properties of electrons in matter.
While we believe this aspect of optical studies will flourish in future years, it is also
evolving both as far as the techniques and subject matter are concerned. Near-field
optical spectroscopy, and optical methods with femtosecond resolution are just two
emerging fields, not discussed here; there is no mention of the optical properties
of nanostructures, and biological materials – just to pick a few examples of current
and future interest.

Writing a book is not much different from raising a child. The project is
abandoned with frustration several times along the way, only to be resumed again
and again, in the hope that the effort of this (often thankless) enterprise is, finally,
not in vain. Only time will tell whether this is indeed the case.

Acknowledgements
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and clarify this book, for this we are grateful to the students who took the course.
Wolfgang Strohmaier prepared the figures. The Alexander von Humboldt and the
Guggenheim Foundations have provided generous support; without such support
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1

Introduction

Ever since Euclid, the interaction of light with matter has aroused interest – at least
among poets, painters, and physicists. This interest stems not so much from our
curiosity about materials themselves, but rather to applications, should it be the
exploration of distant stars, the burning of ships of ill intent, or the discovery of
new paint pigments.

It was only with the advent of solid state physics about a century ago that this
interaction was used to explore the properties of materials in depth. As in the field
of atomic physics, in a short period of time optics has advanced to become a major
tool of condensed matter physics in achieving this goal, with distinct advantages
– and some disadvantages as well – when compared with other experimental tools.

The focus of this book is on optical spectroscopy, defined here as the information
gained from the absorption, reflection, or transmission of electromagnetic radia-
tion, including models which account for, or interpret, the experimental results.
Together with other spectroscopic tools, notably photoelectron and electron energy
loss spectroscopy, and Raman together with Brillouin scattering, optics primarily
measures charge excitations, and, because of the speed of light exceeding sub-
stantially the velocities of various excitations in solids, explores in most cases
the �q = 0 limit. While this is a disadvantage, it is amply compensated for
by the enormous spectral range which can be explored; this range extends from
well below to well above the energies of various single-particle and collective
excitations.

The interaction of radiation with matter is way too complex to be covered by
a single book; so certain limitations have to be made. The response of a solid at
position r and time t to an electric field E(r′, t ′) at position r′ and time t ′ can be
written as

Di (r, t) =
∫ ∫

¯̄εi j (r, r′, t, t ′)E j (r′, t ′) dt ′ dr′ (1.0.1)

1



2 1 Introduction

where i and j refer to the components of the electric field E and displacement
field D; thus ¯̄εi j is the so-called dielectric tensor. For homogeneous solids, the
response depends only on r − r′ (while time is obviously a continuous variable),
and Eq. (1.0.1) is reduced to

Di (r, t) =
∫ ∫

¯̄εi j (r− r′, t − t ′)E j (r′, t ′) dt ′ dr′ . (1.0.2)

We further assume linear response, thus the displacement vector D is proportional
to the applied electric field E. In the case of an alternating electric field of the form

E(r, t) = E0 exp {i(q · r− ωt)} (1.0.3)

the response occurs at the same frequency as the frequency of the applied field with
no higher harmonics. Fourier transform then gives

Di (q, ω) = ¯̄εi j (q, ω)E j (q, ω) (1.0.4)

with the complex dielectric tensor assuming both a wavevector and frequency
dependence. For ¯̄εi j (r − r′, t − t ′) real, the q and ω dependent dielectric tensor
obeys the following relation:

¯̄εi j (r− r′, t − t ′) = ¯̄ε∗i j (r− r′, t − t ′) ,

where the star (∗) refers to the complex conjugate. Only cubic lattices will be
considered throughout most parts of the book, and then ε̂ is a scalar, complex
quantity.

Of course, the response could equally well be described in terms of a current at
position r and time t , and thus

J (r, t) =
∫ ∫

σ̂ (r, r′, t, t ′)E(r′, t ′) dt ′ dr′ (1.0.5)

leading to a complex conductivity tensor σ̂ (q, ω) in response to a sinusoidal time-
varying electric field. The two response functions are related by

ε̂(q, ω) = 1+ 4π i

ω
σ̂ (q, ω) ; (1.0.6)

this follows from Maxwell’s equations.
Except for a few cases we also assume that there is a local relationship between

the electric field E(r, t) and D(r, t) and also j(r, t), and while these quantities may
display well defined spatial dependence, their spatial variation is identical; with

J(r)
E(r)

= σ̂ and
D(r)
E(r)

= ε̂ (1.0.7)

two spatially independent quantities. This then means that the Fourier transforms
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of ε̂ and σ̂ do not have q �= 0 components. There are a few notable exceptions
when some important length scales of the problem, such as the mean free path �

in metals or the coherence length ξ0 in superconductors, are large and exceed the
length scales set by the boundary problem at hand. The above limitations then
reduce

σ̂ (ω) = σ1(ω)+ iσ2(ω) and ε̂(ω) = ε1(ω)+ iε2(ω) (1.0.8)

to scalar and q independent quantities, with the relationship between ε̂ and σ̂ as
given before. We will also limit ourselves to non-magnetic materials, and will
assume that the magnetic permeability µ1 = 1 with the imaginary part µ2 = 0.

We will also make use of what is called the semiclassical approximation. The
interaction of charge ei with the radiation field is described as the Hamiltonian

H = 1

2m

∑
i

[
pi − ei

c
A(ri )

]2
, (1.0.9)

and while the electronic states will be described by appropriate first and second
quantization, the vector potential A will be assumed to represent a classical field.
We will also assume the so-called Coulomb gauge, by imposing a condition

∇ · A = 0 ; (1.0.10)

this then implies that A has only transverse components, perpendicular to the
wavevector q.

Of course one cannot do justice to all the various interesting effects which arise
in the different forms of condensed matter – certain selections have to be made,
this being influenced by our prejudices. We cover what could loosely be called the
electrodynamics of electron states in solids. As the subject of what can be termed
electrodynamics is in fact the response of charges to electromagnetic fields, the
above statement needs clarification. Throughout the book our main concern will
be the optical properties of electrons in solids, and a short guide of the various
states which may arise is in order.

In the absence of interaction with the underlying lattice, and also without
electron–electron or electron–phonon interactions, we have a collection of free
electrons obeying – at temperatures of interest – Fermi statistics, and this type
of electron liquid is called a Fermi liquid. Interactions between electrons then lead
to an interacting Fermi liquid, with the interactions leading to the renormalization
of the quasi-particles, leaving, however, their character unchanged. Under certain
circumstances, notably when the electron system is driven close to an instability, or
when the electronic structure is highly anisotropic, this renormalized Fermi-liquid
picture is not valid, and other types of quantum liquids are recovered. The – not
too appealing – notion of non-Fermi liquids is usually adopted when deviations
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from a Fermi liquid are found. In strictly one dimension (for example) the nature
of the quantum liquid, called the Luttinger liquid, with all of its implications,
is well known. Electron–phonon interactions also lead to a renormalized Fermi
liquid.

If the interactions between the electrons or the electron–phonon interactions are
of sufficient strength, or if the electronic structure is anisotropic, phase transitions
to what can be termed electronic solids occur. As is usual for phase transitions,
the ordered state has a broken symmetry, hence the name broken symmetry states
of metals. For these states, which are called charge or spin density wave states,
translational symmetry is broken and the electronic charge or spin density assumes
a periodic variation – much like the periodic arrangement of atoms in a crystal.
The superconducting state has a different, so-called broken gauge symmetry. Not
surprisingly for these states, single-particle excitations have a gap – called the
single-particle gap – a form of generalized rigidity. As expected for a phase
transition, there are collective modes associated with the broken symmetry state
which – as it turns out – couple directly to electromagnetic fields. In addition, for
these states the order parameter is complex, with the phase directly related to the
current and density fluctuations of the collective modes.

Disorder leads to a different type of breakdown of the Fermi liquid. With
increasing disorder a transition to a non-conducting state where electron states are
localized may occur. Such a transition, driven by an external parameter (ideally
at T = 0 where only quantum fluctuations occur) and not by the temperature, is
called a quantum phase transition, with the behavior near to the critical disorder
described – in analogy to thermal phase transitions – by various critical exponents.
This transition and the character of the insulating, electron glass state depend on
whether electron–electron interactions are important or not. In the latter case we
have a Fermi glass, and the former can be called a Coulomb glass, the two cases
being distinguished by temperature and frequency dependent excitations governed
by different exponents, reflecting the presence or absence of Coulomb gaps.

A different set of states and properties arises when the underlying periodic lattice
leads to full and empty bands, thus to semiconducting or insulating behavior.
In this case, the essential features of the band structure can be tested by optical
experiments. States beyond the single-electron picture, such as excitons, and also
impurity states are essential features here. All this follows from the fundamental
assumption about lattice periodicity and the validity of Bloch’s theorem. When this
is not relevant, as is the case for amorphous semiconductors, localized states with
a certain amount of short range order are responsible for the optical properties.

The response of these states to an electromagnetic field leads to dissipation,
and this is related to the fluctuations which arise in the absence of driving
fields. The relevant fluctuations are expressed in terms of the current–current
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or density–density correlation functions, related to the response through the cel-
ebrated fluctuation-dissipation theorem. The correlation functions in question can
be derived using an appropriate Hamiltonian which accounts for the essential fea-
tures of the particular electron state in question. These correlations reflect and the
dissipation occurs through the elementary excitations. Single-particle excitations,
the excitation of the individual quasi-particles, may be the source of the dissipation,
together with the collective modes which involve the cooperative motion of the
entire system governed by the global interaction between the particles. Electron–
hole excitations in a metal are examples of the former, plasmons and the response
of the broken symmetry ground state are examples of the latter. As a rule, these
excitations are described in the momentum space by assuming extended states and
excitations with well defined momenta. Such excitations may still exist in the case
of a collection of localized states; here, however, the excitations do not have well
defined momenta and thus restrictions associated with momentum conservation do
not apply.

Other subjects, interesting in their own right, such as optical phonons, di-
electrics, color centers (to name just a few) are neglected; and we do not discuss
charge excitations in insulators – vast subjects with interesting properties. Also
we do not discuss the important topic of magneto-optics or magneto-transport
phenomena, which occur when both electric and magnetic fields are applied.

The organization of the book is as follows: underlying theory, techniques, and
experimental results are discussed as three, inter-relating parts of the same en-
deavor. In Part 1 we start with the necessary preliminaries: Maxwell’s equations
and the definition of the optical constants. This is followed by the summary of
the propagation of light in the medium, and then by the discussion of phenomena
which occur at an interface; this finally brings us to the optical parameters which
are measured by experiment. The three remaining chapters of Part 1 deal with the
optical properties of metals, semiconductors, and the so-called broken symmetry
states of metals. Only simple metals and semiconductors are dealt with here, and
only the conventional broken symmetry states (such as BCS superconductors) will
be covered in the so-called weak coupling limit. In these three chapters three
different effects are dominant: dynamics of quasi-free electrons, absorption due
to interband processes, and collective phenomena.

In Part 2 the experimental techniques are summarized, with an attempt to bring
out common features of the methods which have been applied at vastly different
spectral ranges. Here important similarities exist, but there are some important
differences as well. There are three spectroscopic principles of how the response
in a wide frequency range can be obtained: measurements can be performed in the
frequency domain, the time domain, or by Fourier transform technique. There are
also different ways in which the radiation can interact with the material studied:
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simply transmission or reflection, or changes in a resonance structure, can be
utilized.

In Part 3 experimental results are summarized and the connection between the-
ory and experiment is established. We first discuss simple scenarios where the
often drastic simplifications underlying the theories are, in the light of experiments,
justified. This is followed by the discussion of modern topics, much in the limelight
at present. Here also some hand-waving arguments are used to expound on the
underlying concepts which (as a rule) by no means constitute closed chapters of
condensed matter physics.



Part one

Concepts and properties

Introductory remarks

In this part we develop the formalisms which describe the interaction of light (and
sometimes also of a test charge) with the electronic states of solids. We follow
usual conventions, and the transverse and longitudinal responses are treated hand in
hand. Throughout the book we use simplifying assumptions: we treat only homo-
geneous media, also with cubic symmetry, and assume that linear response theory
is valid. In discussing various models of the electron states we limit ourselves to
local response theory – except in the case of metals where non-local effects are
also introduced. Only simple metals and semiconductors are treated; and we offer
the simple description of (weak coupling) broken symmetry – superconducting
and density wave – states, all more or less finished chapters of condensed matter
physics. Current topics of the electrodynamics of the electron states of solids are
treated together with the experimental state of affairs in Part 3. We make extensive
use of computer generated figures to visualize the results.

After some necessary preliminaries on the propagation and scattering of elec-
tromagnetic radiation, we define the optical constants, including those which are
utilized at the low energy end of the electrodynamic spectrum, and summarize the
so-called Kramers–Kronig relations together with the sum rules. The response to
transverse and longitudinal fields is described in terms of correlation and response
functions. These are then utilized under simplified assumptions such as the Drude
model for metals or simple band-to-band transitions in the case of semiconductors.
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Broken symmetry states are described in their simple form using second quantized
formalism.
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2

The interaction of radiation with matter

Optics, as defined in this book, is concerned with the interaction of electromag-
netic radiation with matter. The theoretical description of the phenomena and the
analysis of the experimental results are based on Maxwell’s equations and on their
solution for time-varying electric and magnetic fields. The optical properties of
solids have been the subject of extensive treatises [Sok67, Ste63, Woo72]; most
of these focus on the parameters which are accessible with conventional optical
methods using light in the infrared, visible, and ultraviolet spectral range. The
approach taken here is more general and includes the discussion of those aspects of
the interaction of electromagnetic waves with matter which are particularly relevant
to experiments conducted at lower frequencies, typically in the millimeter wave and
microwave spectral range, but also for radio frequencies.

After introducing Maxwell’s equations, we present the time dependent solution
of the equations leading to wave propagation. In order to describe modifications
of the fields in the presence of matter, the material parameters which characterize
the medium have to be introduced: the conductivity and the dielectric constant.
In the following step, we define the optical constants which characterize the prop-
agation and dissipation of electromagnetic waves in the medium: the refractive
index and the impedance. Next, phenomena which occur at the interface of free
space and matter (or in general between two media with different optical con-
stants) are described. This discussion eventually leads to the introduction of the
optical parameters which are accessible to experiment: the optical reflectivity and
transmission.

2.1 Maxwell’s equations for time-varying fields

To present a common basis of notation and parameter definition, we want to recall
briefly some well known relations from classical electrodynamics. Before we
consider the interaction of light with matter, we assume no matter to be present.

9
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2.1.1 Solution of Maxwell’s equations in a vacuum

The interaction of electromagnetic radiation with matter is fully described by
Maxwell’s equations. In the case of a vacuum the four relevant equations are

∇ × E(r, t)+ 1

c

∂B(r, t)

∂t
= 0 , (2.1.1a)

∇ · B(r, t) = 0 , (2.1.1b)

∇ × B(r, t)− 1

c

∂E(r, t)

∂t
= 4π

c
J(r, t) , (2.1.1c)

∇ · E(r, t) = 4πρ(r, t) . (2.1.1d)

E and B are the electric field strength and the magnetic induction, respectively; c =
2.997 924 58× 108 m s−1 is the velocity of light in free space. The current density
J and the charge density ρ used in this set of equations refer to the total quantities
including both the external and induced currents and charge densities; their various
components will be discussed in Section 2.2. All quantities are assumed to be
spatial, r, and time, t , dependent as indicated by (r, t). To make the equations
more concise, we often do not explicitly include these dependences. Following the
notation of most classical books in this field, the equations are written in Gaussian
units (cgs), where E and B have the same units.1

The differential equations (2.1.1a) and (2.1.1b) are satisfied by a vector potential
A(r, t) and a scalar potential �(r, t) with

B = ∇ × A (2.1.2)

and

E+ 1

c

∂A
∂t
= −∇� . (2.1.3)

The first equation expresses the fact that B is an axial vector and can be expressed
as the rotation of a vector field. If the vector potential vanishes (A = 0) or if A is
time independent, the electric field is conservative: the electric field E is given by
the gradient of a potential, as seen in Eq. (2.1.3). Substituting the above expressions
into Ampère’s law (2.1.1c) and employing the general vector identity

∇ × (∇ × A) = −∇2A+ ∇(∇ · A) (2.1.4)

gives the following equation for the vector potential A:

∇2A− 1

c2

∂2A
∂t2

= −4π

c
J+ 1

c
∇ ∂�

∂t
+ ∇(∇ · A) ; (2.1.5)

a characteristic wave equation combining the second time derivative and the second

1 For a discussion of the conversion to rational SI units (mks), see for example [Bec64, Jac75]. See also
Tables G.1 and G.3.
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spatial derivative. As this equation connects the current to the scalar and vector
potentials, we can find a corresponding relationship between the charge density
and the potentials. Substituting Eq. (2.1.3) into Coulomb’s law (2.1.1d) yields

∇ · E = 4πρ = −∇2�− 1

c

∂

∂t
(∇ · A) .

Using the Coulomb gauge2

∇ · A = 0 , (2.1.6)

the last term in this equation vanishes; the remaining part yields Poisson’s equation

∇2� = −4πρ , (2.1.7)

expressing the fact that the scalar potential �(r, t) is solely determined by the
charge distribution ρ(r, t). From Eq. (2.1.1c) and by using the definition of the
vector potential, we obtain (in the case of static fields) a similar relation for the
vector potential

∇2A = −4π

c
J , (2.1.8)

connecting only A(r, t) to the current density J(r, t). Employing the vector identity
∇ · (∇ × B) = 0, we can combine the derivatives of Eqs (2.1.1c) and (2.1.1d) to
obtain the continuity equation for electric charge

∂ρ

∂t
= −∇ · J , (2.1.9)

expressing the fact that the time evolution of the charge at any position is related to
a current at the same location.

Equation (2.1.7) and Eq. (2.1.9) have been obtained by combining Maxwell’s
equations in the absence of matter, without making any assumptions about a par-
ticular time or spatial form of the fields. In the following we consider a harmonic
time and spatial dependence of the fields and waves. A monochromatic plane

2 Another common choice of gauge is the Lorentz convention ∇ ·A+ 1
c
∂�
∂t = 0, which gives symmetric wave

equations for the scalar and vector potentials:

∇2�− 1

c2
∂2�

∂t2
= −4πρ ,

∇2A− 1

c2
∂2A

∂t2
= − 4π

c
J ;

or – in the case of superconductors – the London gauge, assuming ∇2� = 0. For more details on the
properties of various gauges and the selection of an appropriate one, see for example [Jac75, Por92]. Our
choice restricts us to non-relativistic electrodynamics; relativistic effects, however, can safely be neglected
throughout the book.
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electric wave of frequency f = ω/2π traveling in a certain direction (given by
the wavevector q) can then be written as

E(r, t) = E01 sin{q · r− ωt} + E02 cos{q · r− ωt}
= E03 sin{q · r− ωt + ψ} , (2.1.10)

where E0i (i = 1, 2, 3) describe the maximum amplitude; but it is more convenient
to write the electric field E(r, t) as a complex quantity

E(r, t) = E0 exp{i(q · r− ωt)} . (2.1.11)

We should keep in mind, however, that only the real part of the electric field is
a meaningful quantity. We explicitly indicate the complex nature of E and the
possible phase factors only if they are of interest to the discussion. A few notes
are in order: the electric field is a vector, and therefore its direction as well as
its value is of importance. As we shall discuss in Section 3.1 in more detail, we
distinguish longitudinal and transverse components with respect to the direction of
propagation; any transverse field polarization can be obtained as the sum of two
orthogonal transverse components. If the ratio of both is constant, linearly polar-
ized fields result, otherwise an elliptical or circular polarization can be obtained.
Similar considerations to those presented here for the electric field apply for the
magnetic induction B(r, t) and other quantities. The sign in the exponent is chosen
such that the wave travels along the +r direction.3 We assume that all fields and
sources can be decomposed into a complete continuous set of such plane waves:

E(r, t) = 1

(2π)4

∫ ∫ ∞

−∞
E(q, ω) exp{i(q · r− ωt)} dω dq , (2.1.12)

and the four-dimensional Fourier transform of the electric field strength E(r, t) is

E(q, ω) =
∫ ∫ ∞

−∞
E(r, t) exp{−i(q · r− ωt)} dt dr . (2.1.13)

Analogous equations and transformations apply to the magnetic induction B. Some
basic properties of the Fourier transformation are discussed in Appendix A.1.
Equation (2.1.12), which assumes plane waves, requires that a wavevector q and
a frequency ω can be well defined. The wavelength λ = 2π/|q| should be much
smaller than the relevant dimensions of the problem, and therefore the finite sample
size is neglected; also the period of the radiation should be much shorter than the
typical time scale over which this radiation is applied. We assume, for the moment,
that the spatial dependence of the radiation always remains that of a plane wave.

3 For exp{i(q · r+ ωt)} and exp{−i(q · r+ ωt)} the wave travels to the left (−r), while exp{i(q · r− ωt)} and
exp{−i(q · r− ωt)} describe right moving waves (+r). With the convention exp{−iωt} the optical constants
ε̂ and N̂ have positive imaginary parts, as we shall find out in Section 2.2. The notation exp{iωt} is also
common and leads to N̂ = n − ik and ε̂ = ε1 − iε2.
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Using the assumption of harmonic waves of the form (2.1.12), the spatial and
time derivatives of the electric field strength E(r, t) can be calculated as

∇ × E(r, t) = iq× E(r, t)

∇ · E(r, t) = iq · E(r, t) (2.1.14)
∂E(r, t)

∂t
= −iωE(r, t) ,

with the same relations found for the magnetic induction B(r, t). The spatial and
time periodicity of the radiation can now be utilized to write Maxwell’s equations
in Fourier transformed form:

q× E(q, ω)− ω

c
B(q, ω) = 0 , (2.1.15a)

q · B(q, ω) = 0 , (2.1.15b)

iq× B(q, ω)+ i
ω

c
E(q, ω) = 4π

c
J(q, ω) , (2.1.15c)

iq · E(q, ω) = 4πρ(q, ω) . (2.1.15d)

The vector and scalar potentials, A and �, can also be converted to Fourier space,
and from Eqs (2.1.2), (2.1.3), and (2.1.7) we then obtain

B(q, ω) = iq× A(q, ω) , (2.1.16)

E(q, ω) = i
ω

c
A(q, ω)− iq�(q, ω) , (2.1.17)

q2�(q, ω) = 4πρ(q, ω) . (2.1.18)

As mentioned above, the assumption of harmonic waves is not a restriction for
most cases; since the transformation to Fourier space turns out to be particularly
convenient, we have utilized these relations heavily.

2.1.2 Wave equations in free space

In the absence of matter and in the absence of free current and external charge
(J = 0 and ρ = 0), the combination of Faraday’s induction law (2.1.1a) and
Coulomb’s law (2.1.1d) yields

1

c

∂

∂t
(∇ × B) = ∇2E ;

using Eq. (2.1.1c), we obtain the following relation for the electric field:

∇2E− 1

c2

∂2E
∂t2

= 0 . (2.1.19a)

This is a wave equation in its simplest form without dissipation or other compli-
cations; the second spatial derivative is equal to the second derivative in time with
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y, B

Electric field E

Magnetic field B

λ

z, q

x, E

Fig. 2.1. Linearly polarized electromagnetic radiation of wavelength λ propagating along
the z direction. Assuming that the electric field E is along the x direction, the magnetic
field B points in the y direction and the wavevector q is directed along the z axis.

the square of the velocity as proportionality factor. One possible solution of this
differential equation is given by a harmonic wave E(r, t) = E0 exp{i(q · r − ωt)}
as suggested in Eq. (2.1.11). Similarly, the value of the wavevector q is simply
ω/c. The corresponding wave equation for the B field can easily be derived from
Maxwell’s equations and has the same form:

∇2B− 1

c2

∂2B
∂t2

= 0 . (2.1.19b)

A linearly polarized electromagnetic wave is shown in Fig. 2.1, with the notations
and conventions adopted in this book. According to Eqs (2.1.15a) and (2.1.15c)
the three vectors E, B, and q are perpendicular to one another. The electric and
magnetic fields are oriented in the x and y directions, respectively; the wave prop-
agates along the z axis. Note that the electric and magnetic fields are oscillating
in phase as seen from Eq. (2.1.15a). At any given r and t the magnetic field is
zero when the electric field vanishes; because J = 0 in free space, we see from
Eq. (2.1.15c) that E is also zero when there is no B field. Since the equation of an
undamped wave contains only the second spatial and time derivatives, the choice
of the particular sign in the exponent of Eq. (2.1.11) has no significance: left- and
right-going waves satisfy the wave equation.

There is an energy associated with the creation of electric and magnetic fields;
the time average density of the electric field energy is ue = 1

4π 〈E〉2t and of the
magnetic field um = 1

4π 〈B〉2t . A traveling electromagnetic wave is associated with
transport of electromagnetic energy. There will be no dissipation of energy (or
attenuation of the waves) as long as we do not consider damping effects. The
energy density, i.e. the energy in a unit volume, associated with a harmonic wave
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is written as

u = 1

8π
E2 + 1

8π
B2 . (2.1.20)

In the case of free space |E| = |B|, and the energies associated with the electric
and magnetic fields are equal (ue = um). Let us define the vector

S = c

4π
E× B , (2.1.21)

called the Poynting vector, which is directed along the direction of propagation. It
describes the energy transported, i.e. the flow of energy per unit area and per unit
time, as can be easily seen by

∇ · S = −du

dt
, (2.1.22)

an expression of energy conservation. We will use these relations in Section 2.3.1
when the energy dissipated in the medium is discussed.

2.2 Propagation of electromagnetic waves in the medium

Because we are interested in the optical properties of solids, we now have to discuss
the influence of matter on the wave propagation. First we will define some material
parameters and see how they enter Maxwell’s equations.

2.2.1 Definitions of material parameters

The presence of a medium in electric and magnetic fields may lead to electric
dipoles and magnetic moments, polarization charges, and induced current. Clearly
the electric and magnetic fields will not be uniform within the material but fluctuate
from point to point reflecting the periodicity of the atomic lattice. For wavelengths
appreciably larger than the atomic spacing we can nevertheless consider an average
value of the electric and magnetic fields. These fields, however, are different
compared with the fields in vacuum; consequently the electric displacement D
instead of the electric field strength E, and the magnetic induction B associated
with the magnetic field strength H, are introduced to account for the modifications
by the medium.

The total charge density ρ = ρtotal used in Coulomb’s law (2.1.1d) now has two
components

ρtotal = ρext + ρpol , (2.2.1)

an external charge ρext added from outside and a contribution due to the spatially
varying polarization

ρpol = −∇ · P . (2.2.2)
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For a homogeneous polarization the positive and negative charges cancel every-
where inside the material, leading to no net charge ρpol in our limit at large enough
wavelengths.

Let us assume that there is no external current present: Jext = 0. The total current
density J = Jtotal entering Maxwell’s equation then consists of a contribution Jcond

arising from the motion of electrons in the presence of an electric field and of a
contribution Jbound arising from the redistribution of bound charges:

Jtotal = Jcond + Jbound . (2.2.3)

Ohm’s law, i.e. current proportional to electric field E, is assumed to apply to this
conduction current:

Jcond = σ1E . (2.2.4)

σ1 is the conductivity of the material; since we limit ourselves to the linear re-
sponse, σ1 does not depend on the electric field strength. We also assume it should
not be changed by an external magnetic field, implying that we do not consider
magnetoresistive effects. The time dependent polarization ∂P/∂t or spatially de-
pendent magnetization ∇×M contribute to what is called the displacement current
or bound current density Jbound.

Let us now include these terms explicitly into Maxwell’s equations (2.1.1). The
first two equations do not change because they contain neither current nor charge
densities. Upon substitution, Eq. (2.1.1c) becomes

∇ × B(r, t)− 1

c

∂E(r, t)

∂t
= 4π

c
Jtotal(r, t)

= 4π

c

[
Jcond(r, t)+ ∂P(r, t)

∂t
+ c∇ ×M(r, t)

]

and Eq. (2.1.1d) changes to

∇ · E(r, t) = 4πρtotal(r, t) = 4π [ρext(r, t)− ∇ · P(r, t)] .

These reformulations of Maxwell’s equations suggest the definitions of the electric
displacement D and magnetic field strength H. The electric field strength E and
the electric displacement (or electric flux density) D are connected by the dielectric
constant (or permittivity) ε1:

D = ε1E = (1+ 4πχe)E = E+ 4πP , (2.2.5)

where χe is the dielectric susceptibility and P = χeE is the dipole moment density
or polarization density. The dielectric constant ε1 can be either positive or negative.
Similarly, the magnetic field strength H is connected to the magnetic induction B
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by the permeability µ1:

B = µ1H = (1+ 4πχm)H = H+ 4πM , (2.2.6)

where χm is the magnetic susceptibility and M = χmH is the magnetic moment
density, or magnetization. The quantities ε1, χe, µ1, and χm which connect the
fields are unitless. The magnetic susceptibility χm is typically four to five orders
of magnitude smaller (except in the case of ferromagnetism) than the dielectric
susceptibility χe, which is of the order of unity. For this reason the dia- and
para-magnetic properties can in general be neglected compared to the dielectric
properties when electromagnetic waves pass through a medium. Throughout the
book we shall not discuss the properties of magnetic materials and therefore we
assume that µ1 = 1 (unless explicitly indicated otherwise), although we include it
in some equations to make them more general. We assume furthermore that there
are no magnetic losses and consequently that the imaginary part of the permeability
is zero.

2.2.2 Maxwell’s equations in the presence of matter

With these definitions we can rewrite Maxwell’s equations (2.1.1) in the presence
of matter. The rearrangement of the terms and some substitution yield

∇ × E+ 1

c

∂B
∂t

= 0 , (2.2.7a)

∇ · B = 0 , (2.2.7b)

∇ ×H− 1

c

∂D
∂t

= 4π

c
Jcond , (2.2.7c)

∇ · D = 4πρext . (2.2.7d)

Using Eqs (2.2.5) and Ohm’s law (2.2.4) and recalling that there is no external
current, Eq. (2.2.7c) can be written as

c∇ ×H = −iωε1E+ 4πσ1E = −iωε̂E ,

where we have assumed a harmonic time dependence of the displacement term
∂D/∂t = −iωD, and we have defined the complex dielectric quantity4

ε̂ = ε1 + i
4πσ1

ω
= ε1 + iε2 . (2.2.8)

By writing D = ε̂E, the change in magnitude and the phase shift between the

4 Whenever we need to distinguish complex quantities from real ones, we indicate complex quantities with
a circumflex, and their real and imaginary parts by subscripts 1 and 2, except if they have well established
names.
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displacement D and the electric field E are conveniently expressed. According to
Eq. (2.1.10) with ψ = 0 the electric field reads E = E0 sin{q · r−ωt}, and we can
write for the displacement

D = D0 sin{q · r− ωt + δ(ω)}
= D0 [sin{q · r− ωt} cos{δ(ω)} + cos{q · r− ωt} sin{δ(ω)}]
= ε1E0 sin{q · r− ωt} + ε2E0 cos{q · r− ωt} (2.2.9)

to demonstrate that ε1 and ε2 span a phase angle of π/2. Here ε1 is the in-phase and
ε2 is the out-of-phase component; we come back to the loss angle δ in Eq. (2.3.25).
The notation accounts for the general fact that the response of the medium can have
a time delay with respect to the applied perturbation. Similarly the conductivity can
be assumed to be complex

σ̂ = σ1 + iσ2 (2.2.10)

to include the phase shift of the conduction and the bound current, leading to a
more general Ohm’s law

Jtot = σ̂E ; (2.2.11)

and we define5 the relation between the complex conductivity and the complex
dielectric constant as

ε̂ = 1+ 4π i

ω
σ̂ . (2.2.12)

Besides the interchange of real and imaginary parts in the conductivity and dielec-
tric constant, the division by ω becomes important in the limits ω→ 0 and ω→∞
to avoid diverging functions. Although we regard the material parameters ε1 and
σ1 as the two fundamental components of the response to electrodynamic fields,
in subsequent sections we will use a complex response function, in most cases the
conductivity σ̂ , when the optical properties of solids are discussed.

A number of restrictions apply to this concept. For example, the dielectric
constant ε1 introduced by Eq. (2.2.5) is in general not constant but a function of
both spatial and time variables. It may not just be a number but a response function
or linear integral operator which connects the displacement field D(r, t) with the
electric field E(r′, t ′) existing at all other positions r′ and times t earlier than t ′

D(r, t) =
∫ ∫ t

−∞
ε1(r, r′, t ′)E(r′, t ′) dt ′dr′ . (2.2.13)

The consequence of this stimulus response relation is discussed in more detail in

5 Sometimes the definition σ2 = −ωε1/(4π) is used, leading to ε̂ = 4π iσ̂ /ω. At low frequencies the difference
between the two definitions is negligible. At high frequencies σ2 has to be large in order to obtain ε1 = 1 in
the case of a vacuum.
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Section 3.2. In the general case of an anisotropic medium, the material parameters
ε1, µ1, and σ1 may be direction dependent and have to be represented as tensors,
leading to the fact that the displacement field does not point in the same direction as
the electric field. For high electric and magnetic fields, the material parameters ε1,
µ1, and σ1 may even depend on the field strength; in such cases higher order terms
of a Taylor expansion of the parameters have to be taken into account to describe
the non-linear effects.6 The dielectric properties ε̂ can also depend on external
magnetic fields [Lan84, Rik96], and of course the polarization can change due to
an applied magnetic field (Faraday effect, Kerr effect); we will not consider these
magneto-optical phenomena. We will concentrate on homogeneous7 and isotropic8

media with µ1 = 1, ε1, and σ1 independent of field strength and time.

2.2.3 Wave equations in the medium

To find a solution of Maxwell’s equations we consider an infinite medium to avoid
boundary and edge effects. Furthermore we assume the absence of free charges
(ρext = 0) and external currents (Jext = 0). As we did in the case of a vacuum we
use a sinusoidal periodic time and spatial dependence for the electric and magnetic
waves. Thus,

E(r, t) = E0 exp{i(q · r− ωt)} (2.2.14a)

and

H(r, t) = H0 exp{i(q · r− ωt − φ)} (2.2.14b)

describe the electric and magnetic fields with wavevector q and frequency ω. We
have included a phase factor φ to indicate that the electric and magnetic fields
may be shifted in phase with respect to each other; later on we have to discuss in
detail what this actually means. As we will soon see, the wavevector q has to be a
complex quantity: to describe the spatial dependence of the wave it has to include
a propagation as well as an attenuation part. Using the vector identity (2.1.4) and
with Maxwell’s equations (2.2.7a) and (2.2.7d), we can separate the magnetic and
electric components to obtain

1

c

∂

∂t
(∇ × B) = ∇2E− ∇

(
4πρext

ε1

)
. (2.2.15)

By substituting the three materials equations (2.2.4)–(2.2.6) into Ampère’s
law (2.2.7c), we arrive at ∇ × B = (ε1µ1/c)(∂E/∂t)+ (4πµ1σ1/c)E. Combining

6 A discussion of non-linear optical effects can be found in [Blo65, But91, Mil91, She84].
7 The case of inhomogeneous media is treated in [Ber78, Lan78].
8 Anisotropic media are the subject of crystal optics and are discussed in many textbooks, e.g. [Gay67, Lan84,

Nye57].
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this with Eq. (2.2.15) eventually leads to the wave equation for the electric field

∇2E− ε1µ1

c2

∂2E
∂t2

− 4πµ1σ1

c2

∂E
∂t
= 0 , (2.2.16a)

if ρext = 0 is assumed. In Eq. (2.2.16a) the second term represents Maxwell’s
displacement current; the last term is due to the conduction current. Similarly we
obtain the equation

∇2H− ε1µ1

c2

∂2H
∂t2

− 4πµ1σ1

c2

∂H
∂t
= 0 , (2.2.16b)

describing the propagation of the magnetic field. In both equations the description
contains an additional factor compared to that of free space, which is proportional
to the first time derivative of the fields. Of course, we could have derived an equa-
tion for B. As mentioned above, we neglect magnetic losses. From Eq. (2.2.7b)
we can immediately conclude that H always has only transverse components.
The electric field may have longitudinal components in certain cases, for from
Eq. (2.2.7d) we find ∇ · E = 0 only in the absence of a net charge density.

If Faraday’s law is expressed in q space, Eq. (2.1.15a), we immediately see that
for a plane wave both the electric field E and the direction of the propagation vector
q are perpendicular to the magnetic field H, which can be written as

H(q, ω) = c

µ1ω
q× E(q, ω) . (2.2.17)

E, however, is not necessarily perpendicular to q. Without explicitly solving the
wave equations (2.2.16), we already see from Eq. (2.2.17) that if matter is present
with finite dissipation (σ1 �= 0) – where the wavevector is complex – there is a
phase shift between the electric field and magnetic field. This will become clearer
when we solve the wave equations for monochromatic radiation. Substituting
Eq. (2.2.14a) into Eq. (2.2.16a), for example, we obtain the following dispersion
relation between the wavevector q and the frequency ω:

q = ω

c

[
ε1µ1 + i

4πµ1σ1

ω

]1/2

nq , (2.2.18)

where nq = q/|q| is the unit vector along the q direction. Note that we have
made the assumption that no net charge ρext is present: i.e. ∇ · E = 0. A complex
wavevector q is a compact way of expressing the fact that a wave propagating in the
nq direction experiences a change in wavelength and an attenuation in the medium
compared to when it is in free space. We will discuss this further in Section 2.3.1.
The propagation of the electric and magnetic fields (Eqs (2.2.16)) can now be
written in Helmholtz’s compact form of the wave equation:

(∇2 + q2)E = 0 and (∇2 + q2)H = 0 . (2.2.19)
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It should be pointed out that the propagation of the electric and magnetic fields
is described by the same wavevector q; however, there may be a phase shift with
respect to each other (φ �= 0).

In the case of a medium with negligible electric losses (σ1 = 0), Eqs (2.2.16)
are reduced to the familiar wave equations (2.1.19) describing propagating electric
and magnetic fields in the medium:

∇2E− ε1µ1

c2

∂2E
∂t2

= 0 and ∇2H− ε1µ1

c2

∂2H
∂t2

= 0 . (2.2.20)

There are no variations of the magnitude of E and H inside the material; however,
the velocity of propagation has changed by (ε1µ1)

1/2 compared to when it is in
a vacuum. We immediately see from Eq. (2.2.18) that the wavevector q is real
for non-conducting materials; Eq. (2.2.17) and the corresponding equation for the
electric field then become

H =
(
ε1

µ1

)1/2

nq × E and E =
(
µ1

ε1

)1/2

nq ×H , (2.2.21)

indicating that both quantities are zero at the same time and at the same location
and thus φ = 0 as sketched in Fig. 2.1. The solutions of Eqs (2.2.20) are restricted
to transverse waves. In the case σ1 = 0, both E and H are perpendicular to the
direction of propagation nq; hence, these waves are called transverse electric and
magnetic (TEM) waves.

2.3 Optical constants

2.3.1 Refractive index

The material parameters such as the dielectric constant ε1, the conductivity σ1, and
the permeability µ1 denote the change of the fields and current when matter is
present. Due to convenience and historical reasons, optical constants such as the
real refractive index n and the extinction coefficient k are used for the propagation
and dissipation of electromagnetic waves in the medium which is characterized by
the wavevector (2.2.18). Note that we assume the material to extend indefinitely,
i.e. we do not consider finite size or surface effects at this point. To describe the
optical properties of the medium, we define the complex refractive index as a new
response function

N̂ = n + ik =
[
ε1µ1 + i

4πµ1σ1

ω

]1/2

= [ε̂µ1]1/2 ; (2.3.1)

the value of the complex wavevector q = q̂nq then becomes

q̂ = ω

c
N̂ = nω

c
+ i

kω

c
, (2.3.2)
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where the real refractive index n and the extinction coefficient (or attenuation
index) k are completely determined by the conductivity σ1, the permeability µ1,
and the dielectric constant ε1: 9

n2 = µ1

2



[
ε2

1 +
(

4πσ1

ω

)2
]1/2

+ ε1


 (2.3.3)

k2 = µ1

2



[
ε2

1 +
(

4πσ1

ω

)2
]1/2

− ε1


 . (2.3.4)

These two important relations contain all the information on the propagation of the
electromagnetic wave in the material and are utilized throughout the book. The
optical constants describe the wave propagation and cannot be used to describe the
dc properties of the material. For ω = 0 only ε1, σ1, and µ1 are defined. The
dielectric constant, permeability, and conductivity are given in terms of n and k:

n2 − k2 = ε1µ1 , (2.3.5)

2nk = 4πµ1σ1

ω
; (2.3.6)

and Eq. (2.3.1) can be written as

N̂ 2 = µ1

[
ε1 + i

4πσ1

ω

]
= µ1ε̂ ≈ 4π iµ1σ̂

ω
, (2.3.7)

where the approximation assumes |ε1| � 1. In Table 2.1 we list the relationships
between the various response functions. In the following chapter we show that the
real and imaginary components of N̂ , ε̂, and σ̂ , respectively, are not independent
but are connected by causality expressed through the Kramers–Kronig relations
(Section 3.2). If N̂ is split into an absolute value |N̂ | = (n2 + k2)1/2 and a phase φ

according to N̂ = |N̂ | exp{iφ}, then the phase difference φ between the magnetic
and dielectric field vectors introduced in Eqs (2.2.14) is given by

tanφ = k/n . (2.3.8)

In a perfect insulator or free space, for example, the electric and magnetic fields are
in phase and φ = 0 since k = 0. In contrast, in a typical metal at low frequencies
σ1 � |σ2|, leading to n ≈ k and hence φ = 45◦.

Propagation of the electromagnetic wave

Let us now discuss the meaning of the real part of the refractive index n attributed
to the wave propagation; the dissipations denoted by k are then the subject of the
9 We consider only the positive sign of the square root to make sure that the absorption expressed by k is always

positive.
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Table 2.1. Relationships between the material parameters and optical constants
ε̂, σ̂ , and N̂ .

The negative sign in the time dependence of the traveling wave exp{−iωt} was chosen (cf.
Eqs (2.2.14)).

following subsections. If the wavevector given by Eq. (2.3.2) is substituted into
the equations for the electromagnetic waves (2.2.14), we see the real part of the
wavevector relate to the wavelength in a medium by Re{q} = q = 2π/λ. If
µ1 = 1, the wavelength λ in the medium is given by

λ = λ0

n
; (2.3.9)

except in the vicinity of a strong absorption line (when n < 1 is possible in a
narrow range of frequency), it is smaller than the wavelength in a vacuum λ0, and
the reduction is given by the factor n.

The phase velocity is simply the ratio of frequency and wavevector

vph = ω

q
, (2.3.10)
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while the group velocity is defined as

vgr = ∂ω

∂q
. (2.3.11)

vph describes the movement of the phase front, vgr can be pictured as the velocity
of the center of a wavepackage; in a vacuum vph = vgr = c. In general, vph =
c/n(ω) can be utilized as a definition of the refractive index n. Experimentally the
wavelength of standing waves is used to measure vph.

Both n and k are always positive, even for ε1 < 0; but as seen from Eq. (2.3.3)
the refractive index n becomes smaller than 1 if ε1 < 1− (πσ1/ω)

2. For materials
with σ1 = 0, the wavevector q is real and we obtain q = ω

c (ε1µ1)
1/2nq, with the

refractive index n given by the so-called Maxwell relation

n = (ε1µ1)
1/2 (2.3.12)

(a real quantity and n ≥ 1). From Eq. (2.3.4) we immediately see that in this case
the extinction coefficient vanishes: k = 0. On the other hand, for good metals at
low frequencies the dielectric contribution becomes less important compared to the
conductive contribution σ1 � |σ2| (or |ε1| � ε2) and thus

k ≈ n ≈
[

2πσ1µ1

ω

]1/2

=
[ε2µ1

2

]1/2
. (2.3.13)

Attenuation of the electromagnetic wave

Substituting the complex wavevector Eq. (2.3.2) into the expression (2.2.14a) for
harmonic waves and decomposing it into real and imaginary parts yields

E(r, t) = E0 exp
{

iω
(n

c
nq · r− t

)}
exp

{
−ωk

c
nq · r

}
. (2.3.14)

Now it becomes obvious that the real part of the complex wavevector q expresses
a traveling wave while the imaginary part takes into account the attenuation. The
first exponent of this equation describes the fact that the velocity of light (phase
velocity) is reduced from its value in free space c to c/n. The second exponent
gives the damping of the wave, E(r) ∝ exp{−αr/2} = exp{−r/δ0}. It is the same
for electric and magnetic fields because their wavevectors q are the same. The
amplitudes of the fields are reduced by the factor exp{−2πk/n} per wavelength
λ in the medium (Fig. 2.2). We can define a characteristic length scale for the
attenuation of the electromagnetic radiation as the distance over which the field
decreases by the factor 1/e (with e = 2.718):
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δ0 =
(α

2

)−1
= 1

Im{q̂} =
c

ωk
(2.3.15a)

= c

(2πωµ1)1/2

{[
σ 2

1 + σ 2
2

]1/2 + σ2

}−1/2
, (2.3.15b)

where we have used Eq. (2.3.4) and Table 2.1 for the transformation in the limit
ε1 ≈ −4πσ2/ω. In the limit of σ1 � |σ2| the previous expression simplifies to

δ0 =
[

c2

2πωµ1σ1

]1/2

, (2.3.16)

the so-called classical skin depth of metals. Note that by definition (2.3.15a) δ0 is
the decay length of the electric (or magnetic) field and not just a surface property
as inferred by its name. The skin depth is inversely proportional to the square
root of the frequency and the conductivity; thus high frequency electromagnetic
waves interact with metals only in a very thin surface layer. As seen from the
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definition of the skin depth, the field penetration depends on the imaginary part of
the wavevector q inside the material; δ0 is therefore also a measure of the phase
shift caused by the material. While for metals the expression (2.3.16) is sufficient,
there are cases such as insulators or superconductors where the general formulas
(2.3.15) have to be used.

Complementary to the skin depth δ0, we can define an absorption coefficient
α = 2/δ0 by Lambert–Beer’s law10

α = −1

I

dI

dr
(2.3.17)

to describe the attenuation of the light intensity I (r) = I0 exp{−αr} propagating
in a medium of extinction coefficient k:

α = 2kω

c
= 4πk

λ0
= 2 Im{q̂} . (2.3.18)

The power absorption coefficient has the units of an inverse length; α is not a
fundamental material parameter, nevertheless it is commonly used because it can
be easily measured and intuitively understood. With k = 2πσ1µ1/(nω) from
Eq. (2.3.6), we obtain for the absorption coefficient

α = 4πσ1µ1

nc
, (2.3.19)

implying that, for constant n and µ1, the absorption α ∝ σ1; i.e. highly conducting
materials attenuate radiation strongly. Later we will go beyond this phenomeno-
logical description and try to explain the absorption process.

Energy dissipation

Subtracting Eq. (2.2.7c) from Eq. (2.2.7a) after multiplying them by H and E,
respectively, leads to an expression of the energy conservation in the form of

1

4π

(
E · ∂D

∂t
+H · ∂B

∂t

)
+ c

4π
∇ · (E×H)+ Jcond · E = 0 (2.3.20)

in the absence of an external current Jext, where we have used the vector relation
∇ · (E × H) = H · (∇ × E) − E · (∇ × H). The first terms in the brackets of
Eq. (2.3.20) correspond to the energy stored in the electric and magnetic fields. In
the case of matter being present, the average electric energy density in the field ue

and magnetic energy density um introduced in Eq. (2.1.20) become

u = ue + um = 1

8π
(E · D)+ 1

8π
(H · B) . (2.3.21)

10 Sometimes the definition of the attenuation coefficient is based on the field strength E and not the intensity
I = |E |2, which makes a factor 2 difference.
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While in the case of free space the energy is distributed equally (ue = um), this is
not valid if matter is present. We recall that the energy transported per area and per
time (energy flux density) is given by the Poynting vector S of the electromagnetic
wave:

S = c

4π
(E×H) ; (2.3.22)

for plane waves the Poynting vector is oriented in the direction of the propagation
q. The conservation of energy for the electromagnetic wave can now be written as

du

dt
+ ∇ · S+ Jcond · E = 0 ; (2.3.23)

the limiting case valid for free space with Jcond = 0 has already been derived in
Eq. (2.1.22). Hence, the energy of the electromagnetic fields in a given volume
either disperses in space or dissipates as Joule heat Jcond · E. The latter term may
be calculated by

Jcond · E = σ̂E · E ≈ −iω

4πµ1
N̂ 2E · E

≈
[

2nkω

4πµ1
− i

ω

4πµ1
(n2 − k2)

]
E2

0 , (2.3.24)

where we have made use of Eqs (2.2.11) and (2.3.7). The real part of this ex-
pression, P = σ1 E2

0 , describes the loss of energy per unit time and per unit
volume, the absorbed power density; it is related to the absorption coefficient α
by Jcond · E = c

4π
n
µ1
αE2

0 . The phase angle between the current density J and the
electric field strength E is related to the so-called loss tangent already introduced
in Eq. (2.2.9) and also defined by N̂ 2 = (n2 + k2) exp{iδ} leading to

tan δ = ε2

ε1
= 2nk

n2 − k2
. (2.3.25)

The loss tangent denotes the phase angle between the displacement field D and
electric field strength E. It is commonly used in the field of dielectric measurements
where it relates the out-of-phase component to the in-phase component of the
electric field.

Since the real part of the Poynting vector S describes the energy flow per unit
time across an area perpendicular to the flow, it can also be used to express the
energy dissipation. We have to substitute the spatial and time dependence of the
electric field (Eq. (2.3.14)) and the corresponding expression for the magnetic field
into the time average of Eq. (2.3.22) which describes the intensity of the radiation
〈S〉t = (c/16π)(E0 H ∗

0 + E∗0 H0). The attenuation of the wave is then calculated by
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the time averaged divergency of the energy flow

〈∇ · S〉t = c

4π

n

2µ1

−2ωk

c
E2

0 exp
{
−2ωk

c
r

}
,

leading to

4π

c

〈∇ · S〉t
n〈E〉2t

= − ωk

cµ1
= − 2

µ1
α .

The power absorption, as well as being dependent on k, is also dependent on n
because the electromagnetic wave travels in the medium at a reduced velocity c/n.
We see that the absorption coefficient α is the power absorbed in the unit volume,
which we write as σ1 E2, divided by the flux, i.e. the energy density times the energy
velocity

α = σ1µ1〈E2〉
(ε1/4π)〈E2〉v =

4πσ1µ1

ε1v
≈ 4πσ1µ1

nc
= ωε2µ1

nc
, (2.3.26)

where v = c/n is the velocity of light within the medium of the index of refraction
n.

2.3.2 Impedance

The refractive index N̂ characterizes the propagation of waves in the medium; it is
related to a modified wavevector q compared to the free space value ω/c. Let us
now introduce the impedance as another optical constant in order to describe the
relationship between the electric and magnetic fields and how it changes upon the
wave traveling into matter.

The ratio of the electric field E to the magnetic field H at position z defines the
load presented to the wave by the medium beyond the point z, and is the impedance

ẐS = 4π

c

Ê(z)

Ĥ(z)
, (2.3.27)

with units of resistance. The impedance is a response function which determines
the relationship between the electric and magnetic fields in a medium. Using
Eqs (2.2.14) we can write the complex impedance as ẐS = |ẐS| exp{iφ}. The
absolute value of |ẐS| indicates the ratio of the electric and magnetic field ampli-
tudes, while the phase difference between the fields equals the phase angle φ. Since
E and H are perpendicular to each other, using Eq. (2.2.17) we obtain

Ĥ = c

iωµ1

∂Ê
∂z
= N̂

µ1
Ê
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if a harmonic spatial and time dependence of the fields is assumed as given by
Eqs (2.2.14). This leads to the following expressions for the impedance:

ẐS = 4π

c

µ1

N̂
= 4π

c2

µ1ω

q̂
= 4π

c

(µ1

ε̂

)1/2
. (2.3.28)

If σ1 = 0, the dielectric constant ε̂ and thus the impedance are real; in this case
the electric displacement and magnetic induction fields are equal (D̂ = B̂ ) and in
phase (φ = 0). The above equation is then reduced to ZS = (4π/c)(µ1/ε1)

1/2. In
the case of free space (µ1 = 1, ε1 = 1), we obtain the impedance of a vacuum:

Z0 = 4π

c
= 4.19× 10−10 s cm−1 = 377 � . (2.3.29)

The impedance fully characterizes the propagation of the electromagnetic wave
as we will discuss in more detail in Section 9.1. The presence of non-magnetic
matter (µ1 = 1) in general leads to a decrease of the electric field compared
with the magnetic field, implying a reduction of |ẐS|; for a metal, |ẐS| is small
because |Ĥ | � |Ê |. Depending on the context, ẐS is also called the characteristic
impedance or wave impedance. For reasons we discuss in Section 2.4.4, the ex-
pression surface impedance is commonly used for ẐS when metals are considered.

In the case of conducting matter a current is induced in the material, thus the
electric and magnetic fields experience a phase shift. The impedance of the wave
has a non-vanishing imaginary part and can be evaluated by substituting the full
definition (2.2.18) of the complex wavevector q̂ into Eq. (2.3.28). The final result
for the complex impedance is:

ẐS = RS + iXS = 4π

c

(
µ1

ε1 + i 4πσ1
ω

)1/2

= 4π

c

(µ1

ε̂

)1/2
. (2.3.30)

The real part RS is called the surface resistance and the imaginary part XS the
surface reactance. If we assume that |ε1| � 1, which is certainly true in the case
of metals at low temperatures and low frequencies but may also be fulfilled for
dielectrics, we obtain from Eq. (2.3.30) the well known relation for the surface
impedance

ẐS ≈
(

4πωµ1

c2i(σ1 + iσ2)

)1/2

; (2.3.31)
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the expressions for the real and imaginary parts, RS and XS, are11

RS =
(

2πωµ1

c2

)1/2
{[

σ 2
1 + σ 2

2

]1/2 − σ2

σ 2
1 + σ 2

2

}1/2

(2.3.32a)

XS = −
(

2πωµ1

c2

)1/2
{[

σ 2
1 + σ 2

2

]1/2 + σ2

σ 2
1 + σ 2

2

}1/2

. (2.3.32b)

For highly conducting materials at low frequencies, ε2 � |ε1| or σ1 � |σ2|, we
find RS = −XS; meaning that the surface resistance and (the absolute value of) the
reactance are equal in the case of a metal.

In cases where both the surface resistance and surface reactance are measured,
we can calculate the complex conductivity σ̂ = σ1 + iσ2 by inverting these
expressions:

σ1 = −8πω

c2

RS XS

(R2
S + X2

S)
2

, (2.3.33a)

σ2 = 4πω

c2

X2
S − R2

S

(R2
S + X2

S)
2

. (2.3.33b)

In Eq. (2.3.28) we have shown that the impedance is just proportional to the
inverse wavevector and to the inverse complex refractive index

ẐS = 4π

c

µ1

N̂
= 4πµ1

c

1

n + ik
.

This allows us to write the surface resistance RS and surface reactance XS as :12

RS = µ1n

n2 + k2
Z0 (2.3.34a)

XS = −µ1k

n2 + k2
Z0 (2.3.34b)

where Z0 = 4π/c is the wave impedance of a vacuum as derived above. Obviously
XS = 0 for materials with no losses (k = 0). The ratio of the two components of
the surface impedance

−XS

RS
= k

n
= tanφ (2.3.35)

gives the phase difference φ between magnetic and electric fields, already ex-
pressed by Eq. (2.3.8).

11 In the case of a vacuum, for example, σ1 = 0 and the negative root of
√
σ 2

2 has to be taken, since σ2 stands
for −ε1ω/4π . The impedance then is purely real (XS = 0) but the real part is not zero, RS = Z0 = 4π/c.
It becomes identical to the wave impedance derived in Eq. (2.3.29). In the case of metals at low frequencies,
ε1 < 0 and σ2 is positive.

12 The negative sign of XS is a result of the definition of the surface impedance as ẐS = RS + iXS and thus
purely conventional; it is often neglected or suppressed in the literature.
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2.4 Changes of electromagnetic radiation at the interface

Next we address the question of how the propagation of electromagnetic radiation
changes at the boundary between free space and a medium, or in general at the
interface of two materials with different optical constants N̂ and N̂ ′. Note, we
assume the medium to be infinitely thick; materials of finite thickness will be
discussed in detail in Appendix B. The description of the phenomena leads to the
optical parameters, such as the reflectivity R, the absorptivity A, and the transmis-
sion (or transmissivity) T of the electromagnetic radiation. Optical parameters as
understood here are properties of the interface and they depend upon the boundary
for their definition. All these quantities are directly accessible to experiments, and
it just depends on the experimental configuration used and on the spectral range of
interest that one is more useful for the description than the other. In this section we
define these parameters, discuss their applicability, and establish the relationship
between them. In general, experiments for both the amplitude and phase of the
reflected and transmitted radiation can be conducted, but most often only quantities
related to the intensity of the electromagnetic radiation (e.g. I = |E |2 ) are of
practical interest or only these are accessible.

2.4.1 Fresnel’s formulas for reflection and transmission

Let us consider the propagation of a plane electromagnetic wave from a vacuum
(ε′1 = µ′1 = 1, σ ′1 = 0) into a material with finite ε1 and σ1. The surface lies in the
xy plane while the z axis is positive in the direction toward the bulk of the medium;
the surface plane is described by the unit vector ns normal to the surface. We further
suppose that the direction of propagation is the xz plane (plane of incidence), as
displayed in Fig. 2.3. The incident waves

Ei = E0i exp{i(qi · r− ωit)} (2.4.1a)

Hi = nqi × Ei (2.4.1b)

arrive at the surface at an angle ψi, which is the angle between wavevector qi and
ns in the xz plane; nqi is the unit vector along qi. One part of the electric and
magnetic fields enters the material, and we write this portion as

Et = E0t exp{i(qt · r− ωtt)} (2.4.2a)

Ht =
(
ε1

µ1

)1/2

nqt × Et ; (2.4.2b)

the other part is reflected off the surface and is written as

Er = E0r exp{i(qr · r− ωrt)} (2.4.3a)

Hr = nqr × Er . (2.4.3b)
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Fig. 2.3. (a) Reflection and refraction of an electromagnetic wave with the electric field E
perpendicular to the plane of incidence; the magnetic field H lies in the plane of incidence.
(b) Reflection and refraction of the electromagnetic wave with E parallel to the plane of
incidence; the magnetic field H is directed perpendicular to the plane of incidence. In the
xy plane at z = 0 there is an interface between two media. The first medium (left side) is
characterized by the parameters ε′1, σ ′1, and µ′1, the second medium by ε1, σ1, and µ1. ψi,
ψr, and ψt are the angles of incidence, reflection, and transmission, respectively.
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By using the subscripts i, t, and r we make explicitly clear that all parameters may
have changed upon interaction with the material. At the boundary, the normal
components of D and B, as well as the tangential components of E and H, have to
be continuous:

[E0i + E0r − ε1E0t] · ns = 0 , (2.4.4a)

[(qi × E0i)+ (qr × E0r)− (qt × E0t)] · ns = 0 , (2.4.4b)

[E0i + E0r − E0t]× ns = 0 , (2.4.4c)

[(qi × E0i)+ (qr × E0r)− 1

µ1
(qt × E0t)]× ns = 0 . (2.4.4d)

At the surface (z = 0) the spatial and time variation of all fields have to obey these
boundary conditions; the frequency13 and the phase factors have to be the same for
the three waves:

ωi = ωt = ωr = ω

(qi · r)z=0 = (qt · r)z=0 = (qr · r)z=0 .

From the latter equation we see that both the reflected and the refracted waves lie
in the plane of incidence; furthermore N̂i sinψi = N̂t sinψt = N̂r sinψr. Since
N̂i = N̂r = N̂ ′ (the wave travels through the same material), we find the well
known fact that the angle of reflection equals the angle of incidence: ψr = ψi.
Setting N̂t = N̂ , Snell’s law for the angle of refraction yields

sinψi

sinψt
= N̂

N̂ ′ , (2.4.5)

which states that the angle of the radiation transmitted into the medium ψt becomes
smaller as the refractive index increases.14 For σ1 �= 0, we see that formally sinψt

is complex because the refractive index N̂ has an imaginary part, indicating that the
wave gets attenuated. Although the angle φt is solely determined by the real part of
the refractive indices, in addition the complex notation expresses the fact that the
wave experiences a different attenuation upon passing through the interface. As
mentioned above, we assume that n′ = 1 and k ′ = 0, i.e. N̂ ′ = 1 (the wave travels
in a vacuum before it hits the material), thus Snell’s law can be reduced to

sinψi

sinψt
= N̂ = (n + ik) =

[
ε1µ1 + i

4πµ1σ1

ω

]1/2

. (2.4.6)

There are two cases to be distinguished. First, the electric field is normal to the

13 Non-linear processes may lead to higher harmonics; also (inelastic) Raman and Brillouin scattering cause a
change in frequency. These effects are not considered in this book.

14 The angle is measured with respect to normal incidence, in contrast to the Bragg equation where the angle is
commonly measured with respect to the surface.
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plane of incidence (Fig. 2.3a), and therefore parallel to the surface of the material;
second, the electric field is in the plane of incidence15 (Fig. 2.3b). We want to point
out that we use the Verdet convention which relates the coordinate system to the
wavevectors.16 In the case when the electric vector is perpendicular to the plane of
incidence, Eqs (2.4.4c) and (2.4.4d) give E0i+E0r−E0t = 0 and (E0i−E0r) cosψi−
(ε1/µ1)

1/2 E0t cosψt = 0. This yields Fresnel’s formulas for Ei perpendicular to
the plane of incidence; the complex transmission and reflection coefficients are:

t̂⊥ = E0t

E0i
= 2µ1 cosψi

µ1 cosψi +
(

N̂ 2 − sin2 ψi

)1/2 , (2.4.7a)

r̂⊥ = E0r

E0i
=

µ1 cosψi −
(

N̂ 2 − sin2 ψi

)1/2

µ1 cosψi +
(

N̂ 2 − sin2 ψi

)1/2 . (2.4.7b)

If the electric vector Ei is in the plane of incidence, the Eqs (2.4.4a), (2.4.4c), and
(2.4.4d) lead to (E0i− E0r) cosψi− E0t cosψt = 0 and (E0i+ E0r)− (ε1/µ1)

1/2 E0t

= 0. We then obtain Fresnel’s formulas for Ei parallel to the plane of incidence:

t̂‖ = E0t

E0i
= 2µ1 N̂ cosψi

N̂ 2 cosψi + µ1

(
N̂ 2 − sin2 ψi

)1/2 , (2.4.7c)

r̂‖ = E0r

E0i
=

N̂ 2 cosψi − µ1

(
N̂ 2 − sin2 ψi

)1/2

N̂ 2 cosψi + µ1

(
N̂ 2 − sin2 ψi

)1/2 . (2.4.7d)

These formulas are valid for N̂ complex. To cover the general case of an interface
between two media (the material parameters of the first medium are indicated by
a prime: ε′1 �= 1, µ′1 �= 1, σ ′1 �= 0; and the second medium without: ε1 �= 1, µ1 �=
1, σ1 �= 0), the following replacements in Fresnel’s formulas are sufficient: N̂ →
N̂/N̂ ′ and µ1 → µ1/µ

′
1.

2.4.2 Reflectivity and transmissivity by normal incidence

In the special configuration of normal incidence (ψi = ψt = ψr = 0), the distinc-
tion between the two cases, parallel and perpendicular to the plane of incidence,
becomes irrelevant (Fig. 2.3). The wavevector q is perpendicular to the surface
while E and H point in the x and y directions, respectively. In order to satisfy

15 From the German words ‘senkrecht’ and ‘parallel’, they are often called s-component and p-component.
16 A different perspective (Fresnel convention) relates the coordinate system to the sample surface instead of to

the field vectors [Hol91, Mul69, Sok67].
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the boundary conditions, i.e. the tangential components of E and H must be con-
tinuous across the boundary, the amplitudes of the incident (E0i, H0i), transmitted
(E0t, H0t), and reflected (E0r, H0r) waves are

E0t = E0i + E0r (2.4.8a)

H0t = H0i − H0r. (2.4.8b)

Starting with Eqs (2.2.14) and Eq. (2.3.2), on the right hand side of the xy plane,
the electric and magnetic fields in the dielectric medium (µ1 = 1) are given by

Ex(z, t) = E0t exp

{
iω

(
N̂ z

c
− t

)}
(2.4.9a)

Hy(z, t) = √
ε1 E0t exp

{
iω

(
N̂ z

c
− t

)}
, (2.4.9b)

while on the left hand side, in a vacuum (ε′1 = µ′1 = 1, σ ′1 = 0)

Ex(z, t) = E0i exp
{

iω
( z

c
− t

)}
+ E0r exp

{
iω

(
− z

c
− t

)}
(2.4.10a)

Hy(z, t) = E0i exp
{

iω
( z

c
− t

)}
− E0r exp

{
iω

(
− z

c
− t

)}
.(2.4.10b)

From Eq. (2.2.7a) ∂Ex
∂z = − 1

c
∂Hy

∂t , applied to Eqs (2.4.9b) and (2.4.10b), we obtain

N̂ E0t = E0i − E0r . (2.4.11)

Combining this equation with Eq. (2.4.8a), we arrive at

r̂ = r̂‖ = −r̂⊥ = E0r

E0i
= 1− N̂

1+ N̂
= |r̂ | exp{iφr} (2.4.12)

for the complex reflection coefficient r̂ , in agreement with Eqs (2.4.7b) and (2.4.7d)
on setting ψ = 0. Note, we only consider µ′1 = µ1 = 1. The phase shift φr is
the difference between the phases of the reflected and the incident waves. More
generally, at the interface between two media (N̂ �= 1 and N̂ ′ �= 1) we obtain

r̂ = N̂ ′ − N̂

N̂ ′ + N̂
(2.4.13)

with a phase change

φr = arctan
{

2(k ′n − kn′)
n′2 + k ′2 − n2 − k2

}
. (2.4.14)
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Fig. 2.4. Incident Ei, reflected Er, and transmitted electric wave Et traveling normal to
the interface between two media. The first medium has the parameters ε′1, σ ′1, and µ′1,
the second medium ε1, σ1, and µ1; the longer wavelength λ > λ′ indicates that ε1 < ε′1
assuming µ1 = µ′2. The amplitudes of the reflected and transmitted waves as well as the
phase difference depend on the optical properties of the media.

Here φr → π if (crudely speaking) N̂ > N̂ ′; this means that for normal incidence
the wave suffers a phase shift of 180◦ upon reflection on an optically denser
medium (defined by the refractive index); φr → 0 if n′2 + k ′2 > n2 + k2.

During an experiment the reflected power is usually observed and the phase
information is lost by taking the absolute value of the complex quantity |Ê|2 = E2

0 .
The reflectivity R is defined as the ratio of the time averaged energy flux reflected
from the surface Sr = (c/4π)|E0r×H0r| to the incident flux Si = (c/4π)|E0i×H0i|.
Substituting the electric and magnetic fields given by Eqs (2.4.1) and (2.4.3) into
the definition of the Poynting vector Eq. (2.3.22) yields the simple expression

R = Sr

Si
= |E0r|2
|E0i|2 = |r̂ |

2 =
∣∣∣∣∣1− N̂

1+ N̂

∣∣∣∣∣
2

= (1− n)2 + k2

(1+ n)2 + k2
(2.4.15)
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for N̂ ′ = 1. Corresponding to the reflectivity, the phase change of the reflected
wave φr is given by Eq. (2.4.14):

tanφr = −2k

1− n2 − k2
.

For a dielectric material without losses (k → 0), the reflectivity is solely deter-
mined by the refractive index:

R =
(

1− n

1+ n

)2

, (2.4.16)

and it can approach unity if n is large; then tanφr = 0. Both parameters R and φr

can also be expressed in terms of the complex conductivity σ̂ = σ1 + iσ2 by using
the relations listed in Table 2.1; and then

R =
1+ 4π

ω

(
σ 2

1 + σ 2
2

)1/2 − (
8π
ω

)1/2
[(
σ 2

1 + σ 2
2

)1/2 + σ2

]1/2

1+ 4π
ω

(
σ 2

1 + σ 2
2

)1/2 + (
8π
ω

)1/2
[(
σ 2

1 + σ 2
2

)1/2 + σ2

]1/2 (2.4.17)

tanφr =
(

8π
ω

)1/2
[(
σ 2

1 + σ 2
2

)1/2 − σ2

]1/2

1+ 4π
ω

(
σ 2

1 + σ 2
2

)1/2 . (2.4.18)

If σ1 � |σ2|, the reflectivity is large (R → 1) and the phase φr approaches π .
The transmission coefficient t̂ for an electromagnetic wave passing through the

boundary is written as

t̂ = E0t

E0i
= 2N ′

N + N ′ = |t̂ | exp{iφt}; (2.4.19)

φt = arctan
{

nk ′ − n′k
nn′ − n′2 + kk ′ + k ′2

}
= arctan

{ −k

n + 1

}
(2.4.20)

is the phase shift of the transmitted to incident wave; again we have assumed the
case N̂ ′ = 1 for the second transformation. The power transmitted into the medium
is given by the ratio of the time averaged transmitted energy flux St = (c/4π)|E0t×
H0t| to the incident flux Si. With Eqs (2.4.1) and (2.4.2) we obtain the so-called
transmissivity (often simply called transmission)

T = St

Si
= √ε1

|E0t|2
|E0i|2 =

√
ε1|t̂ |2 = 4n

(n + 1)2 + k2
= 1− R . (2.4.21)

It is important to note that |t̂ |2 �= 1−|r̂ |2 due to the modified fields and thus energy
density inside the material.
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2.4.3 Reflectivity and transmissivity for oblique incidence

We now want to consider the general case of light hitting the interface at arbitrary
angles. As derived in Fresnel’s equations (2.4.7a)–(2.4.7d) the result depends upon
whether the electric fields are oriented parallel or perpendicular to the plane of
incidence. In general the applicability of Fresnel’s equations is not restricted to
certain angles of incidence ψi or limited in frequency ω. However, if the frequency
ω is comparable to the plasma frequency ωp, (longitudinal) plasma waves (so-
called plasmons) may occur for ψi �= 0 and parallel polarization [Bec64]. This is
the case in thin metal films [McA63], anisotropic conducting materials [Bru75],
but also in bulk metals [Mel70]. More details on oblique incidence can be found in
several textbooks on optics [Bor99, Hec98, Kle86].

In Figs 2.5–2.7 we show the angular dependence of the reflection and transmis-
sion coefficients together with the change in phase for both polarizations parallel
and perpendicular to the plane of incidence. Fig. 2.5a was calculated with n = 1.5
and k = 0 by using Eqs (2.4.7a)–(2.4.7d). The reflection coefficients are real and
|r‖| ≤ |r⊥| in the entire range; r̂‖ shows a zero-crossing at the Brewster angle

ψB = arctan n , (2.4.22)

where the phase shift φr‖ jumps from 0 to π . For ψi → π/2 the reflection
coefficient of both polarizations are equal (r̂⊥ = r̂‖), for ψi = 0 we obtain
r̂⊥ = −r̂‖; as mentioned before the change of sign is a question of definition.
Although for ψB only one direction of polarization is reflected, the transmitted
light is just slightly polarized. The features displayed in Fig. 2.5 are smeared out
if the dielectric becomes lossy, i.e. if k > 0. The coefficients r̂‖ and r̂⊥ become
complex quantities, indicating the attenuation of the wave. As an example, in
Fig. 2.6 we plot the same parameters for n = 1.5 and k = 1.5. The absolute
value |r̂‖| still shows a minimum, but there is no well defined Brewster angle. The
properties of oblique incident radiation are utilized in ellipsometry to determine the
complex reflection coefficient (Section 11.1.4). Grazing incidence is also used to
enhance the sensitivity of reflection measurements off metals because the absorp-
tivity A = 1− |r̂‖|2 increases approximately as 1/ cosψi. Using oblique incidence
with parallel polarization, the optical properties perpendicular to the surface can be
probed.

By traveling from an optically denser medium to a medium with smaller n, as
shown in Fig. 2.7, the wave is totally reflected if the angle of incidence exceeds
ψT > ψB, the angle of total reflection (tanψB = sinψr = n). The example
calculated corresponds to the case where the wave moves from a medium with
n′ = 1.5 to free space n = 1 (corresponding to n′ = 1 and n = 1/1.5). Again
|r⊥| ≥ |r‖| in the entire range. Interestingly the reflectivity for ψi = 0 is the same
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Fig. 2.5. (a) The (real) reflection and transmission coefficients, r and t (in both polar-
izations parallel and perpendicular to the plane of incidence) as a function of angle of
incidence ψi for n = 1.5, n′ = 1, k = k′ = 0, and µ1 = µ′1 = 1. The Brewster angle is
defined as r‖(ψB) = 0. (b) The corresponding phase shifts, φr and φt, of the reflected and
transmitted waves; here ψt = 0 and ψr = π for the electric field perpendicular to the plane
of incidence (referred to as r⊥ and t⊥). In the case of E parallel to the plane of incidence
(r‖ and t‖), ψt remains zero, while the phase ψr changes by π at the Brewster angle ψB.
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Fig. 2.6. (a) The absolute values of the reflection and transmission coefficients, |r | and
|t |, as a function of angle of incidence ψi in polarizations parallel and perpendicular to
the plane of incidence. Besides the refractive index n = 1.5, the material also has losses
described by the extinction coefficient k = 1.5; again n′ = 1, k′ = 0, and µ1 = µ′1 = 1.
(b) The angular dependences of the corresponding phase change upon reflection, φr, and
transmission, φt. The different cases are indicated by r‖, t‖, r⊥, and t⊥, respectively.



2.4 Changes of electromagnetic radiation at the interface 41

(a)n = 0.67
k = 0

0 30 60 90

(b)

t

t

t

t

r

r

r

r

r

ψT

ψi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
m

pl
itu

de
r

,
t



−3

−2

−1

0

1

2

3

Ph
as

e
φ r

,φ
t

Fig. 2.7. (a) The absolute values of the reflection and transmission coefficients, |r | and |t |,
in polarizations parallel and perpendicular to the plane of incidence, as a function of angle
of incidence ψi for n/n′ = 1/1.5 and µ1 = µ′1 = 1. The Brewster angle r‖(ψB) = 0
and the angle of total reflection ψT is clearly seen. (b) The phase angles φr and φt change
significantly in the range of total reflection. The case of E parallel to the plane of incidence
is referred to as r‖ and t‖, while r⊥ and t⊥ refer to E perpendicular to the plane, respectively.
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for n = 1.5 and n = 1/1.5 due to the reciprocity of the optical properties if k = 0.
For ψi > ψT, surface waves develop which lead to a spatial offset of the reflected
wave [Goo47]. The range of total reflection is characterized by a phase difference
� of the polarizations E‖ and E⊥ in time. If we write E = E‖n‖ + E⊥n⊥ with
E‖ = E cosφ exp{i�} and E⊥ = E sinφ we find

Ex(t) = |E‖| cos{ωt +�} and Ey(t) = |E⊥| sin{ωt} ,

respectively, which characterize an elliptically polarized light. Although the light is
totally reflected, the fields extend beyond the interface by a distance of the order of
the wavelength and their amplitude decays exponentially (evanescent waves). This
fact is widely used by a technique called attenuated total reflection, for instance
to study lattice and molecular vibrations at surfaces [Spr91]. The fact that the
transmission coefficient t̂ is larger than 1 does not violate the energy conservation
because the transmitted energy is given by T = (

ε′1µ1/µ
′
1ε1

)1/2 |t̂ |2(cosψt/ cosψi)

as a generalization of Eq. (2.4.21) for oblique incidence; this parameter is always
smaller than unity.

In general, the angle of incidence is not very critical for most experimental
purposes; if it is chosen sufficiently near to zero, the value of the reflectance
coefficients for the two states of polarization r̂‖ and r̂⊥ will differ from r̂ by an
amount less than the precision of the measurement; e.g. less than 0.001 for angles
of incidence as large as 10◦.

2.4.4 Surface impedance

As already mentioned above, the impedance of the wave is called surface
impedance in the case of conducting matter because originally ẐS was defined as
the ratio of the electric field E normal to the surface of a metal to the total current
density J induced in the material:

ẐS = RS + iXS = Êz=+0∫∞
0 Ĵ dz

, (2.4.23)

where Ĵ (z) is the spatially dependent current per unit area which decays exponen-
tially with increasing distance from the surface z. The electric field Êz=+0 refers to
the transmitted wave at the interface upon entering the material. Here we see that,
for the definition of ẐS, it is not relevant that the wave approaches the material
coming from the vacuum because the material prior to z = 0 does not enter the
constituent equation (2.4.23). The surface impedance only depends on the optical
properties of the material beyond z; hence ẐS is defined at any point in a material,
as long as it extends to infinity. In Appendix B we explain how even this drawback
of the definition can be overcome.
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The real part RS, the surface resistance, determines the power absorption in the
metal; the surface reactance XS accounts for the phase difference between E and
J. Since the ratio of electric field to current density corresponds to a resistivity, the
surface impedance can be interpreted as a resistance. Although mainly used in the
characterization of the high frequency properties of metals, the concept of surface
impedance is more general and is particularly useful if the thickness of the medium
d is much larger than the skin depth δ0.

We can regain the above definition of the impedance (2.3.27) by using Maxwell’s
third equation (2.2.7c) which relates the magnetic field H and the current density J.
For ordinary metals up to room temperature the displacement current ωε1 E/(4π i)
can be neglected for frequencies below the visible spectral range, and

∇ ×H = 4π

c
J

remains. We can then apply Stokes’s theorem and obtain

ẐS = Ê∫∞
0 Ĵ dz

= 4π

c

Ê

Ĥ

∣∣∣∣∣
z=0

, (2.4.24)

where Ê and Ĥ refer to the electric field and the magnetic field as complex
quantities defined in Eqs (2.2.14) with a phase shift φ between Ê and Ĥ . The
surface impedance ẐS does not depend on the interface of two materials but rather
is an optical parameter like the refractive index. Another approach used to calculate
the surface impedance from Eq. (2.4.23) utilizes Eq. (2.3.24) to obtain the current
density

Ĵ (z) = −c2

4π iωµ1

∂2 Ê

∂z2

leading to the total current in the surface layer∫ ∞

0
Ĵ (z) dz = c2

4π iωµ1

(
∂ Ê

∂z

)∣∣∣∣∣
∞

0

= c

4πµ1
N̂ Ê . (2.4.25)

This brings us back to Eq. (2.3.28) which connects the impedance ẐS to the
complex refractive index and the wavevector.

Since the surface impedance relates the electric field to the induced current in a
surface layer, RS and XS must also be connected to the skin depth δ0. Combining
Eq. (2.3.32b) with Eq. (2.3.15b), we find

−XS = 1

δ0

1

(σ 2
1 + σ 2

2 )
1/2
≈ 1

δ0σ1
≈ RS (2.4.26)

for σ1 � |σ2|, which is the low frequency limit of good conductors. The last



44 2 The interaction of radiation with matter

approximation can be easily understood by replacing the integration in Eq. (2.4.23)
by the characteristic length scale of the penetration. Also we can write

δ0 = c2

4πωµ1

R2
S + X2

S

RS
≈ c2

2πωµ1
RS = −λ0c

(2π)2
XS (2.4.27)

if RS = −XS upon penetrating the material. Since 2πc/ω = λ0 is the wavelength
of the radiation in a vacuum,

ẐS = (2π)2µ1

c

δ0

λ0
(1+ i) ; (2.4.28)

i.e. in the limit σ1 � |σ2| the surface impedance is determined by the ratio of
the skin depth to the wavelength. We again want to point out that, in spite of the
common names, both the surface impedance and the skin depth have been defined
without referring to the surface of the material. We just consider the decay of the
E and H fields and the change in phase between them.

2.4.5 Relationship between the surface impedance and the reflectivity

Finally we want to present the relationships between the surface impedance and the
optical properties such as the reflectivity or transmissivity. The specular reflection
for normal incidence (ψi = ψt = 0) at the boundary between two media has been
derived in Eq. (2.4.13) assuming a wave traveling from one medium (N̂ ′, µ′1) to
another (N̂ , µ1). We can combine this with the relation for the surface impedance
(2.3.28):

r̂ = µ1 N̂ ′ − µ′1 N̂

µ1 N̂ ′ + µ′1 N̂
= ẐS − Ẑ ′S

ẐS + Ẑ ′S
. (2.4.29)

The reflectivity (i.e. reflected power) is then given by the very general expression

R =
∣∣∣∣∣ ẐS − Ẑ ′S

ẐS + Ẑ ′S

∣∣∣∣∣
2

. (2.4.30)

As we discuss in more detail in Chapter 9, a reflection of waves also occurs if the
impedance of a guiding structure (waveguide, cable) changes; hence the previous
equation holds for any impedance mismatch.

The reflectivity at the interface does not depend on whether the wave travels
from medium 1 to medium 2 or from medium 2 to medium 1; the reflectivity of an
interface is reciprocal. The phase φr, however, changes by π . In the case that the
first medium is a vacuum (Ẑ ′S = Z0 = 377 �) the reflectivity can be written as

R =
∣∣∣∣∣ Z0 − ẐS

Z0 + ẐS

∣∣∣∣∣
2

= 1− 4RS

Z0

(
1+ 2RS

Z0
+ R2

S + X2
S

Z2
0

)−1

. (2.4.31)
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The transmission coefficient as a function of the surface impedances is

t̂ = 2ẐS

ẐS + Ẑ ′S
. (2.4.32)

In the special case of transmission from a vacuum into the medium with finite
absorption:

T = 1− R = 4RS

Z0

(
1+ 2RS

Z0
+ R2

S + X2
S

Z2
0

)−1

. (2.4.33)

In the case of an infinite thickness, which can be realized by making the material
thicker than the skin depth δ0, all the power transmitted through the interface is
absorbed, and the absorptivity A = T . From Eqs (2.4.31) and (2.4.33),

R = 1− T = 1− A (2.4.34)

in this limit.
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3

General properties of the optical constants

In Chapter 2 we described the propagation of electromagnetic radiation in free
space and in a homogeneous medium, together with the changes in the amplitude
and phase of the fields which occur at the interface between two media. Our next
objective is to discuss some general properties of what we call the response of
the medium to electromagnetic fields, properties which are independent of the
particular description of solids; i.e. properties which are valid for basically all
materials. The difference between longitudinal and transverse responses will be
discussed first, followed by the derivation of the Kramers–Kronig relations and
their consequences, the so-called sum rules. These relations and sum rules are de-
rived on general theoretical grounds; they are extremely useful and widely utilized
in the analysis of experimental results.

3.1 Longitudinal and transverse responses

3.1.1 General considerations

The electric field strength of the propagating electromagnetic radiation can be split
into a longitudinal component EL = (nq · E)nq and a transverse component ET =
(nq × E) × nq, with E = EL + ET, where nq = q/|q| indicates the unit vector
along the direction of propagation q. While EL ‖ q, the transverse part ET lies in
the plane perpendicular to the direction q in which the electromagnetic radiation
propagates; it can be further decomposed into two polarizations which are usually
chosen to be normal to each other. Since by definition ∇×EL = 0 and ∇ ·ET = 0,
we obtain

∇ × E = ∇ × ET and ∇ · E = ∇ · EL ,

implying that longitudinal components have no influence on the rotation, and
transverse fields do not enter the calculation of the divergence. In a similar way
the current density (J = JL + JT), the magnetic induction (B = BL + BT), and the

47
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vector potential (A = AL + AT) can also be decomposed into components parallel
and perpendicular to the direction q of the propagating wave. We use the Coulomb
gauge and assume ∇ · A = 0. Then q · (AT + AL) vanishes. As q points in the
direction of propagation, AL must be zero; i.e. in this gauge the vector potential
has only a transverse component.

First we notice that in the case of free space EL = BL = 0, i.e. the electro-
magnetic wave is entirely transverse.1 From Eq. (2.1.15a) we already know that
the two components of the electromagnetic radiation are normal to each other:
ET ⊥ BT ⊥ q.

If electrical charges and current are present, we can employ the above relations to
reduce the electrical continuity equation (2.1.9) to−∂ρ/∂t = ∇·(JL+JT) = ∇·JL.
From Poisson’s equation (2.1.7) we obtain

∇ ∂�

∂t
= 4πJL , (3.1.1)

which, when substituted into the wave equation (2.1.5), leads to

∇2A− 1

c2

∂2A
∂t2

= −4π

c
JT .

From the previous two relations we see that the longitudinal current density JL

is only connected to the scalar potential �, and the transverse current density JT

is solely determined by the vector potential A. Similar relations can be obtained
for the electric field. Since A has no longitudinal component as just derived,
Eq. (2.1.17) can be split into two components: the longitudinal part

EL = −iq� , (3.1.2)

which vanishes if ρext = 0 as a consequence of Poisson’s equation (2.1.18), and
the transverse electric field

ET = i
ω

c
A . (3.1.3)

Again, the longitudinal component of E is related to the electrical potential �,
whereas the vector potential A determines the transverse part of the electric field.
Looking at two of Maxwell’s equations (2.2.7a and d)

∇ · (ε̂E) = ∇ · ε̂EL = 4πρext ,

∇ × E = ∇ × ET = −1

c

∂B
∂t

,

1 This statement is valid in the absence of boundaries, and it is not valid, for example, at the surface of a metal.
There the propagation of electromagnetic waves with longitudinal electric field or magnetic field components
is possible; these, for example, are the TE and TM modes which can propagate in waveguides and will be
discussed in Section 9.1.
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it becomes clear that the longitudinal component corresponds to the rearrangement
of the electronic charge, whereas the transverse component is related to the induced
electrical currents.

3.1.2 Material parameters

Our next goal is to describe the longitudinal and transverse responses in terms
of the parameters which characterize the medium: the dielectric constant and the
magnetic permeability. Let us confine ourselves to isotropic and homogeneous
media, although some of the relations are more general. The longitudinal and
transverse dielectric constant can be described using a tensor notation:

D(q, ω) = ¯̄ε1(q, ω)E(q, ω) , (3.1.4)

where the tensor components (ε1)i j (q, ω) can in general be written as

(ε1)i j (q, ω) = εL
1 (q, ω)

qi ◦ q j

q2
+ εT

1 (q, ω)
[
δi j − qi ◦ q j

q2

]
, (3.1.5)

with εL
1 (q, ω) the diagonal and εT

1 (q, ω) the off-diagonal components of the di-
electric tensor. The dyad which projects out the longitudinal component is defined

to be ¯̄1L = q ◦ q/q2; and the one which yields the transverse component is
¯̄1T = ¯̄1 − ¯̄1L = ¯̄1 − q ◦ q/q2. We decompose the electric displacement D(q, ω)
into two orthogonal parts

D(q, ω) = [nq · D(q, ω)]nq + [nq × D(q, ω)]× nq

= q · D(q, ω)
q2

q+ q× D(q, ω)
q2

× q .

Equation (3.1.4) can now be written as

D(q, ω) = εL
1 (q, ω)

q · E(q, ω)
q2

q+ εT
1 (q, ω)

q× E(q, ω)
q2

× q , (3.1.6)

and we find the following relationship between the electric field strength E and
electrical displacement D for the two components:

DL(q, ω) = εL
1 (q, ω)E

L(q, ω) (3.1.7)

DT(q, ω) = εT
1 (q, ω)E

T(q, ω) ; (3.1.8)

i.e. for an isotropic and homogeneous medium the longitudinal and transverse
components of the dielectric constant are independent response functions which do
not mix. From Eq. (3.1.2) we see that the longitudinal dielectric constant describes
the response of the medium to a scalar potential �. This in general arises due
to an additional charge, leading to the rearrangement of the initial electric charge



50 3 General properties of the optical constants

distribution. Equation (3.1.3) states that the transverse dielectric constant describes
the response of the medium to a vector potential A, related to the presence of
electromagnetic radiation.

Maxwell’s equations (2.2.7), in Fourier transformed version, can now be written
as

q× E(q, ω) = ω

c
B(q, ω) (3.1.9a)

q · B(q, ω) = 0 (3.1.9b)

iq×H(q, ω) = − iω

c
D(q, ω)+ 4π

c
J(q, ω) (3.1.9c)

iεL
1 (q, ω)q · E(q, ω) = 4πρ(q, ω) , (3.1.9d)

if we assume a harmonic spatial and time dependence of the fields, given in
the usual way by Eqs (2.2.14). For simplicity, we do not include explicitly
the wavevector and frequency dependence of µ1. Comparing Eq. (3.1.9c) with
the transformed Eq. (2.2.7c), (i/µ1)q × B(q, ω) = −(iω/c)ε1(q, ω)E(q, ω) +
(4π/c)J(q, ω), we obtain for the relationship between displacement and electric
field(

1− 1

µ1

)
q× [q× E(q, ω)]− ω2

c2
ε1(q, ω)E(q, ω) = −ω2

c2
D(q, ω) . (3.1.10)

Utilizing Eq. (3.1.6) to substitute D(q, ω) yields[
q2c2

ω2

(
1− 1

µ1

)
+ ε1(q, ω)

]
q× [q× E(q, ω)]− ε1(q, ω)[q · E(q, ω)]q

= εT
1 (q, ω)q× [q× E(q, ω)]− εL

1 (q, ω)[q · E(q, ω)]q ; (3.1.11)

which finally leads to

q2

(
1− 1

µ1

)
= ω2

c2
[εT

1 (q, ω)− εL
1 (q, ω)] . (3.1.12)

In the limit qc/ω → 0, both components of the dielectric constant become equal:
εT

1 (0, ω) = εL
1 (0, ω). For long wavelength we cannot distinguish between a

longitudinal and transverse electric field in an isotropic medium.
For J(q, ω) = 0, Eq. (3.1.10) can be simplified one step further: ic

ω
q × [q ×

E(q, ω)] = − iω
c D(q, ω), and the dispersion relation of the dielectric constant is

then[
c2

ω2
q2 − εT

1 (q, ω)
]

q× [q×E(q, ω)]+ εL
1 (q, ω)[q ·E(q, ω)]q = 0 , (3.1.13)

after substitution of Eq. (3.1.6) for D(q, ω). Since this equation has to be valid
for any E, both the longitudinal and the transverse components have to vanish
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independently at certain q and ω values. Thus we find the frequencies ωT and ωL

from the two conditions

q2 − ω2
T

c2
εT

1 (q, ωT) = 0 (3.1.14)

εL
1 (q, ωL) = 0 . (3.1.15)

At these two frequencies, oscillations in the transverse and in the longitudinal
directions are sustained. The consequence of these equations will be discussed in
detail in Section 5.4.4, where we see that the vanishing ε1(ω) can lead to collective
excitations. The characteristic frequencies ωT and ωL are called transverse and
longitudinal plasma frequencies, respectively, because they describe the resonance
frequency of the electronic charges moving against the positive ions.

To find expressions for the longitudinal and transverse components of the optical
conductivity, we separate Ampère’s law (3.1.9c) into transverse and longitudinal
components. Due to Eq. (3.1.9b) the magnetic induction is purely transverse (BL =
0); hence, the longitudinal part simplifies to

0 = −iωεL
1 EL

total(q, ω)+ 4πJtotal(q, ω) , (3.1.16)

and, after separating the total current Jtotal = Jind + Jext, yields

iω
(
εL

1 + i
4πσ1

ω

)
EL

total(q, ω) = ωq�− 4πJind(q, ω) (3.1.17)

by using the Fourier transform of Eq. (3.1.1). Rearranging the terms and using
Eqs (2.2.8) and (3.1.2), this eventually leads to

JL
ind(q, ω) =

iω

4π
(1− ε̂L)EL

total(q, ω) . (3.1.18)

Similar considerations can be made for the transverse direction; however, BT
total �=

0, and the solution to Eq. (3.1.9c) is more complicated. According to Eq. (3.1.12)
we eventually arrive at

JT
ind(q, ω) =

iω

4π

[
(1− ε̂L)− c2

ω2
q2

(
1− 1

µ1

)]
ET

total(q, ω) . (3.1.19)

For µ1 = 1 and q = 0 these two equations can be combined in the general form

JL,T
ind (q, ω) =

iω

4π
(1− ε̂L,T)EL,T

total(q, ω) . (3.1.20)

In the limit of long wavelengths, the behavior for transverse and longitudinal
responses becomes similar. We can also define a complex conductivity σ̂ =
(iω/4π)(1− ε̂) in agreement with Eq. (2.2.12), so that

JL,T
ind (q, ω) = σ̂ (q, ω)EL,T

total(q, ω) . (3.1.21)
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The current density as a response to an electric field is described by a transverse or
a longitudinal conductivity. Our goal for the chapters to follow is to calculate this
response.

3.1.3 Response to longitudinal fields

Let us apply an external longitudinal electric field EL and assume that the material
equation has the general form given in Eq. (2.2.13), with ε̂ the time and space
dependent, or alternatively through the Fourier transformation the frequency and
wavevector dependent, dielectric constant. The electric field is related to the
external charge by Poisson’s equation (2.2.7d), ∇ · DL(r, t) = 4πρext(r, t). The
external displacement field DL leads to a rearrangement of the charge density and,
in turn, to a space charge field Epol. The total electric field is then given by

EL(r, t) = DL(r, t)+ Epol(r, t) ,

where the space charge field Epol(r, t) is related to the polarization charge density
by

∇ · Epol(r, t) = 4πρind(r, t) .

By combining the previous equations, we obtain the Poisson relation

∇ · EL(r, t) = 4π [ρext(r, t)+ ρind(r, t)] .

