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PREFACE

There exist several reasons to pick out the physics of transition group metals
as a separate branch of solid state physics. The first one is the variety of
properties of transition metals (TM) and their compounds, which are not
only much more complicated, but have some important peculiarities in com-
parison with simple metals. In particular, ferromagnetic ordering takes place
practically in TM and their compounds only. The second reason is the impor-
tance of investigating TM both from theoretical and practical point of view.
TM yield an example of a strongly interacting many-electron system, which
does not enable one to introduce in a simple way an effective one-electron
potential. Thus we deal with the full many-particle quantum problem which
requires application of the all modern theoretical physics methods.

The term “transition metals” has two meanings. In the narrow sense of
the word, TM are elements with partly occupied 3d, 4d and 5d-shells, which
form large periods in the Mendeleev periodic table. Sometimes this term is
applied to all the elements with partly filled inner electron shells (transition-
group elements), including 4f (rare earths, RE) and 5f (actinides). As a rule,
we shall use the notion “transition metals” in the narrow sense, but all the
classes of transition-group elements will be discussed in the book.

We have 24 TM, 13 RE and 8 actinides, so that about one half of elements
belong to TM in the broad sense (at the same time, there exist only 25 simple
metals). Among TM we find most practically important metals which exhibit
maximum strength, melting temperature etc. The most well-known example
is Fe: up to now we live in the iron age. More and more applications find rare
earths. For example, the intermetallic compound SmCo5 yields a basis for
best permanent magnets. Actinidies are widely used in nuclear energetics.

A rather large number of books is available which treat metal physics.
They are devoted mainly to simple metals and contain usually some sep-
arate paragraphs concerning TM. True, detailed monograps [15-17] discuss
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properties of rare-earth metals and their compounds. At the same time, sim-
ilar books on d-metals seem to be absent. This is probably explained by
that systematization of corresponding large material, which may be found in
original and review papers on particular topics, is a more difficult problem.
However, in our opinion, it is useful to collect most important results on TM
physics and discuss some general regularities.

Let us list some distinctive physical properties of TM and their com-
pounds:

(i) large binding energies (high strength and melting temperature)
(ii) large electronic specific heat (heavy electron masses)
(iii) strong magnetism: large paramagnetic susceptibility and sometimes

ferro- or antiferromagnetic ordering
(iv) superconductuvity, often with high Tc

(v) anomalous transport properties (in particular, extraordinary halvano-
magnetic effects).

The book is devoted to consideration of these non-trivial physical proper-
ties, especial attention being paid to connection with the electronic structure.
(The latter term includes both the properties of partially filled d- and f-shells
and the anomalies of band structure.) We do not pretend to consider all the
variety of TM compounds and alloys, but try to illustrate some interesting
physical phenomena, which are not pronounced for elemental metals, by some
bright examples.

The book contains, where possible, a simple physical discussion of a num-
ber of problems. At the same time, we use widely in last three Chapters such
methods of theoretical physics as the second quantization, atomic representa-
tion, Green’s function approach. These methods permit to apply microscopic
many-electron models which describe systems with strong interelectron corre-
lations. Besides traditional questions of the solid state physics, we treat some
modern topics, e.g. magnetism of highly correlated and low-dimensional elec-
tron systems, anomalous properties of exotic rare earth and actinide systems
(Kondo lattices, heavy-fermion compounds), formation of unusual quantum
states with non-trivial excitation spectrum etc. More difficult mathemati-
cal aspects of these topics are considered in Appendices A-P. Inclusion of
numerous rather long Appendices makes the “topological” structure of the
book somewhat non-trivial and non-traditional. However, such a structure
reflects many-sided connections which exist between various branches of TM
physics.

At present the TM theory is far from completeness, and a number of im-
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portant problems are still not resolved. Therefore the treatment of some TM
properties may seem to be not so clear and logical as that of corresponding
issues of general solid state physics in classical textbooks and monographs
[1-14]. However, we believe that description of the modern complicated sit-
uation in the TM physics is justified since this may excite the interest in