In summary, the spatial and temporal Fourier transforms of the longitudinal dis-
placement, electric field, and space charge field lead to

iq · DL(q, ω) = 4πρext(q, ω) , (3.1.22a)

iq · EL(q, ω) = 4π [ρext(q, ω)+ ρind(q, ω)] = 4πρ(q, ω) , (3.1.22b)

iq · Epol(q, ω) = 4πρind(q, ω) , (3.1.22c)

where ρ(q, ω) = ρext(q, ω)+ ρind(q, ω) = ρtotal(q, ω), the total charge density.
Within the framework of the linear approximation, we can define a wavevec-

tor and frequency dependent dielectric constant ε̂(q, ω) (which in the case of an
isotropic medium is a scalar):

EL(q, ω) = DL(q, ω)
ε̂L(q, ω)

. (3.1.23)

Substituting the material equation (2.2.5), DL(q, ω) = EL(q, ω)+ 4πP(q, ω), the
polarization P is related to the space charge field Epol by

P(q, ω) = − 1

4π
Epol(q, ω) . (3.1.24)
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In accordance with Eq. (2.2.5), the longitudinal dielectric susceptibility χ̂L
e (q, ω)

is defined as the parameter relating the polarization to the applied electric field:
P(q, ω) = χ̂L

e (q, ω)E
L(q, ω). Substituting this into Eq. (2.2.5) and comparing it

with Eq. (3.1.23) yields a relationship between the dielectric susceptibility χ̂L
e and

the dielectric constant ε̂L:

χ̂L
e (q, ω) =

ε̂L(q, ω)− 1

4π
. (3.1.25)

Using Eqs (3.1.22), one can write χ̂L
e (q, ω) in terms of a scalar quantity such as

the charge density. By substituting the definition of χ̂L
e (q, ω) into Eq. (3.1.24), we

obtain

−Epol(q, ω) = 4πχ̂L
e (q, ω)E

L(q, ω) .

If we now multiply both sides by iq and substitute Eqs (3.1.22a) and (3.1.22b), we
obtain for the dielectric susceptibility

χ̂L
e (q, ω) = −

1

4π

ρind(q, ω)
ρ(q, ω)

. (3.1.26)

Thus, the dielectric susceptibility is the ratio of the induced charge density to the
total charge density, which by virtue of Eq. (3.1.25) can also be written in terms of
the dielectric constant

ε̂L(q, ω) = 1− ρind(q, ω)
ρ(q, ω)

= ρext(q, ω)
ρ(q, ω)

. (3.1.27)

The dielectric constant is the ratio of external charge to the total charge. Alterna-
tively, ε̂L(q, ω) can be related to the external and induced charge density since, by
using Eq. (3.1.27), we find

1

ε̂L(q, ω)
= 1+ ρind(q, ω)

ρext(q, ω)
. (3.1.28)

The imaginary part of 1/ε̂ is the loss function, so-called for reasons explained
later. Equations (3.1.27) and (3.1.28) are often referred to as the selfconsistent
field approximation (SCF) or random phase approximation (RPA) [Mah90]. The
major assumption in the derivation is that the electrons respond to the total charge
density, which initially is not known, as it is the result of the calculation; we try
to evaluate this function selfconsistently. If the interaction of an electron with the
induced fields in the medium is weak and ρind � ρ, we can assume ρ ≈ ρext and
find (

1

ε̂L(q, ω)

)
HF

= 1+ ρind(q, ω)
ρ(q, ω)

. (3.1.29)

This approach is referred to as the Hartree–Fock (HF) approximation. One
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can also express the susceptibility χ̂L
e (q, ω) in terms of the scalar potential; the

total quantity �(q, ω) = �ext(q, ω) + �ind(q, ω) is often referred to as the
screened potential. Poisson’s equation (2.1.7) can be transformed in Fourier form:
−q2�(q, ω) = −4πρ(q, ω) = −4π [ρext(q, ω)+ ρind(q, ω)]. Thus we obtain

χ̂L
e (q, ω) = −

1

q2

ρind(q, ω)
�(q, ω)

, (3.1.30)

and

ε̂L(q, ω) = 1+ 4πχ̂L
e (q, ω) = 1− 4π

q2

ρind(q, ω)
�(q, ω)

. (3.1.31)

If we are interested in the screened potential �(q, ω), the appropriate response
function2 χ̂L(q, ω) is that which describes the charge ρind(q, ω) induced in re-
sponse to the screened potential �(q, ω):

χ̂L(q, ω) = ρind(q, ω)
�(q, ω)

= q2

4π
[1− ε̂L(q, ω)] , (3.1.32)

or in the inverted form ε̂L(q, ω) = 1 − (4π/q2)χ̂L(q, ω). In the case of only free
charge carriers, as in a metal, the real part χ1 is always positive. The equation
ρind(q, ω) = χ̂L(q, ω)�(q, ω) can be compared with Ohm’s law, Eq. (2.2.11): in
both cases, the response functions (σ̂ and χ̂ ) relate the response of the medium
[ρ(q, ω) and J(q, ω)] to the total (i.e. screened) perturbation (E and �, respec-
tively). This was first derived by Lindhard [Lin54]; χ̂ is consequently called the
Lindhard dielectric function.

From Eqs (3.1.27) and (3.1.22b) we can derive an expression for the dielectric
constant in terms of the electric field and displacement field:

ε̂L(q, ω) = 1+ 4π iρind(q, ω)
q · EL(q, ω)

: (3.1.33)

whereas using Eqs (3.1.28) and (3.1.22b) gives

1

ε̂L(q, ω)
= 1− 4π iρind(q, ω)

q · DL(q, ω)
. (3.1.34)

The significance of the above equations is clear: if the response to an external
field E(q, ω) has to be evaluated, 1/ε̂(q, ω) is the appropriate response function,
whereas the response to a screened field is best described by ε̂(q, ω).

We have also seen that the conductivity connects the local current density
to the local electric field via Ohm’s law (2.2.11), and therefore JL(q, ω) =
σ̂ L(q, ω)EL(q, ω). The continuity equation (2.1.9) for charge and current is
∇ · JL(q, ω) + ∂ρind/∂t = 0, and for a current which is described by the usual

2 Commonly, the dielectric response function is called χ̂ , which must not lead to confusion with the electric
susceptibility χ̂e or the magnetic susceptibility χ̂m. Sometimes χ is called generalized susceptibility.
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harmonic wavefunction exp{i(q · r − ωt)}, the above equation can be written as
q · JL(q, ω) = ωρind(q, ω). Using Eqs (3.1.33) and (2.2.11) finally leads to

ε̂L(q, ω) = 1+ 4π i

ω
σ̂ L(q, ω) . (3.1.35)

This is the well known relationship between the dielectric constant and the con-
ductivity.

3.1.4 Response to transverse fields

Similarly to longitudinal fields, a simple relationship between the electric field and
the induced current can also be derived for transverse fields. In a similar way as the
charge density ρ is connected to the scalar potential � by the Lindhard function,
ρ = χ̂�, now the current density J is related to the vector potential A by the
conductivity; the proportionality factor is

J = σ̂E = iσ̂ω

c
A . (3.1.36)

Thus we can define a dielectric constant for the transverse response according to
Eq. (3.1.8); this gives the relationship between the transverse conductivity and the
transverse dielectric constant:

ε̂T(q, ω) = 1+ 4π i

ω
σ̂ T(q, ω) , (3.1.37)

the same as obtained previously for the longitudinal conductivity and dielectric
constant.

The analogy between longitudinal and transverse fields ends here; it is not possi-
ble to define a transverse dielectric constant corresponding to the longitudinal case.
Assuming a homogeneous isotropic medium, the divergence of the transverse fields
vanishes by definition. With q · ET = q · DT = 0 the denominator in Eqs (3.1.33)
and (3.1.34) is zero.

3.1.5 The anisotropic medium: dielectric tensor

As mentioned earlier, the strict separation of the longitudinal and transverse re-
sponse as summarized in Eq. (3.1.20) only holds for non-magnetic (µ1 = 1) and
isotropic materials. In anisotropic media the situation is different: the polarization
and induced currents can generally flow in any direction that is different from
that of the electric field, and it is possible to mix both components to induce, for
example, a longitudinal current with a purely transverse electric field. The situation
can be described by the dielectric tensor ¯̄ε. The nine components of ¯̄ε are not all
independent from each other.
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In the absence of an external magnetic field, even for anisotropic media, the
real part of the complex dielectric tensor is symmetric (the Onsager relation):
it is always possible to find a set of principal dielectric axes such that the real
dielectric tensor can be diagonalized. The imaginary part of the dielectric tensor
(i.e. the conductivity tensor) is also symmetric and can be put into diagonal form.
However, the directions of the principal axes of these two tensors are in general not
the same. They do, however, coincide for crystals with symmetry at least as high
as orthorhombic [Nye57].

A mixing of longitudinal and transverse responses also occurs if the medium
is bounded, i.e. in the presence of surfaces. In particular if the frequency ω is
comparable to the plasma frequency ωp, longitudinal plasma waves may occur.

3.2 Kramers–Kronig relations and sum rules

The various material parameters and optical constants introduced in the previous
section describe the response of the medium to applied electromagnetic radiation
within the framework of linear response theory; the frequency dependence of the
response is called dispersion. The complex dielectric constant ε̂ and the complex
conductivity σ̂ can be regarded as the prime response functions of the material,
describing the electric polarization and current induced in response to the applied
electric field. The change of the electromagnetic wave in the material was dis-
cussed in terms of the refractive index N̂ and in terms of the complex surface
impedance ẐS, for example; these are also complex response functions. For the
optical parameters, such as the amplitude of the electromagnetic wave which is
transmitted through an interface or which is reflected off a boundary of two ma-
terials, the second components are the phase shifts φt and φr, respectively, which
are experienced by the electromagnetic fields there; both components constitute
a response function. Hence we always deal with complex response functions
describing the response of the system to a certain stimulus; it always contained
possible dissipation and some phase change. General considerations, involving
causality, can be used to derive important relations between the real and imaginary
parts of the complex response functions. They were first given by Kramers [Kra26]
and Kronig [Kro26], and play an important role, not only in the theory of response
functions [Bod45, Mac56].

These relations are also of great practical importance: they allow for the evalu-
ation of the components of the complex dielectric constant or conductivity when
only one optical parameter such as the reflected or absorbed power is measured.
With R(ω) obtained over a broad frequency range, the dispersion relations can be
utilized to evaluate φr(ω). There are two restrictions of practical importance: the
data have to cover a wide spectral range and the sample must not be transparent.
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If just the transmitted power through a sample of finite thickness is measured, the
Kramers–Kronig analysis does not allow the determination of both components
without knowing the reflected portion.

These dispersion relations can also be used – together with physical arguments
about the behavior of the response in certain limits – to derive what are called sum
rules.

3.2.1 Kramers–Kronig relations

For the derivation of the general properties we assume a linear response to an
external perturbation given in the form of

X̂(r, t) =
∫ ∫ ∞

−∞
Ĝ(r, r′, t, t ′) f̂ (r′, t ′) dr′ dt ′ . (3.2.1)

This describes the response X̂ of the system at time t and position r to an external
stimulus f̂ at times t ′ and locations r′. The function Ĝ(r, r′, t, t ′) is called the
response function, and may be the conductivity, the dielectric constant, the suscep-
tibility, or any other optical constant, such as the refractive index. Since the origin
of the time scale should not be of physical significance, Ĝ(t, t ′) is a function of
the difference of the argument t − t ′ only. In the following we will neglect the
spatial dependence of the external perturbation3 and restrict ourselves to the local
approximation: we assume that the response at a particular position r depends only
on the field which exists at that particular place (described by the delta function:
δ{x} = 1 if x = 0):

Ĝ(r, r′, t, t ′) = δ{r− r′}Ĝ(t − t ′) .

The validity of this approximation is discussed at length in later chapters. We also
assume that the medium is isotropic and homogeneous, and thus Ĝ is a scalar. With
these assumptions, Eq. (3.2.1) becomes

X̂(t) =
∫ ∞

−∞
Ĝ(t − t ′) f̂ (t ′) dt ′ , (3.2.2)

where we suppress the spatial dependence for above reasons. If the system is
required to be causal, then

Ĝ(t − t ′) = 0 for t < t ′ , (3.2.3)

which basically means that there is no response prior to the stimulus and we can
simplify

∫∞
−∞ dt ′ to

∫ t
−∞ dt ′. Further analysis is more convenient in Fourier space,

3 For a discussion of non-local effects on the derivation of the Kramers–Kronig relations and sum rules, see
[Mar67].
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with the spectral quantities defined as

f̂ (ω) =
∫

f̂ (t) exp{iωt} dt , (3.2.4a)

X̂(ω) =
∫

X̂(t) exp{iωt} dt , (3.2.4b)

Ĝ(ω) =
∫

Ĝ(t − t ′) exp{iω(t − t ′)} dt (3.2.4c)

leading to the convolution

X̂(ω) =
∫

dt exp{iωt}
[∫

Ĝ(t − t ′) f̂ (t ′) dt ′
]

=
∫

dt ′ f̂ (t ′) exp{iωt ′}
[∫

Ĝ(t − t ′) exp{iω(t − t ′)} dt

]
= Ĝ(ω) f̂ (ω) . (3.2.5)

Ĝ(ω) is also often referred to as the frequency dependent generalized susceptibility.
In general, it is a complex quantity with the real component describing the attenu-
ation of the signal and the imaginary part reflecting the phase difference between
the external perturbation and the response.

For mathematical reasons, let us assume that the frequency which appears in the
previous equations is complex, ω̂ = ω1 + iω2; then from Eq. (3.2.4c) we obtain

Ĝ(ω̂) =
∫

Ĝ(t − t ′) exp{iω1(t − t ′)} exp{−ω2(t − t ′)} dt . (3.2.6)

The factor exp{−ω2(t − t ′)} is bounded in the upper half of the complex plane for
t − t ′ > 0 and in the lower half plane for t − t ′ < 0, and Ĝ(t − t ′) is finite for all
t − t ′. The required causality (Eq. (3.2.3)) hence limits Ĝ(ω̂) to the upper half of
the ω̂ plane. Let us consider a contour shown in Fig. 3.1 with a small indentation
near to the frequency ω0. Because the function is analytic (i.e. no poles) in the
upper half plane, Cauchy’s theorem applies:∮

C

Ĝ(ω̂′)
ω̂′ − ω̂0

dω̂′ = 0 .

For a detailed discussion of the essential requirements and properties of the re-
sponse function Ĝ(ω̂), for example its boundedness and linearity, see [Bod45,
Lan80], for instance. While the integral over the large semicircle vanishes4 as
Ĝ(ω̂′) → 0 when ω̂′ → ∞, the integral over the small semicircle of radius η

can be evaluated using ω̂′ = ω̂0 − η exp{iφ}; then, by using the general relation

4 This is not a serious restriction since we can redefine Ĝ in the appropriate way as Ĝ(ω)− Ĝ(∞).
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ω00

Im ω

Re ω

Fig. 3.1. Integration contour in the complex frequency plane. The limiting case is consid-
ered where the radius of the large semicircle goes to infinity while the radius of the small
semicircle around ω0 approaches zero. If the contribution to the integral from the former
one vanishes, only the integral along the real axis from −∞ to∞ remains.

(sometimes called the Dirac identity)

lim
η→0

1

x ± iη
= P

{
1

x

}
∓ iπδ(x) , (3.2.7)

we obtain

lim
η→0

∮
η

Ĝ(ω̂′)
ω̂′ − ω̂0

dω̂′ = −iπ Ĝ(ω̂0) .

This integral along the real frequency axis gives the principal value P . Therefore

Ĝ(ω) = 1

iπ
P

∫ ∞

−∞

Ĝ(ω′)
ω′ − ω

dω′ , (3.2.8)

where we have omitted the subscript of the frequency ω0. In the usual way, the
complex response function Ĝ(ω) can be written in terms of the real and imaginary
parts as Ĝ(ω) = G1(ω) + iG2(ω), leading to the following dispersion relations
between the real and imaginary parts of the response function:

G1(ω) = 1

π
P

∫ ∞

−∞

G2(ω
′)

ω′ − ω
dω′ (3.2.9a)

G2(ω) = − 1

π
P

∫ ∞

−∞

G1(ω
′)

ω′ − ω
dω′ ; (3.2.9b)

i.e. G1 and G2 are Hilbert transforms of each other. Using these general relations
we can derive various expressions connecting the real and imaginary parts of dif-
ferent optical parameters and response functions discussed earlier. The relationship
between causality and the dispersion relations is also illustrated in Fig. 3.2. Thus
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Fig. 3.2. Connection between causality and dispersion visualized by a wave package.
An input A(t) which is zero for times t < 0 is formed as a superposition of many
Fourier components such as B, each of which extends from t = −∞ to t = ∞. It is
impossible to design a system which absorbs just the component B(t) without affecting
other components; otherwise the output would contain the complement of B(t) during
times before the onset of the input wave, in contradiction with causality. The lower panel
shows the result of a simple subtraction of one component A(t)− B(t) which is non-zero
for times t < 0 (after [Tol56]).
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causality implies that absorption of one frequency ω must be accompanied by a
compensating shift in phase of other frequencies ω′; the required phase shifts are
prescribed by the dispersion relation. The opposite is also true: a change in phase
at one frequency is necessarily connected to an absorption at other frequencies.

Let us apply these relations to the various material parameters and optical con-
stants. The current J is related to the electric field E by Ohm’s law (2.2.11); and the
complex conductivity σ̂ (ω) = σ1(ω) + iσ2(ω) is the response function describing
this. The dispersion relation which connects the real and imaginary parts of the
complex conductivity is then given by

σ1(ω) = 1

π
P

∫ ∞

−∞

σ2(ω
′)

ω′ − ω
dω′ (3.2.10a)

σ2(ω) = − 1

π
P

∫ ∞

−∞

σ1(ω
′)

ω′ − ω
dω′ . (3.2.10b)

We can write these equations in a somewhat different form in order to eliminate
the negative frequencies. Since σ̂ (ω) = σ̂ ∗(−ω) from Eq. (3.2.4c), the real part
σ1(−ω) = σ1(ω) is an even function and the imaginary part σ2(−ω) = −σ2(ω) is
an odd function in frequency. Thus, we can rewrite Eqs (3.2.10a) and (3.2.10b) by
using the transformation for a function f (x)

P
∫ ∞

−∞

f (x)

x − a
dx = P

∫ ∞

0

x[ f (x)− f (−x)]+ a[ f (x)+ f (−x)]

x2 − a2
dx ,

yielding for the two components of the conductivity

σ1(ω) = 2

π
P

∫ ∞

0

ω′σ2(ω
′)

ω′2 − ω2
dω′ (3.2.11a)

σ2(ω) = −2ω

π
P

∫ ∞

0

σ1(ω
′)

ω′2 − ω2
dω′ . (3.2.11b)

The dispersion relations are simple integral formulas relating a dispersive process
(i.e. a change in phase of the electromagnetic wave, described by σ2(ω)) to an
absorption process (i.e. a loss in energy, described by σ1(ω)), and vice versa.

Next, let us turn to the complex dielectric constant. The polarization P in re-
sponse to an applied electric field E leads to a displacement D given by Eq. (2.2.5),
and

4πP(ω) = [ε̂(ω)− 1]E(ω) ;
consequently ε̂(ω)− 1 is the appropriate response function:

ε1(ω)− 1 = 2

π
P

∫ ∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′ (3.2.12a)
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ε2(ω) = − 2

πω
P

∫ ∞

0

ω′2[ε1(ω
′)− 1]

ω′2 − ω2
dω′ . (3.2.12b)

One immediate result of the dispersion relation is that if we have no absorption in
the entire frequency range (ε2(ω) = 0), then there is no frequency dependence of
the dielectric constant: ε1(ω) = 1 everywhere. Using

P
∫ ∞

0

1

ω′2 − ω2
dω′ = 0 , (3.2.13)

Eq. (3.2.12b) can be simplified to∫ ∞

0

ω′2[1− ε1(ω
′)]

ω′2 − ω2
dω′ =

∫ ∞

0

[1− ε1(ω
′)]ω′2 − ω2 + ε1(ω

′)ω2 − ε1(ω
′)ω2

ω′2 − ω2
dω′

=
∫ ∞

0

[1− ε1(ω
′)](ω′2 − ω2)− ε1(ω

′)ω2

ω′2 − ω2
dω′

=
∫ ∞

0
[1− ε1(ω

′)] dω′ −
∫ ∞

0

ε1(ω
′)ω2

ω′2 − ω2
dω′ .

The dc conductivity calculated from Eq. (3.2.11a) by setting ω = 0 and using
σ2 = (1− ε1)

ω
4π from Table 2.1 is given by

σdc = σ1(0) = 1

2π2

∫ ∞

0
[1− ε1(ω

′)] dω′ ; (3.2.14)

we consequently find for Eq. (3.2.12b)

ε2(ω) = 4πσdc

ω
− 2ω

π
P

∫ ∞

0

ε1(ω
′)

ω′2 − ω2
dω′ . (3.2.15)

For σdc �= 0 the imaginary part of the dielectric constant diverges for ω → 0. For
insulating materials σdc vanishes, and therefore the first term of the right hand side
is zero. In this case by using Eq. (3.2.13) we can add a factor 1 to Eq. (3.2.15) and
obtain a form symmetric to the Kramers–Kronig relation for the dielectric constant
(3.2.12a):

ε2(ω) = −2ω

π
P

∫ ∞

0

ε1(ω
′)− 1

ω′2 − ω2
dω′ ; (3.2.16)

it should be noted that this expression is valid only for insulators.
For longitudinal fields the loss function 1/ε̂L(ω) describes the response to the

longitudinal displacement as written in Eq. (3.1.23). Consequently 1/ε̂L(ω) can
also be regarded as a response function with its components obeying the Kramers–
Kronig relations

Re
{

1

ε̂(ω)

}
− 1 = 1

π
P

∫ ∞

−∞
Im

{
1

ε̂(ω′)

}
dω′

ω′ − ω
(3.2.17a)
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Im
{

1

ε̂(ω)

}
= 1

π
P

∫ ∞

−∞

[
1− Re

{
1

ε̂(ω′)

}]
dω′

ω′ − ω
. (3.2.17b)

Similar arguments can be used for other optical constants which can be regarded as
a response function. Thus the Kramers–Kronig relations for the two components
of the complex refractive index N̂ (ω) = n(ω)+ ik(ω) are as follows:

n(ω)− 1 = 2

π
P

∫ ∞

0

ω′k(ω′)
ω′2 − ω2

dω′ (3.2.18a)

k(ω) = − 2

πω
P

∫ ∞

0

(ω′)2[n(ω′)− 1]

ω′2 − ω2
dω′ . (3.2.18b)

This is useful for experiments which measure only one component such as the
absorption α(ω) = 2k(ω)ω/c. If this is done over a wide frequency range the
refractive index n(ω) can be calculated without separate phase measurements. The
square of the refractive index N̂ 2 = (n2 − k2)+ 2ink is also a response function.

We can write down the dispersion relation between the amplitude
√

R = |r̂ |
and the phase shift φr of the wave reflected off the surface of a bulk sample as in
Eq. (2.4.12): Ln r̂(ω) = ln |r̂(ω)| + iφr(ω). The dispersion relations

ln |r̂(ω)| = 1

π
P

∫ ∞

−∞

φr(ω
′)

ω′ − ω
dω′ (3.2.19a)

φr(ω) = − 1

π
P

∫ ∞

−∞

ln |r̂(ω′)|
ω′ − ω

dω′ (3.2.19b)

follow immediately. The response function which determines the reflected power
is given by the square of the reflectivity (Eq. (2.4.15)) and therefore the appropriate
dispersion relations can be utilized.

Finally, the real and imaginary parts of the surface impedance ẐS are also related
by similar dispersion relations:

RS(ω)− Z0 = 1

π
P

∫ ∞

−∞

XS(ω
′)

ω′ − ω
dω′ = 2

π
P

∫ ∞

0

ω′XS(ω
′)

ω′2 − ω2
dω′

XS(ω) = − 1

π
P

∫ ∞

−∞

[RS(ω
′)− Z0]

ω′ − ω
dω′ (3.2.20a)

= −2ω

π
P

∫ ∞

0

[RS(ω
′)− Z0]

ω′2 − ω2
dω′ . (3.2.20b)

For the same reasons as discussed above, the difference from the free space
impedance RS(ω) − Z0 has to be considered, since only this quantity approaches
zero at infinite frequencies.
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Fig. 3.3. Frequency dependence of the complex response function Ĝ(ω) = G1(ω) +
iG2(ω). (a) For G2(ω) = δ{3ω0} (solid line) the corresponding component G1(ω) diverges
as 1/(3ω0−ω) (dashed line). (b) The relationship between the real and imaginary parts of
a response function if G2(ω) = 1 for 2 < ω < 4 and zero elsewhere.

The Kramers–Kronig relations are non-local in frequency: the real (imaginary)
component of the response at a certain frequency ω is related to the behavior of the
imaginary (real) part over the entire frequency range, although the influence of the
contributions diminishes as (ω′2−ω2)−1 for larger and larger frequency differences.
This global behavior leads to certain difficulties when these relations are used to
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analyze experimental results which cover only a finite range of frequencies. Certain
qualitative statements can, however, be made, in particular when one or the other
component of the response function displays a strong frequency dependence near
certain frequencies.

From a δ-peak in the imaginary part of Ĝ(ω) we obtain a divergency in G1(ω),
and vice versa, as displayed in Fig. 3.3. Also shown is the response to a pulse in
G2(ω). A quantitative discussion can be found in [Tau66, Vel61].

3.2.2 Sum rules

We can combine the Kramers–Kronig relations with physical arguments about the
behavior of the real and imaginary parts of the response function to establish a set
of so-called sum rules for various optical parameters.

The simplest approach is the following. For frequencies ω higher than those of
the highest absorption, which is described by the imaginary part of the dielectric
constant ε2(ω

′), the dispersion relation (3.2.12a) can be simplified to

ε1(ω) ≈ 1− 2

πω2

∫ ∞

0
ω′ε2(ω

′) dω′ . (3.2.21)

In order to evaluate the integral, let us consider a model for calculating the dielec-
tric constant; in Sections 5.1 and 6.1 we will discuss such models for absorption
processes in more detail. For a particular mode in a solid, at which the rearrange-
ment of the electronic charge occurs, the equation of motion can, in general, be
written as

m

(
d2r
dt2

+ 1

τ

dr
dt
+ ω2

0r
)
= −eE(t) , (3.2.22)

where 1/τ is a phenomenological damping constant, ω0 is the characteristic fre-
quency of the mode, and−e and m are the electronic charge and mass, respectively.
In response to the alternating field E(t) = E0 exp{−iωt}, the displacement is then
given by

r = −eE
m

1

ω2
0 − ω2 − iω/τ

. (3.2.23)

The dipole moment of the atom is proportional to the field and given by−er = α̂E
if we have only one atom per unit volume; α̂(ω) is called the molecular polariz-
ability. In this simple case the dielectric constant can now be calculated as

ε̂(ω) = 1+ 4πα̂ = 1+ 4πe2

m

1

ω2
0 − ω2 − iω/τ

. (3.2.24)

Each electron participating in the absorption process leads to such a mode; in total
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we assume N modes per unit volume in the solid. At frequencies higher than the
highest mode ω � ω0 > 1/τ , the excitation frequency dominates the expression
for the polarizability; hence the previous equation can be simplified to

lim
ω�ω0

ε1(ω) = 1− 4πNe2

mω2
= 1− ω2

p

ω2
(3.2.25)

for all modes, with the plasma frequency defined as

ωp =
(

4πNe2

m

)1/2

. (3.2.26)

From Eq. (3.2.25) we see that for high frequencies ω � ω0 and ω > ωp, the real
part of the dielectric constant ε1 always approaches unity from below. Comparing
the real part of this expansion with the previous expression for the high frequency
dielectric constant given in Eq. (3.2.21), we obtain

π

2
ω2

p =
∫ ∞

0
ωε2(ω) dω , (3.2.27)

which in terms of the optical conductivity σ1(ω) = (ω/4π)ε2(ω) can also be
written as

ω2
p

8
=

∫ ∞

0
σ1(ω) dω = πNe2

2m
. (3.2.28)

Therefore the spectral weight ω2
p/8 defined as the area under the conductivity

spectrum
∫∞

0 σ1(ω) dω is proportional to the ratio of the electronic density to the
mass of the electrons.

It can be shown rigorously that∫ ∞

0
σ1(ω) dω = π

2

∑
j

(q j )
2

M j
(3.2.29)

holds for any kind of excitation in the solid in which charge is involved; here q j and
M j are the corresponding charge and mass, respectively. For electrons, q = −e
and M = m. For phonon excitations, for example, q may not equal e, and most
importantly M is much larger than m due to the heavy ionic mass.

We still have to specify in more detail the parameter N in Eq. (3.2.26). For
more than one electron per atom, N is the total number of electrons per unit
volume, if the integration in Eq. (3.2.28) is carried out to infinite frequencies. This
means that for high enough frequencies even the core electrons are excited, and
have to be included in the sum rule. Studying the optical properties of solids,
in general we are only interested in the optical response due to the conduction
electrons in the case of a metal or due to the valence electrons in the case of a
semiconductor. The core electron excitation energies are usually well separated in
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the higher frequency range ω > ωc. If more than one mode is related to a single
electron the polarizability sums up all contributions:

α̂(ω) = e2

m

∑
j

f j

ω2
0 j − ω2 − iω/τ j

. (3.2.30)

Here f j is called the oscillator strength; it measures the probability of a particular
transition taking place with a characteristic frequency ω0 j . It obeys the so-called
f sum rule

∑
j f j = 1 which expresses normalization. A quantum mechanical

derivation of the sum rule and a detailed discussion of the electronic transitions are
given in Section 6.1.1.

Looking at the limit ω = 0, the first Kramers–Kronig relation for the dielectric
constant (3.2.12a) reads

ε1(0)− 1 = 2

π

∫ ∞

0

ε2(ω)

ω
dω . (3.2.31)

The static dielectric constant is related to the sum of all higher frequency contri-
butions of the imaginary part; it is a measure of absorption processes and their
mode strength. This relation (3.2.31) is the equivalent to Eq. (3.2.14) for the dc
conductivity.

Now let us consider the second Kramers–Kronig relation (3.2.12b). We can split
the integral of Eq. (3.2.14), and in the case of an insulator (σdc = 0) we obtain

0 =
∫ ∞

0
[ε1(ω)− 1] dω =

∫ ωc

0
[ε1(ω)− 1] dω+

∫ ∞

ωc

[ε1(ω)− 1] dω . (3.2.32)

If we assume that above a cutoff frequency ωc there are no excitations (i.e. the
imaginary part of the dielectric constant equals zero at frequencies higher than ωc),
Eq. (3.2.25) can be applied to the second term on the right hand side of Eq. (3.2.32),
yielding ∫ ∞

ωc

[ε1(ω)− 1] dω = ω2
p

ωc
.

The rest of Eq. (3.2.32) gives

1

ωc

∫ ωc

0
ε1(ω) dω = 1− ω2

p

ω2
c

, (3.2.33)

which expresses that the average of the real part of the dielectric constant ap-
proaches unity in the high frequency limit ωc � ωp.

Next, we consider a response of the electron gas to an additional electron moving
inside the solid; a situation which occurs when a so-called electron loss spec-
troscopy experiment is conducted. The moving charge produces a displacement
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field D, and the rate of electronic energy density absorbed per unit volume is given
by the product

Re
{

E · ∂D
∂t

}
= Re

{
D
ε̂
· ∂D
∂t

}
= −ωε2

|ε2
1 + ε2

2 |
|D0|2 = ω Im

{
1

ε̂(ω)

}
|D0|2 ,

and we find that Im{1/ε̂} describes the energy loss associated with the electrons
moving in the medium. It is consequently called the loss function of solids and is
the basic parameter measured by electron loss spectroscopy.5 From the dispersion
relations (3.2.17) of the inverse dielectric function, we obtain the sum rule

−
∫ ∞

0
ω Im

{
1

ε̂(ω)

}
dω = π

2
ω2

p , (3.2.35)

which can also be derived using rigorous quantum mechanical arguments [Mah90].
Furthermore from Eq. (3.2.17a) we find the following relations:∫ ∞

0

1

ω
Im

{
1

ε̂(ω)

}
dω = −π

2
(3.2.36)

and

2

π

∫ ∞

0
Im

{
1

ε̂(ω′)

}
P ω′

ω′2 − ω2
dω′ = Re

{
1

ε̂(ω)

}
− 1 .

Using limω→0 Re
{
1/ε̂(ω)

} = 1 + ω2
p/ω

2 + O {
ω−4

}
, the real part of the loss

function obeys the following equation:∫ ∞

0

[
Im

{
1

ε̂(ω)

}
− 1

]
dω = 0 . (3.2.37)

As far as the surface impedance is concerned, from Eq. (3.2.20b) we obtain∫ ∞

0
[R(ω)− Z0] dω = 0 , (3.2.38)

where Z0 = 4π/c, because limω→0 ωXS(ω) = 0 for all conducting material
[Bra74].

Not surprisingly, we can also establish sum rules for other optical parameters.

5 If we evaluate the energy and momentum transfer per unit time in a scattering experiment by the Born
approximation, we obtain a generalized loss function W (ω) ≈ (ω/8π) Im

{
1/ε̂(ω)

}
. It is closely related

to the structure factor or dynamic form factor S(ω), which is the Fourier transform of the density–density
correlation [Pin63, Pla73]. It allows for a direct comparison of scattering experiments with the longitudinal
dielectric function:

S(ω) = − h̄q2

4π2e2
Im

{
1

ε̂(ω)

}
. (3.2.34)
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For example the sum rule for the components of the complex refractive index, n(ω)
and k(ω), are ∫ ∞

0
ωn(ω)k(ω) dω = π

2
ω2

p (3.2.39a)

c

2

∫ ∞

0
α(ω) dω =

∫ ∞

0
ωk(ω) dω = π

4
ω2

p (3.2.39b)∫ ∞

0
[n(ω)− 1] dω = 0 . (3.2.39c)

For the reflectivity, similar arguments yield:∫ ∞

0
|r̂(ω)| cos{φr(ω)} dω = 0 (3.2.40a)∫ ∞

0
ω|r̂(ω)| sin{φr(ω)} dω = π

8
ω2

p . (3.2.40b)

These formulations of the sum rule do not express any new physics but may be
particularly useful in certain cases.

In [Smi85] sum rules to higher powers of the optical parameters are discussed;
these converge faster with frequency and thus can be used in a limited frequency
range but are in general not utilized in the analysis of the experimental results.
There are also dispersion relations and sum rules investigated for the cases of
non-normal incidence [Ber67, Roe65], ellipsometry [Hal73, Ina79, Que74], and
transmission measurements [Abe66, Neu72, Nil68, Ver68].
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4

The medium: correlation and response functions

In the previous chapters the response of the medium to the electromagnetic waves
was described in a phenomenological manner in terms of the frequency and
wavevector dependent complex dielectric constant and conductivity. Our task at
hand now is to relate these parameters to the changes in the electronic states of
solids, brought about by the electromagnetic fields or by external potentials. Sev-
eral routes can be chosen to achieve this goal. First we derive the celebrated Kubo
formula: the conductivity given in terms of current–current correlation functions.
The expression is general and not limited to electrical transport; it can be used in the
context of different correlation functions, and has been useful in a variety of trans-
port problems in condensed matter. We use it in the subsequent chapters to discuss
the complex, frequency dependent conductivity. This is followed by the description
of the response to a scalar field given in terms of the density–density correlations.
Although this formalism has few limitations, in the following discussion we restrict
ourselves to electronic states which have well defined momenta. In Section 4.2
formulas for the so-called semiclassical approximation are given; it is utilized in
later chapters when the electrodynamics of the various broken symmetry states
is discussed. Next, the response to longitudinal and transverse electromagnetic
fields is treated in terms of the Bloch wavefunctions, and we derive the well known
Lindhard dielectric function: the expression is used for longitudinal excitations
of the electron gas; the response to transverse electromagnetic fields is accounted
for in terms of the conductivity. Following Lindhard [Lin54], the method was
developed in the 1960s by Pines [Pin63, Pin66] and others, [Ehr59, Noz64] and
now forms an essential part of the many-body theory of solids.

Throughout the chapter, both the transverse and the longitudinal responses are
discussed; and, as usual, we derive the conductivity in terms of the current–
current correlation function and the dielectric constant within the framework of
the Lindhard formalism. Because of the relationship ε̂ = 1 + 4π iσ̂ /ω between
the complex dielectric constant and the complex conductivity, it is of course a

71
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matter of choice or taste as to which optical parameter is used. In both cases, we
derive the appropriate equations for the real part of the conductivity and dielectric
constant; the imaginary part of these quantities is obtained either by utilizing the
Kramers–Kronig relations or the adiabatic approximation.

4.1 Current–current correlation functions and conductivity

In the presence of a vector and a scalar potential, the Hamiltonian of an N -electron
system in a solid is in general given by

H = 1

2m

N∑
i=1

(
pi + e

c
A(ri )

)2
+

N ,M∑
i=1, j=1

V 0
j (ri − R j )

+ 1

2

N ,N∑
i=1,i ′=1

e2

|ri − ri ′ | −
N∑

i=1

e�(ri ) . (4.1.1)

The first term refers to the coupling between the electromagnetic wave (described
by the external vector potential A) and the electrons with momenta pi at their
location ri . As usual, −e is the electronic charge and m is the electron mass.
The second term defines the interaction between the ions and the electrons; this
interaction is given by the potential V 0

j . In a crystalline solid V 0
j (ri − R j ) is

a periodic function, and with M ionic sites and N electrons the band filling is
N/M . The summation over the ionic positions is indicated by the index j ; the
indices i and i ′ refer to the electrons. The third term describes the electron–electron
interaction (i �= i ′); we assume that only the Coulomb repulsion is important; we
have not included vibrations of the underlying lattice, and consequently electron–
phonon interactions are also neglected, together with spin dependent interactions
between the electrons. The last term in the Hamiltonian describes an external scalar
potential � as produced by an external charge. Both p and A are time dependent,
which for brevity will be indicated only when deemed necessary.

In general, we can split the Hamilton operator as

H = H0 +Hint , (4.1.2)

with the first term describing the unperturbed Hamiltonian in the absence of a
vector and a scalar potential:

H0 = 1

2m

N∑
i=1

p2
i +

N ,M∑
i=1, j=1

V 0
j (ri − R j )+ 1

2

N ,N∑
i=1,i ′=1

e2

|ri − ri ′ | . (4.1.3)

The second term in Eq. (4.1.2) accounts for the interaction of the system with the
electromagnetic radiation and with the electrostatic potential. This interaction with
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the electromagnetic field is given by

Hint = e

2mc

N∑
i=1

[pi · A(ri )+ A(ri ) · pi ]− e
N∑

i=1

�(ri ) . (4.1.4)

Here we have neglected second order terms (e.g. terms proportional to A2). Note
that in Eq. (4.1.4) p, A, and � are quantum mechanical operators which observe
the commutation relations. For the moment, however, we will treat both A and �

as classical fields.
As discussed in Section 3.1.1, in the Coulomb gauge the vector potential A is

only related to the transverse response of the medium, while the scalar potential �
determines the longitudinal response to the applied electromagnetic fields. These
two cases are treated separately. As usual, magnetic effects are neglected, and
throughout this and subsequent chapters we assume that µ1 = 1 and µ2 = 0.

4.1.1 Transverse conductivity: the response to the vector potential

Next we derive an expression for the complex conductivity in terms of the current–
current correlation function. The operator of the electrical current density is defined
as

JT(r) = −e

2

N∑
i=1

[viδ{r− ri } + δ{r− ri }vi ] , (4.1.5)

where vi is the velocity of the i th particle at position ri (and we have implicitly
assumed the usual commutation rules). The velocity operator of an electron in the
presence of an electromagnetic field is given by v = p/m + eA/mc; consequently
the current density has two terms,

JT(r) = Jp(r)+ Jd(r)

= − e

2m

N∑
i=1

[piδ{r− ri } + δ{r− ri }pi ]− e2

mc

N∑
i=1

A(ri )δ{r− ri } . (4.1.6)

The second term follows from the fact that A(ri ) commutes with δ{r − ri }. The
first term is called the paramagnetic and the second the diamagnetic current. As
the vector potential A depends on the position, it will in general not commute with
the momentum. However, since p = −ih̄∇ we obtain

p · A− A · p = −ih̄∇ · A . (4.1.7)

Note, if Coulomb gauge (∇ · A = 0) is assumed, A and p commute.
Using the definition (4.1.5) of the electric current density, the interaction term
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Eq. (4.1.4) for transverse fields (note that � = 0) can be written as:

HT
int = −

1

c

∫
JT(r) · AT(r) dr . (4.1.8)

We have replaced the summation over the individual positions i by an integral, and
we have assumed that the current is a continuous function of the position r. Note
that the diamagnetic current term Jd leads to a term in the interaction Hamiltonian
which is second order in A; thus it is not included if we restrict ourselves to inter-
actions proportional to A. Our objective is to derive the wavevector and frequency
dependent response, and in order to do so we define the spatial Fourier transforms
(see Appendix A.1) of the current density operator J(q) and of the vector potential
A(q) as

J(q) = 1

�

∫
J(r) exp{−iq · r} dr

= −e

2

1

�

N∑
i=1

[vi exp{−iq · ri } + exp{−iq · ri }vi ] , (4.1.9)

and

A(q) = 1

�

∫
dA(r) exp{−iq · r} r . (4.1.10)

Here � denotes the volume element over which the integration is carried out; if
just the unit volume is considered, � is often neglected. It is straightforward to
show that with these definitions the q dependent interaction term in first order
perturbation becomes

HT
int = −

1

c
JT(q) · AT(q) . (4.1.11)

Next we derive the rate of absorption of electromagnetic radiation. As we have
seen in Section 2.3.1, this absorption rate can also be written as P = σ T

1 (E
T)2,

in terms of the real part of the complex conductivity. If we equate the absorption
which we obtain later in terms of the electric currents using this expression, it
will then lead us to a formula for σ1 in terms of the q and ω dependent current
densities. The imaginary part of σ̂ (ω) is subsequently obtained by utilizing the
Kramers–Kronig relation. We assume that the incident electromagnetic wave with
wavevector q and frequency ω results in the scattering of an electron from one state
to another with higher energy. Fermi’s golden rule is utilized: for one electron the
number of transitions per unit time and per unit volume from the initial state |s〉 to
a final state |s ′〉 of the system is

Ws→s′ = 2π

h̄2

∣∣〈s ′|HT
int|s〉

∣∣2
δ{ω − (ωs′ − ωs)} . (4.1.12)
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Here h̄ωs and h̄ωs′ correspond to the energy of the initial and final states of the
system, respectively. The energy difference between the final and initial states
h̄ωs′ − h̄ωs is positive for photon absorption and negative for emission. In this
notation, |s〉 and |s ′〉 do not refer to the single-particle states only, but include
all excitations of the electron system we consider. The average is not necessarily
restricted to zero temperature, but is valid also at finite temperatures if the bracket
is interpreted as a thermodynamic average. This is valid also for the expression we
proceed to derive.

The matrix element for the transition is given by Eq. (4.1.11); substituting

〈s ′|HT
int|s〉 = −

1

c
〈s ′|JT(q)|s〉AT(q)

into Eq. (4.1.12) leads to

Ws→s′ = 2π

h̄2c2
〈s ′|JT(q)|s〉〈s|JT∗(q)|s ′〉 ∣∣AT(q)

∣∣2
δ{ω − ωs′ + ωs} ,

where J∗(q) = J(−q). The summation over all occupied initial and all empty final
states gives the total transfer rate per unit volume:

W =
∑
s,s′

Ws→s′

=
∑
s,s′

2π

h̄2c2
〈s ′|JT(q)|s〉〈s|JT∗(q)|s ′〉 ∣∣AT(q)

∣∣2
δ{ω − ωs′ + ωs} . (4.1.13)

We use the identity

δ{ω} = 1

2π

∫
exp{−iωt} dt ;

substituting this into Eq. (4.1.13) yields

W =
∑
s,s′

1

h̄2c2

∫
dt exp{−iωt}〈s ′|JT(q)|s〉

× 〈s| exp{iωs′ t}JT∗(q) exp{−iωs t}|s ′〉 ∣∣AT(q)
∣∣2

. (4.1.14)

For the complete set of states
∑

s |s〉〈s| = 1. In the Heisenberg representation
exp{−iωs t}|s〉 = exp {−iH0t/h̄} |s〉, and then the time dependence is written as

JT∗(q, t) = exp{iH0t/h̄}JT∗(q) exp{−iH0t/h̄} = exp{iωs′ t}JT∗(q) exp{−iωs t} ,

and the absorbed energy per unit time and per unit volume then becomes

P = h̄ωW = ∣∣AT(q)
∣∣2 ∑

s

ω

h̄c2

∫
dt 〈s|JT(q, 0)JT∗(q, t)|s〉 exp{−iωt} (4.1.15)

where we have replaced s ′ by s in order to simplify the notation.
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For applied ac fields the equation relating the transverse electric field and the
vector potential is given by ET = iωAT/c, leading to our final result: the absorbed
power per unit volume expressed as a function of the electric field and the current–
current correlation function:

P = ∣∣E(q)T
∣∣2 ∑

s

1

h̄ω

∫
dt 〈s|JT(q, 0)JT∗(q, t)|s〉 exp{−iωt} .

With P = σ T
1 (E

T)2 the conductivity per unit volume is simply given by the
current–current correlation function, averaged over the states |s〉 of our system
in question

σ T
1 (q, ω) =

∑
s

1

h̄ω

∫
dt 〈s|JT(q, 0)JT∗(q, t)|s〉 exp{−iωt} , (4.1.16)

i.e. the Kubo formula for the q and ω dependent conductivity. Here the right hand
side describes the fluctuations of the current in the ground state. The average value
of the current is of course zero, and the conductivity depends on the time correla-
tion between current operators, integrated over all times. The above relationship
between the conductivity (i.e. the response to an external driving force) and current
fluctuations is an example of the so-called fluctuation-dissipation theorem. The
formula is one of the most utilized expressions in condensed matter physics, and
it is used extensively, among other uses, also for the evaluation of the complex
conductivity under a broad variety of circumstances, both for crystalline and non-
crystalline solids. Although we have implied (by writing the absolved power as
P = σ T

1 (E
T)2) that the conductivity is a scalar quantity, it turns out that σ T

1 is
in general a tensor for arbitrary crystal symmetry. For orthorhombic crystals the
conductivity tensor reduces to a vector, with different magnitudes in the different
crystallographic orientations, this difference being determined by the (anisotropic)
form factor.

Now we derive a somewhat different expression for the conductivity for states
for which Fermi statistics apply. At zero temperature the transition rate per unit
volume between the states |s〉 and |s ′〉 is given by

Ws→s′ = 2π

h̄

∣∣〈s ′|HT
int|s〉

∣∣2
f (Es)[1− f (Es′)]δ{h̄ω − (Es′ − Es)} . (4.1.17)

Here the interaction Hamiltonian is HT
int = (e/mc)AT · p, where we do not

explicitly include the q dependence since we are only interested in the q = 0 limit
of the conductivity at this point. (Note that in this Hamiltonian we neglected the
diamagnetic current term of JT.) The energies Es = h̄ωs and Es′ = h̄ωs′ correspond
to the energy of the initial state |s〉 and of the final state |s ′〉, respectively; the energy
difference between these states is Es′ − Es = h̄ωs′s . In the T = 0 limit, the Fermi
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function

f (Es) = 1

exp
{
Es−EF

kBT

}
+ 1

equals unity and f (Es′) = 0, as all states below the Fermi level are occupied while
the states above are empty. Integrating over all k vectors we obtain

W (ω) = πe2

m2h̄c2

2

(2π)3

∫
|AT|2|〈s ′|p|s〉|2 f (Es)[1− f (Es′)]δ{h̄ω − h̄ωs′s} dk .

(4.1.18)
This is the probability (per unit time and per unit volume) that the electromagnetic
energy h̄ω is absorbed by exciting an electron to a state of higher energy. The ab-
sorbed power per unit volume is P(ω) = h̄ωW (ω), and by using AT = −(ic/ω)ET

we obtain

P(ω) = πe2

m2ω

∣∣ET
∣∣2 2

(2π)3

∫
|〈s ′|p|s〉|2 f (Es)[1− f (Es′)]δ{h̄ω − h̄ωs′s} dk .

(4.1.19)
As before, the conductivity σ1(ω) is related to the absorbed power through Ohm’s
law. In the T = 0 limit, f (Es)[1− f (Es′)] = 1, and we obtain

σ1(ω) = πe2

m2ω

2

(2π)3

∫
|ps′s |2δ{h̄ω − h̄ωs′s} dk , (4.1.20)

with the abbreviation |ps′s |2 = |〈s ′|p|s〉|2 used for the momentum operator, the
so-called dipole matrix element.

This expression is appropriate for a transition between states |s〉 and |s ′〉, and we
assume that the number of transitions within an interval dω is Ns′s(ω). We define
the joint density of states for these transitions as Ds′s(ω) = dNs′s(ω)/dω:

Ds′s(h̄ω) = 2

(2π)3

∫
δ{h̄ω − h̄ωs′s} dk ,

where the factor of 2 refers to the different spin orientations. The conductivity is
then given in terms of the joint density of states for both spin directions and of the
transition probability as

σ1(ω) = πe2

m2ω
|ps′s(ω)|2 Ds′s(h̄ω) . (4.1.21)

This equation, often referred to as the Kubo–Greenwood formula, is most useful
when interband transitions are important, with the states |s〉 and |s ′〉 belonging
to different bands. We utilize this expression in Section 6.2 when the optical
conductivity of band semiconductors is derived and also in Section 7.3 when the
absorption of the electromagnetic radiation in superconductors is discussed.
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4.1.2 Longitudinal conductivity: the response to the scalar field

The above considerations led to the response of the electron gas to a transverse
electromagnetic perturbation. Longitudinal currents and electric fields which occur
due to the interaction of the charge density ρ and scalar external potential � (which
we assume to be also time dependent) can be discussed along similar lines. Within
the framework of linear response the interaction between this potential and the
charge density is

HL
int =

∫
ρ(r)�(r, t) dr , (4.1.22)

with

ρ(r) = −e
N∑

i=1

δ{r− ri }

the summation over all electrons at sites ri . Here �(r, t) is the selfconsistent
potential1 including the external perturbation and the induced screening potential:
� = �ext +�ind. The interaction form is similar to Eq. (4.1.8). By replacing

A(r)→ �(r) and − 1

c
J(r)→ ρ(r) , (4.1.23)

the calculation of the absorbed power proceeds along the lines we performed for
the vector potential and the current density. We find that

P = |�(q)|2
∑

s

ω

h̄2

∫
dt 〈s|ρ(q, 0)ρ∗(q, t)|s〉 exp{−iωt} (4.1.24)

in analogy to Eq. (4.1.15). The Fourier transform of the longitudinal electric field
is given by Eq. (3.1.2):

−iq�(q) = EL(q) ,

and on utilizing this we find that the longitudinal conductivity per unit volume is

σ L
1 (q, ω) =

∑
s

ω

h̄q2

∫
dt 〈s|ρ(q, 0)ρ∗(q, t)|s〉 exp{−iωt} . (4.1.25)

The continuity equation (2.1.9) connects the density fluctuations and the longitudi-
nal current density. With both J and ρ described by the spatial and time variation
as exp {i(q · r− ωt)}, the continuity equation becomes

iq · J(q)L = iωρ(q) .

1 Note that in textbooks on solid state theory often the particle density N and the potential energy V are used,
quantities which are related to the charge density and potential by ρ = −eN and V = −e�, respectively. To
follow common usage, we switch to this notation in Section 4.3.
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Consequently, the conductivity per unit volume can also be written in the form
which includes the longitudinal current density

σ L
1 (q, ω) =

∑
s

1

h̄ω

∫
dt 〈s|JL(q, 0)JL∗(q, t)|s〉 exp{−iωt} . (4.1.26)

This expression can be compared with Eq. (4.1.16) derived earlier for the transverse
conductivity.

Since the longitudinal and transverse conductivities are described by identical
expressions, we can formally combine the two and in general write

(σ1)
L,T(q, ω) =

∑
s

1

h̄ω

∫
dt 〈s|JL,T(q, 0)JL,T∗(q, t)|s〉 exp{−iωt} .

As implied by the notation, the longitudinal components of the currents lead
to the longitudinal conductivity and the transverse components to the transverse
conductivity.

4.2 The semiclassical approach

The electric current and electronic charge density induced by external electromag-
netic fields can also be discussed using second quantization formalism, with the ap-
plied potentials either described as classical fields or also quantized. The so-called
semiclassical approximation, where we treat both A(r, t) and �(r, t) as classical
fields, is valid for field strengths and frequencies for which the quantization of the
electromagnetic radiation can be neglected and linear response theory applies; this
is the case for all methods and optical experiments discussed in this book.

The second quantized formalism, as utilized here, is appropriate for materials
where the electronic states can be described as plane waves; this is valid for free
electrons or for electrons in a crystalline solid when they are described in terms of
Bloch wavefunctions. While this is certainly a restriction, when compared with the
applicability of the Kubo formula, the formalism has been utilized extensively to
describe the response of Fermi liquids, including their broken symmetry ground
states. The formalism can be used to derive the conductivity, although here
we merely write down the appropriate expressions for the currents and charge
densities, and these can simply replace the currents and charge densities in the
expressions we have derived above. An introduction to second quantization can
be found in [Hau94, Kit63, Mah90, Sch83] and similar textbooks; here we merely
quote the final results.

We write the field operator �(r) which obeys the equation of motion

ih̄
∂

∂t
�(r) = − [H, �(r)] (4.2.1)
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in the so-called second quantized form

�(r) =
∑
k,σ

ak,σ exp{ik · r}|σ 〉 , (4.2.2)

where |σ 〉 denotes the spin part of the one-electron wavefunction. In terms of the
coefficient ak,σ , the electronic density yields

ρ(r) = −e
∑

j

δ
{
r− r j

} = −e�∗(r)�(r) = −e
∑

k,k′,σ
a+k,σak′,σ exp{i (k′ − k

) · r}
(4.2.3)

and its Fourier component

ρ(q) =
∫

ρ(r) exp{−iq · r} dr = −e
∑
k,σ

a+k,σak+q,σ , (4.2.4)

where k′ = k+ q. The electric current from Eq. (4.1.6) then yields

J(r) = ieh̄

2m

(
�∗∇� +�∇�∗)− e2

mc
�∗A�

= − eh̄

2m

∑
k,q,σ

a+k+q,σak,σ exp{iq · r}(2k+ q)

− e2

mc

∑
k,q,σ

a+k+q,σak,σ exp{−iq · r}A(r)

= Jp(r)+ Jd(r) , (4.2.5)

consisting of two contributions, the paramagnetic and diamagnetic current.
As we have discussed in the previous section, the interaction Hamiltonian Hint

can be split into two contributions: the transverse response related to the vector po-
tential and the longitudinal response related to the scalar potential. The interaction
with the vector potential A(r) becomes

HT
int = −1

c

∫
JT(r) · AT(r) dr = e

mc

∫
dr�∗(r)p · AT(r)�(r)

= eh̄

mc

∫
dr

∑
k,q,σ

a+k+q,σak,σ k · AT(r) exp{−iq · r}

= eh̄

mc

∑
k,q,σ

a+k+q,σak,σ k · AT(q) , (4.2.6)

where A(q) is given by Eq. (4.1.10). The interaction with the scalar field �(r) is

HL
int =

∫
ρ(r)�(r) dr = −e

∫
dr�∗(r)�(r)�(r) = −e

∑
k,q,σ

a∗k+q,σak,σ�(q) .

(4.2.7)
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The appropriate expressions of the charge density and current given above can be
inserted into the Kubo formula (4.1.16) and into the expression which gives the
conductivity in terms of the density fluctuations; with these substitutions these are
cast into a form using the second quantization formalisms.

4.3 Response function formalism and conductivity

Next we relate the dielectric constant and the conductivity to the changes in the
electronic states brought about by the electromagnetic fields; for simplicity we
restrict ourselves to cubic crystals for which the conductivity and dielectric con-
stant are scalar. The formalism is applied for a collection of electrons which are
described by Bloch wavefunctions, and as such is applied to crystalline solids. We
will make use of what is usually called the selfconsistent field approximation as
follows. Starting from the considerations of Section 3.1, we first write the total
potential as

�(q, t) = �ext(q, t)+�ind(q, t) (4.3.1)

and define the dielectric constant ε̂(q, t) as

�(q, t) = �ext(q, t)

ε̂(q, t)
. (4.3.2)

The potential �(q, t) leads to changes in the electronic density of states; these
changes in turn can be obtained using the Heisenberg picture by treating �(q, t)
as a perturbation. The variations in the density of states cause an induced potential
�ind(q, t) through Poisson’s equation, and, through the selfconsistent equations
above, this finally yields the expression of the dielectric constant in terms of the
changes in the electronic states.

The procedure we describe eventually leads to expressions for the longitudinal
response; the transverse response can be arrived at by similar arguments, but
calculating the modification of the electronic states brought about by the vector
potential A(q, t).

4.3.1 Longitudinal response: the Lindhard function

The derivation is somewhat tedious but the end result is transparent and easily
understood. As usual, we derive the expressions for the complex frequency and
wavevector dependent dielectric constant; the conductivity can be subsequently
written in a straightforward fashion. For the derivation of the response functions
we begin with the Heisenberg equation, and write the time evolution of the electron
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number density operator N as

ih̄
∂

∂t
N = [H, N ] . (4.3.3)

Let us introduce the unperturbed Hamiltonian H0

H0|kl〉 = Ekl |kl〉 ,

and describe the interaction with the local electromagnetic potential by the interac-
tion energy V (r, t) with HL = H0 + V . The particle density is decomposed into
the unperturbed density N0 and the density fluctuation induced by the interaction
N (r, t) = N0 + δN (r, t). Now we obtain

ih̄
∂

∂t
δN = [H0, δN ]+ [V, N0] , (4.3.4)

where the second order terms in the perturbation (e.g. V δN ) have been neglected.
In what follows we use Bloch wavefunctions to describe the electron states

|kl〉 = �−1/2 exp{ik · r}ukl(r) , (4.3.5)

where l is a band index, � is the volume of the system, and ukl(r + R) = ukl(r),
with R a Bravais lattice vector. These states are eigenstates of both H0 and N0,
with eigenvalues Ekl and f 0(Ekl), respectively.

f 0(Ekl) = [exp{(Ekl − EF)/kBT } + 1]−1

is the Fermi–Dirac distribution function, EF is the Fermi energy, and kB is the
Boltzmann constant. Ekl indicates the energy of the |kl〉 state; note that this energy
depends on the wavevector: Ek = E(k).

First, we relate the induced charge density to the total potential energy V (r, t)
acting on our electron system. This potential includes both the external and the
screening potential; we will evaluate the latter in a selfconsistent fashion. Taking
the matrix elements of the Heisenberg equation between states |kl〉 and |k+ q, l ′〉
gives

ih̄
∂

∂t
〈k+ q, l ′|δN |kl〉 = 〈k+ q, l ′|[H0, δN ]|kl〉 + 〈k+ q, l ′|[V (r, t), N0]|kl〉 .

(4.3.6)
Because these states are eigenstates of H0, the first term on the right hand side can
be written as

〈k+ q, l ′|[H0, δN ]|kl〉 = (Ek+q,l ′ − Ekl
) 〈k+ q, l ′|δN |kl〉 ,



4.3 Response function formalism and conductivity 83

and the second term can be expressed as

〈k+ q, l ′|[V (r, t), N0]|kl〉 = [ f 0(Ekl)− f 0(Ek+q,l ′)]

× 〈k+ q, l ′|
∑

q′
V (q′, t) exp{iq′ · r}|kl〉 , (4.3.7)

where the perturbing potential energy V (r, t) has been expanded in its Fourier
components. Note that V (r, t) includes both the external and the induced potential.

Now we substitute the explicit form of the Bloch states given above into the
matrix element of Eq. (4.3.7), yielding

〈k+ q, l ′|
∑

q′
V (q′, t) exp{iq′ · r}|kl〉 = �−1

∑
q′

V (q′, t)
∫
�

dr u∗k+q,l ′ukl

× exp{i(q′ − q) · r} , (4.3.8)

where the volume integral involves the entire medium. As a consequence of the
periodicity of ukl , it is possible to rewrite the above integral as an integral over the
unit cell with an additional summation over all the unit cells. A change of variables
r = Rn + r′, where Rn is the position of the nth unit cell, and r′ is the position
within the unit cell, yields

〈k+ q, l ′|
∑

q′
V (q′, t) exp{iq′ · r}|kl〉 = �−1

∑
q′

∑
n

exp{i(q′ − q) · Rn}V (q′, t)

×
∫
�

dr′u∗k+q,l ′ukl exp{i(q′ − q) · r′} ,

(4.3.9)

where the integral extends over the volume of a single unit cell �, and the index n
represents the summation over all unit cells. We note that

∑
n exp{i(q′ − q) · Rn}

is negligible unless q′ − q = K, where K = 2π/R is a reciprocal lattice vector.
In this case, the summation is equal to Nc, the total number of unit cells. In the
reduced zone scheme, we take K = 0 and therefore∑

n

exp{i(q′ − q) · Rn} = Ncδq′q = (�/�)δq′q , (4.3.10)

where we have rewritten Nc in terms of the volume of the unit cell �. Substituting
this into Eq. (4.3.9) and using the δ-function to perform the summation over q′

leads to

〈k+ q, l ′|
∑

q′
V (q′, t) exp{iq′ · r}|kl〉 = V (q, t)〈k+ q, l ′| exp{iq · r}|kl〉∗ ,

(4.3.11)
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where we have made use of

〈k+ q, l ′| exp{iq · r}|kl〉∗ = �−1
∫
�

u∗k+ql ′(r)ukl(r) dr , (4.3.12)

as the definition of 〈 〉∗. With these expressions, Eq. (4.3.6) is cast into the follow-
ing form:

ih̄
∂

∂t
〈k+ q, l ′|δN |kl〉 = (Ek+q,l ′ − Ekl)〈k+ q, l ′|δN |k, l〉

+ [ f 0(Ekl)− f 0(Ek+q,l ′)]

× V (q, t)〈k+ q, l ′| exp{iq · r}|kl〉∗ . (4.3.13)

This is a time dependent equation for δN , the contribution to the density operator
resulting from the induced particle density.

Next we use Eq. (4.3.13) to derive an expression for the complex dielectric
function ε̂(q, ω). In doing so, we use the so-called adiabatic approximation, where
we assume that the perturbation is turned on gradually starting at t = −∞ with
a time dependence exp{ηt}, and we will take the limit η → 0 after appropriate
expressions for the response have been derived. Consequently we assume that the
time dependence of the external scalar potential has the form

�ext(r, t) = lim
η→0

�ext(r, 0) exp{−iωt + ηt} . (4.3.14)

Since the Fourier components are independent of each other, it is sufficient to
consider only one component. We also assume that the induced screening potential
energy, the total potential energy, and the density fluctuations all have the same
exp{−iωt + ηt} time dependence. With this we can rewrite Eq. (4.3.13) as

lim
η→0

(h̄ω − ih̄η)〈k+ q, l ′|δN |kl〉 = (Ek+q,l ′ − Ekl
) 〈k+ q, l ′|δN |kl〉

+ [ f 0(Ekl)− f 0(Ek+q,l ′)]

× V (q, t)〈k+ q, l ′| exp{iq · r}|kl〉∗
or, after some rearrangements,

〈k+q, l ′|δN |kl〉 = lim
η→0

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η
V (q, t)〈k+q, l ′| exp{iq·r}|kl〉∗ ,

(4.3.15)
connecting δN , the induced density, to V (q, t), the total selfconsistent perturbing
potential energy.

What we apply to the system is the external potential �ext; however, Eq. (4.3.15)
is given in terms of �(q, t), the total potential, which includes also the screening



4.3 Response function formalism and conductivity 85

potential �ind. Rewriting Eq. (4.3.2) yields

�(q, t) = �ind(q, t)

[1− ε̂(q, t)]
.

Our task now is to establish a relationship between the induced potential and the
changes in the electronic density. The energy Vind(r, t) = −e�ind(r, t) of the
induced screening potential is related by Poisson’s equation:

∇2Vind(r, t) = −4πe2〈δN (r, t)〉 .

The electronic charge density ρ can be written in terms of the particle density
operator N as

〈ρ〉 = −e〈N 〉 = −e Tr {N δ{r− r0}} ,

where Tr indicates the trace. Using the identity
∑

k,l |kl〉〈kl| = 1 we obtain

〈δN 〉 = Tr {δN δ{r− r0}} =
∑
k,q

∑
l,l ′
〈k+ q, l ′|δN |kl〉〈kl|δ{r− r0}|k+ q, l ′〉 ,

(4.3.16)
where r0 indicates the electron positions and l, l ′ are the band indices. Now we
replace the states in the second matrix element with Bloch functions and use δ{r−
r0} to perform the integration over r. Replacing r0 by r, this yields

〈δN 〉 = �−1
∑
k,q

∑
l,l ′

u∗kluk+q,l ′ exp{iq · r}〈k+ q, l ′|δN |kl〉 .

Putting this expression for the change in particle density into the Poisson equation
gives the response to the change in the potential

∇2Vind(r, t) = −4πe2

�

∑
k,q

∑
l,l ′

u∗kluk+q,l ′ exp{iq · r}〈k+ q, l ′|δN |kl〉 ;

and taking the Fourier transform of ∇2Vind(r, t) leads to

−(q ′)2Vind(q′, t) = −4πe2

�

∑
k,q

∑
l,l ′
〈k+ q, l ′|δN |kl〉

×
∫

dr u∗kluk+q,l ′ exp{i(q− q′) · r} . (4.3.17)

We can utilize the periodicity of the function u(r) in the same way as before, and
hence convert the integral over the entire system to one over a single unit cell and a
sum over the unit cells. Following the same procedure as we employed in deriving
Eqs (4.3.9) and (4.3.11), we arrive at the following expression for the induced
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potential energy:

Vind(q, t) = 4πe2

q2�

∑
k

∑
l,l ′
〈k+q, l ′|δN |kl〉〈kl| exp{−iq·r}|k+q, l ′〉∗ , (4.3.18)

where we have used the definition of Eq. (4.3.12). Substituting Eq. (4.3.15) into
Eq. (4.3.18) gives a relationship between the induced and total potential energy:

Vind(q, t) = lim
η→0

4πe2

q2�
V (q, t)

∑
k

∑
l,l ′

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η

× ∣∣〈k+ ql ′| exp{iq · r}|kl〉∗
∣∣2

. (4.3.19)

Now we have prepared all the ingredients necessary to evaluate the dielectric
constant or other material parameters as a function of wavevector and frequency.
Rearranging Eq. (4.3.2), we have

ε̂(q, t) = 1− �ind(q, t)

�(q, t)
= 1− Vind(q, t)

V (q, t)
;

and the previous two expressions allow us to write the Fourier component of the
dielectric constant in terms of Bloch functions as follows:

ε̂(q, ω) = 1− lim
η→0

4πe2

q2�

∑
k

∑
l,l ′

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η

× ∣∣〈k+ q, l ′| exp{iq · r}|kl〉∗
∣∣2

, (4.3.20)

an expression usually referred to as the Lindhard form for the dielectric constant;
ε̂(q, ω) refers to the longitudinal dielectric constant, the component related to the
scalar potential. The same information about the longitudinal response is contained
in χ̂(q, ω), the so-called Lindhard function defined in Eq. (3.1.32)

χ̂(q, ω) = lim
η→0

e2

�

∑
k

∑
l,l ′

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η
|〈k+q, l ′| exp{iq ·r}|kl〉∗|2 ,

(4.3.21)
the function which describes the change of particle density δN due to an external
scalar potential energy V .

With the general relation introduced in Eq. (3.2.7), the expression involving
the differences in the occupation of the states and their energies, the so-called
polarization function found in Eqs (4.3.20) and (4.3.21), becomes

lim
η→0

f0(Ek+q,l ′)− f0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η
= P

[
f0(Ek+q,l ′)− f0(Ekl)

Ek+q,l ′ − Ekl − h̄ω

]
+ iπ [ f0(Ek+q,l ′)− f0(Ekl)]

× δ{Ek+q,l ′ − Ekl − h̄ω} . (4.3.22)
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In addition, the summation over all k values in the first term on the right hand side
can be written as∑

k

f0(Ek+q,l ′)− f0(Ekl)

Ek+q,l ′ − Ekl − h̄ω
=

∑
k

f0(Ek+q,l ′)

Ek+q,l ′ − Ekl − h̄ω
−

∑
k

f0(Ekl)

Ek+q,l ′ − Ekl − h̄ω
.

This separation allows us to make the substitution k + q → k in the first term on
the right hand side; hence, this change does not affect the summation.

Next we calculate the real part of ε̂ = ε1 + iε2 by substituting the previous
displayed expression into Eq. (4.3.20); we find

ε1(q, ω) = 1− 4πe2

q2�

∑
k

∑
l,l ′

f0(Ekl)

(
1

Ekl − Ek−q,l ′ − h̄ω
− 1

Ek+q,l ′ − Ekl − h̄ω

)

× |〈k+ q, l ′| exp{iq · r}|kl〉∗|2 (4.3.23a)

= 1− 4πe2

q2�

∑
k

∑
l,l ′

f0(Ekl)

( Ekl − Ek−q,l ′ + h̄ω

(Ekl − Ek−q,l ′)2 − (h̄ω)2

− Ek+q,l ′ − Ekl + h̄ω

(Ek+q,l ′ − Ekl)2 − (h̄ω)2

)
|〈k+ q, l ′| exp{iq · r}|kl〉∗|2 .

The imaginary part has the form

ε2(q, ω) = 4π2e2

�q2

∑
k

∑
l,l ′

f 0(Ekl)
[
δ
{Ek+q,l ′ − Ekl − h̄ω

}
− δ

{Ekl − Ek−q,l ′ − h̄ω
}] |〈k+ q, l ′| exp{iq · r}|kl〉∗|2 . (4.3.23b)

These expressions for the real and imaginary parts of the dielectric constant include
both transitions between bands corresponding to different l and l ′ indices, and also
transitions between states within one band. They will be used later for both metals
and semiconductors, with intraband excitations more important for the former and
interband transitions more important for the latter. As shown in Appendix C, the
matrix element

|〈k+ q, l ′| exp{iq · r}|kl〉∗|2

can be evaluated using the so-called k · p perturbation theory for small q values.

4.3.2 Response function for the transverse conductivity

The considerations which lead to the longitudinal response can also be applied to
the response to a transverse electromagnetic field defined by A = (−ic/ω)E. As
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before we start from Heisenberg’s equation (4.3.3) with the interaction term

HT
int =

e

mc
p(r) · A(r, t) , (4.3.24)

where we have assumed Coulomb gauge � · A = 0. Using Bloch states, we can
write

ih̄
∂

∂t
〈k+ q, l ′|δN |kl〉 = 〈k+ q, l ′|[H0, δN ]|kl〉

+ 〈k+ q, l ′|[(e/mc)p · A(r, t), N0]|kl〉
= (Ek+q,l ′ − Ekl)〈k+ q, l ′|δN |kl〉

+ [ f 0(Ekl)− f 0(Ek+q,l ′)]

× 〈k+ q, l ′| e

mc

∑
q′

p · A(q′, t) exp{i(q · r′)} |kl〉 .

(4.3.25)

With the explicit form of the Bloch wavefunctions from before, the matrix element
of the second term becomes

〈k+ q, l ′| e

mc

∑
q′

p · A(q′, t) exp{i(q′ · r)} |kl〉 = �−1
∑

q′

∑
n

exp{i(q′ − q) · Rn}

×
∫
�

dr′p · A(q, t) u∗k+q,l ′ukl exp{i(q′ − q) · r′} . (4.3.26)

We again exploit the periodicity of the lattice (r = Rn + r′) and use expression
(4.3.10). Then it is sufficient to examine the sum over states within one unit cell

〈k+q, l ′| e

mc

∑
q′

p·A(q′, t) exp{i(q′·r)}|kl〉 = 〈k+q, l ′| e

mc
p·A(q, t) exp{iq·r}|kl〉∗.

(4.3.27)
As before we describe the adiabatic switch-on by the factor exp{ηt}, and the left
hand side of Eq. (4.3.25) becomes

ih̄
∂

∂t
〈k+ q, l ′|δN |kl〉 = (h̄ω − ih̄η)〈k+ q, l ′|δN |kl〉 ,

and thus we finally obtain with η→ 0

〈k+ q, l ′|δN |kl〉 = lim
η→0

f 0(Ekl)− f 0(Ek+q,l ′)

Ek+q,l ′ − Ekl − h̄ω − ih̄η

× 〈k+ q, l ′| e

mc
p · A(q, t) exp{iq · r} |kl〉∗ . (4.3.28)

In analogy to Eq. (4.3.15), we have now related the induced density matrix δN to
the perturbation applied.
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Our aim is to evaluate the conductivity or dielectric constant as a function of
frequency and wavevector. Starting from the velocity operator of an electron in an
electromagnetic field

v = eA
mc

+ p
m
,

in first order of A we can write for the current density operator

J(q) = −Tr
{

exp{−iq · r} e2

mc
N0A(q)

}
− Tr

{
exp{−iq · r} e

m
δN p

}

= −e2

mc
Tr {N0A(q)} − e

m
Tr {exp{−iq · r}δN p} . (4.3.29)

From comparison with Eq. (4.1.6) the term containing A(q) is the diamagnetic
current and is given as

Jd(q) = −e2 N0

mc
A(q) , (4.3.30)

where N0 is the total electron density. The second term in Eq. (4.3.29) is known as
the paramagnetic current; it can be evaluated by taking |k′, l ′〉 = |k+ q, l ′〉 and by
substituting the Bloch wavefunctions. Following the procedure as in Eqs (4.3.16)–
(4.3.19) finally leads to

J(q) = −e2 N0

mc
A(q)+ 1

�

e2

m2c
A(q)

×
∑

k

∑
l,l ′

f 0(Ekl)− f 0(Ek+q,l ′)

Ek+q,l ′ − Ekl − h̄ω − ih̄η

∣∣〈k+ q, l ′|p|kl〉∗
∣∣2

. (4.3.31)

Applying Ohm’s law we immediately obtain the transverse conductivity and di-
electric constant

σ̂ (q, ω) = i
N0e2

ωm

+ lim
η→0

i

�

e2

ωm2

∑
k

∑
l,l ′

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η

∣∣〈k+ q, l ′|p|kl〉∗
∣∣2
,

(4.3.32)

ε̂(q, ω) = 1+ 4π i

ω
σ̂ (q, ω)

= 1− 4πN0e2

ω2m
− lim

η→0

4π

�

e2

ω2m2

∑
k

∑
l,l ′

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl − h̄ω − ih̄η

× ∣∣〈k+ q, l ′|p|kl〉∗
∣∣2

,

(4.3.33)
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an expression similar to the Lindhard equation for the longitudinal response. There
are several differences between these two expressions. First we find an additional
contribution (the second term on the right hand side), the so-called diamagnetic
current. In the interaction Hamiltonian it shows up as a second order term in A
and thus is often neglected. Second the matrix element contains the momentum
p = −ih̄∇ instead of the dipole matrix element. Because of this difference, the
pre-factor to the summation in Eq. (4.3.20) is proportional to 1/q2, whereas in
Eq. (4.3.33) a 1/ω2 factor appears.

Using a similar procedure to before, we can write down the expression for the
real and imaginary parts; however, due to the fact that we have to take the limit and
finally the integral over k, this procedure is correct only for the imaginary part:

ε2(q, ω) = 4π2

�

e2

ω2m2

∑
k

∑
l,l ′

f 0(Ekl)
[
δ
{Ekl − Ek−q,l ′ − h̄ω

}
− δ

{Ek+q,l ′ − Ekl − h̄ω
}] ∣∣〈k+ q, l ′|p|kl〉∗

∣∣2
. (4.3.34a)

The real part can then be obtained from ε(q, ω) as given above by applying the
Kramers–Kronig relation, and we find:

ε1(q, ω) = 1− 4πN0e2

ω2m
− 4π

�

e2

m2

∑
k

∑
l,l ′

[
1

Ekl − Ek−q,l ′

f 0(Ekl)

(Ekl − Ek−q,l ′)2 − h̄2ω2

− 1

Ek+q,l ′ − Ekl

f 0(Ekl)

(Ek+q,l ′ − Ekl)2 − h̄2ω2

]∣∣〈k+ q, l ′|p|kl〉∗
∣∣2
. (4.3.34b)

A general expression of the response function, valid when both scalar and vector
potentials are present, can be found in [Adl62].

Here the transition matrix element is different from the matrix element which
enters into the expression of the longitudinal response Eq. (4.3.12), and is given,
for Bloch functions by

〈k+ q, l ′ |p|k, l〉∗ = − ih̄

�

∫
�

uk+q,l ′ ∇uk,l dr . (4.3.35)

After these preliminaries, we are ready to describe the electrodynamic response
of metals and semiconductors, together with the response of various ground states
which arise as the consequence of electron–electron and electron–phonon interac-
tions. Of course, this can be done using the current–current (or charge–charge)
correlation functions, or using the response function formalism as outlined above,
and in certain cases transition rate arguments. Which route one follows is a matter
of choice. All the methods discussed here will be utilized in the subsequent
chapters, and to a large extent the choice is determined by the usual procedures
and conventions adopted in the literature.
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5

Metals

In this chapter we apply the formalisms developed in the previous chapter to
the electrodynamics of metals, i.e. materials with a partially filled electron band.
Optical transitions between electron states in the partially filled band – the so-called
intraband transitions – together with transitions between different bands – the
interband transitions – are responsible for the electrodynamics. Here the focus
will be on intraband excitations, and interband transitions will be dealt with in
the next chapter. We first describe the frequency dependent optical properties of
the phenomenological Drude–Sommerfeld model. Next we derive the Boltzmann
equation, which along with the Kubo formula will be used in the zero wavevector
limit to derive the Drude response of metals. The response to small q values (i.e.
for wavevectors q � kF, the Fermi wavevector) is discussed within the framework
of the Boltzmann theory, both in the ω � qvF (homogeneous) limit and ω � qvF

(static or quasi-static) limit; here vF is the Fermi velocity. The treatment of the
non-local conductivity due to Chambers is also valid in this limit and consequently
will be discussed here. An example where the non-local response is important is the
so-called anomalous skin effect; this will be discussed using heuristic arguments,
and the full discussion is in Appendix E.1. The response for arbitrary q values
is described using the selfconsistent field approximation developed in Section 4.3,
where we derived expressions for σ̂ (q, ω), the wavevector and frequency depen-
dent complex conductivity for metals.

The longitudinal response is presented along similar lines. The Thomas–Fermi
approximation leads to the static response in the small q limit, but the same expres-
sions are also recovered using the Boltzmann equation. The Lindhard formalism is
employed extensively to evaluate the dielectric response function χ̂(q, ω) and also
ε̂(q, ω) and σ̂ (q, ω), the various expressions bringing forth the different important
aspects of the electrodynamics of the metallic state.

For sake of simplicity, we again assume cubic symmetry, and avoid complica-
tions which arise from the tensor character of the conductivity.

92
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5.1 The Drude and the Sommerfeld models

5.1.1 The relaxation time approximation

The model due to Drude regards metals as a classical gas of electrons executing a
diffusive motion. The central assumption of the model is the existence of an av-
erage relaxation time τ which governs the relaxation of the system to equilibrium,
i.e. the state with zero average momentum 〈p〉 = 0, after an external field E is
removed. The rate equation is

d〈p〉
dt

= −〈p〉
τ

. (5.1.1)

In the presence of an external electric field E, the equation of motion becomes

d

dt
〈p〉 = −〈p〉

τ
− eE .

The current density is given by J = −Nep/m, with N the density of charge
carriers; m is the carrier mass, and −e is the electronic charge. For dc fields,
the condition d〈p〉/dt = 0 leads to a dc conductivity

σdc = J
E
= Ne2τ

m
. (5.1.2)

Upon the application of an ac field of the form E(t) = E0 exp{−iωt}, the solution
of the equation of motion

m
d2r
dt2

+ m

τ

dr
dt
= −eE(t) (5.1.3)

gives a complex, frequency dependent conductivity

σ̂ (ω) = Ne2τ

m

1

1− iωτ
= σ1(ω)+ iσ2(ω) = Ne2τ

m

1+ iωτ

1+ ω2τ 2
. (5.1.4)

There is an average distance traveled by the electrons between collisions, called
the mean free path �. Within the framework of the Drude model, � = 〈v〉thτ , where
〈v〉th is the average thermal velocity of classical particles, and the kinetic energy
1
2 m〈v2〉th = 3

2 kBT at temperature T .
The picture is fundamentally different for electrons obeying quantum statistics,

and the consequences of this have been developed by Sommerfeld. Within the
framework of this model, the concept of the Fermi surface plays a central role. In
the absence of an electric field, the Fermi sphere is centered around zero momen-
tum, and 〈p〉 = h̄〈k〉 = 0, as shown in Fig. 5.1. The Fermi sphere is displaced in
the presence of an applied field E, with the magnitude of the displacement given
by −eEτ/h̄; electrons are added to the region A and removed from region B. The
equation of motion for the average momentum is the same as given above. Again
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B A

−eEτ
h

Fig. 5.1. Displaced Fermi sphere in the presence of an applied electric field E. Electrons
are removed from region B by the momentum p = −eEτ , and electrons are added in
region A. The figure applies to a metal with a spherical Fermi surface of radius kF – or a
circular Fermi surface in two dimensions.

with 〈J〉 = −Neh̄〈k〉/m and wavevector k = p/h̄ expression (5.1.4) is recovered.
However, the scattering processes which establish the equilibrium in the presence
of the electric field involve only electrons near to the Fermi surface; states deep
within the Fermi sea are not influenced by the electric field. Consequently the
expression for the mean free path is � = vFτ , with vF the Fermi velocity, and differs
dramatically from the mean free path given by the original Drude model. The
difference has important consequences for the temperature dependences, and also
for non-linear response to large electric fields, a subject beyond the scope of this
book. The underlying interaction with the lattice, together with electron–electron
and electron–phonon interactions, also are of importance and lead to corrections to
the above description. Broadly speaking these effects can be summarized assuming
an effective mass which is different from the free-electron mass [Pin66] and also
frequency dependent; this issue will be dealt with later in Section 12.2.2.

The sum rules which have been derived in Section 3.2 are of course obeyed, and
can be easily proven by direct integration. The f sum rule (3.2.28) for example
follows as

∫ ∞

0
σ1(ω) dω = Ne2

m

∫ ∞

0

τ dω

1+ ω2τ 2
=

∫ ∞

0

ω2
p

4π

d(ωτ)

1+ (ωτ)2

= ω2
p

4π
arctan{ωτ }

∣∣∣∣∣
∞

0

= ω2
p

4π

π

2
= ω2

p

8
,

where we have defined

ωp =
(

4πNe2

m

)1/2

. (5.1.5)
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This is called the plasma frequency, and its significance will be discussed in sub-
sequent sections.

Before embarking on the discussion of the properties of the Drude model, let us
first discuss the response in the limit when the relaxation time τ → 0. In this limit

σ1(ω) = π

2

Ne2

m
δ{ω = 0} and σ2(ω) = Ne2

mω
.

Here σ2(ω) reflects the inertial response, and this component does not lead to
absorption but only to a phase lag. σ1(ω) is zero everywhere except at ω = 0;
a degenerate collisionless free gas of electrons cannot absorb photons at finite
frequencies. This can be proven directly by showing that the Hamiltonian H which
describes the electron gas commutes with the momentum operator, and thus p has
no time dependence. This is valid even when electron–electron interactions are
present, as such interactions do not change the total momentum of the electron
system.

5.1.2 Optical properties of the Drude model

Using the optical conductivity, as obtained by the Drude–Sommerfeld model, the
various optical parameters can be evaluated in a straightforward manner. The dc
limit of the conductivity is

σ1(ω = 0) = σdc = Ne2τ

m
= 1

4π
ω2

pτ ; (5.1.6)

its frequency dependence can be written as

σ̂ (ω) = σdc

1− iωτ
= Ne2

m

1

1/τ − iω
= ω2

p

4π

1

1/τ − iω
(5.1.7)

with the components

σ1(ω) =
ω2

pτ

4π

1

1+ ω2τ 2
and σ2(ω) =

ω2
pτ

4π

ωτ

1+ ω2τ 2
. (5.1.8)

Thus, within the framework of the Drude model the complex conductivity and
consequently all the various optical parameters are fully characterized by two
frequencies: the plasma frequency ωp and the relaxation rate 1/τ ; in general
1/τ � ωp. These lead to three regimes with distinctively different frequency
dependences of the various quantities.

Using the general relation (2.2.12), the frequency dependence of the dielectric
constant is

ε̂(ω) = ε1(ω)+ iε2 = 1− ω2
p

ω2 − iω/τ
(5.1.9)



96 5 Metals

10−4 10−2 100

105

102 104

2

0

4

6

8

10

(a)

(b)

γ = 16.8 cm−1

νp = 104 cm−1

Frequency ν (cm−1)

C
on

du
ct

iv
ity

 σ
 (

Ω
−1

cm
−1

)
σ 

(1
04

Ω
−1

 c
m

−1
)

104

103

102

101

100

10−1

νpσ2

σ1

γ

γ

σ2

σ1

Fig. 5.2. Frequency dependent conductivity σ̂ (ω) calculated after the Drude model (5.1.7)
for the plasma frequency ωp/(2πc) = νp = 104 cm−1 and the scattering rate 1/(2πcτ) =
γ = 16.8 cm−1 in (a) a logarithmic and (b) a linear conductivity scale. Well below the
scattering rate γ , the real part of the conductivity σ1 is frequency independent with a dc
value σdc = 105 �−1 cm−1, above γ it falls off with ω−2. The imaginary part σ2(ω)
peaks at γ where σ1 = σ2 = σdc/2; for low frequencies σ2(ω) ∝ ω, for high frequencies
σ2(ω) ∝ ω−1.

with the real and imaginary parts

ε1(ω) = 1− ω2
p

ω2 + τ−2
and ε2(ω) = 1

ωτ

ω2
p

ω2 + τ−2
. (5.1.10)

The components of the complex conductivity σ̂ (ω) as a function of frequency
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Fig. 5.3. Dielectric constant ε̂(ω) of the Drude model (5.1.9) plotted as a function of
frequency in (a) a logarithmic and (b) a linear scale for νp = 104 cm−1 and γ = 16.8 cm−1.
For frequencies up to the scattering rate γ , the real part of the dielectric constant ε1(ω) is
negative and independent of frequency; for ν > γ it increases with ω−2 and finally changes
sign at the plasma frequency νp before ε1 approaches 1. The imaginary part ε2(ω) stays
always positive, decreases monotonically with increasing frequencies, but changes slope
from ε2(ω) ∝ ω to ω−3 at ν = γ .

are shown in Fig. 5.2 for the parameters νp = ωp/(2πc) = 104 cm−1 and
γ = 1/(2πcτ) = 16.8 cm−1; these are typical for good metals at low temperatures.
The frequency dependence of both components of the complex dielectric constant
ε̂(ω) is displayed in Fig. 5.3 for the same parameters.
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Fig. 5.4. Real and imaginary parts of the refractive index N̂ (ω) = n + ik of the Drude
model as a function of frequency for νp = 104 cm−1 and γ = 16.8 cm−1. Well below
the scattering rate γ (i.e. in the Hagen–Rubens regime) n = k ∝ ω−1/2. In the relaxation
regime, we have k > n; also k(ω) ∝ ω−1 in this region, and n(ω) ∝ ω−2. Above the
plasma frequency νp, the metal becomes transparent, indicated by the drop in k; the real
part of the refractive index goes to 1. The inset shows the absorption coefficient α, which
describes the attenuation of the electromagnetic wave in the material. At low frequencies
α(ω) ∝ ω1/2, whereas in the range γ < ν < νp α is basically constant before it falls off at
νp.

The complex refractive index N̂ = n+ik, the components of which (n and k) are
displayed in Fig. 5.4; the inset shows the absorption coefficient α. The reflectivity
R and the absorptivity A = 1− R of a bulk material can be calculated by utilizing
Eq. (2.4.15), while the phase shift of the reflected wave is given by Eq. (2.4.14).
The frequency dependent reflectivity R is plotted in Fig. 5.5, with the inset showing
the low frequency reflectivity on a linear frequency scale. R(ω) is close to 1 up
to the plasma frequency where it drops rapidly to almost zero; this is called the
plasma edge. In Fig. 5.6 the absorptivity A and the phase shift φr corresponding to
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Fig. 5.5. Frequency dependent reflectivity R(ω) of the Drude model for νp = 104 cm−1

and γ = 16.8 cm−1 on a linear scale. At the plasma frequency νp the reflectivity
drops drastically (R → 0) and the material becomes transparent. The inset shows
the low frequency reflectivity R(ω). The square root frequency dependence R(ω) =
1− (2ω/πσdc)

1/2 of the Hagen–Rubens equation (5.1.17) is indicated by the dashed line,
which deviates considerably from the results of the Drude model (solid line) for frequencies
below the scattering frequency γ .

the reflection of the waves are displayed as a function of frequency. The skin depth

δ0(ω) = 2

α(ω)
= 2

ω k(ω)

was given in Eq. (2.3.15a). Finally Fig. 5.7 shows the components of the surface
impedance ẐS as a function of frequency calculated for the same parameters of the
metal. For completeness we also give the expression of the dielectric loss function

1

ε̂(ω)
= ε1(ω)− iε2(ω)

[ε1(ω)]2 + [ε2(ω)]2
(5.1.11)

introduced in Section 3.2.2. Within the framework of the Drude model the two
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Fig. 5.6. Frequency dependent absorptivity A = 1 − R and phase shift φr of the Drude
model for νp = 104 cm−1 and γ = 16.8 cm−1. In the Hagen–Rubens regime, A and φr

increase with ω1/2, whereas in the relaxation regime the absorptivity stays constant. The
plasma frequency is indicated by a sudden change in phase and the dramatic increase in
absorptivity.

components are

Re
{

1

ε̂(ω)

}
= 1+ (ω2 − ω2

p)ω
2
p

(ω2 − ω2
p)

2 + ω2τ−2
(5.1.12a)

− Im
{

1

ε̂(ω)

}
= ω2

pω/τ

(ω2 − ω2
p)

2 + ω2τ−2
, (5.1.12b)

and these relations are displayed in Fig. 5.8 for the same 1/τ and ωp values as used
before.

With 1/τ and ωp the fundamental parameters which enter the frequency de-
pendent conductivity, three different regimes can be distinguished in the spectra,
and they will be discussed separately: the so-called Hagen–Rubens regime for
ω � 1/τ , the relaxation regime for 1/τ � ω � ωp, and the transparent regime
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Fig. 5.7. Real and imaginary parts of the frequency dependent surface impedance, RS
and XS, respectively, of the Drude model for νp = 104 cm−1 and γ = 16.8 cm−1. For
frequencies below the scattering rate γ , the surface resistance equals the surface reactance,
RS = −XS, and both are proportional to ω1/2.

for ω � ωp. All three regimes have a characteristic optical response which is
fundamentally different from the response found in other regimes.

Hagen–Rubens regime

The low frequency or Hagen–Rubens regime is defined by the condition ωτ � 1.
In this regime the optical properties are mainly determined by the dc conductivity
σdc: the real part of the conductivity σ1 is frequency independent in this range
(Fig. 5.2):

σdc ≈ σ1(ω)� σ2(ω) ; (5.1.13a)
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the plasma frequency νp. The inset shows − Im{1/ε̂} on a linear frequency scale to stress
the extremely narrow peak of width γ .

while the imaginary part increases linearly with frequency:

σ2(ω) ≈ σdc ωτ =
ω2

pτ
2

4π
ω � σ1(ω) . (5.1.13b)

The real part of the dielectric constant ε1 is negative and large; for ω < 1/τ
Eq. (5.1.10) can be simplified to yield the constant value

ε1(ω) = ε1(0) ≈ 1− ω2
pτ

2 , (5.1.14a)

while

ε2(ω) ≈
ω2

pτ

ω
. (5.1.14b)

From Eq. (2.3.1) we obtain

N̂ = n + ik ≈ (iε2)
1/2 ≈ (ε2/2)1/2(1+ i) (5.1.15)
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for the refractive index, and both components are equal,

n(ω) = k(ω) =
[
ε2(ω)

2

]1/2

=
(

2πσdc

ω

)1/2

� 1 , (5.1.16)

in this regime. The reflectivity R can now be written as

R(ω) ≈ k(ω)− 1

k(ω)+ 1
≈ 1− 2

k(ω)
+ 2

[k(ω)]2

≈ 1−
(

2ω

πσdc

)1/2

= 1−
(

8ω

ω2
pτ

)1/2

= 1− A(ω) ; (5.1.17)

the absorptivity A(ω) increases as the square root of the frequency. This relation
was first found by Hagen and Rubens in emission experiments. In this frequency
range, the skin depth (Eq. (2.3.15b)) is determined by the dc conductivity:

δ0 =
(

c2

2πωσdc

)1/2

;

the components of the surface impedance (Fig. 5.7) are equal

RS(ω) = −XS(ω) =
(

2πω

c2σdc

)1/2

= 1

δ0(ω)σdc
(5.1.18)

and display a characteristic ω1/2 dependence on the frequency.

Relaxation regime

For frequencies which lie in the intermediate spectral range between the scattering
rate 1/τ and the plasma frequency ωp – the so-called relaxation regime – the term
(ωτ)2 in Eq. (5.1.8) cannot be neglected. As can be seen from Figs 5.2 and 5.3, the
scattering rate defines the crossover frequency at which σ1 = σ2 and |ε1| = ε2. For
ω � 1/τ to first approximation we have

σ1(ω) ≈ σdc

(ωτ)2
and σ2(ω) ≈ σdc

ωτ
; (5.1.19)

for high frequencies this implies σ1(ω) � σ2(ω). In the same frequency range
the real and imaginary parts of the dielectric constant decrease with increasing
frequency as

ε1(ω) ≈ 1− ω2
p

ω2
and ε2(ω) ≈

ω2
p

ω3τ
, (5.1.20)

and also n and k are not identical and show a different frequency dependence.
Substituting the above expression into Eqs (2.3.3) and (2.3.4), we find that

n(ω) ≈ ωp

2τ ω2
and k(ω) ≈ ωp

ω
. (5.1.21)
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In this regime the absorptivity A becomes frequency independent and

A(ω) = 1− R(ω) ≈ 2

ωpτ
= 1

(πσdcτ)
1/2 ; (5.1.22)

and because A ≈ 4RS/Z0 the surface resistance RS is frequency independent
too. Since α(ω) = 2kω/c, the absorption rate α is also constant in the relaxation
regime.

Transparent regime

The reflectivity of a metal drops significantly at the plasma frequency, and above
ωp the material becomes transparent. The spectral region ω > ωp is hence called
the transparent regime. However, the behavior of the complex conductivity shows
no clear indication of the plasma frequency, and both components continue to fall
off monotonically with increasing frequency: σ1(ω) ∝ ω−2 and σ2(ω) ∝ ω−1.
From Eq. (3.2.25) we find that the dielectric constant

ε1(ω) ≈ 1−
(ωp

ω

)2
(5.1.23)

approaches unity in the high frequency limit (ωτ � 1), and the Drude model leads
to a zero-crossing of ε1(ω) at

ω =
[
ω2

p − (1/τ)2
]1/2

. (5.1.24)

For 1/τ � ωp (the usual situation encountered in a metal), the dielectric constant
ε1(ω) becomes positive for ω exceeding the plasma frequency (Fig. 5.3). This
sign change of the dielectric constant has a certain significance. The attenuation
of the electromagnetic wave in the medium is given by the extinction coefficient
(Eq. (2.3.4))

k = 1

2



[
ε2

1 +
(

4πσ1

ω

)2
]1/2

− ε1




1/2

,

and 4πσ1/ω � |ε1| in the region well above 1/τ . For ε1 < 0, i.e. for ω ≤ ωp, the
extinction k = (|ε1|/2)1/2 is approximately 1

2 |ε1|, while for frequencies ω ≥ ωp,
it vanishes. Consequently the power absorption coefficient α = 2ωk/c undergoes
a sudden decrease near ωp, and hence the name transparent regime for the spectral
range ω ≥ ωp. Both components of the energy loss function 1/ε̂(ω) peak at the
plasma frequency; such peaks when detected by experiments can also be used to
identify ωp.
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5.1.3 Derivation of the Drude expression from the Kubo formula

Next, we derive the Drude response in a somewhat more rigorous fashion. In
Section 4.1.1 we arrived at an expression of the optical conductivity in terms of the
current–current correlation function, the so-called Kubo formula (4.1.16), which
we reproduce here:

σ̂ (q, ω) = 1

h̄ω

∑
s

∫
dt 〈s|J(q, 0)J∗(q, t)|s〉 exp{−iωt} . (5.1.25)

We now assume that the current–current correlation time τ is the same for all states,
and

J(q, t) = J(q, 0) exp{−t/τ } (5.1.26)

describes the correlation of the current density as the time elapses; broadly speak-
ing it is the measure of how long the current remains at a particular value J.
Inserting this into Kubo’s expression, we find

σ̂ (q, ω) = 1

h̄ω

∑
s

∫
dt exp{−iωt − |t |/τ }〈s|J2(q)|s〉 . (5.1.27)

Next we have to find an expression for the fluctuations of the current. The average
current density 〈J〉 is of course zero, but fluctuations lead to finite 〈J2〉. By inserting
a complete set of states s ′ for which

∑
s′ |s ′〉〈s ′| = 1 we find that

〈s|J2|s〉 =
∑

s′

∣∣〈s ′|J|s〉∣∣2
.

Using this identity, we rewrite the expression for the conductivity as

σ̂ (q, ω) = 1

h̄ω

∫
dt exp{−iωt − |t |/τ }

∑
s,s′

∣∣〈s ′|J(q)|s〉∣∣2
. (5.1.28)

In Eq. (4.1.5) we described the current density operator J in terms of the velocity
v, respectively the momenta p, of the individual particles j

J(r) = − e

2m

∑
j

[
p jδ{r− r j } + δ{r− r j }p j

]
. (5.1.29)

The Fourier component of the operator becomes

J(q) =
∫

J(r) exp{−iq · r} dr = − e

m

∑
j

p j (5.1.30)

by assuming that the momentum q is small and exp{iq ·r} ≈ 1, the so-called dipole
approximation. With this approximation

σ̂ (ω) = e2

m2h̄ω

∫
dt exp{−iωt − |t |/τ }

∑
s,s′, j

∣∣〈s ′|p j |s〉
∣∣2

, (5.1.31)
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where the frequency h̄ω = h̄ωs′s = h̄ωs′−h̄ωs corresponds to the energy difference
between the two states s and s ′, involved in the optical transitions.

In Appendix D we introduce the so-called oscillator strength1

2
∑
s,s′, j

∣∣〈s ′|p j |s〉
∣∣2

mh̄ωs′s
= fs′s (5.1.32)

where fss′ = − fs′s (see Eq. (D.2)). With this notation we arrive at an expression
for the complex conductivity

σ̂ (ω) = e2τ

m

fs′s

1+ iωτ
. (5.1.33)

The oscillator strength can easily be calculated for the simple case of free electrons,
for which the energy and the average momentum are given by

h̄ω = h̄2k2

2m
and

∣∣〈s ′|p j |s〉
∣∣2 = 〈p2

j 〉 =
(mv

2

)2
= h̄2k2

4
.

We find that fss′ = N , the number of electrons per unit volume in the conduction
band, and consequently the frequency dependent conductivity is

σ̂ (ω) = Ne2τ

m

1

1+ iωτ
.

To arrive at σ̂ (ω), some approximations were made: first we assumed that the
current–current correlation function exponentially decays in time (the relaxation
time approximation); this means that only a single, frequency independent relax-
ation time exists. Second we restricted our considerations to zero wavevector (the
so-called local limit). As discussed later, electron–lattice and electron–electron
interactions all may lead to frequency dependent parameters such as τ and m. Even
in the absence of these parameters, complications may arise. If the relaxation time
is extremely long, the phase shift between two collisions becomes appreciable.
Thus we cannot expect the dipole approximation to be valid. In addition, non-local
effects also have to be included; this may occur at low temperatures in extremely
pure metals, as will be discussed later. We have also assumed that the momenta
p j are well defined, by no means an obvious assumption, in particular for the short
relaxation times, and thus for short mean free paths.

5.2 Boltzmann’s transport theory

In order to describe a variety of transport phenomena Boltzmann developed a useful
approximation, assuming classical particles with well defined momenta. We will,

1 For a more detailed discussion of the oscillator strength see Section 6.1.1 and Appendix D.
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however, go one step beyond and use quantum statistics for the electrons; the
equations are not modified by this change. The relation derived is widely used to
account for thermo- and galvano-electrical effects but also helps in understanding
the electrical transport due to an external (frequency and – with certain limitations
– wavevector dependent) electric field. There is a considerable literature on this
transport equation [Bla57, Cha90, Mad78, Zim72], and subtle issues, such as the
difference between the steady state and equilibrium, have been addressed. None of
these issues will be mentioned here; we merely outline the steps which lead to the
final result: Eq. (5.2.7).

5.2.1 Liouville’s theorem and the Boltzmann equation

Owing to the large number of particles we cannot consider the motion of each
particular electron, and thus we define a distribution function f (r,k, t) which
describes the carrier density at a point r, with a particular momentum h̄k, and
at a certain time t . Although the total number of carriers

∫
dr

∫
dk f (r,k, t)

is constant, at a particular point (r,k) in phase space (Liouville’s theorem), it
may change due to various effects. First, the distribution function can be time
dependent, which we write as

∂ f

∂t

∣∣∣∣
time

. (5.2.1)

This time dependence can arise, for instance, because of a time dependent external
perturbation. The location r of the carrier may change by diffusion; assuming that
the carriers move with a velocity vk = ∂r/∂t and using

fk(r, t) = fk(r+ vkt, 0) , (5.2.2)

we can write
∂ f

∂t

∣∣∣∣
diff

= ∂ f

∂r
· ∂r
∂t
= vk · ∂ f

∂r
. (5.2.3)

Here we assume that the temperature is constant throughout the sample, ∇T = 0,
and thus there is no diffusion due to the temperature gradient. If external forces are
present, such as the Coulomb force and the Lorentz force, the wavevector of the
electrons is affected,

∂k
∂t
= − e

h̄

(
E+ 1

c
vk ×H

)
, (5.2.4)

leading to a change in the distribution function:

∂ f

∂t

∣∣∣∣
field

= ∂ f

∂k
· ∂k
∂t
= − e

h̄

(
E+ 1

c
vk ×H

)
· ∂ f

∂k
. (5.2.5)
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Here E and H are uniform, frequency dependent electric and magnetic fields.
Finally, collisions may cause a transition from one state |k〉 to another |k′〉:
∂ f

∂t

∣∣∣∣
scatter

=
∫

[ fk′(1− fk)− fk(1− fk′)]W (k,k′) dk′ =
∫

[ fk′− fk]W (k,k′) dk′ .

(5.2.6)
In this equation W (k,k′) represents the transition probability between the initial
state |k〉 and the final state |k′〉 with the corresponding wavevectors; we assume
microscopic reversibility W (k,k′) = W (k′,k). Here fk denotes the number of
carriers in the state |k〉, and 1 − fk refers to the number of unoccupied states |k〉.
Restrictions like energy, momentum, and spin conservations are taken into account
by the particular choice of W (k,k′). With all terms included, the continuity
equation in the phase space reads as

∂ f

∂t

∣∣∣∣
time

+ ∂ f

∂t

∣∣∣∣
diff

+ ∂ f

∂t

∣∣∣∣
field

= ∂ f

∂t

∣∣∣∣
scatter

.

We can now write the linearized Boltzmann equation as

0 = ∂ f

∂t
+ vk · ∇r f − e

h̄

(
E+ 1

c
vk ×H

)
· ∇k f − ∂ f

∂t

∣∣∣∣
scatter

. (5.2.7)

This form of Boltzmann’s equation is valid within the framework of linear response
theory. Because we have retained only the gradient term ∇r f , the theory is
appropriate in the small q limit, but has no further limitations.

Next we solve the Boltzmann equation for a free gas of electrons in the absence
of an external magnetic field (H = 0), with the electrons obeying quantum statistics
and subjected only to scattering which leads to changes in their momenta. Let us
assume that the distribution function varies only slightly from its equilibrium state
f 0
k , and fk = f 0

k + f 1
k , where

f 0
k = f 0(Ek) =

(
exp

{Ek − EF

kBT

}
+ 1

)−1

(5.2.8)

is the Fermi–Dirac distribution function. In this limit of small perturbation the
scattering term reduces to

∂ fk

∂t

∣∣∣∣
scatter

=
∫ (

f 1
k′ − f 1

k

)
W (k,k′) dk′ .

If we make the assumption that the system relaxes exponentially to its equilibrium
state after the perturbation is switched off (the relaxation time approximation), the
distribution function has the time dependence f 1

k (t) = f 1
k (0) exp{−t/τ }; therefore
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we find that the (k independent) scattering term is given by

∂ fk

∂t

∣∣∣∣
scatter

= −1

τ
f 1
k . (5.2.9)

If the momentum change is small compared with the Fermi momentum (k � kF),
scattering across the Fermi surface can be neglected. Since ∂ f

∂k = ∂ f
∂E

∂E
∂k and (again

assuming H = 0) the carrier velocity vk = ∇kω(k) = h̄−1∇kE(k) (which is the
group velocity of the electrons), we can write Eq. (5.2.7) as

−∂ f 1
k

∂t
= vk · ∇r f 1

k − eE · vk
∂ f 0

k

∂E + f 1
k

τ
. (5.2.10)

We can solve this equation by assuming that the distribution function follows the
spatial and time dependent perturbation of exp{i(q ·r−ωt)} and has itself the form
f 1
k (t) ∝ exp{i(q · r − ωt)}. Taking the Fourier components in r and t , we solve

Eq. (5.2.10) for f 1, obtaining

f 1(q,k, ω) = −eE(q, ω) · vk(− ∂ f 0

∂E )τ

1− iωτ + ivk · qτ . (5.2.11)

The linearized distribution function yields a finite relaxation time τ and, conse-
quently a finite mean free path � = vFτ . The current density can in general be
written as

J(q, ω) = − 2e

(2π)3

∫
f 1(q,k, ω) vk dk (5.2.12)

in terms of the distribution function f 1(q,k, ω), where vk is the velocity of the
electrons for a given wavevector k and the factor of 2 takes both spin directions
into account. Using Eq. (5.2.11) for f 1(q,k, ω) we obtain

J(q, ω) = 2e2

(2π)3

∫
dk

τE(q, ω) · vk(− ∂ f 0

∂E )

1− iωτ + ivk · qτ vk . (5.2.13)

As J(q, ω) = σ̂ (q, ω)E(q, ω), the wavevector and frequency dependent con-
ductivity can now be calculated. Let us simplify the expression first; for cubic
symmetry

σ̂ (q, ω) = 2e2

(2π)3

∫
dk

τ(nE · vk)vk(− ∂ f 0

∂E )

1− iωτ + ivk · qτ , (5.2.14)

where nE represents the unit vector along the direction of the electric field E. In
the spirit of the Sommerfeld theory the derivative (−∂ f 0/∂E) is taken at E = EF,
as only the states near the Fermi energy contribute to the conductivity. Second,
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we consider this equation for metals in the limit T = 0, then the Fermi–Dirac
distribution (5.2.8) is a step function at EF. With

lim
T→0

(
−∂ f 0

∂E
)
= δ{E − EF} (5.2.15)

the integral has contributions only at the Fermi surface SF. Under such circum-
stances we can reduce Eq. (5.2.14) to

σ̂ (q, ω) = 2e2

(2π)3

∫ ∫
τ(nE · vk)vk

1− iωτ + ivk · qτ
(
−∂ f 0

∂E
)

dS

h̄vk
dE

= 2e2

(2π)3

∫
E=EF

τ(nE · vk)vk

1− iωτ + ivk · qτ
dSF

h̄vk
, (5.2.16)

where we have also converted the volume integral dk into one over surfaces dS of
constant energy as

dk = dS dk⊥ = dS
dE
|∇kE | = dS

dE
h̄vk

, (5.2.17)

and we have assumed a parabolic energy dispersion E(k) = h̄2

2m k2.

5.2.2 The q = 0 limit

In the so-called local limit q → 0, the conductivity simplifies to

σ̂ (0, ω) = e2

4π3h̄

∫
τ(nE · vk)vk

vk

1

1− iωτ
dSF = σdc

1

1− iωτ
; (5.2.18)

and we recover the familiar equation of the Drude model for the frequency depen-
dent conductivity. The velocity term (nE ·vk)vk/vk averaged over the Fermi surface
is simply 1

3vF and therefore

σdc = e2

8π3h̄

∫
dSF

τv2
F

vF
= e2τ

4π3h̄

8π h̄k3
F

3m
= Ne2

m
τ

by considering the spherical Fermi surface for which
∫
EF

dS = 2(4πk2
F) and the

density of charge carriers N = k3
F/(3π

2). With our prior assumption of quantum
statistics, only electrons near the Fermi energy EF are important, and therefore the
mean free path � = vFτ .

5.2.3 Small q limit

Next we explore the response to long wavelength excitations and zero temperature
starting from Eq. (5.2.16). With the dc conductivity σdc = Ne2τ/m, straightfor-
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ward integration yields2

σ̂ (q, ω) = 3σdc

4

i

τ

[
2
ω + i/τ

q2v2
F

−
(

1− (ω + i/τ)2/(qvF)
2

qvF

)
Ln

{
ω − qvF + i/τ

ω + qvF + i/τ

}]
;

(5.2.19)
where we recall the definition of the logarithm (Ln) of a complex value x̂ =
|x̂ | exp{iφ} as the principal value

Ln{x̂} = ln{|x̂ |} + iφ (5.2.20)

with −π < φ ≤ π . The first terms of the expansion

Ln{(ẑ + 1)/(ẑ − 1)} = 2(1/ẑ + 1/3ẑ2 + 1/5ẑ5 + · · ·)
give

σ̂ (q, ω) ≈ Ne2τ

m

1

1− iωτ

[
1− 1

5

(
qvFτ

1− iωτ

)2

+ · · ·
]

(5.2.21)

for qvF < |ω + i/τ |. This is called the homogeneous limit, the name referring
to the case when the variation of the wavevector q is small. The second term in
the square brackets is neglected for q = 0 and we recover the Drude form. An
expansion in terms of (ω + i/τ)/(qvF) leads to

σ̂ (q, ω) ≈ 3πNe2

4qvFτm

[
1− ω2

q2v2
F

+ i
4ω

πqvF

]
(5.2.22)

for |ω + i/τ | < qvF, in the so-called quasi-static limit. The name refers to
the fact that in this limit the phase velocity of the electromagnetic field ω/q is
small compared with the velocity of the particles vF. If the relaxation rate goes
to zero (τ → ∞), or more generally for ωτ � 1, the real and imaginary parts
of the conductivity can be derived without having to limit ourselves to the long
wavelength fluctuations. By utilizing the general transformation

lim
1/τ→0

Ln{−|x | + i/τ } = ln |x | + iπ , (5.2.23)

2 The integration (or summation) is first performed over the angle between k and q, leading to the logarithmic
term ∫ π

0

x

a + b cos x
dx = 1

b
ln

a + b

a − b
,

and then from 0 to vF by using the relation

∫
x ln{ax + b}dx = b

2a
x − 1

4
x2 + 1

2

(
x2 − b2

a2

)
ln{ax + b}.
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after some algebra we find that

lim
τ→∞ σ1(q, ω) =

{
3π
4

Ne2

mqvF

[
1− ω2

q2v2
F

]
for ω < qvF

0 for ω > qvF

(5.2.24a)

lim
τ→∞ σ2(q, ω) = 3

4

Ne2

mqvF

[
2ω

qvF
+

(
ω2

q2v2
F

− 1
)

ln

∣∣∣∣qvF − ω

qvF + ω

∣∣∣∣
]

(5.2.24b)

for both ω < qvF and ω > qvF. The conductivity σ1 is finite only for ω < qvF,
there are no losses in the opposite, homogeneous, limit. The reason for this is clear:
ω > qvF would imply a wave with velocity ω/q greater than the Fermi velocity
vF; the electron gas clearly cannot respond to a perturbation traveling with this
velocity.

5.2.4 The Chambers formula

The q dependent response is intimately related to the non-local conduction where
the current density J at the position r′ is determined also by fields at other locations
r �= r′. Here we develop an approximate expression for the current which depends
on the spatial distribution of the applied electric field. Such a situation may occur in
the case of clean metals at low temperatures when the mean free path � is large. Let
us consider an electron moving from a point r to another position taken to be the
origin of the coordinate system. At the initial location, the electron is subjected
to an electric field E(r) which is different from that at the origin. However,
because of collisions with the lattice or impurities, the momentum acquired by
the electron from the field at r decays exponentially as the origin is approached.
The characteristic decay length defines the mean free path �, and the currents at the
origin are the result of the fields E(r) within the radius of � = vFτ .

The argument which accounts for such a non-local response is as follows. When
an electron moves from a position (r − dr) to r, it is influenced by an effective
field E(r) exp{−r/�} for a time dr/vF. The momentum gained in the direction of
motion is

dp(0) = −e dr
vF

r
r
· E(r) exp{−r/�} ; (5.2.25)

in the following we drop the indication of the position (0). By integrating the above
equation from the origin to infinity, the total change in momentum for an electron at
the origin is found. Performing this calculation for all directions allows us to map
out the momentum surface in a non-uniform field, and the deviations from a sphere
centered at the origin constitute a current J. The following arguments lead to the
expression of the current. Only electrons residing in regions of momentum space
not normally occupied when the applied field is zero contribute to the current.
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The density of electrons �N moving in a solid angle d� and occupying the net
displaced volume in momentum space �P is

�N = �P

P
N = (mvF)

2 d� dp
4
3π(mvF)3

N = 3N d� dp

4πvFm
, (5.2.26)

where P is the total momentum space volume. The contribution to the current
density from these electrons is

dJ = −�NevF
r
r
= − 3Ne

4πm

r
r

d� dp .

Substituting Eq. (5.2.25) into this equation and integrating over the currents given
above yields

J(r = 0) = 3σdc

4π�

∫
r[r · E(r) exp{−r/�}]

r4
dr , (5.2.27)

since a volume element in real space is r2 dr d� and σdc = Ne2τ/m =
Ne2�/(mvF). Equation (5.2.27) represents the non-local generalization of Ohm’s
law for free electrons, and reduces to J = σdcE for the special case where � → 0,
as expected. The Chambers formula [Cha90, Pip54b] is valid for finite momentum,
but as the Fermi momentum is not explicitly included its use is restricted to q < kF,
and in general to the small q limit. A quantum mechanical derivation of Chambers’
result was given by Mattis and Dresselhaus [Mat58]. In Appendix E the non-local
response is discussed in more detail.

5.2.5 Anomalous skin effect

In Section 2.2 we introduced the skin effect of a metal and found that the skin depth
is given by

δ0(ω) = c

(2πωσdc)1/2

in the low frequency, so-called Hagen–Rubens regime. In this regime we also
obtained the following equation for the surface impedance

ẐS = RS + iXS = (2π)2

c

δ0

λ0
(1− i) , (5.2.28)

where the frequency dependence enters through the skin depth δ0 and through the
free space wavelength λ0 of the electromagnetic field. The condition for the above
results is that the mean free path � is smaller than δ0 and hence local electrodynam-
ics apply. At low temperatures in clean metals this condition is not met because �

becomes large, and the consequences of the non-local electrodynamics have to be
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δeff

Fig. 5.9. Electron trajectories near the surface of a material (solid line) in the case of the
anomalous regime, where the mean free path � is much larger than the effective skin depth
δeff (dashed line). According to the ineffectiveness concept, only electrons traveling nearly
parallel to the surface are effective in absorbing and screening electromagnetic radiation
when � � δeff, since the carriers moving perpendicular to the surface leave the skin layer
before they scatter.

explored in detail. This can be done by using the Chambers formula (5.2.27), or
alternatively the solution of the non-local electrodynamics, as in Appendix E.1.

An elegant argument, the so-called ineffectiveness concept due to Pippard
[Pip47, Pip54a, Pip62] reproduces all the essential results. If the mean free path is
larger than the skin depth, the effect on the electrons which move perpendicular to
the surface is very different from those traveling parallel to the surface. Due to the
long mean free path, electrons in the first case leave the skin depth layer without
being scattered; the situation is illustrated in Fig. 5.9. Thus, only those electrons
which are moving approximately parallel to the surface (i.e. their direction of
motion falls within an angle±γ δeff/� parallel to the surface of the metal) contribute
to the absorption [Pip54b, Reu48]. The (reduced) number of effective electrons
Neff = γ Nδeff/� also changes the conductivity, which we write as:

σeff = γ σdc
δeff

�
, (5.2.29)

where γ is a numerical factor of the order of unity, and can be evaluated by using
Chamber’s expression [Abr72, Pip54b, Reu48]. The factor depends on the nature
of the scattering of the electrons at the surface; for specular reflection γ = 8/9 and
for diffuse reflection γ = 1. In turn the effective conductivity leads to a modified
skin depth δeff = c/ (2πωσeff)

1/2, and by substituting this into Eq. (5.2.29) we
obtain through selfconsistence for the effective skin depth

δeff =
(

c2

2πω

�

γ σdc

)1/3

=
(

c2

2πω

mvF

γ Ne2

)1/3

, (5.2.30)

and for the effective conductivity

σeff =
(

γ c√
2πω

σdc

�

)2/3

=
(

γ c√
2πω

Ne2

mvF

)2/3

. (5.2.31)
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We can then use this σeff for evaluating the optical constants n + ik =
(4π iσeffω)

1/2 /c and the surface impedance Ẑ , utilizing Eq. (2.3.28). The end result
for the surface impedance is

ẐS = RS + iXS = 1− i
√

3

δeffσeff
=

[(
2πω

c2

)2
�

γ σdc

]1/3

(1− i
√

3)

=
[(

2πω

c2

)2 mvF

γ Ne2

]1/3

(1− i
√

3) . (5.2.32)

Both RS and XS increase with the ω2/3 power of frequency, and the ratio XS/RS =
−√3; both features are dramatically different from those obtained in the case of
the normal skin effect. There is also another significant difference. The effective
conductivity and surface resistance are independent of the mean free path or any
other temperature dependent parameter for the anomalous skin effect. This can
be used to explore the characteristics of the Fermi surface, as will be discussed in
Chapter 12.

5.3 Transverse response for arbitrary q values

By employing Boltzmann’s equation we have limited ourselves to long wavelength
fluctuations with the Drude–Sommerfeld model representing the q = 0 limit. This
limit is set by performing an expansion in terms of q; however, more importantly,
we have neglected the limits in the transition probability Wk→k′ which are set
by the existence of the Fermi surface separating occupied and unoccupied states.
These have been included in the selfconsistent field approximation, which was
discussed in Section 4.3. We now utilize this formalism when we evaluate σ̂ (q, ω)
for arbitrary q and ω parameters.

Let us first look at the condition for electron–hole excitations to occur; these
will determine the absorption of electromagnetic radiation. In the ground state,
such pair excitations with momentum q are allowed only if the state k is occupied
and the state k′ = k+q is empty, as indicated in Fig. 5.10. The energy for creating
such electron–hole pairs is

�E = E(k+ q)− E(k) = h̄2

2m

[
(k+ q)2 − k2] = h̄2

2m
(q2 + 2k · q) . (5.3.1)

For any q the energy difference �E has a maximum value when q ‖ k and |k| = kF,
and

�Emax(q) = h̄2

2m
(q2 + 2qkF) . (5.3.2)
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qq q

kF

(a) (b) (c)

Fig. 5.10. Fermi sphere with radius kF corresponding to electronic states with momentum
h̄k and h̄(k + q). The shaded region represents the momentum space to which single-
particle–hole pairs can be excited with momentum h̄q so that |k| < |kF| and |k+q| > |kF|
(only values of k where k is occupied and k+ q is empty, and vice versa, contribute): (a)
small q values, (b) intermediate q values, (c) large momentum |q| > |2kF|.

The minimum excitation energy is zero for |q| ≤ 2kF. However, for |q| > 2kF the
minimum energy occurs for −q ‖ k and |k| = kF, and

�Emin(q) =



h̄2

2m (q2 − 2qkF) for |q| > 2kF

0 otherwise ,
(5.3.3)

finally leading to the following condition for electron–hole excitations to occur:∣∣∣∣ ω

qvF
− q

2kF

∣∣∣∣ < 1 <

(
ω

qvF
+ q

2kF

)
.

This region is indicated in Fig. 5.11 by the hatched area.
Next we want to evaluate the conductivity for intraband transitions (l = l ′)

starting from Eq. (4.3.32). In this case,

σ̂ (q, ω) = i
Ne2

ωm
− lim

η→0

i

�

e2

ωm2

∑
k

[
f 0(Ek)

Ek − Ek−q − h̄ω − ih̄η

− f 0(Ek)

Ek+q − Ek − h̄ω − ih̄η

]
|〈k+ q|p|k〉∗|2 , (5.3.4)

if we consider one single band. Here we have to split up the summation as

∑
k

f
(Ek+q

)− f (Ek)

Ek+q − Ek − h̄ω − ih̄η
=

∑
k

f (Ek)

Ek − Ek−q − h̄ω − ih̄η

−
∑

k

f (Ek)

Ek+q − Ek − h̄ω − ih̄η
.

We have replaced k + q by k in the first term, which is allowed as the summation
over k involves all the states, just as the summation over k+q does. We now replace
the summation �−1 ∑

k by the integration over the k space 2/(2π)3
∫

dk and, in
the spirit of the relaxation time approximation, η is substituted by the relaxation
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Fig. 5.11. Excitation spectrum of a three-dimensional free-electron gas; the transferred
energy is plotted as a function of transferred momentum. The pair excitations fall within
the shaded area. In the region h̄ω > (h̄2/2m)(q + 2kF)q, the absorption vanishes since
h̄ω is larger than energies possible for pair creation. For h̄ω < (h̄2/2m)(q − 2kF)q we
find σ1 = 0. Also shown is the dispersion of the plasma frequency ωp(q) calculated from
Eq. (5.4.28) using typical values for sodium: ωp = 5.9 eV and vF = 1.1× 108 cm s−1.

rate 1/τ . Evaluating the matrix element for the conduction band in the case of a
free-electron gas Ek = h̄2k2

2m , we can rewrite the diagonal elements of Eq. (5.3.4) as
[Lin54]

σ̂ (q, ω) = i
e2

mω

∑
k

2 f 0(Ek)

{[
k2 −

(
k · q

q

)2
][

1

q2 + 2k · q− 2m
h̄ (ω + i/τ)

+ 1

q2 − 2k · q+ 2m
h̄ (ω + i/τ)

]
+ 1

2

}
. (5.3.5)

The first square bracket is the matrix element |〈k + q|p|k〉∗|2 evaluated using
Eq. (3.1.5) to consider the transverse components. For transverse coupling between
the vector potential A and momentum p, we keep only those components of p



118 5 Metals

which are perpendicular to q. The matrix element is indeed zero if k and q are
parallel. Combining all terms yields for the complex conductivity

σ̂ (q, ω) = iNe2

ωm

(
3

8

[(
q

2kF

)2

+ 3
(
ω + i/τ

qvF

)2

+ 1

]

− 3kF

16q

[
1−

(
q

2kF
− ω + i/τ

qvF

)2
]2

Ln

{ q
2kF
− ω+i/τ

qvF
+ 1

q
2kF
− ω+i/τ

qvF
− 1

}

− 3kF

16q

[
1−

(
q

2kF
+ ω + i/τ

qvF

)2
]2

Ln

{ q
2kF
+ ω+i/τ

qvF
+ 1

q
2kF
+ ω+i/τ

qvF
− 1

}
. (5.3.6)

In the limit of small relaxation rate (τ → ∞) and using Eq. (5.2.23) for the
expression for the logarithm Ln, these equations reduce to

σ1(q, ω) =




3π
4

Ne2

mqvF

[
1−

(
ω

qvF

)2
−

(
q

2kF

)2
]2

ω
qvF
+ q

2kF
< 1

Ne2

ωm
3πkF
16q

[
1−

(
ω

qvF
− q

2kF

)2
]2 ∣∣∣ ω

qvF
− q

2kF

∣∣∣ < 1 < ω
qvF
+ q

2kF

0
∣∣∣ ω

qvF
− q

2kF

∣∣∣ > 1

(5.3.7a)

σ2(q, ω) = Ne2

ωm

{
3

8

[(
q

2kF

)2

+ 3
(

ω

qvF

)2

+ 1

]

− 3kF

16q

[
1−

(
q

2kF
− ω

qvF

)2
]2

ln

∣∣∣∣∣
q

2kF
− ω

qvF
+ 1

q
2kF
− ω

qvF
− 1

∣∣∣∣∣
− 3kF

16q

[
1−

(
q

2kF
+ ω

qvF

)2
]2

ln

∣∣∣∣∣
q

2kF
+ ω

qvF
+ 1

q
2kF
+ ω

qvF
− 1

∣∣∣∣∣

 . (5.3.7b)

Both the real and imaginary parts of the conductivity are plotted in Fig. 5.12 as
functions of frequency ω and wavevector q. Of course, it is straightforward to
calculate the dielectric constant ε̂(q, ω) and Lindhard response function χ̂(q, ω).

The overall qualitative behavior of the conductivity components can easily be
inferred from Fig. 5.11. First, absorption can occur only when electron–hole
excitations are possible; outside this region σ1(q, ω) = 0. On the left hand side of
Fig. 5.11, in this dissipationless limit, for small q a power expansion gives

σ2(q, ω) = Ne2

ωm

[
1+ q2v2

F

5ω2
+ 3q4v2

F

16k2
Fω

2
+ · · ·

]
. (5.3.8)
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Fig. 5.12. (a) Real and (b) imaginary parts of the frequency and wavevector dependent
conductivity σ̂ (q, ω) calculated after Eqs (5.3.7) in the limit τ →∞. The conductivity is
plotted in arbitrary units, the frequency is normalized to the Fermi frequency ωF = vFkF/2,
and the wavevector is normalized to the Fermi wavevector kF. There are no excitations for
ω < qvF − 2q2vF/kF.
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The region ω
qvF
+ q

2kF
< 1, also indicated in Fig. 5.11, is called the quasi-static limit;

for small q values this indicates the region where, due to the low frequency of the
fluctuations, screening is important. For small q values, series expansion gives in
the τ →∞ limit

σ1(q, ω) = 3

4

Ne2π

qvFm

[
1− ω2

q2v2
F

− q2

4k2
F

]
, (5.3.9)

where we have retained an extra term compared with the Boltzmann equation
(5.2.22).

5.4 Longitudinal response

So far the discussion in this chapter has focused on the transverse response, i.e.
the response of the medium to a vector potential A(q, ω). Now we discuss the
response to static (but later also time dependent) charges. First, the low frequency
limit (ω → 0) is analyzed; this leads to the well known Thomas–Fermi screen-
ing of the electron gas. Next, the response as obtained from the selfconsistent
field approximation (Section 4.3.1) is discussed in detail; this gives the response
functions appropriate for arbitrary q values. Finally, we examine the collective
and single-particle excitations of an electron gas at zero temperature. Although
we confine ourselves to the framework of the classical electrodynamics, and first
quantization is used, the problem can also be treated in the corresponding second
quantized formalism [Hau94, Mah90].

5.4.1 Thomas–Fermi approximation: the static limit for q < kF

If we place an additional charge −e into a metal at position r = 0, the conduction
electrons will be rearranged due to Coulomb repulsion; this effect, called screening,
can be simply estimated by the so-called Thomas–Fermi method.

Starting from Poisson’s equation (2.1.7) in Coulomb gauge

∇2�ind(r) = −4πδρ(r) = −4π [ρ(r)− ρ0] = 4πe[N (r)− N0] , (5.4.1)

where δρ(r) = ρ(r) − ρ0 is the deviation from the uniform charge density,
δN (r) = N (r) − N0 is the deviation from the uniform particle density, and �(r)
is the electrostatic potential at position r. We assume that �(r) is a slowly varying
function of distance r , and that the potential energy of the field V (r) = −e�(r)
is simply added to the kinetic energy of all the electrons (the so-called rigid band
approximation); i.e.

E(r) = EF − e�ind(r) = h̄2

2m

[
3π2 N (r)

]2/3
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EF = h̄2

2m

[
3π2 N0

]2/3 = h̄2k2
F

2m
. (5.4.2)

The carrier density can be expanded around the Fermi energy EF in terms of �(r)

N (r) = 1

3π2

(
2m

h̄2

)3/2

[EF − e�ind(r)]3/2

≈ 1

3π2

(
2m

h̄2

)3/2

E3/2
F

[
1− 3e�ind(r)

2EF
+ · · ·

]

= N0 − 3

2
N0

e�ind(r)
EF

, (5.4.3)

where the unperturbed carrier density is (see Eq. (5.4.2))

N0 = 1

3π2

(
2mEF/h̄2)3/2

. (5.4.4)

The Poisson equation is then written as

∇2�ind(r) = 4πeδN (r) = −6πN0e2

EF
�ind(r) = −λ2�ind(r) ; (5.4.5)

where the Thomas–Fermi screening parameter λ

λ =
(

6πN0e2

EF

)1/2

= [
4πD(EF)e

2]1/2
(5.4.6)

is closely related to the density of states at the Fermi level

D(EF) = 3N

2EF
= mkF

π2h̄2 . (5.4.7)

Interestingly, the screening does not depend on the mass of the particles or other
transport properties because it is calculated in the static limit. Note that without
assuming a degenerate free-electron gas we can write more generally

λclass =
(

4πe2 ∂N0

∂E
)1/2

,

which in the classical (non-degenerate) limit leads to the Debye–Hückel screening

λDH =
(
4πN0e2/kBT

)1/2

since ∂E/∂N0 = 3kBT/2N0. For an isotropic metal the solution

�ind(r) ∝ exp{−λr}
r

(5.4.8)

is called the screened Coulomb or Yukava potential. It is appropriate only close to
the impurity; at distances larger than 1/2kF the functional form is fundamentally
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different [Kit63]. The screening length 1/λ is about 1 Å for a typical metal,
i.e. slightly smaller than the lattice constant, suggesting that the extra charge is
screened almost entirely within one unit cell.

The Fourier transform of Eq. (5.4.8) can be inverted to give the screened poten-
tial

�(q, 0) = 4πe

q2 + λ2
; (5.4.9)

and, using Eq. (3.1.31),

ε1(q, 0) = 1− 4π

q2

δρ(q, 0)

�(q, 0)
= 1+ λ2

q2
= 1+ 6πN0e2

EFq2
. (5.4.10)

For q → 0, the dielectric constant diverges; at distances far from the origin the
electron states are not perturbed.

5.4.2 Solution of the Boltzmann equation: the small q limit

The Thomas–Fermi approximation is appropriate for static screening (ω = 0). If
we are interested in the frequency dependence, we have to utilize the Boltzmann
equation (5.2.7) for the case of a longitudinal field; from there we obtain the
longitudinal current, in a fashion similar to Eq. (5.2.13). Assuming quasi-free
electrons or a spherical Fermi surface, after some algebra we arrive at the following
expression for the longitudinal dielectric constant:

ε̂(q, ω) = 1+ 3ω2
p

q2v2
F

[
1+ ω + i/τ

2qvF
Ln

{
qvF − ω − i/τ

−qvF − ω − i/τ

}]
, (5.4.11)

in analogy to what is derived for the transverse dielectric constant using
Eq. (5.2.19). If q is small, utilizing the Taylor expansion in q yields the expression

ε̂(q, ω) = 1− ω2
p

(ω + i/τ)2

[
1+ 3q2v2

F

5(ω + i/τ)2
+ · · ·

]
(5.4.12)

for qvF < |ω + i/τ |. In the limit 1/τ � ω, this expression is identical to
Eq. (5.2.21) obtained for the transverse response and resembles the Drude formula
(5.1.9) as the q = 0 case. This is not surprising, for at q = 0 the distinction
between longitudinal and transverse response becomes obsolete. For finite q, the
expression tends to the static limit

ε̂(q, ω) = 1+ 3ω2
p

q2v2
F

[
1− ω2

q2v2
F

+ i
πω

2qvF

]
. (5.4.13)

As the plasma frequency ω2
p = 4πNe2/m, the first term is identical to that derived

within the framework of the Thomas–Fermi approximation.
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5.4.3 Response functions for arbitrary q values

The semiclassical calculation of the q dependent conductivity is limited to small
q values since it does not include the scattering across the Fermi surface; the
appearance of vF in appropriate expressions merely reflects through the quantum
statistics the existence of the Fermi surface. If we intend to take into account
these processes, we must consider the time evolution of the density matrix as in
Section 4.3.1. A more detailed discussion of the problems can be found in various
textbooks [Cal91, Mah90, Pin66, Zim72].

The response functions to be evaluated are

ε̂(q, ω) = 1− 4π

q2
χ̂(q, ω) and σ̂ (q, ω) = iω

q2
χ̂(q, ω) (5.4.14)

with the Lindhard function

χ̂(q, ω) = 2e2

(2π)3

∫
dk

f 0
k+q − f 0

k

E(k+ q)− E(k)− h̄(ω + i/τ)
(5.4.15)

as derived in Eq. (4.3.21). Following a traditional treatment of the problem we
evaluate the dielectric constant, but we also give the appropriate expressions for
the conductivity. We will evaluate these expressions in three dimensions: the
discussion of the one-dimensional and two-dimensional response functions can be
found in Appendix F.

For T = 0, the Fermi–Dirac distribution f 0
k = 1 for k < kF and 0 for k > kF,

which allows the integral to be solved analytically,3 and we find:

χ̂(q, ω) = −e2 D(EF)

2

(
1+ kF

2q

[
1−

(
q

2kF
− ω + 1/τ

qvF

)2
]

Ln

{ q
2kF
− ω+i/τ

qvF
+ 1

q
2kF
− ω+i/τ

qvF
− 1

}

+ kF

2q

[
1−

(
q

2kF
+ ω + 1/τ

qvF

)2
]

Ln

{ q
2kF
+ ω+i/τ

qvF
+ 1

q
2kF
+ ω+i/τ

qvF
− 1

})
,(5.4.16)

where D(EF) is the density of states of both spin directions at the Fermi level,

3 Following the method given in footnote 2 on p. 111, the steps are as follows:∫
dk

�(k− kF)

ω − q2vF/2kF − (vF/kF)(k · q)+ i/τ

= π

∫ kF

0
k dk Ln

{
ω − q2vF/2kF − qvFk/kF + i/τ

ω − q2vF/2kF + qvFk/kF + i/τ

}

= π

2q

[
(ω − q2vF/2kF)

qvF/k2
F

+ q2v2
F − (ω + q2vF/2kF)

2

2q2v2
F/k2

F

Ln

{
ω − q2vF/2kF − qvF + i/τ

ω − q2vF/2kF + qvF + i/τ

}]

= πk2
F

2q

[(
ω

qvF
− q

2kF

)
+ 1

2

[
1−

(
ω

qvF
+ q

2kF

)2
]

Ln

{
q2vF/2kF − (ω + i/τ)+ qvF

q2vF/2kF − (ω + i/τ)− qvF

}]
.

The first part is solved in a similar way by using k+ q instead of k.
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the well known Lindhard response function. Again, Ln denotes the principal part
of the complex logarithm. The frequency and wavevector dependence of the real
and imaginary parts of the dielectric response function χ̂(q, ω) are calculated by
utilizing Eq. (3.2.7). In the 1/τ → 0 limit,

χ1(q, ω) = −e2 D(EF)

2

{
1+ kF

2q

[
1−

(
q

2kF
− ω

qvF

)2
]

ln

∣∣∣∣∣
q

2kF
− ω

qvF
+ 1

q
2kF
− ω

qvF
− 1

∣∣∣∣∣
+ kF

2q

[
1−

(
q

2kF
+ ω

qvF

)2
]

ln

∣∣∣∣∣
q

2kF
+ ω

qvF
+ 1

q
2kF
+ ω

qvF
− 1

∣∣∣∣∣
}

, (5.4.17a)

χ2(q, ω) = −e2 D(EF)

2




2πω
qvF

q
2kF
+ ω

qvF
<1

πkF
q

[
1−

(
q

2kF
− ω

qvF

)2
]
| q

2kF
− ω

qvF
|<1< q

2kF
+ ω

qvF

0 | q
2kF
− ω

qvF
|>1 .

(5.4.17b)

Both functions are displayed in Fig. 5.13, where the frequency axis is normalized to
vFkF and the wavevector axis to kF. It is obvious that both for q →∞ and ω→∞
the response function χ1(q, ω) → 0, expressing the fact that the variations of the
charge distribution cannot follow a fast temporal or rapid spatial variation of the
potential.

In the static limit (Thomas–Fermi approximation, ω → 0), the real part of the
Lindhard dielectric response function of Eq. (5.4.17a) is reduced to

χ1(q, 0) = −e2 D(EF)

2

[
1+

(
kF

q
− 1

4

q

kF

)
ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣
]

(5.4.18)

for a spherical Fermi surface. For small q values

χ1(q, 0) = δρ(q, 0)

�(q, 0)
= λ2

4π
= 3

2

N0e2

EF
, (5.4.19)

which is independent of q. For finite q values, χ1(q) decreases with increasing q
and the derivative has a logarithmic singularity at q = 2kF. The functional form
is displayed in Fig. 5.14 along with the results found for one and two dimensions.
The singularity is well understood and can be discussed by referring to Figs 5.10
and 5.11. By increasing q towards kF, the number of states which contribute to the
integral (5.4.15), f 0

k+q − f 0
k , progressively increases, until q is equal to 2kF, and

the sum does not change when q increases beyond this value. When q ≈ 2kF there
is a vanishingly small number of states, for which E(k + q) ≈ E(k) (these states
giving, however, a large contribution to the integral), and a combination of these
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Fig. 5.13. Wavevector and frequency dependence of the Lindhard response function
χ̂(q, ω) of a free-electron gas at T = 0 in three dimensions calculated by Eqs (5.4.17).
(a) The real part χ1(q, ω) and (b) the imaginary part χ2(q, ω) are both in arbitrary units.
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Fig. 5.14. The static Lindhard dielectric response function χ1 as a function of wavevector
q at T = 0 in one, two, and three dimensions (1D, 2D, and 3D, respectively). Here
χ1(q)/χ1(0) is plotted for normalization purposes. At the wavevector 2kF the Lindhard
function χ1(q) diverges in one dimension, has a cusp in two dimensions, and shows a
singularity in the derivative in three dimensions.

two effects leads to a decreasing χ1(q, ω) near q ≈ 2kF and to a logarithmical
singularity in the derivative. For one dimension, near q = 2kF there is a large
number of states with E(k + q) ≈ E(k), and this in turn leads to a singularity
in the response function in one dimension also shown in Fig. 5.14. As expected,
the two-dimensional case lies between these two situations, and there is a cusp at
q = 2kF.

All this is related to what is in general referred to as the Kohn anomaly [Koh59],
the strong modification of the phonon spectrum, brought about (through screening)
by the logarithmic singularity at 2kF. The effect is enhanced in low dimensions due
to the more dramatic changes at 2kF. In addition to these effects, various broken
symmetry states, with a wavevector dependent oscillating charge or spin density
may also develop for electron–electron interactions of sufficient strength; these are
discussed in Chapter 7.
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The singularity of the response function at q = 2kF leads also to a characteristic
spatial dependence of the screening charge around a charged impurity. While in
the Thomas–Fermi approximation the screening charge decays exponentially with
distance far from the impurity, the selfconsistent field approximations yield the
well known Friedel oscillations with a period 2kF, which in three dimensions reads

�ρ = A

r3
cos{2kF + φ} ; (5.4.20)

here both A and φ depend on the scattering potential [Gru77].
After having evaluated χ̂(q, ω) it is straightforward to write down the following

expression for the dielectric constant:

ε̂(q, ω) = 1+ 3ω2
p

q2v2
F

{
1

2
+ kF

4q

[
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q
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]
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q
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− 1

}
, (5.4.21)

which for negligible damping, 1/τ → 0, reduces to

ε1(q, ω) = 1+ λ2
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, (5.4.22a)

where λ2 = 3ω2
p/v

2
F is the Thomas–Fermi screening parameter introduced above.

In the same limit the imaginary part becomes

ε2(q, ω) =
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3πω2
pω

2q3v3
F
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(5.4.22b)

In the static limit ω → 0, the imaginary part disappears and the expression for
ε(q, ω) from Eq. (5.4.10) is recovered, as expected. In Fig. 5.15 these components
are shown as a function of frequency and wavevector. For small q values we can
expand the energy as

Ek+q = Ek + ∂Ek

∂k
q + 1

2

∂2Ek

∂k2
q2 , (5.4.23)
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Fig. 5.15. (a) Real part and (b) imaginary part of the dielectric constant ε̂(q, ω) of a free-
electron gas as a function of frequency and wavevector at T = 0 in three dimensions
calculated using Eq. (5.4.21). The frequency axis is normalized to the Fermi frequency
ωF = vFkF/2, and the wavevector axis is normalized to the Fermi wavevector kF.
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Fig. 5.16. Frequency and wavevector dependence of (a) the real and (b) the imaginary
part of the conductivity σ̂ (q, ω) of a free-electron gas at T = 0 in three dimensions after
Eq. (5.4.25). The frequency axis is normalized to the Fermi frequency ωF = kFvF/2 =
EF/h̄, and the wavevector axis is normalized to the Fermi wavevector kF.
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and on substituting this into Eq. (5.4.15) we obtain the following expression for the
real part of the dielectric constant:

ε1(q, ω) = 1− e2

π2h̄2ω2

∫
d f 0(Ek)

∂2Ek

∂k2
k .

If we also expand the Fermi function in the numerator of Eq. (5.4.15),

f 0
k+q = f 0

k +
∂ f 0

k

∂E q · ∇kE(k)+O(q2) = f 0
k +

∂ f 0
k

∂E q · h̄2

m
k+O(q2) ,

we find that for ω→ 0 the term linear in q gives the Thomas–Fermi result (5.4.19).
In this limit the real part of the dielectric constant has the simple form

ε1(q, 0) = 1− 4πe2

q2

∫
∂ f 0

k

∂E D(E) dE .

The integral yields at T = 0

lim
q→0

ε1(q, 0) = 1+ 4πe2

q2
D(EF) = 1+ 4πe2

q2

3N0m2

h̄2k2
F

= 1+ 4πe2

q2

3N0

2EF
= 1+ λ2

q2
;

(5.4.24)
the result we arrived at in Eq. (5.4.10).

We can also use the relationship between σ̂ (q, ω) and χ̂(q, ω) to obtain

σ̂ (q, ω) = 3ω

4π i
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. (5.4.25)

The real and imaginary parts of the complex, wavevector dependent conductivity
are displayed in Fig. 5.16 as a function of frequency ω and wavevector q. As
discussed in Section 3.1.2, for small q values this expression is the same as σ̂ (q, ω)
derived for the transverse conductivity, and when q → 0 the Drude model is
recovered. For large q values – or short wavelength fluctuations – the results
are significantly different: there is an appreciable conductivity in the case of the
low frequency transverse response. However, in the longitudinal case σ1(q, ω)
rapidly drops to zero with increasing q; this is the consequence of the screening for
longitudinal excitations.

5.4.4 Single-particle and collective excitations

In the previous section we have addressed the issue of screening, the rearrangement
of the electronic charge in response to transverse and longitudinal electric fields.
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The formalism leads to the dielectric constant or conductivity in terms of the
excitations of electron–hole pairs. Besides those excitations, a collective mode
also occurs, and it involves coherent motion of the system as a whole.

Collective excitations of the electron gas are longitudinal plasma oscillations.
As we saw in the derivation leading to Eq. (4.3.2) for vanishing ε1(ω), an infinites-
imally small external perturbation �ext produces a strong internal field �; and in
the absence of damping the electron gas oscillates collectively. For the uniform
q = 0 mode simple considerations lead to the frequency of these oscillations. Let
us consider a situation in which a region of the electron cloud is displaced by a
distance x without affecting the rest of the system. The result is a layer of net
positive charge on one side of this region and an identical negative layer on the
opposite side, both of thickness x . The polarization is simply given by P = −Ner,
and this leads to an electric field E = −4πP. In the absence of damping (1/τ → 0)
the equation of motion (3.2.22) reduces to

m
d2r
dt2

= −eE(t) = 4πNe2r . (5.4.26)

The solution is an oscillation of the entire charged electron gas, with an oscillation
frequency

ωp =
(

4πNe2

m

)1/2

called the plasma frequency. Of course such collective oscillations of the electron
plasma could be sustained only in the absence of a dissipative mechanism; in reality
the oscillations are damped, albeit weakly in typical materials. Note that ωp here
is the frequency of longitudinal oscillations of the electron gas. There is – as we
have discussed in Section 5.1 – also a significant change in the transverse response
at this frequency. The dielectric constant ε1(q = 0, ω) switches from negative to
positive sign at ωp, and this leads to a sudden drop of the reflectivity.

In order to explore the finite frequency and long wavelength (small q) limit, we
expand ε1 in terms of q; we obtain

ε1(q, ω) = 1− ω2
p

ω2

(
1+ 3

5

q2v2
F

ω2
p

+ · · ·
)

(5.4.27)

at frequencies ω ≈ ωp. Setting ε1(q, ω) = 0 yields for the dispersion of the plasma
frequency

ω2
p(q) ≈ ω2

p

(
1+ 3
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q2v2
F

ω2
p

)
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or

ωp(q) ≈ ωp

[
1+ 3

10
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ω2
p

q2 +
(

h̄

8m2ω2
− 3
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v4
F

ω4
p

)
q4
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, (5.4.28)

where the term 3
10

v2
F

ω2
p
q2 ≈ q2/λ2, with λ the Thomas–Fermi screening parameter

as defined earlier in Eq. (5.4.6). The collective oscillations can occur at various
wavelengths, and we can refer to these quanta of oscillations as plasmons. In
Eq. (5.4.28) we have added the last term in O(q4) without having it explicitly car-
ried through the calculation [Gei68, Mah90]. Plasma oscillations are well defined
for small q since there is no damping due to the lack of single-particle excitations
in the region of plasma oscillations. For larger q, the plasmon dispersion curve
shown in Fig. 5.11 merges into the continuum of single-electron excitations at a
wavevector qc and for q > qc the oscillations will be damped and decay into the
single-particle continuum. Using the dispersion relation ωp(q) and the spectrum
of electron–hole excitations, the onset of the damping of the plasmon called the
Landau damping can be derived for particular values of the parameters involved.
For small dispersion, we obtain by equating Eq. (5.3.2) to ωp(q = 0) the simple
approximate relation

qc ≈ ωp

vF
(5.4.29)

for the onset of damping of plasma oscillations by the creation of electron–hole
pairs.

5.5 Summary of the ω dependent and q dependent response

Let us finally recall the results we have obtained for the complex q and ω dependent
conductivity (or, equivalently, dielectric constant). Electron–hole excitations – and
the absorption of electromagnetic radiation – are possible only for certain q and
ω values, indicated by the shaded area on Fig. 5.11. This area is defined by the
boundaries h̄ω = h̄2

2m

(
2qkF − q2

)
and h̄ω = h̄2

2m

(
2qkF + q2

)
.

Outside this region σ1(q, ω) = 0 and no absorption occurs. In the so-called
homogeneous limit, for qvF � ω, we find that the transverse and longitudinal re-
sponses are equivalent (we cannot distinguish between transverse and longitudinal
fields in the q → 0 limit), and to leading order we find

σ̂ L(q, ω) = σ̂ T(q, ω) = iNe2

mω

(
1+ q2v2

F

5ω2
+ · · ·

)
(5.5.1)

with, of course, the associated δ{ω = 0} response for the real part. The dielectric
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constant has the form

εL
1 (q, ω) = εT

1 (q, ω) = 1−
(
ω2

p

ω

)2

+ · · · ; (5.5.2)

the zeros of which lead to the ultraviolet transparency of metals and the longitudinal
plasma oscillations with the dispersion relation ωp(q) given above.

In the opposite, quasi-static, limit for qvF � ω screening becomes important,
and indeed in this limit the transverse and longitudinal responses are fundamentally
different. Here we find

σ̂ T(q, ω) = 3πNe2

4qvFm

[
1− ω2

q2v2
F

+ · · ·
]

(5.5.3)

and the response is primarily real; we recover dissipation in the small q (but still
qvF � ω) limit. In contrast,

σ̂ L(q, ω) = 3Ne2ω

q2v2
F

i
[

1− kFω
2

2q3v2
F

+ · · ·
]

(5.5.4)

is primarily imaginary; there is no dissipation, and we also recover the Thomas–
Fermi screening in this limit.

All this is valid for a three-dimensional degenerate electron gas. Both the
single-particle and collective excitations are somewhat different in two- and one-
dimensional electron gases for various reasons. First, phase space arguments,
which determine the spectrum of single-particle excitations, are somewhat different
for a Fermi sphere in three dimensions, a Fermi circle in two dimensions and
two points (at +kF and −kF) in one dimension. Second, polarization effects are
different in reduced dimensions, with the consequence that the frequency of the
plasmon excitations approach zero as q = 0. These features are discussed in
Appendix F.

A final word on temperature dependent effects is in order. Until now, we have
considered T = 0, and this leads to a sharp, well defined sudden change in the
occupation numbers at q = kF. At finite temperatures, the thermal screening of the
Fermi distribution function leads to similar smearing for the single-particle excita-
tions. With increasing temperature, we progressively cross over to a classical gas of
particles, and in this limit classical statistics prevails; the appropriate expressions
can be obtained by replacing mv2

F by 3kBT .
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6

Semiconductors

The focus of this chapter is on the optical properties of band semiconductors and in-
sulators. The central feature of these materials is the appearance of a single-particle
gap, separating the valence band from the conduction band. The former is full and
the latter is empty at zero temperature. The Fermi energy lies between these bands,
leading to zero dc conduction at T = 0, and to a finite static dielectric constant. In
contrast to metals, interband transitions from the valence band to the conduction
band are of superior importance, and these excitations are responsible for the main
features of the electrodynamic properties. Many of the phenomena discussed in
this chapter also become relevant for higher energy excitations in metals when the
transition between bands becomes appreciable for the optical absorption.

Following the outline of Chapter 5, we first introduce the Lorentz model, a
phenomenological description which, while obviously not the appropriate de-
scription of the state of affairs, reproduces many of the optical characteristics
of semiconductors. The transverse conductivity of a semiconductor is then de-
scribed, utilizing the formalisms which we have developed in Chapter 4, and the
absorption near the bandgap is discussed in detail, followed by a summary of band
structure effects. After discussing longitudinal excitations and the q dependent
optical response, we briefly mention indirect transitions and finite temperature and
impurity effects; some of the discussion of these phenomena, however, is relegated
to Chapter 13.

Optical properties of semiconductors are among the best studied phenomena in
solid state physics, mainly because of their technological relevance. Both experi-
mental data and theoretical description are quite advanced and are the subject of
many excellent textbooks and monographs, e.g. [Coh88, Hau94, Yu96].

136
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6.1 The Lorentz model

6.1.1 Electronic transitions

Before discussing optical transitions induced by the electromagnetic fields between
different bands in a solid, let us first examine a simple situation: the transitions
between a ground state and excited states of N identical atoms, the wavefunctions
of which are �0(r) and �l(r). The electrodynamic field is assumed to be of the
form

E(t) = E0 (exp{−iωt} + exp{iωt}) (6.1.1)

and leads to the admixture of the excited states to the ground state. This can be
treated by using the time dependent Schrödinger equation with the perturbation
given for an electric field by

H′ = eE · r .

Because of this admixture, the resulting time dependent wavefunction is

�(r, t) = �0 exp
{
− iE0t

h̄

}
+

∑
l

al(t)�l exp
{
− iEl t

h̄

}
(6.1.2)

with El denoting the various energy levels. The coefficients al(t) are obtained from
the solution of the Schrödinger equation

ih̄
∂

∂t
�(r, t) = − (H0 +H′)�(r, t) , (6.1.3)

where H0�l = El�l describes the energy levels in the absence of the applied
electromagnetic field. Inserting the wavefunction � into Eq. (6.1.3) we find that
the coefficients are

al(t) = E
2h̄


1− exp

{
i(h̄ω+El−E0)t

h̄

}
h̄ω + (El − E0)

−
1− exp

{
i(−h̄ω+El−E0)t

h̄

}
h̄ω − (El − E0)


∫

�∗
l (−er)�0 dr.

(6.1.4)
Here ∫

�∗
l er�0 dr = erl0

is the matrix element of the dipole moment P = −er. The induced dipole moment

P(t) = 〈−er(t)〉 =
∫

�∗(r, t)(−e r)�(r, t) dr = E
2h̄

∑
l

e2 |rl0|2 2ωl

ω2
l − ω2

= αE

(6.1.5)
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results after some calculations [Woo72], and we define a polarizability

α̂(t) = P(t)
E(t)

=
∑

l

e2 |rl0|2
h̄

2ωl0

ω2
l0 − ω2

,

which is purely real as no absorption has been considered. We use h̄ωl0 = El − E0

for the energy difference between the two states. The dielectric constant, for N
atoms, is then

ε1(ω) = 1+ 4πNα(ω) = 1+ 4πNe2

m

∑
l

2m

h̄2

|rl0|2 h̄ωl0

ω2
l0 − ω2

. (6.1.6)

The polarizability can be regarded as a parameter accounting for the effectiveness
of the transition, and the fraction of energy absorbed can be expressed in a dimen-
sionless unit as

fl0 = 2m

h̄2 h̄ωl0 |rl0|2 . (6.1.7)

This is called the oscillator strength, which was introduced in Eq. (5.1.32) in terms
of the momentum matrix element |pl0|2:

fl0 = 2|pl0|2
mh̄ωl0

; (6.1.8)

both can readily be converted by using the commutation relation [p, x] = −ih̄.
The oscillator strength is related to the power absorbed by the transmission, which
reads as P = Wl0h̄ωl0, with the number of transitions per second and per volume

Wl0 = d

dt

(
a∗l al

) = πe2 E2

2h̄2 |rl0|2 . (6.1.9)

As discussed in Appendix D in more detail, the sum of all transitions should add
up to unity; this is the so-called oscillator strength sum rule∑

l

fl0 = 1 . (6.1.10)

With this notation

ε1(ω) = 1+ 4πNe2

m

∑
l

fl0

ω2
l0 − ω2

; (6.1.11)

this refers to the real part of the dielectric constant. By virtue of the Kramers–
Kronig relation we obtain also the imaginary part, and the complex dielectric
constant reads

ε̂(ω) = 1+ 4πNe2

m

∑
l

fl0

[
1

ω2
l0 − ω2

+ iπ

2ω
δ
{
ω2 − ω2

l0

}]
. (6.1.12)
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For N atoms, all with one excited state, at energy h̄ωl0, the dielectric constant is
shown in Fig. 6.1. ε1(ω = 0) is a positive quantity, and ε1(ω) increases as the
frequency is raised and eventually diverges at ω = ω1. It changes sign at ωl0 and
decreases as the frequency increases. Finally we find a second zero-crossing (with
positive slope) from ε1 < 0 to ε1 > 0 at the so-called plasma frequency

ωp =
(

4πNe2

m

)1/2

,

in analogy to the free-electron case of metals. Here we have assumed that there
is no absorption of energy by the collection of N atoms, the exception being
the absorption process associated with the transitions between the various energy
levels. When the system is coupled to a bath, the energy levels assume a lifetime
broadening; this is described by a factor exp{−t/2τ }. With such broadening in-
cluded, the transitions spread out to have a finite width, and the complex dielectric
constant becomes

ε̂(ω) = 1+ 4πNe2

m

∑
l

fl0(
ω2

l0 − ω2
)− iω/τ

. (6.1.13)

This will remove the singularity at the frequency ωl0, and ε1(ω) for broadened
energy levels is also displayed in Fig. 6.1.

Some of the above results can be recovered by assuming the response of a
classical harmonic oscillator. This of course is a highly misleading representation
of the actual state of affairs in semiconductors, where the absence of dc conduction
is due to full bands and not to the localization of electron states. Nevertheless, to
examine the consequences of this description, a comparison with the Drude model
is a useful exercise. We keep the same terms that we have included for the Drude
description, the inertial and relaxational response, and supplement these with a
restoring force K . This so-called Lorentz model is that of a harmonic oscillator

d2r
dt2

+ 1

τ

dr
dt
+ ω2

0r = − e

m
E(t) . (6.1.14)

Here ω0 = (K/m)1/2, where m is the mass of the electron, and τ takes into account
damping effects. A model such as that given by the above equation obviously does
not lead to a well defined energy gap, but it is nevertheless in accord with the
major features of the electrodynamics of a non-conducting state and is widely used
to describe the optical properties of non-conducting materials. When the local
electric field E has an exp{−iωt} time dependence, we find

r̂(ω) = −eE/m

(ω2
0 − ω2)− iω/τ

,
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Fig. 6.1. Frequency dependence of the dielectric constant ε̂(ω) for a transition between
well defined energy levels with energy separation ω0/(2πc) = ν0 = 100 cm−1, together
with the dielectric constant for a transition between energy levels of width 1/(2πcτ) =
γ = 50 cm−1; the spectral weight is given by the plasma frequency ωp/(2πc) = νp =
500 cm−1.

and for the induced dipole moment p̂(ω) = −er̂(ω) we obtain

p̂(ω) = e2

m
E

1

(ω2
0 − ω2)− iω/τ

= α̂a(ω)E ,

where α̂a(ω) is the atomic polarizability. The macroscopic polarizability is the
sum over all the atoms N per unit volume involved in this excitation: P = N 〈p̂〉 =
N α̂aE = χ̂eE. Since the dielectric constant is related to the dielectric susceptibility
via ε̂(ω) = 1+4πχ̂e(ω), we obtain for the frequency dependent complex dielectric
constant

ε̂(ω) = 1+ 4πNe2

m

1

(ω2
0 − ω2)− iω/τ

= 1+ ω2
p

(ω2
0 − ω2)− iω/τ

. (6.1.15)

We assume here that each atom contributes one electron to the absorption process.
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Fig. 6.2. Real and imaginary parts of the conductivity σ̂ (ω) versus frequency calculated
after the Lorentz model (6.1.16) for center frequency ν0 = ω0/(2πc) = 100 cm−1, the
width γ = 1/(2πcτ) = 50 cm−1, and the plasma frequency νp = ωp/(2πc) = 500 cm−1.

For the complex conductivity we can write

σ̂ (ω) = Ne2

m

ω

i(ω2
0 − ω2)+ ω/τ

, (6.1.16)

where ω0 is the center frequency, often called the oscillator frequency, 1/τ de-
notes the broadening of the oscillator due to damping, and ωp =

(
4πNe2/m

)1/2

describes the oscillator strength, and is referred to as the plasma frequency. It is
clear by comparing this expression with Eq. (5.1.4) that the Drude model can be
obtained from the Lorentz model by setting ω0 = 0. This is not surprising, as we
have retained only the inertial and damping terms to describe the properties of the
metallic state.

6.1.2 Optical properties of the Lorentz model

The frequency dependence of the various optical constants can be evaluated in
a straightforward manner. Fig. 6.2 displays the real and imaginary parts of the
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Fig. 6.3. Frequency dependent dielectric constant ε̂(ω) of a Lorentz oscillator
(Eq. (6.1.15)) with ν0 = 100 cm−1, γ = 50 cm−1, and νp = 500 cm−1. The extrema
of ε1 are at ±γ /2 around the oscillator frequency ν0; ε1(ω) crosses zero at approximately
ν0 and νp. The inset shows the real and imaginary parts of the dielectric constant on a
logarithmic frequency scale.

complex conductivity σ̂ (ω),

σ1(ω) =
ω2

p

4π

ω2/τ

(ω2
0 − ω2)2 + ω2/τ 2

and σ2(ω) = −
ω2

p

4π

ω(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω2/τ 2

(6.1.17)
as a function of frequency. We have chosen the center frequency ν0 = ω0/(2πc) =
100 cm−1, the width γ = 1/(2πcτ) = 50 cm−1, and the plasma frequency νp =
ωp/(2πc) = 500 cm−1, typical of a narrow gap semiconductor. The real and
imaginary parts of the dielectric constant,

ε1(ω) = 1+ ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + ω2/τ 2

(6.1.18a)
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Fig. 6.4. Refractive index n and extinction coefficient k versus frequency calculated using
the Lorentz model for ν0 = 100 cm−1, γ = 50 cm−1, and νp = 500 cm−1. Absorption
(corresponding to large k) occurs mainly in the range ±γ around ν0.

and

ε2(ω) =
ω2

pω/τ

(ω2
0 − ω2)2 + ω2/τ 2 (6.1.18b)

are displayed in Fig. 6.3 on both linear and logarithmic frequency scales. The
refraction coefficient N̂ can be calculated using Eqs (2.3.3) and (2.3.4); the fre-
quency dependence of the real and imaginary parts of N̂ are shown in Fig. 6.4.
Using these parameters, we can, by employing Eqs (2.4.15) and (2.4.14), calculate
the reflectivity R(ω) and the phase shift φr(ω), and the results are displayed in
Fig. 6.5. With the help of Eqs (2.3.34) the real and imaginary parts of the complex
surface impedance, RS(ω) and XS(ω), are calculated and displayed in Fig. 6.6. The
electronic loss function 1/ε̂ of a Lorentz oscillator is shown in Fig. 6.7.

Three spectral ranges, the Hagen–Rubens, the relaxation, and the transparent
regime, could be distinguished in the case of the Drude model; for the Lorentz
model here four regimes with distinctively different spectral characteristics are of
importance: a low frequency range at which the material does not absorb; the
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Fig. 6.5. Reflectivity R and the phase angle φr as a function of frequency in the Lorentz
model. The reflectivity shows a strong increase at the center frequency of the oscillator
ν0 = 100 cm−1, has a plateau between ν0 and νp, and drops at νp = 500 cm−1.

spectral range close to the center frequency ω0 at which electrons are excited and
thus absorption dominates; a range of high reflectivity for ω0 < ω < ωp; and the
transparent regime for large frequencies ω > ωp.

Low frequency range

At low frequencies ω < (ω0 − 1/τ) the real part of the conductivity σ1 is small
and there is little absorption. The real part of the dielectric constant saturates at a
constant value ε1(ω → 0) as the frequency is reduced. It can be evaluated by the
Kramers–Kronig relation (3.2.31) with ε1(ω→∞) = 1:

ε1(0) = 1+ 2

π

∫ ∞

0

ε2(ω)

ω
dω ≈ 1+ 2

πω2
0

∫ ∞

0
ωε2(ω) dω = 1+ ω2

p

ω2
0

. (6.1.19)

In this region, the behavior of the refractive index n(ω) follows the dielectric
constant. Depending on its value in the low frequency range the reflectivity can
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iXS(ω) calculated after the Lorentz model. There is a peak in both the real and imaginary
parts at the plasma frequency νp = 500 cm−1.

be large

R =
(

1−√ε1

1+√ε1

)2

=
(

1− n

1+ n

)2

according to Eq. (2.4.16), as illustrated in Fig. 6.5. However, the light which is
not reflected due to the impedance mismatch – caused by the step in the dielectric
constant or refractive index – is transmitted with almost no attenuation: α → 0 and
k → 0 for ω → 0. In contrast to XS(ω), which increases linearly with frequency
up to ω0, for ω → 0 the surface resistance RS(ω) approaches the constant value
Z0/n according to Eq. (2.3.34a).

Absorption range

As soon as the frequency approaches the center frequency, electrons can be excited
across the bandgap. Thus the vicinity of the oscillator frequency ω0 is characterized
by strong absorption due to the large conductivity σ1 (although the loss function
− Im{1/ε̂} does not indicate any change by entering this spectral range). The width
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of the absorption range is characterized by the damping rate: (ω0 − 1/2τ) < ω <

(ω0 + 1/2τ); it is the full width at half the conductivity maximum. As seen in
Fig. 6.3 the real part of the dielectric constant crosses zero at ω0 with negative
slope, and it comes back to positive values at ωp. Between the two extrema of
the dielectric constant at ωextr = ω0 ± 1/2τ (in the case of small damping) the
dispersion is negative. As displayed in the figures, most optical quantities, such as
the refractive index n, the reflectivity R(ω), or Re{1/ε̂(ω)}, exhibit strong changes
in this range.

Reflection range

The third frequency range, between (ω0 + 1/τ) and ωp, is characterized by a high
and almost frequency independent reflectivity; the phase angle, however, varies
strongly, as displayed in Fig. 6.5. At the oscillator frequency ω0 and at the plasma
frequency ωp the curvature of the reflectivity changes. We have already mentioned
that the Drude model is a special case of the Lorentz model with ω0 = 0; hence
the reflection range corresponds to the relaxation regime in the former limit. The
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conductivity drops as

σ1(ω) ∝ (ωτ)−2 and σ2(ω) ∝ (ωτ)−1 . (6.1.20)

Similar considerations hold for the dielectric constant:

ε1(ω) ≈ 1− ω2
p

ω2
and ε2(ω) ≈

ω2
p

ω3τ
; (6.1.21)

both decrease with increasing frequency; of course ε1 is still negative.
It is only in this spectral range that the extinction coefficient k which describes

the losses of the system is larger than the refractive index n (Fig. 6.4). Similarly,
for the surface impedance, the absolute value of the surface reactance XS becomes
larger than the surface resistance RS in the range above the center frequency of the
oscillator ω0 but still below the plasma frequency ωp, as displayed in Fig. 6.6. The
surface resistance exhibits a minimum in the range of high reflectivity because of
the phase change between the electric and magnetic fields.

Transparent regime

Finally, at frequencies above ωp, transmission is again important, for the same
reasons as discussed in the case of the Drude model. Since k is small, the optical
properties such as reflectivity or surface impedance are dominated by the behavior
of n(ω). The high frequency dielectric constant ε1(ω → ∞) = ε∞ approaches
unity from below, thus the reflectivity drops to zero above the plasma frequency,
and the material becomes transparent. The imaginary part of the energy loss
function 1/ε̂(ω) plotted in Fig. 6.7 is only sensitive to the plasma frequency, where
it peaks. The real part

Re
{

1

ε̂(ω)

}
= ε1(ω)

ε2
1(ω)+ ε2

2(ω)

shows a zero-crossing at ωp and at ω0.
As expected, all the sum rules derived in Section 3.2.2 also apply to the Lorentz

model. If 1/τ is small compared to ω0, the spectral weight is obtained by substi-
tuting the expression (6.1.18b) of the imaginary part of the dielectric constant into
Eq. (3.2.27):∫ ∞

0
ωε2(ω) dω = ω2

p

τ

∫ ∞

0

ω2

(ω0 − ω)2(ω0 + ω)2 + ω2/τ 2
dω

≈ ω2
p

τ

∫ ∞

0

dω

4(ω0 − ω)2 + 1/τ 2

= ω2
pτ

τ
arctan{2(ω0 − ω)τ } |∞0 = ω2

p
π

2
= 2π2 Ne2

m
.
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Here N is the density of electrons in the valence band and m is the mass of the
charge carriers, which may be replaced by the bandmass. The verification of the
sum rule is somewhat more involved for 1/τ comparable to ω0, and in the limit
1/τ � ω0 we recover the sum rule as derived for the Drude model.

6.2 Direct transitions

6.2.1 General considerations on energy bands

Within the framework of the band theory of solids, insulators and semiconductors
have a full band at zero temperature, called the valence band, separated by a
single-particle gap Eg from the conduction band, which at T = 0 is empty. Because
there is a full band and a gap, the static electrical conductivity σdc(T = 0) = 0, and
optical absorption occurs only at finite frequencies. The valence and conduction
bands are sketched in Fig. 6.8a in the so-called reduced Brillouin zone representa-
tion with two different dispersion relations displayed in the upper and lower parts
of the figure. In general, excitation of an electron from the valence band to the
conduction band (indicated by subscripts c and v, respectively) leads to an extra
electron with momentum k′ in the conduction band, leaving a hole with momentum
k behind in the valence band. In a crystal, momentum conservation requires that

k′ = k+K (6.2.1)

where K is the reciprocal lattice vector. Neglecting umklapp processes, we con-
sider only vertical direct transitions, for which k′ = k. Such transitions obey

h̄ω = Ec(k′)− Ev(k) (6.2.2)

due to the energy conservation, and are indicated in Fig. 6.8 by d. Of course
these transitions appear to be vertical in this reduced zone representation where
the dispersions at the higher Brillouin zone are folded back to the first zone; in the
extended zone representation the electron gains the momentum K from the crystal
lattice, in a fashion similar to that which leads to the band structure itself.

Processes where momentum is absorbed by the lattice vibrations during the
creation of electrons and holes, and

k′ = k+ P , (6.2.3)

with P the wavevector of the phonon involved, are also possible, and we refer
to these processes as indirect transitions. With both direct and indirect transi-
tions of importance, Fig. 6.8 suggests different scenarios for the onset of optical
absorptions. In Fig. 6.8a, the lowest energy transition is a direct transition, and
will dominate the onset of optical absorption. In contrast, the situation shown in
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Fig. 6.8. Transitions between occupied bands l and unoccupied bands l ′ in a semicon-
ductor, i.e. between the valence band and the conduction band. (a) Absorption edge
corresponding to direct transition, d. If the minimum of the conduction band and the
maximum of the valence band have the same k value, direct transitions are the lowest
energy transitions. (b) Indirect transitions, id, when the extrema of the two bands are at
different k values. For higher frequencies direct transitions also become possible.
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Fig. 6.8b is an indirect transition for which

h̄ω = Ec(k′)− Ev(k)± h̄ωP , (6.2.4)

where ωP is the frequency of the relevant phonon which determines the onset of
optical absorption.

First let us consider direct transitions from the top of the valence band to the
bottom of the conduction band as shown in Fig. 6.8a. In the simplest case these
transitions determine the optical properties near to the bandgap. As expected, the
solution of the problem involves two ingredients: the transition matrix element
between the conduction and valence bands, and the density of states of these bands.
As far as the transition rate is concerned, knowing the solution of the one-electron
Schrödinger equation at these extreme points in the Brillouin zone, it is possible
to obtain solutions in their immediate neighborhood by treating the scalar product
k · p as a perturbation (see Appendix C) [Jon73, Woo72].

Some assumptions will be made concerning the density of states. We assume the
energy band to be parabolic near the absorption edge, and the dispersion relations
are given by

Ev = − h̄2k2

2mv
and Ec = Eg + h̄2k2

2mc
, (6.2.5)

where Eg is the single-particle gap, and mv and mc refer to the bandmass in the
valence and conduction bands, respectively. h̄k is measured from the momentum
which corresponds to the smallest gap value k0 in Fig. 6.8, and zero energy corres-
ponds to the top of the valence band.

6.2.2 Transition rate and energy absorption for direct transitions

We first discuss the transition probabilities and absorption rates; subsequently
the absorption rate is related to the complex conductivity and complex dielectric
constant. We follow the procedure used in the previous treatment of the electrody-
namics of metals.

The states in the valence and conduction bands are described by Bloch wave-
functions

�l = �−1/2 exp{ik · r}ul(k) (6.2.6a)

�l ′ = �−1/2 exp{ik′ · r}ul ′(k′) . (6.2.6b)

We use the indices l and l ′ to indicate that this applies generally to any interband
transition; � refers to the volume element over which the integration is carried out.
The Hamiltonian which describes the interaction of the electromagnetic field with
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the electronic states is given by Eq. (4.3.24), which, if p = −ih̄∇, can be rewritten
as

H = − ieh̄

2mc
(A · ∇ + ∇ · A) . (6.2.7)

We assume, for the sake of generality, that the vector has the following momentum
dependence

A(q) = A exp{iq · r} ,

and we neglect the frequency dependence for the moment. The matrix element of
the transition is

Hll ′(r) =
∫

�∗
l

[
− ieh̄

2mc
(A exp{iq · r} · ∇ + ∇ · A exp{iq · r})

]
�l dr .

(6.2.8)
By substituting the Bloch functions for the valence and conduction bands, the
transition matrix element becomes

Hint
ll ′ (r) = −

ieh̄

2mc

1

�

∫
u∗l

[
A · ∇ul ′ + iul ′A · k′

]
exp{i(k′ + q− k) · r} dr (6.2.9)

= − ieh̄

2mc

1

�

∑
n

exp{i(k′ + q− k) · Rn}
∫
�

u∗l
[
A · ∇ul ′ + iul ′A · k′

]
dr

with m the electron mass and � the unit cell volume. For a periodic crystal
structure

exp{i(k′ + q− k) · r} = exp{i(k′ + q− k) · (Rn + r′)} ,

where Rn is the position of the nth unit cell. Here∑
n

exp{i(k′ + q− k) · Rn} ≈ 0

unless (k′ +q−k) = K, where K is a reciprocal lattice vector. In the reduced zone
scheme, we can take K = 0, so that k = k′ + q. For direct or vertical transitions
k = k′, and therefore q = 0. Thus we obtain

Hint
ll ′ (r) = −

ieh̄

2mc

1

�

∫
�

u∗l (k)[A · ∇ul ′(k)+ iA · kul ′(k)] dr . (6.2.10)

For a pure semiconductor the second term is zero due to the orthogonality of the
Bloch functions, and transitions associated with this matrix element are forbidden.
Of course this restriction can be lifted by scattering processes (due to impurity
scattering for example), and the optical properties when this occurs will be dis-
cussed later. In the majority of cases, the first term in the brackets dominates
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the absorption process, and we call the situation when this term is finite allowed
transition [Coh88, Rid93].

By substituting the momentum operator

pl ′l = 〈kl ′|p|kl〉∗ = − ih̄

�

∫
�

u∗l ′∇ul dr , (6.2.11)

which is sometimes called the electric dipole transition matrix element, we obtain

H int
l ′l =

e

mc
A · pl ′l ,

neglecting the forbidden transitions for the moment. The transition rate of an
electron from state |kl〉 to state |kl ′〉 can now be calculated by using Fermi’s golden
rule:

Wl→l ′ = Wll ′ = (2π/h̄)|H int
ll ′ |2δ{El ′l − h̄ω} . (6.2.12)

Here we consider the number of transitions per unit time. These lead to absorption,
and are therefore related to the real part of the conductivity σ1(ω), which will be
evaluated shortly. Subsequently we have to perform a Kramers–Kronig transfor-
mation to evaluate the imaginary part. To obtain the transition rate from the initial
band l to band l ′, we have to integrate over all allowed values of k, where we have
1/(2π)3 states per unit volume in each spin direction:

Wll ′(ω) = πe2

2m2h̄c2

2

(2π)3

∫
BZ
|A · pl ′l |2δ{h̄ω − El ′l} dk , (6.2.13)

where the energy difference El ′ − El = El ′l = h̄ωl ′l .
Using the relation we derived in Section 2.3.1 for the absorbed power,

P = σ1〈E2〉 = h̄ωWl ′l ,

the absorption coefficient, which according to Eq. (2.3.26) is defined as the power
absorbed in the unit volume divided by the energy density times the energy velo-
city, becomes

αl ′l(ω) = 4π h̄ωl ′l Wl ′l(ω)

nc〈E2〉 . (6.2.14)

Substituting Eq. (6.2.13) into Eq. (6.2.14) we obtain our final result: the absorption
coefficient corresponding to the transition from state l to state l ′,

αl ′l(ω) = e2

πncm2ω

∫
BZ
|pl ′l |2δ{h̄ω − h̄ωl ′l} dk . (6.2.15)

As discussed earlier, αl ′l(ω) is related to the imaginary part of the refractive index.
Note that in general n = n(ω), but with Eq. (2.3.26) (the expression which
relates the refractive index to the conductivity) we can immediately write down
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the contribution of the transition rate between the l and l ′ bands to the conductivity
as

σ1(ω) = c

4π
αl ′l(ω)n(ω) . (6.2.16)

The conductivity σ1(ω) is proportional to the transition rate times the real part
of the refractive index – which itself has to be evaluated in a selfconsistent way.
Hence, the procedure is not trivial as n(ω) depends on both σ1(ω) and σ2(ω).

Next we consider the electrodynamics of semiconductors by starting from a
somewhat different point. In Eq. (4.3.33) we arrived at a general formalism for
the transverse dielectric constant which includes both intraband and interband
transitions. The total complex dielectric constant is the sum of both processes:

ε̂(q, ω) = ε̂inter(q, ω)+ ε̂intra(q, ω) . (6.2.17)

In Chapter 5, the discussion focused on the dielectric response due to intraband
excitations; these are particularly important for metals. Now we discuss interband
transitions due to direct excitations across the bandgap Eg of the semiconductor.
We can split the dielectric constant into its real and imaginary parts following
Eqs (4.3.34b) and (4.3.34a), and in the q = 0 limit we arrive at

ε1(ω) = 1− 4π

�

e2

m2

∑
k

∑
l,l ′

[
f 0(Ekl)

Ekl − Ek,l ′

1

(Ekl − Ek,l ′)2 − h̄2ω2

]
|pl ′l |2 (6.2.18a)

ε2(ω) = 4π2

�

e2

ω2m2

∑
k

∑
l �=l ′

f 0(Ekl)δ {Ekl ′ − Ekl − h̄ω} |pl ′l |2 , (6.2.18b)

where we have used Eq. (6.2.11). At T = 0 the Fermi distribution becomes a step
function; after replacing the sum over k by an integral over a surface of constant
energy, the imaginary part of the dielectric constant has the form

ε2(ω) = 4π2e2

ω2m2

∑
l �=l ′

2

(2π)3

∫
h̄ω=El′l

δ {Ekl ′ − Ekl − h̄ω} |pl ′l |2 dk . (6.2.19)

This expression can be cast into a form identical to Eq. (6.2.15) by noting that the
energy difference Ekl ′ − Ekl = h̄ωll ′ , using the relationships ε2 = 1 + 4πσ1/ω

and α = 4πσ1/(nc) between the dielectric constant, the conductivity, and the
absorption coefficient.

6.3 Band structure effects and van Hove singularities

Besides the matrix element of the transition, the dielectric properties of semi-
conductors are determined by the electronic density in the valence and in the
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conduction bands. For a band l with the dispersion relation ∇kEl(k) the so-called
density of states (DOS) is given by

Dl(E) dE = 2

(2π)3

(∫
El (k)=const.

dSE
|∇kEl(k)|

)
dE (6.3.1)

with the factor of 2 referring to the two spin directions. The expression gets most
contributions from states where the dispersion is flat, and ∇kEl(k) is small. For
direct optical transitions between two bands with an energy difference El ′l = El ′ −
El , however, a different density is relevant; this is the so-called combined or joint
density of states, which is defined as

Dl ′l(h̄ω) = 2

(2π)3

∫
BZ

δ{El(k)− El ′(k)− h̄ω} dk

= 2

(2π)3

∫
h̄ω=El′l

dSE
|∇k[El ′(k)− El(k)]| . (6.3.2)

The critical points, where the denominator in the expression becomes zero,

∇k[El ′(k)− El(k)] = ∇kEl ′(k)− ∇kEl(k) = 0 , (6.3.3)

are called van Hove singularities in the joint density of states. This is the case for
photon energies h̄ωl ′l for which the two energy bands separated by El ′l are parallel
at a particular k value.

Rewriting the integral in Eq. (6.2.19), we immediately see that the imaginary
part of the dielectric constant is directly proportional to the joint density of states,
and

ε2(ω) = 4πe2

m2ω2

2

(2π)3

∑
l,l ′

∫
El′l=const.

dSE
|∇k[El ′(k)− El(k)]| |pl ′l |2

=
(

2πe

mω

)2 ∑
l,l ′

Dl ′l(h̄ω)|pl ′l |2 . (6.3.4)

The message of this expression is clear: the critical points – where the joint density
of states peaks – determine the prominent structures in the imaginary part of the
dielectric constant ε2(ω) and thus of the absorption coefficient.

Next we evaluate the optical parameters of semiconductors using previously
derived expressions.

6.3.1 The dielectric constant below the bandgap

For a semiconductor in the absence of interactions, and also in the absence of
lattice imperfections, at T = 0, there is no absorption for energies smaller than
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the bandgap. The conductivity σ1, and therefore the absorption coefficient, are
zero, but the dielectric constant ε1 is finite, positive, and it is solely responsible
for the optical properties in this regime. In the static limit, ω → 0, ε1 can be
calculated if the details of the dispersion relations of the valence and conduction
bands are known. Let us first assume that we have two, infinitely narrow, bands
with the maximum of the valence band at the same k position as the minimum
of the conduction band, separated by the energy Eg = h̄ωg. In this case, from
Eq. (6.1.11) we find

ε1(ω = 0) = 1+ 4πNe2

mω2
g

= 1+
(
ωp

ωg

)2

(6.3.5)

by virtue of the sum rule which is
∑

l fl = 1. An identical result can be derived by
starting from Eq. (6.2.19) and utilizing the Kramers–Kronig relation (3.2.31)

ε1(ω = 0) = 1+ 2

π

∫ ∞

0

ε2(ω)

ω
.

This also indicates that ε1(ω = 0) can, in general, be cast into the form of

ε1(ω = 0) = 1+ C

(
ωp

ωg

)2

, (6.3.6)

where C is a numerical constant less than unity which depends on the details of the
joint density of states.

6.3.2 Absorption near to the band edge

If the valence band maximum and the conduction band minimum in a semiconduc-
tor have the same wavevector k, as shown in Fig. 6.8a, the lowest energy absorption
corresponds to vertical, so-called direct, transitions. Near to the band edge, for a
photon energy E = h̄ω ≥ Eg, the dispersion relations of the valence and conduction
bands are given by Eqs (6.2.5), and we obtain

El ′(k)−El(k) = Ec(k)−Ev(k) = Eg+ h̄2

2

(
1

mc
+ 1

mv

)
k2 = Eg+ h̄2k2

2µ
, (6.3.7)

where

µ = mcmv

mc + mv
(6.3.8)

is the reduced electron–hole mass. The analytical behavior of the joint density of
states Dcv(h̄ω) near a singularity may be found by expanding Ec(k) − Ev(k) in a
Taylor series around the critical point of energy difference Ek(k0).
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First let us consider the three-dimensional case. For simplicity we assume
isotropic effective masses mv and mc in the valence and conduction bands. Conse-
quently

Ec(k)− Ev(k) = Eg + (h̄2/2µ)|k− k0|2 . (6.3.9)

Such an expression should be appropriate close to k0, the momentum for which the
band extrema occur. The joint density of states at the absorption edge can now be
calculated by Eq. (6.3.2), and we obtain

Dcv(h̄ω) = 1

2π2

(
2µ

h̄2

)3/2

(h̄ω − Eg)
1/2 (6.3.10)

for h̄ω > Eg. This term determines the form of the absorption, and also ε2(ω)

(or accordingly σ1(ω)) in the vicinity of the bandgap. For photon energies below
the gap, ε2(ω) = 0, i.e. the material is transparent. Substituting Eq. (6.3.10) into
Eq. (6.3.4), we obtain for energies larger than the gap h̄ω > Eg

ε2(ω) = 2e2

m2ω2

(
2µ

h̄2

)3/2

|pcv|2(h̄ω − Eg)
1/2 . (6.3.11)

Note that m is the mass of the charge carriers which are excited; this mass, but
also the reduced electron–hole mass µ, enters into the expression of the dielectric
constant. The relation for the real part of the dielectric constant ε1(ω) can be
obtained by applying the Kramers–Kronig relation (3.2.12a); and we find

ε1(ω) = 1+ 2e2

m2ω2

(
2µ

h̄2

)3/2

|pcv|2

×
[
2Eg − E1/2

g (Eg + h̄ω)1/2 − E1/2
g (Eg − h̄ω)1/2�{Eg − h̄ω}

]
(6.3.12)

with the Heaviside step function

�{x − x ′} =
{

1 if x > x ′

0 if x < x ′ .

Equation (6.3.12) holds in the vicinity of the bandgap. Due to the square root
dependence of ε2(ω) above the energy gap, the real part of the dielectric constant
ε1(ω) displays a maximum at ωg = Eg/h̄ and falls off as (Eg−h̄ω)1/2 at frequencies
right below the gap. Both ε1(ω) and ε2(ω) are displayed in Fig. 6.9. The frequency
dependence of the dielectric constant leads to a characteristic behavior of the
reflectivity R(ω) in the frequency range of the bandgap as displayed in Fig. 6.10;
most remarkable is the peak in the reflectivity at the gap frequency ωg.

For crystals, in which the energy depends only on two components of the
wavevector k, say ky and kz , the expression of the two-dimensional joint density of
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Fig. 6.9. Frequency dependence of the real and imaginary parts of the dielectric constant
of a semiconductor, ε1(ω) and ε2(ω), near the bandgap with direct transition for three (3D),
two (2D), and one (1D) dimensions.

states becomes

Dcv(h̄ω) = 1

2aπ2

∫
BZ

δ{Ec(ky, kz)− Ev(ky, kz)− h̄ω} dk , (6.3.13)

where BZ now indicates the two-dimensional Brillouin zone and 2π/a appears
because of the integration involving kx . At the band edge, Dcv is a step function of
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height µ/π h̄2, and we find that, for h̄ω > Eg,

ε2(ω) = 2πe2

m2ω2

(
2µ

h̄2

)
|pcv|2 . (6.3.14)

In the vicinity of the bandgap, 1/ω2 can be assumed constant, leading to a fre-
quency independent absorption in two dimensions. The real part of the dielectric
constant is

ε1(ω) = 1+ 2e2

mω2

(
2µ

h̄2

)
|pcv|2

∣∣∣∣∣1− h̄2ω2

E2
g

∣∣∣∣∣ (6.3.15)

for frequencies ω close to the gap ωg.
If the energy depends only on one component of k, the one-dimensional case,

the arguments given above lead to a singularity of the density of states at the gap
of the type (h̄ω− Eg)

−1/2. For the imaginary part of the dielectric constant we find

ε2(ω) = 4πe2

m2ω2

(
2µ

h̄2

)1/2

|pcv|2(h̄ω − Eg)
−1/2 (6.3.16)
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for h̄ω > Eg, and for the real part of the dielectric constant we obtain

ε1(ω) = 1+ e2

m2ω2

(
2µ

h̄2

)1/2

|pcv|2

×
[
2E−1/2

g − (Eg + h̄ω)−1/2 − (Eg − h̄ω)−1/2�{Eg − h̄ω}
]

(6.3.17)

for frequencies near the gap energy; these frequency dependences are displayed in
Fig. 6.9. In plotting these frequency dependences, it can be assumed that the matrix
element |pcv| is constant, i.e. independent of frequency – by no means an obvious
assumption.

6.4 Indirect and forbidden transitions

The results obtained above are the consequence of particular features of the disper-
sion relations and of the transition rate – the two factors which determine the optical
transition. We have assumed that the maximum in the valence band coincides – in
the reduced zone scheme – with the minimum in the conduction band, and we
have also assumed that the first term in Eq. (6.2.10), the term u∗l (k)A · ∇ul ′(k), is
finite. In fact, either of these assumptions may break down, leading to interband
transitions with features different from those derived above.

6.4.1 Indirect transitions

In a large number of semiconductors, the energy maxima in the valence and minima
in the conduction bands do not occur for the same momentum k and k′, but for
different momenta; a situation sketched in Fig. 6.8b. Optical direct transitions
between these states cannot take place due to momentum conservation; however,
such transitions become possible when the excitation of phonons is involved. The
two ways in which such so-called indirect transitions can occur are indicated in
Fig. 6.11. One scenario involves the creation of a photon for wavevector k and the
subsequent phonon emission, which absorbs the energy and momentum, necessary
to reach the conduction band at momentum k′. An opposite process, in which a
phonon-involved transition leads to a valence state at k′, followed by a photon-
involved vertical transition also contributes to the absorption process. In the two
cases energy and momentum conservation requires that

Eg ± EP = h̄ω

kl ′ − kl = ±P ,

where P is the phonon momentum, and EP is the energy of the phonon involved.
As before, it is understood that we use the reduced zone scheme, with all of its
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Fig. 6.11. Indirect transitions between the valence and conduction band states with differ-
ent wavevectors. The dashed lines indicate the (vertical) transitions due to the interaction
with photons, and the full straight lines indicate the transitions involving phonons with
momenta P = k′ −k with energy EP. For both transitions Eg± EP = h̄ω, the energy of the
vertical transition.

implications. We can use second order perturbation theory for the transition rate to
obtain

W(k,l)→(k+P,l ′) = πe2

2m2h̄c2

∣∣∣∣∣〈k+ q, l ′|Vq(P, r)|kl ′′〉N 1/2
P 〈kl ′′|A · Pl ′′l |kl ′〉

Ekl ′′ − Ekl − h̄ω

∣∣∣∣∣
2

× δ{Ek+P,l ′ − Ekl − h̄ω − h̄ωP} , (6.4.1)

where NP denotes the phonon occupation number, and ωP is the frequency of
the phonons involved. This in thermal equilibrium is given by the Bose–Einstein
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expression

NP = 1

exp
{

h̄ωP
kBT

}
− 1

. (6.4.2)

In Eq. (6.4.1) the first angled bracket involves the transition associated with the
phonons, and the second involves the vertical transition. Similar expressions hold
for other transitions indicated in Fig. 6.11.

The matrix elements are usually assumed to be independent of the k states
involved, and the transitions may occur from valence states with different momenta
to the corresponding conduction states, again with different momentum states.
Therefore we can simply sum up the contributions over the momenta k′ and k
in the delta function. Converting the summation to an integral as before, we obtain

W ind
ll ′ (ω) ∝ NP

∫ ∫
Dl(El)Dl ′(El ′)δ{El ′ − El − h̄ω ± h̄ωP} dEl ′ dEl . (6.4.3)

The two transitions indicated in Fig. 6.11 involve different phonons, and also
different electron states in the valence and conduction bands. Unlike the case
of direct vertical transitions, there is no restriction to the momenta k and k′, as
different phonons can absorb the momentum and energy required to make the
transition possible. Consequently, the product Dl(El) · Dl ′(El ′) – instead of the
joint density of states Dl ′l(E) – appears in the integral describing the transition
rate. This then leads to an energy dependence for the indirect optical transition
which is different from the square root behavior we have found for the vertical
transition (Eq. (6.3.11)), and calculations along these lines performed for the direct
transition lead to

ε2(ω) ∝ NP(Eg − EP ± h̄ω)2 (6.4.4)

for h̄ω ≥ Eg ± EP.
Such indirect transitions have several distinct characteristics when compared

with direct transitions. First, the absorption coefficient increases with frequency
as the square of the energy difference, in contrast to the square root dependence
found for direct transitions. Second, the absorption is strongly temperature depen-
dent, reflecting the phonon population factor NP; and third, because of the two
processes for which the phonon energy appears in different combinations with the
electronic energies, two onsets for absorption appearing at different frequencies
are expected. All these make the distinction between direct and indirect optical
transitions relatively straightforward.
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6.4.2 Forbidden transitions

Let us now return to Eq. (6.2.10), which describes the transition between two
bands. The first integral on the right hand side

ieh̄

2mc

1

�

∫
�

u∗l (k)[A · ∇ul ′(k)] dr

is involved in the direct transitions we discussed in Section 6.2.2. For a perfect
semiconductor, for which all states in the valence and conduction bands can be
described by Bloch functions, the second part of the Hamiltonian, i.e. the matrix
element

ieh̄

2mc

1

�

∫
�

u∗l (k) [iA · k ul ′(k)] dr ,

would be identical to zero simply because the wavefunctions are orthogonal in
the different bands. Small changes in k (due to phonons or other scatterers) may,
however, violate this strict rule and lead to a finite integral – and thus contribute
to the optical transitions between the valence and conduction bands. Of course,
the integral remains small compared to the integral which describes the direct
transitions, and can be of importance only when the direct allowed transitions
do not occur – due to the vanishingly small matrix element involved in these
transitions. Let us assume that due to these scattering processes transitions be-
tween (slightly) different k states are possible, and expand the product for small
wavevector differences k′′ = k− k′:∫

u∗l (k
′)ul ′(k) dr ≈

∫
ul(k′)

[
1+ k′′ · ∇k + 1

2
(k′′ · ∇k)

2 + · · ·
]

u∗l ′(k) dr .

(6.4.5)
The first term in the integral is zero; the second term is also zero if the allowed
transition has a zero matrix element (see the first term in Eq. (6.2.10)) – as should
be the case when forbidden transitions make the important contribution to the
absorption; and the third term is proportional to (k′′)2 and is therefore small.
Thus, as a rule, forbidden transitions have significantly smaller matrix elements
than direct transitions.

Calculation of the optical absorption for such higher order transitions proceeds
along the lines we have followed before. The term introduces extra k2 factors, and
thus additional energy dependences; we find upon integration that

ε2(ω) ∝
(
h̄ω − Eg

)3/2
, (6.4.6)

a functional form distinctively different from that which governs the direct absorp-
tion.
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6.5 Excitons and impurity states

Finally we discuss optical transitions in which states brought about by Coulomb
interactions are of importance. Electron–hole interactions lead to mobile states,
called excitons, whereas Coulomb interactions between an impurity potential and
electrons lead to bound states localized to the impurity sites. In both cases, these
states can be described simply, by borrowing concepts developed for the energy
levels of single atoms.

6.5.1 Excitons

When discussing the various optical transitions, we used the simple one-electron
model, and have neglected the interaction between the electron in the conduction
band and the hole remaining in the valence band. Coulomb interaction between
these oppositely charged entities may lead to a bound state in a semiconductor, and
such bound electron–hole pairs are called excitons. Such states will have an energy
below the bottom of the conduction band, in the gap region of the semiconductor or
insulator. As the net charge of the pair is zero, excitons obviously do not contribute
to the dc conduction, but can be excited by an applied electromagnetic field, and
will thus contribute to the optical absorption process.

For an isotropic semiconductor, the problem is much like the hydrogen atom
problem, with the Coulomb interaction between the hole and the electron screened
by the background dielectric constant ε1 of the semiconductor. Both hole and
electron can be represented by spherical wavefunctions, and the energy of the
bound state is given by the usual Rydberg series,

Eexc
j = Eg − e4µ

2h̄2ε2
1 j2

, (6.5.1)

where j = 1, 2, 3, . . . and µ−1 = mv
−1+mc

−1 denotes the effective mass we have
encountered before. The low frequency dielectric constant is ε1 = 1+C

(
h̄ωp/Eg

)2

with C a numerical constant of the order of one, as in Eq. (6.3.6). The spatial
extension of this state can be estimated by the analogy to the hydrogen atom, and
we find that

r exc
j = ε1h̄2 j2

e2µ
.

For small bandgap semiconductors, the static dielectric constant ε1 is large, and
consequently the spatial extension of the excitons is also large. At the same time,
according to Eq. (6.5.1), the energy of the excitons is small. This type of electron–
hole bound state is called the Mott exciton and is distinguished from the strongly
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Fig. 6.12. Exciton energy levels for a direct gap semiconductor. In the absence of Coulomb
interactions, transitions take place from the top of the valence band to the conduction band
with the energy Eg. With excitons transitions occur from the top of the valence band to the
excitonic energy level Eexc

j .

bound exciton which occurs in insulators with large energy gaps (and consequently
small ε1), the so-called Frenkel exciton.

The previous equation is for an exciton at rest. This is not necessarily the case,
and the motion of the bound electron–hole pair can be decomposed into the relative
motion of the particles about their center of mass, and the motion of the center
of mass by itself. The Rydberg series describes the relative motion of the two
particles. The motion of the center of mass is that of a free particle with a total mass
of mc + mv, and in the effective mass approximation the kinetic energy associated
with this translational motion is

Eexc
kin =

h̄2K2

2(mc + mv)
= h̄2(kc + kv)

2

2(mc + mv)
. (6.5.2)

The energy levels of such exciton states are displayed in Fig. 6.12.
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Here we are interested in the optical signature of these exciton states. Instead
of free electrons and holes – the energy of creating these is the gap energy Eg

or larger – the final state now corresponds to the (ideally) well defined, sharp,
atomic like energy levels. Transitions to these levels then may lead to a series of
well defined absorption peaks, each corresponding to the different j values in the
Rydberg series. The energy separation between these levels is appreciable only if
screening is weak, and this happens for semiconductors with large energy gaps. For
small bandgap semiconductors, the different energy levels merge into a continuum,
especially with increasing quantum numbers j . Transitions to this continuum of
states – with energy close to Eg – lead to absorption near the gap, in addition to the
absorption due to the creation of a hole in the valence band and an electron in the
conduction band. The calculation of the transition probabilities is a complicated
problem, beyond the scope of this book.

6.5.2 Impurity states in semiconductors

Impurity states, created by acceptor or donor impurities, and the extrinsic conduc-
tivity associated with these states (together with the properties of semiconductor
junctions) have found an enormous number of applications in the semiconductor
industry. Of interest to us are the different types of energy levels – often broadened
into a band – which these impurity states lead to in the region of the energy
gap. Various optical transitions between these energy levels and the conduction
or valence bands are found, together with transitions between these impurity
levels.

The impurity states are usually described in the following way. One atom in the
crystal is replaced by an atom with a different charge – say a boron atom in a silicon
crystal. It is regarded as an excess negative charge at the site of the doping and a
positive charge loosely bound to this position (loosely because of the screening by
the electrons in the underlying semiconductor). The model which can account for
this, at least for an isotropic medium, is Bohr’s model of an atom, and the energy
levels are

E imp
j = e4m

2h̄2ε2
1 j2

(6.5.3)

where j = 1, 2, 3, . . . ,m is the effective mass of electrons or holes, and ε1 is
the background dielectric constant; here the energy is counted from the top of the
valence band. There is a mirror image of this in the case of doping with a donor;
the energy levels as given by the above equation are then negative in sign, and are
measured from the bottom of the conduction band. These states are shown in a
schematic way in Fig. 6.13. The energy scales associated with impurity states are
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Fig. 6.13. Energy levels E imp
j of impurity states in the vicinity of the valence and conduc-

tion bands. Donors lead to energy levels below the bottom of the conduction band; the
impurity levels of acceptors are above the valence band.

small because of the small effective mass and also because of the large background
dielectric constant. Typically for semiconductors such as silicon or germanium,
they are of the order of 10 meV, significantly smaller than the single-particle gap
(of the order of 1 eV). These states have also a spatial extension, significantly larger
than the interatomic spacing, given by an expression similar to that for excitons:

r imp = ε1h̄2

e2m

for j = 1. At zero temperature the impurity states comprise an electron (or hole)
weakly bound to the (oppositely charged) donor, and there is no dc conduction.
Thermally excited hopping between these states, and also – because of the small
energy scales involved – thermal ionization, leads to finite dc conduction, which
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increases strongly with increasing temperature. The various aspects of this so-
called extrinsic conduction mechanism are well known and understood.

Electron states can also be delocalized by increasing the impurity concentration,
and – because of the large spatial extension of the impurity states – the overlap of
impurity wavefunctions, and thus delocalization occurs at low impurity concentra-
tions. Such delocalization leads to a metallic impurity band, and this is a prototype
example of (zero temperature) insulator-to-metal transition.

All this has important consequences on the optical properties of doped semicon-
ductors. For small impurity concentrations, transitions from the valence band to
the impurity levels, or from these levels to the continuum of states, are possible,
leading to sharp absorption lines, corresponding to expression (6.5.3), together
with transitions between states, corresponding to the different quantum numbers j .
Again, the transition states between the continuum and impurity states are difficult
to evaluate; but transitions between the impurity levels can be treated along the
lines which have been developed to treat transitions between atomic energy levels.
Interactions between impurities at finite temperatures all lead to broadening of the
(initially sharp) optical absorption lines.

The situation is different when impurity states are from a delocalized, albeit
narrow, band. Then what is used to account for the optical properties is the familiar
Drude model, and we write

σ1(ω) = N j e2τ

ε1m j

1

1+ ω2τ 2
(6.5.4)

where N j is the number of impurity states, m j is the mass of the impurity state,
and τ is the relaxation time; ε1 is again the background dielectric constant. This
then leads to the so-called free-electron absorption together with a plasma edge at

ω∗p =
(

4πN j e2

ε1m j

)1/2

≈
(

N j m

Nm j

)1/2

Eg . (6.5.5)

As m ≈ m j and N j � N , the plasma edge lies well in the gap region and is also
dependent on the dopant concentration. The optical conductivity and reflectivity
expected for a doped semiconductor (in the regime where the impurities form a
band, and the impurity conductivity is finite at zero frequency) are displayed in
Fig. 6.14; the parameters chosen are appropriate for a dc conductivity σdc = 2 ×
104 �−1 cm−1 and a scattering rate 1/(2πτc) = 0.2 cm−1; the energy gap between
the conduction and valence bands is νg = Eg/hc = 1000 cm−1.
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Fig. 6.14. (a) Optical conductivity σ1(ω), (b) dielectric constant ε1(ω), and (c) reflectivity
R(ω) for a doped semiconductor with an impurity band having finite dc conductivity σdc =
2× 104 �−1 cm−1 and scattering rate 1/(2πcτ) = γ = 0.2 cm−1. The excitations across
the energy gap Eg/hc = ωg/(2πc) = 1000 cm−1 are modeled according to Eq. (6.3.11)
by a square root onset σ1(ω) ∝ (ω − ωg)

1/2(ω2 + ω2
p)
−1 with ωp/(2πc) = 50 000 cm−1.
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6.6 The response for large ω and large q

Much of what has been said before refers to electronic transitions at energies
near to the single-particle gap. Also, with one notable exception, namely indirect
transitions, we have considered only transitions in the q = 0 limit; a reasonable
assumption for optical processes. The emergence of the gap, and in general band
structure effects, lead to an optical response fundamentally different from optical
properties of metals where, at least for simple metals, the band structure can
be incorporated into parameters such as the bandmass mb – leaving the overall
qualitative picture unchanged.

Obviously, opening up a gap at the Fermi level has fundamental consequences
as far as the low energy excitations are concerned; there is no dc conduction, but a
finite, positive dielectric constant at zero frequency – and also at zero temperature
– for example. It is expected, however, that such a (small) gap has little influence
on excitations at large frequencies, and also with large momenta; and we should in
this limit recover much of what has been said about the high ω and large q response
of the metallic state. This is more than academic interest, as these excitations are
readily accessible by optical and electron energy loss experiments – among other
spectroscopic tools.

The evaluation of the full ω and q dependent response is complicated, and is
discussed in several publications [Bas75, Cal59, Coh88]. Here we recall some
results, first only for ω = 0 and only for three-dimensional, isotropic semiconduc-
tors. Starting from Eq. (4.3.20) derived for the longitudinal response in the static
limit (ω→ 0), the complex dielectric constant reads

ε̂(q) = 1− 4πe2

q2�

∑
k

∑
l,l ′

f 0(Ek+q,l ′)− f 0(Ekl)

Ek+q,l ′ − Ekl
|〈k+ q, l ′| exp{iq · r}|kl〉∗|2 .

(6.6.1)
Let us consider large q values first. Here the wavevector dependence of the
dielectric constant can, in a first approximation, be described by a free-electron
gas, with the bandgap and band structure effects, in general, of no importance.
This approach leads to Eq. (5.4.18), and we find for the real part of the dielectric
constant

ε1(q) = 1+ 3

8

(
h̄ωpkF

qEF

)2 [
1+

(
kF

q
− q

4kF

)
ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣
]

. (6.6.2)

For large q

ε1(q) = 1+
(

h̄ωp

Eg

)2 (
kF

q

)2

(6.6.3)

approaches the free-electron behavior that we recovered for simple metals in Chap-
ter 5.
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Fig. 6.15. Excitation spectrum of a three-dimensional semiconductor. The pair excitations
fall within the shaded area. In the region h̄ω > Eg + (h̄2/2m)(2kF + q)q, the absorption
vanishes since h̄ω is larger than the energy difference possible. Also for h̄ω < Eg +
(h̄2/2m)(q − 2kF)q we find σ1 = 0.

Next, let us examine what happens at high frequencies, in the q = 0 limit;
i.e. at frequencies larger than the spectral range where band structure effects are of
importance. In this limit, the effects related to the density of states can be neglected,
and the inertial response of the electron gas is responsible for the optical response.
The Lorentz model in the limit ω � ω0 is an appropriate guide to what happens.
First, we recover a high frequency roll-off for the conductivity σ1(ω), and

σ1(ω) ≈
ω2

p

4π

τ

ω2τ 2
. (6.6.4)

Second, there is a zero-crossing of the dielectric constant at frequency ω = ωp;
this has two important consequences that we have already encountered for metals,
namely that ωp is the measure of the onset of transparency (here also just as in
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the metallic state), and ε1 = 0 at this frequency leads to plasma oscillations.
The arguments which lead to these consequences are identical to those we have
advanced in Chapter 5.

Finally let us sketch and discuss the excitation spectrum for finite ω and q
– assuming a hypothetical small and isotropic gap. As pointed out, for small
bandgaps Eg, the existence of the single-particle gap modifies the low energy part
of the excitation spectrum; for Eg � h̄ωp – the situation we usually encounter in
semiconductors – the high energy single-particle and collective excitations are only
slightly modified. Due to the single-particle gap, electron–hole excitations require
a minimum energy Eg for zero momentum. This leads to an upward displacement
of the excitation spectrum of the electron gas, the situation appropriate for a small
bandgap semiconductor (see Fig. 6.15). As for metals, we recover the region of
single-particle electron–hole excitations, together with the finite plasma frequency
at ωp =

(
4πNe2/mb

)1/2
, which is in general significantly larger than the bandgap

Eg.
Of course, the situation becomes dramatically different when the gap becomes

comparable to the plasma frequency; the situation which may then occur is wide
bandgap insulation. The situation can, at least qualitatively, be examined by utiliz-
ing the Lorentz model in the ω0 � ωp limit; this will give some insight into the
q = 0 limit.
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7

Broken symmetry states of metals

The role of electron–electron and electron–phonon interactions in renormalizing
the Fermi-liquid state has been mentioned earlier. These interactions may also lead
to a variety of so-called broken symmetry ground states, of which the supercon-
ducting ground state is the best known and most studied. The ground states are
superpositions of electron–electron or electron–hole pairs all in the same quantum
state with total momenta of zero or 2kF; these are the Cooper pairs for the super-
conducting case. There is an energy gap �, the well known BCS gap, introduced
by Bardeen, Cooper, and Schrieffer [Bar57], which separates the ground state from
the single-particle excitations. The states develop with decreasing temperature as
the consequence of a second order phase transition.

After a short review of the various ground states, the collective modes and their
response will be discussed. The order parameter is complex and can be written as
� exp{iφ}; the phase plays an important role in the electrodynamics of the ground
state. Many aspects of the various broken symmetry states are common, but the
distinct symmetries also lead to important differences in the optical properties.
The absorption induced by an external probe will then be considered; it is usually
discussed in terms of the so-called coherence effects, which played an important
role in the early confirmation of the BCS theory. Although these effects are in
general discussed in relation to the nuclear magnetic relaxation rate and ultrasonic
attenuation, the electromagnetic absorption also reflects these coherence features,
which are different for the various broken symmetry ground states. As usual,
second quantized formalism, as introduced in Section 4.2, is used to describe these
effects, and we review what is called the weak coupling theory of these ground
states.

7.1 Superconducting and density wave states

The various ground states of the electron gas are, as a rule, discussed using second
quantized formalism, and this route is followed here. The kinetic energy of the

173
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Table 7.1. Various broken symmetry ground states of one-dimensional metals.

Pairing Total spin Total momentum Broken symmetry

Singlet superconductor electron–electron S = 0 q = 0 gauge
e+, σ ; e−,−σ

Triplet superconductor electron–electron S = 1 q = 0 gauge
e+, σ ; e−, σ

Spin density wave electron–hole S = 1 q = 2kF translational
e+, σ ; h−,−σ

Charge density wave electron–hole S = 0 q = 2kF translational
e+, σ ; h−, σ

electron gas is

Hkin =
∫

dr�∗(r)
p2

2m
�(r) =

∑
k,σ

h̄2k2

2m
a+k,σak,σ =

∑
k,σ

Eka+k,σak,σ (7.1.1)

in terms of the creation and elimination operators defined in Section 4.2. Next we
describe the interaction between the electrons; this, in its general form, is given by

Hee =
∫

dr dr′N (r)V (r, r′)N (r′) =
∫

dr dr′�∗(r)�(r)V (r, r′)�∗(r′)�(r′)

=
∑

k,k′,l,l ′,σ,σ ′
Vk,k′,l,l ′a

+
k,σa+k′,σ ′al,σal ′,σ ′ ;

where N is the particle density, and V denotes the potential energy due to the
interaction. With these – the kinetic and the interaction – terms, the pairing
Hamiltonian is cast into the form

H =
∑
k,σ

Ekc+k,σ ck,σ +
∑

k,k′,l,l ′,σ,σ ′
Vk,k′,l,l ′a

+
k,σa+k′,σ ′al,σal ′,σ ′ . (7.1.2)

In order to see its consequences, the interaction term has to be specified to include
only terms which lead to – in the spirit of the BCS theory – formation of electron
(or hole) pairs. For the term∑

k,l,σ

Vk,la
+
k,σa+−k,σa−l,−σal,σ , (7.1.3)

for example, electron pairs are formed with total momentum q = 0 and total spin
S = 0, the well known Cooper pairs. This, however, is not the only possibility.
The situation is simple in the case of a one-dimensional metal where the Fermi



7.1 Superconducting and density wave states 175

surface consists of two points at kF and −kF. Then the following pair formations
can occur:

k′ = −k l′ = −l σ ′ = −σ singlet superconductor
k′ = −k l′ = −l σ ′ = σ triplet superconductor
k′ = k− 2kF l′ = l− 2kF σ ′ = −σ spin density wave
k′ = k− 2kF l′ = l− 2kF σ ′ = σ charge density wave

The first two of these states develop in response to the interaction Vk,l = Vq

for which q = 0; this is called the particle–particle or Cooper channel. The
resulting ground states are the well known (singlet or triplet) superconducting
states of metals and will be discussed shortly. The last two states, with a finite
total momentum for the pairs, develop as a consequence of the divergence of the
fluctuations at q = 2kF (Table 7.1); this is the particle–hole channel, usually called
the Peierls channel. For these states one finds a periodic variation of the charge
density or spin density, and consequently they are called the charge density wave
(CDW) and spin density wave (SDW) ground states. In the charge density wave
ground state

�ρ = ρ1 cos{2kF · r+ φ} (7.1.4)

where ρ1 is the amplitude of the charge density. In the spin density wave case, the
spin density has a periodic spatial variation

�S = S1 cos{2kF · r+ φ} . (7.1.5)

Throughout this chapter we are concerned with density waves where the period
λDW = π/|Q| is not a simple multiple of the lattice translation vector R, and
therefore the density wave is incommensurate with the underlying lattice. Com-
mensurate density waves do not display many of the interesting phenomena dis-
cussed here, as the condensate is tied to the lattice and the phase of the ground
state wavefunction does not play a role.

A few words about dimensionality effects are in order. The pairing, which leads
to the density wave states with electron and hole states differing by 2kF, is the
consequence of the Fermi surface being two parallel sheets in one dimension. The
result of this nesting is the divergence of the response function χ̂(q, T ) at Q =
2kF at zero temperature as displayed in Fig. 5.14. Parallel sheets of the Fermi
surface may occur also in higher dimensions, and this could lead to density wave
formation, with a wavevector Q related to the Fermi-surface topology. In this case
the charge or spin density has a spatial variation cos{Q · r+ φ}.
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We will outline the solution which is obtained for Cooper pairs, i.e. pairs with
total momentum zero and with spin zero. The Hamiltonian in this case is

H =
∑
k,σ

Eka+k,σak,σ +
∑
k,l,σ

Vk,l a+k,σa+−k,−σa−l,−σal,σ . (7.1.6)

It is modified by seeking a mean field solution; this is done by assuming that
a−k,−σak,σ have non-zero expectation values, but that fluctuations away from aver-
age are small. We write formally

a−k,−σak,σ = bk + (a−k,−σak,σ − bk)

and neglect bilinear terms. Inserting these into the original Hamiltonian results in

H =
∑
k,σ

Eka+k,σak,σ +
∑
k,l

Vk,l(a
+
k,σa+−k,−σbl + b+k a−l,−σ , al,σ − b+k bl) , (7.1.7)

with

bk = 〈a−k,−σ , ak,σ 〉th
where 〈 〉th denotes the thermal average. We also introduce the notation

�k = −
∑

l

Vk,l〈a−l,−σ , al,σ 〉th , (7.1.8)

a complex gap, as we will see later. With this we have

H =
∑
k,σ

Eka+k,σak,σ −
∑

k

(
�ka+k,σa+−k,−σ +�∗

ka−k,−σak,σ −�kb+k
)

. (7.1.9)

We intend to find a solution by diagonalization: we introduce new states – which
will be the quasi-particle states – which are related to our original states by a linear
transformation, and require that the Hamiltonian is diagonal with respect to these
new states. We write

ak,σ = u∗kγk,0 + vkγ
+
k,1 (7.1.10a)

a+−k,−σ = v∗kγk,0 + ukγ
+
k,1 , (7.1.10b)

where |uk|2 + |vk|2 = 1. We insert the above into the Hamiltonian and require
that terms which would not lead to a diagonalization, the terms of γkγl or γlγk in
abbreviated notation, are zero. The end results are as follows:

1− |uk|2 = |vk|2 = 1

2

(
1− ζk

Ek

)
; (7.1.11)

the energies of the quasi-particle excitations are

Ek =
(|�k|2 + ζ 2

k

)1/2
. (7.1.12)
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There is an energy minimum (for ζk = 0) for the excitation of the quasi-particles;
this is the well known superconducting gap. We will assume that �k is real. This
is not a solution yet, but we require selfconsistency by using the above coefficients
to write �k in Eq. (7.1.8), and using the Fermi distribution function

f (Ek) =
(

exp
{Ek − EF

kBT

}
+ 1

)−1

to describe their population probability at a temperature T . This leads to the so-
called gap equation:

�k = −
∑

l

Vk,l�l
1− 2 f (El)

2El
= −

∑
l

Vk,l�l tanh
{ El

2kBT

}
. (7.1.13)

We assume that Vk,l is a constant up to a cutoff energy Ec and is zero above this
energy; this yields, by converting the summation over l to an integral,

1 = D(0)V
∫ Ec

0

tanh{E}
E dE , (7.1.14)

where D(0) is the density of states in the normal state, i.e. the metallic state above
the transition.

The end results are as follows: there is a finite transition temperature Tc which
is related to the gap � (which does not depend on the momentum) by

2�(T = 0) = 3.528kBTc ; (7.1.15)

both parameters are non-analytical functions of V , the interaction potential which
leads to the superconducting state. The gap �(T ) is temperature dependent and
approaches zero in a fashion familiar for order parameters of a second order (mean
field) phase transitions; this temperature dependence is displayed in Fig. 7.1. The
density of the quasi-particle state Ds(E) is

Ds(E)
D(0)

=



0 if E < �

E
(E2−|�|2)1/2 if E > �

(7.1.16)

and diverges at the gap. The source of this divergence is similar to that encountered
in one-dimensional semiconductors, a situation similar to perfect nesting, as every
k, σ state will have its−k,−σ counterpart. The above density of states is sampled
by tunneling experiments.

The procedure outlined above can also be used to discuss the other broken
symmetry ground states. The gap equation, the form of the density of states,
remains the same; what is different are the energy scales involved and the character
of the ground states. The BCS superconducting state arises as the consequence of
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Fig. 7.1. (a) Temperature dependence of the superconducting penetration depth λ(T ) in
comparison with the order parameter �(T ). According to Eq. (7.2.10), (λ(T )/λ(0))−2

is proportional to the density of superconducting charge carriers Ns. (b) Temperature
dependence of the penetration depth λ(T ) calculated by Eq. (7.4.25).

(retarded) electron–phonon interaction and the cutoff is associated with the energy
of the relevant phonons h̄ωP. In case of density wave states such retardation does
not play a role, and the cutoff energy is the bandwidth of the metallic state. As
this is usually significantly larger than the phonon energies, the transition temp-
eratures for density waves are, in general, also larger than the superconducting
transition temperatures. Another difference lies in the character of the state: if we
calculate the electronic density for superconductors, we find that it is constant and
independent of position, this is due to the observation that the total momentum of
the Cooper pairs is zero – the superconducting gap opens at zero wavevector. In
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contrast, electron–hole condensates of the density states have a total momentum
of 2kF (or −2kF); this leads to a spatial variation of the charge density given by
Eq. (7.1.4). There is, however, one important difference: in the latter case, the
period of the charge density is the same as the period of the underlying lattice. For
density waves, this period π/kF may be different from the lattice period; in fact
this period is often incommensurate with the underlying lattice. If this is the case,
the energy associated with these condensates is independent of their positions or of
the phase φ – with interesting implications as far as the dynamics of density waves
is concerned.

7.2 The response of the condensates

The ground state is a coherent superposition of Cooper pairs, all in the same
quantum state with the same wavefunction, and as such the condensate can be
written as a macroscopic wavefunction with an amplitude and phase

�(r, t) = [Ns(r, t)]1/2 exp{iφ(r, t)} , (7.2.1)

where Ns(r, t) is the condensate density. The phase φ(r, t) is that of our entire
macroscopic system and is therefore a physical observable – beautifully demon-
strated by the Josephson effects. In order to see the significance of the phase, we
calculate the current density due to the condensate1

J = − e

2m

[
�∗p� +�p∗�∗] ; (7.2.2)

in one dimension we find

Js = −Nseh̄

m

dφ

dr
, (7.2.3)

i.e. the current is determined by the spatial derivative of the phase. For density
waves, a somewhat different handwaving argument applies. The current density is

JDW = −NDWev = −NDWe
dr
dt

. (7.2.4)

We write the phase as φ = 2kF · r, and there are two electrons per density wave
period π/kF; this leads to

JDW = − e

π

dφ

dt
(7.2.5)

and NDW is the (two-dimensional) density in the plane perpendicular to the density
wave modulation. The continuity equation gives the electron density

dJDW

dr
+ e

dNDW

dt
= 0 . (7.2.6)

1 Note that the pairs have a charge −2e and mass 2m.
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These differences between the superconducting and density wave ground state lead
to responses to the electromagnetic fields which are different for the various ground
states.

7.2.1 London equations

We write for the acceleration of the superconducting current density Js in the
presence of an external field E

d

dt

m

Nse2
Js = E , (7.2.7)

where Ns is the superfluid particle density, which can be taken as equal to the
particle density in the normal state N . In addition, using Maxwell’s equation
(2.2.7a), this relation can be written as

d

dt

(
∇ × m

Nse2
Js + 1

c
B
)
= 0 .

Flux expulsion, the so-called Meissner effect, is accounted for by assuming that
not only the time derivative in the previous equation, but the function in the bracket
itself, is zero, ∇ × (mc/Nse2)Js + B = 0. With Eq. (2.1.2) the expression reduces
to

Js = −Nse2

mc
A . (7.2.8)

Thus, the superconducting current density is proportional to the vector potential A
instead of being proportional to E as in the case of normal metals. We can also
utilize Maxwell’s equation ∇ × B = 4π

c Js (neglecting the displacement term and
the normal current) to obtain for the magnetic induction B

∇2B = 4πNse2

mc2
B = λ−2

L B , (7.2.9)

with the so-called London penetration depth

λL =
(

mc2

4πNse2

)1/2

= c

ωp
, (7.2.10)

where ωp is the well known plasma frequency. As this equation describes the
spatial variation of B, λL characterizes the exponential decay of the electromag-
netic field. As such, λL is the equivalent to the skin depth δ0 we encountered in
metals (Eq. (2.3.16)). There are, however, important differences. δ0 is inversely
proportional to ω−1/2, and thus it diverges at zero frequency. In contrast, the
penetration depth is frequency independent; there is a decay for B, even for dc
applied fields. The temperature dependence of the penetration depth follows the
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temperature dependence of the condensate density. Ns(T ) can be also calculated
using the BCS formalism, and it is displayed in Fig. 7.1. For time-varying fields,
Eq. (7.2.7) also gives the 1/ω dependence of the imaginary part of the conductivity
as

σ2(ω) = Nse2

mω
= c2

4πλ2
Lω

. (7.2.11a)

Through the Kramers–Kronig relation (3.2.11a) the real part of the conductivity is
given by

σ1(ω) = π

2

Nse2

m
δ{ω = 0} = c2

8λ2
L

δ{ω = 0} . (7.2.11b)

7.2.2 Equation of motion for incommensurate density waves

The energy related to the spatial and temporal fluctuations of the phase of the
density waves is described by the Lagrangian density, which also includes the
potential energy due to the applied electric field. The equation of motion of the
phase condensate is

d2φ

dt2
− v2

F
m

m∗
d2φ

dr2
= e

m∗kF · E(q, ω) , (7.2.12)

where m∗ is the mass ascribed to the dynamic response of the density wave
condensates. If the interaction between electrons is solely responsible for the
formation of density wave states, m∗ is the free-electron mass – or the bandmass in
the metallic state, out of which these density wave states develop. This is simply
because the kinetic energy of the moving condensate is 1

2 Nmv2, with no additional
terms included. This is the case for spin density waves. For charge density waves,
however, the translational motion of the condensate leads also to oscillations of the
underlying lattice; this happens because of electron–phonon coupling. The motion
of the underlying ions also contributes to the overall kinetic energy, and this can be
expressed in terms of the increased effective mass m∗. The appropriate expression
is [Gru94]

m∗

mb
= 1+ 4�2

λPh̄2ω2
P

, (7.2.13)

where λP is the dimensionless electron–phonon coupling constant, and ωP is the
relevant phonon frequency, i.e. the frequency of the phonon mode which couples
the electrons together with an electron–hole condensate. As the single-particle gap
2�� ωP as a rule, the effective mass is significantly larger than the bandmass mb.
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The frequency and wavevector dependent conductivity of the collective mode
σ̂ coll(q, ω) is obtained by a straightforward calculation, and one finds that

σ̂ coll(q, ω) = Js(q, ω)
E(q, ω)

= 1

8π

m

m∗
iωω2

p

ω2 − v2
F

m
m∗ q2

. (7.2.14)

In general, non-local effects are not important and the q dependence can be neg-
lected. The real part of the optical conductivity is

σ coll
1 (ω) = πNse2

2m∗ δ{ω = 0} ; (7.2.15a)

and the imaginary part is evaluated from Eq. (7.2.14) as

σ coll
2 (ω) = −2ω

π

∫ ∞

−∞

σ coll
1 (ω)

ω′2 − ω2
dω′ = Nse2

m∗ω
. (7.2.15b)

These are the same expressions as those we derived above for the superconducting
case; this becomes evident by inserting the expression for the penetration depth λL

into Eqs (7.2.11). Note, however, that because of the (potentially) large effective
mass, the total spectral weight associated with the density wave condensate can be
small.

7.3 Coherence factors and transition probabilities

7.3.1 Coherence factors

One of the important early results which followed from the BCS theory was the
unusual features of the transition probabilities which result as the consequence
of an external perturbation. Let us assume that the external probe which induces
transitions between the various quasi-particle states has the form

Hint =
∑

k,k′,σ,σ ′
〈k′, σ ′|Hint|k, σ 〉a+k′,σ ′ak,σ . (7.3.1)

In a metal or semiconductor, we will find that the various transitions between
the states k and k′ proceed independently; as a consequence in order to obtain
the total transition probability we have to add the squared matrix elements. In
superconductors – and also for the other broken symmetry ground states – the
situation is different. Using the transformation (7.1.10) we have utilized before,
one can show that two transitions, (a+k′,σ ′ak,σ ) and (a+−k,−σa−k′,−σ ′), connect the
same quasi-particle states. In the case where σ ′ = σ , for example,

a+k′,σak,σ = +v∗k′vkγk′,1γ
+
k,1 + uk′u

∗
kγ

+
k′,0γk,0

+v∗k′u∗kγk′,1γk,0 + uk′vkγ
+
k′,0γ

+
k,1 (7.3.2a)
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and

a+−k,−σa−k′,−σ = +uku∗k′γ
+
k′,1γk,1 + v∗kvk′γk′,0γ

+
k,0

+v∗ku∗k′γk′,0γk,1 + ukvk′γ
+
k′,1γ

+
k,0 . (7.3.2b)

The last two terms in both equations describe the creation of (or destruction of)
pairs of quasi-particles, and the process requires an energy which exceeds the gap;
here the combinations

(
v∗ku∗k′ − ηukvk′

)
appear in the transition probabilities. The

first two terms describe the scattering of the quasi-particles, processes which are
important for small energies h̄ω < �. For these processes the coefficients which
determine the transition probabilities are

(
u∗k′uk + ηv∗k′vk

)
. These coefficients are

the so-called coherence factors, with η = +1 constructive and with η = −1 de-
structive interference between the two processes. Whether η is positive or negative
depends upon whether the interaction changes sign by going from k to k′.

For electromagnetic waves, the absorption Hamiltonian is

Hint = −eh̄

2mc

∑
k,k′,σ

A(k− k′) · (k+ k′) a+k′,σak,σ , (7.3.3)

and the interaction depends on the direction of the momentum. In this case, the
transition probabilities add, and η = +1. The coherence factors can be expressed
in terms of quasi-particle energies and gap value: after some algebra for scattering
processes one obtains the form [Tin96]

(
u∗kuk′ + ηvkv

∗
k′
)2 = 1

2

(
1+ ζkζk′

EkEk′
+ η

�2

EkEk′

)
. (7.3.4)

When summing over the k values, the second term on the right hand side becomes
zero, and the coherence factor can be simply defined as

F(E, E ′) = 1

2

(
1+ η

�2

EE ′
)
≈

{
0 if η = −1 called case 1
1 if η = +1 called case 2

(7.3.5)

if h̄ω � 2�. In the opposite case of h̄ω ≥ 2�, quasi-particles are created or
annihilated and with

(
v∗kuk′ − ηukv

∗
k′
)2

the situation is reversed, and thus we find

F(E, E ′) ≈
{

1 if η = −1 case 1
0 if η = +1 case 2 .

(7.3.6)

In the case of density waves a transformation similar to that performed for
the superconducting case defines the quasi-particles of the system separated into
two categories: the right- and left-going carriers. After some algebra, along the
lines performed for the superconducting case, one finds that the case 1 and case 2
coherence factors for density waves are the opposite to those which apply for the
superconducting ground state.
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Similar arguments apply for other external probes. Ultrasonic attenuation, for
example, is described by the interaction Hamiltonian

H =
∑

P

(ρPωP)
1/2 |P|

∑
k,σ

(
bP − b∗−P

)
a∗k+Pak,σ , (7.3.7)

where b∗P and bP refer to the longitudinal phonons of frequency ωP and density
ρP. Here the change of the sign of P does not lead to the change of the sign of
interactions. Consequently the transition probabilities add differently, and case 1
coherence factors apply. For processes which reverse the spin σ , the arguments
are similar; such process, like nuclear magnetic resonance (NMR) relaxation, are
characterized by case 2 coherences.

7.3.2 Transition probabilities

In order to derive an expression for the absorption rate W (per unit time and per unit
volume) we start from Fermi’s golden rule. The transition rate WEE ′ of absorbed
energy in a transition from an occupied to an unoccupied state is proportional to
the number of occupied quasi-particle states f (Es)Ds(Es) and to the number of
unoccupied quasi-particle states [1− f (Es+ h̄ω)]Ds(Es+ h̄ω). Thus we obtain for
the rate of absorbed energy:

Ws ∝
∫
|pEE ′ |2 F(E, E + h̄ω)Ds(E)Ds(E + h̄ω) [ f (E)− f (E + h̄ω)] dE ,

(7.3.8)
where |pEE ′ |2 is the matrix element of the transition from the state with energy E to
the state with energy (E ′ − E + h̄ω), h̄ω is the energy of the external probe, Ds(E)
is the density of states given by Eq. (7.1.16), f (E) = [1 + exp {E/kBT }]−1 is
the Fermi distribution function, and we have also included the coherence factor
F(E, E ′). We normalize the transition probability to the value in the normal
state – just above where the broken symmetry state develops – this is Wn =
|pEE ′ |2 D2

s (0)h̄ω. Then

Ws

Wn
= 1

h̄ω

∫ ∞

−∞

|E(E + h̄ω)+ η�2|[ f (E)− f (E + h̄ω)]

(E2 −�2)1/2 [(E + h̄ω)2 −�2]1/2
dE . (7.3.9)

As there are no states in the gap, the regions |E | or |E + h̄ω| < � are excluded
from the integration. First we consider T = 0, then there are no thermally excited
quasi-particles, and therefore the absorption rate is zero for ω < ωg = 2�/h̄. The
process allowing absorption of energy is pair breaking by creation of two quasi-
particles with h̄ω ≥ 2�; the normalized rate takes the form:

Ws

Wn
= 1

h̄ω

∫ −�

�−h̄ω

[1− 2 f (E + h̄ω)] E(E + h̄ω)+ η�2

(E2 −�2)1/2 [(E + h̄ω)2 −�2]1/2
dE (7.3.10)
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Fig. 7.2. (a) Frequency dependence of the T ≈ 0 absorption rate Ws(ω)/Wn for case 1
and 2 coherence factors. (b) Temperature dependence of the low frequency (h̄ω ≈ 0.1�)
absorption rate Ws(T )/Wn for case 1 and 2 coherence factors evaluated from Eq. (7.3.10).
Case 1 applies for ultrasonic attenuation in superconductors and case 2 describes electro-
magnetic absorption or nuclear relaxation in the superconducting ground state. Case 1 also
applies to the electromagnetic absorption in the spin density wave ground state.

for h̄ω ≥ 2�. The frequency dependence of the absorption is different for case
1 and case 2 coherence factors. In the latter case, the transition probability (close
to zero at the gap) effectively cancels the singularity of the density of states, and
the absorption smoothly increases from zero at h̄ω = 2� to the value equal to the
normal state absorption. In contrast, F(E, E ′) = 1 for frequencies h̄ω = 2� and
is weakly frequency dependent; this leads to a peak in the absorption for case 1
coherence.

As mentioned above, one does not observe an absorption at zero temperature
for frequencies h̄ω < 2� because pair breaking is not possible. Scattering of
thermally excited single-particle states, however, becomes possible even at low
frequencies for T > 0; for these the coherence effects have a different influence. At
these low frequencies, the Fermi function difference f (E)− f (E+h̄ω) ≈ −∂ f/∂E ,
the coherence factor, F(E, E ′) ≈ 1, and the appropriate expression for ω = 0 is

Ws

Wn
= 2

∫ �

0

E2 +�2

E2 −�2

(
−∂ f

∂E
)

dE , (7.3.11)

which diverges at Tc. At finite frequencies this divergence is removed, but one still
recovers a maximum somewhat below Tc. In contrast, for case 1 coherence factors,
it is easy to show that the transition rate is suppressed when compared with the
normal state transition. Fig. 7.2 displays the absorption as a function of energy and
as a function of temperature for both case 1 and 2 coherence factors.
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7.4 The electrodynamics of the superconducting state

The electrodynamics of superconductors involves different issues and also varies
from material to material. The reason for this is that different length scales play
important roles, and their relative magnitude determines the nature of the super-
conducting state, and also the response to electromagnetic fields. The first length
scale is the London penetration depth

λL = c

ωp
(7.4.1)

determined through the plasma frequency ωp by the parameters of the metallic state
and derived in Section 7.2.1. The second length scale is the correlation length

ξ0 = h̄vF

π�
(7.4.2)

describing, crudely speaking, the spatial extension of the Cooper pairs. This
length scale can be estimated if we consider the pair wavefunctions to be the
superpositions of one-electron states within the energy region around the Fermi
level; then the corresponding spread of momenta δp is approximately |�| =
δ(p2/2m) ≈ vFδp/2, where vF is the Fermi velocity. This corresponds to a
spatial range of ξ0 ≈ h̄/δp. The correct expression, the BCS coherence length,
is given by Eq. (7.4.2) at zero temperature. This is the length scale over which the
wavefunction can be regarded as rigid and unable to respond to a spatially varying
electromagnetic field. This parameter is determined through the gap �, by the
strength of the coupling parameter. The third length scale is the mean free path of
the uncondensed electrons

� = vFτ (7.4.3)

set by the impurities and lattice imperfections at low temperatures; vF is the Fermi
velocity, and τ is the time between two scattering events. For typical metals, the
three length scales are of the same order of magnitude, and, depending on the
relative magnitude of their ratios, various types of superconductors are observed;
these are referred to as the various limits. The local limit is where � � ξ, λ.
More commonly it is referred to as the dirty limit defined by �/ξ → 0. In
the opposite, so-called clean, limit �/ξ → ∞, it is necessary to distinguish the
following two cases: the Pippard or anomalous limit, defined by the inequality
λ � ξ, � (type I superconductor); and the London limit for which ξ � λ, � (type
II superconductor).2

We first address the issues related to these length scales and describe the mod-
ifications brought about by the short mean free path; these are discussed using

2 See Fig. E.6 and Appendix E.4 for further details.
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spectral weight arguments. The relationship between λL and ξ can be cast into
the form which is similar to the relationship between the skin depth δ0 and the
mean free path � in metals; here also we encounter non-local electrodynamics in
certain limits. Finally we recall certain expressions for the conductivity and surface
impedance as calculated by Mattis and Bardeen [Mat58]; the formalism is valid in
various limits, as will be pointed out.

7.4.1 Clean and dirty limit superconductors, and the spectral weight

The relative magnitude of the mean free path with respect to the coherence length
has important consequences for the penetration depth, and this can be described
using spectral weight arguments. The mean free path is given by � ≈ vFτ , whereas
the coherence length ξ ≈ vF/�, and consequently in the clean limit 1/τ < �

and 1/τ > � is the so-called dirty limit. In the former case the width of the
Drude response in the metallic state, just above Tc, is smaller than the frequency
corresponding to the gap 2�/h̄, and the opposite is true in the dirty limit.

The spectral weight associated with the excitations is conserved by going from
the normal to the broken symmetry states. While we have to integrate the real part
of the normal state conductivity spectrum σ n

1 (ω), in the superconducting phase
there are two contributions: one from the collective mode of the Cooper pairs
σ coll

1 (ω), and one from the single-particle excitations σ sp
1 (ω); thus∫ ∞

−∞

[
σ coll

1 + σ
sp
1

]
dω =

∫ ∞

−∞
σ n

1 dω = π

2

Ne2

m
(7.4.4)

assuming that all the normal carriers condense. Because of the difference in the
coherence factors for the superconducting and density wave ground states, the
conservation of the spectral weight has different consequences. The arguments for
superconductors were advanced by Tinkham, Glover, and Ferrell [Glo56, Fer58],
who noted that the area A which has been removed from the integral upon going
through the superconducting transition,∫ ∞

0+
[σ n

1 − σ s
1 ] dω = A (7.4.5)

is redistributed to give the spectral weight of the collective mode with σ1(ω = 0) =
Aδ{ω}. A comparison between this expression and Eq. (7.2.11b) leads to

λ = c√
8A

, (7.4.6)

connecting the penetration depth λ to the missing spectral weight A. This rela-
tionship is expected to hold also at finite temperatures and for various values of
the mean free path and coherence length – as long as the arguments leading to the
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transition rate apply. In the limit of long relaxation time τ , i.e. for h̄/τ � �,
the entire Drude spectral weight of the normal carriers collapses in the collective
mode, giving

σ1(ω = 0) = πNse2

2m
δ{ω = 0} ;

leading through Eq. (7.2.11b) to the London penetration depth λL. With in-
creasing 1/τ , moving towards the dirty limit, the spectral weight is progressively
reduced, resulting in an increase of the penetration depth. In the limit 1/τ �
2�/h̄, the missing spectral weight is approximately given by A ≈ σ1(2�/h̄) =
2Ne2τ�/h̄m, which can be written as

A = c2

2π

τ�

h̄
. (7.4.7)

Then the relationship between the area A and the penetration depth λ(�), which
now is mean free path dependent as � = vFτ , is given by λ2(�) = λ2

Lh̄π/(4τ�),
which leads to the approximate expression

λ(�) ≈ λL

(
ξ0

�

)1/2

. (7.4.8)

It is easy to verify that the sum rule (3.2.28) is conserved:
∫∞

0 σ1(ω) dω =
Ne2π/2m; and it is the same in the normal and in the broken symmetry states.

7.4.2 The electrodynamics for q �= 0

We have discussed the electrodynamics and the transition processes in the q = 0
limit, the situation which corresponds to the local electrodynamics. However, this
is not always appropriate, and under certain circumstances the non-local electro-
dynamics of the superconducting state becomes important. For the normal state,
the relative magnitude of the mean free path � and the skin depth δ0 determines
the importance of non-local electrodynamics. For superconductors, the London
penetration depth λL assumes the role of the skin depth, and the effectiveness
concept introduced in Section 5.2.5 refers to the Cooper pairs; thus the relevant
length scale is the correlation length ξ0, i.e. pairs with ξ0 much larger than λ0

cannot be fully influenced by the electrodynamic field (here we assume that � is
shorter than ξ0 and λL). The consequences of this argument have been explored
by A. B. Pippard, and the relevant expression is similar to Chambers’ formula for
normal metals (5.2.27).

The electrodynamics for finite wavevector q can, in principle, be discussed
using the formalism developed in Chapter 4, with the electronic wavefunction
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representing that of the superconducting case. This formalism will lead to the
full q and ω dependence, including the response near 2kF.

Instead of this procedure we recall the simple phenomenological expression for
the non-local response of metals, the Chambers formula (5.2.27), which reads

J(r = 0) = 3σdc

4π�

∫
r
[
r · E(r, t) exp {−r/�}]

r4
dr .

Note that, in view of σdc = Ne2τ/m = Ne2vl�/m, the mean free path drops out
from the factor in front of the integral. For superconductors, the vector potential A
is proportional to J, and with E = i(ω/c)A we can write accordingly

J(0) ∝
∫

r[r · A(r, ω)]
r4

F(r) dr (7.4.9)

where the function F(r) describes the spatial decay which has yet to be determined.
For a vector potential of the form A(r) ∝ exp{iq · r}, the q dependent conductivity
is written as

J(q) = − c

4π
K (q)A(q) . (7.4.10)

A more general definition of the kernel K is given in Appendix E.3.
Let us first assume that we deal with clean superconductors, and effects due to a

finite mean free path are not important. In the London limit,

J(r) = −Nse2

mc
A(r) = − c

4πλ2
L

A(r) (7.4.11)

from Eq. (7.2.8). Consequently in this limit

K(q) = K(0) = 1

λ2
L

, (7.4.12)

independent of the wavevector q. In general, K(q) is not constant, but decreases
with increasing q. The argument, due to Pippard, that we have advanced before
suggests that

F(r) = exp
{
− r

ξ0

}
. (7.4.13)

We assume that at large distances F(r) ∝ exp{−r/R0} with R0 a (yet unspec-
ified) characteristic distance. This then leads (for isotropic superconductors) to
K (0) = λ−2

L at q = 0 as seen before; for large q values

K(q) = K(0)
3π

4qξ0
. (7.4.14)

One can evaluate the integral in Eq. (7.4.9) based on this form of K(q), but we
can also resort to the same argument which led to the anomalous skin effect for



190 7 Broken symmetry states of metals

normal metals. There we presented the ineffectiveness concept, which holds here
for superconductors, with ξ0 replacing �, and λ replacing δ0. The expression of the
penetration depth – in analogy to the equation we have advanced for the anomalous
skin effect regime – then becomes

λ =
(

mc2

4πe2 Ns(λ/ξ0)

)1/2

(7.4.15)

leading to

λ =
(

mc2

4πe2 Ns
ξ0

)1/3

≈ λ
2/3
L ξ

1/3
0 ; (7.4.16)

thus, for large coherence lengths, the penetration depth increases, well exceeding
the London penetration depth λL.

For impure superconductors the finite mean free path can be included by a
further extension of the non-local relation between Js(r) and A(r). In analogy
to the case for metals we write

J(r) ∝
∫

dr r [r · A(r)] r−4 F(r) exp{−r/�} .

This includes the effect of the finite mean path, and additional contributions to the
non-local relation, dependent on the coherence length, are contained in the factor
F(r). If we take F(r) from Eq. (7.4.13), we find that

λeff = λL

(
1+ ξ0

�

)1/2

, (7.4.17)

which reduces to Eq. (7.4.8) in the ξ0 > � limit. This is only an approximation; the
correct expression is [Tin96]

λeff(�) = λL

(
1+ 0.75

ξ0

�

)1/2

. (7.4.18)

7.4.3 Optical properties of the superconducting state:
the Mattis–Bardeen formalism

With non-local effects potentially important, calculation of the electromagnetic
absorption becomes a complicated problem. An appropriate theory has to include
both the coherence factors and the non-local relationship between the vector poten-
tial and induced currents. This has been done by Mattis and Bardeen [Mat58] and
by Abrikosov [Abr59]. For finite frequencies and temperatures, the relationship
between J and A takes, in the presence of an ac field, the following form:

J(0, t) ∝ exp{−iωt}
∫

dr r [r · A(r)] r−4 I (ω, r, T ) exp {−r/�} . (7.4.19)
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Non-local effects are included in the kernel I (ω, r, T ) and in the exponential
function exp {−r/�}. The relationship between J and A is relatively simple in
two limits. For � � ξ0, the local dirty limit, the integral is confined to r ≤ �,
and one can assume that I (ω, r, T ) is constant in this range of r values. For
λ� ξ0, the Pippard or extreme anomalous limit, I (ω, r, T ) varies slowly in space
with respect to other parts in the integral, and again it can be taken as constant.
The spatial variation implied by the above expression is the same as that given
by the Chambers formula, the expression which has to be used when the current
is evaluated in the normal state. Consequently, when the complex conductivity
σ̂s(ω, T ) in the superconducting state is normalized to the conductivity in the
normal state σ̂n(ω, T ), numerical factors drop out of the relevant equations. The
expressions derived by Mattis and Bardeen, and by Abrikosov, are then valid in
both limits, and they read:

σ1(ω, T )

σn
= 2

h̄ω

∫ ∞

�

[ f (E)− f (E + h̄ω)](E2 +�2 + h̄ωE)
(E2 −�2)1/2[(E + h̄ω)2 −�2]1/2

dE

+ 1

h̄ω

∫ −�

�−h̄ω

[1− 2 f (E + h̄ω)](E2 +�2 + h̄ωE)
(E2 −�2)1/2[(E + h̄ω)2 −�2]1/2

dE (7.4.20a)

σ2(ω, T )

σn
= 1

h̄ω

∫ �

�−h̄ω,−�

[1− 2 f (E + h̄ω)](E2 +�2 + h̄ωE)
(�2 − E2)1/2[(E + h̄ω)2 −�2]1/2

dE , (7.4.20b)

where for h̄ω > 2� the lower limit of the integral in Eq. (7.4.20b) becomes −�.
At T = 0, σ1/σn describes the response of the normal carriers. The first term
of Eq. (7.4.20a) represents the effects of thermally excited quasi-particles. The
second term accounts for the contribution of photon excited quasi-particles; since
it requires the breaking of a Cooper pair, it is zero for h̄ω < 2�(T ). The expression
for σ1(ω, T ) is the same as Eq. (7.3.9), which was derived on the basis of arguments
relating to the electromagnetic absorption. This is not surprising, as

Ws(ω, T )

Wn
= σ1(ω, T )

σn

in the limits for which this equation applies. Figs 7.3 and 7.4 summarize the
frequency and temperature dependence of σ1 and σ2 as derived from Eqs (7.4.20)
assuming finite scattering effects �/πξ = 0.1 discussed in [Lep83]. It reproduces
the behavior predicted for case 2 coherence factors (Fig. 7.2) inferred from symme-
try arguments only. Although the density of states diverges at±�, the conductivity
σ1(ω) does not show a divergency but a smooth increase which follows approxi-
mately the dependence σ1(ω)/σn ∝ 1 − (h̄ω/kBTc)

−1.65. The temperature depen-
dent conductivity σ1(T ) shows a peak just below Tc at low frequency. The height of
the peak has the following frequency dependence: (σ1/σn)max ∼ log {2�(0)/h̄ω}.
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Fig. 7.3. Frequency dependence of the real and imaginary parts of the conductivity σ̂ (ω) of
a superconductor (case 2) at different temperatures as evaluated from the Mattis–Bardeen
expressions (7.4.20) using �/πξ0 = 0.1. (a) For T = 0 the conductivity σ1(ω) is zero
below the superconducting gap 2� except for the δ-peak at ω = 0. For each temperature
the local minimum in σ1(ω) corresponds to 2�(T ). (b) The imaginary part σ2(ω) diverges
as 1/ω in the T = 0 limit. The kink in σ2(ω) is not a numerical artifact but indicates the
gap frequency 2/�(T )/h̄.

The peak has completely disappeared for h̄ω ≥ �/2 (well before 2�). At T = 0
and ω < 2�/h̄ the complex part of the conductivity σ2/σn describes the response
of the Cooper pairs and is related to the gap parameter through the expression
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Fig. 7.4. Temperature dependence of the real and imaginary parts of the conductivity
σ̂ (T ) of a superconductor (case 2) evaluated by Eqs (7.4.20) using �/πξ0 = 0.1. Note
that the well defined coherence peak in the real part σ1(T ) exists only at low frequencies
hω/2�(0) < 0.1, and σ2(T )/σn saturates at the value of π�(0)/h̄ω at low temperatures.

σ2(T )

σn
≈ π�(T )

h̄ω
tanh

{
�(T )

2kBT

}
≈ lim

T→0

π�(0)

h̄ω
. (7.4.21)
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Fig. 7.5. Bulk reflectivity R(ω) of a superconducting metal as a function of frequency
at different temperatures as indicated from the Mattis–Bardeen expressions (7.4.20). The
figure was computed by using σdc = 105 �−1 cm−1, νp = 104 cm−1, and Tc = 1 K.

Using Eq. (2.4.17), the reflectivity R(ω) of a bulk superconductor is calculated
from Eqs (7.4.20) and is shown in Fig. 7.5. We see that for frequencies below the
gap energy the reflectivity goes to unity; superconductors are perfect mirrors for
ω < 2�/h̄. This, however, is not due to the optical conductivity since σ1(ω, T =
0) = 0 in the range 0 < ω < 2�, but due to the large imaginary part of the
conductivity σ2(ω) which diverges as 1/ω. The result is a rapid phase shift near
the transition.

Since in the superconducting state the imaginary part of the conductivity σ2

cannot be neglected, the assumptions of the Hagen–Rubens limit do not apply
and the general Eqs (2.3.32) and (2.3.33) have to be used to relate both complex
quantities, the surface impedance ẐS and the conductivity σ̂ . After normalizing all
quantities to their normal state properties, we obtain

RS

Rn
=

{
[(σ1/σn)

2 + (σ2/σn)
2]1/2 − σ2/σn

(σ1/σn)2 + (σ2/σn)2

}1/2

(7.4.22a)
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Fig. 7.6. (a) Frequency dependent surface resistance RS(ω) of a superconductor at various
temperatures. (b) The surface reactance XS(ω) as a function of frequency. Both parameters
were calculated using Eqs (7.4.22).

−XS

Rn
=

{
[(σ1/σn)

2 + (σ2/σn)
2]1/2 + σ2/σn

(σ1/σn)2 + (σ2/σn)2

}1/2

. (7.4.22b)

We have to assume local electrodynamics; for a detailed discussion see Ap-
pendix E.4 and [Ric65]. In Fig. 7.6 the normalized surface resistance and surface
impedance are plotted as a function of frequency for different temperatures. RS/Rn

monotonically drops to zero for ω → 0 and for T → 0 when the energy of
the electromagnetic field is below the gap 2�(T ). From the BCS theory the
temperature and frequency dependence of RS at low temperatures (T � �(T ))
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and small frequencies (h̄ω < �(T )) was evaluated as [Hal74]

RS ∝ (h̄ω)2

kBT
ln

{
4kBT

h̄ω

}
exp

{
−�(T )

kBT

}
. (7.4.23)

Above Tc the surface resistance shows the ω1/2 behavior of a Drude metal in
the Hagen–Rubens regime (Eq. (5.1.18)). At low temperature, RS is vanishingly
small and approaches an approximate ω2 dependence for ω → 0 (Fig. 7.6a). In
contrast to metals, RS(ω) �= −XS(ω) in the case of superconductors. By reducing
the temperature to close to but below Tc, the surface reactance XS(T ) shows an
enhancement before it drops. This is typically observed as a peak of XS(T )/Rn

right below the transition temperature. The frequency dependence of XS can be
evaluated from classical electrodynamics using Eq. (2.3.34b) and λ = c/ωk with
n → 0:

XS = −4πω

c2
λ , (7.4.24)

with a frequency dependence as shown in Fig. 7.6b. Equation (7.4.24) only holds
for k � n, which is equivalent to RS � |XS|. It is immediately seen that the
surface reactance is directly proportional to the penetration depth, which by itself
is frequency independent as long as h̄ω < �. This is equivalent to Eq. (2.4.27)
in the normal state, where λ is replaced by δ/2. The reason for the factor of 2 lies
in the difference between the phase angle φ of the surface impedance, which is
90◦ for a superconductor (at T → 0) and 45◦ for a metal in the Hagen–Rubens
regime. As λ is independent of the frequency for h̄ω � �, XS is proportional to
ω in this regime, as displayed in Fig. 7.6b. Even in the superconducting state the
temperature dependence of the penetration depth can be calculated from the com-
plex conductivity σ̂ (ω) using Eq. (2.3.15b). In Fig. 7.1 (λ(T )/λ(0))−2 is plotted
versus T/Tc for �/πξ0 = 0.01. In the London limit this expression is proportional
to the density of superconducting carriers Ns as seen from Eq. (7.2.10). The energy
gap 2�(T ) increases faster than the charge carriers condense. At low temperatures
T < 0.5Tc the temperature dependence of the penetration depth λ(T ) − λ(0) can
be well described by an exponential behavior:

λ(T )− λ(0)

λ(0)
=

[
π�

2kBT

]1/2

exp
{
− �

kBT

}
. (7.4.25)

This behavior is plotted in Fig. 7.1b.

7.5 The electrodynamics of density waves

Just as for superconductors, the full electrodynamics of the density wave states
includes the response of the collective mode. The collective mode, i.e. the transla-
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tional motion of the entire density wave, and absorption due to the quasi-particles,
ideally occurs – in the absence of lattice imperfections – at zero frequency. At zero
temperature, the onset for the quasi-particle absorption is set by the BCS gap 2�.
The differences with respect to the superconducting case are due to the different
coherence factors and the possibility of a large effective mass in the case of charge
density wave condensates.

Additional complications may also arise: density wave condensates with a pe-
riodic modulation of the charge and/or spin density are incommensurate with the
underlying lattice only in one direction; in other directions the lattice periodicity
plays an important role in pinning the condensate to the underlying lattice. If this
is the case, the collective mode contribution to the conductivity is absent due to the
large restoring force exercised by the lattice.

7.5.1 The optical properties of charge density waves: the Lee–Rice–Anderson
formalism

Both single-particle excitations across the density wave gap and the collective
mode contribute to the frequency dependent response. For charge density waves
this has been examined in detail by [Lee74]. When the effective mass is large, the
collective mode contribution – centered, in the absence of impurities and lattice
imperfections at zero frequency, see Eq. (7.2.15a) – is small, and consequently only
minor modifications from those expected for a one-dimensional semiconductor
are observed. For m∗ = ∞, the collective mode spectral weight is zero, and
the expression for the conductivity is identical to that given in Section 6.3.1 for
a one-dimensional semiconductor.

This can be taken into account by utilizing the formalism outlined earlier, which
leads to the BCS gap equation and to the quasi-particle excitations of the supercon-
ducting and density wave states. The formalism leads to the following expressions
of the single-particle contribution to the conductivity for m∗ = ∞:

σ̂ sp(ω) = Ne2

iωm
[F(ω)− F(0)] (7.5.1)

with the frequency dependent function

F(ω) = −
∫

2�2/(ζ 2
k +�2)

(h̄ω)2 − 4(ζ 2
k +�2)

dζk , (7.5.2)

where ζk = Ek − EF. Simply integrating the expression leads to Eq. (6.3.16).
In the presence of a finite mass associated with the collective mode, the spectral



198 7 Broken symmetry states of metals

function F(ω) is modified, and Lee, Rice, and Anderson [Lee74] find that

F ′(ω) = F(ω)

1+ ( m
m∗ − 1)F(ω)

= F(ω)

[
1+ λPh̄2ω2

P

4�2
F(ω)

]−1

. (7.5.3)

The calculation of σ sp is now straightforward, and in Fig. 7.9 the real part of the
complex conductivity σ1(ω) is displayed for two different values of the effective
mass.

There is also a collective mode contribution to the conductivity at zero frequency,
as discussed before, with spectral weight∫

σ coll
1 (ω) dω =

∫
πNe2

2m∗ δ{ω = 0} dω = πNe2

2m∗ , (7.5.4)

and this is taken out of the spectral weight corresponding to the single-particle
excitations at frequencies ω > 2�/h̄. The total spectral weight∫ [

σ coll
1 (ω)+ σ

sp
1 (ω)

]
dω = π

2

Ne2

m
(7.5.5)

is of course observed, and is the same as the spectral weight associated with the
Drude response in the metallic state above the density wave transition.

For an incommensurate density wave in the absence of lattice imperfections, the
collective mode contribution occurs at ω = 0 due to the translational invariance
of the ground state. In the presence of impurities this translational invariance is
broken and the collective modes are tied to the underlying lattice due to interactions
with impurities [Gru88, Gru94]; this aspect of the problem is discussed in Chapter
14.

7.5.2 Spin density waves

The electrodynamics of the spin density wave ground state is different from the
electrodynamics of the superconducting and of the charge density wave states.
The difference is due to several factors. First, for the case of density waves,
case 1 coherence factors apply, and thus the transition probabilities are different
from those of a superconductor. Second, the spin density wave state arises as
the consequence of electron–electron interactions. Phonons are not included here,
and also the spin density wave ground state – the periodic modulation of the spin
density – does not couple to the underlying lattice. Consequently, the mass which
is related to the dynamics of the collective mode is simply the electron mass.

Therefore, the electrodynamics of the spin density wave ground state can be
discussed along the lines developed for the superconducting state with one impor-
tant difference: for the electrodynamic response, case 1 coherence factors apply.
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Instead of Eqs (7.4.20) the conductivity in this case then reads

σ s
1(ω, T )

σn
= 2

h̄ω

∫ ∞

−∞

[ f (E)− f (E + h̄ω)](E2 −�2 + h̄ωE)
(E2 −�2)1/2[(E + h̄ω)2 −�2]1/2

dE (7.5.6a)

σ s
2(ω, T )

σn
= 1

h̄ω

∫ �

�−h̄ω,−�

[1− 2 f (E + h̄ω)](E2 −�2 + h̄ωE)
(�2 − E2)1/2[(E + h̄ω)2 −�2]1/2

dE . (7.5.6b)

In Fig. 7.7 the frequency dependence of σ1(ω) and σ2(ω) derived from Eqs (7.5.6)
is plotted assuming finite scattering effects �/πξ = 0.1. This condition corre-
sponds to the dirty limit, as introduced before. In contrast to the results obtained for
the case of a superconductor, an enhancement of the conductivity σ1(ω) is observed
above the single-particle gap, which is similar to the results obtained from a simple
semiconductor model in one dimension (Eq. (6.3.16)). As discussed above, the
spectral weight in the gap region is, by and large, compensated for by the area
above the single-particle gap 2�, leading to a small collective mode. This fact
results in a low reflectivity for ω < 2�, as displayed in Fig. 7.8. Finite temperature
effects arise here in a fairly natural fashion; thermally excited single-particle states
lead to a Drude response in the gap region, with the spectral weight determined by
the temperature dependence of the number of excited carriers.

7.5.3 Clean and dirty density waves and the spectral weight

The spectral weight arguments advanced for superconductors also apply for the
density wave states with some modifications. In the density wave states the collec-
tive mode contribution to the spectral weight is

Acoll =
∫ ∞

0
σ coll

1 (ω) dω = πNe2

2m∗ , (7.5.7)

while the single-particle excitations give a contribution

Asp =
∫ ∞

0
σ

sp
1 (ω) dω =

∫ ωg

0
σ n

1 (ω)− σ coll
1 (ω) dω

= πNe2

2mb
− πNe2

2m∗ = πNe2

2mb

[
1− mb

m∗

]
(7.5.8)

with h̄ωg = Eg. The collective mode has a spectral weight mb/m∗; this is removed
from the excitation above the gap. For a large effective mass m∗/mb � 1, most
of the total spectral weight comes from the single-particle excitations; while for
m∗/mb = 1, all the spectral weight is associated with the collective mode, with
no contribution to the optical conductivity from single-particle excitations. The
former is appropriate for charge density waves, while the latter is valid for spin
density wave transport [Gru94].
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Fig. 7.7. Frequency dependence of the real and imaginary parts of the conductivity σ̂ (ω)
of a spin density wave (case 1) at different temperatures as evaluated from Eqs (7.5.6)
using �/πξ0 = 0.1. (a) For T = 0 the conductivity σ1(ω) is zero below the single-particle
gap 2�. The enhancement above 2� corresponds (by virtue of the Tinkham–Ferrell sum
rule) to the area removed below the gap energy. (b) The imaginary part σ2(ω) shows an
extremum at the single-particle gap; for ω < 2�/h̄ the conductivity σ2(ω)/σn drops to
zero.

The above arguments are appropriate in the clean limit, 1/τ � �/h̄, which
is equivalent to the condition ξ0 � �, where � is the mean free path and ξ0 is
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Fig. 7.8. Bulk reflectivity R(ω) of a metal in the spin density wave ground state as a
function of frequency for different temperatures. The calculations are based on Eqs (7.5.6).
The figure was computed by using σdc = 105 �−1 cm−1, νp = 104 cm−1, and Tc = 1 K.

the coherence length. The response for the opposite case, the so-called dirty limit
ξ0 � �, has not been calculated for density wave ground states. It is expected,
however, that arguments advanced for superconductors, discussed in Section 7.4
and Appendix E.5, also apply for density wave ground states. In analogy to
the above discussion for superconductors, the collective mode contribution to the
spectral weight is given by the difference A = ∫

[σ n
1 (ω) − σ

sp
1 (ω)] dω with σ n

1 (ω)

given by Eq. (7.4.4). This difference is approximately the area

A ≈
∫ ωg

0
σ n

1 (ω) dω ≈ ω2
p

4π
ωgτ ≈

ω2
p

2π2

(
�

ξ0

)1/2

(7.5.9)

in the dirty limit. Consequently, the spectral weight due to the collective mode
contribution is reduced, and an empirical form similar to Pippard’s expression of
the penetration depth [Tin96] can be anticipated:

Acoll
0

Acoll
=

(
1+ ξ0

α�

)1/2

, (7.5.10)
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Fig. 7.9. Frequency dependence of the conductivity σ1(ω) in the charge density wave state
for m∗/m = ∞ and m∗/m = 6 (after [Lee74]).

where α is a numerical factor of the order of one, and Acoll
0 is the spectral weight

of the collective mode in the clean limit.
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Part two

Methods

Introductory remarks

The wide array of optical techniques and methods which are used for studying the
electrodynamic properties of solids in the different spectral ranges of interest for
condensed matter physics is covered by a large number of books and articles which
focus on different aspects of this vast field of condensed matter physics. Here we
take a broader view, but at the same time limit ourselves to the various principles
of optical measurements and compromise on the details. Not only conventional
optical methods are summarized here but also techniques which are employed
below the traditional optical range of infrared, visible, and ultraviolet light. These
techniques have become increasingly popular as attention has shifted from single-
particle to collective properties of the electron states of solids where the relevant
energies are usually significantly smaller than the single-particle energies of metals
and semiconductors.

We start with the definition of propagation and scattering of electromagnetic
waves, the principles of propagation in the various spectral ranges, and summa-
rize the main ideas behind the resonant and non-resonant structures which are
utilized. This is followed by the summary of spectroscopic principles – frequency
and time domain as well as Fourier transform spectroscopy. We conclude with
the description of measurement configurations, single path, interferometric, and
resonant methods where we also address the relative advantages and disadvantages
of the various measurement configurations.
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8

Techniques: general considerations

The purpose of spectroscopy as applied to solid state physics is the investigation
of the (complex) response as a function of wavevector and energy; here, in the
spirit of optical spectroscopy, however, we limit ourselves to the response sampled
at the zero wavevector, q = 0 limit. Any spectroscopic system contains four
major components: a radiation source, the sample or device under test, a detector,
and some mechanism to select, to change, and to measure the frequency of the
applied electromagnetic radiation. First we deal with the various energy scales of
interest. Then we comment on the complex response and the requirements placed
on the measured optical parameters. In the following sections we discuss how
electromagnetic radiation can be generated, detected, and characterized; finally we
give an overview of the experimental principles.

8.1 Energy scales

Charge excitations which are examined by optical methods span an enormous
spectral range in solids. The single-particle energy scales of common metals
such as aluminum – the bandwidth W , the Fermi energy EF, together with the
plasma frequency h̄ωp – all fall into the 1–10 eV energy range, corresponding to
the visible and ultraviolet parts of the spectrum of electromagnetic radiation. In
band semiconductors like germanium, the bandwidth and the plasma frequency are
similar to values which are found in simple metals; the single-particle bandgap Eg

ranges from 10−1 eV to 5 eV as we go from small bandgap semiconductors, such
as InSb, to insulators, such as diamond.

Single-particle gaps which arise as the consequence of many-body interactions
are typically smaller than the gaps we find in band semiconductors, such gaps – for
example the superconducting gap or gaps associated with other broken symmetry
states of metals – depend on the strength of the interactions which lead to the
particular state; the magnitude of these gaps spans a wide range, but is usually

207
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10−1 eV or smaller. The gap in the superconducting state of aluminum for example
is 0.3 meV; in contrast this gap in high temperature superconductors or in materials
with charge density wave ground states can reach energies of 100 meV. Similarly,
relatively small energy scales of the order of 10 meV characterize impurity states
in semiconductors and also lattice vibrations.

Electron–phonon and electron–electron interactions also lead to reduced band-
width (while keeping the character of states unchanged), and this reduction can be
substantial if these interactions are large. This is the case in particular for strong
electron–electron interactions; in the so-called heavy fermion materials, for exam-
ple, the typical bandwidth can be of the order of 1 meV or smaller. The response
of collective modes, such as a pinned density wave, lies below this spectral range;
charge excitations near phase transitions and in a glassy state extend (practically)
to zero energy.

In addition to these energy scales, the frequencies which are related to the
relaxation process can vary widely, and the inverse scattering time 1/τ ranges from
1015 s−1 for a metal with a strong scattering process (leading to mean free paths of
the order of one lattice constant) to 1012 s−1 in clean metals at low temperatures.

8.2 Response to be explored

In the case of a linear response to an electromagnetic field with a sinusoidal
time variation, the response of only one individual frequency is detected, and all
the other spectral components are suppressed, either on the side of the radiation
source, or on the detection side. Since we consider only elastic light scattering, the
frequency will not be changed upon interaction; also the response does not contain
higher harmonics. The electric field E(ω) is described by

E(ω) = E0 sin{−ωt} . (8.2.1)

The current response measured at that single frequency ω is split into an in-phase
and an out-of-phase component

J(ω) = J0 sin{−ωt + δ(ω)}
= J0 [sin{−ωt} cos{δ(ω)} + cos{−ωt} sin{δ(ω)}]
= σ1E0 sin{−ωt} + σ2E0 cos{−ωt} ,

which is then combined by the complex conductivity σ̂ (ω) at this frequency:

J(ω) = J0 exp{−iωt} = [σ1(ω)+ iσ2(ω)]E0 exp{−iωt} = σ̂ (ω)E(ω) , (8.2.2)

using the complex notation of frequency dependent material parameters. In other
words, the complex notation is used to indicate the phase shift which might occur
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between stimulus (electric field) and response (current density). A full evaluation
of the response which leads to both components of the optical conductivity obvi-
ously requires the measurement of two optical parameters; parameters which are
examined by experiment and which are related – through Maxwell’s equations in
a medium – to the complex conductivity. At low frequencies, as a rule, both the
phase and amplitude of the optical response are measured – such as the resistance
and capacitance, the reflected amplitude and phase, or the surface resistance and
surface reactance, respectively. Alternatively, if only one parameter is observed,
such as the absorbed power, experiments in a broad frequency range have to be
conducted in order to perform the Kramers–Kronig analysis (see Section 3.2) for
the determination of the complex conductivity. Since a single method does not
cover the entire range, it is often necessary to combine the results obtained by a
variety of different techniques. The main problem here is the extrapolation to low
frequencies (ω→ 0) and to above the measurement range (ω→∞).

There are other issues which have to be resolved by a particular experiment.
Assume that we apply a slowly varying time dependent electric field to a specimen
with contacts applied at the ends. The purpose of the contacts is to allow the electric
charge to flow in and out of the specimen and thus to prevent charges building up
at the boundary. The wavelength λ = c/ f for small frequencies f , say below the
microwave range, is significantly larger than the typical specimen dimensions. The
wavevector dependence of the problem can under such circumstances be neglected.
There is a time lag between the electrical field and the current, expressed by the
complex conductivity σ̂ (ω) = σ1(ω)+ iσ2(ω). With increasing frequencies ω, two
things happen. The alternating electric field may be screened by currents induced
in the material, and the current flows in a surface layer. This layer is typically
determined by the parameter called the skin depth δ0 = c(2πωσ1)

−1/2. For typical
metals at room temperature the skin depth at a frequency of 1010 Hz is of the order
of 10−5 m. Whenever this length scale δ0 is smaller than the dimension of the
specimen, the skin effect has to be taken into account when the complex conduc-
tivity is evaluated. On increasing the frequency further, another point also becomes
important: the wavelength of the electromagnetic field becomes comparable to the
dimensions of the specimens, this typically occurs in the millimeter wave spectral
range. Well above these frequencies, entirely different measurement concepts are
applied. It is then assumed that in the two dimensions perpendicular to the direction
of wave propagation the specimen spreads over an area which is large compared to
the wavelength, and the discussion is based on the solution of Maxwell’s equations
for plane waves and for an infinite plane boundary.

The objective is the evaluation of the two components of the optical conductivity
or alternatively the dielectric constant – the parameters which characterize the
medium – and to connect the experimental observations to the behavior proposed
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by theory. The quantities which describe the modification of the electromagnetic
wave in the presence of the specimen under study are, for example, the power
reflected off or transmitted through a sample of finite thickness, and also the change
of the phase upon transmission and reflection. The task at hand is either to measure
two optical parameters – such as the refractive index and absorption coefficient, or
the surface resistance and surface reactance, or the amplitude and phase of the
reflected electromagnetic radiation. Although this is often feasible at low frequen-
cies where, because of the large wavelength, spatial sampling of the radiation is
possible, the objective, however, is difficult to meet at shorter wavelengths (and
consequently at higher frequencies) and therefore another method is commonly
used: one evaluates a single parameter, such as the reflected or transmitted power,
and relies on the Kramers–Kronig relations to evaluate two components of the
complex conductivity. Note, however, that the Kramers–Kronig relations are non-
local in frequency, and therefore the parameter has to be measured over a broad
frequency range, or reasonable (but often not fully justified) approximations have
to be made for extrapolations to high or to low frequencies.

8.3 Sources

The spectroscopies which are discussed here depend fundamentally on the char-
acteristics of the electromagnetic radiation utilized; consequently a discussion of
some of the properties of the sources are in order. As we have seen, the electromag-
netic spectrum of interest to condensed matter physics extends over many orders
of magnitude in frequency. This can only be covered by utilizing a large variety
of different sources and detectors; their principles, specifications, and applicable
range are the subject of a number of handbooks, monographs, and articles (see the
Further reading section at the end of this chapter).

We distinguish between four different principles of generating electromagnetic
waves (Fig. 8.1). At low frequencies mainly solid state electronic circuits are
used; they are monochromatic and often tunable over an appreciably wide range.
Above the gigahertz frequency range, electron beams are modulated to utilize
the interaction of charge and electric field to create electromagnetic waves from
accelerated electrons. Thermal radiation (black-body radiation) creates a broad
spectrum, and according to Planck’s law typical sources have their peak intensity
in the infrared. Transition between atomic levels is used in lasers and discharge
lamps. The radiation sources might operate in a continuous manner or deliver
pulses as short as a few femtoseconds.

In recent years significant efforts have been made to extend the spectral range
of synchrotron radiation down to the far infrared and thus to have a powerful
broadband source available for solid state applications. Also free-electron lasers
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Fig. 8.1. Ranges of the electromagnetic spectrum in which the different radiation sources
are applicable. At low frequencies solid state devices such as Gunn oscillators or IMPATT
diodes are used. Up to about 2 THz, coherent monochromatic sources are available
which generate the radiation by modulation of an electron beam (e.g. clystron, magnetron,
backward wave oscillator). White light sources deliver a broad but incoherent spectrum
from the far-infrared up to the ultraviolet; however, at both ends of the range the intensity
falls off dramatically according to Planck’s law. In the infrared, visible, and ultraviolet
spectral ranges, lasers are utilized; in some cases, the lasers are tunable.

are about to become common in solid state spectroscopy since they deliver coherent
but tunable radiation, and also short pulses.

For sources of electromagnetic radiation the bandwidth is an important parame-
ter. Radiation sources produce either a broad spectrum (usually with a frequency
dependent intensity), or they are limited (ideally) to a single frequency (a very
narrow bandwidth) which in some cases can be tuned. A quantitative way of
distinction is the coherence of the radiation, which is defined as a constant phase
relation between two beams [Ber64, Mar82]. Time coherence, which has to be
discriminated from the spatial coherence, is linked to the monochromaticity of
the radiation, since only light which is limited to a single frequency and radiates
over an infinite period of time is fully time coherent. Thus in reality any radiation
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exhibits only partial coherence as it originates from an atomic transition between
levels with finite lifetime leading to a broadening. Monochromatism is determined
by the bandwidth of the power spectrum, while the ability to form an interference
pattern measures the time coherence. If light which originates from one source is
split into two arms, with electric fields E1 and E2, of which one can be delayed
by the time period τ – for instance by moving a Michelson interferometer out
of balance by the distance δ = τ/2c as displayed in Fig. 10.6 – the intensity of
superposition is found to vary from point to point between maxima, which exceed
the sum of the intensities in the beam, and minima, which may be zero; this fact
is called interference. For the quantitative description a complex auto-coherence
function is defined

�(τ) = lim
T→∞

1

T

∫ T/2

−T/2
E∗1(t)E2(t + τ) dt , (8.3.1)

where E∗ denotes the complex conjugate of the electric field; the period of the
sinusoidal wave with frequency f = ω/2π is defined by T = 1/ f . The degree
of coherence is then given by γ (τ) = �(τ)/�(0), and we call |γ (τ)| = 1 totally
coherent, |γ (τ)| ≤ 1 partially coherent, and γ (τ) = 0 totally incoherent. By
definition, the coherence time τc is reached when |γ (τ)| = 1/e; the coherence
length lc is then defined as lc = cτc, where c is the speed of light. lc can be depicted
as the average distance over which the phase of a wave is constant. For a coherent
source it should be at least one hundred times the period of the oscillation; the
wavepackages are then in phase over a distance more than one hundred times the
wavelength. If the radiation is not strictly monochromatic, the coherence decreases
rapidly as τc increases. A finite bandwidth � f reduces the coherence length to
lc = c/2� f . In general, the finite bandwidth is the limitation of coherence for
most radiation sources.

The spatial coherence, on the other hand, refers to a spatially extended light
source. The coherence of light which originates from two points of the source
decreases as the distance δ between these positions increases. In analogy to the
time coherence, we can define the auto-correlation function �(δ) and the degree
of coherence γ (δ). Spatial coherence is measured by the interference fringes of
light coming through two diaphragms placed in front of the radiation source. The
absence of coherence becomes especially important for arc lamps, but also for
some lasers with large beam diameters.

8.4 Detectors

Electromagnetic radiation is in general detected by its interaction with matter. The
most common principles on which devices which measure radiation are based are



8.4 Detectors 213

109106 1012 1015

Frequency f (Hz)

Golay cells

Bolometers

Pyroelectric
detectors

Photo
multipliers

Semiconductor diodes

10310−3

Frequency ν (cm−1)

100

Fig. 8.2. Operating range of detectors. Semiconductor devices, such as Schottky diodes,
can be used well into the gigahertz range of frequency. Thermal detectors, such as Golay
cells and bolometers, operate up to a few terahertz; the infrared range is covered by
pyroelectric detectors. Photomultipliers are extremely sensitive detectors in the visible
and ultraviolet spectral ranges.

the photoelectric effect and the thermal effect (heating); less important are lumines-
cence and photochemical reactions. In the first category, photons of frequency ω

excite carriers across a gap Eg if h̄ω > Eg and thus the conductivity increases. The
second class is characterized by a change in certain properties of the material due
to an increase in temperature arising from the absorption of radiation; for example,
the resistivity decreases (semiconductor bolometer) or the material expands (Golay
cell). Most detectors are time averaging and thus probe the beam intensity, but
non-integrating detectors are also used for measuring the power of the radiation;
the time constant for the response can be as small as nanoseconds. Details of the
different detector principles and their advantages are discussed in a large number
of books [Den86, Der84, Kin78, Key80, Rog00, Wil70]. The various detectors
commonly used for optical studies are displayed in Fig. 8.2.
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Fig. 8.3. Commonly employed methods of exploring the electrodynamics of metals in a
wide spectral range. Also shown are the various energy units used. RF refers to radio
frequencies; mw to microwaves; FIR and IR mean far-infrared and infrared, respectively;
vis stands for visible, and UV stands for ultraviolet.

8.5 Overview of relevant techniques

The broad range of energy scales we encounter in solids implies that various tech-
niques which are effective at vastly different parts of the electromagnetic spectrum
are all of importance, and in fact have to be combined if a full account of the
physics under question is attempted. This explains the variety of methods which are
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used, the variety of the hardware, the means of propagation of the electromagnetic
radiation, and the relevant optical parameters which are measured.

The methods which have been utilized are of course too numerous to review.
Some of the most commonly used experimental techniques are displayed in Fig. 8.3
together with the electromagnetic spectrum, as measured by different units. All
these units have significance and Table G.4, p. 464, may be helpful. The s−1 or
hertz scale is the natural unit for the radiation with a sinusoidal time variation;
attention has to be paid not to confuse frequency f and angular frequency ω =
2π f . The energy associated with the angular frequency is h̄ω; the unit commonly
used is electron-volts. The temperature scale is in units for which kBT is important,
as it establishes a correspondence between temperature driven and electromagnetic
radiation induced charge response. Often this response is fundamentally different
in the so-called quantum limit kBT < h̄ω as opposed to the kBT > h̄ω classical
limit. Finally, the wavelength λ of the electromagnetic radiation is important, not
least because it indicates its relevance with respect to typical sample dimensions.

The various methods applied in different ranges of the electromagnetic spectrum
have much in common, in particular as far as the principles of light propagation and
the overall measurement configurations are concerned. Interferometric techniques
work equally well in the infrared and in the microwave spectral ranges – although
the hardware is vastly different. Resonant techniques have been also employed in
different spectral ranges – the advantages and disadvantages of these techniques do
not depend on the frequency of the electromagnetic radiation.

Finally, one should keep in mind that the optical spectroscopy covered in this
book is but one of the techniques which examine the charge excitations of solids;
complementary techniques, such as electron energy loss spectroscopy, photo-
emission, or Raman and Brillouin scattering, are also widely used. The response
functions which are examined are different for different methods, and often a
comparison of information offered by the different experimental results is required
for a full characterization of the charge excitations of solids.
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9

Propagation and scattering of electromagnetic waves

A large variety of structures are used to propagate and guide electromagnetic
radiation, with their applicability depending on the spectral range. From zero
frequency up to the radio frequency range, the current can be supplied through
electrical leads. Coaxial cables of different sizes are the most common arrangement
in the kilohertz and megahertz range of frequency, and recent progress has made
them available up to 100 GHz. In the microwave and millimeter wave range, in
general, the propagation of electromagnetic radiation takes place via striplines or
waveguides. From the infrared through the visible up to the ultraviolet spectral
range, the light is transmitted via free space or, as in the case of optical fibers,
guided through a dielectric material. Although the terminology used in these
areas might differ vastly, the general principles of wave propagation are always the
same. All structures which guide electromagnetic waves and even free space can be
discussed within the concept of transmission lines as far as the wave propagation is
concerned. Obviously the propagation of electromagnetic waves in a transmission
line is fully given by Maxwell’s equations; however, it is not necessary actually
to solve the wave equations with the appropriate boundary conditions each time.
Instead, we can use the impedance Ẑ as the characteristic parameter, and then
the wave propagation can be discussed in a manner which is independent of the
particular kind of guiding structure.

After presenting the principles of wave propagation, we discuss the scattering
from boundaries which terminate a transmission line or which serve as part of the
line; this can for instance be a sample in a waveguide, termination of a coaxial
cable, or a mirror in an optical setup. All these cases can be treated in the same
way: as a change of the impedance at the interface. Here we evaluate the reflection
and transmission at a single impedance mismatch, and subsequently we examine
what happens for two interfaces, for example the front and back of a specimen.

Finally we look at resonant structures, which can be considered as isolated parts
of a transmission line which are terminated by two impedance mismatches, and

217
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thus which are weakly coupled to the exterior. This includes different arrangements
such as RLC circuits, enclosed cavities, or Fabry–Perot resonators.

9.1 Propagation of electromagnetic radiation

In the absence of free charge and current, the propagation of electromagnetic radia-
tion in free space or in a homogeneous medium is described by the wave equations
(2.1.19) and (2.2.20), respectively. In the presence of conducting material, such as
a wire or a waveguide, the appropriate boundary conditions (2.4.4) have to be taken
into account; i.e. the tangential component of the electric field E and the normal
component of the magnetic induction B are zero at the surface of a good conductor:
ns × E = 0 and ns · B = 0, where ns denotes the unit vector perpendicular to the
boundary. The solutions for many simple, mainly symmetrical, configurations (a
pair of parallel wires, microstriplines, coaxial cables, and rectangular waveguides,
for example) are well documented, and we do not elaborate on them here.

The important overall concept which emerges is that the structure which is used
to propagate the electromagnetic radiation can be characterized by a quantity called
the impedance Ẑc, a complex quantity which depends on the particular structure
used. The parameter also appears in the equation which describes the reflection
from or transmission through a test structure (the sample to be measured) which is
placed in the path of the electromagnetic radiation; the structure is again described
by the characteristic impedance.

9.1.1 Circuit representation

Instead of solving Maxwell’s equations for the description of wave propagation,
for cables and wires it is more appropriate to use the circuit representation,
eventually leading to the telegraphist’s equation. This approach is common to
electrical engineering, and is a convenient way of describing and calculating the
wave propagation in transmission lines. Although the description can be applied
to all waveguiding structures, it is best explained if we look at a pair of wires
or a coaxial cable. Let us assume that the leads have a certain resistance and
inductance, and that between the two wires there is some capacitance and maybe
even losses (expressed as conductance) due to a not perfectly insulating dielectric.
The circuit which includes these four components can be used to write down the
relationship between currents and voltages at both ends of a transmission line
segment displayed in Fig. 9.1. We define the wave to be traveling in the z direction
and therefore expand V (z+�z, t) and I (z+�z, t) in a Taylor series ignoring the
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LlI

V

Rl

GlCl

dz

Fig. 9.1. Circuit representing a transmission line: the losses in the wires are given by the
resistance Rl dz, the inductance of the wires is L l dz, the capacitance between them is given
by Cldz, and the losses of the dielectric between the wires are described by the conductance
G ldz. If a voltage V is applied between the two contacts on the left hand side of the circuit,
V + ∂V

∂z dz is obtained at the right hand side. A current I on one side becomes I + ∂ I
∂z dz.

terms which contain second and higher powers. Kirchhoff’s laws yield

−∂V (z, t)

∂z
= Rl I (z, t)+ L l

∂ I (z, t)

∂t
(9.1.1a)

−∂ I (z, t)

∂z
= G l V (z, t)+ Cl

∂V (z, t)

∂t
, (9.1.1b)

where Rl, L l, G l, and Cl are the resistance, inductance, conductance, and capaci-
tance per unit length, respectively. Combining the two equations, the propagation
of electromagnetic waves in a transmission line can now be described by the
so-called telegraphist’s equations of voltage V (z, t) and current I (z, t)

∂2V (z, t)

∂z2
= RlG l V (z, t)+ (RlCl + L lG l)

∂V (z, t)

∂t
+ L lCl

∂2V (z, t)

∂t2
(9.1.2a)

∂2 I (z, t)

∂z2
= RlG l I (z, t)+ (RlCl + L lG l)

∂ I (z, t)

∂t
+ L lCl

∂2 I (z, t)

∂t2
. (9.1.2b)

One set of solutions of these equations is given by traveling attenuated waves1

V (z, t) = V0 exp{−iωt} exp{±γ̂ z} (9.1.3)

(a similar equation exists to describe the current), where we obtain for the propa-
gation constant

γ̂ = α

2
+ iβ = [(Rl − iωL l)(G l − iωCl)]1/2 (9.1.4)

1 In engineering textbooks generally exp{jωt} is used, leading to equations apparently different from the one
given here. In cases where the time dependence of waves is concerned, the replacement of i by −j leads to
identical results; there is never any difference in the physical results.
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where the parameter α is the attenuation constant and β is the phase constant. The
complex propagation constant γ̂ is the common replacement for the wavevector
q = ω

c N̂nq as defined in Eq. (2.3.2), where q̂ = iγ̂ ; it fully characterizes the
wave propagation. Hence the solution of the telegraphist’s equation is reduced to a
static problem which has to be calculated for each specific cross-section. Knowing
the parameters of our circuit, we can therefore calculate how the electromagnetic
waves propagate in the transmission line. From Eq. (9.1.1a) we find the voltage
decay

−∂V

∂z
= (Rl − iωL l)I = ±γ̂ V ,

and the decay of the current follows from Eq. (9.1.1),

I =
[

G l − iωCl

Rl − iωL l

]1/2

V = ŶcV ,

where the electromagnetic fields propagating to the left (positive γ̂ in Eq. (9.1.3))
are neglected, and Ŷc is called the admittance. The ratio of voltage to current

Ẑc =
[

Rl − iωL l

G l − iωCl

]1/2

= 1

Ŷc

(9.1.5)

is called the characteristic impedance of the transmission line; it has the units of
a resistance and is in accordance with the definition of the characteristic wave
impedance as the ratio of electric field and magnetic field given by Eq. (2.3.27).
This impedance fully characterizes the wave propagation in a transmission line
and contains all information necessary for applications. It is the basic parameter
used in the next section to calculate the reflectivity off or transmission through a
material placed in the path of the electromagnetic wave.

Losses along the line and between the leads are assumed to be relatively small,
i.e. Rl < ωL l and G l < ωCl. This condition allows (roughly speaking) the
propagation of waves. The phase constant β becomes

β ≈ ω (L lCl)
1/2

(
1− RlG l

4ω2L lCl
+ G2

l

8ω2C2
l

+ R2
l

8ω2L2
l

)
, (9.1.6)

while the attenuation constant α

α ≈ Rl

(
Cl

L l

)1/2

+ G l

(
L l

Cl

)1/2

= Rl

Ẑc

+ G l Ẑc (9.1.7)

describes the exponential decay of the electric field maxima; i.e. the power dissipa-
tion along the line P(z) = P0 exp{−αz} according to Lambert–Beer’s law (2.3.17).
Without dissipation G l = Rl = 0, α = 0, and β = ω(L lCl)

1/2. The characteristic
impedance Ẑc is then always a real quantity with Ẑc = Rc = (L l/Cl)

1/2. The losses
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of a transmission line are determined by the conductance G l and the resistance Rl

per unit length; in most common cases, G l ≈ 0 and Rl is small. The phase velocity
vph of an electromagnetic wave is given by vph = ω/β ≈ (L lCl)

−1/2 for a lossless

transmission line. The group velocity vgr = dω
dβ

∣∣∣
0

describes the velocity of the

energy transport and cannot be expressed in a simple form. On the other hand, for
β = 0 no wave propagates (vph = ∞), and the field decays exponentially even
without damping by the line (evanescent waves).

9.1.2 Electromagnetic waves

Whereas in free space only transverse electric and magnetic (TEM) waves prop-
agate, transmission lines may also support the propagation of transverse electric
(TE) and transverse magnetic (TM) modes. As a point of fact this is not always
disturbing: the modes excited in the transmission line influence the attenuation
and may also be important when these structures are used for investigations of
condensed matter.

TEM waves

As we have seen in Section 2.1.2, the electric and magnetic field components of
electromagnetic waves in free space are perpendicular to the direction of propaga-
tion. Due to the boundary conditions this does not hold in the case of conducting
media. However, with ohmic losses along the line negligible, guiding structures
which contain two or more conductors are in general capable of supporting elec-
tromagnetic waves that are entirely transverse to the direction of propagation; the
electric and the magnetic field have no longitudinal components (EL = Ez = 0
and H L = Hz = 0). They are called transverse electromagnetic (TEM) waves.
The transverse electric field is ET = −∇TΦ exp{i(q̂z − ωt)}; we want to suppress
the time dependence in the following. The propagation can be expressed as

[(∇T)2 + γ̂ 2 + q̂2]ETΦ exp{−γ̂ z} = 0 .

The magnetic field is given by Eq. (2.2.21), and with nq the unit vector along the
propagation direction q:

HT = q̂c

ωµ′1
nq × ET = 4π

c

1

ẐTEM

nq × ET ; (9.1.8a)

we find that the characteristic impedance of the TEM waves is given by

ẐTEM = 4π

c

(
µ′1
ε′1

)1/2

= Z0

(
µ′1
ε′1

)1/2

(9.1.8b)
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with the free space impedance Z0. There is only a single TEM mode possible. Note
that ẐTEM decreases as the dielectric constant of the transmission line ε′1 becomes
larger. As mentioned above, in the absence of guiding structures (i.e. in a vacuum)
TEM waves also propagate. There is no cutoff frequency (i.e. the electromagnetic
radiation can propagate at any frequency) for TEM waves. This is particularly
important for coaxial cables which are used down to zero frequency. The electric
field distribution of TEM modes in coaxial cables is radial; the magnetic field is
circular. The upper frequency limits for the use of coaxial cables is determined
by the increasing losses of the conducting wires but also by the dielectric material
between. At higher frequencies, however, the propagation of TE and TM modes
also becomes possible.

TM waves

Lossless (or weakly dissipating) guiding structures with one or more conductors
and a homogeneous dielectric can support electromagnetic waves in which the
magnetic field is entirely transverse to the direction of propagation (H L = Hz = 0)
but in which the electric field has in addition a longitudinal component (EL = Ez �=
0). These waves are called TM or E waves. The electric and magnetic fields have
the form E = (ET + EL) exp{−γ̂ z} and H = HT exp{−γ̂ z}, and the spatial part of
the wave equation is given by

[(∇T)2 + γ̂ 2 + q2](ET + EL) exp{−γ̂ z} = 0 ,

where the longitudinal component is [(∇T)2 + q̂2
c ]EL = 0 and the cutoff wave-

number q̂c is defined as

q̂2
c = γ̂ 2 + q̂2 =

(
2π

λc

)2

. (9.1.9)

There is no wave propagation possible for wavelength λ exceeding the cutoff
wavelength λc; crudely speaking, the wave has to be shorter than twice the distance
between the two conductors which constitute the transmission line or the opening
of the waveguide. For longer waves only evanescent waves are possible where the
fields die off exponentially in space. Even without damping no energy transport
takes place; a fact which is utilized if leakage has to be avoided through openings.
The relations for TM waves are:

HT = − iωε′1
cγ̂

nq × ET = iωε′1
cq̂2

c

nq ×∇T EL (9.1.10a)

ET = c

4π
ẐTMnq ×HT (9.1.10b)

ẐTM = −4πγ̂

iωε′1
= − cγ̂

iωε′1
Z0 , (9.1.10c)
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where γ̂ is determined by the particular propagating mode. This implies that the
characteristic impedance of a transmission line is different for different modes. Al-
though not commonly done, in principle TM waves can be used if the longitudinal
response of a material is studied. If we place a material of interest between two
plates, we can excite a TM wave which has also a longitudinal component of the
electric field. Thus σ L

1 and εL
1 can be measured and evaluated at finite frequencies,

which is not possible for free space wave propagation.

TE waves

In analogy to TM waves, lossless guiding structures that contain one or more
conductors and a homogeneous dielectric are also capable of supporting elec-
tromagnetic waves in which the electric field is entirely transverse to the direc-
tion of propagation (EL = Ez = 0) but the magnetic field may also have a
longitudinal component (H L = Hz �= 0). These waves are called TE or H
waves. The propagation of electric fields E = ET exp{−γ̂ z} and magnetic fields
H = (HT +HL) exp{−γ̂ z}. The spatial propagation can be written as

[(∇T)2 + γ̂ 2 + q̂2](HT +HL) exp{−γ̂ z} = 0 ,

where the longitudinal component is [(∇T)2 + q̂2
c ]H L = 0. The equations for TE

waves are:

ET = iωµ′1
cγ̂

nq ×HT = −iωµ′1
cq̂2

c

n×∇T H L (9.1.11a)

HT = 4π

c

1

ẐTE

nq × ET (9.1.11b)

ẐTE = −4π

c

iωµ′1
cγ̂

= iωµ′1
cγ̂

Z0 . (9.1.11c)

As in the case of TM waves the characteristic impedance of the guiding structure is
defined in analogy to the wave impedance of free space (Eqs (2.3.27) to (2.3.29)).
The characteristic impedance describes the resistance of the transmission line; in
contrast to TM waves, the impedance of TE waves does not depend on the dielectric
material the structure is filled with. The cutoff wavenumber is defined in the same
way as for TM waves: q̂2

c = γ̂ 2+ q̂2 = (2π/λc)
2; for smaller wavevectors no wave

propagation is possible.

9.1.3 Transmission line structures

Next we evaluate Ẑc, the parameter which is needed to describe the scattering
problem: the scattering of electromagnetic radiation on a sample which, as we will
see, is described by an impedance ẐS.
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In the case that metallic boundaries are present, the characteristic impedance
Ẑc depends not only on the medium, but also on the geometry and the mode
which is excited. The task at hand now is to evaluate the geometrical factor for
the transmission lines of interest and then see how the propagation parameters are
modified compared to free space propagation.

The best known examples of transmission lines (Fig. 9.2) are two parallel wires
(Lecher line), parallel plates (microstripline and stripline), coaxial cables, and
hollow (rectangular) waveguides; the respective circuit representations are given
in [Ell93, Gar84, Poz90, Ram93] and in numerous handbooks [Dix91, Mag92,
Mar48, Smi93]. There is a simple concept which applies in general: the calcu-
lation of the four circuit parameters (capacitance, inductance, conductance, and
resistance) is reduced to two geometrical parameters (called A and A′) and the
knowledge of the material parameters which form the transmission line.2 In this
chapter we denote the material parameters of the surrounding dielectric by a prime,
and unprimed symbols refer to the properties of the actual transmission line. The
transmission line is assumed to be filled by a material with the dielectric constant
ε′1 and permeability µ′1; the ohmic losses, due to the conductance of the material,
are described by σ ′1. The capacitance per unit length of a system is given by

Cl = 1

4π

ε′1
V 2

0

∫
S

E · E∗ ds = 1

4π
ε′1

1

A
, (9.1.12)

where the integral is taken over the cross-section S of the transmission line. A
is a constant which solely depends on the geometry of the particular setup; we
will give some examples below. In a similar way the inductance, impedance, and
conductance can be calculated:

L l = 4π

c2

µ′1
I 2
0

∫
S

H ·H∗ ds = 4π

c2
µ′1 A , (9.1.13)

Zc =
(

L l

Cl

)1/2

= 4π

c

(
µ′1
ε′1

)1/2

A = Z0

(
µ′1
ε′1

)1/2

A (9.1.14)

and

G l = 1

4π

σ ′1
V 2

0

∫
S

E · E∗ ds = 1

4π
σ ′1

1

A
. (9.1.15)

The ohmic losses per unit length R are proportional to the surface resistance RS

of the guiding material and can be calculated by integrating over the conductor

2 Optical fibers commonly used in the visible and near-infrared range of frequency are not covered by the
description due to different boundary conditions since there is no conducting material used, but total reflection
at oblique incidence is used [Ada81, Mar91]. Of course total reflection is also covered by the impedance
mismatch approach.
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Fig. 9.2. Different transmission line configurations: (a) two wires, (b) parallel plate,
(c) coaxial cable, and (d) rectangular waveguide. On the right hand side are the corres-
ponding electric field configurations, where the free space (e) is added.
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boundaries:

Rl = RS

I 2
0

∫
C

H ·H∗ dl = A′RS = A′

σ1δ0
= A′

(
2πω

c2σ1

)1/2

= A′
2π

c

(
f

σ1

)1/2

,

(9.1.16)
where the proportionality constant A′ also depends on the geometry of the trans-
mission line. σ1 describes the conductivity of the metal which constitutes the line,
f = ω/2π is the frequency of the transmitted waves, and δ0 is the skin depth. From
this equation we see that the losses of a transmission line increase with frequency
f . In the infrared range this becomes a problem, in particular since σ1(ω) of the
metal decreases and σ ′1(ω) of the dielectric in general increases. This then makes
the use of free space propagation or the utilization of optical fibers advantageous.
The power losses per unit length are in general due to both the finite conductivity of
the metallic conductors σ1 and the lossy dielectric σ ′1 with which the line is filled.
The attenuation α along the line is defined by the power dissipation in direction z;
it can easily be calculated by Eq. (9.1.7), if it is only due to the metallic surface

α = A′

A

RS

Z0
. (9.1.17)

Integrating the Poynting vector over the cross-section yields the power propagation
along the line:

P = 1

2

c

4π

∫
S

Es H T ds = 1

2

( c

4π

)2 A

A′
Z0(H T)2 . (9.1.18)

For low-loss transmission lines A should be large and A′ should be small. From
Eq. (9.1.6) we see that for a transmission line with losses Rl = G l = 0 the phase
velocity vph = (L lCl)

−1/2 = c/(µ1ε1)
1/2 independent of the particular geometry.

The problem of wave propagation in a transmission line is now reduced to
finding the geometrical factors A and A′ for special cases of interest; this means
evaluating the field arrangement and solving the integrals in the above equations.
Note that the particular field distribution does not only depend on the geometry,
but also on the mode which is excited, as discussed in Section 9.1.2.

Free space and medium

Before we discuss special configurations of metallic transmission lines, let us recall
the propagation of a plane wave along the z direction in an isotropic medium (with
ε1, µ1 but no losses) or free space (ε1 = µ1 = 1), in order to demonstrate that our
approach of circuit representation also covers this case. Since H = (ε1/µ1)

1/2nz ×
E and nz is the unit vector along z, we find that only transverse electromagnetic
waves propagate. The wavevector q = 2π/λ is given by

q = ω

c
(µ1ε1)

1/2 = iγ̂ = −β ,
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and a plane wave is not attenuated in free space. Obviously there are no losses
associated with free space propagation. The impedance of free space can be
evaluated to be

Z0 =
(

L l

Cl

)1/2

= 4π

c
= 377 � (9.1.19)

in SI units (which equals Z0 = 4π/c = 4.19 × 10−10 s cm1 in cgs units), as
we have derived in Section 2.3.2. If the wave propagates in a dielectric medium,
characterized by ε̂ and µ1, without boundaries we obtain

Ẑc = 4π

c

(µ1

ε̂

)1/2
= Z0

(µ1

ε̂

)1/2
(9.1.20)

for the impedance according to Eq. (2.3.30). Depending on the imaginary part of
the dielectric constant ε̂ of the medium, losses become important.

Two wire transmission line

Perhaps the simplest transmission line, the so-called Lecher system shown in
Fig. 9.2a, consists of two parallel wires separated by an insulating material (ε′1, µ

′
1)

– which might also be air. Let us assume two perfectly conducting wires of
diameter 2a spaced a distance b apart. The geometrical constant A of this system
can be calculated, and we find A = (1/π)arccosh {2b/a} ≈ (1/π) ln {b/a} where
the approximation is valid for a � b; typical values are b/a ≈ 10. Assuming
Rl → 0 and G l → 0 the characteristic impedance Zc of a two wire transmission
line is given by:

Zc = Z0

(
µ′1
ε′1

)1/2 1

π
arccosh

{
2b

a

}
≈ Z0

(
µ′1
ε′1

)1/2 1

π
ln

{
b

a

}
. (9.1.21)

The resistance Rl per unit length is given by

Rl = 4π

c

(
f

σ1

)1/2 b

4πa2

[(
b

2a

)2

− 1

]−1/2

, (9.1.22)

where σ1 is the conductivity of the (usually copper) wires.

Parallel plate transmission line

Similar considerations hold for a parallel plate transmission line of spacing b and
width a (Fig. 9.2b) which in general may be filled with a dielectric, to first approx-
imation lossless material (ε′1 and µ′1, σ

′
1 = 0). For wide transmission lines a � b,

when the effect at the edges is negligible, the geometrical factor is approximately
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Fig. 9.3. (a) Cross-section through a microstripline; the line of width a is usually made
from copper and is separated from the metallic ground plate by an dielectric spacer of
thickness b. (b) Design of a stripline where the metallic line is embedded in the dielectric
material with the ground plates at the bottom and on the top; in most cases b1 = b2 � d.

A ≈ b/a. The characteristic impedance is then evaluated as

Zc = Z0

(
µ′1
ε′1

)1/2 b

a

[
1+ 2b

πa
+ 2b

πa
ln

{πa

2b
+ 1

}]−1

≈ Z0

(
µ′1
ε′1

)1/2 b

a
.

(9.1.23)
The resistance per unit length is independent of b and is given by

Rl = 4π

c

(
f

σ1

)1/2 1

a
. (9.1.24)

The parallel plate transmission line is the model for microstriplines and striplines
(Fig. 9.3) [Bha91, Gar94].

Coaxial cable

Coaxial cables are the preferred transmission lines in the microwave and in the
lower millimeter wave spectral range. The geometrical constant of a lossless coax-
ial cable, with a and b the radii of the inner and the outer conductor as displayed
in Fig. 9.2c, is A = (1/2π) ln {b/a}. The characteristic impedance of a lossless
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coaxial cable can be written as:

Zc = Z0

(
µ′1
ε′1

)1/2 1

2π
ln

{
b

a

}
. (9.1.25)

Note, that – as this solution implies – coaxial cables can have different dimensions
with the same impedance. Besides the losses of dielectric material (σ ′1 �= 0), the
attenuation is determined by the metal; in the latter case the resistance per unit
length is given by

Rl = 4π

c

(
f

σ1

)1/2 1

4π

(
1

a
+ 1

b

)
, (9.1.26)

which sets the higher frequency limitation for the use of coaxial cables. A second
restriction is the occurrence of higher modes as seen in Section 9.1.2. A commonly
used coaxial cable has an impedance of 50 �.

Rectangular waveguide at TE10 mode

The most important application of transverse electrical waves is in standard rect-
angular metal waveguides commonly operated at the basic TE10 mode. In the
case of a waveguide with (almost) no losses, q̂ = ω

c

(
ε′1µ

′
1

)1/2
and γ̂ = iβ with

β2 = (ω2ε′1µ
′
1/c2) − (π/a)2 and ZTE = Z0(q̂/β) for frequencies larger than

the cutoff frequency fc = c/λc = c/(2a). As usual a is the larger side of the
rectangular cross-section of the waveguide as displayed in Fig. 9.2d; it is about
half the wavelength. The length of the guided wave λ is defined as the distance
between two equal phase planes along the waveguide,

λ = 2π

β
= 2π

[
ω2

c2
ε′1µ

′
1 −

(π
a

)2
]−1/2

> λ0 ,

where λ0 is the wavelength in free space. In the most common case of an empty
waveguide (ε′1 = µ′1 = 1), the relations for ZTE and λ reduce to:

ZTE = Z0

[
1−

(
λ0

2a

)2
]−1/2

and λ = λ0

[
1−

(
λ0

2a

)2
]−1/2

.

(9.1.27)
The frequency dependences of the phase velocity and group velocity behave sim-
ilarly. Below the cutoff frequency ωc = πc/a, no wave propagation is possible:
the attenuation α, the impedance ZTE, and the phase velocity vph diverge, while the
group velocity vgr and β = Re{q̂} (the real part of the wavevector) drop to zero.
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The attenuation due to the wall losses is given by Eq. (9.1.7);

αTE01 = 2RS
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f

)2
]

, (9.1.28)

and increases with frequency.

9.2 Scattering at boundaries

As we have discussed in the previous section, the propagation of electromagnetic
radiation through transmission lines (and even free space) is fully described by the
characteristic impedance of this structure. Hence we can disregard the particular
arrangement of a transmission line and only consider its impedance. As we have
seen, the concept of the characteristic impedance is quite general, and it allows
us to present a unified description of wave propagation and scattering for low
frequency problems as well as for typical optical arrangements. Any change in the
characteristic impedance leads not only to a variation in the propagation parameter
γ̂ as we have discussed in the previous section, but also to a partial reflection of
the electromagnetic wave at the boundary or interfaces of media with different ẐS.
The scattering of the wave at the interface of two impedances is the subject of this
section.

A large number of treatises deal with changes of the geometry of transmis-
sion lines or obstacles in the transmission line which modify the characteristic
impedance [Mar48, Sch68]. Here we are less interested in a variation of the
geometry than in the effects associated with specimens placed within the struc-
tures. We consider the change in the characteristic impedance if a specimen (of
dielectric properties under consideration) is placed at an appropriate position in
the transmission structure. The simplest case is light reflected off a mirror: the
propagation in free space is described by the impedance Z0, and the mirror by the
surface impedance ẐS. From these two quantities we can immediately evaluate
the complex reflection coefficient as demonstrated in Section 2.4.5. Similarly, the
sample could be a thin rod inside a waveguide, some material used to replace the
dielectric of a coaxial cable, or a device under test connected to the ports of a
network analyzer. In these examples the simple change of the material properties
described by the surface impedance ẐS has to be supplemented by geometrical
considerations leading to the concept of the load impedance ẐL.

In many practical cases, a specimen of finite size is placed inside a transmission
line, implying that there is a second boundary at the back of the sample after
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z = 0

V VL

Zc

ZL

Fig. 9.4. Circuit representation of a transmission line with characteristic impedance Ẑc

which is terminated at the position z = 0 by the load impedance ẐL. VL denotes the
voltage across the load impedance.

which the transmission line continues. A thin, semitransparent film in the path
of light propagating in free space is the simplest example. If the wave is not fully
absorbed by the sample, part of the incident power will be transmitted through both
boundaries and continues to propagate in the rear transmission line. Transparent
samples of finite thickness are discussed in Appendix B at length, here we will
present only the main ideas pertaining to the scattering problem.

9.2.1 Single bounce

Let us start with the circuit representation introduced in Section 9.1.1 to illustrate
the approach taken. The equivalent circuit of this general scattering problem is
shown in Fig. 9.4, where z is the direction along the transmission line. In the case
of no attenuation of the undisturbed transmission line (α = 0), the solutions of
the second order differential equations (9.1.2) for the voltage and current are the
following (considering the spatial variation only):

V (z) = V+ exp{−iβz} + V− exp{iβz} (9.2.1a)

I (z) = I+ exp{−iβz} − I− exp{iβz} (9.2.1b)

= 1

Ẑc

[V+ exp{−iβz} + V− exp{iβz}] ;

as defined in the previous section, β is the phase constant and Ẑc is the character-
istic impedance of the transmission line which also depends on the mode which is
excited. Assuming that we terminate one end of the line (at the position z = 0) with
a load impedance ẐL = RL + iXL, part of the electromagnetic wave is reflected
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back, and the ratio of the amplitude of the reflected V− and incident waves V+ is
called the reflection coefficient r = V−/V+. The voltage at the load resistance is
VL = V+ + V−, and the current going through is IL = I+ − I−. Together with
VL = ẐL IL this yields the complex reflection coefficient

r̂ = |r̂ | exp{iφr} = ẐL − Ẑc

ẐL + Ẑc

(9.2.2)

which also includes the phase difference between the incident and reflected waves.
The transmission coefficient

t̂ = |t̂ | exp{iφt} = 2ẐL

ẐL + Ẑc

(9.2.3)

describes the ratio of the voltage (or electric field) which passes the boundary to the
incident one; it also takes the phase change into account. These two are the main
equations which fully characterize the behavior of a wave as it hits a boundary.
These equations also imply that the electromagnetic wave is sensitive only to the
impedance in the guiding structure, meaning that changes in geometry or material
cannot be observed if the complex impedances on both sides of the interface match.
Note that we assumed implicitly that the same wave type can propagate on both
sides of the boundary. This, for example, does not hold if a metallic waveguide
where a TE mode propagates is terminated by an open end, since only TEM waves
are possible in free space; in this case the reflection coefficient r̂ = 1.

In practice, the approach is the opposite: from the measurement of both com-
ponents of the complex reflection (or transmission) coefficient and knowing the
characteristic line impedance of the transmission line, it is straightforward to cal-
culate the complex load impedance ẐL of the specimen under test:

ẐL = Ẑc
1+ r̂

1− r̂
and ẐL = Ẑc

t̂

2− t̂
. (9.2.4)

ẐL depends on the geometry used and on the optical parameters of the material
forming the load. For more complicated and multiple scattering events, the rep-
resentation by scattering matrices S is advantageous and is widely used in engi-
neering textbooks [Ell93, Gar84, Poz90]. The impedance is the ratio of the total
voltage to the total current at one point; the scattering matrix relates the electric
field of the incident wave to the field of the wave reflected from this point. If the S
matrix is known, the impedance Ẑ can be evaluated, and vice versa.

This general concept holds for scattering on any kind of impedance mismatch
experienced by the traveling wave in a transmission line; it is equally appropriate
when we terminate a coaxial line by some material of interest, if we fill the
waveguide with the sample, or replace a wire or plate in a Lecher line or parallel
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plate transmission line by the unknown metal. In our simple example of a large
(compared to the wavelength and beam diameter) and thick (d � δ0) mirror placed
in the optical path of a light beam, it is the surface impedance of the mirror ẐS

which solely determines the reflection coefficient according to the equation

r̂ = ẐS − Z0

ẐS + Z0

.

In this case, and also when the material acts as a short for a coaxial line or
waveguide (where the free space impedance Z0 is replaced by the characteristic
impedance Ẑc), the load impedance ẐL is equal to the surface impedance ẐS. In
general a geometrical factor enters the evaluation; this is, as a rule, difficult to
calculate. The main problem is the following: if we know the load impedance ẐL

which causes the scattering of the wave as it propagates along the transmission
line, it is no trivial task to evaluate the surface impedance ẐS of the material from
which the obstacle is made because of depolarization effects. Having obtained
the surface impedance, we then evaluate the complex conductivity or the complex
dielectric constant of the specimen as discussed in Chapter 2.

A remark on the difference between measuring conductivity (or admittance) and
resistivity (or impedance) is in order here. In the first case, the applied voltage
is kept constant and the induced current is measured; or the applied electric field
is constant and the current is evaluated by observing the dissipated power due to
losses (Joule heat) within the material. In the second case when the impedance is
probed, the current flowing through the device is kept constant and the voltage
drop studied: a typical resistance measurement. This implies that absorption
measurements look for dissipation and thus the admittance Ŷ = 1/Ẑ ; the same
holds for reflection experiments off a thick (d � δ0) material which probe the
power not absorbed R = 1 − A. Optical transmission experiments through thin
films, on the other hand, actually measure the impedance Ẑ .

9.2.2 Two interfaces

In general it is not possible to evaluate the transmission of the electromagnetic
wave through a single interface, but we can measure the transmission through a
sample of finite thickness; thus we have to consider two interfaces. This can be
done, for instance, if we replace a certain part (length d) of a copper waveguide
(characterized by an impedance Ẑc) by a metal (of the same geometry) with a load
impedance ẐL and the transmission line continues with its characteristic impedance
Ẑc. Alternatively we can fill a microstripline with some unknown dielectric over a
length d, or we can shine light through a slab of material of thickness d. The latter
case can be simplified for thick samples: when the skin depth δ0 is much smaller
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than the thickness d , the problem is reduced to a single bounce. Hence the load
impedance ẐL is equivalent to the surface impedance ẐS of the material as defined
in Eq. (2.4.23); no power is transmitted through the material: it is either reflected
or absorbed. However, if this is not the case, the second impedance mismatch
(at the back of the sample) also causes reflection of the wave and thus reduces
the power transmitted into the rear part of the transmission line; the reflection
coefficients for both sides of the sample are the same (though with opposite sign)
if the line continues with Ẑc. For arbitrary systems (but assuming local and linear
electrodynamics) the load impedance ẐL can be calculated by

ẐL = ẐS
Ẑc cosh{−iq̂d} + ẐS sinh{−iq̂d}
ẐS cosh{−iq̂d} + Ẑc sinh{−iq̂d} , (9.2.5)

if we assume that the surrounding structure has the same characteristic impedance
Ẑc before and after the load, and the wavevector in the material (with impedance
ẐS) is given by q̂ = ω

c

(
µ1ε̂

)1/2
. Again, the simplest example is a thin (free

standing) dielectric film probed by optical techniques. In the d → 0 limit,
ẐL = Ẑc and no reflection or absorption takes place; for d → ∞ we observe
no transmission and are left with a single bounce. In all other cases part of the
wave is reflected off the front surface, and part is reflected at the rear surface of
the material. This wave, however, is again partially reflected at the front, and the
process repeats itself ad infinitum, as depicted in Fig. 9.5. Thus we have to take all
these contributions to the totally reflected and totally transmitted wave into account
and sum them up using the proper phase. The optical properties of media with finite
thickness (and also of systems with many layers) are discussed in Appendix B in
more detail. The main features of the reflected and transmitted radiation are as
follows. Whenever the thickness d of the slab is a multiple of half the wavelength
in the material λ, we observe a maximum in the transmitted power. Hence, the
absorption is enhanced at certain frequencies (and suppressed at others) due to
multireflection; an effect which will be utilized by resonant techniques discussed
below.

If the material does not fill the entire waveguide or coaxial line, and hence part of
the radiation is transmitted beyond the obstacle, the analysis is more complicated
because geometrical factors enter the appropriate relations. Many simple cases,
however, such as a rod of a certain diameter in a waveguide or a coaxial cable (see
Section 11.1) can be analyzed analytically [Joo94, Kim88, Mar91, Sri85].

9.3 Resonant structures

In the previous sections we have discussed the propagation of electromagnetic
waves in various structures (transmission lines) together with the reflection off
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Fig. 9.5. Reflection off and transmission through a thin semitransparent material with
thickness d and optical parameters ε1, σ1, and µ1. The multiple reflections cause inter-
ference. Ei, Et, and Er indicate the incident, transmitted, and reflected electric fields,
respectively. The optical properties of the vacuum are given by ε′1 = µ′1 = 1 and σ ′1 = 0.

boundaries. If a transmission line contains two impedance mismatches at a certain
distance (a distance of the order of the wavelength, as will be discussed below),
as sketched in Fig. 9.6, the electromagnetic wave can be partially trapped between
these discontinuities by successive reflections. If the distance is roughly a multiple
of half the wavelength, the fields for each cycle add with the proper phase relations
and thus are enhanced: we call the structure to be at resonance. In any real system,
losses cannot be avoided and a (generally small) fraction of the energy per cycle
dissipates.

The resonant system becomes useful for measurements of materials when part
of a well characterized structure can be replaced by a specimen of interest. If
the resonance characteristics are modified only weakly by the specimen, this
modification can be considered to be a perturbation of the resonant structure and
analyzed accordingly. If the geometry is known, the change in the width and
shift in resonant frequency allow the evaluation of the impedance and finally the
complex conductivity of the material under consideration. Crudely speaking, the
losses of the material (for example given by the surface resistance) determine
the quality factor Q or the width of the resonance, whereas the refractive index
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(a)

(b)

(c)

d

Fig. 9.6. Transformation of a transmission line to a resonant structure by introducing two
impedance mismatches (discontinuities) at a certain distance d. (a) Parallel plate transmis-
sion line, (b) rectangular waveguide, and (c) free space becoming an open resonator.

(or surface reactance) determines the resonance frequency. The advantage when
compared with a simple reflection or transmission experiment is the fact that the
electromagnetic wave bounces off the material which forms the resonance structure
many times (roughly of the order of Q); this then enhances the interaction, and thus
the sensitivity, significantly.

9.3.1 Circuit representation

In Section 9.1 we discussed the characteristics of transmission lines in terms of
an electrical circuit analogy and have established the relevant electrical parame-
ters such as the characteristic impedance. A similar approach is also useful for
discussing the various resonant structures which are employed to study the electro-
dynamics of solids. We consider a series RLC circuit as shown in Fig. 9.7a; similar
considerations hold for parallel RLC circuits shown in Fig. 9.7b. The impedance
Ẑ of a resonant structure is in general given by

Ẑ = R − iωL + i

ωC
. (9.3.1)

If the system is lossless (R = 0), the impedance is purely imaginary and the phase
angle φ = arctan{(1/ωC −ωL)/R} = π/2. The structure resonates at the angular
frequency

ω0 = 2π f0 = (LC)−1/2 . (9.3.2)
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Fig. 9.7. (a) Series RLC circuit, (b) parallel RLC circuit, and (c) the average power
absorbed as a function of frequency.

The absorbed power is due to the dissipation by the resistor R, and its time average
is

Pav = V 2
rms Rω2

L2(ω2
0 − ω2)2 + ω2 R2

where the root mean square value Vrms = Vmax/
√

2, and it shows a Lorentzian
frequency dependence as displayed in Fig. 9.7c. The power is half of its maximum
value when L(ω2

0 − ω2) = ωR, and the full width of the resonance curve is � =
2|ω0−ω| = R/L at that point. This defines the quality factor Q as the ratio of the
resonant frequency to the full width of the resonance at half its maximum (FWHM,
often called halfwidth):

Q = ω0

�
= ω0L

R
= 1

ω0 RC
. (9.3.3)

Thus the quality factor can be evaluated by measuring the relative bandwidth �/ω0

of the resonance. Quality factors of 103 can easily be achieved in circuits built of
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metallic components. Another way of expressing the quality factor is in terms of
stored and absorbed power:

Q = ω0Wstored

Plost
,

where Wstored refers to the time average of the stored energy Wstored = 1
2 I 2

rmsL , and
the dissipated power, i.e. the average Joule heat lost per second, is Plost = 1

2 I 2 R,
leading to Eq. (9.3.3). This means that the time dependence of the stored energy
– if no power is added from the outside – has the form Wstored = W0 exp{−ω0t/Q},
an exponential decay with Q/ω0 being the characteristic time scale of the damping.

9.3.2 Resonant structure characteristics

Resonant structures come in different shapes and forms, these being determined
by the spectral range in which they are employed and also by the objectives of
the experiment. In the upper end of the radio frequency spectrum, where guid-
ing structures are employed to propagate the electromagnetic fields, transmission
line resonators are commonly used. The resonant structures can be formed by
terminating transmission lines such as a coaxial line or parallel plate lines at two
points as shown in Fig. 9.6. In general two impedance mismatches are needed to
form a resonator; depending on the impedance associated with the mismatch, the
appropriate electrical analog is a parallel or a series RLC circuit [Poz90].

As a rule waveguides are utilized in the microwave spectral range; here, en-
closing part of the waveguide can form the resonant structures. An antenna or
a coupling hole usually provides the coupling to this structure (called a hollow
resonator); both provide access of the electromagnetic field to the resonant struc-
ture. Various types of enclosed cavities have been designed and used, the simplest
form being a rectangular cavity such as depicted in Fig. 9.8; often however circular
cavities are employed [Gru98].

Instead of enclosing a volume by conducting walls, a dielectric body of ap-
propriate shape can also be utilized as a resonator. As the dielectric constant of
the structure ε1 > 1, the dielectric constant of a vacuum, there is an impedance
mismatch at the surface; this in turn leads to a resonance, the frequency of which
depends on the size, the dielectric constant ε1, and the geometry of the structure.
Of course, significant impedance mismatch is required to lead to well confined
electromagnetic fields. Again, coupling to the structure is through an appropriate
antenna arrangement or simply by placing the dielectric in the proximity of a
transmission line [Kaj98]. Note also that dielectric resonators have a reduced size
(roughly by

√
ε1 ), compared with hollow metal resonators – the reason for this is

the reduction of the wavelength of light in a dielectric according to Eq. (2.3.9).
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Fig. 9.8. Rectangular TE101 cavity. (a) The electric field lines E span the space between
the top and bottom wall while the magnetic field H circles around. (b) The current I runs
up on the side walls and to the center of the top plate; (c) the electric field has its highest
density in the center of the cavity.

With increasing frequency, the resonators discussed above become progressively
smaller and, consequently, impractical. Thus for the millimeter wave spectral range
and above, typically for frequencies above 100 GHz, open, so-called Fabry–Perot
resonators are employed where no guiding structure for the electromagnetic wave
is utilized [Afs85, Cul83]. The simplest form is that of two parallel plates separated
by a distance d , as shown in Fig. 9.9.

The resonators support various modes, as the appropriate boundary conditions
– such as the vanishing of the electric field component, perpendicular to the
surface at the two end walls in the case of hollow resonators – are satisfied for
different wavelengths of the electromagnetic field. In most cases, however, only
the fundamental mode (corresponding to the largest wavelength for which the
boundary condition is satisfied) is utilized, and then the resonant frequency to first
approximation is written as

ω0 = 2πc

λ
g , (9.3.4)

where λ is the wavelength of the electromagnetic wave in the structure, and g is
the geometrical factor of the order of one, which can be evaluated for the particular
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d

E

H

Fig. 9.9. Simple open resonator consisting of two parallel plates at a distance d between
which the electromagnetic waves bounce back and forth.

structure. For the simplest case of a waveguide section of width a and cavity of
length d, the resonant frequency is given by πc

(
a−2 + d−2

)1/2
.

The loss, which determines the quality factor Q of the structure, has various
components. Radiation losses, either intrinsic to the structure – as for a transmis-
sion line or for a dielectric resonator – or due to coupling to the guiding structures
which connect the resonator to the source and detector, contribute to a decrease in
the quality factor. This can be evaluated by examining the electromagnetic fields
associated with the resonant structure. As a rule, increased coupling to the guiding
structures leads to increased loss, and thus to smaller Q. Another source of the loss
is the so-called ohmic loss, arising from currents induced in the structure itself,
either in the (metallic) cavity walls, or in the dielectric which forms the resonant
structure. In all cases this latter contribution to the loss can be written as

Q = Z0

R
g′ . (9.3.5)

Here Z0 is the impedance in free space and R is the resistance responsible for the
ohmic losses. If the resonant structure is formed of metallic components, R is the
surface resistance RS. The geometrical factor g′ is determined by the integration of
the currents over the surface of the resonator, and by the integration of the electric
field inside the resonator. g′ is approximately given by

g′ = d

λ
,
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where d is the characteristic length of the structure.3 As d ≈ λ for a typical
structure, g′ is of the order of unity, and the quality factor

Q ≈ Z0

RS

for the cavities, where currents induced in the metallic part of the structure are the
source of the loss. In the microwave spectral range, where RS � Z0, Q values
of the order of 103 are easily obtainable. As the surface impedance increases
with increasing frequency (note that RS ∝ ω1/2, see Eq. (9.1.16)), the quality
factor decreases with decreasing frequency. Extremely high quality factors can be
achieved in resonators composed of superconducting parts; this is due to the small
surface impedance associated with the superconducting state.

It is important to note that the resonant frequency ω0 is also influenced by the
conducting characteristics of the structure. Equation (9.3.4) refers to the situation
where it is assumed that the electric or magnetic fields do not penetrate the structure
itself. This is, however, not the case. For metals the magnitude of the penetration of
the electromagnetic field into the walls of the resonator depends on the skin depth
δ0, the length scale which increases with increasing resistance of the material which
forms the (conducting) walls. This, however, is a small effect: a typical cavity
dimension d is around 1 cm, while the skin depth is of the order of 1 µm for good
metals of microwave frequencies; thus the change in the resonant frequency, given
approximately by δ0/d , is small.

9.3.3 Perturbation of resonant structures

The resonant structures discussed above can be used to evaluate the optical pa-
rameters of solids. The commonly used method is to replace part of the structure
by the material to be measured or, alternatively, to insert the specimen into the
resonator (in the case of metallic, enclosed resonators) or to place the sample in
close proximity to the resonator (in the case of dielectric resonators).

Two parameters, center frequency and halfwidth, fully characterize the resonant
structure; and the impedance, Eq. (9.3.1), can be expressed as

Ẑ = R − iωL

(
1− ω2

0

ω2

)
≈ ω0L

Q
− 2iL(ω − ω0)

= −2iL
[
ω − ω0

(
1− i

2Q

)]
= −2iL(ω − ω̂0) , (9.3.6)

where the approximation used is valid for ω0 � |ω−ω0|. We now define a complex

3 This characteristic length, of course, depends on the form of the structure used. For a cubic cavity, for example,
g′ = 0.76.
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frequency

ω̂0 = ω0 − iω0

2Q
= ω0 − i

�

2
, (9.3.7)

which contains the resonant frequency in its real part and the dissipation described
by the halfwidth in the imaginary part (note the factor of 2). The effects of a
specimen which forms part of the structure can now be considered as a perturbation
of the complex frequency.4 The change in the impedance due to the material leads
to a complex frequency shift �ω̂ from the case of the sample being absent: �ω̂ =
ω̂S − ω̂0.

Let us look at a lossless system with a characteristic impedance Zc = (L/C)1/2

according to Eq. (9.1.5). The introduction of a specimen or replacement of parts of
the resonant structure by the sample causes a shift in the resonance frequency from
ω0 to ωS and a decrease of the quality factor from Q0 to QS, summarized in �ω̂.
The impedance of the sample ẐS = RS + iXS is related to the complex frequency
change by Eq. (9.3.6)

ẐS = ig0L�ω̂ (9.3.8)

with a geometrical factor g0 depending on the geometries of the specimen and of
the structure. Thus we obtain

ẐS = ig0Lω0

(
�ω

ω0
− i

2

��

ω0

)
=

(
��

2ω0
+ i

�ω

ω0

)
g0 Ẑc , (9.3.9)

where the real and imaginary parts of ẐS are related to the change in Q and shift
in frequency (ωS − ω0) separately:

RS

Zc
= g0

��

2ω0
= g0

2

(
1

QS
− 1

Q0

)
, (9.3.10a)

XS

Zc
= g0

�ω

ω0
= g0

ωS − ω0

ω0
. (9.3.10b)

Thus the resistance (i.e. the loss) determines the change in the width of the reso-
nance or the Q factor, while from the shift in the resonance frequency we recover
the reactance XS. Both parameters are similarly dependent on the geometry, de-
termined by g0. This geometrical factor can either be evaluated experimentally or
can be obtained analytically in some simple cases. Thus, evaluating the change in
Q and the resonant frequency allows the evaluation of ẐS, and this parameter then
can be used to extract the components of the complex conductivity.

4 The assumption of this approach is that the perturbation is so small that the field configuration inside the
resonant structure is not changed significantly.
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10

Spectroscopic principles

Different approaches are commonly utilized to measure the frequency dependent
optical properties of solids, with three principles being distinguished. Investiga-
tions of the electrodynamic response as a function of frequency can be performed
in a straightforward manner by applying monochromatic radiation and measuring
the amplitude and phase of the response at one frequency ω: this might be the
resistance R and capacitance C , the complex reflection coefficient r̂ , or the ampli-
tude drop and phase shift upon transmission T and φt. In the next step the complex
refractive index N̂ or the complex surface impedance ẐS can be calculated from
these equations. Finally the complex conductivity σ̂ or dielectric constant ε̂ is
calculated. In order to evaluate σ̂ (ω), the measurement has to be repeated for each
frequency of interest.

The following two approaches do not involve monochromatic radiation but
rather an excitation with a well defined time or spectral dependence, thus they
lead to the determination of the response in a wide frequency range. Time do-
main spectroscopy applies voltage steps or pulses with a short rise time, and
from the time dependent response of the material under investigation, i.e. from
the broadening and delay of the pulse, for example, the frequency dependence
of the complex conductivity or complex dielectric constant is calculated using an
appropriate mathematical approach. The high frequency limit of the accessible
spectral range is determined by the inverse rise time of the pulse. Typical rise
times of a few nanoseconds are commercially available to evaluate the response up
to 1 GHz. Optical femtosecond pulses allow this method to be extended up to a
few terahertz.

Fourier transform spectroscopy utilizes two beams of one broadband source
and records the response of the material as a function of the difference in path
lengths between the two arms; a Fourier transformation then leads to the frequency
dependent response. The spectral limitations on the high frequency side are the
timely stability of the setup and the intensity of the source. On the lower frequency

245
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side, diffraction of the beam due to the large wavelength limits the performance,
and also the spectral intensity of the light source diminishes rapidly due to Planck’s
law. Hence Fourier transform spectroscopy is mainly used in the infrared range.

We introduce the basic ideas rather than focus on the technical details of partic-
ular arrangements; these depend mainly on the individual task at hand, and further
information can be found in the vast literature we selectively refer to at the end of
the chapter.

10.1 Frequency domain spectroscopy

Frequency domain measurements are straightforward to analyze as each single
frequency point can be evaluated separately. Due to the large variety of methods
employed, which often probe different responses (such as the resistance, the loss
tangent, the surface impedance, the reflectivity, etc.), it is necessary to combine
the results using common material parameters, such as the real and imaginary
parts of the conductivity σ̂ or the dielectric constant ε̂. If a certain experimental
method delivers only one parameter, for example the surface resistance RS or
the reflectivity R, a Kramers–Kronig analysis is required in order to obtain the
complex response. In this case, data from the complementary methods have to be
transformed to one selected parameter, for example R(ω); this common parameter
is then used as the input to the Kramers–Kronig transformation.

10.1.1 Analysis

Typically, both components of the complex conductivity can be determined in the
radio frequency range and below, since vector network analyzers are available,
whereas sometimes only the surface resistance can be measured in the microwave
range; in most cases only the reflectivity of metals is accessible experimentally
in the optical range of frequencies. The combination of different techniques then
allows one to calculate the reflectivity R(ω) over a broad spectral range. Beyond
the spectral range in which measurements have been performed, suitable extrapola-
tions are necessary, the choice being guided by the information available on the ma-
terial. For metals a Hagen–Rubens behavior of the reflectivity [1− R(ω)] ∝ ω−1/2

is a good approximation at low frequency. Semiconductors and insulators have a
constant reflectivity for ω→ 0. At very high frequencies the reflectivity eventually
has to fall to zero; usually a ω−2 or ω−4 behavior is assumed in the spectral range
above the ultraviolet. Then with R(ω) known over the entire range of frequencies,
the Kramers–Kronig analysis can be performed.
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10.1.2 Methods

A large number of different techniques are available and also necessary to cover
the entire frequency range of interest. We divide these into three major groups.
This division is based on the way in which the electromagnetic signal is delivered,
which also determines the measurement configurations: the low frequency range
where leads and cables are used, the optical range where the radiation is delivered
via free space, and the intermediate range where transmission lines and waveguides
are employed.

Audio and radio frequency arrangements

For low noise, low frequency signals up to approximately 1 GHz, the driving signal
is provided by a commercial synthesizer which can be tuned over several orders
of magnitude in frequency; the signal is usually guided to the sample and to the
detector by coaxial cables with negligible losses. Phase sensitive detection (lock-in
amplifier) can be used up to 100 MHz; precautions have to be taken for the proper
phase adjustment above 1 MHz.

In recent years, fully automated and computer controlled test and measurement
instruments have been developed and by now are well established, making the
kilohertz, megahertz, and lower gigahertz range easily accessible. An RLC meter
measures the resistance R, and the inductance L or the capacitance C of a device
at one frequency which then can be continuously varied in the range from 5 Hz up
to 1 GHz. All of these techniques require that contacts are attached to the sample.
Due to the high precision of sources and detectors, the low frequency techniques
are mainly used in a single path method; however, for highest sensitivity, inter-
ferometric methods and resonant arrangements have been utilized, as discussed in
Chapter 11. These methods are limited at higher frequencies by effects associated
with the finite cable length and stray capacitance.

Microwave and millimeter wave measurement techniques

Based on solid state high frequency generators and the stripline technique, the
upper frequency limit of commercial test equipment (currently at 100 GHz) is
continuously rising as technology improves. Impedance analyzers measure the
complex impedance of materials or circuits in a certain frequency range; up to
about 2 GHz the current and voltage are probed. Network analyzers, which
are commercially available for an extremely wide range of frequency from well
below 1 kHz up to 100 GHz, often utilize a bridge configuration as described in
Section 11.2.1. They are combined driver/response test systems which measure the
magnitude and phase characteristics of linear networks by comparing the incident
signal (which is always a sine wave) with the signal transmitted or reflected by the
device under test, and provide a complete description of linear network behavior
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in the frequency domain. Whereas scalar network analyzers evaluate only the
magnitude of the signal, vector network analyzers deliver magnitude and phase, i.e.
the complex impedance, or alternatively the so-called scattering matrix or transfer
function.

The sample is usually placed between the two conductors of a coaxial line or the
walls of a waveguide. Calibration measurements are required to take effects into
account, for example the resistance, stray capacitance, and inductance of the leads.
For special requirements – concerning the accuracy, output power, or stability –
monochromatic solid state sources (such as Gunn diodes or IMPATT sources) are
utilized as generators in custom made setups instead of network analyzers.

Optical measurements

If the wavelength λ is much smaller than the sample size a, the considerations
of geometrical optics apply and diffraction and boundary effects become less
important; by rule of thumb, diffraction and edge effects can be neglected for
a > 5λ. In contrast to lower frequencies, phase information cannot be obtained.
Standard power reflection measurements are performed in an extremely wide fre-
quency range, from millimeter waves up to the ultraviolet (between 1 cm−1 and
106 cm−1); they are probably the single most important technique of studying the
electrodynamic properties of solids.

Although tunable, monochromatic radiation sources (such as backward wave
oscillators, infrared gas lasers, solid state and dye lasers) are available in the infra-
red, visible, and ultraviolet frequency range, it is more common that broadband
sources are used and dispersive spectrometers (grating and prism spectrometers)
are employed to select the required frequency. For the latter case, either a certain
frequency of the radiation is selected (either by dispersing prisms or by utilizing
diffraction gratings) which is then guided to the specimen, or the sample is irradi-
ated by a broad spectrum but only the response of a certain frequency is analyzed.
Combined with suitable detectors the relative amount of radiation at each frequency
is then recorded.

Because of their great light efficiency, single order spectrum, ruggedness, and
ease of manufacture, prisms have long been favored as a dispersing medium in
spectrographs and monochromators in the visible spectral range. The disadvan-
tages of prisms are their non-linear dispersion and the limited frequency range for
which they are transparent. If high resolution is required, grating spectrometers
are commonly used as research instruments. Two or more monochromators may
be employed in series to achieve higher dispersion or greater spectral purity; stray
light is also greatly reduced [Dav70].

Optical experiments are in general performed in a straightforward manner by
measuring, at different frequencies, either the bulk reflectivity or both the trans-
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Fig. 10.1. Frequency dependence of the optical properties of TlGaSe2 measured at T =
300 K by using a submillimeter wave Mach–Zehnder interferometer. (a) The transmission
TF(ω) and (b) the phase φt(ω) spectra of a 0.079 mm thick plate are recorded. (c) The real
part ε′(ω) and (d) the imaginary part ε′′(ω) of the dielectric constant are calculated at each
frequency according to Eqs (B.9), (B.10b), and (B.12) on the basis of the TF(ν) and φt(ν)
spectra given in (a) and (b).
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mission and reflectivity. If the investigations are conducted on samples of different
thickness, the real and imaginary parts of the response can be evaluated. Meas-
urements of the complex optical properties are also possible using Mach–Zehnder
interferometers or Fabry–Perot resonators as discussed in Section 11.3.4.

As an example of an optical experiment performed in the frequency domain, data
from a room-temperature transmission experiment on TlGaSe2 are displayed in
Fig. 10.1. Fig. 10.1a shows the frequency dependence of the power transmission TF

through a 1 mm slab of TlGaSe2; the corresponding phase shift φt – as obtained by a
Mach–Zehnder interferometer using a coherent radiation source (Section 11.2.3) –
is plotted in Fig. 10.1b. Following the analysis laid out in Section 2.4.2, for each
frequency point these two parameters TF and φt allow evaluation of both com-
ponents of the complex dielectric constant ε̂ = ε1 + iε2 as shown in Fig. 10.1c,d.
There a strong absorption peak centered at 14 cm−1 and a shoulder around 19 cm−1;
the maximum of ε2 corresponds to a minimum of transmission. The phase shift is
mainly determined by the real part of the dielectric constant. A peak in ε2(ω) leads
to a step in ε1(ω) as we have already seen in the simple model of a Lorentzian
oscillator (Fig. 6.3).

10.2 Time domain spectroscopy

Instead of measuring the response of a solid by applying monochromatic radiation
varied over a wide frequency range, the optical constants can also be obtained
by performing the experiment in the time domain using a voltage pulse with a
very short rising time. Such a pulse – via the Laplace transformation presented in
Appendix A.2 – contains all the frequencies of interest. In general, a linear time
invariant system can be described unequivocally by its response to an applied pulse.
Two basic setups are employed depending on the frequency range of importance:
either the sample is placed in a capacitor and the charging or discharging current
is observed; or a voltage pulse is applied at a transmission line and the attenuation
and broadening of the pulse upon passing through the sample placed in this line
is observed. The latter method can also be used in free space by utilizing an
optical setup. In both cases, from this information ε1 and σ1 of the material can be
determined by utilizing the Laplace transformation. Crudely speaking, the losses
of the material cause the attenuation of the pulse while the real part of the dielectric
constant is responsible for the broadening.

The experimental problem lies in the generation and detection of suitable pulses
or voltage steps. Short pulses of electromagnetic radiation are generated by fast
switches or by electro-optical configurations. Although with a voltage step of rise
time t the entire spectrum up to approximately 1/t can be covered, time domain
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experiments are preferably performed in those parts of the spectrum where no
standard techniques are available in the frequency domain.

10.2.1 Analysis

The objective of time domain spectroscopy is to evaluate the complex response
function χ̂(ω) by analyzing the time dependent response P(t). To this end the
mathematical methods of the Laplace transformation are used as described in
Appendix A.2. In a linear and causal system, the general response P(t) to a
perturbation E(t) can be expressed by

P(t) =
∫ t

−∞
χ(t − t ′) E(t ′) dt ′ , (10.2.1)

where χ(t) is the response function in question. Note that χ is not local in time,
meaning that P(t) depends on the responses to the perturbation E(t) for all times
t ′ prior to t . The equation describes a convolution P(t) = (χ ∗ E)(t) as defined in
Eq. (A.2b), leading to the Fourier transform:

P(ω) =
∫ ∞

−∞
P(t) exp{−iωt} dt =

∫ ∞

−∞
(χ ∗ E)(t) exp{−iωt} dt

= χ(ω) E(ω) . (10.2.2)

Thus for a known time dependence of the perturbation E(t) we can measure the re-
sponse as a function of time P(t) and immediately obtain the frequency dependent
response function χ(ω):

χ(ω) =
∫∞
−∞ P(t) exp{−iωt} dt∫∞
−∞ E(t) exp{−iωt} dt

= 1

E(ω)

∫ ∞

−∞
P(t) exp{−iωt} dt . (10.2.3)

If the system is excited by a Dirac delta function E(t) = δ(t), the response
directly yields χ(t). Then the convolution simplifies to P(t) = (χ ∗ δ)(t) = χ(t),
and the frequency dependence is the Fourier transform of the pulse response given
by

χ(ω) =
∫ ∞

−∞
P(t) exp{−iωt} dt , (10.2.4)

which can also be obtained from Eq. (10.2.3) with the help of Eq. (A.1): E(ω) = 1.
Another commonly used perturbation is a step function

E(t) =
{

0 t < 0
E0 t > 0 ,

where we have to replace the Fourier transform by the Laplace transform in order
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to avoid mathematical complications. From Eq. (10.2.1) we see that

P(t) =
∫ t

0
χ(t ′)E0 dt ′ (10.2.5a)

χ(t) = 1

E0

d

dt
P(t) ; (10.2.5b)

and the differentiation theorem:

χ(ω) = iω

E0

∫ ∞

−∞
P(t) exp{−iωt} dt (10.2.6)

as discussed in Appendix A.1. The same result is obtained from Eq. (10.2.3) by
using

E(ω) = 2πδ(ω)E0 − i

ω
E0

and by neglecting the dc response.
Due to the finite rise time of the electronic instrumentation, the step function is

better written as

E(t) =
{

0 t < 0
E0(1− exp{−ηt}) t > 0

leading to

E(ω) = 2πη(ω)E0 − E0

[
η

η2 + ω2
+ i

η2

ω(η2 + ω2)

]
,

i.e. Lorentzian broadening of the dc response with a halfwidth of η, and narrowed
high frequency response:

χ(ω) = 1

E0

η2 + ω2

η

∫ ∞

−∞
P(t) exp{−iωt} dt .

Since the time domain response function χ(t) should be real, we can split the
Fourier transform into its real and imaginary parts by using the sine and cosine
transforms according to our discussion in Section 8.2:

χ̂(ω) = Re
{
χ̂(ω)

}+ i Im
{
χ̂(ω)

}
=

∫ ∞

0
χ(t) cos{−ωt} dt + i

∫ ∞

0
χ(t) sin{−ωt} dt . (10.2.7)

The real and imaginary parts of χ̂(ω) are also related by the Kramers–Kronig
relation (Section 3.2). This implies that all the assumptions made in the derivation
of the Kramers–Kronig relations also have to be observed in the analysis of time
domain spectroscopic data.
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10.2.2 Methods

Time domain spectroscopy is mainly used in frequency ranges where other tech-
niques discussed in this chapter – frequency domain spectroscopy and Fourier
transform spectroscopy – have significant disadvantages. At very low frequencies
(microhertz and millihertz range), for instance, it is not feasible to measure a
full cycle of a sinusoidal current necessary for the frequency domain experiment.
Hence time domain experiments are typically conducted to cover the range from
10−6 Hz up to 106 Hz. Of course, also in the time domain, data have to be acquired
for a long period of time to obtain information on the low frequency side since both
are connected by the Fourier transformation, but the extrapolation for t →∞ with
an exponential decay, for example, is easier and often well sustained.

As we have seen in Section 8.3, from 10 GHz up to the terahertz range, tunable
and powerful radiation sources which allow experiments in the frequency domain
are not readily available. Even for the use of Fourier transform techniques, broad-
band sources with sufficient power below infrared frequencies are scarce. To utilize
time domain spectroscopy in this range requires extremely short pulses with an
inverse rise time comparable to the frequency of interest. Due to recent advances
in electronics, pulses of less than one nanosecond are possible; using short pulse
lasers, pulses with a rise time of femtoseconds are generated. In these spectral
ranges time domain methods are well established.

We consider three cases, employed in three different ranges of the electromag-
netic spectrum. First, the sample is placed in a capacitor and the characteristic
discharge is determined; this is a suitable setup for experiments on dielectrics at the
lower frequency end of the spectrum. In a second arrangement, a short electrical
pulse travels along a coaxial cable or waveguide which contains the sample at
one point; the change in intensity and shape of the pulse due to reflection off or
transmission through the sample is measured. The third setup utilizes a similar
principle, but is an optical arrangement with light pulses of only a few picoseconds
duration traveling in free space; here the transmission and time delay are probed.

Audio frequency time domain spectroscopy

Time domain spectroscopy is useful for studying slow processes in the frequency
range down to microhertz, where the frequency domain method faces inherent
limits such as stability or long measurement times [Hil69, Hyd70, Sug72]. To
determine the complex dielectric constant, a voltage or current step is applied and
the time decay of the charging or discharging current or voltage, respectively, is
monitored. Fig. 10.2 shows the basic measurement circuit which can be used to
investigate low-loss samples at very low frequencies. Voltage steps of equal magni-
tude but opposite polarity are applied simultaneously to the two terminal capacitors
Cx and Cr. Cr is an air filled reference capacitor, and Cx contains the specimen
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CfCx

Cr

Amplifier
+

−

G−

G+

Fig. 10.2. Measurement circuit of a dielectric spectrometer for time domain investigations
in the low frequency range. The generators G+ and G− apply positive and negative voltage
steps across the sample capacitor Cx and the reference capacitor Cr, respectively. The
charge detector, formed by the operational amplifier and feedback capacitor Cf, provides
an output proportional to the net charge introduced by the step voltage.

of the material to be studied. The symmetric design compensates the switching
spike and hence considerably reduces the dynamic-range requirements. For better
conducting samples the influence of the contacts becomes more pronounced and
the discharge is faster.

In the special case of a step voltage, dPstep(t)/dt is related to the charging current
density by Eq. (10.2.5b), and finally we find for the real and imaginary parts of the
dielectric constant of the sample

ε1(ω) = 1+ 4π
∫ ∞

0

J (t)

E0
cos

{−ωt
}

dt (10.2.8a)

ε2(ω) = 4π
∫ ∞

0

J (t)

E0
sin

{−ωt
}

dt . (10.2.8b)

One assumption of this analysis is the linearity and causality of the response.
Due to the fact that the Kramers–Kronig relations are inherently utilized, both
components of the dielectric response are obtained by the measurement of only
one parameter. Equally spaced sampling presents an experimental compromise
between the resolution needed near the beginning of the detected signal and the
total sampling time necessary to capture the entire response. As mentioned above,
the short spacing at the start is needed for the high frequency resolution, and the
long-time tail dominates the low frequency response. Non-uniform sampling, i.e.
stepping the intervals logarithmically, however, precludes the applicability of well
developed algorithms, such as the fast Fourier transformation.

As an example, the time dependent polarization P(t) of propylene carbonate
after switching off the applied electric field is displayed in Fig. 10.3a. Applying
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Fig. 10.3. (a) Time dependent polarization P(t) of propylene carbonate at two temper-
atures T = 155 K and 166 K measured after switching the electric field off. (b) Real and
imaginary parts of the frequency dependent dielectric constant ε̂( f ) obtained by Laplace
transformation of the time response shown in (a) (after [Boh95]).

Eqs (10.2.8), the frequency dependent dielectric constant is calculated and plotted
in Fig. 10.3b. The data were taken from [Boh95]. The dielectric relaxation strongly
depends on the temperature, and the time dependence deviates from a simple
exponential behavior. The slow response at low temperatures (155 K) corresponds
to a low frequency relaxation process.
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Radio frequency time domain spectroscopy

The time dependence of a voltage step or pulse which travels in a waveguide or
a coaxial cable line, and is reflected at the interface between air and a dielectric
medium, can be used to determine the high frequency dielectric properties of
the material. From the ratio of the two Fourier transforms, the incident and the
reflected signals, the scattering coefficient is obtained; and eventually the complex
response spectrum of the sample can be evaluated using the appropriate expressions
derived in Section 9.2. Similar considerations hold for a pulse being transmitted
through a sample of finite thickness. Fast response techniques permit measure-
ments ranging from a time resolution of less than 100 ps, corresponding to a
frequency range up to 10 GHz.

A time domain reflectometer consists of a pulse generator, which produces a
voltage step with a rise time as fast as 10 ps, and a sampling detector, which
transforms the high frequency signal into a dc output. The pulse from the step
generator travels along the coaxial line until it reaches a point where the initial
voltage step is detected for reference purposes; the main signal travels on. At
the interface of the transmission line and the sample, part of the step pulse will
be reflected and then recorded. Comparing both pulses allows calculation of the
response function of the sample. The time dependent response to a step function
perturbation is widely used for measurements of the dielectric properties, mainly
in liquids, biological materials, and solutions where long-time relaxation processes
are studied. A detailed discussion of the different methods and their analysis
together with their advantages and disadvantages can be found in [Fel79, Gem73].

Terahertz time domain spectroscopy

In order to expand the time domain spectroscopy to higher frequencies in the upper
gigahertz and lower terahertz range, two major changes have to be made. Due to
the high frequencies, guided transmission by wires or waveguides is not feasible
and a quasi-optical setup is used. Furthermore, the short switching time required
is beyond the capability of an electronic device, thus short optical pulses of a
few femtoseconds furnished by lasers are utilized. Here the sudden discharge
between two electrodes forms a transient electric dipole and generates a short
electromagnetic wave which contains a broad range of frequencies; its center
frequency corresponds to the inverse of the transient time. Terahertz spectroscopy
measures two electromagnetic pulse shapes: the input (or reference) pulse and
the propagated pulse which has changed shape owing to its passage through the
sample under study. We follow the discussion of Section 10.2.1, but as the response
function χ̂(ω) we now use the complex refractive index N̂ (ω), which describes the
wave propagation, or the conductivity σ̂ (ω), which relates the current density to
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Amplifier

Computer
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V
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Fig. 10.4. (a) Schematic of a terahertz (THz) time domain spectrometer. The femtosecond
laser pulse drives the optically gated THz transmitter and – via beamsplitter and delay line
– the detector. The THz radiation is collimated at the sample by an optical arrangement.
(b) The radiation source is an ultrafast dipole antenna which consists of a charged trans-
mission line. The beam spot of the femtosecond pulses is focused onto the gap in the
transmission line and injects carriers into the semiconductor leading to a transient current
flowing across the gap, which serves as a transient electric dipole. (c) In order to detect
the THz radiation, a similar arrangement is used. The current flows though the switch only
when both the THz radiation and photocarriers created by the femtosecond laser beam are
present.

the electric field applied. Equation (10.2.1) then reads:

J(t) =
∫

σ̂ (t − t ′)E(t ′) dt ′ .

A terahertz time domain spectrometer is displayed diagrammatically in
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Fig. 10.4a; between the terahertz source and detector a standard optical arrange-
ment of lenses or parabolic mirrors guides the radiation and focuses the beam
onto the sample. The most suitable design of a terahertz radiation transmitter
is a charged transmission line shorted by a laser pulse of a few femtoseconds
duration. Fig. 10.4b shows a terahertz radiation source. The subpicosecond electric
dipoles of micrometer size are created by photoconductive shorting of the charged
transmission line with the femtosecond pulses from a dye or Ti–sapphire laser.
The detection segment is designed similarly to the radiation source (Fig. 10.4c) via
the transmission line; one side of the antenna is grounded and a current amplifier
is connected across the antenna. During operation, the antenna is driven by the
incoming terahertz radiation pulse which causes a time dependent voltage across
the antenna gap. The induced voltage is measured by shorting the antenna gap with
the femtosecond optical pulse in the detection beam and monitoring the collected
charge (current) versus time delay of the detection laser pulses with respect to
the excitation pulses [Ext89, Ext90]. If the photocarrier lifetime is much shorter
than the terahertz pulse, the photoconductive switch acts as a sampling gate which
samples the terahertz field. In principle, reflection measurements are also possible,
although they are rarely conducted because the setup is more sensitive to alignment.
Details of the experimental arrangement and the analysis can be found in [Nus98].

As an example of an experiment performed in the time domain, Fig. 10.5a shows
the amplitude of the terahertz radiation transmitted through a thin niobium film
deposited onto a quartz substrate at two different temperatures, above and below
the superconducting transition temperature of niobium [Nus98]. Both the real
and imaginary parts of the complex conductivity σ̂ (ω) of the niobium film can be
obtained directly from these terahertz waveforms without the use of the Kramers–
Kronig relations. The frequency dependence of σ1(ω) and σ2(ω) normalized to the
normal state value σn are shown in Fig. 10.5b for T = 4.7 K. These results may be
compared with the analogous experiments performed in the frequency domain by
the use of a Mach–Zehnder interferometer (see Fig. 14.5).

10.3 Fourier transform spectroscopy

The concept of a Fourier transform spectrometer is based on Michelson’s design
of an interferometer in which a beam of monochromatic light is split into two
approximately equal parts which follow different paths before being brought to-
gether again. The intensity of the recombined light is a function of the relative
difference in path length between the two arms; i.e. the light shows an interference
pattern. Recording the combined intensity as a function of the delay δ of one of
these beams allows the spectral distribution of the light by Fourier transformation
(Appendix A.1) to be recovered.
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Fig. 10.5. (a) Terahertz transients transmitted through a thin niobium film (Tc ≈ 7 K)
on quartz in the normal state (dashed line) and the superconducting state (solid line).
(b) Real and imaginary parts of the normalized complex conductivity, σ1(ω) and σ2(ω),
of niobium in the superconducting state evaluated from the above data. The dashed line
indicates the predictions by the BCS theory using the Mattis–Bardeen equations (7.4.20)
(after [Nus98]).

Modern Fourier transform spectrometers mainly operate in the infrared spectral
range (10–10 000 cm−1); however, Fourier transform spectrometers have been built
in the microwave frequency range as well as in the visible spectral range. A large
number of detailed and excellent monographs on Fourier transform spectroscopy
are available [Bel72, Gri86, Gen98]; only a short description is given here.
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Mirror 1

Mirror 2

Beam-
splitter

Source

Detector

x

L

L + δ   /2

Fig. 10.6. Basic outline of a Michelson interferometer. The beam of the source is divided
by the beamsplitter to the fixed mirror 1 and the moving mirror 2, at distances L and
L + δ/2, respectively. The recombined beam is focused onto the detector, which measures
the intensity I as a function of displacement δ/2.

10.3.1 Analysis

In order to discuss the principles of Fourier transform spectroscopy, the exami-
nation of a simple diagram of a Michelson interferometer shown in Fig. 10.6 is
useful. Mirror 1 is fixed at a distance L from the beamsplitter, and the second
mirror can be moved in the x direction. If mirror 2 is at a distance L ± δ/2
from the beamsplitter, then the difference in path length between the two arms
is δ. If δ is an integer multiple of the wavelengths (δ = nλ, n = 1, 2, 3, . . .), we
observe constructive interference and the signal at the detector is at a maximum;
conversely, if δ = (2n + 1)λ/2, the beams interfere destructively and no light is
detected. Hence the instrument measures I (δ), the intensity of the recombined
beam as a function of optical path difference. In other words, the interferometer
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Fig. 10.7. Different spectra recorded by the interferometer and their Fourier transforms:
(a) monochromatic light; (b) two frequencies; (c) Lorentzian peak; (d) typical spectrum in
the mid-infrared range.

converts the frequency dependence of the spectrum B(ω) into a spatial dependence
of the detected intensity I (δ). From this information, it is possible to reconstruct
mathematically the source spectrum B(ω) no matter what form it has. In Fig. 10.7
we display such interference patterns: a single frequency obviously leads to a
signal with a cos2 dependence of the path length difference; interferograms from
non-monochromatic sources are more complicated.
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The mathematical background of a Fourier transform spectrometer is laid out in
Appendix A.1; here we apply it to the Michelson interferometer. We can write the
electric field at the beamsplitter as

E(x, ν) dν = E0(ν) exp
{
i(2πxν − ωt)

}
dν , (10.3.1)

where ν = 1/λ = ω/2πc is the wavenumber of the radiation. Each of the two
beams which reach the detector have undergone one reflection and one transmis-
sion at the beamsplitter, and therefore we can consider their amplitudes to be equal.
If one light beam travels a distance 2L to the fixed mirror and the other a distance
2L + δ, then we can write the reconstructed field as

ER(δ, ν) dν = |r̂ ||t̂ |E0(ν)
[
exp

{
i(4πνL − ωt)

}+ exp
{
i
[
2πν(2L + δ)− ωt

]}]
dν,

where we have assumed that both beams have the same polarization; r̂ and t̂ are the
complex reflection and transmission coefficients of the beamsplitter. For a given
spectral range, the intensity is proportional to the complex square of the electric
field (ER E∗R). The preceding equation then gives

I (δ, ν) dν ∝ E2
0(ν)[1+ cos{2πνδ}] dν ,

and the total intensity from all wavenumbers at a particular path difference δ is

I (δ) ∝
∞∫

0

E2
0(ν)

[
1+ cos

{
2πνδ

}]
dν .

This is usually written in a slightly different form:

[
I (δ)− 1

2
I (0)

]
∝

∞∫
0

E2
0(ν) cos

{
2πνδ

}
dν , (10.3.2)

often referred to as the interferogram. For a broadband source the intensity at infi-
nite path difference I (∞) corresponds to the average intensity of the incoherent ra-
diation which is exactly half the intensity obtained at equal paths: I (∞) = I (0)/2;
the interferogram is actually the deviation from this value at infinite path difference.
Finally, from Eq. (10.3.2) and using the fact that B(ν) ≈ E2

0(ν), we can use the
inverse Fourier transformation to write

B(ν) ∝
∞∫

0

[
I (δ)− 1

2
I (0)

]
cos

{
2πνδ

}
dδ . (10.3.3)

Thus, I (δ) can be measured by the interferometer, and it is theoretically a simple
task to perform the Fourier transform to arrive at B(ω), the power spectrum of the
signal.
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Fig. 10.8. (a) The first 3500 points of an interferogram. The signal in the wings is
amplified 200 times; (b) Fourier transform of the first 512 points of the interferogram
in (a), corresponding to a resolution of 32 cm−1; (c) Fourier transform of 8196 points of
the interferogram, corresponding to a resolution of 2 cm−1; (d) taking all 81 920 points
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The integral in Eq. (10.3.3) is infinite, but for obvious reasons the interferogram
is measured only over a finite mirror displacement (δ/2) ≤ (δmax/2). The problem
of truncating the interferogram is solved by choosing an appropriate apodization,
instead of cutting it abruptly off.1 As demonstrated in Fig. 10.8, this restriction
limits the resolution to �ν = 1/δmax – as can be easily seen from the properties
of the Fourier transformation explained in Appendix A.1 – but it can also lead
to errors in the calculated spectrum depending on the extrapolation used. In
addition, an interferogram is in general not measured continuously but at discrete
points, which might lead to problems like picket-fence effects and aliasing, i.e. the
replication of the original spectrum and its mirror image on the frequency axis.
However, this allows one to use fast computational algorithms such as the fast
Fourier transformation [Bel72, Gri86].

10.3.2 Methods

One limitation of the spectral range of Fourier transform spectrometers is the
availability of broadband sources. For a typical black-body radiation source, the
peak of the intensity is typically somewhat below the visible. The spectral power
is small above and well below this frequency and falls to zero as ω → 0. In
general, three different sources are used to cover the range from the far-infrared up
to the visible (Fig. 10.9). A set of filters, beamsplitters, windows, and detectors
are necessary to cover a wide spectral range. At the low frequency end, in the
extreme far-infrared, standing waves between the various optical components are
of importance and diffraction effects call for dimensions of the optical components
to be larger than a few centimeters. The limitation at higher frequencies is given
by the mechanical and thermal stability of the setup and by the accuracy of the
mirror motion; this is – as a rule – limited to a fraction of a micrometer. In
practice, interferometers are used in two different ways depending on the scanning
mode of the moving mirror. For a slow scanning interferometer or a stepped scan
interferometer, on the one hand, the light is modulated with a mechanical chopper
and lock-in detection is employed. The advantage of a stepped scan interferometer
is that it can accumulate a low signal at one position of the mirror over a long
period of time; it also can be used for time dependent experiments. A rapid scan
interferometer, on the other hand, does not use chopped light because the fast
mirror movement itself modulates the source radiation at audio frequency; here
the velocity of the mirror is limited by the response time of the detector used.
During the experiment, the recombined light from the interferometer is reflected
off or transmitted through a sample before being focused onto the detector. Any

1 The interferogram is usually multiplied by a function, the apodizing function, which removes false sidelobes
introduced into transformed spectra because of the finite optical path displacement.
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Fig. 10.9. Optical layout of a modified Bruker IFS 113v Fourier transform interferometer.
The radiation is selected from three sources, guided through an aperture and a filter to the
Michelson interferometer with six beamsplitters to select. A switching chamber allows
transmission or reflection measurements of the sample inside the cryostat. The light is
detected by one of six detectors.

arrangement used in optical measurements can also be utilized in combination with
Fourier transform spectroscopy; in the following chapter we discuss the measure-
ment configurations in detail.

A major disadvantage of the standard Fourier transform measurement – common
to other optical techniques such as grating spectrometers – is that in general only
one parameter is measured.2 As discussed above, this means that the Kramers–
Kronig relations must be employed in order to obtain the complex optical parame-
ters such as N̂ (ω) = n(ω)+ ik(ω) or ε̂(ω) or σ̂ (ω).

In Fig. 10.10 experimental data obtained by a Fourier transform spectrometer
are shown as an example. The polarized optical reflectivity (E ‖ a) of Sr14Cu24O41

was measured at room temperature and at T = 5 K over a wide spectral range.
The highly anisotropic material becomes progressively insulating when the temp-
erature decreases, as can be seen by the drop in low frequency reflectivity. Above
50 cm−1 a large number of well pronounced phonon modes dominate the spectra;
they become sharper as the temperature decreases. In order to obtain the optical
conductivity σ1(ω) via Eq. (11.1.1b), the data are extrapolated by a Hagen–Rubens

2 In order to measure both components, the sample must be placed in one of the active arms of the interferom-
eter, e.g. replacing the fixed mirror in the case of a highly reflective sample or in front of a mirror in the case
of dielectric samples. This arrangement is also called dispersive Fourier transform spectroscopy.
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Fig. 10.10. (a) Frequency dependent reflectivity R(ω) of Sr14Cu24O41 measured at two
different temperatures for the electric field E oriented parallel to the a axis. (b) Optical
conductivity σ1(ω) of Sr14Cu24O41 obtained by the Kramers–Kronig analysis of the re-
flection data [Gor00].

behavior (5.1.17) – for a metal as in the case of 300 K – or constant reflectivity
– for an insulator as in the case of 5 K – in the limit ω → 0 and by assuming a
smooth decrease of the reflectivity with the functional dependence of R ∝ ω−2 for
ω→∞.
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Grüner (Springer-Verlag, Berlin, 1998)

[Sug72] A. Suggett, in: Dielectric and Related Molecular Processes, Vol. I (Chemical
Society, London, 1970), p. 100

Further reading

[Cha71] G.W. Chantry, Submillimetre Spectroscopy (Academic Press, London, 1971)
[Fly87] M. O’Flynn and E. Moriarty, Linear Systems: Time Domain and Transform

Analysis (Harper & Row, New York, 1987)
[Han01] P.Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.C. Zhang, J. Appl.

Phys. 89, 2357 (2001)
[Kaa80] U. Kaatze and K. Giese, J. Phys. E: Sci. Instrum. 13, 133 (1980)
[Mac87] J.R. Macdonald, Impedance Spectroscopy (John Wiley & Sons, New York,

1987)
[Mil86] E.K. Miller, ed., Time-Domain Measurements in Electromagnetic (Van Nostrand

Reinhold, New York, 1986)
[Mit96] D.M. Mittleman, R.H. Jacobsen, and M.C. Nuss, IEEE J. Sec. Topics Quantum

Electron. 2, 679 (1996)



268 10 Spectroscopic principles

[Rie94] G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter
(Cambridge University Press, 1994)

[Rze75] M.A. Rzepecka and S.S. Stuchly, IEEE Trans. Instrum. Measur. IM-24, 27
(1975)

[Sch95] B. Schrader, ed., Infrared and Raman Spectroscopy (VCH, Weinheim, 1995)
[Smi96] B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC

Press, Boca Raton, FL, 1996)
[Sob89] M.I Sobhy, Time-Domain and Frequency-Domain Measurements of Microwave

Circuits in: Microwave Measurements, edited by A.E. Bailey, 2nd edition,
IEEE Electrical Measurement Series 3 (Peter Peregrinus Ltd, London, 1989)

[Ste84] S. Stenholm, Foundations of Laser Spectroscopy (John Wiley & Sons, New
York, 1984)



11

Measurement configurations

The configurations which guide the electromagnetic radiation and allow the in-
teraction of light with matter vary considerably, with a wide variation of tech-
niques developed over the years and employed today. We can distinguish between
single-path and interferometric arrangements, and – as far as the interaction of light
with the material under study is concerned – single-bounce from multiple-bounce,
so-called resonant techniques. In this chapter we present a short summary.

Single-path arrangements sample the change of the electromagnetic wave if only
one interaction with matter takes place; for instance if the light is reflected off the
sample surface or is transmitted through the specimen in a single path. In general,
part of the radiation is absorbed, and from this the optical properties of the material
can be evaluated. However, only at low frequencies (i.e. at long wavelengths)
does this simple configuration allow the determination of the phase change of
the radiation due to the interaction; for higher frequencies only the attenuation
in power is observed.

Interferometric techniques compare one part of the radiation, which undergoes
the interaction with the material (i.e. reflection from or transmission through the
material), with a second part of the signal, which serves as a reference. In this
comparative approach – the so-called bridge configuration – the mutual coherence
of the two beams is crucial. The interference of the two beams is sensitive to both
the change in amplitude and in phase upon interaction, and thus allows calculation
of the complex response of the specimen.

Resonant techniques enhance the sensitivity of the measurement because the
radiation interacts with the material multiple times and the electromagnetic fields
are added with the proper phase relation (interference). By observing the two
parameters which characterize the resonance, i.e. the resonance frequency and its
quality factor, both components of the electrodynamic response of the sample are
evaluated.

269
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All of the above methods have advantages and disadvantages. Single-path
arrangements are simple and are the preferred method if significant changes in
the measured parameters are encountered. Interferometric techniques are, as a
rule, more elaborate, but offer increased sensitivity and precision. Both of these
are broadband techniques, and – at the same time – use a single bounce of the
light at the interface of the specimen. Resonant techniques offer high sensitivity
due to the multiple interaction of the radiation with the sample (broadly speaking,
for a resonant structure of quality Q, the electromagnetic radiation bounces off
approximately Q times from the surface of the specimen), but at the expense of
a narrow bandwidth. Of course, the different optical path arrangements and the
different – resonant or non-resonant – techniques can sometimes be combined.

In order to obtain the frequency dependent optical properties, the three meas-
urement configurations have to be used in combination with one of the three spec-
troscopic principles discussed in the previous chapter. This then leads to a variety
of measurement arrangements. The quality factor of a resonator, for instance, can
be obtained in the time domain by cavity ring-down methods as well as in the
frequency domain by measuring the width of the absorption curve. As another
example, using the Fourier transform technique, we can study the transmission
through a slab or simple reflection off a bulk sample – typical single-path config-
urations. Fourier transform spectroscopy also allows us to observe multireflection
within a thin slab or within the substrate of a film – the sample then acts as a
resonator with interference effects becoming important.

Of course, only a summary of the main principles can be given here, together
with a short description of the commonly used arrangements in the different ranges
of frequency. Sophisticated setups developed over the years in order to enhance
sensitivity and accuracy and to address particular problems are beyond the scope
of this book, but are covered by a vast literature that we extensively refer to.

11.1 Single-path methods

In the simplest measurement configuration, the radiation interacts with the material
only once; for example, dc current flows though the specimen or light is reflected
from the surface of the sample. These configurations can be regarded as trans-
mission lines in which the specimen is inserted; in a single-bounce experiment
either the reflection or the transmission (and in some cases both) is measured.
In general, four data points have to be acquired to obtain the complex response:
two parameters determine the amplitude and the phase of the signal before and
two parameters determine these quantities after the interaction with the sample.
With both amplitude and phase information available, the complex impedance Ẑ
of the sample – and then its conductivity σ̂ – are evaluated. If only the ratio of
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Fig. 11.1. Experimental arrangement for measuring the low frequency properties of mate-
rials and the corresponding equivalent circuit. (a) Guard-ring capacitor filled with material:
Rx corresponds to the losses of the sample, and Cx describes the capacitance which changes
due to the dielectric constant of the sample. (b) Four-lead technique used to measure the
resistance Rx of the sample. The contact resistance is Rc, and RI is the internal resistance
of the voltmeter.

the power before and after the interaction is determined, certain assumptions are
required to analyze further the reflectivity or transmission. Single-bounce methods,
while less sensitive than the interference and resonant configuration techniques,
nevertheless offer advantages, for example the simple arrangement, straightforward
analysis, and, in general, a broad bandwidth in which they are applicable. For these
reasons the single-path configuration is widely used and is perhaps the single most
important technique.

Ellipsometry is a single-bounce method of a special kind which utilizes the
dependence of the reflected power upon the polarization for oblique incidence in
order to evaluate both the real and imaginary parts of the electrodynamic response
function. This method is widely used and important in the visible spectral range.

11.1.1 Radio frequency methods

In the spectral range up to radio frequencies, the dielectric and transport properties
of materials are measured either by placing the specimen in a parallel plate ca-
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Fig. 11.2. Sample with impedance ẐS in a waveguide characterized by the impedance Ẑc.
(a) A conducting sample terminates the transmission line. (b) The waveguide is filled with
an insulating material. (c) A sample is placed at a distance � = 2n+1

4 λ from the shorted end
of a waveguide; at this position the electric field is at its maximum. For a well conducting
material, the load impedance ẐL depends on the surface impedance of the sample ẐS and
the geometrical configuration.

pacitor or by attaching four leads to the sample – the actual arrangement depends
on the conductivity of the particular sample. If the material under investigation
is insulating, a capacitor is filled as depicted in Fig. 11.1a; the dielectric constant
and the conductivity are then calculated from the capacitance and the conductance
provided the geometry of the capacitor is known. For materials with an appreciably
large conductivity, the standard four-point technique is preferable where the outer
two contacts supply the current and the inner two contacts probe the voltage drop
(Fig. 11.1b).

Performing time domain measurements of dielectric materials, a voltage step is
applied (Fig. 10.2) and the charging and discharging of the capacitor is studied,
as discussed in Section 10.2.2. For measurements in the frequency domain, the
current and voltage amplitude and the phase difference between them is deter-
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mined; usually by employing a sine wave generator and oscilloscope or lock-in
amplifier for detection. Stray capacitance and the inductance of the electrical
wires determine the upper frequency limit (in the megahertz range) for the use
of electrical leads to measure materials.

11.1.2 Methods using transmission lines and waveguides

In the frequency range of a few megahertz up to about 50 GHz, transmission lines
are employed to study the electrodynamic properties of conducting as well as insu-
lating materials [Boh89, Jia93]. In the simplest arrangement the sample terminates
the transmission line for reflection measurements, as depicted in Fig. 11.2. Since
(for a straightforward analysis) the sample dimensions have to exceed the skin
depth, this is the preferential arrangement for conducting materials. On the other
hand, if the material under consideration is insulating, the sample is placed inside
the transmission line – between the inner and the outer conductors of a coaxial
line, for instance. Similar arrangements are commonly used in the microwave
and millimeter wave spectral range where rectangular waveguides are employed;
the sample then replaces the end wall of the waveguide (reflection setup for con-
ductors) or is positioned inside the waveguide (transmission setup for insulating
materials). With microstrip and stripline techniques, the electrodynamic properties
of the dielectric material placed between the conducting strips can be obtained;
the method can also be used to fabricate the microstrip of a metal which is to be
investigated.

At frequencies above the radio frequency range, only the reflected or transmitted
power is probed. Using frequency domain spectroscopy, the phase information can
still be obtained if a bridge configuration is utilized, as discussed in the following
section; in the simplest case of a reflecting sample, the standing wave pattern in
front of the specimen is measured and (by position and ratio of minimum and
maximum) yields both components of the response. In the time domain, both
parameters of the response function are evaluated from the delay and the dephas-
ing of the reflected or transmitted pulse by utilizing the Laplace transformation
(Section 10.2).

The electrodynamic properties of the conductors and the dielectric medium
which constitute the transmission line – for example the inner and outer leads and
the dielectric spacer in the case of a coaxial cable – alter the attenuation α and the
phase velocity vph of the traveling wave in the transmission lines. In Eq. (9.1.4) we
arrived at an expression for the phase velocity vph which, for a lossless transmission
line, simplifies to vph = (L lCl)

−1/2; as usual, L l and Cl are the inductance and
capacitance per unit length, respectively. The attenuation constant α was derived
in Section 9.1 and is given by α ≈ Rl/Zc + G l Zc. Thus this technique yields
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Fig. 11.3. (a) Attenuation and (b) phase velocity as a function of frequency for a nio-
bium stripline (after [Kau78]). The calculations are based on the Mattis–Bardeen theory,
Eqs (7.4.20). For T > 9.2 K niobium is metallic; at lower temperatures it is superconduct-
ing. While the attenuation α is proportional to the surface resistance, the phase velocity
vph is related to the surface reactance and thus to the penetration depth.
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information on ohmic losses in the conductor (given by Rl) and on the skin depth
of a conductor or the penetration depth (both influence the phase velocity) and
losses in a superconductor. This technique, however, can also be used to measure
the dielectric constant and the losses of the material (determined by Cl and G l)
surrounding the transmission line.

As an example, let us consider the propagation of electromagnetic waves in a
superconducting microstrip structure. If short pulses are sent along a parallel plate
transmission line of superconducting niobium on a dielectric substrate, the attenu-
ation and the phase velocity change as the material properties vary; the frequency
dependences of the propagation parameters as calculated by Kautz [Kau78] are
displayed in Fig. 11.3. In the superconducting phase, T � Tc, the attenuation
α is strongly reduced for frequencies ω < 2�/h̄, with 2� the superconducting
energy gap, and follows a ω2 behavior. The phase velocity vph changes because
of the influence of the skin depth and penetration depth on the effective geometry.
These experiments – performed by using frequency domain as well as time domain
techniques – are widely employed to study the electrodynamic properties of high
temperature superconductors [Gal87, Lan91].

11.1.3 Free space: optical methods

Wave propagation in free space is preferred as soon as the wavelength becomes
smaller than roughly a millimeter, i.e. the frequency exceeds a few hundred giga-
hertz; in this spectral range the assumptions of geometrical optics are valid, and the
analysis is straightforward because the wavelength is much smaller than the sample
size (and any other relevant dimension). Thus we can safely neglect diffraction
effects and – since the surface is assumed to be infinite – the build up of charges at
the edges of the sample.

Standard power reflection measurements are the most important technique from
the submillimeter waves up to the ultraviolet spectral region. In Fig. 11.4a a typical
reflection setup is shown; in order to separate the incident and reflected beams, the
light has an angle of incidence ψi of 45◦. According to the Fresnel formulas (2.4.7),
the reflectivity for oblique incidence depends on the polarization of the light – this
angular dependence is used by the ellipsometric method discussed in Section
11.1.4. Since this is often a disturbing effect, strictly normal incidence is sought by
using a beamsplitter in front of the sample (Fig. 11.4b). Reflectivity measurements
are commonly performed in such a way that the sample is replaced by a reference
mirror (evaporated aluminum or gold) to determine the incident power. Much
effort is needed to prepare an exactly flat sample, which is particularly important
in the spectral range above the visible. Another crucial point is the reproducible
interchange between sample and reference; this becomes increasingly important
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Fig. 11.4. (a) Experimental setup for measuring the reflectivity. A beamsplitter directs
part of the radiation from a monochromatic source to a detector which monitors the output
power of the generator; after passing through a polarizer the beam hits the sample at an
angle ψi = 45◦; a second detector measures the reflected intensity. (b) Using a beamsplitter
allows reflection experiments at normal incidence. (c) Experimental setup for transmission
measurements.
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for highly conducting samples at low frequencies where the reflectivity follows the
Hagen–Rubens law (5.1.17) and is close to unity [Ben60, Eld89, Hom93].

The optical arrangements do not vary significantly between the experiments per-
formed in the frequency domain and in the time domain. While the latter principle
allows the evaluation of both components of the optical response, in the frequency
domain, for both transmission and reflection measurements, the power, but not
the phase change upon interaction, is determined by a straightforward single-path
method. Nevertheless, with the help of the Kramers–Kronig analysis we can obtain
the complex electrodynamic response if the reflected power R(ω) is measured over
a large range of frequency. The relations give the phase shift φr(ω) of the reflected
signal as

φr(ω) = ω

π

∫ ∞

0

ln {R(ω′)} − ln {R(ω)}
ω2 − ω′2

dω′ , (11.1.1a)

which then allows the calculation of the complex conductivity

σ1(ω) = ω

4π
ε2(ω) = ω

4π

4
√

R(ω)[1− R(ω)] sinφr

[1+ R(ω)− 2
√

R(ω) cosφr]2
(11.1.1b)

σ2(ω) = ω

4π
[1− ε1(ω)] = ω

4π

(
1− [1− R(ω)]2 − 4R(ω) sin2 φr

[1+ R(ω)− 2
√

R(ω) cosφr]2

)
(11.1.1c)

using the well known relations between the conductivity and the reflectivity. As
mentioned in Chapter 10, the extrapolations at the low and high frequency ends
of the experimental data are of great significance. For the simple analysis just
presented, the skin depth (or the penetration depth) has to be smaller than the
thickness of the sample in the direction of wave propagation to avoid transmission
through the specimen. These types of reflectance studies are often referred to as
bulk reflectivity measurements in contrast to optical experiments on thin films; in
this case, as discussed in Appendix B in full detail, multireflection of the front and
back of the material has to be included in the overall reflectivity.

In the cases of insulating materials or thin films, transmission experiments are
more suitable and accurate than reflection measurements, as no reference mirror is
needed (Fig. 11.4c); simply removing the sample from the optical path serves as
a reference. Since part of the radiation is reflected off the surface of the material,
additional information is needed in order to obtain the transmission coefficient;
either the bulk reflectivity has to be known or two samples with different thick-
nesses are probed. The accurate expression, which also takes multireflection inside
the specimen into account, is given by Eq. (B.12a); simpler relations for limiting
cases are derived by [Pot85]. Other common techniques used to determine the
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Fig. 11.5. Reflection and transmission of a light beam at a surface. The plane of incidence
contains the incoming beam Ei, the outgoing beam Er, and the transmitted beam Et. The
ratio of the angles of incidence ψi and transmission ψt at a single interface between two
media is characterized by N̂ ′ and N̂ . The amplitudes of the reflected and transmitted fields
depend on the polarization with respect to the plane of incidence, E‖ and E⊥, and are given
by Fresnel’s equations (2.4.3).

optical properties of solids, such as frustrated and attenuated total reflectance, are
not presented here, but are discussed in handbooks, for example [Pal85].

11.1.4 Ellipsometry

Ellipsometry or polarimetry measures the polarization of an electromagnetic wave
in order to obtain information about an optical system which modifies the polar-
ization; in general it is used for reflection measurements. While most of the early
work was concentrated in the visible spectral range, recent advances have made
ellipsometric investigations possible from the far-infrared to the ultraviolet. In
contrast to standard reflectivity studies which only record the power reflectance,
two independent parameters are measured, thus allowing a direct evaluation of
the complex optical constants. Furthermore, as the magnitude of the reflected
light does not enter the analysis, ellipsometric studies are not sensitive to surface
roughness and do not require reference measurements. Several reviews of this topic
and a selection of important papers can be found in [Azz87, Ros90, Tom93].

As discussed in Section 2.4.1, an electromagnetic wave reflected at a surface can
be decomposed into a wave with the polarization lying in the plane of incidence
(subscript ‖) and a part which is polarized perpendicular to the plane of incidence
(subscript ⊥) according to Fig. 11.5. The two components of the electric field
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generally experience a different attenuation and phase shift upon reflection even
for isotropic media, and hence the state of polarization changes as described by
Fresnel’s equations (2.4.7d) and (2.4.7b). Ellipsometry is a measurement of the
complex ratio of both reflection coefficients:

ρ̂ = r̂‖
r̂⊥
= tan{θ} exp{i�} . (11.1.2)

The two angles which have to be determined are related to the amplitude ratio θ

and the phase � = φr‖ − φr⊥, where φr‖ and φr⊥ are the phase shifts induced by the
sample upon the reflection. These coefficients depend upon the angle of incidence
ψi, upon the material properties (the complex conductivity σ̂ or dielectric constant
ε̂), and typically also upon the frequency ω. As expected, for normal incidence the
ellipsometric effect disappears because R‖ = |r̂‖|2 = |r̂⊥|2 = R⊥.

It is important to note that ellipsometers measure θ and �, and not the optical
constants: to evaluate these, models are used with certain assumptions. With the
simplest model (two semi-infinite dielectric materials with an abrupt discontinuity
in N̂ at the interface as shown in Fig. 11.5), both the real and imaginary components
of the dielectric constant are determined using the following:

ε1 = sin2{ψi}
[

1+ tan2{ψi}(cos2{2θ} − sin2{�} sin2{2θ})
(1+ sin 2{θ} cos{�})2

]
(11.1.3)

ε2 = sin2{ψi} tan2{ψi} sin{4θ} sin{�}
(1+ sin{2θ} cos{�})2

. (11.1.4)

Two configurations are often used to obtain the ellipsometric angles. The nulling
technique determines the angle of the analyzer for which the reflected signal
vanishes; while in the case of the photometric technique the transmitted signal is
measured as a function of the polarization angle. The scheme of a null ellipsometer
is displayed in Fig. 11.6: the linearly polarized light is reflected from the surface of
the sample in an angle larger than 60◦ and becomes elliptically polarized; it is then
converted back to a linearly polarized beam by a suitable rotation of the quarter
wave (λ/4) plate. The intensity of the light at the detector is finally minimized
by rotating the analyzer until it is perpendicular to the axis of polarization. The
rotation angles of both the λ/4 plate and the analyzer allow the determination of
θ and �. In other words, in general the transmitted light is elliptically polarized
so that the major and minor axes are aligned with the directions of fast and slow
propagation. The angle γ of the major axis is adjusted by rotating the λ/4 plate;
by rotating the polarizer in front of the λ/4 plate, we account for the eccentricity
e = b/a – the ratio of the minor axis b to the major axis a.

In general no attempt is made to reconvert the elliptically polarized light to
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Fig. 11.6. Schematic arrangement of a null ellipsometer. A monochromatic light (polar-
ized 45◦ out of the plane of incidence) hits the sample at an angle ψi. The reflected light
is elliptically polarized; by passing through a λ/4 (quarter wave) plate it is transformed
back to linear polarization. A second polarizer determines the polarization. The angular
settings of the quarter wave plate and the analyzer are used to determine the phase shift �
and attenuation ratio θ (after [Tom93]).

linearly polarized light; instead the first polarizer is set at a fixed value – usually
45◦ with respect to the plane of incidence – and the reflected intensity of the light
is measured as a function of the analyzer angle (so-called rotating analyzer ellip-
someter). The intensity as a function of analyzer angle is given by the expression

I (α) = I0 + I1 cos{2α} + I2 sin{2α} ,

where I1 and I2 depend on both γ and e; here α is the position of the analyzer. The
coefficients I1 and I2 can be found from the measured data since the azimuth is

2γ = π

2
− arctan

{
I1

I2

}
(11.1.5)

and the eccentricity is

e =
(

I0 +
[
I 2
1 + I 2

2

]1/2

I0 −
[
I 2
1 + I 2

2

]1/2

)1/2

. (11.1.6)

Thus, as with the nulling technique, we determine θ and � from the measured
parameters; the material properties are finally evaluated from these values.

Ellipsometric investigations which cover a wide spectral range are cumbersome
because the experiments are performed in the frequency domain; in the infrared
range Fourier transform ellipsometers have become available [Ros90]. At each
analyzer position an interferogram is recorded and a Fourier transform of the
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interferogram generates the frequency spectra of the reflected light at this posi-
tion of the analyzer. The measurements are then repeated for the other analyzer
position, and thus for a certain frequency the intensity is obtained as a function
of angle. Measurements with these techniques have recently been made in the
far-infrared frequency range using synchrotrons as highly polarized light sources
[Kir97].

11.2 Interferometric techniques

In order to obtain the complex electrodynamic response of the material of interest,
single-path configurations – as just described – have to record the absolute values
of four different quantities; for example, magnitude and phase of the signal before
the interaction and magnitude and phase after the interaction of the light with the
sample. If the variations caused by the material are small, it is advantageous not
to probe the signal itself, but to compare it with a (well characterized) reference
and measure only the difference. The basic idea of interferometric measurements
is therefore to compare the parameters of interest with known parameters, and to
analyze the difference; this technique is often called the bridge method.

An interferometer splits the monochromatic radiation coming from one source
into two different paths, with the sample being introduced in one arm and a ref-
erence into the other (no reference is needed for transmission measurements); the
radiation is eventually combined and guided to a detector. If the coherence of the
source (introduced in Section 8.3) is larger than the path difference, the recom-
bined beam shows interference. From the two parameters, the phase difference
and the attenuation caused by the sample, the material properties (e.g. complex
conductivity σ̂ ) are evaluated.

Since monochromatic radiation is required, interferometric techniques can only
be utilized in the frequency domain. In the following we discuss three different
setups which cover the spectral range where circuits, transmission lines, and optical
arrangements are utilized.

11.2.1 Radio frequency bridge methods

The arrangement of a low frequency bridge is best explained by the Wheatstone
bridge (Fig. 11.7). An element, the electrical properties of which we intend to
measure and which is described by a complex impedance Ẑ1, is inserted into a
network of known impedances Ẑ2 and Ẑ3. Two points in the network are connected
to an alternating current source, while a detecting instrument bridges the other two
points. The fourth impedance Ẑ4 is then adjusted until the two bridged points
are at the same potential and phase – leading to a null reading at the detector
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Fig. 11.7. Wheatstone bridge circuit with four impedances. The impedance Ẑ1 is deter-
mined by adjusting Ẑ4 in such a way that no signal is recorded at the detector. In the
simplest case the two elements Ẑ2 and Ẑ3 are equal.

[Hag71]. The experimental determination of the electromagnetic properties is then
reduced to the measurement of the values of an impedance Ẑ4. In the simplest
case the Wheatstone bridge contains only resistors, but the general layout also
works for complex impedances, consisting of ohmic and capacitive contributions,
for example. Then two parameters have to be adjusted to bring the detector signal
to zero, corresponding to the phase and to the amplitude of the signal. Knowing
the geometry of the specimen, and from the values of the resistance and the
capacitance, the complex conductivity of the material can be calculated. Bridge
configurations as depicted in Fig. 11.7 are available in a wide frequency range up
to a few hundred megahertz. The sample is either placed in a capacitor or has wires
attached (Fig. 11.1).

11.2.2 Transmission line bridge methods

A large variety of waveguide arrangements have been developed which follow the
principles of bridge techniques [Gru98] to measure the complex conductivity of a
material in the microwave and millimeter wave range (10–200 GHz). In general the
beam is split into two arms with the sample placed in one and the second serving
as a reference; both beams are finally recombined and the interference is observed.
Up to approximately 50 GHz coaxial components are also employed for similar
bridge configurations.

The technique is used for transmission and for reflection measurements. Since
the former arrangement is similar to the Mach–Zehnder interferometer discussed
in Section 11.2.3, we only treat the reflection bridge here. This configuration
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Fig. 11.8. Diagram of the millimeter wave impedance bridge for reflection measurements
(after [Sri85]). First the bridge is nulled by terminating the measurement arm with a metal
of known ẐS. Then, with the sample replacing the metal, the interferometer is readjusted
by changing the phase shift φS and attenuation AS. From these two readings, φS and
AS, the load impedance terminating the transmission line and eventually the complex
conductivity of sample are determined.

measures the complex reflection coefficient (or the scattering parameter Ŝ) of the
sample, which is written in the form

r̂ = −10AS/20 exp{iφS} , (11.2.1)

where AS is the change of the attenuation given in decibels and φS is the change
in the phase. Once this quantity is known, using Eq. (9.2.4) the impedance of
the sample is extracted, and from that the complex conductivity can be evaluated.
The arrangement of a microwave reflection bridge [Joo94, Kim88, Sri85] is shown
in Fig. 11.8. The sample either terminates the measurement arm (in this case
the specimen has to be metallic or at least thicker than the skin depth – ẐL then
simplifies to the surface impedance ẐS of the material); or the sample is placed at a
distance � from a short end of the transmission line, where the electric field is at a
maximum. This is the case for � = (2n+1)λ/4 (with n = 0, 1, 2, . . .) and thus the
position depends on the particular frequency used (Fig. 11.2); for other frequencies
appropriate transformations have to be made [Ram94].

As an example of a measurement performed by a millimeter wave impedance
bridge operating at 109 GHz, we present results from TaSe3 [Sri85]. The phase
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Fig. 11.9. (a) Attenuation (open diamonds) and phase shift (full circles) measured as a
function of temperature on a sample of TaSe3 with a millimeter wave bridge at 109 GHz.
(b) From the data shown in (a) the temperature dependent resistivity of TaSe3 is obtained
at 109 GHz and compared with dc measurements. The sample was a thin needle with an
approximate cross-section of 1 µm × 1 µm. At room temperature, the dc resistivity is
500 µ� cm and the microwave results were normalized to this value (after [Sri85]).

shift and the attenuation due to the needle shaped crystal placed in the maximum
of the electric field are shown in Fig. 11.9a as a function of temperature. For this
configuration the load impedance and from that the complex conductivity can be
evaluated; the calculated resistivity ρ(T ) is displayed in Fig. 11.9b. The solid line
is the four-probe dc resistivity measured – the experiments provide evidence that
the conductivity is independent of frequency in the measured spectral range.
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Fig. 11.10. Mach–Zehnder type interferometer used for quasi-optical transmission meas-
urements in the submillimeter wave range. The coherent radiation is split by wire grids.
The length of the reference arm can be adjusted for destructive interference by moving
mirror 2. After the sample is introduced, the interferometer is readjusted in order to obtain
φt.

11.2.3 Mach–Zehnder interferometer

The Mach–Zehnder interferometer is arranged following the outline of a trans-
mission bridge; it is common in the optical range (the frequency range from
millimeter waves up to the visible spectrum) where the electromagnetic waves
propagate in free space. The monochromatic beam is split into two paths which
are finally recombined. The sample is placed in one arm, and the changes in phase
and the attenuation are measured by compensation; this procedure is repeated at
each frequency. Provided the sample thickness is known, the refractive index
n of the material is evaluated from the change in phase. The absorbed power
is measured by a transmission measurement in a single-bounce configuration as
discussed in Section 11.1.3, for instance. From the absorption coefficient α of
the sample, the extinction coefficient k is determined using Eq. (2.3.18). Other
material parameters, such as the complex conductivity σ̂ or dielectric constant ε̂,
are evaluated from n and k using the relations given in Section 2.3.

Fig. 11.10 shows the outline of a Mach–Zehnder type interferometer developed
for the submillimeter wave region, i.e. from 2 cm−1 to 50 cm−1, based on back-
ward wave oscillators as tunable and coherent sources [Koz98]. As an example
of a measurement conducted using this interferometer, the transmission TF(ω)

and phase shift φt(ω) obtained on a semiconducting TlGaSe2 sample (thickness
0.1 mm) is displayed in Fig. 10.1a and b. For each frequency, TF and φt are
obtained by separate measurements. From these two quantities both components of
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the complex dielectric constant ε̂(ω) are determined and are depicted in Fig. 10.1c
and d. The close relation between the phase shift φt(ω) and the dielectric constant
ε1(ω) or the refractive index n(ω) ≈ [ε1(ω)]

1/2 is clearly seen.
In contrast to resonant techniques, which are limited to a narrow range of

frequency, interferometric methods can in general be used in a broad frequency
range. The most significant advantage of interferometric arrangements compared
to single-path methods is the possibility – in addition to the attenuation of the
radiation – of determining the phase shift introduced by the sample. Furthermore,
the method has increased sensitivity by directly comparing the electromagnetic
wave with a reference wave in a phase sensitive way. The interferometric method
can be combined with resonant techniques to enhance the sensitivity further.

Fig. 11.11 displays the results of a transmission experiment [Pro98] performed
on a metal film on a substrate. The niobium film (thickness 150 Å) was deposited
on a 0.45 mm thick sapphire substrate, which acts as a Fabry–Perot resonator
due to multireflection. The transmission through this arrangement is measured
by a Mach–Zehnder interferometer in order to also determine the phase shift.
In Fig. 11.11a the transmission TF through this composite sample is shown as a
function of frequency, and the phase shift is displayed in Fig. 11.11b. As the temp-
erature decreases below the superconducting transition Tc = 8.3 K, the transmitted
power and phase shift are modified significantly. Since the properties of the dielec-
tric substrate do not vary in this range of frequency and temperature, the changes
observed are due to the electrodynamic properties of the superconductor. The
change of the electrodynamic properties at the superconducting transition strongly
changes the transmission and the phase of the composite resonator [Pro98]. The
data can be used to calculate directly the real and imaginary parts of the complex
conductivity σ̂ (ω). The results, together with the theoretical prediction by the
Mattis and Bardeen formulas (7.4.20), are displayed in Fig. 14.5.

11.3 Resonant techniques

Resonant methods utilize multiple reflection to increase the interaction of the
electromagnetic radiation with the material under investigation. The fundamental
concept of resonant structures were discussed in Section 9.3 where the technical
aspects of these measurement configurations are summarized. The quality factor
Q of a resonant structure – as defined in Section 9.3.1 – indicates the number of
times the wave bounces back and forth in the resonator, and, roughly speaking,
the sensitivity of the measurement by a resonant technique is Q times better than
the equivalent non-resonant method. The increase in sensitivity is at the expense
of the bandwidth – the major drawback of resonant techniques. In general the
applicability of resonant structures is limited to a single frequency, and only in
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Fig. 11.11. Frequency dependent transmission TF(ω) and phase shift φ(ω) spectra of a
niobium film on a sapphire substrate (0.45 mm) at two temperatures above and below the
superconducting transition Tc = 8.3 K (after [Pro98]).

some cases are higher harmonics or different modes utilized. Resonant techniques
are widely used in the gigahertz range (microwaves up to submillimeter waves)
where non-resonant measurement techniques lack sensitivity. The experiments are
usually performed in the frequency domain but the resonator can also be excited
by a short pulse, and then the timely decay of the signal is observed. This so-called
cavity ring-down method is preferable for extremely large Q factors.
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V

R

RxCxCpLL~

Fig. 11.12. Schematic of lumped resonance circuit. The source is weakly coupled to the
resonator by the inductance L . Rx and Cx represent the sample. The tunable capacitance
Cp allows coverage of a wide range of frequency.

11.3.1 Resonant circuits of discrete elements

In the audio and radio frequency range, up to approximately 100 MHz [Hil69],
RLC resonant circuits are used to enhance the sensitivity of dielectric measure-
ments. The complex dielectric constant is evaluated from the change in the reso-
nance frequency and the decrease of the quality factor upon introducing the sample.
The sample is usually contained between two parallel plates and is modeled by a
parallel circuit of a capacitive part Cx and a resistive part Rx. Fig. 11.12 shows a
simple corresponding circuit; as the capacitance Cp is varied, the signal detected by
the voltmeter goes through a maximum when the resonance condition is passed (cf.
Section 9.3). Roughly speaking, the resonance frequency depends on the dielectric
constant ε1 of the material introduced into the capacitor, while the width of the
resonance curve increases as the losses of the sample (described by ε2) increase.
Following this arrangement, resonant circuits are designed to operate over a large
range of frequencies; they are capable of high accuracy, provided the losses are
low.

11.3.2 Microstrip and stripline resonators

As we have seen in Section 9.3, any transmission line between two impedance
mismatches forms a resonant structure. Microstrip and stripline resonators utilize
the fact that the resonance frequency and bandwidth of the transmission line res-
onator depend upon the electrodynamic properties of the conductors and of the
dielectric media comprising the transmission line. Consequently, measurement
configurations using microstrip resonators offer the following: if a conductor has
to be studied, the stripline itself is made out of the material of interest; insulating
material, on the other hand, is placed as dielectric spacers between the metallic
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Fig. 11.13. Phase velocity vph data (normalized to the speed of light c) obtained for a
YBa2Cu3O7−δ superconducting microstrip resonator, plotted versus the reduced temperat-
ure (after [Lan91]).

transmission line. Microstrip and stripline resonators are used in the frequency
range from 100 MHz to 10 GHz.

The change in the two characteristic parameters – the resonance frequency ω0

and the quality factor Q – upon introducing a sample allows the determination
of the dielectric constant and conductivity of the material if the geometry and the
mode remain constant. The experiments are performed by recording the transmit-
ted power as a function of frequency; whenever the resonance condition (9.3.4)
is fulfilled, a maximum in transmission is observed. Alternatively, if a reflection
arrangement is used, a minimum in the reflected power is recorded.

If the dielectric properties of an insulating material are investigated, the material
of interest forms the dielectric spacer separating the ground plate and the microstrip
pattern which constitutes the resonator. Here the resonant frequency increases with
the dielectric constant ε′1 of the specimen; the dielectric losses ε′2 determine the
width of the resonance curve. In an alternative configuration microstrip resonators
are utilized to investigate the properties of a conducting (or even superconducting)
material which forms the ground plate and/or the microstrip pattern. The ohmic
losses of this metal lead to a broadening of the resonance curve; the shift of the
resonance frequency allows the determination of the skin depth or the penetration
depth, respectively.
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Microstrip resonators are a well established technique used to study supercon-
ducting films which are deposited onto a substrate to form a resonant microstrip
pattern; and in Fig. 11.13 measurements on a YBa2Cu3O7−δ superconducting
stripline resonator operating in the vicinity of 3 GHz [Lan91] are displayed. The
phase velocity vph, a parameter proportional to the resonance frequency ω0, is
plotted as a function of the temperature; this parameter also contains the pene-
tration of the electromagnetic field into the structure – and thus is a measure
of the penetration depth λ. The phase velocity vph(T ) increases for decreasing
temperature because λ(T ) becomes larger [Zho94].

11.3.3 Enclosed cavities

In the frequency range from 1 to 300 GHz enclosed cavities are employed to
measure the dielectric properties of materials; the sample is introduced into the
cavity and the changes of the resonance parameters are observed [Don93, Dre93,
Kle93, Sch95]. Enclosed cavities are not limited by diffraction problems which
other methods face if the wavelength λ becomes comparable to the sample size – a
common occurrence in this range of frequency. Often it is sufficient to consider the
sample (placed in the cavity) as a small perturbation of the resonator; the material
parameters are evaluated from this perturbation as outlined in Section 9.3.3. The
major disadvantage of cavities – like any resonant technique – is that they are (with
a few exceptions) limited to a single frequency.

If the material under study is a low-loss dielectric, the entire cross-section of
a cavity can be filled by the sample, as shown in Fig. 11.14a. The evaluation
of the complex dielectric constant ε̂ is straightforward [Har58, Hip54a] since the
geometrical factor is particularly simple. If the sample is a good conductor (and
significantly thicker than the skin depth), it can replace the wall of a cavity. In
Fig. 11.14b a cylindrical TE011 cavity is displayed where the copper end plate
is replaced by a sample. The advantage of these two configurations is that the
analysis has no geometrical uncertainties. Instead of filling the entire cavity or
replacing part of it, a small specimen (with dimensions significantly smaller than
the dimensions of the cavity) can be placed inside the cavity. This also leads to
a modification of the cavity characteristics, which can be treated in a perturbative
way. For a quantitative evaluation of the electrodynamic properties of the mate-
rial, however, the geometry of the sample is crucial. Details of the analysis and
discussion of particular sample shapes are found in [Kle93, Osb45, Pel98].

The experimental results obtained from a specimen which undergoes a metal–
insulator transition at 135 K are shown in Fig. 11.15. The needle shaped crystal of
α-(BEDT-TTF)2I3 was placed in the electric field antinode of a 12 GHz cylindrical
TE011 reflection cavity. In Fig. 11.15a we display the temperature dependence of
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the change in both the width ��/2ω0 and resonance frequency �ω/ω0. The phase
transition causes a large and rapid change in the frequency shift (about one order
of magnitude) and a maximum in the bandwidth. These features indicate that a
crossover from the metallic to the insulating regime occurs [Dre93, Dre94] as seen
in Fig. 11.15b; and an appropriate analysis leads to the temperature dependence of
the conductivity.

11.3.4 Open resonators

The spectral range from 1 cm−1 to 100 cm−1 is a transition region between mi-
crowave techniques (utilizing waveguides or coaxial cables) and optical methods
(free space wave propagation). In this regime, open resonators are employed for the
measurement of electromagnetic properties of materials [Afs85, Cha82, Cul83].
These resonators (often called Fabry–Perot resonators) consist of two mirrors sep-
arated by a distance which in general is considerably larger than the wavelength. A
large number of higher order modes can be utilized for measurement purposes and
thus open resonators are usually not as restricted to a single measurement frequency
as enclosed cavities.
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Fig. 11.15. (a) Temperature dependence of ��/2 f0 and � f/ f0 obtained on a sample
of α-(BEDT-TTF)2I3 in an 11.8 GHz cavity. Near the phase transition, TMI=135 K, a
large change in the frequency shift � f/ f0 occurs together with a peak in the bandwidth
��/2 f0. (b) The a axis conductivity observed in the microwave range is displayed
together with the dc conductivity. Below the metal–insulator phase transition, the high
frequency conductivity develops a plateau while the dc values continue to decrease. The
temperature dependence of the dielectric constant is displayed in the inset (after [Dre93]).
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The reflected and transmitted intensities of a symmetrical Fabry–Perot resonator
are described by the Airy function plotted in Fig. B.3. Instead of the quality factor,
the finesse F defined as

F = π

2

√
F = π

√
R

(1− R)
= 2π

�
(11.3.1)

is commonly used to describe the resonator; here � is the half-intensity full width
of the transmission maxima of the Airy function 1/[1 + F sin2{β}] which peak
at β = 2πd/λ = ±mπ , with m = 0, 1, 2, . . . accounting for higher harmonics.
The finesse is related to the quality factor by Q = 2νdF (with the frequency
ν = ω/(2πc) = 1/λ) and can be as large as 1000.

The simplest open resonator is built of two plane parallel mirrors; to re-
duce radiation losses the mirrors have to be much larger than the wavelength
used. Spherical and hemispherical Fabry–Perot resonators were also developed
[Cla82, Cul83] which overcome limitations due to these diffraction effects and due
to alignment problems. In a good approximation the quality factor is given by
Q = ω0d/(1 − Reff)c, where d is the distance between the mirrors and Reff is
the effective reflectivity of the open resonator. At 150 GHz, for example, quality
factors up to 3×105 have been achieved, making this a very sensitive arrangement.

We distinguish between three different arrangements which are used to measure
material properties by open resonators. First, a slab of a low-loss material is
placed inside the resonating structure. Second, the dielectric sample itself forms a
Fabry–Perot resonator where the light is reflected at the front and at the back of the
specimen. Third, one of the mirrors is replaced by the (highly conducting) sample.

In the first arrangement, the electrodynamic properties of a low-loss material
are determined by introducing it into the resonator and measuring the change
in frequency and halfwidth of the resonance; some of the possible experimental
setups are shown in Fig. 11.16. For these arrangements the evaluation of the
complex conductivity by the perturbation method is less accurate compared to that
in enclosed cavities because in general radiation losses cannot be neglected.

In the second case, the sample itself forms the resonant structure – for example, a
slab with the opposite sides being plane parallel; due to the impedance mismatch at
the boundaries, multireflection within the sample occurs. The experiments, which
are conducted either in transmission or reflection, map the interference pattern in
a finite frequency range; fitting this pattern yields electromagnetic properties of
the dielectric material using the expressions given in Appendix B. This method
requires that the sample dimensions significantly exceed the wavelength – the
thickness being a multiple of λ/2. The upper frequency limit is given by the ability
to prepare plane surfaces which are parallel within a fraction of a wavelength.
Due to these limitations, the technique of using the sample as a Fabry–Perot
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Fig. 11.16. Open resonator setups for the measurement of the optical conductivity: (a)
confocal transmission resonator with low-loss specimen in the center; (b) hemispherical
type for highly conducting samples.

resonator is mainly employed in the submillimeter and infrared frequency range.
The measurements are performed by placing the Fabry–Perot arrangement in an
optical spectrometer; the data are taken in the frequency domain or by Fourier
transform technique. In combination with a Mach–Zehnder interferometer, the
real and imaginary parts of the response can be measured independently, as shown
in Fig. 10.1.

In order to measure highly conducting samples – the third case – the specimen
is used as part of the resonant structure (e.g. as one mirror); most important is
the case of thin films deposited on low-loss dielectric substrates. The (usually
transparent) substrate acts as an asymmetric Fabry–Perot interferometer with one
mirror made of the thin film. The interference pattern depends on the real and
imaginary parts of the electrodynamic response of the film and of the substrate. If
the latter parameters are known (for example by an independent measurement of
the bare substrate), the complex conductivity σ̂ of the conducting film is evaluated
from the position and the height of the absorption minima. The detailed analysis
of the optical properties of a sandwich structure is given in Appendix B. When
the optical properties of a bulk sample – instead of a thin film – are investigated,
a transparent material is brought in contact with the specimen; the measurements
are performed in reflection configuration. Interference minima appear when the
optical thickness of the dielectric is roughly equal to an integer number of a half
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Fig. 11.17. Transmission spectra TF (ω) of a polycrystalline VO2 film deposited on a
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film, going from an insulating to a metallic state with increasing temperature (measured by
B. Gorshunov).

wavelength of the radiation; the interface pattern also sensitively depends on the
impedance mismatch between dielectric and metal [Sch95].

The influence of the thin film impedance on the interference pattern which
occurs due to multireflection within the substrate is seen in Fig. 11.17, where the
transmission spectra TF(ν) of a thin film of polycrystalline vanadium dioxide (VO2)
deposited on a sapphire plate are displayed. VO2 is an insulator at low temperatures
and shows a phase transition at 336 K to a metallic state. This transition clearly
manifests itself in the transmission spectra by a strong decrease in TF(ν) above the
transition temperature and by a phase change in the interference oscillations by π

in the course of the insulator-to-metal transition.
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1219 (1988)
[Kir97] J. Kircher, R. Henn, M. Cardona, P.L. Richards, and G.O. Williams, J. Opt. Soc.

Am. B 104, 705 (1997)
[Kle93] O. Klein, S. Donovan, M. Dressel, and G. Grüner, Int. J. Infrared and Millimeter
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Part three

Experiments

Introductory remarks

The theoretical concepts of metals, semiconductors, and the various broken sym-
metry states were developed in Part 1. Our objective in this part is to subject these
theories to test by looking at some examples, and thus to check the validity of the
assumptions which lie behind the theories and to extract some important parame-
ters which can be compared with results obtained by utilizing other methods.

We first focus our attention on simple metals and simple semiconductors, on
which experiments have been conducted since the early days of solid state physics.
Perhaps not too surprisingly the comparison between theory and experiment is
satisfactory, with the differences attributed to complexities associated with the
electron states of solids which, although important, will not be treated here. We
also discuss topics of current interest, materials where electron–electron, electron–
phonon interactions and/or disorder are important. These interactions fundamen-
tally change the character of the electronic states – and consequently the optical
properties. These topics also indicate some general trends of condensed matter
physics.

The discussion of metals and semiconductors is followed by the review of optical
experiments on various broken symmetry ground states. Examples involving the
BCS superconducting state are followed by observations on materials where the
conditions of the weak coupling BCS approach are not adequate, and we also
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describe the current experimental state of affairs on materials with charge or spin
density wave ground states.
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Metals

Optical investigations have contributed much to our current understanding of the
electronic state of conductors. Early studies have focused on the behavior of simple
metals, on the single-particle and collective responses of the free-electron gas,
and on Fermi-surface phenomena. Here the relevant energy scales are the single-
particle bandwidth W , the plasma frequency ωp, and the single-particle scattering
rate 1/τ , all lying in the spectral range of conventional optics. Consequently, when
simple metals are investigated standard optical studies are of primary importance.
Recent focus areas include the influence of electron–electron and electron–phonon
interactions on the electron states, the possibility of non-Fermi-liquid states, the
highly anisotropic, in particular two-dimensional, electron gas, together with disor-
der driven metal–insulator transition. Here, because of renormalization effects and
low carrier density, and also often because of close proximity to a phase transition,
the energy scales are – as a rule – significantly smaller than the single-particle
energies. Consequently the exploration of low energy electrodynamics, i.e. the
response in the millimeter wave spectral range or below, is of central importance.

12.1 Simple metals

In a broad range of metals – most notably alkaline metals, but also metals like
aluminum – the kinetic energy of the electrons is large, significantly larger then
the potential energy created by the periodic underlying lattice. Also, because of
screening the strength of electron–electron and electron–phonon interactions is
small; they can for all practical purposes be neglected. Consequently it is expected
that for these metals the free-electron theory is an excellent approximation, and
this has indeed been confirmed by a wide range of transport and thermodynamic
experiments. We refer to these materials as simple metals, and proceed to explore
their optical properties first.
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12.1.1 Comparison with the Drude–Sommerfeld model

The fundamental prediction of the Drude–Sommerfeld model discussed in Sec-
tion 5.1 is a frequency dependent complex conductivity, reproduced here

σ̂ (ω) = Ne2τ

mb

1

1− iωτ
= σ1(ω)+ iσ2(ω) ; (12.1.1a)

with

σ1(ω) = Ne2τ

mb

1

1+ ω2τ 2
and σ2(ω) = Ne2τ

mb

ωτ

1+ ω2τ 2
. (12.1.1b)

The ingredients of the model are the frequency independent relaxation rate 1/τ ,
and the mass mb which loosely can be defined as the bandmass,1 also assumed to
be frequency independent; N is the electron density – more precisely the number
of conduction electrons per unit volume. In Chapter 5 we derived the complex
conductivity as given above, using the Kubo and also the Boltzmann equations.
In addition to the frequency independent relaxation rate and mass, the underlying
condition for these formalisms to apply is that the elementary excitations of the
system are well defined, a condition certainly appropriate for good metals which
can be described as Fermi liquids.

Let us first estimate the two fundamental frequencies of the model, the inverse
relaxation time 1/τ and the plasma frequency

ωp =
(

4πNe2

mb

)1/2

(12.1.2)

for a typical good metal at room temperature. This can be done by using the
measured dc conductivity

σdc = Ne2τ

mb
,

which is of the order of 106 �−1 cm−1. For a number of free electrons per
volume of approximately 1023 cm−3 and a bandmass which is assumed to be the
same as the free-electron mass, we find γ = 1/(2πcτ) ≈ 150 cm−1, while the
plasma frequency so obtained is νp = ωp/(2πc) = 9.5 × 104 cm−1, i.e. well
in the ultraviolet.2 Therefore for simple metals typically 1/τ � ωp and the

1 The bandmass is usually defined by the curvature of the energy band in k space as given by Eq. (12.1.17),
and this definition is used to account, in general, for the thermodynamic and magnetic properties by assuming
that this mass enters – instead of the free-electron mass – in the various expressions for the specific heat or
(Pauli-like) magnetic susceptibility.

2 Some clarification of the units used is in order here. We will frequently use the inverse wavelength, the
cm−1 scale, which is common in infrared spectroscopy to describe optical frequencies. The correct unit is
frequency per velocity of light ( f/c); however, this is usually omitted and we refer to ωp or νp, for example,
as frequencies, but using the cm−1 scale. We will follow this notation and refer to Table G.4 for conversion.
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three regimes where the optical parameters have well defined characteristics – the
Hagen–Rubens, the relaxation, and the transparent regimes – are well separated.
These characteristics and the expected behavior of the optical constants in the three
regimes are discussed in detail in Section 5.1.2.

When exploring the optical properties of metals in a broad frequency range, not
only the response of the free conduction carriers described by the Drude model are
important, but also excitations between different bands. The interband transitions
can be described along the same lines as for semiconductors; in general the analysis
is as follows: we assume a Drude form for the intraband contributions, with para-
meters which are fitted to the low frequency part of the electromagnetic spectrum.
With this contribution established, the experimentally found optical parameters –
say the dielectric constant ε1(ω) – can, according to Eq. (6.2.17), be decomposed
into intra- and inter-band contributions,

ε1(ω) = εintra
1 (ω)+ εinter

1 (ω) . (12.1.3)

The interband contribution has, as expected, a finite ε1 at low frequencies, with
a peak at a frequency which corresponds to the onset of interband absorption,
features which will be discussed in more detail in the next chapter.

The optical parameters evaluated for gold at room temperature from transmis-
sion and reflectivity measurements over a wide range of frequency are displayed in
Fig. 12.1; the data are taken from [Ben66] and [Lyn85]. The overall behavior of the
various optical constants is in broad qualitative agreement with those calculated,
as can clearly be demonstrated by contrasting the experimental findings with the
theoretical curves displayed in Figs 5.2–5.5. We observe a high reflectivity up to
about 2× 104 cm−1, the frequency where the sudden drop of reflectivity R signals
the onset of the transparent regime. The reflectivity does not immediately approach
zero above this frequency because of interband transitions – not included in the
simple Drude response which treats only one band, namely the conduction band.
The onset of transparency can be associated with the plasma frequency ωp; with a
carrier concentration N = 5.9 × 1022 cm−3 (assuming that one electron per atom
contributes to the conduction band) we obtain a bandmass significantly larger than
the free-electron mass. This may be related to the narrow conduction band or to
the fact that interband transitions are neglected. For the conduction band (where
the carriers have the bandmass mb) the sum rule of the conductivity is∫

σ intra
1 (ω) dω = πNe2

2mb
, (12.1.4)

and by including the contributions from all bands we obviously have∫ ∞

0
σ1(ω) dω =

∫
σ intra

1 (ω) dω +
∫

σ inter
1 (ω) dω = πNe2

2m
, (12.1.5)
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Fig. 12.1. Frequency dependence of the optical properties of gold at room temperature. (a)
Reflectivity data R(ω) obtained by [Ben66, Lyn85]. In panels (b)–(d) the refractive index,
n(ω) and k(ω), the dielectric constant, ε1(ω) and ε2(ω), and the conductivity σ1(ω) as
obtained by Kramers–Kronig analysis of the reflectivity are displayed. The discontinuity
at around 1000 cm−1 is due to a mismatch in the data sets of two different groups.
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where σ inter
1 refers to the interband contribution to the conductivity. The deviation

of the bandmass mb from the free-electron mass m is therefore directly related to
the spectral weight of the conductivity coming from the interband transitions3∫ ∞

0
σ inter

1 (ω) dω = πNe2

2

[
1

m
− 1

mb

]
. (12.1.6)

The interband transitions are usually evaluated by fitting the optical parameters to
the Drude response at low frequencies (where intraband contributions dominate)
and plotting the difference between experiment and the Drude contribution at high
frequencies. This procedure can also be applied to the real part of the dielectric
constant ε1(ω) as displayed in Fig. 12.2, where the dielectric constant of gold is
decomposed into an interband contribution and an intraband contribution according
to Eq. (12.1.3). Such decomposition and fit of the intraband contribution gives
a plasma frequency ωp of 7.0 × 104 cm−1 from the zero-crossing of ε1(ω); this
compares favorably with the plasma frequency of 7.1× 104 cm−1 calculated from
Eq. (5.1.5) assuming free-electron mass and, as before, one electron per atom in
the conduction band. The form of εinter

1 (ω) is that of a narrow band with a bandgap
of 2 × 104 cm−1 between valence and conduction bands, in broad qualitative
agreement with band structure calculations. Instead of a detailed analysis, such
as in Fig. 12.2, it is frequently assumed that interband contributions lead only to
a finite high frequency dielectric constant ε∞, and we incorporate this into the
analysis of the Drude response of the conduction band. The condition for the
zero-crossing of ε1(ω) is given by

ε1(ω) = εintra
1 (ω)+ ε∞ , (12.1.7)

and thus we recover a plasma frequency renormalized by the interband transitions

ω+p =
4πNe2

mb ε∞
= ωp√

ε∞
(12.1.8)

for 1/τ � ωp. Over an extended frequency region, below ωp, power law behaviors
of various optical parameters are found, with the exponent indicated on Fig. 12.1.
Both k(ω) and ε1(ω) are well described with expressions appropriate for the relax-
ation regime (see Eqs (5.1.20) and (5.1.21)), although the frequency dependence
for n(ω) and ε2(ω) is somewhat different from that predicted by these equations.
The reason for this probably lies in the contributions coming from interband tran-
sitions.4 The fact that n > k observed over an extended spectral range also upholds
3 The argument here is different from the spectral weight argument developed in Appendix D. Here, collisions

(included in the damping term) lead to momentum relaxation and to a conductivity for which the sum rule
(12.1.4) applies. In contrast, a collisionless electron gas is considered in Appendix D, and under this condition
there is no absorption at finite frequencies.

4 The experimental data are taken from two different sources [Ben66, Lyn85]; they seem to have some offset
with respect to each other.
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Fig. 12.2. Frequency dependence of the real part of the dielectric constant of gold at high
frequencies; data from [Ehr63, Ehr66]. The experimental data ε

exp
1 (ω) are decomposed

into an intraband contribution εintra
1 (ω) of the quasi-free electrons and a remaining inter-

band contribution εinter
1 (ω), as described in the text.

1/τ < ω at these frequencies, and there is a wide relaxation regime. Note that the
relaxation rate is given by the frequency when n = k or alternatively 1− ε1 = ε2.
In our example, this leads to 1/(2πcτ) ≈ 200 cm−1, although the crossover at this
frequency is not directly measured because of obvious technical difficulties: the
reflectivity is close to unity for ω < 1/τ . Now we are in a position to evaluate the
dc conductivity using Eq. (5.1.6):

σdc =
ω2

pτ

4π
.

The values obtained from the analysis of the optical data, νp = 7 × 104 cm−1

and γ = 200 cm−1, give σ1(ω → 0) = 3.3 × 106 �−1 cm−1, a value some-
what larger than that obtained by direct resistivity measurement σdc = 4.9 ×
105 �−1 cm−1. Such analysis, when performed for experiments conducted at
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different temperatures, leads, in general, to a temperature independent plasma
frequency (not surprising since the number of carriers is constant and factors
which determine the bandmass also do not depend on the temperature) and to a
relaxation rate which compares well with the temperature dependent relaxation
rate as evaluated from the dc resistivity since ρ(T ) ∝ 1/τ(T ).

The uncertainties are typical of what is observed in simple metals: they are
the consequence of band structure effects, and the influence of electron–electron
and electron–phonon interactions. These effects can often be incorporated into
an effective bandmass which leads to an enhanced specific heat and magnetic
susceptibility (note that within the framework of the nearly free-electron model
and also the tight binding model, both are inversely proportional to the band-
mass), and, through Eq. (12.1.1b), to a reduced plasma frequency. However,
further complications may also arise. The mass which enters into the expres-
sion of the dc conductivity may be influenced by electron–phonon interactions,
although such interactions are not important above the phonon frequencies (typ-
ically located in the infrared range). Similar frequency dependent renormal-
izations occur for electron–electron interactions. Interband transitions may also
lead to contributions to the conductivity at low frequencies, thus interfering with
the Drude analysis, and anisotropy effects (discussed later) can also be impor-
tant.

It is clear from the analysis given above that the Hagen–Rubens regime cannot
easily be explored; this is mainly due to the fact that, for a highly conducting
metallic state, the reflectivity is close to unity, and at the same time the range
of validity of the Hagen–Rubens regime is limited to low frequencies where
conducting the experiments is not particularly straightforward. The situation is
different for so-called bad metals, materials for which σdc is small, 1/τ is large, and
consequently the reflectivity deviates well from unity even in this regime, where

R(ω) = 1−
(

2ω

πσdc

)1/2

. (12.1.9)

Stainless steel is a good example, and the reflectivity as measured by a variety of
experimental methods is displayed in Fig. 12.3. It is evident that Eq. (12.1.9) is well
obeyed, and the full line is calculated using σdc = 1.4×104 �−1 cm−1 in excellent
agreement with the directly measured dc conductivity. For short relaxation times
additional complications occur. In the high frequency limit, the complex dielectric
constant is

ε̂(ω) = 1− ω2
p

ω2 − iω/τ
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Fig. 12.3. Reflectivity of stainless steel versus frequency obtained at T = 300 K. The
infrared data were measured with a Fourier transform spectrometer. In the submillimeter
wave range the reflectivity, using single-frequency radiation sources, at 60 GHz cavity
perturbation technique was used. The solid line is a fit by the Hagen–Rubens formula
(12.1.9) with σdc = 1.38× 104 �−1 cm−1 (after [Dre96]). The inset shows the same data
plotted on a linear scale.

and the zero-crossing of the real part occurs to first approximation at

ω ≈
(
ω2

p −
1

τ 2

)1/2

;

this is, for 1/τ comparable to ωp, different from what one would observe in an
electron energy loss experiment, the standard method for measuring the plasma
frequency [Rae80].

Electron energy loss experiments give a wealth of information about plasmons,
including their energy, damping, and dispersion relation, and the dependence of
the plasmon energy on its wavevector. As displayed in the inset of Fig. 12.5, a
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beam of high energy electrons is passed through a thin film, and the energy loss
(and momentum transfer) of the electrons is measured. This loss is described by
the so-called loss function

W (q, ω) = ω

8π
Im

{
1

ε̂(q, ω)

}
. (12.1.10)

Here ε̂(q, ω) refers to the wavevector and frequency dependent longitudinal dielec-
tric constant. As discussed in Section 3.1, this can be different from the transverse
dielectric constant, sampled by an optical experiment. Both single-particle and
collective plasmon excitations contribute to the loss; which of these contributions is
important depends on the velocity vb of the electron beam with respect to the Fermi
velocity of the electron gas vF. The situation is shown in Fig. 12.4. If vb is large
and exceeds the Fermi velocity vF, single-particle excitations cannot occur, and the
exchange of energy between the electron beam and the electron gas is possible only
by creating plasma excitations; here we can use the expression of ε̂(q, ω) obtained
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theoretical prediction of a parabolic angular dependence, and the dashed line corresponds
to a theoretical description of the line width.

in the q → 0 limit to see what happens. In this limit the longitudinal and transverse
dielectric responses are identical. By utilizing the Drude expression of the (q = 0)
dielectric constant (or conductivity) we find that

W (ω) = ω

8π
Im

{
ω2 − iω/τ

ω2 − ω2
p − iω/τ

}
, (12.1.11)

which, in the absence of damping, reduces to

W (ω) ∝ π

2

[
δ{ω − ωp} + δ{ωp − ω}] ; (12.1.12)

i.e. delta functions at the plasma frequency ±ωp. It is also straightforward to see
that the width of the electron energy loss spectrum is determined by the relaxation
rate 1/τ for velocities which well exceed the Fermi velocity of the electron gas.
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Fig. 12.6. Reflectivity of aluminum over a wide frequency range compiled from different
measurements of thin films (after [Ehr63]). The dip in the reflectivity at 1.2× 104 cm−1 is
caused by an interband transition.

One can also examine the dispersion relation, such as that given by Eq. (5.4.28),
together with the onset of damping by the single-particle excitations, the so-called
Landau damping. The (conceptually) simplest way to do that would be to change
the velocity of the electron beam; however, this is not practical and therefore the
angular dependence of the energy loss spectrum is examined [Kun62]. Such experi-
ments establish the onset of Landau damping for critical q values, the approximate
expression for which was given in Section 5.4.4. All this applies for high beam
velocities vb > vF, as in this case the q dependence of the conductivity of the
electron gas can be neglected. For small beam velocities vb < vF, the situation
is fundamentally different, as also shown in Fig. 12.4. In this latter case, the
energy loss comes mainly from electron–hole excitations with velocities the same
as the beam velocity, and plasmon excitations do not occur. The calculation of the
loss function is somewhat difficult, as the full q dependent conductivity has to be
utilized in order to evaluate W (ω).
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Table 12.1. Plasma frequencies of simple metals, as obtained from the onset of
transparency, from electron energy loss (EEL), and from theory [Kit63, Rae80].

The values are given in energy h̄ωp or in wavenumber νp = ωp/2πc.

Material Number of Optics EEL Calculated

electrons in νp h̄ωp νp h̄ωp νp h̄ωp
conduction band (cm−1) (eV) (cm−1) (eV) (cm−1) (eV)

Li 1 6.4× 104 8.0 7.7× 104 9.5 6.6× 104 8.2
Na 1 4.6× 104 5.9 4.4× 104 5.4 4.6× 104 5.7
Ca 1 3.1× 104 3.9 3.1× 104 3.8 3.1× 104 3.9
Au 1 7.0× 104 8.7 6.3× 104 7.8 7.3× 104 9
Al 3 12.1× 104 15 12.1× 104 15.0 12.7× 104 15.8
Si 4 13.3× 104 16.5 13.4× 104 16.6

A typical result, obtained for aluminum at high electron beam velocities, is
shown in Fig. 12.5. The value of the plasma frequency is obtained from the spacing
of the peaks at �E = 15.0 eV. Assuming three electrons per atom and free-electron
mass leads to a plasma frequency ωp/2πc = 1.3 × 105 cm−1, corresponding
to 16 eV, again showing excellent agreement between theory and experiment.
This value also compares well with what is obtained from reflectivity, the data
for aluminum being displayed in Fig. 12.6. The plasma edge is not particularly
sharp, and this can be interpreted as damping; however, the notoriously bad surface
characteristics of aluminum may be responsible for this feature of the reflectivity
data. Nevertheless, the drop in R occurs around 1.2× 105 cm−1, in full agreement
with the value derived from the electron energy loss spectroscopy. In principle, the
loss function can be calculated from the dielectric constant as evaluated from the
optical experiments, and may be compared with the loss measured directly with
electron energy loss spectroscopy. This has been done for certain semiconductors,
but not for metals.

Some plasma frequency values obtained from both reflectivity and electron
energy loss spectroscopy are collected in Table 12.1, together with the values
calculated assuming free electrons, with the number of electrons per atom as given
in the table. The excellent agreement between theory and experiment is perhaps
one of the most powerful arguments for applying the free-electron theory to metals,
where the bandwidth, i.e. the kinetic energy of electrons is large and exceeds all
other energy scales of the problem.

12.1.2 The anomalous skin effect

The prevailing notion that we have relied on in the previous sections is the local
response to the applied electromagnetic field, the assumption that the current
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at a particular position is determined by the electric field at the same position
only, and hence that the conductivity is independent of the position at which
it is examined. Of course this does not mean that the currents and fields are
independent of position, as the exponential decay of both J and E at the surface
of a conducting medium – the examination of which leads to the normal skin effect
described by Eq. (2.3.16) – so clearly demonstrates. The various consequences
of this wavevector independent response are well known and were discussed in
the previous section. The local response also leads, via Eq. (5.1.18), to a surface
impedance ẐS = RS+ iXS where – in the Hagen–Rubens regime – the components
RS and XS are proportional to ω1/2 and RS = −XS. This is all confirmed by
experiments on various simple metals, where the mean free path is not extremely
large. This approximation progressively breaks down if the mean free path of
the electrons � becomes longer, and in the limit where � exceeds the skin depth
δ0 the non-local response has to be taken into account. Utilizing the Chambers
formula (5.2.27) to examine what happens near to the surface of a metal for which
� > δ0 leads to the so-called anomalous skin effect, and the fundamental expression
is given by Eq. (5.2.32). Both the normal and the anomalous skin effect have
been derived in the Hagen–Rubens regime ωτ < 1, although it is straightforward
to develop appropriate expressions in the opposite, so-called relaxation, regime
(see Appendix E).

Let us estimate where the gradual transition from normal to anomalous skin
effect occurs if we cool down a good metal such as copper. At room temperature the
dc conductivity is typically 1×105 �−1 cm−1, and the number of carriers (assuming
that each copper atom donates approximately one electron into the conduction
band) N = 8.5 × 1022 cm−3 leads to a relaxation time of τ = 2 × 10−14 s.
With a Fermi velocity of vF approximately 5 × 107 cm s−1 the mean free path
is � = vFτ ≈ 1000 Å. The skin depth

δ0 =
(

c

2πωσdc

)1/2

with the same parameters at 1 GHz, for instance (the upper end of the radio
frequency spectral region), is 20 000 Å. As the skin depth is much larger than
the mean free path, copper at this frequency is in the normal skin effect regime
at room temperature. On cooling, the conductivity increases and consequently
the mean free path increases while the skin depth decreases. At liquid nitrogen
temperature the resistivity is about one order of magnitude larger than at room
temperature, and estimations similar to those given above lead to � ≈ 10 000 Å
and δ0 = 7000 Å, placing the material in the anomalous limit. There must be
therefore a smooth crossover from the normal to the anomalous regime at relatively
high temperatures. This has indeed been found by Pippard [Pip57, Pip60], and
the experimental results are displayed in Fig. 12.7. For small conductivities, R−2

S
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is found to be proportional to the dc conductivity, as expected for the surface
resistance in the normal skin effect region (see Eq. (5.1.18)), but RS saturates and
becomes independent of the conductivity (or alternatively of the mean free path) at
low temperatures. As predicted by the expression (5.2.32) for the anomalous skin
effect, RS in this limit reads

RS =
[(

2πω

c2

)2 mvF

Ne2

]1/3

. (12.1.13)

By using the previous parameters, we can estimate 1/RS at 1.2 GHz (the frequency
at which the experiments were conducted), and we find that it agrees well with the
value towards which the data tend to extrapolate for large conductivities.



12.1 Simple metals 315

Fig. 12.8. Section of an anisotropic Fermi surface in the xz plane, with the shaded region
representing electrons which are affected by the electric field in the δ0 � � limit.

The ineffectiveness concept summarized in Section 5.2.5, and which led to the
expression displayed above, can be extended to anisotropic Fermi surfaces. Such
an anisotropic Fermi surface is shown in Fig. 12.8, where a cross-section in the
xz plane is displayed for a particular value of the y component ky . The radius of
curvature ρ(ky) at any given point is wavevector dependent. The slices in Fig. 12.8
indicate electrons with velocities which lie within the angle δ0/� of the surface.
The current is proportional to

Jx ∝
∫

eExτvF dS . (12.1.14)

The surface dS over which the integration must be performed is given by this slice
defined by a constant ky , and consequently we find

Jx ∝
∫

eExτvFρ(ky)
δ0

�
dky . (12.1.15)

The integral over dky has to be taken around the line where the Fermi surface is cut
by the xz plane. Inserting this effective conductivity, defined through Eq. (12.1.15)
by Jx/Ex , into the expression of the anomalous skin effect, we find that the surface
resistance

RS ∝
[
ω2

(∮
ρ(ky) dky

)−1
]1/3

. (12.1.16)

Although this is a qualitative argument, analytical results have been obtained for
ellipsoidal Fermi surfaces by Reuter and Sondheimer [Reu48]. The importance
of this result lies in the fact that the main contribution to the integral comes
from regions of large curvature; these correspond to the flat regions of the Fermi
surface. Therefore – at least in principle – the anisotropy of the Fermi surface
can be mapped out by surface resistance measurements with the electromagnetic
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field pointing in different directions with respect to the main crystallographic axes.
A typical result obtained for tin at low temperatures by Chambers [Cha52] is
displayed in Fig. 12.9 with both the surface resistance and surface reactance dis-
playing substantial anisotropy. One has to note, however, that the evaluation of the
characteristics of the Fermi surface from such data is by no means straightforward,
and other methods of studying the Fermi-surface phenomena, like Subnikov–de
Haas oscillations, and the de Haas–van Alphen effect, or cyclotron resonance, have
proven to be more useful.

12.1.3 Band structure and anisotropy effects

The Drude model, as it was used before, applies for an isotropic, three-dimensional
medium where subtleties associated with band structure effects are fully neglected.
Such effects enter into the various expressions of the conductivity in different
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ways, and usually the Boltzmann equation in its variant forms where the electron
velocities and the applied electric field appear in a vector form can be used to
explore such band structure dependent phenomena.

A particularly straightforward modification occurs when the consequence of
band structure effects can be absorbed into a dispersion relation which retains a
parabolic form. If this is the case

1

mb
= 1

h̄2

∂2E(k)
∂k2

�= 1

m
; (12.1.17)

i.e. the electron mass m is not the same as the bandmass mb. This parameter
depends on the scattering of electrons on the periodic potential, and may be
anisotropic. When the above expression applies, all features of the interband
transitions remain unchanged, for example the plasma frequency is given by
ωp = (4πNe2/mb)

1/2, and, through Eq. (12.1.17), is dependent on the orientation
of the electric field with respect to the crystallographic axes. Such effects are
particularly important when the band structure is highly anisotropic; an example
is displayed in Fig. 12.10. This material, (TMTSF)2ClO4, is an anisotropic metal,
and band structure calculations suggest rather different single-particle transfer in-
tegrals in the two directions, with ta ≈ 200 meV and tb ≈ 20 meV. The small
bandwidth also suggests that a tight binding approximation is appropriate. The
resistivity is metallic in both directions, and its anisotropy ρb/ρa ≈ 102 is in full
agreement with the anisotropic band structure as determined by the above transfer
integrals. The metallic, but highly anisotropic, optical response leads to different
plasma frequencies in the two directions; and the expression for ωp given above,
together with the known carrier concentration, leads to bandmass values which,
when interpreted in terms of a tight binding model, are in full agreement with the
transfer integrals.

We encounter further complications if the approximation in terms of an effective
bandmass as given above is not appropriate and we have to resort to the full
Boltzmann equation as given by Eq. (5.2.16). The relevant integral which has to
be examined is

σ̂ (ω) ∝
∫

nE · vk
τ

1− iωτ
dSF , (12.1.18)

where nE is the unit vector in the direction of the electric field E; through nE and
vk it leads to a complex dependence on the band structure. As σ = Ne2τ/m, one
can define an effective mass

1

m
∝

∫
nE · vk dSF ,

which, in general, will depend also on the orientation of the applied electromag-
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Fig. 12.10. Frequency dependence of the optical reflectivity R(ω) of the anisotropic metal
(TMTSF)2ClO4 measured at 10 K with the electric field polarized along two different crys-
tallographic directions a and b (after [Ves98]). The anomalies observed at low frequencies
for both directions, while important, do not affect the analysis of the plasma frequencies in
terms of an anisotropic bandmass.

netic field E. These subtleties are usually not considered in detail but absorbed into
an isotropic effective optical bandmass, a mass which is the average of the mass
given above, integrated over all directions – such an average occurs, for example,
if the optical properties of polycrystalline materials are examined. This mass is in
general compared with the mass, called the thermal mass, which is obtained from
the thermodynamic quantities such as the electronic contribution (linear in T ) to the
specific heat, the so-called Sommerfeld coefficient γ . The parameter is – within the
framework of the nearly free-electron approximation – given by γ ∝ Nmb. Such a
correspondence taken at face value, however, is highly misleading as the different
experiments sample different averages over the Fermi surface. The specific heat,
and thus the thermal mass, is proportional to the density of state and therefore to
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the average ∫
dSF

vF
;

this average being distinctively different from the average sampled by σ̂ (ω) given
above. Therefore the thermal bandmass is, as a rule, different from the bandmass
determined by optical experiments, the optical mass.

12.2 Effects of interactions and disorder

The optical experiments summarized in the previous section provide powerful ev-
idence that the main assumptions which lie behind the Drude–Sommerfeld model
are appropriate: for simple metals we can neglect the interaction of the electrons
with lattice vibrations and with other electrons. This picture has to be modified by
both interaction and disorder effects. We expect these to occur: (i) when the energy
scale which describes the strength of the electron–phonon or electron–electron
interactions and (ii) when – for disordered metals – the overall strength of the
random potentials, are comparable to the kinetic energy of the electrons. This
depends on many factors: electron–electron interactions are important for narrow
bands, electron–phonon interactions are expected to be strong for soft lattices;
while the strength of the random potential can be modified by alloying and/or by
removing the underlying lattice periodicity, by making an amorphous solid.

12.2.1 Impurity effects

Most of the optical effects associated with impurities in metals can be absorbed
into an impurity induced relaxation rate 1/τimp which affects the response in con-
junction with the relaxation rate as determined by phonons 1/τP. This, together
with Matthiessen’s rule, leads to the relaxation rate 1/τ = 1/τimp + 1/τP which
enters into the relevant expressions of the Drude model. In addition to an increased
relaxation rate, the plasma frequency can also be influenced by impurities which
are non-isoelectric with the host matrix; for small impurity concentrations this
modification is expected to be small. While the above effects can be incorpor-
ated into a Drude model, more significant are the effects due to impurities with
unoccupied d or f orbitals. In this case the (originally) localized orbitals at energy
position Ed (or E f ) away from the Fermi level are, due to interaction with the
broadened conduction band; this broadening is described by a transition matrix
element Vsd between the localized orbitals and the conduction band. These states
then acquire a finite width W – estimated through a simple golden-rule argument
which gives W = 2π |Vsd |2 D(EF) with D(EF) the density of s states at the Fermi
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Fig. 12.11. Density of states of a free-electron metal, alloyed with an impurity which has
a localized level at Ed . Mixing between the s electrons and d localized states, described by
a matrix element Vsd , leads to the broadening of this so-called virtually bound state, with
the width of the peak W = 2π |Vsd |2 D(EF).

level; the density of states is displayed in Fig. 12.11. The notion of virtually bound
states has been adopted for this situation [Fri56]. Because the symmetry of these
virtually bound states is different from the electron states in the conduction band,
optical transitions from these states to empty states just above the Fermi level EF

(or the reverse process, if Ed > EF) may take place.
Such virtually bound states have indeed been observed in noble metals alloyed

with transition metals such as palladium or manganese [Abe66, Mye68]. The
interband part of the optical conductivity σ inter

1 (ω), measured on a AgPd alloy with
10% and 23% of palladium [Mye68], is displayed in Fig. 12.12 together with the
results for pure silver. The data were obtained by measuring both the reflection
and transmission of films. The peak between 2 and 3 eV clearly corresponds to
the transitions from this nearly bound d state, about 2.6 eV below the Fermi level,
to the unoccupied conduction electron states. As expected, photoemission experi-
ments [Nor71] also provide additional evidence for such virtually bound states.



12.2 Effects of interactions and disorder 321

0

0

500

0

1000

1500

2000

2500

1 2 3 4

Ag

1 2 3 4 5 6

Frequency ν (104 cm−1)

Energy hω (eV)

23% Pd

10% PdC
on

du
ct

iv
ity

 σ
1 

   
 (

Ω
−1

 c
m

−1
)

in
te

r

pure

Fig. 12.12. Frequency dependence of the conductivity due to interband transitions
σ inter

1 (ω) of silver films doped with different concentrations of palladium (after [Mye68]).

Together with Coulomb interaction, these states are described by Anderson’s im-
purity model [And61], and such interactions lead to the Kondo problem, with all
of its implications on many-body and single-particle resonances [Gru74a, Gru74b].
Interesting optical effects, associated in particular with the many-body resonance
pinned to the Fermi level, have not been explored to date.

12.2.2 Electron–phonon and electron–electron interactions

Electron–electron and electron–phonon interactions are more a rule than an ex-
ception in metals. This is particularly true for cases where bands of d and f
electrons are formed, and when scattering of s electrons on other, localized or
narrow band, states occurs. Many metals of current interest belong to this group of
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materials, and optical studies have greatly contributed to the field by elucidating the
important aspects of these interactions. In general the optical properties are treated
by extending the formalism we have used in Part 1 in its simple form. This leads
to a frequency dependent relaxation rate and mass (the two quantities are related
by the Kramers–Kronig transformation), which in turn can be extracted from the
measured optical parameters. In some cases the frequency dependencies can also
be calculated both for electron–electron and electron–phonon interactions. This
will not be done here; we confine ourselves to the main aspects of this fascinating
field.

Without specifying the underlying mechanism, we assume that the relaxation
rate �̂ which appears in the Drude response of metals is frequency dependent:

�̂(ω) = �1(ω)+ i�2(ω) . (12.2.1)

�̂(ω) can be regarded as the memory function; when this is used as the (complex)
relaxation rate in Eq. (5.1.4), the model referred to is the extended Drude model.
If we define the dimensionless quantity λ(ω) = −�2(ω)/ω, then the complex
conductivity can be written as

σ̂ (ω) = σ1(ω)+ iσ2(ω) =
ω2

p

4π [1+ λ(ω)]

1
�1(ω)

1+λ(ω) − iω
. (12.2.2)

It is clear that this has the same form as the simple Drude expression (5.1.4) but
with a renormalized and frequency dependent scattering rate

1

τ ∗(ω)
= �1(ω)

1+ λ(ω)
(12.2.3)

which approaches the constant 1/τ as λ→ 0. The parameter which demonstrates
this renormalization can be written in terms of a renormalized, enhanced mass
m∗/mb = 1+ λ(ω), which then leads to another form of the conductivity:

σ̂ (ω) = ω2
p

4π

1

�1(ω)− iω[m∗(ω)/mb]
. (12.2.4)

By rearranging this equation, we can write down expressions for �1(ω) and m∗(ω)
in terms of σ1(ω) and σ2(ω) as follows:

�1(ω) = ω2
p

4π

σ1(ω)

|σ̂ (ω)|2 , (12.2.5a)

m∗(ω)
mb

= ω2
p

4π

σ2(ω)/ω

|σ̂ (ω)|2 . (12.2.5b)

Because �̂(ω) obeys causality, �1(ω) and m∗(ω) are related through the Kramers–
Kronig relation.
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There are several reasons for such a frequency dependent relaxation rate: both
electron–electron and electron–phonon interactions (together with more exotic
mechanisms, such as scattering on spin fluctuations) may lead to a renormalized
and frequency dependent scattering process. Such renormalization is not effective
at high frequencies, but is confined to low frequencies; typically below the relevant
phonon frequency for electron–phonon interactions or below an effective, reduced
bandwidth in the case of electron–electron interactions. Hence the frequency
dependent relaxation rate – and via Kramers–Kronig relations also a frequency
dependent effective mass – approaches for high frequencies the unrenormalized,
frequency independent value.

Electron–electron interactions leading to an enhanced thermodynamic mass are
known to occur in various intermetallic compounds, usually referred to as heavy
fermions. The thermodynamic properties are that of a Fermi liquid, but with
renormalized coefficients [Gre91, Ott87, Ste84]. Within the framework of a Fermi-
liquid description, the Sommerfeld coefficient γ , which accounts for the electronic
contribution to specific heat C(T ) = γ T + βT 3 at low temperatures where the
phonon contribution can be ignored, is given by

γ = C(T )

T
= 1

3

(
kB

h̄

)2

kFm∗Vm = Nm∗kF

6
, (12.2.6)

where Vm is the molar volume, kF is the Fermi wavevector, m∗ is the effective
mass, and N is the number of (conduction) electrons per unit volume. The same
formalism gives the magnetic susceptibility χm as

χm(T → 0) = Nm∗kF

18
, (12.2.7)

which has the same form as for a non-interacting Fermi glass, but with m∗ replacing
the free-electron mass m. As for non-interacting electrons, the so-called Wilson
ratio γ (0)/χm(0) is independent of the mass enhancement. The enhanced χm and
γ imply a large effective mass, hence the name heavy fermions. Because of the
periodic lattice, the dc resistivity ρdc of metals is expected to vanish at T = 0. The
finite values observed at zero temperature are attributed to lattice imperfections and
impurities. At low temperatures, the temperature dependence of the resistivity is
best described by

ρdc = ρ0 + AT 2, (12.2.8)

where ρ0 is the residual resistivity due to impurities, the T 2 contribution is a
consequence of electron–electron scattering, and A is proportional to both γ 2

and χ2
m. This relation holds for a broad variety of materials spanning a wide

range of mass enhancements [Dre97, Miy89]. In most cases, the dc resistivity
has a broad maximum at a temperature Tcoh, which is often referred to as the
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Fig. 12.13. Frequency dependent conductivity σ1(ω) of CeAl3 obtained from the
Kramers–Kronig analysis of optical data and directly from the surface impedance meas-
urements (after [Awa93]) at two different temperatures. The inset shows the frequency
dependence of the scattering rate γ ∗ = �∗1/(2πc) and mass m∗ at T = 1.2 K.

coherence temperature, and the heavy fermion state arises only at temperatures
well below Tcoh. This temperature is, as a rule, smaller the more important the
correlations are. It can be viewed as an effective Fermi temperature, reduced from
the Fermi temperature TF which should be observed in the absence of correlations,
and handwaving arguments suggest that this reduction is proportional to the mass
enhancement T ∗F /TF ∝ m/m∗. With TF ≈ 104 K, for m∗/m ≈ 1000 the coher-
ence temperature is of the order of 10 K. This temperature then corresponds via
kBTcoh ≈ h̄ω∗c to a crossover frequency ωc, which separates the high frequency
region, where correlations are not important, from the low frequency, strongly
renormalized Drude response regime.

In Fig. 12.13 the optical conductivity of CeAl3, a well studied model compound
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for heavy fermion behavior [Awa93], is displayed at two different temperatures.
The temperature below which electron–electron interactions are effective and lead
to a coherent, heavy fermion state is approximately Tcoh ≈ 3 K in this material. At
T = 10 K, above the coherence temperature, σ1(ω) is that of a simple metal with a
relaxation rate γ = 1/(2πcτ) = 1000 cm−1 and νp = ωp/(2πc) = 30 000 cm−1.
This value of the plasma frequency is in agreement with the calculated ωp as

inferred from the total spectral weight with ωp = (
4πNe2/mb

)1/2
with mb

the unrenormalized bandmass only slightly larger than the free-electron mass m.
Therefore at this temperature CeAl3 behaves as a simple metal, with no interaction
induced renormalization. In contrast, at T = 1.2 K, well in the coherent regime,
one observes a narrow resonance in σ1(ω) and the data joins the 10 K data at
approximately 3 cm−1, i.e. at a frequency ω∗c corresponding to Tcoh. In order to
analyze this behavior, and to extract quantities which are related to the enhanced
effective mass m∗, we can assume that the narrow feature is that of a renormalized
Drude response, with a renormalized (and likely frequency dependent, but at first
approximation assumed to be constant) relaxation rate and mass. Spectral weight
arguments are utilized to evaluate this renormalized mass. In order to do so we can
evaluate the following integrals:

A∗ =
∫ ω∗c

0
σ1(ω) dω = πNe2

2m∗ (12.2.9a)

and compare it with the sum rule

A0 =
∫ ωc

0
σ1(ω) dω = ω2

p

8
= πNe2

2mb
, (12.2.9b)

which is directly related to the unrenormalized bandmass; ωc is the usual cutoff
frequency just below interband transitions (see Section 3.2.2). In Eq. (12.2.9a),
ω∗c/2πc = 3 cm−1 is the frequency above which the data at 10 K and at 1.2 K
are indistinguishable.5 This is also the frequency where the renormalization be-
comes ineffective as discussed above. From the resulting ratio A0/A∗, we obtain
m∗/mb = 450 ± 50, a value comparable with the one estimated from the thermo-
dynamic quantities [Awa93].

Consequently, at low temperatures, where electron–electron interactions are ef-
fective, the optical properties can be described in terms of a renormalized Drude
response

σ̂ (ω) = Ne2

m∗
1

1− iωτ ∗
(12.2.10)

with the renormalization simply incorporated into a renormalized mass. Note that
5 Such division of the spectral response is somewhat arbitrary, and a fit to an extended Drude response with a

frequency dependent scattering rate and mass is certainly more appropriate.
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the dc conductivity – while larger at 1.2 K than at 10 K due to the usual temperature
dependence observed in any metal – is not enhanced; what is enhanced is the
relaxation time τ ∗ and mass m∗. The ratio τ ∗/m∗, however, is not modified by
the electron–electron interactions – at least in the limit where τ ∗ is determined by
impurity scattering.

The analysis described above has been performed for a wide range of materials
with differing strength of electron–electron interactions – and thus with different
enhancements of the effective mass. This enhancement has been evaluated using
the thermodynamic quantities, such as specific heat and magnetic susceptibility,
with both given by Eqs (12.2.6) and (12.2.7). The mass has also been evaluated
from the reduced spectral weight, and in Fig. 12.14 the two types – thermodynamic
and electrodynamic – of masses are compared. Here the specific heat coefficient,
γ , is plotted; as neither N nor kF vary much from material to material, from
Eq. (12.2.6) it follows that γ is approximately proportional to the mass enhance-
ment. We find that thermodynamic and optical mass enhancements go hand in
hand, leading to the notion that in these materials electron–electron interactions
lead to renormalized Fermi liquids, to first approximation.

Of course, the above description is an oversimplification, in light of what was
said before. The resistivity is strongly temperature dependent at low temperatures,
reflecting electron–electron interactions. As approximately kBT/E∗F electrons are
scattered on kBT/E∗F electrons at the temperature T (where E∗F is a renormalized

Fermi energy), the dc resistivity is ρdc(T ) ∝ (
kBT/E∗F

)2
, and such behavior is

seen by experiments. Fermi-liquid theory also predicts a renormalized frequency
dependent scattering rate [Ash76]

1

τ ∗(T, ω)
∝ [

(2πkBT )2 + (h̄ω)2] , (12.2.11)

whereas the effective mass is not frequency dependent in lowest order. At low
temperatures the dc resistivity

ρdc =
(

Ne2

m∗ τ ∗
)−1

≈ m∗

Ne2
2πk2

BT 2

is proportional to the square of the temperature (see also Eq. (12.2.8)), as expected
for a (renormalized) Fermi liquid. Using both components of the conductivity as
evaluated by experiments over a broad spectral range, the frequency dependence
of both γ ∗ = 1/(2πcτ ∗) and m∗ can be extracted by utilizing Eqs (12.2.5); these
are shown in the insert of Fig. 12.13. The leading frequency dependence of 1/τ ∗ is
indeed ω2 as expected for a Fermi liquid, and this is followed at higher frequencies
by a crossover for both 1/τ ∗ and m∗ to a high frequency region where these
parameters assume their unrenormalized value. Thus, just like the temperature
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Sommerfeld coefficient γ obtained from the low temperature specific heat C/T for
several heavy fermion compounds. The solid line represents m∗/m0 ∝ γ (0). Also
included are the parameters for a simple metal, sodium, and for several transition metals
(after [Deg99]).

driven destruction of the correlated heavy fermion state, renormalization effects
are ineffective at high frequencies.

Electron–phonon interactions also lead to an enhancement of the thermodynamic
mass, as evidenced by the moderately enhanced low temperature specific heat
C/T . The influence of these interactions on the optical properties of metals has
been considered at length. The leading term is the emission of phonons in a metal;
this so-called Holstein process involves the absorption of photons by simultane-
ously emitting a phonon and scattering an electron. The process obviously depends
on the phonon spectrum, which we describe as the density of states F(ωP) and
by a weight factor α2

P which is the electron–phonon matrix element. With these
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parameters, an effective coupling constant

λP = 2
∫

dωP

ωP
α2

P F(ωP) (12.2.12)

can be defined; needless to say, αP can also be frequency dependent. The initial
state is a photon of energy h̄ω, and the final state involves an electron and hole
with energies E1 and E2, respectively, and a phonon with energy h̄ωP. If we assume
that the matrix element is independent of frequency (except for the factor ω−1/2

representing the photon state), the transition probability, and thus the absorptivity
A, is given as

A(ω) ∝ 1

ω

∫
dE1dE2dωP De(E1)Dh(E2) α

2
P(ωP) F(ωP) δ{E1 + E2 + h̄ωP − h̄ω} ,

(12.2.13)
where De(E1) and Dh(E2) are the density of electrons and holes, respectively, A(ω)
can be written as

A(ω) ∝ 1

ω

∫ ω

0
(ω − ωP)α

2
P F(ωP) dωP (12.2.14)

at zero temperature. For a narrow density of phonon states centered around ω0
P,

A(ω) has a structure at ω = ω0
P; in general, the frequency dependence of the

absorption reflects the phonon density of states.
This absorptivity can be cast into a form we used earlier, by assuming a

frequency dependent relaxation rate 1/τ(ω) and renormalized plasma frequency
[All71]. In the relaxation regime ωτ � 1 and ω � ωp – in the infrared spectral
range for typical metals – the absorptivity is, according to Eq. (5.1.22),

A = 2

ωpτ
;

and therefore we can define a frequency dependent relaxation rate

1

τ(ω)
≈ 2π

ω

∫ ω

0
(ω − ωP) α

2
P F(ωP) dωP . (12.2.15)

This scattering time depends on the structure factor α2
P F(ωP); the phonon limited

scattering rate 1/τ approaches zero at low frequencies, while at high frequencies it
saturates at

1

τ
= πλP〈ωP〉 , (12.2.16)

where 〈ωP〉 is the average phonon frequency weighted by the effective coupling
constant λP we have defined in Eq. (12.2.12). Of course, having just a frequency
dependent scattering rate violates the Kramers–Kronig relations; it has to be ac-
companied by a frequency dependent mass, which can be established along similar
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lines to the introduction of the frequency parameter into the Drude model earlier
(Eqs (12.2.1)–(12.2.5)).

From the absorptivity A(ω) the optical parameters 1/τ(ω) and λP(ω) can be
extracted, and eventually the weight factor α2 F(ωP) can be derived. Although this
works in principle, in practice F(ωP) is modeled by, for instance, harmonic oscil-
lators. The structure thus obtained should be related to F(ωP) as evaluated from
inelastic neutron scattering, and in cases where the analysis has been performed,
this is indeed the case [Joy70, McK79].

Because of the Bose statistics of the relevant phonon modes, this renormaliza-
tion is also temperature dependent. As before for electron–electron interactions,
the frequency and temperature dependent relaxation rates go hand in hand (but
because of the Bose–Einstein population factor the functional forms are somewhat
different), and the zero temperature scattering rate, as given by Eq. (12.2.15), has
its temperature dependent counterpart. One finds that

1

τ(T, ω = 0)
= π

∫ ∞

0
dωP

h̄ωP

kBT
sin2

{
h̄ωP

2kBT

}
α2(ωP) F(ωP) , (12.2.17)

and this parameter can be extracted in principle from the temperature dependent dc
conductivity.

12.2.3 Strongly disordered metals

Throughout the previous discussion of the experiments, we have assumed that the
electron states are delocalized, and furthermore that they can be represented as
plane waves or Bloch functions; this clearly holds for pure metals in the absence of
disorder. For a small amount of disorder, or for a small amount of impurities in the
sample, we expect that the effects of disorder and impurities are absorbed into the
relaxation rate, with impurity scattering assumed to lead to an extra contribution to
1/τ . This is, furthermore, usually assumed to be independent of other scattering
mechanisms, leading to the (experimentally well confirmed) Matthiessen rule in
the case of dc conduction. This picture then also implies that the Drude model
still applies, with a modified relaxation rate. Consequently we expect a reduced
dc conductivity and a Drude roll-off which now occurs at higher frequencies.
The total spectral weight associated with the conductivity and thus the plasma
frequency is, however, determined only by the number of carriers and by their
bandmass; consequently it remains little changed. The situation is different for
strong disorder effects. It was shown by Anderson in a classic paper [And58]
that for a sufficient amount of disorder all states are localized, and therefore by
increasing disorder there is a transition from delocalized electron states to states
with the absence of diffusion, hence to a state where all electrons are localized. In
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three dimensions, the condition for this is given by V/W , where V is the overall,
average strength of the random potential and W is the single-particle bandwidth.
In a one-dimensional electron gas, in contrast, all states are localized for any small
disorder [Blo72, Mot61]. The consequences of localization are profound: the dc
conductivity is zero at T = 0, and we have an insulator; at finite temperatures,
conduction proceeds by mechanisms which are fundamentally different from those
which determine the resistivity of conventional metals. We cannot do justice to
the field, which goes by the names of Anderson transition or localization driven
metal–insulator transition, within the limitations of this book, and therefore we
simply recall the various expressions, first for the temperature dependence of the
dc conductivity, which have been proposed and found, and later for the frequency
dependent transport.

Right at the metal–insulator transition, scaling arguments prevail [Bel94], and
they can be used to establish the temperature dependence of the conductivity. Such
arguments give a power law dependence:

σdc(T ) = AT α ; (12.2.18)

for a non-interacting electron gas, α = 1/3, for example. On the metallic side,
and also on the insulating side except at rather low temperatures (or frequencies, as
we will see later), the conductivity is finite at zero temperature, and the magnitude
goes smoothly to zero upon approaching the transition. The temperature dependent
dc conductivity is then described using the form

σdc(T ) = AT α + B (12.2.19)

where the factor A is independent and the factor B is dependent on the parameter
x which controls the transition (usually concentration of scattering centers, the
pressure, or the magnetic field). The residual conductivity B goes to zero as the
transition is approached from both sides:

B(x) ∝ (x − xc)
µ , (12.2.20)

where xc is the critical parameter where the metal–insulator transition occurs and
µ is the characteristic exponent. In the insulating state, Eq. (12.2.19) still describes
the conductivity if B is negative. At low temperatures, well in the localized regime
(called the Fermi glass regime), such scaling arguments do not apply and a different
picture emerges. Here thermally assisted hopping between localized states which
lie within the energy range kBT at temperature T determines the dc transport
properties. The spatial proximity of such states depends on the temperature, hence
the hopping is of variable range, and the evaluation of the most probable hop leads



12.2 Effects of interactions and disorder 331

to [Mot68, Mot69]

σdc(T ) ∝ exp
{
−T0

T

}β

, (12.2.21)

where the exponent β = 1/(d + 1) is a function of the dimensionality d; for
three dimensions β = 1/4, and it is 1/2 for the one-dimensional variable range
hopping regime [Mot68]. The characteristic temperature T0 depends on the spatial
extension of the localized states, the localization length λ0, and also on the density
of states at the Fermi level D(EF); the localization length diverges as we approach
the transition from the localized side. As the temperature rises, a crossover from
this variable range hopping regime to the scaling regime occurs; the crossover
temperature where this happens increases as the disorder becomes stronger, and
we move away from the transition. Electron–electron interactions, in concert
with disorder, modify this picture since such interactions depress the density of
states (leading to a so-called Coulomb gap) at the Fermi energy, and consequently
the power laws which determine the behavior at the transition. At the strongly
localized regime, which is often referred to as a Coulomb glass, both exponents
are modified; in Eq. (12.2.18) α = 1/3 for non-interacting electrons, α = 1/2 for
strong electron–electron interactions [Efr75], and β in Eq. (12.2.21) changes from
1/4 to 1/2 in three dimensions [Efr75]. All this is well confirmed by temperature
dependent transport measurements [All93, Her83] on various model systems, such
as Nbx Si1−x where the metal–insulator transition occurs with decreasing x , or
for phosphorus doped silicon Si:P [Loh98, Ros81] for which the impurity states,
introduced by the doping, become delocalized by increasing their concentration.

Next we turn to the frequency dependent response, at temperatures low enough
such that the condition h̄ω � kBT applies; not surprisingly, we find a close
correspondence between the temperature and frequency dependences predicted,
and in some cases also observed. Because of localization, the conductivity vanishes
at zero frequency (at zero temperature) on the insulating side, and the frequency
dependence is determined by transitions between localized states induced by the
applied electromagnetic field. At low frequencies the conductivity therefore in-
creases as ω rises, but at sufficiently high frequencies a Drude roll-off is still
expected as inertia effects become important there. The well known sum rule∫

σ1(ω) dω = ω2
p

8

still applies, as excitations from localized states are also possible and contribute to
the spectral weight; interband transitions, of course, can influence this argument.
The frequency dependence of the conductivity is shown in Fig. 12.15, for materials
right at and at both sides of the metal–insulator transition. Starting from a weakly
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Fig. 12.15. Frequency dependent conductivity σ1(ω) of weakly and strongly disordered
metals, together with an insulator brought about by substantial disorder. The dashed line
corresponds to a Drude behavior of a simple metal. Curve 1 is expected for weak disorder;
curve 2 is right at the metal–insulator transition; and curve 3 corresponds to a strongly
disordered sample on the insulating side of the transition. The parameters α and β depend
on the strength of the interaction. The expression σ1(ω) = A′ωα′ ± B is appropriate close
to the transition, while σ1(ω) ∝ ωβ log{1/ω} is the form expected on the insulating side
for strongly localized electrons.

disordered metal, the Drude response gradually gives way [Alt85, Lee85] to a
conductivity which is small at low frequencies, increases with frequency, and after
a maximum reverts to a Drude type roll-off σ1(ω) ∝ ω−2. This is demonstrated
[All75] in a silicon inversion layer where the density of electrons (and thus the
bandwidth W ) is progressively decreased, increasing the ratio of V/W as V –
the random potential induced by impurities – remains constant. The frequency
dependence of the low temperature conductivity is displayed in Fig. 12.16 for
different carrier concentrations NS. With increasing disorder, a pseudogap de-
velops at low frequencies, in clear qualitative agreement with the expectations.
Such experiments, however, cannot examine the detailed frequency dependence at
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Fig. 12.16. Conductivity σ1(ω) of a two-dimensional silicon inversion layer measured
versus frequency at 1.2 K. The open circles are data taken by an infrared spectrometer,
and the closed circles are from microwave measurements. The lines correspond to the
Drude behavior predicted from the dc conductivity extrapolated to T → 0 at the indicated
value of the carrier concentration NS for two dimensions and of the scattering time τ (after
[All75]). Eg indicates the bandgap. There is a progressive crossover to a non-conducting
state at low frequencies with decreasing carrier density, and thus with increasing disorder,
relative to the bandwidth.
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low frequencies because the low spectral range of interest is difficult to explore
at low temperature. There is an abundance of theoretical predictions on how the
conductivity should depend on frequency, along the lines of what is predicted for
the temperature dependence of the dc conductivity. Close to the transition (and also
on the localized side of the transition at rather low frequencies) the conductivity at
a temperature T → 0 should follow the power law

σ1(ω) = A′ωα′ ± B (12.2.22)

with the positive sign appropriate for the metallic side and the negative sign for the
insulating side (obviously not at too low temperatures). The parameters depend
upon the importance of electron–electron interactions [Lee85, Vol82] just like
in Eq. (12.2.19) for σdc(T ). If electron–electron interactions are important, the
exponent α′ is the same as that for the temperature dependent dc conductivity.
Deep in the localized regime, arguments similar to those which were developed for
variable range hopping lead to the conductivity

σ1(ω) ∝ D(EF)

λ5
0

ω2

(
ln
{

I0

h̄ω

})4

(12.2.23)

in three dimensions. Again, λ0 is the localization length, D(EF) is the density of
states at the Fermi level, and I0 denotes a parameter which determines the overlap
integral of localized states and depends exponentially on λ0. The above expression
is close to an ω2 functional form. Just as in the case of variable range dc hopping,
electron–electron interactions modify this equation, and the leading term of the
frequency dependence is

σ1(ω) ∝ ω

(
ln
{

I0

h̄ω

})4

. (12.2.24)

Similar to the temperature dependence, there is a smooth crossover to a power
law frequency dependence, described by Eq. (12.2.22) with increasing frequencies;
we can define a crossover frequency which is related to the crossover temperature
mentioned above. These frequency dependences are indicated in Fig. 12.15.

From the above a close correspondence is expected between the temperature
dependence (for kT � h̄ω) and the frequency dependence (for kT � h̄ω) of the
conductivity at low energy scales, well below the frequencies where a crossover
to the Drude roll-off occurs, or temperatures where other scattering processes
or thermal excitations play a role. In Fig. 12.17 we display the temperature (at
ω → 0) and frequency dependence (at low temperature for which kT � h̄ω
applies) for amorphous Nbx Si1−x in the vicinity of the metal–insulator transition.
There is a close correspondence between the temperature and frequency dependent
conductivity in all three cases; the temperature and frequency dependencies can be
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Fig. 12.17. Conductivity versus temperature (lower scale) and low temperature conduc-
tivity versus frequency (upper scale) for a metallic, a critical, and an insulating Nbx Si1−x
alloy (after [Lee00]). σ1(ω) for h̄ω � kBT and σdc (and in general σ1(T ) for h̄ω � kBT )
have similar functional dependences, and σdc(T ) ≈ σ1(T ) if the kBT = h̄ω correspon-
dence is made.

scaled if we choose 1.3kBT = h̄ω. The numerical factor is expected to depend
on the underlying electronic structure and may vary from material to material.
For the so-called critical sample, both the frequency and the temperature depen-
dence can be well accounted for by σ(ω) ∝ ω1/2 or σ(T ) ∝ T 1/2, respectively,
as expected for disorder in the presence of strong electron–electron interactions.
For the metallic sample, the frequency (and the temperature) dependence of the
conductivity is again in agreement with the theory. For the insulating sample
a power law is found at high temperatures and frequencies; this is followed by
the temperature dependence as given by Eq. (12.2.21), with a smooth crossover.
No experimental results are available to verify the frequency dependence of the
conductivity as predicted by the equations given above.6 We also expect that the
zero temperature dielectric constant, measured at low enough frequencies, diverges
as the transition is approached from the metallic side; the behavior reflects the

6 Note added in proof. First experiments on doped Si indicate the crossover to a Coulomb glass in the microwave
range [Hel01, Lee01].
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increase of the correlation length as the transition is approached. Such behavior
has been observed in Si:P [Ros81, Gay95].

References
[Abe66] F. Abelès, ed., Optical Properties and Electronic Structure of Metals and Alloys

(North-Holland, Amsterdam, 1966)
[All71] P.B. Allen, Phys. Rev. B 3, 305 (1971)
[All75] S.I. Allen, D.C. Tsui, and F.D. Rosa, Phys. Rev. Lett. 35, 1359 (1975)
[All93] S.I. Allen, M.H. Paalanen, and R.N. Bhatt, Europhys. Lett. 21, 927 (1993)
[Alt85] B.L. Altschuler and A.G. Aronov, in: Electron–Electron Interaction in

Disordered Systems, edited by A.L. Efros and M. Pollak (North-Holland,
Amsterdam, 1985)

[And58] P.W. Anderson, Phys. Rev. 109, 1492 (1958)
[And61] P.W. Anderson, Phys. Rev. 124, 41 (1961)
[Ash76] N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and

Winston, New York, 1976)
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13

Semiconductors

Optical experiments on semiconductors have led to some of the most powerful con-
firmations of the one-electron theory of solids; these experiments provide ample
evidence for direct and indirect gaps, and in addition for excitonic states. Optical
studies have also contributed much to our current understanding of doping semi-
conductors, including the existence and properties of impurity states and the nature
of metal–insulator transitions which occur by increasing the dopant concentration.
Experiments on amorphous semiconductors highlight the essential differences be-
tween the crystalline and the amorphous solid state, and the effects associated with
the loss of lattice periodicity. We first focus on experiments performed on pure
band semiconductors for which the one-electron theory applies, where direct and
indirect transitions and also forbidden transitions are observed; in these mater-
ials the subtleties of band structure have also been explored by experimentation.
This is followed by examples of the optical effects associated with exciton and
impurity states. Subsequently we consider the effects of electron–electron and
electron–lattice interactions, and finally we discuss optical experiments on amor-
phous semiconductors, i.e. on materials for which band theory obviously does not
apply.

13.1 Band semiconductors

The term band semiconductor refers to materials where the non-conducting state
is brought about by the interaction of electrons with the periodic underlying lat-
tice. Single-particle effects – accounted for by band structure calculations – are
responsible for the optical properties under such circumstances, these properties
reflecting interband transitions.

339
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13.1.1 Single-particle direct transitions

Optical processes associated with the semiconducting state are fundamentally dif-
ferent from the processes which determine the response of conduction electrons.
For semiconductors optical transitions between bands are responsible for the ab-
sorption of electromagnetic radiation, and thus for the optical properties. These
transitions have been treated in Chapter 6 under simplified assumptions about both
the transition rates and the density of states of the relevant bands.

Let us first comment on the notation vertical transitions, which reflects the
observation that the speed of light is significantly larger than the relevant electron
(and also phonon) velocities in crystals. We can estimate the difference in the
wavevectors kl ′ − kl = �k involved in interband transitions as the momentum
of the photon |q| = ω/c – assuming that the refractive index n = 1 and h̄ω
is the energy difference between the two states. The bands are separated by the
single-particle gap Eg, and kmax = π/a is the wavevector at the Brillouin zone;
therefore

�k
kmax

= ω/c

π/a
= aEg

π h̄c
. (13.1.1)

With a ≈ 3 Å and Eg = 1 eV the ratio is about 5 × 10−4, and, as assumed, the
change in the momentum during the course of the optical absorption can indeed be
neglected.

In Fig. 13.1 we display the optical parameters, the reflectivity R(ω), and the
components of the complex dielectric constant ε1(ω) and ε2(ω), as well as the loss
function Im{1/ε̂(ω)} for the intrinsic semiconductor germanium measured up to
very high energies [Phi63]. There are several features of interest: first there is
a broad qualitative agreement between the findings and what is predicted by the
Lorentz model, which has been explored in Section 6.1. The frequency dependent
response of the various parameters which follow from the model are displayed in
Figs 6.3–6.7: the reflectivity is finite – but smaller than unity – as we approach zero
frequency, and rises with increasing frequency, reaching a plateau before rolling off
at high frequencies – features prominently observed in germanium and also in other
semiconductors. Both the real and the imaginary parts of the dielectric constant of
germanium are also close to those of a harmonic oscillator (if we neglect the sharp
changes in the reflectivity and also in the dielectric constant), as the comparison
with Fig. 6.3 clearly indicates. Finally, the broad peak of the loss function at
around 15 eV – just as in the case for metals – indicates a plasma resonance in
the spectral range which is similar to that observed for simple metals. There are
however important differences: we observe considerable structure, shoulders, and
peaks in the optical properties, reflecting band structure effects (as we will discuss).
Also, the frequency which we would associate with the characteristic frequency of
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Fig. 13.1. Optical parameters of germanium as determined by reflection measurements at
room temperature. (a) Frequency dependence of the reflectivity R(ω). (b) The real part
of the dielectric constant ε1(ω), obtained by Kramers–Kronig analysis of the reflectivity
data. (c) The imaginary part of the dielectric constant ε2(ω). (d) The energy loss function
Im{−1/ε̂(ω)}. (After [Phi63].)

the harmonic oscillator ω0 – and thus related to the restoring force – is significantly
larger than the single-particle gap which we obtain from the temperature dependent
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dc conductivity. For an intrinsic semiconductor the dc conductivity reads

σdc(T ) = σ0 exp
{
− Eg

2kBT

}
, (13.1.2)

where Eg is the so-called thermal gap, the energy required to create an electron in
the conduction band by thermal excitation, leaving a hole in the valence band. The
pre-factor σ0 contains the number of carriers and their mobility, and we assume
for the moment that they are only weakly temperature dependent. Dc transport
experiments on germanium give a thermal gap of Eg = 0.70 eV, significantly
smaller than the energy associated with the frequency ω0. In fact, as we can see in
Fig. 13.1a, the onset of absorption is not as smooth as the Lorentz model predicts.
A closer inspection of ε2(ω) reveals a sudden onset of the absorption processes –
note that the relation (2.3.26) between the imaginary part of the dielectric constant
and the absorption coefficient is

ε2(ω) = nc

ω
α(ω) ,

where n is the real part of the refractive index (which is only weakly frequency
dependent in the relevant frequency range). This onset of absorption can be asso-
ciated with the single-particle gap, and we obtain for the optical gap Eg = 0.74 eV
– a value close to the thermal gap given above. The behavior close to the gap
is shown in more detail in Fig. 13.2 for another intrinsic semiconductor PbS, for
which detailed optical experiments on epitaxial films have been conducted in the
gap region [Car68, Zem65]. It is found that α(ω) increases as the square root of
the frequency

α(ω) ∝ (h̄ω − Eg)
1/2 , (13.1.3)

since the frequency dependence described by Eq. (6.3.11) dominates the absorption
process. The gap here is 0.45 eV, in excellent agreement with what is measured by
the dc transport; both of these observations provide clear evidence that this material
has a direct bandgap. The dielectric constant ε1 – also shown in Fig. 13.2 – is in
full agreement with such an interpretation; the full line corresponds to a fit of the
data by Eq. (6.3.12) with the gap Eg = 0.47 eV.

While the sharp onset of absorption is found in a large number of materials,
confirming the well defined bandgap, often the functional dependence is somewhat
different from that expected for simple direct transitions. The absorptivity of
InSb displayed in Fig. 13.3 illustrates this point: near the gap of 0.23 eV the
absorption has the characteristic square root dependence as expected for allowed
direct transitions, see Eq. (6.3.11), but a fit over a broad spectral range requires an
additional term which can be described as

α(ω) ∝ (h̄ω − Eg)
3/2 . (13.1.4)
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Fig. 13.2. Frequency dependent dielectric constant ε1(ω) and absorption coefficient of
PbS measured at T = 373 K. The full lines are fits to the data according to Eqs (6.3.11)
and (6.3.12); the single-particle gap is 0.47 eV (after [Car68, Zem65]).

Comparison of this behavior with Eq. (6.4.6) indicates that forbidden transitions
also contribute to the absorption process; we expect these increasingly to play a
role as we move away from the band edge. Alternatively a frequency dependence of
the matrix element involved with the transition can lead to the behavior observed;
indeed, both interpretations have been offered [Mac55].

The reason for this ambiguity is clear and emphasizes a general problem. Theory
can describe the features of the band structure with sufficient accuracy, and these
features enter into the various expressions for the frequency dependence of the
optical parameters, as discussed in Section 6.3. However, evaluating the transition
matrix elements, such as those given by the interaction Hamiltonian (6.2.10), is
a significantly more difficult task; consequently the magnitude of the absorption,
together with the possible additional frequency dependencies due to the matrix
elements, cannot be in general evaluated. In fact often the reverse procedure, the
evaluation of the transition matrix elements by comparing the theoretical expres-
sions with the experimental findings, is the preferred route. Sum rule arguments
as presented in Section 3.2.2 can also be utilized in order to estimate the transi-
tion matrix elements – such a procedure of course would require that the optical
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constants are available over a broad spectral range.
Next we turn to the peaks and shoulders which are so evident in the optical

properties of semiconductors and are seen in Fig. 13.1, for example. These provide
perhaps the clearest and cleanest evidences for band structure effects – but also
for the power of modern band structure calculations. In order to understand these
observations, we first have to describe some essential features and consequences
of such band structure calculations. The starting point is the dispersion relations
obtained by a band structure calculation of a particular choice. Once the band
structure is established, one can evaluate the single-particle density of states given
by the expression

Dl(E) = 1

(2π)3

∫
dSE

∇kEl(k)
,

as discussed in Section 6.3. Such dispersion curves, calculated by the so-called
empirical pseudopotential method, are shown in Fig. 13.4a; Fig. 13.4b shows the
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tions of high symmetry, and (b) the corresponding density of states D(E), calculated by the
empirical pseudopotential method. Some critical points are indicated, which correspond to
a flat dispersion of E(k) (after [Her67]).

corresponding density of states obtained by the preceeding equation. Particular
symmetry points are labeled corresponding to the common notation found in
various books on semiconductors [Coh89, Gre68, Pan71, Yu96], and will not be
discussed here. What appears in the formulas for the optical properties in the case
of direct transitions is the joint density of states calculated by Eq. (6.3.2)

Dl ′l(h̄ω) = 2

(2π)3

∫
dSE

∇k [El(k)− El ′(k)]

using the dispersion relations as derived from band structure calculations. If
we assume that the transition matrix element is independent of wavevector, the
frequency dependence of the absorption is, through Eq. (6.3.4), determined by the
frequency dependence of the joint density of states. For particular k values, called
critical points, ∇k [El(k)− El ′(k)] has zeros, and thus the density of states displays
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the so-called van Hove singularities at these singularities. In the vicinity of these
critical points the energy difference δE(k) = El(k)− El ′(k) can be expanded as

δE(k) = h̄ωc + α1k2
1 + α2k2

2 + α3k2
3 (13.1.5)

in three dimensions. Utilizing such an expansion, the joint density of states and,
through Eqs (6.3.11) and (6.3.12), the components of the complex dielectric con-
stant can be evaluated; the behavior depends on the sign of three coefficients α1,
α2, and α3. In three dimensions, four distinct possibilities exist, which are labeled
M j according to the number j of negative coefficients. For M0, for example, all
coefficients are positive and

D(h̄ω) ∝
{

0 for ω < ωc

(h̄ω − h̄ωc)
1/2 for ω > ωc ,

(13.1.6)

with the resulting ε2(ω) shown in Fig. 13.5; the other possibilities are also dis-
played. Not surprisingly, the real part of the dielectric constant also displays sharp
changes at these critical points. In one dimension, the situation is entirely different.
First of all

δE(k) = h̄ωc + α1k2
1 (13.1.7)

and we have only two possibilities, with α either positive or negative. At the onset
of an interband transition, the joint density of states diverges as

D(h̄ω) ∝
{

0 for ω < ωc

(h̄ω − h̄ωc)
−1/2 for ω > ωc

(13.1.8)

at the critical points, for α1 > 0 for example; the behavior of ε2(ω) for the two
solutions is displayed in the lower part of Fig. 13.5.

After these preliminaries we can understand the features observed in the optical
experiments as consequences of critical points and relevant dimensionalities near
these critical points. In Fig. 13.6 the measured imaginary part of the dielectric
constant ε2(ω) of germanium is displayed together with results of calculations
[Phi63]. Without discussing the various transitions and critical points in detail,
it suffices to note that modern band structure calculations such as the empirical
pseudopotential method give an excellent account of the optical experiments and
provide evidence for the power and accuracy of such calculations. At high fre-
quencies the behavior shown in Fig. 13.6 gives way to a smooth ω−2 decrease of
the conductivity, the Drude roll-off associated with inertia effects. For 1/τ and
Eg much smaller than the plasma frequency, the real part of the dielectric constant
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ε1(ω) shows a zero-crossing at

ω+p =
(

4πne2

ε∞mb

)1/2

,

the same expression which applies for metals (Eq. (12.1.8)), where interband
transitions are accounted for by a high frequency dielectric constant ε∞. Just
as for metals, plasma oscillations can also be examined by electron energy loss
spectroscopy; both methods can be used to evaluate the loss function Im{−1/ε̂(ω)}.
This has been done for various semiconductors, and results are displayed in
Fig. 13.7 for our example of germanium. The peak identifies the plasma frequency,
and we observe an underdamped plasmon at energy of approximately 16 eV. The
fundamental optical parameters of some semiconductors are collated in Table 13.1.
For most band semiconductors, the bandgap is significantly smaller than the plasma
frequency, leading also to a relatively large dielectric constant, which broadly
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Table 13.1. Optical gaps Eg = h̄ωg, plasma frequencies ωp, and static dielectric
constant ε1(ω = 0) of various semiconductors as obtained at low temperatures.

‘i’ indicates an indirect gap, ‘d’ a direct gap. After [Kit96, Mad96, Wea90].

Material Gap ωg/2πc Eg ωp/2πc h̄ωp ε1(ω = 0)
(cm−1) (eV) (cm−1) (eV)

Ge i 5950 0.74 13.4× 104 16.6 15.8
Si i 9450 1.17 13.0× 104 16.2 11.7
InSb d 1850 0.24 9.7× 104 12 17.9
GaAs d 1.2× 104 1.52 12.5× 104 15.5 13.1
diamond i 4.4× 104 5.4 5.5
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correlates with the ratio
(
h̄ωp/Eg

)2
as derived in Eq. (6.3.5). The above equations

apply at zero temperature; at finite temperatures contributions to the optical prop-
erties coming from thermally excited electrons and holes have to be included. The
number of these excitations increases exponentially with increasing temperature,
and is small even at room temperature in most typical (undoped) semiconductors.
If the relaxation time associated with these excitations is long, absorption due to
these excitations – often called the free-electron absorption – occurs well below
the gap frequency, and, as a rule, a simple Drude model accounts for the optical
properties [Ext90]. In Fig. 13.8 the optical conductivity σ1(ω) and σ2(ω) of silicon
is displayed for two different doping levels: for an acceptor concentration of
1.1 × 1015 cm−3 leading to a resistivity of 9.0 � cm, and a donor concentration
of 4.2 × 1014 cm−3 which gives ρdc = 8.1 � cm. The frequency dependence
measured by time domain spectroscopy at room temperature can be well described
for both cases by a simple Drude model with somewhat different scattering rates:
1/(2πτc) = 40 cm−1 and 20 cm−1, respectively.

The onset of the absorption is different for a highly anisotropic band structure.
Of course, strictly one-dimensional materials are difficult to make, but in several
so-called linear chain compounds (the name indicates the atomic or molecular
arrangements in the crystal) the band structure is anisotropic enough such that it
can be regarded as nearly or quasi-one-dimensional. Near to the gap, the optical
conductivity of such materials can be described by the one-dimensional form of
semiconductors we have discussed in Chapter 6. Expression (6.3.16) assumes
that the transition matrix element between the valence and conduction states is
independent of frequency; thus the functional dependence of σ1 on ω is determined
solely by the joint density of states. In general this is not the case, as can be seen
from the following simple arguments. The periodic potential leads to a strong
modification of the electronic wavefunctions only for states close to the gap; for
wavevectors away from the gap (and therefore for transition energies significantly
different from the gap energy Eg) such perturbation is less significant, and the
electron states are close to the original states which correspond to a single band.
As transitions between states labeled by different k values in a single band are
not possible (note that optical transitions correspond to q = 0), the transition
probability is presumed to be strongly reduced as the energy of such transitions
is increased from the gap energy Eg. Thus the conductivity is expected to display
a stronger frequency dependence than that given by Eq. (6.3.16). All this can be
made quantitative by considering the transitions in one dimension [Lee74]. One
finds that

σ1(ω) =
πNe2E2

g

2h̄2m

1

ω3
[
1− (Eg/h̄ω)2

]1/2 , (13.1.9)
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an expression which has a leading ω−3 frequency dependence for frequencies well
exceeding Eg/h̄; near to the gap the familiar square root frequency dependence is
recovered. There is no effective mass µ here, as in the perturbation treatment of
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the periodic potential the valence and conduction bands have the same curvature
and the same mass. Both can be expressed in terms of the gap energy Eg.

A strongly frequency dependent optical conductivity has indeed been found
in several one-dimensional or nearly one-dimensional semiconductors, such as
K2[Pt(CN)4]Br0.3·3H2O (better known by the abbreviation KCP) [Bru75] and
(NbSe4)3I [Ves00]. The conductivity of these much studied compounds is dis-
played in Fig. 13.9. The full line plotted in Fig. 13.9a is the expected ω−3 frequency
dependence; for (NbSe4)3I, however, we find a stronger dependence, presumably
due to the narrow band, with the bandwidth comparable to the optical frequencies
where the measurements were made.

Electron–electron interactions may modify this picture. Such interactions lead,
in strictly one dimension, to an electron gas which is distinctively different from a
Fermi liquid. In not strictly but only nearly one dimension such interactions lead
to a gap, and the features predicted by theory [Gia97] are expected to be observed
only at high energies. These features include a power law dependence of the con-
ductivity, with the exponents on ω different from −3 (see above). Experiments on
highly anisotropic materials, such as (TMTSF)2PF6 [Sch98], have been interpreted
as evidence for such novel, so-called Luttinger liquids.

A strict singularity at the single-particle gap, of course, cannot be expected for
real materials; deviations from one dimensionality, impurities, and the frequency
dependence of the transition matrix element involved, all tend to broaden the opti-
cal transition. In materials where the band structure is strongly anisotropic, another
effect is also of importance. For a highly anisotropic system where the bands do
not depend on the wavevector k, but with decreasing anisotropy, the parallel sheets
of the band edges become warped, and the gap assumes a momentum dependence.
Consequently the gap – defined as the minimum energy separation between both
bands – becomes indirect. This can be seen most clearly by contrasting the thermal
and optical gaps in materials of varying degrees of band anisotropy with the thermal
measurements (i.e. dc resistivity) resulting in smaller gaps as expected and the
difference increasing with decreasing anisotropy [Mih97].

13.1.2 Forbidden and indirect transitions

Forbidden transitions, as a rule, have low transition probabilities and therefore are
difficult to observe experimentally. A possible example is presented in Fig. 13.2
for PbS, where the characteristic (ω−ωg)

3/2 dependence of the absorption is seen,
together with the (ω − ωg)

1/2 dependence close to the bandgap; this latter gives
evidence for direct allowed interband transitions as discussed above.

Less controversial is the observation of indirect transitions; the reason for this
is that – in addition to the different frequency dependence – these transitions are
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also strongly temperature dependent. Since the two possible processes discussed
in Section 6.4.1 involve different phonon states, two different frequencies where
the onset of the absorption occurs are expected. This is nicely demonstrated in
Fig. 13.10, in which the data on germanium are taken at different temperatures. The
functional dependence of the absorption (h̄ω− Eg)

2 is also in accordance with that
calculated for indirect transitions in Eq. (6.4.4). In addition to the two absorption
processes we have discussed earlier, the low temperature gap, determined by the
onset of absorption at 20 K, can be estimated to approximately 0.74 eV.

13.1.3 Excitons

In addition to the transitions involving single-particle states, optical absorption
associated with the creation of excitons is observed in various semiconductors.
Let us first estimate the energies and spatial extension of excitons, following our
discussion in Section 6.5. For a typical semiconductor the static dielectric constant
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ε1(ω → 0) ≈ 10. If we assume that both mc and mv are 1/3 of the free-electron
mass, µ−1 = m−1

v +m−1
c is approximately 6/m, and we arrive at a binding energy

– the energy required to break up the exciton – of approximately

Eexc
1 = Eg − e4µ

2h̄2ε2
1

≈ 15 meV ;

while the spatial extension r exc corresponding to the j = 1 state is about 20 Å, sig-
nificantly larger than the typical lattice constant. The binding energy Eexc

j decreases

significantly for semiconductors with smaller gaps. As ε1 ≈ 1 + (
h̄ωp/Eg

)2
, it

follows from Eq. (6.3.6) that the exciton energy Eexc
j depends on the fourth power of

the single-particle gap Eg. Well defined and unambiguously resolved exciton lines
can hence be observed only in wide bandgap semiconductors, and in Fig. 13.11 the
absorption spectrum of CuO is displayed as an example. The quantum numbers
j = 2, 3, . . . are arrived at on fitting the observed energies to the Rydberg series,
Eq. (6.5.1).
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Fig. 13.12. Exciton absorption in gallium arsenide (GaAs) at different temperatures. The
full line is a fit to theory [Ell57] (after [Stu62]).

For small semiconductor gaps, the binding energies are also small, and individ-
ual transitions from the top of the valence band to the various exciton energy levels
(corresponding to different j values) cannot be resolved. The levels, by definition,
form a continuum near to the single-particle gap as j → ∞; this continuum then
leads to a broad absorption and thus modifies the characteristic onset near Eg. The
intensity of this absorption is straightforward to estimate, using results available
for the hydrogen atom. Combining the expressions available for the absorption
associated with the various Rydberg states with the density of states as j → ∞,
we obtain [Yu96]

ε2(ω) ≈ 32π2e2|pcv|2µ2

3m3E2
g

, (13.1.10)

where |pcv| is the transition matrix element of exciting one state for j → ∞.
The above expression – valid at the band edge – corresponds to a frequency
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independent absorption at Eg, in contrast to the absorption process which goes
to zero for singe-particle transitions as the bandgap is approached from above.
Calculations can be performed for transitions with energies near to the gap, and in
general one finds a broad peak at Eg due to excitonic absorption which merges with
the single-particle absorption as the energy increases [Ell57]. This has been seen
in a number of small bandgap semiconductors, and the frequency dependence of
the absorption coefficient of GaAs measured at different temperatures is displayed
in Fig. 13.12 as an example. The full lines are fits according to an expression
derived for the energy dependence of the process [Stu62]; note also the strong
temperature dependence and the thermal smearing of the excitonic absorption peak
– both natural consequences of the small energy scales involved.

13.2 Effects of interactions and disorder

Optical transitions discussed previously occur for pure and crystalline semicon-
ductors where the nature of transition and its dependence on the underlying band
structure depends essentially on the existence of well defined k states. Now we
turn to situations where this strict periodicity is broken, either by the introduction
of impurities or by the preparation conditions which prevent the lattice forming. In
the former case we talk about impure semiconductors; and in the latter case about
amorphous semiconductors.

13.2.1 Optical response of impurity states of semiconductors

Impurity states have been extensively studied by a wide range of optical methods,
mainly because of the enormous role these electronic states play in the semiconduc-
tor industry. Extrinsic conduction associated with such impurity states is a standard
issue for solid state physics, and transport effects which depend on the impurity
concentration are also well studied. For small concentrations these impurity states
are localized to the underlying lattice, but an insulator–metal transition occurs at
zero temperature [Cas89] as the impurity concentration increases.

While there are numerous examples for these impurity effects phenomena, they
have been studied in detail for phosphorus doped silicon Si:P. From transport and
various spectroscopic studies it is found, for example, that the ionization energy,
i.e. the energy needed to promote an electron from the j = 1 level of the donor
phosphorus to the conduction band, is 44 meV; via the description (6.5.3) in terms
of Bohr’s model this corresponds to the spatial extension of the impurity states
of approximately 25 Å, significantly larger than the lattice periodicity. It is also
known that due to valley–orbital interaction the various s and p impurity levels
are slightly split; this splitting is about one order of magnitude smaller than the
ionization energy. Localized impurity states can be described by the Rydberg
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formula (6.5.3) for isolated atoms; the energy levels are close to the top of the
valence band for p-type impurities or below the bottom of the conduction band
for n-doped material, as in the case of Si:P. Because of valley–orbit splitting,
the optical absorption shows a complicated set of narrow lines located in the
spectral range of a few millielectronvolts, in good accord with our estimations in
Section 6.5.2. The results [Tho81] are displayed in Fig. 13.13b. For small impurity
concentrations, the sharp lines correspond to transitions between atomic levels; the
broad maxima above 400 cm−1 correspond to transitions to the conduction band.
With increasing impurity density the lines become broadened due to the interaction
between neighboring donor states; because of the random donor positions this is
most likely an inhomogeneous broadening. Further increase in the phosphorus con-
centration leads to further broadening; and the appropriate model is that of donor
clusters, with progressively more and more impurity wavefunctions overlapping as
the average distance between the donors becomes smaller. Because of the large
spatial extension of the phosphorus impurity states, all this occurs at low impurity
concentrations. A detailed account of these effects for Si:P is given by Thomas
and coworkers [Tho81], but studies on other dopants or other materials can also be
interpreted using this description.

For increasing impurity concentration N , the dc conductivity and also various
thermodynamic and transport measurements provide evidence for a sharp zero
temperature transition to a conducting state. In contrast to classical phase tran-
sitions with thermal fluctuations, this is regarded as a quantum phase transition.
The delocalization of the donor states increases, and at a critical concentration
of Nc = 3.7 × 1018 cm−3 in the case of Si:P an impurity band is formed. The
optical conductivity [Gay93] for samples which span this transition is displayed in
Fig. 13.13a. On the insulating side the conductivity is typical of that of localized
states: zero conductivity at low frequencies with a smooth increase to a maximum
above which the conductivity rolls off at high frequency according to ω−2 (the
frequency of this Drude roll-off is nevertheless small because of the small donor
concentration). The observed peaks are associated with the transitions already seen
for lower donor concentrations (Fig. 13.13b). On the metallic side, the conductivity
is of Drude type, with all its ramifications, such as the conductivity which extrapo-
lates to a finite dc value, and absorption which is proportional to the square of the
frequency (both also seen in a variety of highly doped semiconductors). Transitions
between the various donor states lead to additional complications which can nev-
ertheless be accounted for. While the insulator–metal transition is clearly seen by
the sudden change of the conductivity extrapolated to zero frequency σ1(ω → 0),
the optical sum rule is obeyed both below and above the transition; the integral

∫
imp

σ1(ω) = πNe2

2m
= (ω

imp
p )2

8
(13.2.1)
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Fig. 13.13. (a) Conductivity σ1(ω) of different samples of phosphorus doped silicon ob-
tained by Kramers–Kronig analysis of reflection measurements (T = 10 K). The inset
shows the level scheme of Si:P states in the dilute limit including valley–orbit splitting of 1s
states: CB = conduction band; EI = ionization energy of the impurity atom; EVS = valley–
orbit splitting between the 1s(A1) and the closely spaced 1s(T1) and 1s(E) levels (after
[Gay93]). (b) Absorption coefficient (normalized to the carrier concentration N ) as a func-
tion of frequency ω for three donor densities N in samples of Si:P measured at T ≈ 2 K
(after [Tho81]). The curves illustrate regimes of broadening (N = 1.4 × 1017 cm−3) and
larger cluster absorption (1.9× 1018 cm−3).
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Fig. 13.14. Reflectance spectra R(ω) of insulating and metallic Si:P samples determined at
T = 10 K (after [Gay93]). The transition from the insulating state to a metallic conduction
state occurs at the impurity concentration of Nc = 3.7× 1018 cm−3.

is proportional to the donor concentration N at both sides of the critical density
Nc. The reflectivity R(ω) of samples near to the critical concentration, displayed
in Fig. 13.14, provides evidence for the metal–insulator transition. While there
is no plasma edge for samples below Nc [Gay93], in the conducting state a well
defined plasma edge appears in the optical reflectivity; the impurity concentration
where this appears is in full agreement with the sum rule given above. Increasing
the impurity concentration further, we find that the impurity states merge with the
conduction band. This is evidenced, for instance, by the plasma edge which can
be analyzed to give the full number of states in the silicon band in contrast to the
number of impurity states. Optical studies of the so-called critical region, very
close to the critical concentration (studies such as those conducted on the system
Nbx Si1−x and discussed in Section 12.2.3) have not been performed to date.
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13.2.2 Electron–phonon and electron–electron interactions

Interactions between electrons and also electron–lattice interactions may lead to a
non-conducting state even for a partially filled electron band which, in the absence
of these interactions, would be a metal. Several routes to such non-conducting
states – which we call a semiconducting state – have been explored; and the
emergence of these states depends, broadly speaking, on the relative importance
of the kinetic energy of the electron gas, and the interaction energy.

The former is usually cast in the form of

H =
∑
i, j

ti j

(
c+i,σ c j,σ + c+j,σ ci,σ

)
, (13.2.2)

where ti j is the transition matrix element between electron states i and j , and the
terms in the parentheses describe electron transitions between sites i and j ; the
spin is indicated by σ . In general this Hamiltonian is treated in the tight binding
approximation. Often only nearest neighbor interactions are included, and in this
case the transfer integral is t0. Electron–electron interactions are described, as a
rule, by the Hamiltonian

H = U
∑

i

ni,σni,−σ , (13.2.3)

where U represents the Coulomb interaction between electrons residing at the same
site. This term would favor electron localization by virtue of the tendency for
electrons to avoid each other. When electron–lattice interactions are thought to be
important, they are accounted for by the Hamiltonian

H = α
∑
i, j

(
ui − u j

) (
c+i c j + c+j ci

)
, (13.2.4)

where u refers to the lattice position. Here the spin of the electrons can, at first
sight, be neglected; α is the electron–lattice coupling constant. The consequences
of these interactions have been explored in detail for one-dimensional lattices, with
nearest neighbor electron transfer included. In this case the Hamiltonian reads

H = α
∑

j

(
u j+1 − u j

) (
c+j+1c j + c+j c j+1

)
. (13.2.5)

For a half filled band both interactions lead – if the interactions are of sufficient
strength – to a non-conducting state, the essential features of which are indicated
in Fig. 13.15. Coulomb interactions lead – if U > W (the bandwidth given by
Eq. (13.2.2)) – to a state with one electron localized at each lattice site, with
an antiferromagnetic ground state in the presence of spin interactions. The state
is usually referred to as a Mott–Hubbard insulator. The lattice period, which
is defined as the separation of spins with identical orientation, is doubled. The
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Fig. 13.15. Simple representation of correlation driven semiconducting states for a half
filled band. (a) Coulomb correlations lead to the magnetic ground state and (b) electron–
lattice interactions to the state with a bond alternation, or (c) to a lattice with a period
doubling. In (d) a soliton state is shown, in the usual representation appropriate for the
polymer trans-(CH)x .

period of this broken symmetry ground state is 2a; thus it is commensurate with
the lattice period a. The broken symmetry state which arises as a consequence of
electron–lattice interactions represents either a displacement of the ionic positions
or an alternating band structure, such as shown in Fig. 13.15; such states are
referred to as Peierls insulators. Again the structure is commensurate with the
underlying lattice period. In contrast to incommensurate density waves which
develop in a partially filled band (see Chapter 7), here the order parameter is
real. Consequently phase oscillations of the ground state do not occur; instead,
non-linear excitations of the broken symmetry states – domain walls or solitons –
are of importance.

The single particle gap � in the insulating state – for strong interactions – is

� ∝ U −W ,

where U is the strength of the electron–electron or electron–lattice interaction and
W is the bandwidth; for weaker interactions � is a non-analytic function of the
parameters U and W . The optical properties of these states are – in the absence
of non-linear excitations – those of a semiconductor with σ1(ω) depending on
the dimensionality of the electron structure, as discussed before. This is fairly
straightforward and also comes out of calculations.
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Fig. 13.16. Doping dependence of the optical conductivity σ1(ω) from quantum Monte
Carlo calculations with U = 4 on the hypercubic lattice with ti j = (4d)−1/2 (after
[Jar95]). Going from the thick solid line to the long-dash line the curves correspond to
increasing doping levels (δ = 0.068, 0.1358, 0.2455, 0.35, and 0.45); and they lead to an
increased conductivity at low, and decreased conductivity at high, frequencies – showing
a gradual shift of the spectral weight to the zero energy mode with increasing dopant
concentration. The inset shows the evolution of the Drude weight A as a function of doping.
The bandwidth is W = 1.

More interesting is the question of what spectral features are recovered just
before interactions drive the metal into an insulator: does the metallic state look
like an uncorrelated Drude metal, or is there a precursor gap feature in the metallic
state together with a zero frequency Drude component? Both theory and experi-
ment on materials where Coulomb interactions are important point to the second
scenario. The optical conductivity, as derived using the so-called quantum Monte
Carlo (QMC) technique in infinite dimensions [Jar95], is shown in Fig. 13.16. Here
the different curves correspond to different doping levels: deviations from a strictly
half filled band. There is a gap feature with the smooth onset around ω = 2, and in
addition a narrow Drude peak. The spectral weight of the peak A shown in the inset
is zero for a half filling, and the material is clearly an insulator. Upon doping, the
Drude peak assumes a finite intensity, increasing, for small deviations from the half
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Fig. 13.17. Frequency dependent conductivity of metallic and insulating V2−δO3 samples.
The full circle indicates the measured dc conductivity. Curve a corresponds to an undoped,
δ = 0 sample at T = 70 K; curve b is slightly doped, δ = 0.013 at T = 10 K; and c
corresponds to undoped V2O3 in the metallic state at T = 170 K (after [Geo96, Tho94]).
The parameters of the interaction U and the bandwidth W refer to values obtained by fitting
the experimental curves to calculated spectra from the Hubbard model.

filled case, linearly with concentration. The material V2O3 is a classic example of
the Mott–Hubbard insulating state. Optical experiments, displayed in Fig. 13.17,
clearly reveal a gap in the insulating state, which occurs at low temperatures both in
the undoped and for the slightly doped material V2−δO3 (in the latter case disorder
localizes the small number of carriers which, in the absence of disorder, would lead
to a Drude response with a small spectral weight A). The parameters W and U
are derived through comparison with σ1(ω) calculated by theory [Geo96, Tho94].
Upon heating, the material undergoes an insulator–metal transition at T = 150 K
[Wha73], and just on the metallic side (curve c in Fig. 13.17) it is apparent that
the measured conductivity is similar to that calculated when a comparison with
Fig. 13.16 is made.
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Eg

Q = e
S = 0

Q = 0
S = 1/2

Q = −e
S = 0

Fig. 13.18. Various charge and spin states of a soliton, showing the localized chemical
shorthand description for these delocalized structures. Only interband optical transitions
occur for a neutral Q = 0 soliton; for charged solitons transitions occur from the valence
to the soliton states (for Q = e) and from the soliton to the conduction band (for Q = −e).
Note that in this notation e is positive (after [Hee88]).

Non-linear excitations are most prominent for one-dimensional lattices. If the
lattice is fixed at the positions indicated in Fig. 13.15b and c no such non-linear
configuration would arise. However, such excitations might be created by re-
arranging the bond order, for example in a way shown in Fig. 13.15d. The bond
arrangement on the right and left is different, corresponding to the different broken
symmetry configurations, and the state separating the two is called a soliton. The
topological excitation can extend over several lattice constants, and the spatial
extension ξ depends on the strength of the electron–lattice interaction with re-
spect to the single-particle bandwidth. The states can be induced thermally or
by doping, and have strange spin charge relations; depending on the dopant atoms
or molecules [Hee88], these states are summarized in Fig. 13.18. The various
soliton states occur in the gap region; calculations [Fel82] for parameters which are
appropriate for the polymer trans-(CH)x – known as polyacetylene – give a soliton
energy of approximately 0.6Eg. Optical transitions between the soliton and single-
particle states can occur if the soliton has a charge e or−e, and these transitions are
indicated by the arrows. Results of optical experiments on trans-(CH)x have all the
optical signatures of a one-dimensional semiconductor with a gap Eg ≈ 1.5 eV, and
a prominent midgap excitation upon doping. This can be associated with a soliton
state induced by doping – a value in agreement with band structure calculations
[Gra83]. The spectral weight of this state is significantly larger than the spectral
weight which would be associated with an electron of mass m. The reason for
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Fig. 13.19. Absorption coefficient α(ω) of neutral (×) and doped polyacetylene trans-
(CH)x (after [Rot95, Suz80]).

this is that – due to the relatively large spatial extension of the soliton ξ – the
spectral weight is enhanced; this enhancement factor is approximately given by
ξ/a [Kiv82, Su79]. Of course the total spectral weight is conserved, and upon
doping the increased contribution of soliton states is at the expense of the decreased
optical intensity associated with electron–hole excitations across the single-particle
gap; this can be clearly seen in Fig. 13.19.

13.2.3 Amorphous semiconductors

In amorphous semiconductors the loss of lattice periodicity removes all the effects,
which we have associated with long range order. Consequently, signatures of band
structure effects such as the van Hove singularities, cannot be observed. Short
range interactions, however, prevail, and these set the relevant overall energy scale,
such as the width of the bands, and also the magnitude of the (smeared) gap. Of
course, the mere notions of a band and a bandgap are not well defined under such
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Fig. 13.20. Frequency dependence of the imaginary part of the dielectric constant ε2(ω)
of crystalline and amorphous germanium (after [Spi70]).

circumstances; they merely refer to energy ranges with large density of energy
levels, separated by regions where the density of states is small.

Momentum conservation is, of course, also removed, and thus in the optical
absorption the product of the two density of states in the valence and in the con-
duction band is observed, in contrast to the joint density of states which occurs in
Eq. (6.3.4). The transition probability and thus the absorption coefficient is simply
given by the density of states in the valence and the conduction bands, and

α(ω) ∝
∫

Dv(E)Dc(E + h̄ω) dE , (13.2.6)

where we have assumed that the transition probability is independent of energy.
In Fig. 13.20 we compare the imaginary part of the dielectric constant ε2(ω) of
crystalline germanium – shown in Fig. 13.1c – with ε2(ω), which was measured
on an amorphous specimen. For amorphous germanium a broad infrared peak
is seen which can be associated with a band-to-band transition, with the overall
energy scale similar to Eg, which characterizes the crystalline modification. The
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suppression of the absorption at low frequencies is due to the development of a
pseudogap instead of a real gap. There are also arguments [Mot79] which suggest
that the electronic states are localized only in the pseudogap region, but not at ener-
gies away from the pseudogap where the density of states is large. Measurements
of the dc conductivity indeed show a well defined thermal gap; such a transition
from localized to delocalized states as a function of frequency, however, is not
obvious from the optical data. While there is a more or less well defined energy for
the onset of appreciable absorption, called the absorption edge Ec, this edge may or
may not correspond to the thermal gap. The subject is further complicated by the
fact that a variety of different absorption features are found in different amorphous
semiconductors and glasses. Often the absorption displays an exponential behavior
above Ec, but often also a power law dependence

α(ω) ∝ (h̄ω − Ec)
n (13.2.7)

with n ranging from 1 to 3 is found. The reason for these different behaviors is
not clear and is the subject of current research, summarized by Mott and Davis
[Mot79].
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[Bru75] P. Brüesch, Optical Properties of the One-Dimensional Pt Complex Compounds,

in: One-Dimensional Conductors, edited by H.G. Schuster, Lecture Notes in
Physics 34 (Spinger-Verlag, Berlin, 1975), p. 194

[Car68] M. Cardona, Electronic Properties of Solids, in: Solid State Physics, Nuclear
Physics and Particle Physics, edited by I. Saavedia (Benjamin, New York,
1968)

[Cas89] T.G Castner and G. Thomas, Comments Solid State Phys. 9, 235 (1989)
[Coh89] M.L. Cohen and I. Chelikowsky, Electronic Structure and Optical Properties of

Semiconductors, 2nd edition (Springer-Verlag, Berlin, 1989)
[Ell57] R.J. Elliot, Phys. Rev. 108, 1384 (1957)
[Ext90] M. van Exter and D. Grischkowsky, Phys. Rev. B 41, 12 140 (1990)
[Fel82] A. Feldblum, J.H. Kaufmann, S. Etmad, A.J. Heeger, T.C. Chung, and

A.G.MacDiarmid, Phys. Rev. B 26, 815 (1982)
[Gay93] A. Gaymann, H.P. Geserich, and H.V. Löhneysen, Phys. Rev. Lett. 71, 3681
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14

Broken symmetry states of metals

The exploration of the electrodynamic response has played an important role in
establishing the fundamental properties of both the superconducting state and the
density wave states. The implications of the BCS theory (and related theories
for density waves) – the gap in the single-particle excitation spectrum, the phase
coherence in the ground state built up of electron–electron (or electron–hole)
pairs, and the pairing correlations – have fundamental implications which have
been examined by theory and by experiment, the two progressing hand in hand.
The ground state couples directly to the electromagnetic fields with the phase of
the order parameter being of crucial importance, while single-particle excitations
lead to absorption of electromagnetic radiation – both features are thoroughly
documented in the various broken symmetry states. Such experiments have also
provided important early evidence supporting the BCS theory of superconductivity.

There is, by now, a considerable number of superconductors for which the
weak coupling theory or the assumption of the gap having an s-wave symmetry
do not apply. In several materials the superconducting state is accounted for by
assuming strong electron–phonon coupling, and in this case the spectral character-
istics of the coupling can be extracted from experiments. Strong electron–electron
interactions also have important consequences on superconductivity, not merely
through renormalization effects but also leading possibly to new types of broken
symmetry. In another group of materials, such as the so-called high temperature
superconductors, the symmetry of the ground state is predominantly d-wave, as
established by a variety of studies. All these aspects have important consequences
for the electrodynamics of the superconducting state.

14.1 Superconductors

Experiments on the electrodynamic properties of the superconducting state include
the use of a variety of methods, ranging from dc magnetization measurements

371
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of the penetration depth, through the measurements of the radio frequency and
microwave losses at frequencies below the superconductivity gap, to the evaluation
of the single-particle absorption – and thus the gap – by optical studies. Experi-
ments on the superconducting state of simple metals are a, more or less, closed
chapter of this field, with the attention being focused on novel properties of the
superconducting state found in a variety of new materials, which – in the absence
of a better name – are called unconventional or non-BCS superconductors.

14.1.1 BCS superconductors

We first discuss the experimental results on superconductors for which the pairing
is s-wave and the energy gap opens along the entire Fermi surface, with the gap
anisotropy reflecting merely the subtleties of the band structure. Furthermore
the weak coupling approximation applies, which leads to the BCS expressions
for the various parameters, such as Eq. (7.1.15) for the ratio of the gap to the
transition temperature. Most of the so-called conventional superconductors, i.e.
simple metals with low transition temperatures, fall into this category.

We start with the penetration depth, one of the spectacular attributes of the super-
conducting state. Experiments are too numerous to survey here and are reviewed
in several books [Pip62, Tin96, Wal64]. The London penetration depth derived in
Section 7.2.1 can be written as

λL(T ) =
(

mbc2

4πNs(T )e2

)1/2

(14.1.1)

at finite temperatures, where Ns(T ) is the temperature dependent condensate den-
sity and mb is the bandmass of electrons; the expectation is that mb is the same as
the bandmass determined via the plasma frequency in the normal state. The above
expression holds in the limit where local electrodynamics applies and also in the
clean limit where the mean free path � is significantly larger than the penetration
depth λL; in this limit λL = c/ωp at zero temperature. As discussed in Section 7.4,
corrections to the above expressions are in order if the assumed conditions are not
obeyed; we will return to this point later. One common method of measuring the
penetration depth λ(T ) is to monitor the frequency of a resonant structure, part
of which contains the material which becomes superconducting. In the majority
of cases enclosed cavities are used which operate in the microwave spectral range
(see Sections 9.3 and 11.3.3). The resonant frequency is (crudely speaking) pro-
portional to the effective dimensions of the cavity, and this includes the surface
layer over which the electromagnetic field penetrates into the material, i.e. the pen-
etration depth. The canonical quantity which is evaluated is the surface reactance
XS, related to the penetration depth by Eq. (7.4.24). The other quantity which is
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measured is the surface resistance RS, i.e. the loss associated with the absorption
of the electromagnetic field within the surface layer; this loss decreases the quality
of the resonance. Both components of the surface impedance ẐS = RS + iXS can
be evaluated, although often only one of the components is accessible in practice.

The temperature dependence of the real and imaginary parts of the surface
impedance, measured in niobium at frequencies well below the gap frequency,
is displayed in Fig. 14.1a. Both parameters approach their normal state values
as the transition temperature Tc = 9 K is reached from below. At sufficiently
low temperatures both parameters display an exponential temperature dependence,
establishing the existence of a well defined superconducting gap. If the gap opens
up along the entire Fermi surface, exp{−�/kBT } is the leading term in the tem-
perature dependence of RS(T ) and XS(T ); the correct expressions as derived from
the BCS theory are given by Eqs (7.4.23),

RS(T ) ∝ (h̄ω)2

kBT
ln

{
4kBT

h̄ω

}
exp

{
− �

kBT

}
, (14.1.2a)

and from the relative difference in the penetration depth (Eq. (7.4.25))

XS(T ) ∝ 1+
(

π�

2kBT

)1/2

exp
{
− �

kBT

}
(14.1.2b)

in the regime where both h̄ω and kBT are much smaller than the superconducting
gap �. A fit of the experimental data to the low temperature part of RS(T ) and
XS(T ) gives 2� ≈ 3.7kBTc, suggesting that the material is close to the weak coup-
ling limit, for which 2�/kBTc = 3.53. Often, only the ratio of the superconducting
to the normal state impedance is evaluated, and this parameter is compared with
the prediction of the BCS theory; the calculations by Mattis and Bardeen [Mat58]
presented in Section 7.4.3 provide the theoretical basis. Note that the losses are
approximately proportional to the square of the measuring frequency; this is in
contrast to the normal state where, according to Eq. (5.1.18), in the Hagen–Rubens
regime RS(ω) increases as the square root of the frequency. With simple (but
somewhat misleading) arguments, we can understand the above expression for
the surface resistance as follows: let us assume that the electrons which form the
condensate and the electrons thermally excited across the single-particle gap form
two quantum liquids which both respond to the applied electromagnetic field. At
low temperatures the number of thermally excited electrons is small, and we also
assume that for these electrons the Hagen–Rubens limit applies, i.e. σ1 � σ2, the
latter subsequently being neglected. For the condensate, on the other hand, we can
safely disregard losses (σ1 = 0), and keep only the contribution to σ2, given by
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Fig. 14.1. (a) Temperature dependence of the surface reactance XS(T ) and surface resis-
tance RS(T ) in superconducting niobium (Tc = 9 K) measured at 6.8 GHz. Rn and Xn
refer to the normal state values. The change in surface reactance XS(T ) − XS(T = 0)
(left axis) is proportional to the change in penetration depth λ(T ) − λ(T = 0) (right
axis). The fit by the Mattis–Bardeen theory (full lines) leads to a superconducting gap of
2� = 3.7kBTc. (b) Frequency dependence of the surface resistance RS(ω) of niobium
measured at T = 4.2 K. The dashed line indicates an ω2 frequency dependence, and the
full line is calculated by taking a gap anisotropy into account (after [Tur91]).
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Eq. (7.2.11a). Then the conductivity is given by

σ̂ (ω, T ) = σ1(T )+ iσ2(ω) = σ1(T )+ iNse2

mbω
,

where we have assumed that the concentration of superconducting carriers Ns is
close to its T = 0 value and therefore the imaginary component is only weakly
temperature dependent. Inserting this expression into Eq. (2.3.32a) for the surface
resistance leads to RS ∝ ω3/2. Assuming further that the number of thermally
excited electrons determines the conductivity (by assuming that the mobility is
independent of temperature), we find that the temperature and frequency depen-
dencies can be absorbed into an expression

RS ∝ ω3/2 exp
{
− �

kBT

}
.

The assumption of the two independent quantum fluids is not entirely correct, as
we have to take into account mutual screening effects; this leads to a somewhat
different frequency dependence, which is then derived on the basis of the correct
Mattis–Bardeen expression [Hal71]. The temperature dependence of the surface
resistance was first measured on aluminum by Biondi and Garfunkel [Bio59] at
frequencies both below and above the gap frequency. A strong increase in RS with
increasing frequency was found in the superconducting state. The temperature
dependence as well as the frequency dependence observed can be accounted for by
the Mattis–Bardeen theory; the experiments conducted at low frequencies and at
low temperatures are in good semiquantitative agreement with Eq. (14.1.2a), and
as such also provide clear evidence for a superconducting gap. More detailed data
on niobium are displayed in Fig. 14.1b and show an RS ∝ ω1.8 behavior, close to
that predicted by the previous argument. Note that the frequency dependence as
given above follows from general arguments about the superconducting state, and
is expected to be valid as long as the response of the condensate is inductive and
the two-fluid description is approximately correct.

Other important consequences of the BCS theory are the so-called coherence
factors introduced in Section 7.3.1. The case 2 coherence factor leads to the
enhancement of certain parameters just below the superconducting transition; and
the observation that the nuclear spin–lattice relaxation rate is enhanced [Heb57]
provided early confirmation of the BCS theory. The real part of the conductivity
σ1, which is proportional to the absorption, is also governed by the case 2 coherence
factors; this then leads to the enhancement of σ1(T ) just below the superconducting
transition [Kle94]. The temperature dependence of this absorption, calculated for
frequencies significantly less than �/h̄, is displayed in Fig. 7.2. When evalu-
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Fig. 14.2. (a) Real component RS(T ) (referring to the logarithmic scale on the left axis)
and imaginary component XS(T ) (right axis) of the surface impedance of niobium, nor-
malized to the normal state surface resistance Rn measured at 60 GHz as a function of
temperature. (b) Temperature dependence of the components of the conductivity σ1(T )
and σ2(T ) in niobium calculated from the results of the surface impedance shown in (a).
Note the enhancement of σ1(T ) just below Tc = 9.2 K. The full lines are calculated using
the Mattis–Bardeen formalism (7.4.20), and the dashed lines follow from the Eliashberg
theory of a strong coupling superconductor (after [Kle94]).
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ated from the measured surface resistance and reactance1 such coherence factors
become evident, as shown by the data for niobium, displayed in Fig. 14.2. In
the figure the full lines are the expressions (7.4.22) based on the Mattis–Bardeen
theory (see Section 7.4.3); the dashed line is calculated by assuming that niobium
is a strong coupling superconductor – a notion which will be discussed later.

Another important observation by Biondi and Garfunkel was that for the highest
frequencies measured the surface resistance does not approach zero as T → 0,
but saturates at finite values, providing evidence that at these frequencies carrier
excitations induced by the applied electromagnetic field across the gap are possible.
The reflectivity R(ω) for a superconductor below the gap energy 2� approaches
100% as the temperature decreases towards T = 0, and this is shown in Fig. 14.3
for the example of niobium nitrate. Using a bolometric technique the absorptivity
A(ω) was directly measured and clearly shows a drop below the gap frequency;
this also becomes sharper as the temperature is lowered [Kor91]. The fringes
in both data are due to multireflection within the silicon substrate. There is an
excellent agreement with the prediction by the Mattis–Bardeen formalism (7.4.20),
the consequences of which are shown in Fig. 7.5. The full frequency dependence
of the electrodynamic response in the gap region has been mapped out in detail
for various superconductors by Tinkham and coworkers [Gin60, Ric60], and in
Fig. 14.4 we display the results for lead, conducted at temperatures well below
Tc. The data, expressed in terms of the frequency dependent conductivity σ1(ω)

and normalized to the (frequency independent) normal state value σn, have been
obtained by measuring both the reflectivity from and transmission through thin
films. There is a well defined threshold for the onset of absorption which defines
the BCS gap; the conductivity smoothly increases with increasing frequencies
for ω > 2�/h̄, again giving evidence for the case 2 coherence factor as the
comparison with Fig. 7.2 clearly demonstrates. The frequency for the onset of
conductivity leads to a gap 2�/h̄ of approximately 22 cm−1 in broad agreement
with weak coupling BCS theory, and the full line follows from the calculations
of Mattis and Bardeen – as before, the agreement between theory and experiment
is excellent. The data also provide evidence that the gap is well defined and has
no significant anisotropy; if this were the case, the average overall orientations for
the polycrystalline sample (such as the lead film which was investigated) would
yield a gradual onset of absorption. With increasing temperature T < Tc the
normal carriers excited across the gap become progressively important, causing
an enhanced low frequency response. This is shown in Fig. 14.5, where σ1(ω) and
σ2(ω), measured directly on a thin niobium film at various temperatures using a
Mach–Zehnder interferometer, are displayed [Pro98]. Similar results have been

1 Note that both parameters RS(T ) and XS(T ) have to be measured precisely in order to evaluate the conduc-
tivity σ1(T ) using Eqs (2.3.32).
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Fig. 14.3. (a) Frequency dependence of the reflectivity R(ω) of a 250 nm NbN film.
The interferences are caused by the 391 µm Si substrate. Note that the reflectivity is
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The calculation is done using the Mattis–Bardeen theory, Eqs (7.4.20). The inset shows
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temperatures T < Tc normalized to the absorptivity just above the transition temperature
Tc = 13.3 K (after [Kor91]).
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obtained by time domain spectroscopy (cf. Section 10.2), as shown in Fig. 10.5.
The data are fitted by the Mattis–Bardeen equations (7.4.20) to extract the temper-
ature dependence of the superconducting gap.

As discussed in Section 7.4, various length scales and their relative magnitude
determine the electrodynamic properties of the superconducting state. Let us first
estimate these length scales; this can be done for each material in question by
using the optical properties of the normal state together with the Fermi velocity and
the superconducting gap. For the plasma frequency of a typical metal of h̄ωp =
10 eV, the London penetration depth λL = c/ωp is of the order of 100 Å at zero
temperature. The second length scale, the correlation length ξ0 = h̄vF/π�, is at
T = 0 for a typical Fermi velocity of 5 × 107 cm s−1 and for a superconducting
energy gap of 1 meV, about 1000 Å. Finally the mean free path � = vFτ , where
the relaxation time τ (the parameter which depends on the purity of the specimen,
and as such can be easily varied for a metal) is assumed to be the same in both the
normal and the superconducting states, is approximately 500 Å with the previous
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by reflection measurements. The full lines are calculated using the theory of Mattis and
Bardeen (after [Pro98]).

value of vF and for a relaxation time of 10−13 s, typical of good metals at low
temperatures. The three length scales for clean metals are therefore of the same
order of magnitude.
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The most obvious parameter, and therefore also the quantity experiments have
the easiest access to, is the mean free path and correlation length dependent pen-
etration depth which we call λ – in contrast to the London penetration depth λL,
which is measured only in the clean limit and for ξ0 � λL and also for ξ0 � �. Let
us start by considering the effects related to the finite mean free path �. If this length
scale is smaller than the coherence length ξ0 (i.e. the spatial extension of the Cooper
pairs), the effectiveness of pair formation is reduced, and thus the penetration
depth is increased since λ is inversely related to the number of condensed pairs.
In Section 7.4.1 we derived an appropriate expression based on spectral weight
arguments (the Tinkham–Ferrell sum rule) in the limit when � is short; Eq. (7.4.8)
can be extended to a long mean free path (for which we should recover the London
penetration depth) by the interpolation expression (7.4.18).

The above applies when ξ0 > λ. As discussed in Section 7.4, the penetration
depth plays a similar role to the skin depth in the case of normal metals, and –
through the ineffectiveness concept – the coherence length takes the role of the
mean free path. Therefore the inequality above corresponds to what is called the
normal skin effect in metals. In the opposite, i.e. the anomalous, limit Eq. (7.4.16)
applies, in full analogy to the expression of the skin depth in metals. Again we can
postulate an interpolation of the form

λeff = λL

(
1+ B

ξ0

λL

)1/3

,

where the constant B is of the order of unity. The validity of these considerations
can be explored by measuring the penetration depth in various materials of different
purity. In Table 14.1 we have collected the values of λ obtained for some typical
metals, together with the parameters, such as the London penetration depth, the
coherence length, and the mean free path, all estimated using the procedures
discussed before. The values calculated for the penetration depth λ are in excellent
agreement with the measured data, both for the corrections due to short mean free
path (7.4.18) and large coherence length (7.4.16).

The experimental results, displayed in Figs 14.4 and 14.5 have been obtained
on lead and niobium films with thicknesses less than the penetration depth λL and
less than the coherence length ξ0. In this case the electric field within the film is
independent of position and thus non-local effects can be neglected. These effects,
however, become important for experiments on bulk samples; and here the full q
dependence of the electromagnetic response has to be included. This was done by
using expressions for the q dependent surface impedance as derived by Reuter and
Sondheimer [Reu48] and by Dingle [Din53], and the corresponding calculations
for σ1/σn were performed by Miller [Mil60]. Of course these issues are also related
to the behavior of the superconducting state in the presence of a magnetic field;
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Table 14.1. Values of the actual penetration depth λ as calculated and as
measured, the London penetration depth λL, the mean free path �, the coherence

length ξ0, the transition temperature Tc, and the gap ratio 2�/kBTc of
several metals. Data taken from [Bar61, Kle94, Tur91].

Material Tc 2�/kBTc λL ξ0 � λ (exp.) λ (theory)
(K) (Å) (Å) (Å) (Å) (Å)

Al 1.18 3.4 157 16 000 500 530
Sn 3.7 3.5 355 2 300 510 560
Pb 7.2 4.1 370 830 2000 390 480
Nb 9.0 3.7 330 380 200 440 450

studies under such conditions confirm the fundamental differences between type I
(λL < ξ0) and type II (λL > ξ0) superconductors.

14.1.2 Non-BCS superconductors

By now a wide range of superconductors have been discovered where the super-
conducting state cannot be described by the simplest BCS calculations, i.e. the
solution which relies on two assumptions: weak electron–phonon coupling and s
wave symmetry of the condensate wavefunction.

Materials with relatively high transition temperatures clearly fall into the regime
of what is called strong coupling; for a small coupling constant the transition
temperature is (exponentially) small. In other superconductors, which are mainly
based on CuO and go by the name high temperature superconductors, the order
parameter is dominantly d wave, while in the so-called heavy fermion supercon-
ductors, the unusual normal state properties and also the coexistence or progressive
development of several superconducting phases signal the possibility of novel
superconducting states. There are indications that electron–phonon coupling is
not solely responsible for superconductivity.

In metals where the electron–phonon interactions are not particularly weak, the
BCS theory has to be modified and details of the electron–phonon interaction have
to be included. The appropriate theory has been worked out by Eliashberg [Eli60]
and is reviewed among others in [Sca69]; strong electron–phonon interaction re-
sults in a renormalized (and complex) gap. The real part corresponds to the mass
enhancement

m∗

m
= 1+ λP , (14.1.3)
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with the value given by

λP = 2
∫ ∞

0

α2(ωP)F(ωP)

ωP
dωP ;

i.e. Eq. (12.2.12), which we encountered before when the electron–phonon interac-
tion in metals was discussed. There are several consequences: first, the magnitude
of the gap is enhanced over what is predicted by the BCS theory 2�/kBTc = 3.53;
approximate expressions which relate the gap to the enhancement [Mit84] are in
good agreement with the experimental findings. Second, the selfconsistent gap
equation is modified, and consequently the temperature dependence of the various
quantities, such as the penetration depth, surface impedance, and the coherence
effects are also modified; this was experimentally verified. Also seen is a modi-
fied frequency dependence of the absorption which can be related to the phonon
spectrum through the Holstein process discussed in Section 12.2.2. Because of the
existence of a single-particle gap and the particular behavior of the density of states
near to the gap, the Holstein process of phonon emission is modified. Instead of
Eq. (12.2.15), we find that in the superconducting state the absorptivity is

A(ω) ∝ 1

ω

∫ ω−2�

0
dωP (ω − ωP)

(
1− 4�2

(h̄ω − h̄ωP)2

)
α2 F(ωP) . (14.1.4)

This result can be arrived at by following the same procedure as for the normal
state [All71].

The frequency dependent absorption can be measured both above and below Tc

and thus the difference between the absorption in the normal state and supercon-
ducting state can be evaluated with high precision. The advantage then is that many
of the unknown parameters drop out by such normalization, and consequently the
above expression can be analyzed in detail. In addition, the same information is
provided by tunneling experiments [McM69] conducted in the superconducting
state. The factors α2 F(ω) as evaluated from tunneling and from optical measure-
ments of lead are displayed in Fig. 14.6. The two are in good agreement and give a
reliable description of this so-called Eliashberg factor. This factor can be inserted
into the relevant expressions of the transition temperature

Tc ≈ θD

1.45
exp

{
1.04(1+ λP)

λP − µ∗(1+ 0.62λP)

}
(14.1.5)

to establish (if it agrees with experiment) the mechanism of Cooper pair formation
[McM68]. Here θD is the Debye temperature and µ∗ refers to the effective screened
Coulomb interaction. Needless to say, the procedure works equally well for other
types of bosonic fluctuations which may mediate superconducting pairing; optical
experiments can potentially be extremely useful in clarifying such coupling mech-
anisms.



384 14 Broken symmetry states of metals

0

0

0.2

0

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70

2 4 6 8 10

80
Frequency ν (cm−1)

optics
tunneling

Pb

α
2  F

 (
ω

)
Energy hω (meV)

Fig. 14.6. Weighted phonon density of states of superconducting lead obtained from far-
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The normal state properties of materials with strong electron–electron inter-
actions have been discussed in Section 12.2.2. In the limit of low frequencies
these interactions lead to a strongly enhanced effective mass m∗ and relaxation
time τ ∗, also the plasma frequency ω∗p = (4πNe2/m∗)1/2 is renormalized; since
at high frequencies (and high temperatures T > Tcoh) these parameters are not
influenced by electron–electron interactions, the unrenormalized values are recov-
ered. Whether such interactions play an important role for the parameters which
characterize the superconducting state depends on whether the energy scale, which
determines the (smooth) crossover to the normalized low frequency response, is
larger or smaller than the superconducting gap; the former is given by the so-called
coherence temperature Tcoh that we have encountered in Section 12.2.2. In heavy
fermion superconductors the transition temperature is small, and 2� < kBTcoh;
consequently, the Cooper pairs are formed by the strongly renormalized electron
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states. Thus in the clean limit we obtain

λL = c

ω∗p
=

(
m∗c2

4πNe2

)1/2

, (14.1.6)

and the penetration depth is significantly enhanced by electron–electron interac-
tions. This enhancement can also be derived using a two-component Fermi-liquid
theory [Var86]. The above equation – with m∗ values evaluated from the thermo-
dynamic or electrodynamic response of the normal state; see Fig. 12.14 – accounts
well for the extremely large penetration depth values found [Hef96] in various
heavy fermion superconductors. The above analysis assumes that the materials are
in the clean limit – a by no means obvious assumption. If this is not the case, the
Tinkham–Ferrell sum rule arguments (7.4.6) should be used with the frequency
dependent mass and relaxation rate included.

Mechanisms different from the well known phonon mediated superconductivity
are also possible, and they may lead to pairing symmetry different from the s wave
symmetry we have considered before. Higher momentum pairing implies mo-
mentum dependent gaps (in analogy to the atomic wavefunctions corresponding to
different quantum numbers) with zeros expected for certain k values in momentum
space and a possible change in phase. If this occurs, the temperature dependencies
of various quantities are modified, which can be tested by experiment; also the
influence of impurities is modified, for example. This scenario happens for the
so-called high temperature superconductors, such as YBa2Cu3O7−δ (here δ refers
to the varying oxygen content which corresponds to a doping of charge carriers)
where the pairing has d wave symmetry. The momentum dependence of the gap is
drawn in Fig. 14.7, together with the momentum dependence of the superconduct-
ing gap as expected for isotropic and anisotropic s wave pairing where the gap does
not have spherical symmetry, but its momentum dependence reflects the underlying
crystal symmetry; in both cases there is a minimum gap value �min (which might
be zero).

If the gap is anisotropic with a finite minimum �min, the temperature dependence
of the penetration depth is led by an exponential term

λ(T )− λ(0)

λ(0)
∝ exp

{
−�min

kBT

}
. (14.1.7)

Higher momentum pairing, such as a pairing with d wave symmetry, leads to
several novel features. First, because the modes in the gap extend to zero energy,
the exponential temperature dependence turns into a power law behavior, and

λ(T )− λ(0)

λ(0)
∝

(
T

T0

)n

, (14.1.8)
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where the exponent n depends upon whether the nodes are points or lines in k
space; for line nodes, n = 1. Second, impurities introduce states at very small
energies and thus allow scattering for the quasi-particles; the electromagnetic
response is therefore significantly modified by impurities – much more than for s
wave pairing. Penetration depth measurements on the model compound of the high
temperature superconductor YBa2Cu3O7−δ give a linear temperature dependence
and provide evidence that lines of nodes exist in this type of superconductor. Im-
purity states are supposed to turn the above behavior into a quadratic temperature
dependence, again in agreement with experiments; the current status of the field is
reviewed by [Bon96].
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Needless to say, the rapid advances in the area of unusual superconductors may
lead to other pairing symmetries or superconducting phases with competing order
parameters. The exploration of the electrodynamic response is likely to play an
important role.

14.2 Density waves

The electrodynamic properties of density waves have many features common to
those that describe superconducting state. In both types of condensates, the collec-
tive mode couples to the electromagnetic field, and there is also a single-particle
gap with single-particle excitations occurring for photon energies h̄ω > 2�. There
are, however, several important differences. As discussed in Section 7.3, the
coherence factors appear in different combinations in the two types of condensates,
leading to significant differences as far as the conductivities and spectral weights
are concerned. Also, the effective mass of the charge density wave is large, and
the sum rule arguments for superconductors have to be modified. In addition, due
to lattice imperfections, the collective mode is pinned to the underlying lattice,
shifting the mode to finite frequencies.

14.2.1 The collective mode

For a perfect crystal and for an incommensurate density wave, the collective mode
contribution occurs at ω = 0 due to the translational invariance of the ground
state. In the presence of impurities, however, this translational invariance is broken,
and the collective modes are tied to the underlying lattice due to interactions with
impurities [Gru88, Gru94a]. To first order this can be described by an average
restoring force K = ω2

0m∗. The interaction between the collective mode and the
lattice imperfections, impurities etc. may also lead to a finite relaxation time τ ∗.
With these effects the equation of motion for the phase becomes

d2φ

dt2
+ 1

τ ∗
dφ

dt
+ ω2

0φ = −
Ne

m∗ E(t) . (14.2.1)

This equation is somewhat different from that derived in Eq. (7.2.12). Here we have
neglected the term which is associated with the spatial deformation of the mode,
and we have included a damping term – which leads to dissipation – together with
a restoring force term – which shifts the response from zero to finite frequencies.
Also, kF has been replaced by kF = π/N , a relation valid in one dimension. This
differential equation is solved with a response σ̂ coll(ω) similar to that of the Lorentz
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model (6.1.14):

σ coll
1 (ω) = Ne2

m∗
ω2/τ ∗(

ω2
0 − ω2

)2 + (ω/τ ∗)2
(14.2.2a)

σ coll
2 (ω) = −Ne2

m∗
ω

(
ω2

0 − ω2
)

(
ω2

0 − ω2
)2 + (ω/τ ∗)2

, (14.2.2b)

and the collective mode contribution to σ̂ (ω) now appears as a harmonic oscillator
at finite frequencies – with the same oscillator strength as given in Eq. (7.2.15a).

The mass m∗ of the condensate is large in the case of charge density waves,
for which the condensate develops as the consequence of electron–phonon interac-
tions. As given by Eq. (7.2.13), the effective mass m∗/m is large,

m∗

mb
= 1+ 4�2

λPh̄2ω2
P

, (14.2.3)

if the gap is larger than the corresponding phonon frequency ωP. Because of the
larger mass, the oscillator strength associated with the collective mode is small,
and thus the Tinkham–Ferrell sum rule is modified, as we have discussed in Sec-
tion 7.5.3. For an effective mass m∗/mb � 1, nearly all of the contributions to the
total spectral weight come, even in the clean limit, from single-particle excitations.

This behavior can be clearly seen by experiment if the optical conductivity
is measured over a broad spectral range. In Fig. 14.8 the frequency dependent
conductivity σ1(ω) is displayed for a number of materials in their charge and
spin density wave states [Gru88, Gru94a]. In all cases two absorption features
are seen: one typically in the microwave and one in the infrared spectral range.
The former corresponds to the response of the collective mode at finite frequency
ω0, and the latter is due to single-particle excitations across the charge density
wave gap. A few remarks are in order. First, it has been shown that impurities
are responsible for pinning the mode to a well defined position in the crystal, thus
ω0 is impurity concentration dependent. Second, the spectral weight of the mode
is small; fitting the observed resonance to a harmonic oscillator as described in
Eq. (14.2.1) leads to a large effective mass m∗. Third, there is a well defined onset
for the single-particle excitations at 2� (typically in the infrared spectral range).
The gap is in good overall agreement with the gap obtained from the temperature
dependent conductivity in the density wave state. At temperatures well below
the transition temperature, where �(T ) is close to its T = 0 value �, the dc
conductivity reads

σdc(T ) = σ0 exp
{
− �

kBT

}
, (14.2.4)
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Fig. 14.8. Frequency dependent conductivity σ1(ω) measured in several compounds in
their charge and spin density states (after [Don94, Gru88]). The data are shown for the
direction parallel to the highly conducting axis. The arrow indicates the gap measured by
tunneling for NbSe3. The dashed lines are fits to the data by Eq. (14.2.2a).

and the gap can also be found from dc transport measurements. Fourth, the behav-
ior of σ1(ω) above the gap is distinctively different from the σ1(ω) we observe for
superconductors. Instead of the smooth increase of σ1(ω) as h̄ω exceeds the gap
energy, here one finds a maximum above 2�, much like what one would expect for
the case 1 coherence factor displayed in Fig. 7.2.

One can use optical data, such as displayed in Fig. 14.8, to establish the rela-
tionship between the mass enhancement m∗/m and the single-particle gap 2�. In
Fig. 14.9 the effective mass obtained from the fit of the low frequency resonance
by Eqs (14.2.2) is plotted versus the gap energy �. The full line is the result of
Eq. (14.2.3), with λP = 0.5 and h̄ωP = 34 meV – both reasonable values for the
materials summarized in the figure.
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In contrast to superconductors, at zero frequency the response is capacitive be-
cause of the restoring force acting on the condensate. In the presence of impurities,
the force K – and consequently ω0 – are small, and the static dielectric constant
is therefore enormous. Including also the contributions from the single-particle
excitations, the zero frequency dielectric constant is written as

ε1(ω→ 0) = 1+ 4πNe

m∗ω2
0

+ 4πNe2h̄2

6mb�2
= 1+ εcoll

1 + ε
sp
1 , (14.2.5)

where the second and third terms on the right hand side represent the collective and
single-particle contributions to the dielectric constant. In the above equation we
have used the tight binding model of a one-dimensional semiconductor to account
for the contribution of single-particle excitations to the dielectric constant. With
ω0/2π = 1010 s−1, and for a mass m∗/m = 103, the zero frequency dielectric
constant is expected to be of the order of ε1(ω→ 0) ≈ 106; indeed such enormous
values have been observed in materials with charge density wave ground states
[Gru88].
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Fig. 14.10. Dynamics of the internal deformations of density waves. The top part of the
figure is the undistorted density wave; the middle part shows the mode distorted due to
interaction with impurities (full circles); and the bottom part displays the rearrangement of
the internal distortion by displacing the density wave period over the impurity as indicated
by the arrow. The process leads to an internal polarization �P = −2eλDW, where λDW is
the wavelength of the density wave.

To describe the effect of impurities by an average restoring force K is a gross
oversimplification since it neglects the dynamics of the local deformations of the
collective modes. The types of processes which have been neglected are shown in
Fig. 14.10. The top part of the figure displays an undistorted density wave, with
a period λDW = π/kF and a constant phase φ. In the presence of impurities, the
density wave is pinned as shown in the middle section of the figure. A low lying
excitation, which involves the dynamics of the internal deformations, is indicated
at the bottom; here a density wave segment has been displaced by λDW, leading to
a stretched density wave to the left and to a compressed part to the right side of
the impurity. The local deformation leads to an internal polarization of the mode
by virtue of the displaced charge which accompanies the stretched or compressed
density wave. This polarization �P is given by the spatial derivative of the phase

P(r) = −4πe
∂φ(r)
∂r

.

For randomly positioned impurities we expect a broad distribution of the time
and energy scales for the processes which reflect the dynamics of such interband
deformations. Such effects (a response typical to a glass) are described by a broad
superposition of Debye type relaxation processes, and various phenomenological
expressions have been proposed to account for the low frequency and long-time be-
havior of the electrical response. Among these, the so-called Cole–Cole expression
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response by Eq. (14.2.6).

(see for example [Nga79]),

ε̂(ω) = ε̂(ω→ 0)

1+ (iωτ0)
1−α , (14.2.6)

where τ0 is an average relaxation time and α < 1, is frequently used to describe
the so-called glassy behavior of a variety of random systems. Such low frequency
relaxation effects lead to an enhanced ac conductivity at low frequencies, such
as that shown in Fig. 14.11 for two materials with density wave ground states:
(TMTSF)2PF6, which undergoes a spin density wave transition at TSDW = 12 K,
and K0.3MoO3, which enters the charge density wave ground state below TCDW =
180 K. The dashed lines indicate the description in terms of a harmonic oscillator,
with pinning frequencies of 6 × 109 Hz and 1011 Hz, respectively, and the full
lines are fits to Eq. (14.2.6). While this description offers little insight into the
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gap opens as the temperature is lowered (after [Ves99]). The inset shows the normalized
conductivity spectra at various temperatures. The optical properties are those of a semicon-
ductor with a gap of � = 70 cm−1, but can also be well described by the Mattis–Bardeen
formalism, with case 1 coherence factors [Dre99].

microscopic details of the density wave dynamics, it is useful to establish that the
response is due to a broad distribution of relaxation times, a feature which often
occurs in glasses and amorphous structures – here we have a density wave glass,
the properties of which have not yet been fully explored.

14.2.2 Single-particle excitations

Single-particle excitations of density waves have a character which is different
from single-particle excitations of superconductors due to the different coherence



394 14 Broken symmetry states of metals

factors which occur in the two types of condensates. Case 1 coherence factors lead
to a peak in the optical conductivity at the gap frequency as displayed in Fig. 7.2,
in contrast to the gradual rise of the conductivity above the gap in the case of
superconductors for which case 2 coherence factors apply.

This has also been most clearly observed in materials which undergo transitions
to an incommensurate spin density wave state, with the best example the organic
linear chain compound (TMTSF)2PF6. The normal state properties of this material
when measured along the highly conducting direction – the direction along which
the incommensurate density structure develops – cannot be described by a straight-
forward Drude response, and therefore a simple analysis of the optical properties of
the density state is not possible. When measured with electric fields perpendicular
to the highly conducting axis, such complications do not arise; also, along this
direction the density wave is commensurate with the underlying lattice and thus
the collective mode contribution to the conductivity is absent, due to this so-called
commensurability pinning. Below the transition to the spin density wave state, a
well defined gap develops, as evidenced by the drop in reflectivity at frequencies
around 70 cm−1; the data are displayed in Fig. 14.12. What we observe is similar
to what can be calculated for case 1 coherence factors and what is displayed in
Fig. 7.8. The reflectivity can also be analyzed to lead to the frequency dependent
conductivity σ1(ω), which for several different temperatures is displayed in the
inset of the figure. The singularity at the gap of 70 cm−1, at temperatures much
lower than the transition temperature, is characteristic to a one-dimensional semi-
conductor, and this value, together with the transition temperature TSDW = 12 K,
places this material in the strong coupling spin density wave limit. The gap feature
progressively broadens, and also moves to lower frequencies, and an appropriate
analysis can be performed. Such studies conducted at different temperatures can
also be used to evaluate the temperature dependence of the single gap [Ves99];
there is an excellent agreement with results of other methods [Dre99].

14.2.3 Frequency and electric field dependent transport

A few comments on the non-linear response are in order here. Because of the
weak restoring force acting on density wave condensates, moderate electric fields
may depin the collective mode, leading to a dc, non-linear conduction process.
Of course, the smaller the restoring force – and thus the larger the low frequency
dielectric constant ε1 – the smaller the threshold field ET which is required for de-
pinning. The arguments lead to a particularly simple relation between the dielectric
constant and threshold field:

ε1(ω = 0)ET = 4πeNDW , (14.2.7)
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where NDW is the number of atoms in the area perpendicular to the direction along
which the density wave develops. This relation has indeed been confirmed in a
wide range of materials with charge density wave ground states [Gru89]. The
intimate relationship between the dielectric constant and fields which characterize
the non-linear response is, however, more general; a relation similar to that above
can be derived, for example, for Zener tunneling of semiconductors. The topic
of non-linear and frequency dependent response with all of its ramifications is,
however, beyond the scope of this book.
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Appendix A

Fourier and Laplace transformations

In various chapters of the book we made intensive use of the Fourier transformation
and the Laplace transformation. Although an essential part of any mathematical
course for physicists, we want to summarize the main relations, in particular those
important for our task.

A.1 Fourier transformation

The Fourier transformation describes the relationship between a time dependent
function and its spectral components, for example, or between a spatial dependent
function and its wavevectors. Basically any waveform can be generated by adding
up harmonic waves with the proper weight factor. The general relations between a
function f (t) and its Fourier transform F(ω) are

F(ω) =
∫ ∞

−∞
f (t) exp{−iωt} dt (A.1a)

f (t) = 1

2π

∫ ∞

−∞
F(ω) exp{iωt} dω . (A.1b)

In some texts, the Fourier transform and retransform are defined symmetrically
with 1/

√
2π as pre-factors. No pre-factors occur in the definition of the Fourier

transform and its inverse if f = ω/2π is used as frequency; however, the exponent
then becomes {2π i f t}. According to the applications of the Fourier transformation
in this book, we consider ω as an angular frequency and t as the time; but all the
expressions hold for wavevector q and spatial coordinate r as well, separately for
each of the three vector components. Also of interest is the convolution of two
functions f and g

h(t) = [ f (t ′) ∗ g(t ′)](t) =
∫ ∞

−∞
f (t ′)g(t − t ′) dt ′

399
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Table A.1. Some important functions f (t) and their Fourier transforms F(ω).
F(ω) = ∫∞

−∞ f (t) exp{−iωt} dt for the transformation and
f (t) = 1

2π

∫∞
−∞ F(ω) exp{iωt} dω for the retransformation.

f (t) F(ω)

1 2πδ{ω}
δ{t} 1
cos{ωt} π (δ{ω − ω0} + δ{ω + ω0})
sin{ωt} −iπ (δ{ω − ω0} − δ{ω + ω0})
exp{iωt} 2πδ{ω − ω0}
exp

{
− t2

2(�t)2

}
2π
�ω

exp
{
− ω2

2(�ω)2

}
exp{−�ω|t |} 2�ω

(�ω)2+ω2

since the convolution theorem states that the Fourier transform of a product of two
functions f and g equals the convolution product of the individual spectra, and
vice versa:

H(ω) =
∫ ∞

−∞
[ f ∗ ∗ g](t) exp{−iωt} dt = F(ω)G(ω) (A.2a)

h(t) = [ f ∗ g∗](t) = 1

(2π)2

∫ ∞

−∞
F(ω)G∗(ω) exp{iωt} dω . (A.2b)

Applied to the autocorrelation we arrive at Parseval’s identity, which expresses the
fact that the total energy of a time dependent function, measured as the integral over
| f (t)|2, is equal to the total energy of its spectrum |F(ω)|2 (the so-called Wiener–
Khinchine theorem). From these formulas we can easily derive the Nyquist cri-
terion, which states that any waveform (which can be composed by harmonic
functions) can be sampled unambiguously and without any loss of information
using a sampling frequency greater than or equal to twice the bandwidth of the
system (Shannon’s sampling theorem). In a Fourier transform spectrometer the
data points have to be taken at a distance of mirror displacement shorter than λ/2 of
the maximum frequency f = c/λ which should be obtained. These considerations
also limit the resolution of a Fourier transform spectrometer due to the maximum
length of the path difference. According to Rayleigh’s criterion the interferogram
has to be measured up to a path length of at least δmax in order to resolve two
spectral lines separated by a frequency c/δmax. The scaling of the function in t in
the form f (at) leads to the inverse scaling of the Fourier transform: 1

|a|F
(
ω
a

)
. The

differentiation d
dt f (t) becomes a multiplication in the Fourier transform: iωF(ω).
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Fig. A.1. Graphs of different functions f (t) and their Fourier transforms F(ω) =
1/(2π)

∫∞
−∞ f (t) exp{iωt} dt : (a) box function; (b) Gaussian curve; (c) Lorentzian curve;

(d) δ-function at t = 0; (e) harmonic wave.
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In the following we want to give some examples of the Fourier transformations
depicted in Fig. A.1. A box function, for instance,

f (t) =
{

1 |t | < t0
0 |t | > t0

(A.3a)

leads to a sinc function (Fig. A.1a)

F(ω) = 2 sin{ωt0}
ω

, (A.3b)

well known from the diffraction pattern of a slit. The function f (t) = t−1/2 remains
unchanged during the Fourier transformation: F(ω) = (ω/2π)−1/2. In the same

way, the Gaussian curve f (t) = exp
{
− t2

2(�t)2

}
of the width �t is transformed to

F(ω) = 2π

�ω
exp

{
− ω2

2(�ω)2

}
, (A.4)

as displayed in Fig. A.1b. The width of the spectrum �ω is related to the width of
its Fourier transform by �t = 1/�ω. A Lorentzian curve (Fig. A.1c) is obtained
by transforming the exponential decay f (t) = exp{−�ω|t |}:

F(ω) = 2�ω

(�ω)2 + ω2
, (A.5)

the line shape of atomic transitions, for instance. A delta function f (t) = δ{t}
leads to a flat response F(ω) = 1 as depicted in Fig. A.1d; for the converse
transformation of f (ω) = δ{ω}we obtain F(t) = 1/2π since δ{ω/2π} = 2πδ{ω}.
Fig. A.1e shows that from a harmonic wave f (t) = exp{iωt} we get a δ-function
at the frequency ω0 as the Fourier transform:

F(ω) = 2πδ{ω − ω0} . (A.6)

Table A.1 summarizes the most important examples of the Fourier transformation.
The Fourier transformation is a powerful tool which, besides fast signal analysis,

can lead to deep insight into the properties of time or space dependent phenomena.
Although we have only discussed the one-dimensional case, the Fourier transfor-
mation can be extended to two and three dimensions, which can be useful for the
description of problems on surfaces or in crystals, for example.
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A.2 Laplace transformation

The attempt to apply the Fourier transformation in a straightforward manner in
order to obtain the Fourier transform of a step function

f (t) =


− 1

2 t < 0
0 t = 0
1
2 t > 0

(A.7)

fails because the integral in Eq. (A.1a) does not converge. The problem can be
avoided by multiplying f (t) by a convergency factor exp{−ηt}, which then allows
the integral to be solved by finally taking the limη→0. Since the function is odd, we
can express it in terms of the sinc function

f (t) = lim
η→0

1

π

∫ ∞

0

ω

η2 + ω2
sin{ωt} dω (A.8)

= 1

π

∫ ∞

0

sin{ωt}
ω

dω , (A.9)

and thus F(ω) = 1√
π

1
ω

. If

f (t) =
{ 0 t < 0

1 t > 0
, (A.10a)

the Fourier representation has the form

f (t) = 1

2
+ 1

π

∫ ∞

0

sin{ωt}
ω

dω . (A.10b)

This can be expressed more elegantly by the Laplace transformation. The definition
of the Laplace transform and its retransform is

P(ω) =
∫ ∞

0
f (t) exp{−ωt} dt (A.11a)

f (t) = 1

2π i

∫ c+i∞

c−i∞
P(ω) exp{ωt} dω , (A.11b)

where ω is complex (Fig. A.2). The Fourier transform is the degenerate form of
the Laplace transform if the latter has purely imaginary arguments (c → 0).

The transformation is linear and the convolution becomes a multiplication

P(ω) =
∫ ∞

0

[∫ t

0
f1(t − t ′) f2(t

′)dt ′
]

exp
{−ωt

}
dt

=
∫ ∞

0
f1(t) exp

{−ωt
}

d ·
∫ ∞

0
f2(t) exp

{−ωt
}

dt . (A.12)
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0 C

Im ω

Re ω

Fig. A.2. Contour for inversion integration used by Laplace transformation; the integral is
calculated for the limit that the radius of the semicircle goes to infinity.

The properties can best be seen by a few examples, as summarized in Table A.2.

Table A.2. Some important functions f (t) and their Laplace transforms P(ω).
P(ω) = ∫∞

0 f (t) exp{−ωt}dt for the transformation and

f (t) = 1
2π i

∫ c+i∞
c−i∞ P(ω) exp{ωt} dω for the retransformation.

f (t) P(ω)

1 1
ω

exp{−at} 1
ω+a

cos{ωt} π (δ{ω − ω0} + δ{ω + ω0})
sin{at} a

ω2+a2

1
t2+a2

1
a sin aω

δ{t − a} exp{−aω}
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Appendix B

Medium of finite thickness

In the expressions (2.4.15) and (2.4.21) we arrived at the power ratio reflected
by or transmitted through the surface of an infinitely thick medium, which is
characterized by the optical constants n and k. For a material of finite thickness
d, the situation becomes more complicated because the electromagnetic radiation
which is transmitted through the first interface does not entirely pass through the
second interface; part of it is reflected from the back of the material. This portion
eventually hits the surface, where again part of it is transmitted and contributes to
the backgoing signal, while the remaining portion is reflected again and stays inside
the material. This multireflection continues infinitely with decreasing intensity as
depicted in Fig. B.1.

In this appendix we discuss some of the optical effects related to multireflection
which becomes particularly important in media with a thickness smaller than the
skin depth but (significantly) larger than half the wavelength. Note, the skin depth
does not define a sharp boundary but serves as a characteristic length scale which
indicates that, for materials which are considerably thicker than δ0, most of the
radiation is absorbed before it reaches the rear side. First we introduce the notion
of film impedance before the concept of impedance mismatch is applied to a
multilayer system. We finally derive expressions for the reflection and transmission
factors of various multilayer systems.

B.1 Film impedance

First we define the impedance of a film with thickness d which is smaller than the
skin depth δ0. In this case Eq. (2.4.24) is not appropriate because for its derivation
we used the assumption that the medium is an infinite half plane. For very thin

406
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Fig. B.1. Reflection off and transmission through a dielectric slab with thickness d and
optical parameters ε1, σ1, and µ1. The multireflections cause interference. Ei, Et, and
Er indicate the incident, transmitted, and reflected electric fields, respectively. The optical
properties of vacuum are given by ε′1 = µ′1 = 1 and σ ′1 = 0.

films (d � δ0) the film impedance is given by

ẐF = Ê

Ĥ1 − Ĥ2

≈ Ê

Ĵ
= 1

σ̂d
(B.1)

if we assume that the current density Ĵ is uniform throughout the film. Ĥ1 and Ĥ2

are the magnetic fields at the two sides of the film; Ê denotes the electric field. For
intermediate thickness d ≈ δ0, we have to integrate over the actual field distribution
in the film, leading to [Sch94]:

E(z) = E0
cosh{iq̂z}

cosh{iq̂d/2} , (B.2)

where the wavevector is given by q̂ = ω
c

√
ε̂. In the general case of a thin film of

thickness d, width b, and length l, the film impedance is given by [Sch75]

ẐF = l

2b

(
4π iω

c2σ̂

)2

coth
{

d(iπωσ̂ )1/2

c

}
. (B.3)

These finite thickness corrections are especially important in the radiofrequency
range since for these frequencies the skin depth δ0 is of the order of the typical film
thickness d ≈ 1 µm.
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Fig. B.2. (a) Three-layer system: free standing film with impedance Ẑ2 and thickness d2

surrounded by vacuum (Z0). (b) Four-layer arrangement: film (Ẑ2, d2) on a substrate with
impedance Ẑ3 and thickness d3. (c) Substrate (Ẑ3, d3) covered on both sides by films with
impedances Ẑ2 and Ẑ4 and thicknesses d2 and d4, respectively.

B.2 Impedance mismatch

A very powerful approach to the problems of multilayer reflectivity utilizes the
surface impedance of an interface [Hea65, Ram94]. It is useful to start looking at
the situation where there are three different regions. Let us assume that a wave
traveling in medium 1 hits the boundary to medium 2 and finally enters medium
3 (Fig. B.2a). The reflectivity of the entire system is not completely determined
by the impedance of the first and second material but also by the properties of
the third material, because part of the light is reflected at the interface between
the second and third layers. This effect is taken into account by considering the
effective impedance of the second material to be changed by the third one. For
normal incidence the light with frequency ω sees the so-called load impedance ẐL2

at the first interface between medium 1 and 2; it is given by

ẐL2 = Ẑ2
Ẑ3 cosh{−iq̂2d2} + Ẑ2 sinh{−iq̂2d2}
Ẑ2 cosh{−iq̂2d2} + Ẑ3 sinh{−iq̂2d2}

, (B.4)

where q̂2 = ω
c

√
(ε̂)2 is the value of the wavevector in medium 2, and d2 is

the thickness of the second material. The reflectivity at this interface is easily
calculated from Eq. (2.4.29) by substituting for Ẑ2 by this load impedance:

r̂ = Ẑ1 − ẐL2

Ẑ1 + ẐL2

. (B.5)

These formulas are applied repeatedly in order to analyze any series of dielectric
slabs, no matter what thickness or surface impedance. For example, if another
dielectric layer is added at the back as shown in Fig. B.2b, the load impedance
ẐL3 seen by region 2 is calculated using an equation similar to Eq. (B.4). Then
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ẐL3 is used in place of Ẑ3 in the calculation of ẐL2. Following this procedure the
load impedance of any multilayer system is evaluated by starting from the rear and
adding layer by layer to the front.

In the limiting case of a thin metal film (with impedance Ẑ2 and with d2 very
small) placed in air (Ẑ3 = Z0), Eq. (B.4) becomes

ẐL2 = Z0 − iq̂2 Ẑ2d2

1− Z0(iq̂2/Ẑ2)d2

. (B.6)

The second term in the numerator is negligible for small d2 because the complex
dielectric constant (ε̂)2 of the film cancels. In the denominator, however, the term
proportional to d2 must not be neglected as the factor q̂2/Ẑ2 is proportional to (ε̂)2.
In the limit where d2 is small, we then arrive at

ẐL2 = Z0

1− Z0(
iω
4π (ε̂)2)d2

≈ Z0

1+ Z0(σ̂ )2d2
(B.7)

for the equation of the load impedance of a thin film.
For a two-layer system consisting of a conducting film on a dielectric substrate,

Z0 is replaced by the effective impedance of the substrate ẐL3:

ẐL2 = ẐL3

1+ ẐL3(σ̂ )2d2

,

where the load impedance seen is

ẐL3 = ẐD
Z0 cosh{−iq̂3d3} + Ẑ3 sinh{−iq̂3d3}
Ẑ3 cosh{−iq̂3d3} + Z0 sinh{−iq̂3d3}

, (B.8)

where Ẑ3 is the substrate impedance and d3 is its thickness. In the case where the
backing region is another dielectric layer, as shown in Fig. B.2c, the value of Z0 in
Eq. (B.8) is replaced by an effective surface impedance which is calculated using
the same equations. This procedure can be repeated for any series of layers with
different optical properties (n and k) and film thickness d.

B.3 Multilayer reflection and transmission

In the following we discuss the overall reflectivity and transmission of various
multilayer systems, starting from one thin layer, going to double layer compounds,
etc.

B.3.1 Dielectric slab

The evaluation of the amplitude and phase of the electromagnetic wave is compli-
cated but straightforward (for example by using matrices), and here we merely give
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the end result, valid for an isotropic and homogeneous medium [Bor99, Hea65].
By calculating the multiple reflections and transmissions at the two symmetrical
boundaries (given by z = 0 and z = d), the final expression for the reflectivity RF

of a material with finite thickness d is

RF = R
(1− exp{−αd})2 + 4 exp{−αd} sin2 β

(1− R exp{−αd})2 + 4R exp{−αd} sin2{β + φr}
, (B.9)

with the bulk reflectivity

R =
∣∣∣∣∣1− N̂

1+ N̂

∣∣∣∣∣
2

= (1− n)2 + k2

(1+ n)2 + k2
(B.10a)

as in Eq. (2.4.15), obtained in the limiting case for d →∞; the phase change upon
reflection is

φr = arctan
{ −2k

1− n2 − k2

}
(B.10b)

from Eq. (2.4.14). The power absorption coefficient α = 4πk/λ0 was defined in
Eq. (2.3.18); it describes the attenuation of the wave. The angle

β = 2πnd

λ0
(B.11)

indicates the phase change on once passing through the medium of thickness d
and refractive index n. Here λ0 is the wavelength in a vacuum, and hence β

describes the ratio of film thickness and wavelength in the medium. Sometimes
it is convenient to combine both in a complex angle δ = β + iαd/2. We obtain for
the transmission

TF = [(1− R)2 + 4R sin2 φr] exp{−αd}
(1− R exp{−αd})2 + 4R exp{−αd} sin2{β + φr}

, (B.12a)

φt = 2πnd

λ0
− arctan

{
k(n2 + k2 − 1)

(k2 + n2)(2+ n)n

}

+ arctan

{
R exp

{−αd
}

sin2{β + φr
}

1− R exp
{−αd

}
cos2

{
β + φr

}
}

. (B.12b)

The second term in the denominator of Eq. (B.12a) describes the interference; for
strong absorption it might be neglected, and the equation then reduces to

TF =
(1− R)2(1+ k2

n2 ) exp{−αd}
1− R2 exp{−2αd} . (B.13)

This relation also describes the case where the wavelength λ is larger than the film
thickness d , and for that reason no interference is present. In the limit of infinite
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thickness (d → ∞), obviously there is no transmission through the material and
TF = 0; the radiation is either reflected or fully absorbed. For optically very thin
plates (nd � λ), both components of the complex angle αd and β are very small,
and therefore the reflection RF is also close to zero. The transmission through the
material is then given by

TF ≈ (1−R)2 exp
{
−4πkd

λ0

}
= (1−R)2 exp

{
−2ωkd

c

}
= (1−R)2 exp{−αd} ;

(B.14)
the rest of the signal is absorbed. At intermediate optical thickness one obtains a
series of maxima and minima in the transmitted power as the frequency is varied
(Fig. B.3). The interference extrema are separated by

� f = c

2nd
, (B.15)

and similar oscillations occur when the thickness is varied keeping the frequency
fixed: �d = c

2n f . This phenomenon is utilized to determine the dielectric proper-
ties of thin films or transparent media.

It is interesting to consider a very thin metallic film in air as we have done with
the impedance approach; in this case Eqs (B.9) and (B.12a) simplify to

RF ≈ (ε2
1 + ε2

2)4π
2d2/λ2

0

4+ 8ε2πd/λ0 + (ε2
1 + ε2

2)4π
2d2/λ2

0

≈
(

σdc Z0d

σdc Z0d + 2

)2

=
(

1+ c

2πσdcd

)−2

(B.16)

TF ≈ 4

4+ 8ε2πd/λ0 + (ε2
1 + ε2

2)4π
2d2/λ2

0

≈
(

2

σdc Z0d + 2

)2

,

=
(

1+ 2πσdcd

c

)−2

(B.17)

where Z0 = 377 � is the wave impedance of a vacuum, and σdc denotes the dc
conductivity of the film. The second approximation used in both relations holds if
ε2

1 � ε2
2 , and the optical properties then are frequency independent, as it becomes

obvious after substituting 2πε2d/λ = σdc Z0d . The absorptivity of the film AF =
1− RF − TF is given by

AF ≈ 8ε2πd/λ0

4+ 8ε2π/λ0 + (ε2
1 + ε2

2)4π
2d2/λ2

0

≈ 4σdc Z0d

(σdc Z0d + 2)2
= c

πσdcd

(
1+ c

2πσdcd

)−2

(B.18)

and is displayed in Fig. B.4. Since the reflection and transmission depend on d,
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Fig. B.3. Frequency dependence of the (a) reflection off and (b) transmission through an
insulating material (α = 0) with thickness d calculated by Eqs (B.19) and (B.21). The
curves indicated by the bulk reflectivity R = 0.04, 0.18, and 0.8 correspond to different
refractive indices: n = 1.5, 2.5, and 18.

the absorption is also thickness dependent. AF exhibits a maximum of 0.5 at the
so-called Woltersdorff thickness dW = 2/(σdc Z0); in addition, RF = TF = 0.25
for this thickness [Wol34]. For σdc = 100 �−1 cm−1 we obtain dW = 2/σdc Z0 =
0.53 µm, for instance. For d < dW most of the light is transmitted; for d > dW

most of it is reflected. This behavior has to be considered if the absorptivity of
metallic films is important for applications.

As a first example, let us consider the optical properties of an insulating material
(α = 0 and therefore k = 0) with finite thickness d. The film reflectivity derived
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Fig. B.4. Reflection RF, transmission TF, and absorption AF of thin metal films as a
function of thickness d normalized to the Woltersdorff thickness dW which is given by
dW = 2/σdc Z0.

in Eq. (B.9) then simplifies to the Airy function

RF = 4R sin2{β}
(1− R)2 + 4R sin2{β} =

2R − 2R cos{2β}
1+ R2 − 2R cos{2β} , (B.19)

as plotted in Fig. B.3a. The interference leads to extrema in the reflectivity given
by

Rextrema
F = R

(
1± exp{−αd}

1± R exp{−αd}
)2

; (B.20)

for α = 4πνk = 0 the minima drop to zero and the maxima reach Rmax
F =

4R/(1+ R)2, and are evenly spaced by a frequency of � f = c/(2nd). The
transmission TF shows similar fringes (Fig. B.3b):

TF = (1− R)2

(1− R)2 + 4R sin2{β} =
(1− R)2

1+ R2 − 2R cos{2β} , (B.21)
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where the extrema are given by

T extrema
F = (1− R)2 exp{−αd}

(1± R exp{−αd})2
, (B.22)

which for α = 0 reaches T max
F = 1 and T min

F = (1 − R)2/(1 + R)2. Hence for a
perfect match of wavelength and film thickness all the radiation passes through the
film, even for finite refractive index n (e.g. Fabry–Perot filter, etalon).

Following the discussion of the bulk properties in Section 5.1.2, the case of
a conductor requires us to look at different frequency ranges separately. The
frequency dependence of the reflectivity of a typical metal film is displayed in
Fig. B.5a, where we assume a dc conductivity σdc = 105 �−1 cm−1 and a plasma
frequency νp = ωp/(2πc) = 104 cm−1. It is basically 1 for ω < 1/τ , and decreases
significantly only when approaching ωp. Only for very thin films does the plasma
edge become broader and the low frequency value of the reflectivity decrease.
Note that we do not consider surface scattering or other deviations of the thin film
material properties from the bulk behavior. If the layer is much thicker than the
skin depth given by Eq. (2.3.15b), there is no interference and the intensity dies off
following Beer’s law (2.3.14). This implies that the amplitude of the electric field
E decreases to exp{−2π} ≈ 1/536 per wavelength propagating into the metal. In
the low frequency limit λ > d, Eq. (B.13) applies, which leads to a frequency
independent transmission. Fig. B.5b shows that the transmission has a constant
value up to a point where the skin depth δ0 becomes comparable to the sample
thickness d, above which it decreases exponentially. With the frequency increasing
further, we exceed the Hagen–Rubens limit (ω � 1/τ ) and the reflection off
the surface decreases, causing a dramatic increase in the transmitted radiation
(ultraviolet transparency). For very thin films (e.g. d = 0.1 µm in Fig. B.5b),
the transmission does not change. The absorptivity AF = 1 − (RF + TF) shows a
similar behavior (Fig. B.5c). For δ0 � d the absorptivity is frequency independent;
its value is inversely proportional to the thickness of the film. In the range ω � 1/τ
it follows approximately the Hagen–Rubens relation (5.1.17)

AF ≈ 1− RF =
(

2ω

πσdc

)1/2

, (B.23)

since TF is many orders of magnitude smaller. Above the scattering rate the
absorptivity stays constant up to the plasma frequency.

Finally the optical properties of a thin semiconducting film show distinct dif-
ferences from those of the bulk material. While the reflectivity RF of an infinitely
thick semiconductor slab drops off according to the Hagen–Rubens relation (B.23),
the film with a finite thickness has clear modulations due to the multireflections on
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Fig. B.5. Optical properties of a thin metal film versus frequency with a dc conductivity
of σdc = 105 �−1 cm−1 and a plasma frequency νp = 104 cm−1. (a) Reflectivity RF of
films with thickness d = 0.1 mm compared to the bulk properties. (b) Transmission TF of
a thin metal film for different thicknesses d of the film.



416 Appendix B Medium of finite thickness

top of this behavior (Eq. (B.9)). The median reflectivity is given by

Rmedian
F = R

1+ exp{−2αd}
1+ R2 exp{−2αd} ,

while the values of the minima and maxima can be calculated by Eq. (B.20).
Comparison with the insulating case shows that the spacing � f = c/(2nd) does
not change with increasing losses in the material. The transmission TF and the
absorptivity AF = 1 − RF − TF show an interference pattern. The extrema of
the transmission are given above by Eq. (B.22); the average transmission can be
written as

T median
F = (1− R)2 exp{−αd}

1+ R2 exp{−2αd} ,

which in our example is only slightly frequency dependent.

B.3.2 Multilayers

The analysis of the optical properties of a sandwich structure consisting of many
layers has to start from the complex Fresnel formulas as derived in Section 2.4

r̂12 = N̂1 − N̂2

N̂1 + N̂2

and t̂12 = 2N̂2

N̂1 + N̂2

(B.24)

for light traveling from medium 1 to medium 2. For a one-layer system (i.e. a
material of thickness d, refractive index n, and extinction coefficient k which is
situated between materials labeled by the subscripts 1 and 3), the total reflection
and transmission coefficients are

r̂123 = r̂12 + r̂23 exp{2iδ}
1+ r̂12r̂23 exp{2iδ} and t̂123 = t̂12 t̂23 exp{iδ}

1+ r̂12r̂23 exp{2iδ} , (B.25)

where the reflection and transmission coefficients of each interface are calculated
according to Eqs (B.24) and the complex angle

δ = β + iαd/2 = 2πd(n + ik)/λ0

as defined above. On calculating the power reflection coefficient, we see that
these results are identical to the Eqs (B.9) and (B.12a) obtained in the previous
subsection.

Obviously this procedure can be repeated for multilayer systems by applying the
same method developed in the impedance mismatch approach (Section B.2). The
complex reflection coefficient r̂23 of the last interface has to be replaced by the total
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reflection coefficient of two subsequent interfaces according to Eq. (B.25). Thus
we obtain after some rearrangement

r̂1234 =
r̂12 + r̂23 exp{2iδ2} + r̂34 exp

{
2i(δ2 + δ3)

}+ r̂12r̂23r̂34 exp
{
2iδ3

}
1+ r̂12r̂23 exp

{
2iδ2

}+ r̂23r̂34 exp
{
2iδ3

}+ r̂12r̂34 exp
{
2i(δ2 + δ3)

} .

(B.26)
The corresponding formula describing the transmission of layer 2 and layer 3
between media 1 and media 4 has the form

t̂1234 =
t̂12 t̂23 t̂34 exp

{
i(δ2 + δ3)

}
1+ r̂12r̂23 exp

{
2iδ2

}+ r̂23r̂34 exp
{
2iδ3

}+ r̂12r̂34 exp
{
2i(δ2 + δ3)

} ,

(B.27)
where t̂ pq and r̂ pq are the complex Fresnel transmission and reflection coefficients
at the boundaries between media p and media q (with p, q = 1, 2, 3, 4), and the
complex angle δp = βp + iαpdp/2 = 2πdp(n p + ikp)/λ0.

By iteration we arrive at the equations for a three-layer system:

r̂12345 = A

B
, (B.28)

where

A = r̂12 + r̂23 exp{2iδ2} + r̂34 exp{2i(δ2 + δ3)} + r̂45 exp
{
2i(δ2 + δ3 + δ4)

}
+ r̂12r̂23r̂34 exp{2iδ3} + r̂23r̂34r̂45 exp{2i(δ2 + δ4)}
+ r̂12r̂34r̂45 exp{2iδ4} + r̂12r̂23r̂45 exp{2i(δ3 + δ4)}

and

B = 1+ r̂12r̂23 exp
{
2iδ2

}+ r̂23r̂34 exp
{
2iδ3

}+ r̂34r̂45 exp
{
2iδ4

}
+ r̂12r̂34 exp

{
2i(δ2 + δ3)

}+ r̂23r̂45 exp
{
2i(δ3 + δ4)

}
+ r̂12r̂45 exp

{
2i(δ2 + δ3 + δ4)

}+ r̂12r̂23r̂34r̂45 exp
{
2i(δ2 + δ4)

}
.

The transmission coefficient of the three-layer system is given by (layers 2, 3, and
4 between media 1 and 5)

t̂12345 =
t̂12 t̂23 t̂34 t̂45 exp

{
i(δ2 + δ3 + δ4)

}
B

, (B.29)

where the notations are the same as used before.
In practice a transparent known substrate covered on one side with the material

of interest represents a typical two-layer system. The values n and k of the bare
substrate are known or measured beforehand. In Fig. B.6 the influence of the
thickness of a conducting film on the interference pattern is demonstrated. One
side of a sapphire substrate (d3 = 0.41 mm) is covered with a metallic film of
NbN with d2 = 20 Å, 140 Å, and 300 Å (curves 2, 3, and 4, respectively). The
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Fig. B.6. Transmission through a plane parallel sapphire plate (thickness d3 = 0.41 mm)
with a metallic NbN film of different thicknesses: bare substrate (curve 1); d2 = 20 Å
(curve 2); d2 = 140 Å (curve 3); and d2 = 300 Å (curve 4). The spectra are taken at room
temperature. The lines are fits according to Eq. (B.27) (from [Gor93a]).

interference pattern can be well described by Eq. (B.27) using n3 = 3.39 and
k3 = 0.0003 as the refractive index of the substrate [Gor93a]. It is interesting to
compare these results with those displayed in Fig. 11.17, where not the thickness
of the film but the conductivity of the material changes; the transmission and the
phase shift depend on the surface impedance of the film ẐF = (σ̂d)−1 evaluated
by Eq. (B.1).

In Fig. B.7a the transmission spectra of a 115 Å thick NbN film at two different
temperatures above and below the superconducting transition are shown. The solid
lines in the upper panel represent the theoretical fit of the multireflection in this
two-layer system. In the normal state transmission spectra vary only slightly while
the temperature decreases from 300 K down to transition temperature Tc ≈ 12 K.
Below Tc we see that at small frequencies the transmission decreases by about
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Fig. B.7. (a) Transmission spectra TF(ν) of an asymmetrical Fabry–Perot resonator,
formed by a NbN film (d2 = 115 Å) on a sapphire substrate (0.43 mm), measured at
two temperatures above and below critical temperature Tc ≈ 12 K. (b) Transmission
spectra TF(ν) of a plane parallel sapphire plate (0.41 mm) covered with NbN films on
both sides (d2 = 250 Å and d4 = 60 Å), again measured at 300 K and 5 K. The solid lines
represent the theoretical fit. (c) For the latter case the temperature dependence of the optical
conductivity σ1(T ) of NbN film is calculated for two frequencies, 8 cm−1 and 29 cm−1

(after [Gor93a, Gor93b]). Note the good agreement with the theoretical predictions shown
in Fig. 7.4.
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an order of magnitude, while at higher frequencies ω > 2�/h̄ it increases. If
the substrate is covered on both sides, a three-layer system is obtained where the
internal reflections in the substrate are significantly enhanced. A system with two
metallic films on a dielectric substrate is essentially a symmetrical Fabry–Perot res-
onator with a much higher quality factor Q (or finesse F according to Eq. (11.3.1))
compared to the asymmetrical one. The sensitivity of the measurement is increased
because the interaction of the wave with the material is multiplied. The trans-
mission coefficients of such a Fabry–Perot resonator with NbN mirrors is shown
in Fig. B.7b. The Q factors of the resonances increase strongly when the films
become superconducting, which is connected with decrease of losses and increase
of reflectivities of the mirrors. The material parameters of the substrate do not
change significantly. Fig. B.7c shows temperature behavior of optical conductivity
of the NbN film, obtained by least mean square fitting treatment of the transmission
spectra. It is clearly seen that at the superconducting transition the conductivity
drops for T → 0, but for low frequencies (ν = 8 cm−1) a peak develops right
below Tc. The results are in good agreement with the theoretical predictions by the
BCS theory as calculated by the Mattis–Bardeen formula (7.4.20) and displayed in
Fig. 7.4.
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Prokhorov, V.I. Makhov, J. Schützmann, and K.F. Renk, Int. J. Infrared
Millimeter Waves 14, 683 (1993)

[Gor93b] B.P. Gorshunov, I.V. Fedorov, G.V. Kozlov, A.A. Volkov, and A.D. Semenov,
Solid State Commun. 87, 17 (1993)

[Hea65] O.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1963)
[Hec98] E. Hecht, Optics, 3rd edition (Addison Wesley, Reading, MA, 1998)
[Ram94] S. Ramo, J.R. Whinnery, and T.v. Duzer, Fields and Waves in Communication

Electronics, 3rd edition (John Wiley & Sons, New York, 1994)
[Sch75] H. Schunk, Stromverdrängung (Hüthig Verlag, Heidelberg, 1975)
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Appendix C

k · p perturbation theory

The method of k·p perturbation theory was originally introduced by J. Bardeen and
F. Seitz as a means of determining effective masses and crystal wavefunctions near
high symmetry points of k [Sei40]. Considering small q as a perturbation, the k ·p
perturbation theory can be utilized to evaluate the transition between |k〉 and |k′〉
states. The matrix element which appears in Eq. (4.3.20) can be evaluated using
Bloch functions (Eq. (4.3.5)). Using the wavefunction ψkl = �−1/2ukl exp{ik·r} =
|kl〉 the Schrödinger equation Hkψkl = Eklψkl becomes

Hkukl = Eklukl ,

with the Hamilton operator

Hk = p2

2m
+ h̄

m
k · p+ h̄2k2

2m
+ V (r) . (C.1)

In order to find uk+q,l ′ in the Schrödinger equation Hk+quk+q,l ′ = Ek+q,l ′uk+q,l ′ ,
we assume that q is small, and consequently the Hamiltonian becomes

Hk+q = Hk + h̄q · (p+ h̄k)
m

+ h̄2q2

2m
, (C.2)

where the second term is considered a perturbation. The state uk+q,l ′ can be found
by performing a perturbation around ukl ′

|k+ ql ′〉∗ = |kl ′〉∗ +
∑

l ′′
|kl ′′〉∗ 〈kl ′′|Hk+q −Hk|kl ′, 〉∗

Ekl ′ − Ekl ′′

= |kl ′〉∗ + h̄

m

∑
l ′′
|kl ′′〉∗ 〈kl ′′|q · p|kl ′〉∗

Ekl ′ − Ekl ′′
, (C.3)

where the integration over the squared terms (q · k and q2) in Eq. (C.2) is zero
since they are not operators and the Bloch functions are orthogonal. Here the 〈 〉∗
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indicates that we consider a unit cell (Eq. (4.3.12)). Thus

〈kl|k+ q, l ′〉∗ = 〈kl|kl ′〉∗ + h̄

m

∑
l ′′

〈kl|kl ′′〉∗〈kl ′′|q · p|kl ′〉∗
Ekl ′ − Ekl ′′

= δll ′ + h̄

m

∑
l ′

〈kl|q · p|kl ′〉∗
Ekl ′ − Ekl

, (C.4)

since 〈kl|kl ′′〉∗ = 0 for l �= l ′′ because the periodic part is orthogonal 〈uklukl ′ 〉 =
δll ′ . By defining the momentum operator Pll ′ in the direction of q and the energy
difference h̄ωl ′l as

Pll ′ = �−1
∫

dr ukl p ukl ′

h̄ωl ′l = Ekl ′ − Ekl

with � the volume of the unit cell, we obtain

〈kl|k+ q, l ′〉∗ = δll ′ + h̄q

m

∑
l ′

Pll ′

h̄ωl ′l
. (C.5)

Since the summation is reduced to the exclusion of the term l = l ′ , we finally
obtain for the expression in Eq. (4.3.20)

|〈k+ q, l ′| exp{iq · r}|kl〉∗|2 = δll ′ + (1− δll ′)

(
q

mωl ′l

)2

|Pl ′l |2 , (C.6)

which is equal to unity for l = l ′, but has to be taken into account in the case of
interband transitions.
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Appendix D

Sum rules

The interaction of an electronic system with the electromagnetic field lead to an
absorption process. The total absorption is finite, and this is expressed by sum
rules. These can be derived by examining the absorption process, but often the
Kramers–Kronig relations are used as a starting point (together with some general
assumptions about the absorption itself).

D.1 Atomic transitions

The interaction of a free atom with the electromagnetic field is treated in numerous
textbooks (see for example [Mer70]), and therefore only the main results will
be recalled here. For an atom initially in the ground state, the response to an
electromagnetic field of the harmonic form E = E0 cos{ωt} leads to transitions
between the ground and excited states. The relevant matrix element is related to
the dipole moment

rl0 =
∫

�∗
l er�0 dr ,

where �0 and �l are the wavefunctions of the ground state and excited states.
The transition probability between the ground state and state l is described by the
so-called oscillator strength (Eq. (6.1.7)):

fl0 = 2m

h̄2 h̄ωl0 |rl0|2 , (D.1)

where m is the electron mass and h̄ωl0 = El − E0 is the energy difference between
the ground state and the excited state in question; h̄ωl0 is positive if the energy of
the final state l is higher (upward transition) and negative for downward transitions.
Here the transition matrix element is given in terms of the electric dipole moment,
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but we can equally well use the momentum matrix element

pl0 =
∫

�∗
l (ih̄∇)�0 dr ,

and in this form fl0 becomes

fl0 = 2 |pl0|2
mh̄ωl0

. (D.2)

The oscillator strength fl0 measures the relative probability of a quantum me-
chanical transition between two atomic levels. The transition obeys the so-called
Thomas–Reiche–Kuhn sum rule ∑

l

fl0 = 1 , (D.3)

which can be proven by considering some general commutation rules.
The absorbed power per unit time can also be calculated in a straightforward

manner, and one finds that

P = πe2 E2
0 |rl0|2 ωl0

h̄
, (D.4)

which can be cast into the form of

P = 2mh̄ωl0 |rl0|2
h̄2

πe2 E2
0

2m
= πe2 E2

0

2m

∑
l

fl0 . (D.5)

The expression in front of the sum is just the power absorption by a classical
oscillator, which itself must be equal to P , and thus

∑
l fl0 = 1 as stated above.

If these are a collection of atoms, as in a solid, which might also have more than a
single electron, the sum rule is modified to become [Ste63]∑

l

fl0 = N , (D.6)

where N is the number of electrons per unit volume. Note that the sum rule does
not contain information, and thus is independent of the wavefunctions and energies
of the individual energy levels. Of course the oscillator strength associated with the
transitions is sensitive to these; however, the sum of the oscillator strengths must
be fixed, and must be independent from the details of the system in question.

D.2 Conductivity sum rules

Here the absorbed power has been expressed in terms of the oscillator strength
associated with the various transitions between the energy levels of the atoms, but
the sum rule can also be expressed in terms of the optical conductivity σ1(ω). In
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order to see this, let us calculate the rate of energy absorption per unit time for a
time-varying field as given before. This rate is given by Eq. (3.2.34) as

dE
dt
= Re

{
∂D
∂t
· E

}
= Re

{
(ε1 + iε2)

∂E
∂t
· E

}
= ωε2

E2
0

2
= σ1 E2

0

8π
. (D.7)

The total absorption per unit time is

P =
∫

E2
0

4π
ωε2(ω) dω = E2

0

∫
σ1(ω) dω , (D.8)

which, in view of our previous expression of the absorbed power, becomes∫
σ1(ω) dω = πNe2

2m
= ω2

p

8
, (D.9)

with ωp =
(
4πNe2/m

)1/2
the so-called plasma frequency. It is clear how valuable

such a sum rule argument is: while the frequency dependence of the conductiv-
ity can be influenced by many features, including band structure and interaction
effects, the sum rule is independent of these and must be obeyed.

D.3 Sum rule from Kramers–Kronig relations

The same relation can be derived by utilizing the Kramers–Kronig relations, and
from some general arguments about the conductivity or dielectric constant. In order
to do this, first note that the complex dielectric function has, at high frequencies,
the following limiting form:

ε1(ω) = 1− ω2
p

ω2
, (D.10)

already derived in Eq. (3.2.25). This in general follows from the fact that inertial
effects dominate the response at high frequencies. Next let us look at the Kramers–
Kronig relation (3.2.12a)

ε1(ω)− 1 = 2

π
P

∫ ∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′ .

This, in the high frequency limit – at the frequency above which there is no loss,
and consequently ε2(ω) = 0 – then reads

ε1(ω)− 1 ≈ − 2

πω2

∫ ∞

0
ω′ε2(ω

′) dω′ .

Equating this with expression (D.10), we find that∫ ∞

0
ωε2(ω) dω = π

2
ω2

p , (D.11)
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or alternatively ∫ ∞

0
σ1(ω) dω = πNe2

2m
= ω2

p

8
, (D.12)

the same as found in Eq. (D.9).

D.4 Sum rules in a crystal

The sum rule given above holds for a collection of atoms in a solid; and in a crystal
it can be directly related to the electron structure in certain limits. Using Bloch
wavefunctions with the periodic part ukl as defined in Eq. (4.3.5) to describe the
electronic states in a crystal, the Schrödinger equation reads Hkukl = Eklukl , where
the Hamilton operator is given by

Hk = H0 +H1 +H2 =
[

p2

2m
+ V (r)

]
+ h̄

m
k · p+ h̄2k2

2m
. (D.13)

V (r) denotes the periodic potential. The term in the squared brackets describes the
energy levels at k = 0. H1 is a first order perturbation and H2 is a second order
perturbation. With the zero order expressions ukl = u0l and Ekl = E0l , we obtain
for the first order terms

Ekl = E0l + h̄

m
k · 〈0l|p|0l〉∗ ,

where the correction to the energy cancels for crystals with inversion symmetry.
Therefore, the second order correction to the energy also becomes important, and

Ekl = E0l + h̄2k2

2m
+ h̄2

m2

∑
l ′ �=l

|k · 〈0l ′|p|0l〉∗|2
E0l − E0l ′

, (D.14)

where the labels l and l ′ refer to different electron states in the crystal.
A Taylor series expansion for the energy of an electron in the neighborhood of

k = 0 gives:

Ekl = E0l + ∂E0l

∂ki
ki + 1

2

∂2E0l

∂ki∂k j
ki k j = E0l + ∂E0l

∂ki
ki + h̄2

2m∗
i j

ki k j , (D.15)

where we have substituted the effective mass tensor m∗
i j defined in analogy to

Eq. (12.1.17): (
1

m∗

)
i j

= 1

h̄2

∂2E(k)
∂ki∂k j

.
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We can now compare the third term of this expansion with the corresponding term
of Eq. (D.14) obtained by second order perturbation, and we find that

m

m∗
i j

= δi j + 2

m

∑
l ′ �=l

〈0l|pi |0l ′〉∗〈0l ′|p j |0l〉∗
E0l − E0l ′

. (D.16)

With the expression of the oscillator strength in terms of the momentum matrix
element, given by Eq. (D.2), where again h̄ωl ′l = El ′ − El , we immediately obtain
for a cubic crystal

m

m∗ = 1−
∑
l �=l ′

fl ′l . (D.17)

Thus the bandmass is related to the interband transition. For free electrons m∗ = m,
and thus

∑
l �=l ′ fll ′ = 0; there is no absorption by a free-electron gas. This is not

surprising, as – in the absence of collisions which absorb momentum – the different
electronic states correspond to different momenta, and thus the electromagnetic
radiation for q = 0 cannot induce transitions between these states. This also
follows from the Drude model, in the collisionless, τ →∞ limit, for which

σ̂ (ω) = i
Ne2

mω

and there is no dissipation at any finite frequency. For τ finite, however, momentum
and energy are absorbed during collisions, and these processes lead to the absorp-
tion of electromagnetic radiation at finite frequencies, consequently the sum rule is
restored, and ∫

σDrude
1 (ω) dω = πNe2

2m
,

as can be verified by direct integration of the simple Drude expression (5.1.8).

D.5 Electron gas with scattering

Of course, the Drude model, with a frequency independent relaxation rate and
mass, is a crude approximation, and even in the absence of a lattice electron–
electron and electron–phonon interactions result in frequency dependences of these
parameters. In the absence of interband transitions, the sum rule for the conduc-
tion band must be conserved – i.e. the plasma frequency is independent of the
interactions. This then sets conditions for 1/τ(ω) and m(ω), and it is expected that
the proper Kramers–Kronig relations with 1/τ(ω) and m(ω) will leave the total
spectral weight associated with σ1(ω) unchanged.

This also holds when these interactions lead to broken symmetry ground states,
such as superconductivity or density waves: for these states the sum rule including
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both collective and single-particle excitations must be the same as the sum rule
which is valid above the transition, in the metallic state. The so-called Tinkham–
Ferrell sum rule for superconductors – discussed in Section 7.4.1 – has its origin in
this condition, and analogous sum rule arguments can be developed for the density
wave states (Section 7.5.3).
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Appendix E

Non-local response

Local electrodynamics assumes that the response at one point in the material only
depends on the electric field at this point. This assumption breaks down in the case
of metals with a long mean free path � and in the case of superconductors with a
long coherence length ξ0. The anomalous skin effects become important if δ < �.
For superconductors the London limit is exceeded if λL < ξ0. In both cases the
influence of electrons, which feel a different electric field at some distant point,
becomes important.

E.1 Anomalous skin effect

A brief discussion of the anomalous skin effect was given in Section 5.2.5. Here we
want to go beyond the ineffectiveness concept of Pippard and discuss the surface
impedance in particular. For a full treatment of the anomalous skin effect [Abr88,
Cha90, Pip62, Sok67, Son54] we must solve the Maxwell equations for this special
boundary problem. We will not consider the effect of an external magnetic field,
which leads to a quite different behavior, such as helicons or Alfvén waves [Abr88,
Kan68]. A detailed discussion of the anomalous skin effect in the presence of an
external magnetic field can be found in [Kar86]. If the surface of a metal (µ1 = 1)
is in the xy plane, the wave equation for the electric field with harmonic time
dependence (2.2.16a) has the form

d2 E(r)

dz2
+ ω2ε1

c2
E(r) = −4π iω

c2
J (r) . (E.1)

Assuming the electrons are spatially reflected at the surface of the metal (for dif-
fusive reflection only a numerical factor changes slightly [Kit63, Reu48, Sok67]),
the boundary condition can be written as(

∂E

∂z

)
z→0

= −
(
∂E

∂z

)
0←z

.
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The discontinuity of its first derivative modifies the wave equation in the following
way

d2 E(r)

dz2
+ ω2ε1

c2
E(r) = −4π iω

c2
J (r)+ 2

(
dE

dz

)
z=0

δ(z) , (E.2)

which, when transformed in Fourier space (see Section A.1), yields

−q2 E(q)+ ω2ε1

c2
E(q) = −4π iω

c2
J (q)+ 2

(
dE

dz

)
z=0

. (E.3)

We obtain the general solution from the Chambers formula

J = 2e2

(2π)3

∫
dk

(
−∂ f 0

∂E
)

v(k)
v

∫
r

E(r ′) · v(k, r ′) exp
{
−r ′

�

}
dr ′ . (E.4)

Assuming that the scattering rate is independent of q, we can also utilize Boltz-
mann’s transport theory, and for the current density in the low temperature limit we
get an expression similar to Eq. (5.2.13). In an even simpler approximation, we can
apply the generalized Ohm’s law which connects the current and the electric field
by the conductivity J(q, ω) = σ1(q, ω)E(q, ω). By neglecting the displacement
term in Eq. (E.3) containing ω2/c2, we obtain for the electric field

E(q) = 2√
2π

(
dE

dz

)
z=0

[
4π iω

c2
σ1(q, ω)− q2

]−1

.

Substituting the first order approximation (� → ∞) of the conductivity from
Eq. (5.2.24a) yields

E(q) =
√

2

π

(
dE

dz

)
z=0

[
3π2ω

c2

σdc

�

i

q
− q2

]−1

. (E.5)

The decay function is obtained by the inverse Fourier transform

E(z) = 1

π

(
dE

dz

)
z=0

∫ ∞

−∞
dq

exp{−iqz}
3π2ω

c2
σdc
�

i
q − q2

, (E.6)

and by substituting the integration variable ζ = q
(

c2

3π2ω

�
σdc

)1/3
we get at the

surface

E(z = 0) = 1

π

(
dE

dz

)
z=0

−2ic2�

3π2ωσdc

∫ ∞

0

dζ

1+ iζ 3

= − 1

π

(
dE

dz

)
z=0

2π

3

(
c2

3π2ω

�

σdc

)1/3 (
1+ i√

3

)
. (E.7)
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As for the normal skin effect, also in the anomalous regime, the penetration of the
electric field into the metal has approximately an exponential form, and we can
define a characteristic length of how far the field penetrates the metal,

δ =
(

c2

3π2ω

�

σdc

)1/3

, (E.8)

which has the same functional form as obtained from our phenomenological ap-
proach, Eq. (5.2.30), with γ ≈ 3π/2 ≈ 4.71. The electric field falls quickly with
distance z so that the major part of the field is confined to a depth much less than
�. This rapid decrease is not maintained, however, and eventually, far from the
surface, the field is approximately (z/�)−2 exp{−z/�}, so there is a long tail of
small amplitude extending into the metal to a distance of the order of the mean free
path �.

From Eqs (2.4.23) and (2.4.25), the surface impedance of a material is given by

ẐS = 4π

c2
iω

E(z = 0)

(dE/dz)z=0
. (E.9)

For an anomalous conductor the result can be obtained by inserting Eq. (E.7) into
Eq. (E.9):

ẐS(ω) = 4π

c2

2iω

3

(
c2

3π2ω

�

σdc

)1/3 (
1+ i√

3

)
= 8

9

(√
3πω2

c4

�

σdc

)1/3

(1+
√

3i)

(E.10)
in the limit qvF � |1 − iωτ |; the factor 8/9 drops for diffusive scattering at the
surface [Reu48]. The most important feature of the anomalous conductors is that
the surface resistance and surface reactance are not equal, but XS = −√3RS

as displayed in Fig. E.1. Also the frequency dependence ω2/3 is different from
that relating to the classical skin effect regime, where ẐS ∝ ω1/2 was found
(Eq. (2.3.30)). A more rigorous derivation of the anomalous skin effect in con-
ducting and superconducting metals given by Mattis and Bardeen [Mat58] leads to
the same functional relations as obtained in the semiclassical approach.

Up to this point in the discussion of the non-local conductivity and anomalous
skin effect, we have not taken into account effects of the band structure and non-
spherical Fermi surface. In order to do so, we have to consider the range of integra-
tion in Chambers’ expression of J as introduced in Section 5.2.4 and in Eq. (E.4).
Electrons passing through the volume element dV with wavevectors dk at the
time t0 have followed some trajectory since their last collision. The distribution
function f is obtained by adding the contributions from all electrons scattered into
the trajectory at a time t prior to t0. The probability that scattering has not occurred

in this period between t and t0 is given by the expression exp
{
− ∫ t0

t [τ(t ′)]−1dt ′
}

,
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Fig. E.1. (a) Dependence of the surface resistance RS on the mean free path with R∞ =
RS(�→∞). For large �/δ (good conductor) the surface resistance goes to zero. (b) Ratio
of imaginary and real parts of the surface impedance as a function of the inverse surface
resistance. For a perfect conductor (� = 2∞) the ratio approaches XS/RS =

√
3. The

dashed lines correspond to the case of diffusive scattering and the solid line shows the
specular scattering (after [Reu48]).

where the relaxation time in general depends on t ′ through the dependence of the
velocity v on the wavevector k. Thus, we obtain

f 1(r, v) = e

v

(
−∂ f 0

∂E
)∫

r
E(r ′) · v exp{−r ′/τv} dr ′

= e

(
−∂ f 0

∂E
)∫ 0

−∞
E(t) · v exp

{
−

∫ t0

t

dt ′

τ(k(t ′))

}
dt . (E.11)

It can be shown [Cha52, Kit63] that this expression is a solution of the Boltzmann
equation (5.2.7) within the relaxation time approximation. Using Eq. (5.2.12), we
can rewrite Eq. (E.4) as

J = 2e2

(2π)3

∫
dk

(
−∂ f 0

∂E
)

v(k)
∫ 0

−∞
E(t) · v(k, t) exp

{
−

∫ t0

t

dt ′

τ(k(t ′))

}
dt .

(E.12)
For a detailed discussion see [Pip54b, Pip62] and other textbooks.
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Fig. E.2. (a) Electron trajectories in the skin layer illustrating the nature of the interaction
between photons and electrons in metals. The thick line represents the surface of the
metal. The arrows indicate the incident light waves, the dashed line marks the skin layer,
the zigzag line represents a path of the electron for successive scattering events, and the
wavy line represents the oscillatory motion of the electron due to the alternating electric
field. The optical characteristics in the four regions illustrated depend upon the relative
value of the mean free path �, the skin depth δ, and the mean distance traveled by an
electron in a time corresponding to the inverse frequency of the light wave. (A) Classical
skin effect, �� δ and �� vF/ω. (B) Relaxation regime, vF/ω � �� δ. (D) Anomalous
skin effect, δ � � and δ � vF/ω. (E) Extreme anomalous skin effect, vF/ω � δ � �.
(b) Logarithmic plot of the scattering time τ versus frequency ω showing the regions just
described. Region C characterizes the transparent regime (after [Cas67]).
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E.2 Extreme anomalous regime

The concept of the anomalous skin effect no longer holds if the distance the charge
carriers travel per period of the alternating field E(ω) becomes comparable to
the mean free path, i.e. the field direction alternates before the electrons have
scattered. The absorption falls back to the classical value, and this observation
is called the extreme anomalous skin effect. In order to understand this limit, we
have to consider a third characteristic length scale of the problem, in addition to
the mean free path � and the skin depth δ: the distance vF/ω the electrons move
during one period of the electromagnetic wave. The classical skin effect only holds
if two conditions are met: the skin depth δ is larger than the mean free path �,
and the frequency is lower than the scattering rate. In this regime, the electrons
suffer many collisions during the time they spend in the skin layer and during
one period of the electromagnetic wave (Fig. E.2, region A). Thus the region is
well described by a local, instantaneous relationship between the current and the
total electric field. If the frequency is larger than the plasma frequency, the metal
becomes transparent (region C), and in the intermediate spectral range between
the scattering rate 1/τ and the plasma frequency ωp the absorption is frequency
independent (Eq. (5.1.22)). In this so-called relaxation regime, many periods of the
radiation fall between two scattering events; however, the electrons still experience
a large number of collisions while they travel within the skin layer. The collisions
become less important and the light basically experiences a layer of free electrons
responding to the rapidly oscillating electric field (region B).

Similar considerations hold for the anomalous regime. The anomalous skin
effect becomes important when the mean free path � exceeds the skin depth δ

(Fig. E.2, region D). The electrons leave the skin layer before they are scattered,
and the collisions are of little importance. If in this case the frequency increases, we
do not see any change if ωτ < 1, but a new regime is reached when vF/ω � δ � �.
During the time the electron spends in the skin layer, it experiences an increasing
number of oscillations of the electric field (region E): δ/vF > 1/ω. The region
is called the extreme anomalous skin effect or anomalous reflection. Since the
electrons in the skin layer respond to the electric field as essentially free electrons,
region E differs only slightly from region B. Most of the collisions happen at the
surface. In the ωτ diagram of Fig. E.2b the five regimes are shown and the borders
between them indicated [Cas67]. Fig. E.3 illustrates the relationship between the
three different length scales.

E.3 The kernel

The non-local conductivity and the effects of a finite mean free path can be ele-
gantly treated with the help of the non-local kernel Kµν . The kernel is a response
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Fig. E.3. Schematic representation of the various skin depth regimes in the parameter
space given by the three different length scales, the skin depth δ, the mean free path �,
and the distance the charge carriers travel during a period of the light wave vF/ω.

function which relates the current density J to the vector potential A; in general, it
is a second order tensor. This approach is particularly useful for the discussion of
impurity effects in superconductors.

In Eq. (4.1.16) we arrived at the Kubo formula for the conductivity as the most
general description of the electrodynamic response. Here we want to reformulate
this expression by defining a non-local kernel Kµν . We write the position of time
dependent current as

Jµ(r, t) = − c

4π

∫ ∞

−∞

∫
�

3∑
ν=1

Kµν(r, t, r′, t ′)Aν(r′, t ′) dr′dt ′ , (E.13)
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with the vector potential A(r, t) and the kernel

Kµν(r, t, r′, t ′) = −4π i

c2
〈0|[J p

µ(r, t), J p
ν (r

′, t ′)]|0〉�(t − t ′)

−4πe

mc2
〈0|ρ0(r, t)|0〉δ(r− r′)δ(t − t ′)δµν(1− δν,0) . (E.14)

J p
i (r, t) indicates the i th component of the paramagnetic current density introduced

in Eq. (4.1.6), ρ0 is the charge density, and � refers to the step function

�(t − t ′) =
{

1 if t > t ′

0 if t < t ′ ;

the details are discussed in [Sch83] and similar textbooks. The expectation value
of the current density in an external field can be calculated from the fluctuation-
dissipation theorem by first order perturbation

Jµ(r, t) = e

mc
〈0|ρ0(r, t)|0〉Aµ(r, t)[1−δµ,0]−i〈0|

[
J p
µ(r, t),

∫ t

−∞
Hint(t

′) dt ′
]
|0〉 .

(E.15)
Since σ̂ (q, ω) = − ic2

4πω K (q, ω), the kernel is directly related to the conductivity.

E.4 Surface impedance of superconductors

In the superconducting case, the kernel was studied intensively by [Abr63]. For
the Pippard case λ� ξ(0) we obtain for frequencies below the gap ω < 2�/h̄

K (q, ω) = 4π

c2

Ne2

m

3π

4qvF

×
[∫ �+h̄ω

�

tanh
{ E

2kBT

} E(E − h̄ω)+�2

(E2 −�2)1/2(�2 − (E − h̄ω)2)1/2
dE

+ i
∫ ∞

�

(
tanh

{ E
2kBT

}
− tanh

{E + h̄ω

2kBT

})

× E(E + h̄ω)+�2

(E2 −�2)1/2((E + h̄ω)2 −�2)1/2
dE

]

and for h̄ω > 2�

K (q, ω) = 4π

c2

Ne2

m

3π

4qvF

×
[∫ h̄ω+�

h̄ω−�
tanh

{ E
2kBT

} E(E − h̄ω)+�2

(E2 −�2)1/2[�2 − (E − h̄ω)2]1/2
dE

+ i
∫ h̄ω−�

�

E(E − h̄ω)+�2

(E2 −�2)1/2[(E − h̄ω)2 −�2]1/2
dE
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+ i
∫ ∞

�

(
tanh

{ E
2kBT

}
− tanh

{E + h̄ω

2kBT

})

× E(E + h̄ω)+�2

(E2 −�2)1/2[(E + h̄ω)2 −�2]1/2
dE

]
. (E.16)

Electromagnetic energy is absorbed only in the latter case. In order to relate the
complex surface impedance ẐS to K , two cases have to be distinguished. For
diffusive scattering we obtain

ẐS(ω) = 4π2iω
(∫ ∞

0
ln{1+ K (q, ω)/q2} dq

)−1

,

and for specular scattering

ẐS(ω) = 8iω
∫ ∞

0

dq
q2 + K (q, ω)

.

In general the ratio of the surface impedance ẐS(ω) to the real part of the normal
state surface resistance Rn(ω) is considered. In the Pippard case we obtain

ẐS(ω)

Rn(ω)
= −2i

(
3π2 Ne2

c2m

h̄ω

qvF K (ω)

)1/3

. (E.17)

At T = 0 the integrals of the kernel can be evaluated by using the complete elliptic
integrals E and K

K (ω) =




3�
2qvF

Ne2

c2m
E {h̄ω/2�} ω < 2�/h̄

3�
qvF

Ne2

c2m

[
h̄ω
�

E{2�/h̄ω} −
(

h̄ω
�
− 4�

h̄ω

)
K{2�/h̄ω}

]
ω > 2�/h̄

+i 3�
qvF

Ne2

c2m
�{h̄ω/�− 2}

[
h̄ω
�

E
{(

1− 4�2/h̄2ω2
)1/2

}
−4�/h̄ωK

{(
1− 4�2/h̄2ω2

)1/2
}]

.

For finite temperatures no full analytical expression can be given and only the
limiting cases can be evaluated [Gei74]. For low frequencies and temperatures
(h̄ω � kBT � �) we get for the normalized surface impedance

ẐS(ω)

Rn(ω)
= 2

(
h̄ω

π�

)1/3
{

4

3
sinh

{
h̄ω

2kBT

}
K0

{
h̄ω

2kBT

}
exp

{−�
kBT

}

− i

[
1+ 1

3

(
h̄ω

4�

)2

+ 2

3
exp

{
h̄ω

2kBT

}
I0

{
h̄ω

2kBT

}
exp

{−�
kBT

}]}
, (E.18)
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where I0 and K0 are the modified zero order Bessel functions of first and second
kind, respectively. In the case of higher temperatures but low frequencies (h̄ω �
�� kBT ) we can write

ẐS(ω)

Rn(ω)
= 2

(
h̄ω/π�

tanh{�/2kBT }
)1/3

[
2

3π

h̄ω/kBT

sinh{�/kBT } ln
{
2 (2�/h̄ω)1/2}

+ 1

3π

h̄ω

�

(
coth

{
�

2kBT

}
− 1

)
− 7

3π3

� h̄ω

(kBT )2
ζ(3) coth

{
�

2kBT

}

−i
(

1+ h̄2ω2

48�2

)]
(E.19)

if �2 � h̄ωkBT ; otherwise

ẐS(ω)

Rn(ω)
= −2i

(
−i+ π�2

2kBT h̄ω

)−1/3

. (E.20)

Finally we want to consider the cases where the frequency exceeds the temperature.
In the range kBT � h̄ω ≈ � and ω < 2�(0)/h̄ ,

ẐS(ω)

Rn(ω)
= 2

(
h̄ω/2�

E{h̄ω/2�}
)1/3

{
exp{−�/kBT }

3E{h̄ω/2�}
[
πkBT

(
1

h̄ω
+ 1

2�

)]1/2

−i

[
1+ exp{−�/kBT }

3E{h̄ω/2�}
(
πkBT

h̄ω
− πkBT

2�

)1/2
]}

, (E.21)

and for large frequencies ω � �(0)/h̄ but low temperatures

ẐS(ω)

Rn(ω)
= 1+

(
�

h̄ω

)2 [
2

3
ln

{
2

�(0)

}
+ 1

3
− π√

3

]

−i
√

3

[
1+

(
�

h̄ω

)2 (
2

3
ln

{
2

�(0)

}
+ 1

3
− π

3
√

3

)]
. (E.22)

The simple ω2 dependence of the surface resistance derived in Eq. (7.4.23) is the
limit of Eq. (E.21) for small frequencies.

E.5 Non-local response in superconductors

The effects of a finite mean free path � can also be discussed in terms of the kernel.
Here we follow the outline of M. Tinkham [Tin96] and G. Rickayzen [Ric65]. In
the limit δ, λ� � the local relations between current and field are no longer valid,
and we have to use the expressions derived for the anomalous regime (Section E.1),
summarized in ẐS/Rn = 2

(−σ̂ /σn
)−1/3

. We are interested in the frequency and
temperature dependent response and how it varies for different wavevectors.
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By comparing Eq. (E.13) with Eq. (4.3.30) we see that

K (0) = 1

λ2
L

= 4πNse2

mc2
. (E.23)

This immediately implies that at low temperatures the kernel K as well as the
penetration depth λ are frequency independent. Let us first discuss the temperature
dependence of K (q, T ) in the long wavelength (q → 0) limit. In the expression

J(q, ω) = Jp(q, ω)+ Jd(q, ω)

= lim
τ→∞

1

�c

(
eh̄

2m

)2 ∑
k

2k[A(q, ω) · 2k]

×
[(

1− f (Ek)− f (Ek+q)

Ek + Ek+q − h̄ω − ih̄/τ
+ 1− f (Ek)− f (Ek+q)

Ek + Ek+q + h̄ω + ih̄/τ

)

× (u∗kvk+q − vku∗k+q)
2

+
(

f (Ek)− f (Ek+q)

−Ek + Ek+q − h̄ω − ih̄/τ
+ f (Ek)− f (Ek+q)

−Ek + Ek+q + h̄ω + ih̄/τ

)

× (uku∗k+q + v∗kvk+q)
2

]
− Ne2

mc
A(q, ω) , (E.24)

the paramagnetic current density simplifies to

Jp(0, T ) = eh̄

m

∑
k

k( fk0 − fk1) = 2e2h̄2

m2c

∑
k

[A(0) · k]k
(
− ∂ f

∂Ek

)

in the small field approximation. Thus we obtain for the kernel

K p(0, T ) = −4πNe2

mc2

4EF

3

∑
k

(
− ∂ f

∂Ek

)
= −λ−2

L (0)
∫ ∞

−∞

(
− ∂ f

∂Ek

)
dζ ,

where ζ = Ek − EF. The total kernel is given by

K (0, T ) = λ−2
L (T ) = λ−2

L (0)
[

1− 2
∫ ∞

�

(
− ∂ f

∂Ek

) E
(E2 −�2)1/2

dE
]

.

(E.25)
For temperatures T ≥ Tc the material is in the normal state and � = 0; since
the integral reduces to f (0) = 1/2, we obtain K (0, T ≥ Tc) = 0 as expected.
This corresponds to the exact cancellation of the paramagnetic and diamagnetic
currents and no Meissner effect is observed. At low temperatures (T < 0.5Tc), the
derivative of the Fermi distribution can be approximated by a linear function, and
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Fig. E.4. Temperature dependence of the normalized penetration depth λ(T )/λ(0). The
low temperature regime (inset) shows an exponential behavior according to Eq. (E.26). In
the high temperature range Eq. (E.27) is plotted.

thus the previous expression reduces to

λ(T )− λ(0)

λ(0)
=

(
π�

2kBT

)1/2

exp
{
− �

kBT

}
; (E.26)

while in the range 0.8Tc < T < Tc, the temperature dependence can be approxi-
mated by

λ(T )

λ(0)
=

[
1−

(
T

Tc

)4
]−1/2

. (E.27)

In Fig. E.4 the temperature dependence of the penetration depth is shown according
to Eqs (E.26) and (E.27). The temperature dependence of K (0, T ) is plotted in
Fig. E.5a, where K (0, T )/K (0, 0) = [λL(0)/λL(T )]2. As T decreases below Tc,
the superconducting gap opens, i.e. �(T )/kBT increases, causing the kernel in
Eq. (E.25) to diminish, and eventually become exponentially small, and K (0, T →
0) = λ−2

L (0).
So far we have restricted our analysis to the q = 0 limit; let us consider next
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Fig. E.5. (a) Temperature dependence of the normalized kernel K (0, T )/K (0, 0) (after
[Tin96]). (b) Normalized kernel K (q)/K (0) as a function of the wavevector q.

the q dependence of K (q, T ) for T = 0. If we calculate the experimental value of
Jp(q) following Eq. (E.24) we obtain

Jp(q) = 2e2h̄2

m2c

∑
k

(vku∗k+q − u∗kvk+q)
2

Ek + Ek+q
[k · A(q)]k

similar to the relation (4.3.31) we arrived at in the case of normal metals. For the
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q dependent kernel

K (q, 0) = λ−2
L (0)

[
1− 2

∫ ∞

�

(vku∗k+q − u∗kvk+q)
2

Ek + Ek+q
dζ

]
; (E.28)

and for small q, we find K (q, T )λ2
L(0) ≈ 1− q2ξ 2

0 , where the coherence length ξ0

is defined in Eq. (7.4.2). If q � 1/ξ0 (Pippard limit), K (q, 0) = K (0, 0) 3π
4qξ0

, as
displayed in Fig. E.5b. In both the local and the London limit ξ0 → 0, and the q
dependence of the kernel is negligible: K (q, 0)→ K (0, 0).

The effect of impurity scattering can be taken into account in a phenomenologi-
cal way similar to Chambers’ approach discussed in Section 5.2.4,

λ2
L(T )

λ2
l (�, T )

= K (0, T, �)

K (0, T, �→∞)
= 1

ξ0

∫ ∞

0
J (s ′, T ) exp{−s ′/�} ds ′ , (E.29)

where we have used the J (s ′, T ) function as defined by
∫∞

0 J (s ′, T ) ds ′ =
ξ0 = ∫∞

0 exp{−s ′/ξ0} ds ′. An increased scattering rate makes � small and
the response more local. In the case � � ξ0 (dirty limit) λl(�, T ) =
λL(T ) (ξ0/�)

1/2 [J (0, T )]−1/2. If we replace J (s ′, T ) by exp{−s ′/ξ0}, which is
valid for large �, we obtain

λl(�, T ) = λL(T )

[
1+ ξ ′0

�

]1/2

, (E.30)

where Pippard’s coherence length, ξ ′0, and ξ ′ are given by

1

ξ ′
= 1

ξ ′0
+ 1

�
= J (0, T )

ξ0
+ 1

�
, (E.31)

with J (0, T = 0) = 1 and J (0, Tc) = 1.33. A full discussion of non-local effects
is given in [Tin96]. In the q → ∞ London limit (λL � ξ0), i.e. the extreme
anomalous regime, K (q) = 3π/(4λ2

Lξ0q) leads to λq→∞ = 0.58
(
λ2

Lξ
′
0

)1/3
for

specular scattering.
The temperature dependence of the penetration depth in the local limit is given

by

λl(T )

λL(0)
=

[
�

ξ0

�(T )

�(0)
tanh

{
�(T )

2kBT

}]−1/2

, (E.32)

which resembles Eq. (7.4.21). In the anomalous regime (assuming diffusive scat-
tering), we obtain

λP(T )

λL(0)
=

[
3π2

4

λL(0)

ξ0

�(T )

�(0)
tanh

{
�(T )

2kBT

}]−1/3

, (E.33)

where λL(T )/λL(0) is given by Eq. (E.25).
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Fig. E.6. Schematic representation of the local, London, and Pippard limits in the parame-
ter space given by the three length scales, the coherence length ξ0, the London penetration
depth λL, and the mean free path � (after [Kle93]).

In Fig. E.6 we compare the three length scales important to the superconducting
state; depending on the relative magnitude of the length scales, several limits are
of importance. The first is the local regime in which � is smaller than the distance
over which the electric field changes, � < ξ(0) < λ. When �/ξ(0) → 0 the
superconductor is in the so-called dirty limit. The opposite situation in which
�/ξ(0) → ∞ is the clean limit, in which non-local effects are important and we
have to consider Pippard’s treatment. This regime can be subdivided if we also
consider the third parameter λ. The case ξ(0) > λ is the Pippard or anomalous
regime, which is the regime of type I superconductors; and ξ(0) < λ is the London
regime, the regime of the type II superconductors.
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Appendix F

Dielectric response in reduced dimensions

With a few exceptions we have considered mainly bulk properties in the book.
The physics of reduced dimensions is not only of theoretical interest, for many
models can be solved analytically in one dimension only. A variety of interesting
phenomena are bounded to restricted dimensions. On the other hand, fundamental
models such as the theory of Fermi liquids developed for three dimensions break
down in one or two dimensions. In recent years a number of possibilities have
surfaced to explain how reduced dimensions can be achieved in real systems. One
avenue is the study of real crystals with an extremely large anisotropy. The second
approach considers artificial structures such as interfaces which might be confined
further to reach the one-dimensional limit.

F.1 Dielectric response function in two dimensions

Reducing the dimension from three to two significantly changes many properties
of the electron gas. If the thickness of the layer is smaller than the extension of the
electronic wavefunction, the energy of the system is quantized (size quantization).
We consider only the ground state to be occupied. For any practical case, just
the electrons are confined to a thin sheet, while the field lines pass through the
surrounding material which usually is a dielectric. A good approximation of a
two-dimensional electron gas can be obtained in surfaces, semiconductor inter-
faces, and inversion layers; a detailed discussion which also takes the dielectric
properties of the surrounding media into account can be found in [And82, Hau94].
In this section we discuss the idealized situation of a two-dimensional electron
gas; however, the Coulomb interaction has a three-dimensional spatial dependence.
Following the discussion of the three-dimensional case, we first consider the static
limit. The full wavevector and frequency dependence of the longitudinal response
in two dimensions is derived by the formalism used for the three-dimensional
case.

445
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F.1.1 Static limit

Let us assume an electric field E(q, ω) = E0 exp{i(q · r − ωt)} which is purely
longitudinal (q × E0=0) acting on a two-dimensional electron gas confined in the
z direction which is surrounded by a vacuum. An external source produces an
additional electrostatic potential �, which is related to the charge density ρ by
Eq. (2.1.7): ∇ · (ε∇�) = −4πρ. Here ε is the dielectric constant of the system
and ρ = ρext+ρind as usual; the particle density is indicated by N . We can express
the induced charge density as a function of the local potential, and linearizing it
yields

ρind(r) = −e[N (�)− N (0)]δ{z} = −e2�(r)
dN

dEF
δ{z} .

This allows us to rewrite Poisson’s equation

∇ · (ε∇�)− 2λ�(r)δ{z} = −4πρext ,

where we define the screening parameter in two dimensions as

λ = 2πe2 ∂N

∂EF
= 4πNme2

v2
F

. (F.1)

The classical form λDH = 2πNe2/(kBT ) appears as the two-dimensional form
of the Debye screening length. Not surprisingly, in two dimensions the screening
effects are less efficient than in three dimensions. Here we utilized the fact that
the Fermi surface for the two-dimensional electron system is a curve and in the
simplest case becomes a circle with the radius being the Fermi wavevector kF =
(2πN )1/2. The density of states is given by

D(E) = m

π h̄2 =
N

EF
(F.2)

if only the lowest band is occupied; N is the number of electrons per unit area.
Note that the density of states is independent of E . In contrast to the three-
dimensional case, the screening length λ−1 = h̄2/(2me2) for two dimensions is
independent of the charge density. In three dimensions we obtained Eq. (5.4.5) as
an equivalent to Eq. (F.1), leading to the screened potential given by Eq. (5.4.9).
In the two-dimensional case the spatial dependence of the potential is found by a
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Fourier–Bessel expansion

�(r) =
∫ ∞

0
q AqJ0(qr) dq ,

where J0 is the Bessel function of the order zero and Aq = e(q + λ)−1. The
statically screened potential in two dimensions is therefore

�(q) = 2πe

q + λ
. (F.3)

Even in the absence of screening, the 1/q dependence of the quasi-two-
dimensional Coulomb potential is different from the 1/q2 dependence found in
three dimensions. In this approximation, the static dielectric function in two
dimensions becomes

ε1(q) = 1+ λ

q
(F.4)

which is analogous to Eq. (5.4.10) derived in the three-dimensional case.
There are a large number of studies dealing with coupled layers since these

questions became relevant in connection with the layered high temperature super-
conductors; for a review see [Mar95].

F.1.2 Lindhard dielectric function

From Eq. (5.4.15) we obtain for the complex dielectric response function

χ̂(q, ω) = e2

�
lim

1/τ→0

∑
k

f 0(Ek+q)− f 0(Ek)

E(k+ q)− E(k)− h̄ω − ih̄/τ
, (F.5)

where the summation is taken over all one-electron states. At T = 0 the sum can be
evaluated, and the result of the real and imaginary parts is obtained by considering
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the limit for τ →∞. For the real part of the Lindhard function we obtain:

χ1(q, ω) =




−e2 D(EF)

{
1− C− kF

q

[(
q

2kF
− ω

qvF

)2
− 1

]1/2

−C+ kF
q

[(
q

2kF
+ ω

qvF

)2
− 1

]1/2
}

for
∣∣∣ q
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− ω

qvF

∣∣∣ > 1 <

∣∣∣ q
2kF
+ ω

qvF

∣∣∣
−e2 D(EF)

{
1− C− kF

q

[(
q

2kF
− ω

qvF

)2
− 1

]1/2
}
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∣∣∣ q
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qvF
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∣∣∣ q
2kF
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qvF

∣∣∣
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[(
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− 1

]1/2
}
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∣∣∣ q
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+ ω

qvF

∣∣∣
−e2 D(EF) for

∣∣∣ q
2kF
− ω

qvF

∣∣∣ < 1 >

∣∣∣ q
2kF
+ ω

qvF

∣∣∣ ,

(F.6a)

where we define C± = sgn
{

q
2kF
± ω

qvF

}
, and the density of states at the Fermi

energy is D(EF) = N/EF in two dimensions; the imaginary part of the Lindhard
function is

χ2(q, ω) =




e2 D(EF)
kF
q
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(F.6b)

The real and imaginary parts of χ̂(q, ω) are plotted in Fig. F.1 as a function of
reduced frequency and wavevector. In two dimensions the Fermi surface is a circle
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Fig. F.1. Frequency and wavevector dependence of (a) the real and (b) the imaginary
parts of the Lindhard response function χ̂(q, ω) of a free-electron gas at T = 0 in two
dimensions evaluated using Eqs (F.6).
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and χ1 is constant up to q = 2kF over the entire semicircle. In this range there
are no excitations possible and thus χ2 vanishes. In the static limit (ω = 0) the
imaginary part of the response function χ2(q, 0) = 0 everywhere, and the real part
becomes

χ1(q, 0) =



−e2 D(EF) for q < 2kF

−e2 D(EF)

{
1− 2kF

q

[(
q

2kF

)2
− 1

]1/2
}

for q > 2kF ,

(F.7)
where the long wavelength limit is given by −e2 D(EF) = −2Ne2/mv2

F =
−e2 N/EF.

F.1.3 Dielectric constant

The complex dielectric constant ε̂(q, ω) in two dimensions is immediately derived
from Eq. (F.5):

ε̂(q, ω) = 1− 2e2

πq2

∫
dk

f 0(Ek+q)− f 0(Ek)

E(k+ q)− E(k)− h̄(ω + i/τ)
. (F.8)

The real and imaginary parts of the dielectric constant ε̂(q, ω) have the form

ε1(q, ω) =


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(F.9a)
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Fig. F.2. Frequency and wavevector dependence of (a) the real and (b) the imaginary parts
of the dielectric constant ε̂(q, ω) of a free-electron gas at T = 0 in two dimensions after
Eqs (F.9). The zero-crossing of ε1(q, ω) indicates the plasmon frequency.
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with C± = sgn
{

q
2kF
± ω

qvF

}
, and

ε2(q, ω) =



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}

for
∣∣∣ q

2kF
− ω

qvF

∣∣∣ > 1 <

∣∣∣ q
2kF
+ ω

qvF

∣∣∣
4e2k2

F
h̄vFq3

[
1−

(
q

2kF
− ω

qvF

)2
]1/2

for
∣∣∣ q

2kF
− ω

qvF

∣∣∣ > 1 >

∣∣∣ q
2kF
+ ω

qvF

∣∣∣
4e2k2

F
h̄vFq3

[
1−

(
q

2kF
+ ω

qvF

)2
]1/2

for
∣∣∣ q

2kF
− ω

qvF

∣∣∣ < 1 <

∣∣∣ q
2kF
+ ω

qvF

∣∣∣
0 for

∣∣∣ q
2kF
− ω

qvF

∣∣∣ < 1 >

∣∣∣ q
2kF
+ ω

qvF

∣∣∣ .

(F.9b)

Both functions are displayed in Fig. F.2.
At q = 2kF we see a change of slope in the dielectric function which reflects

that the screening is cut off for large wavelengths. This leads to Friedel oscillations
in the response of the system to a localized perturbation, which also occur in the
three-dimensional case (Eq. (5.4.20)). For large distances we obtain

�(r) ∝ eλ4k2
F

(2kF + λ)2

cos{2kFr}
(2kFr)2

(F.10)

for the spatial dependence of the potential in a two-dimensional electron gas.
For static fields (ω→ 0), Eq. (F.9a) gives the approximation:

ε1(q, 0) =




1+ λ
q for q ≤ 2kF

1+ λ
q

{
1−

[
1−

(
2kF
q

)2
]1/2

}
for q > 2kF

(F.11)

which for small q leads to the result derived in Eq. (F.4) for static screening. For
q > 2kF the screening effects fall off much more rapidly. It is interesting to note
that via kF the screening now depends on the charge concentration.

F.1.4 Single-particle and collective excitations

In the two-dimensional electron gas the conditions for single-particle excitations
are essentially the same as discussed in Section 5.3 for three dimensions. There is
a particular kind of singularity at �E(q) = | h̄2

2m (q2 − 2qkF)| which becomes more
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important for one dimension [Cza82], as we will see in the following section. Up
to q = 2kF, but in particular near q = 0, excitations are possible, and Eqs (5.3.1)–
(5.3.3) derived in three dimensions apply.

Plasmons are the longitudinal collective excitations of a two-dimensional elec-
tron gas which are sustained if ε1(q, ω) = 0. For long wavelengths (mω � h̄qkF),
we obtain

q2 − ω2

c2
=

(
mω2

2πNe2

)2

, (F.12)

where the right hand side can be neglected for very long wavelengths (q <

2πNe2/mc2). For short wavelengths Eq. (F.9a) leads to the plasma frequency in
two dimensions

ω2
p ≈

2πNe2q

m
+ 3

4
q2v2

F . (F.13)

The well known square root plasma dispersion of the leading term ωp ∝ √
q is

not affected by the finite thickness of the electron gas or by correlation effects; it
is obtained for degenerate as well as non-degenerate electron gases and has been
observed in various systems, such as electrons on liquid helium or inversion layers
in semiconductors [And82].

F.2 Dielectric response function in one dimension

The one-dimensional response functions are of great theoretical importance al-
though the realization can only be achieved as the limiting case of a very
anisotropic material, such as quasi-one-dimensional conductors. In recent years
the problem gained relevance due to the progress in confining the two-dimensional
electron gas at semiconductor interfaces or arranging metallic atoms at surfaces
along lines. As already pointed out in the discussion of the two-dimensional
case, we consider an idealized situation of a one-dimensional electron gas, but
the electric field lines extend in three-dimensional space. Concerning the size
quantization effect, we again consider only the ground state of the system to be
occupied.

F.2.1 Static limit

The charge density of the screening cloud around a point charge decreases very
slowly at long distances. In one dimension the q dependence of the potential cannot
be defined in the same way as for two and three dimensions (cf. Eqs (F.3) and
(5.4.9)); the Coulomb potential can be approximated by [Hau94]

�(r) = e

r
.
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The case of a quantum wire with finite thickness d is discussed in [Lee83]. The
one-dimensional density of charge carriers is N = 2kF/π ; the density of states
diverges at the band edge with

D(E) = 2m

π h̄2k
= N

2E . (F.14)

F.2.2 Lindhard dielectric function

As in three dimensions, the complex dielectric function in one dimension is ob-
tained by solving

χ̂(q, ω) = e2

�
lim

1/τ→0

∑
k

f 0(Ek+q)− f 0(Ek)

E(k + q)− E(k)− h̄(ω + i/τ)
. (F.15)

Since in one dimension the Fermi surface consists of two lines, the sum over
k space is reduced to 2

∑ f 0(Ek )

E(k+q)−E(k)−h̄ω . After some algebra, we obtain the
analytical form

χ̂(q, ω) = −e2 D(EF)
kF

2q

[
Ln

{ q
2kF
− ω+i/τ

qvF
+ 1

q
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qvF
− 1

}
+ Ln

{ q
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qvF
+ 1

q
2kF
+ ω+i/τ

qvF
− 1

}]
.

(F.16)
The real part and the imaginary part of the Lindhard dielectric function have the
following form:

χ1(q, ω) = −e2 D(EF)
kF
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[
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,(F.17a)

χ2(q, ω) =




0 ω
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+ q
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< 1

−e2 D(EF)
kFπ
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− q
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(F.17b)

In one dimension the density of states is D(EF) = N
2EF

= 2m
π h̄2kF

for both spin
directions. Both parts of the complex Lindhard function are plotted in Fig. F.3.

The Fermi surface in one dimension contains two points and we have perfect
nesting for q = 2kF indicated by the peak at zero energy (ω = 0). The semicircle is
given by h̄ω = h̄

2m (q2−2qkF). The region around the plasma frequency ωp shows a
zero-crossing similar to the three-dimensional case (Fig. 5.15). The real part of the
Lindhard function is plotted in Fig. F.3a for different frequencies and wavevectors.
In Fig. 5.14 the static limit of the dielectric response function χ1(q) is also shown
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Fig. F.3. Frequency and wavevector dependence of (a) the real and (b) the imaginary parts
of the Lindhard response function χ̂(q, ω) of a free-electron gas at T = 0 in one dimension
as calculated using Eqs (F.17). The peaks are artifacts of the numerical procedure.
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in the one-dimensional case. It has a pronounced singularity at q = 2kF, which
reflects that all states with the momentum difference 2kF have the same energy:

χ1(q, 0) = −e2kF

q
D(EF) ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣ (F.18)

assuming a linear dispersion relation around EF; this approximation is only valid
near the Fermi wavevector kF. For small q values χ1D

1 (q) is given by the Thomas–
Fermi approximation Eq. (5.4.19). In contrast to a three-dimensional electron gas
the response function diverges at q = 2kF in one dimension. For finite temperatures
the divergency of χ1D

1 (q) at q = 2kF decreases and the peak broadens as shown in
Fig. F.4. According to the mean field theory we find

χ1D
1 (2kF, T ) = −e2 D(EF) ln

1.14EF

kBT
. (F.19)
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F.2.3 Dielectric constant

In one dimension the equation for the dielectric constant is given by

ε̂(q, ω) = 1+ 4e2kF

h̄q3vF

[
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{ q
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}
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}]
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(F.20)
Using Eq. (3.2.7) the real and imaginary parts of the dielectric constant are

ε1(q, ω) = 1+ 4e2kF

h̄q3vF
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. (F.21b)

The real part of the dielectric constant is plotted in Fig. F.5, together with the
imaginary part. In the static case (ω → 0), the real part of the dielectric constant
simplifies to

ε1(q, 0) = 1+ 8e2m

h̄2q3
ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣ . (F.22)

If the wavevector q is comparable to the Fermi wavevector, Eq. (F.20) tends to

ε̂(q, ω) = 1− 8e2vF/h̄

(ω + i/τ)2 − q4v2
F

4k2
F

, (F.23)

which is similar to the value from the semiclassical treatment for large kF.
In Eq. (5.4.10) we arrived at the three-dimensional dielectric constant in the

ω → 0 limit, i.e. the well known Thomas–Fermi dielectric response function. In
one dimension the dielectric constant in the limit ω � qvF, or ωτ � 1, is given by

ε1(q, ω) ≈ 1− 4πNe2

mq2v2
F

. (F.24)

Interestingly, the difference between one and three dimensions is just a factor 2/3.
We also arrive at this factor during the discussion of one-dimensional semiconduc-
tors in Section 6.3.1.

F.2.4 Single-particle and collective excitations

In one dimension, the single-particle excitation spectrum is significantly different
from the three- and two-dimensional cases. For 0 < q < 2kF, �Emin is no longer



458 Appendix F Dielectric response in reduced dimensions

Fig. F.5. Frequency and wavevector dependence of the (a) real and (b) imaginary parts
of the dielectric constant ε̂(q, ω) of a free-electron gas at T = 0 in one dimension after
Eqs (F.21).
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zero. The only zero energy transitions occur at q = 0 and 2kF. Between these two
values, we have

�Emin(q) = h̄2

2m
(2qkF − q2) =

∣∣∣∣ h̄2

2m
(q2 − 2qkF)

∣∣∣∣ . (F.25)

Fig. F.6 shows this one-dimensional excitation spectrum.
Because of the divergency of the absorption at the boundary (shown in Fig. F.3b,

for example), in one-dimensional metals collective excitations are only possible
outside the continuum of single-particle excitations indicated by the hatched area
in Fig. F.6. The plasma frequency has a dispersion

ωp(q) = 2Ne2

εsma2
| ln{qa}|1/2qa +O(q2) , (F.26)

which is linear in first approximation.
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Appendix G

Important constants and units

Throughout the book we have used cgs, or Gaussian, units. Without doubt, SI
units are more convenient when equating numbers and analyzing experimental
results. Therefore we provide conversion tables for commonly used quantities.
For a discussion of problems of units and the conversion between Gaussian (cgs)
and rational SI units (mks), see for example [Bec64, Jac75].
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Table G.1. Conversion table.
In order to convert the equations in cgs units into those in the SI system, the

relevant symbols have to be replaced by the corresponding one on the right hand
side of the table.

Quantity Gaussian SI
(cgs) systems (mks) system

Speed of light c c = 1
(ε0µ0)

1/2

Electric field E (4πε0)
1/2 E

Electric displacement D
(

4π
ε0

)1/2
D

Scalar potential φ (4πε0)
1/2 φ

Charge density ρ 1
(4πε0)

1/2 ρ

Electric polarization P 1
(4πε0)

1/2 P

Current density J 1
(4πε0)

1/2 J

Dielectric constant ε̂ ε̂
ε0

Conductivity σ̂ σ̂
4πε0

Magnetic field H (4πµ0)
1/2 H

Magnetic induction B
(

4π
µ0

)1/2
B

Vector potential A
(

4π
µ0

)1/2
A

Magnetization M
(

4π
µ0

)1/2
M

Permeability µ̂
µ̂
µ0

Impedance Ẑ 4πε0 Ẑ

Poynting vector S c
4π S

Energy density u 4πu

Note: In the case of the electric field E we must remember to replace 1/4π by ε0.

For convenience, in Table G.2 we also list some fundamental physical constants
used throughout the book. These values are only given in SI units since quantitative
values are no longer given in cgs units such as erg, dyne, etc. However, some
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Table G.2. The fundamental physical constants.

Quantity Value in SI units

Speed of light in a vacuum c = 2.997 924 58× 108 m s−1

Permittivity of free space ε0 = 8.8542× 10−12 A s V−1 m−1

Permeability of free space µ0 = 1.2566× 10−6 V s A−1 m−1

Elementary charge e = 1.602 189× 10−19 A s

Mass of electron m = 9.010 953× 10−31 kg

Mass of proton mp = 1.672 61× 10−27 kg

Mass of neutron mn = 1.674 82× 10−27 kg

Planck constant h = 6.626 176× 10−34 J s

h̄ = h/2π = 1.054 589× 10−34 J s

Avogadro constant NA = 6.022 05× 1023 mol−1

Boltzmann constant kB = 1.380 66× 10−23 J K−1

Bohr radius rB = h̄2

me2 = 5.291 77× 10−11 m

Rydberg constant Ry = me4

2h̄2 = 2.179 91× 10−18 J

Table G.3. Table of units.

Quantity cgs SI SI cgs

Conductivity σ s−1 1.1× 10−12 �−1 cm−1 �−1 cm−1 9× 1011 s−1

Magnetic field H Oe 103

4π A m−1 A m−1 4π × 10−3 Oe

Magnetic G 10−4 T T 104 G
induction B

Magnetic emu cm−3 Oe−1 4π 1 1
4π cm3 Oe emu−1

susceptibility χm

Pressure p bar 105 Pa Pa 10−5 bar
7.53× 10−3 torr

Note: Oe = oersted; G = gauss; T = tesla; Pa = pascal. 1 emu = 1 G cm3; we also found
the susceptibility per mass and per mole.

quantities still occur in different units, like the magnetic field. In Table G.3 we
give only those which are important in our context. Most important are certainly
the units of energy and its equivalent such as temperature and frequency; the cor-
responding conversion is listed in Table G.4, which can also be found in Chapter 8.
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italics.

absorbed power density see power absorption
absorption coefficient α 24, 26, 28, 219, 220, 226,

230, 273, 285, 410
metal 98
semiconductor 152, 161, 343–4, 354, 356, 359, 366
superconductor 185, 274

absorption edge see band edge
absorption rate see transition rate
absorption regime 145
absorptivity A 45, 100, 328, 377, 378, 383

of film, AF 411, 413
acceptor see impurity state
adiabatic approximation 84, 88

see also relaxation time approximation
admittance 220, 233
Ag:Pd 320
Airy function 293, 412, 413
Al 301, 310, 311, 312, 375, 382
Alfvén wave 429
amorphous solid 319, 334, 339, 357, 366
Ampère’s law 10, 17
Anderson transition 330
Anderson’s impurity model 321
anisotropic medium 2, 55, 301, 315, 316, 350, 352,

386
anomalous regime 113, 186, 190, 429, 433, 434, 435,

442, 443
extreme 434, 435

anomalous skin effect see skin effect
apodization 264
attenuated total reflection (ATR) 42
attenuation constant see absorption coefficient
attenuation of electromagnetic wave α 24, 25, 219

see also absorption coefficient
Au 303, 304, 306, 312
auto-coherence function 212, 400

backward wave oscillator 211, 248, 285
band edge 150, 155, 178, 342, 368
band structure 149, 153, 159, 316, 344, 345, 431
bandgap Eg 149, 150, 154, 158, 207, 339, 342, 349,

353
pseudogap 367
see also direct transition; indirect transition;

single-particle gap; and thermal gap
bandmass see mass
bandwidth

W 178, 207, 301, 319, 330, 361, 364–5
�ω 212, 286
see also resonance structure, width �

Bardeen–Cooper–Schrieffer (BCS) theory 173, 373,
375

(BEDT-TTF)2I3 290–1, 292
Beer’s law see Lambert–Beer’s law
black-body radiation 210, 211, 246, 264
Bloch wavefunction 4, 82, 88, 90, 151, 329, 421, 426
Bohr’s model see hydrogen model
bolometer 213, 377
Boltzmann’s transport theory 106, 302, 430

Boltzmann equation 108, 122, 317, 432
conductivity σ̂ 109, 119
current density J 109
dielectric constant ε̂ 122
local limit 110, 122

Bose–Einstein distribution function 161, 329
bosonic fluctuations 383
bound state 320

see also exciton and impurity state
boundary see interface
boundary condition 33, 209, 218
Brewster angle ψB 38, 39, 41
bridge configuration see interferometer and network

analyzer
Brillouin scattering 1, 33, 215
Brillouin zone 148
broken symmetry ground state 173, 174

Ca 312
capacitor 247, 253, 254, 271, 272, 288
causality 57, 59, 60, 251

467
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cavity see resonant cavity
cavity ring-down technique 270, 287
CeAl3 324
center frequency see Lorentz model and resonant

structure
cgs units see units
(CH)x 362, 365–6
Chambers formula 112, 189, 313, 430, 431, 442

see also non-local response and skin effect,
anomalous

characteristic impedance see impedance
charge carrier concentration N 85, 93, 106, 120, 138,

140, 179, 302, 358, 424
charge conservation 11, 78
charge density ρ 10, 15, 53, 78

external ρext 16, 52–3
induced ρind 52–3
polarizational ρpol 16
total ρtotal 16

charge density wave (CDW) 174, 175, 387, 389, 392
commensurate 175, 362
incommensurate 175
optical properties 197, 202, 389

circuit representation 218, 219, 231, 236, 237, 241,
288

clean limit 186, 187, 199, 372, 381, 385, 443
clystron 211
coaxial cable 217, 273
coherence 211, 212, 245, 261–2, 281
coherence factor 182, 185, 197, 375, 394

case 1 183, 198, 389, 393
case 2 183, 191, 375

coherence length
ξ 186, 379, 382, 442
lc 212

coherence temperature Tcoh 323, 384
Cole–Cole relaxation 391–2
collective excitation 131, 171, 187, 197, 198, 309,

310–11, 371, 387, 389, 390, 392, 428, 459
conductivity

complex σ̂ 18, 23, 61, 208, 322
density wave 182, 196, 197, 199, 200, 202, 387–8,

389, 392–4
imaginary part σ2 18, 23, 61
longitudinal component σ̂L 55, 78, 79, 120

q dependence 123, 130, 132
metal 95, 96, 303–5, 322, 324, 453
real part σ1 16, 18, 23, 61, 304
semiconductor 141, 153–4, 157, 167, 168, 350,

351, 359, 363, 364
superconductor 181, 191, 192–3, 259, 375, 376,

379, 380, 419
transverse component σ̂T 55, 73, 76, 79, 88, 89

q dependence 115, 118, 119, 133
contact 209, 247
continuity equation 11, 78, 179
convolution 399–400
Cooper channel 175
Cooper pair 173, 176, 179, 383
correlation length see coherence length
Coulomb gap 331

Coulomb gauge 11, 48
Coulomb glass 4, 331
Coulomb repulsion U 361–2

screened µ∗ 383
Coulomb’s law 10, 13, 16–17, 48, 446–7, 453
critical point 154, 345–6, 347, 348, 366
Cu 314
CuO 355
current–current correlation function 72, 105
current density J 10, 16, 93, 109, 179, 208, 254, 430,

435, 439
bound Jbound16
conduction Jcond 16
diamagnetic Jd 73, 80, 89–90, 439
displacement Jbound 16
external Jext 16
longitudinal component JL 48, 51, 79
paramagnetic Jp 73, 80, 439
superconducting 179, 180, 189, 439, 441
total Jtotal 16
transverse component JT 48, 51, 73, 76–7, 79, 89

cutoff energy Ec 177–8, 325
cutoff frequency 222–3, 229, 325
cutoff wavelength see cutoff frequency
cyclotron resonance 316

dc conductivity σdc 93, 270, 284, 302, 306, 323, 326,
330–1, 342, 388

de Haas–van Alphen effect 316
Debye–Hückel screening length see screening length
Debye relaxation 255, 391
Debye temperature θD 383
density of states

electronic (DOS) Dl 154, 161, 177, 184, 319, 328,
331, 340, 344, 345, 367, 446, 454

phonon F(ωP) 327, 383, 384
see also joint density of states

density wave (DW) 173, 387
commensurate 175, 362, 394
incommensurate 175, 387, 394
see also collective excitation; internal deformation;

pinning; and single-particle gap
depolarization 233
detector 212, 213
diamond 349
dielectric constant

complex ε̂ 17, 18, 23, 62, 65, 86, 250, 279, 340
density wave 390, 392, 394
glass 255, 392
imaginary part ε2 17, 23, 62, 87, 90, 341, 347, 348
longitudinal component ε̂L 49–54
metal 95–6, 97, 303–4
one dimension 157, 158–9, 347, 457, 458
q dependence 123, 127, 128, 130, 131, 169, 452,

457
real part ε1 16, 23, 61, 66–7, 87, 90, 140, 303, 306,

335, 341, 343, 390
semiconductor 138, 139–40, 142, 153, 154, 157,

158, 161–2, 168, 347–8, 367
static 67, 155, 340, 349, 354, 390, 394–5, 447, 452,

457
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dielectric constant (cont.)
tensor 55
transverse component ε̂T 118
two dimensions 156, 157, 158, 450, 451, 452
zero-crossing 49–51, 55, 89, 104, 305, 308, 348

dielectric function see dielectric constant and
Lindhard dielectric function

dielectric loss function see loss function
dielectric relaxation 255, 391
dielectric susceptibility χe 16, 251–2

longitudinal component χL
e 53–4

diffraction 248
dipole approximation 105
dipole matrix element 77, 84, 90, 105–6, 138, 152,

159, 343, 356, 423, 427
dipole moment see polarization
direct transition 148, 149, 339, 342, 343
dirty limit 186–7, 199, 443
disorder 329, 332, 356

see also localization
dispersion 56, 59, 60
dissipation see power absorption
donor see impurity state
doped semiconductor see impurity state
Drude model 93, 302

absorption coefficient α 98
absorptivity A 100
conductivity σ̂ 95, 96, 302
dielectric constant ε̂ 95–6, 97
generalized 322
loss function 100, 102
optical properties 95
reflectivity R 99
refractive index N̂ 98
renormalized 324–5
spectral weight 181, 188, 303, 325, 363
surface impedance Ẑ 101

dynamical form factor S 68

eccentricity 279–80
edge effect 209, 248
effective mass m∗ 181, 197
electric conductivity see conductivity
electric dipole matrix element see dipole matrix

element
electric displacement D 16

longitudinal component DL 49, 52
transverse component DT 49, 55

electric field strength E 10, 14
longitudinal component EL 47–9, 52
transverse component ET 47–9, 55

electric susceptibility see dielectric susceptibility
electrical current density see current density
electron–electron interaction 173, 301, 319, 321, 331,

339, 353, 361, 363, 384, 427
electron energy loss spectroscopy (EELS) 1, 68, 215,

308, 310, 312, 348–9
electron gas

free electron gas 95, 115, 117, 120, 301
one dimension 133, 453

two dimensions 133, 301, 445
electron–hole excitation see single-particle excitation
electron–lattice interaction 339, 361
electron–phonon coupling constant λP 181, 328, 383,

389
electron–phonon interaction 173, 181, 301, 319, 327,

361, 382, 388, 427
electron–phonon matrix element αP 327
Eliashberg theory 376, 382
ellipsometry 69, 271, 278, 280
enclosed cavity see resonant cavity
energy band 148, 302
energy conservation 15, 26–7
energy density 14–15, 26

electric field 14
magnetic field 14

energy dissipation 26
energy loss function see loss function
energy scale 207, 214, 463
equation of motion 65, 79, 93, 131, 139, 181, 387
etalon see Fabry–Perot resonator
evanescent wave 42, 221
excitation spectrum

free electron gas 117, 130, 309
one dimension 459
semiconductor 170, 171
superconductor 190, 371
see also collective excitations and single-particle

excitations
exciton 163, 164, 339, 354–5
extinction coefficient k 21, 22, 23, 63, 69, 98, 143

f sum rule see sum rule
Fabry–Perot resonator 214, 217, 236, 239, 240, 250,

286, 291, 294, 414
Faraday’s law 10, 17, 48
femtosecond spectroscopy see time domain

spectroscopy
Fermi–Dirac distribution function 77, 82, 107–8
Fermi energy EF 92, 109, 207
Fermi glass 4, 330
Fermi liquid 3, 301, 326, 385, 445
Fermi sphere 93, 94, 116, 133
Fermi surface 93, 109, 175, 301, 315, 316, 431, 454
Fermi temperature 324
Fermi velocity vF 93, 309–10, 379
Fermi’s golden rule 74, 152, 184, 319
film 233–4, 235, 287, 293–5, 377, 406, 407–8, 409

five-layer system 408, 417
four-layer system 408, 416
three-layer system 407–8, 416

finesse F 293, 420
fluctuation-dissipation theorem 5, 76, 105
forbidden transition 159, 162, 343, 344, 353
four-probe technique 271, 272, 284
Fourier transform spectrometer 214, 245, 258, 265,

280, 400
Fourier transformation 261, 399, 400–1
free-electron laser 210
Frenkel exciton see exciton
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Fresnel’s formulas 31, 34, 279
Friedel oscillations 127, 452

GaAs 349, 356, 357
gap see Coulomb gap; bandgap; single-particle gap;

and thermal gap
Gaussian units see units
Ge 340, 341, 345, 348–9, 354, 367
geometrical optics 248
Golay cell 213
gold see Au
grating spectrometer 15, 214, 248
grazing incidence see incidence
group velocity vgr 24, 229
Gunn diode 201–11, 248

Hagen–Rubens regime 99, 100–1, 113, 303, 307, 308,
414, 435

harmonic oscillator model 139, 388, 392
Hartree–Fock (HF) approximation 53
heavy fermion material 208, 323, 324, 382, 384
helicon wave 429
Helmholtz equation 20
Holstein process 327, 383
homogeneous medium 2, 55–6
hopping transport 166, 330

variable range 331, 334
Hubbard model 361, 364
hydrogen model 163, 165, 355–6

IMPATT diode 201–11, 248
impedance Ẑ 28, 220, 232, 236, 241, 270, 272

characteristic impedance 29, 217, 220, 221–3, 230,
232, 272

coaxial cable 229
free space 29, 227
TE10 waveguide 229
two plate 228
two wire 227

film impedance ẐF 406
free space Z0 29
load impedance ẐL 230, 231, 232, 272, 408

film 234
mismatch 44, 217, 231, 236, 238, 408;
see also interface and reflection coefficient
surface impedance see surface impedance

impedance analyzer 247
impurity band 167, 168, 358
impurity scattering 319

see also relaxation rate
impurity state 165, 166, 168, 319, 320, 339, 357
incidence

normal 34, 276
oblique 38, 69, 276
plane 32, 34, 278
ψi 32, 33–4, 39–41, 275, 278

indirect transition 149, 159, 160, 339, 353, 354
ineffectiveness concept 114, 315, 381, 429
InSb 342–3, 344, 349
interband transition 92, 153, 303, 306, 422

interface 31, 217, 230, 233
two interfaces see film

interference 234–5, 260–2, 411
interferometer 247, 269, 273, 281, 282–3

see also Mach–Zehnder interferometer and
network analyzer

internal deformation 387, 391, 392
intraband transition 92, 153, 303, 306, 422, 427
isotropic medium 2, 55–6

joint density of states Dl′l 77, 154, 156–7, 161, 345,
350

Josephson effects 179
Joule heat 27

K0.3MoO3 389, 392
K2[Pt(CN)4]Br0.3·3H2O (KCP) 352, 353, 389
k · p perturbation 87, 150, 421
kernel 189, 434, 441
kinetic energy 93
Kohn anomaly 126
Kondo effect 321
Kramers–Kronig relations 57, 210, 246, 252, 322, 423

conductivity 61
dielectric constant 61–2
loss function 62–3
reflection coefficient 63
refractive index 63
surface impedance 63

Kubo formula 76, 105, 302
Kubo–Greenwood formula 77

Lambert–Beer’s law 26, 220
Landau damping 117, 132, 310, 311
Laplace transformation 250–1, 273, 403, 404
laser 210, 211, 248, 258
LC R meter 247
leads see wire
Lee–Rice–Anderson formula 197
Li 312
Lindhard dielectric function χ̂ 54 86

one dimension 126, 454, 455–6
q dependence 123, 125, 126
two dimensions 126, 447–8, 449

linear approximation 2, 57, 108, 251
linear chain compound 350
Liouville’s theorem 107
load impedance see impedance
local limit 2, 57, 106, 186, 372, 381, 438, 442, 443
localization 319, 329, 332–3, 357
localization length λ0 331
lock-in amplifier 247
London equations 180
London limit 186, 443
London penetration depth see penetration depth
Lorentz model 137, 141, 340

conductivity 141, 142
dielectric constant 140, 142, 143
loss function 143, 146, 147
optical properties 141
oscillator frequency 141, 341
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Lorentz model (cont.)
oscillator strength 141
plasma frequency 141
reflectivity 143–4
refractive index 143
surface impedance 143, 145

loss see dielectric constant, imaginary part and power
absorption

loss angle δ 18, 27
loss function 53–4, 62–3, 68, 99, 102, 146, 147, 309,

310–11, 340, 341, 348, 349
loss tangent see loss angle
Luttinger liquid 353

see also Fermi liquid

Mach–Zehnder interferometer 250, 282, 285, 294,
377

McMillan formula 383
magnetic field strength H 16–17
magnetic induction B 10, 14

longitudinal component BL 47
transverse component BT 47

magnetic susceptibility χm 17, 302, 307, 322, 326
magnetization M 17
magnetron 211
many-body interaction 207, 321
mass m 65, 72, 93, 179, 305

bandmass mb 150, 155, 181, 302, 307, 316, 426
effective m∗ 181, 197, 199, 202, 323, 327, 382,

384, 388, 390
frequency dependent 302, 322, 324, 427
reduced µ 155, 351, 354
renormalized see mass, effective
thermodynamic 318, 323, 327

material parameter 9, 15, 19, 23
longitudinal component 49
transverse component 49

matrix element see dipole matrix element
Matthiessen’s rule 319, 329
Mattis–Bardeen formula 190, 259, 274, 286, 373, 376,

379–80, 393, 420
Maxwell relation 24
Maxwell’s equations

in free space 10, 13
in the presence of matter 17, 50

McMillan formula 383
mean free path � 93–4, 186, 190, 379, 382
Meissner effect 180, 439
memory function 322
metal-to-insulator transition 167, 292, 295, 301, 330,

332, 335, 339, 357, 358, 359, 360, 364
metals 92, 301
Michelson interferometer 212, 258, 260
microstripline see stripline
mode 221, 229, 239
Mott exciton see exciton
Mott–Hubbard insulator 361, 364
multilayer system see film
multireflection see film and resonant structure

Na 312
Nb 258, 259, 274–5, 286, 287, 373, 374, 376, 377,

380, 382
NbN 377, 378, 417, 418–19, 420
NbSe3 389
(NbSe4)3I 352, 353
Nbx Si1−x 331, 335, 360
nesting 175
network analyzer 215, 230, 246–7
non-Fermi-liquid state see Fermi liquid
non-linear transport 394
non-local response 110, 188, 312, 381, 429, 441–3

see also local limit
nuclear magnetic resonance (NMR) 184
nulling technique 279, 281
Nyquist criterion 263–4, 400

oblique incidence see incidence
Ohm’s law 16, 18, 51
Onsager relation 56
open resonator see Fabry–Perot resonator
optical constant 9, 21, 23
optical fiber 224
optical parameter 9, 31
oscillator strength 106, 138, 423

parallel plate transmission line see stripline
Parseval’s theorem 400
particle density N 78, 82
Pb 377, 379, 382, 384
PbS 342, 343, 353
Peierls channel 175
Peierls insulator 362
penetration depth λ 178, 187–8, 190, 196, 201, 275,

290, 374, 381, 382, 385, 440
London penetration depth λL 180, 186, 372, 379,

382, 385, 439
permeability µ1 17
permittivity see dielectric constant
perturbation method see resonant structure
phase angle φ 19, 22, 28, 30, 196
phase constant β 220, 231, 410
phase shift φr 35, 37, 39–41, 63, 69, 100, 144, 277,

410
phase shift φt 37, 39–41, 249, 250, 285, 287, 410
phase velocity vph 23, 229, 273, 274, 288, 289
phonon 159, 178, 327

frequency ωP 150, 159, 181, 328, 383, 388–9
see also electron–phonon matrix element and

density of states
photoemission spectroscopy 1, 215, 320
photometric technique 279
photomultiplier 213
pinning 387, 394–5
Pippard limit 437, 442, 443
Planck’s law see black-body radiation
plane of incidence see incidence
plane wave 12, 19
plasma edge 98–100, 311, 312, 318
plasma frequency ωp 66, 94–5, 131, 139, 141, 167,

302, 312, 318, 349, 425, 453, 459
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plasma frequency (cont.)
dispersion 117, 131, 132, 310, 453, 459
longitudinal plasma frequency ωL 51, 310
transverse plasma frequency ωT 51

plasma waves 38, 309–10, 453
Poisson’s equation 11, 48, 85, 120, 446
polarimetry see ellipsometry
polarizability α̂ 65, 67, 138, 140
polarization P 15, 16, 52, 131, 137, 140, 251–2, 255,

391
polarization of electric field vector 12, 14, 31, 32, 262,

275–6, 278, 280
polyacetylene see (CH)x
potential see scalar potential and vector potential
potential energy V 78, 85
power absorption P 26, 27, 74–5, 233, 269, 424–5

broken symmetry ground state 184–5, 191
resonant structure 237
semiconductor 152
transmission line 220, 226

Poynting vector S 15, 27
prism spectrometer 248
propagation constant γ̂ 219
propylene carbonate 254, 255
pseudopotential method 344, 345
pulse technique see time domain spectroscopy
pyroelectric detector 213

quality factor Q 235, 236–7, 240, 270, 286, 289, 293,
420

quantum Monte Carlo (QMC) method 363
quantum phase transition 4
quarter wave plate 279, 280

radiation detector see detector
radiation source see source
Raman scattering 1, 33, 215
random phase approximation (RPA) 53
Rayleigh criterion 264, 400
reflection coefficient r̂ 34, 35, 39–41, 44, 63, 69, 232,

408, 416
reflection regime 146
reflectivity R 36, 44, 276, 303, 341, 377, 393

extrapolation 246, 266
film RF 410, 412–13, 415
Hagen–Rubens behavior 99, 103, 246, 307, 308,

414
measurement 275–6, 278
metal 99
plasma edge 99, 104, 304, 312, 318, 340, 361, 415
semiconductor 144, 158, 168, 361
spin density wave 201, 393
superconductor 194, 378

refractive index
complex N̂ 21, 23, 29, 63, 98, 143, 304
imaginary part see extinction coefficient
real part n 21, 22, 23, 63, 69, 98, 143, 285

relaxation rate 93, 95, 100, 105, 108, 139, 186, 208,
302, 306–7, 310, 319, 433

frequency dependent 302, 322, 324, 326, 427
renormalized 322, 325, 384, 387

relaxation regime 100, 103, 303, 313, 328, 433, 434,
435

relaxation time approximation 93, 105, 108, 139
resistivity see dc conductivity
resolution 248, 253, 263, 264
resonant cavity 214, 236, 238, 239, 290, 291, 375
resonant structure 217, 234, 236, 237, 269, 286

coaxial line 238
dielectric 238
discrete elements see RLC circuit
frequency ω0 235, 236–7, 237, 239, 242, 289, 292
open see Fabry–Perot resonator
perturbation 241, 290
stripline 214, 236, 238
waveguide see resonant cavity
width � 235–7, 237, 240, 242, 292
see also quality factor

response
longitudinal response 47, 52, 81, 120, 223
static limit 120
transverse response 47, 115

response function 1, 18, 56, 57, 64, 71, 81, 208, 251,
257

rigid-band approximation 120
RLC circuit 218, 236, 237, 288
Rydberg series 163–6, 355–7

sampling theorem 253, 264, 400
scalar potential � 10, 13, 54, 78, 84
scaling regime 330
scattering matrix S 232, 248
scattering of waves 217, 230
scattering rate see relaxation rate
screening effect 120, 209, 445
screening parameter

classical 121
Debye Hückel λDH 121, 446
Thomas–Fermi λ 121
two dimensions 446

second quantization 79, 173
selfconsistent field approximation (SCF) 53
semiconductor 136, 303, 339
Shubnikov–de Haas effect 316
Si 312, 349, 350, 351
Si:B 335
Si:P 331, 335, 357–8, 359, 360
SI units see units
single-particle excitation 115, 117, 130, 171, 173,

187, 197, 309–11, 371, 388, 390, 393, 428, 452,
459

single-particle gap � 177, 178, 208, 275, 362, 365,
373, 375, 379, 382, 389–90, 393, 394

anisotropic 371–2, 385–6
see also bandgap

skin depth δ 25, 44, 114, 180, 209, 233, 273, 275,
313, 431

skin effect 25, 99, 313, 381, 433, 434, 435
anomalous 113, 312, 314, 381, 429, 432, 433, 434,

435
Sn 382
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Snell’s law 33
soliton 362, 365
Sommerfeld coefficient γ 318, 323, 327
Sommerfeld model 93

see also Drude model
source 210, 211, 247–8
specific heat 302, 307, 318, 323, 326
spectral weight 66, 187, 198–9, 325, 331, 363–4, 387,

394
spectroscopy 207, 215, 245
spin density wave (SDW) 174, 175, 198, 394

optical properties 198, 200–1, 389, 392–3
Sr14Cu24O41 265, 266
stainless steel 307, 308
stray capacitance 247, 273
stripline 217, 228, 273, 274, 275

see also resonator 214, 288
structure factor S 68
sum rule 65, 343, 423

conductivity 66, 358, 424
crystal 426
dielectric constant 66, 425
f sum rule 67, 94, 106, 138, 424
loss function 68
reflection coefficient 69
refractive index 69
surface impedance 68
Thomas–Reiche–Kuhn 138, 424
Tinkham–Glover–Ferrell 187, 381, 385, 388, 428

superconducting gap see single-particle gap
superconductor 173, 371

d wave symmetry 371, 382, 385, 386
high temperature superconductor 289–90, 371, 382
optical properties 190, 192–4, 259, 274, 287, 377,

419
s wave symmetry 371, 385, 386
singlet 174, 175
strong coupling see Eliashberg theory
triplet 174, 175
type I 382, 443
type II 382, 443
weak coupling see BCS theory and Mattis–Bardeen

formula
surface impedance ẐS 28, 42, 63, 68, 101, 145, 194,

232, 241, 272, 290, 313, 373, 374, 436
anomalous regime 115, 314, 429, 431, 428
see also impedance

surface reactance XS 29, 30, 43–4, 63, 236, 242
anomalous regime 115, 313–4, 432
metal 101, 316
semiconductor 145
superconductor 194, 195, 196, 274, 275, 373, 374,

376, 438
surface resistance RS 29, 30, 43–4, 63, 235, 242

anomalous regime 115, 314, 431, 432
metal 101, 316
semiconductor 145
superconductor 194, 195, 196, 274, 373, 374, 376,

438
susceptibility see dielectric susceptibility and

magnetic susceptibility

synchrotron 210, 281
synthesizer 247

TaSe3 283, 284, 389
(TaSe4)2I 389
techniques 214, 245, 269
telegraphist’s equation 218–19
terahertz time domain spectroscopy see time domain

spectroscopy
thermal energy 93
thermal gap 343, 353, 368, 388
thin film see film
Thomas–Fermi approximation 120, 124, 456–7
Thomas–Fermi screening parameter see screening

parameter
threshold field see non-linear transport
tight binding model 307, 317, 361, 390
time domain spectroscopy 245, 250

audio frequency 253, 254, 272
radio frequency 214, 256, 273
terahertz frequency 214, 256, 257, 276–7, 351, 379

Tinkham–Glover–Ferrell sum rule see sum rule
TlGaSe2 249, 250, 285
(TMTSF)2ClO4 317
(TMTSF)2PF6 353, 389, 392–3, 394
total reflection, angle of ψT 38, 41, 42
transfer integral 317, 361
transition matrix element see dipole matrix element

and transfer integral
transition see direct transition; forbidden transition;

indirect transition; interband transition; and
intraband transition

transition rate W 74–6, 108
broken symmetry ground state 182, 184
semiconductor 138, 150, 152, 160–1, 340
superconductor 184, 185, 191

transition temperature 177, 178, 185, 193, 374, 377,
382, 383, 392

transmission
measurement 276–7
through film TF 249, 285, 287, 295, 410, 412–13,

415, 418–19
see also transmissivity

transmission coefficient t̂ 34, 37, 39–41, 45, 232
transmission line 218, 219, 223, 225, 231, 272, 273,

282
transmissivity T 37, 45, 69
transparent regime 100, 104, 147, 303
transverse electric wave (TE) 223, 232
transverse electromagnetic wave (TEM) 221, 232
transverse magnetic wave (TM) 222
tunneling spectroscopy 383–4, 389
two-fluid model 180, 375

units 10, 462–3

van Hove singularity see critical point
variable range hopping see hopping transport
vector potential A 10, 13, 73, 435

longitudinal component AL 48
transverse component AT 48, 73–4
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vertical transition see direct transition
virtually bound state 320
VO2 295
V2O3 364

wave attenuation 24, 219
wave equation

electric field 13, 20–1
magnetic field 20–1
magnetic induction 14
vector potential 10, 48

wave propagation 22, 217
waveguide 217, 273

wavelength λ 14, 23, 36, 229
density wave λDW 175, 391

wavevector q 20, 220
Wheatstone bridge 281, 282
Wiener–Khinchine theorem 400
Wilson ratio 323
wire 217, 219

inductance 247, 273
Woltersdorff thickness dW 412, 413

YBa3Cu3O7 289, 290, 385
Yukawa potential 121

Zener tunneling 395


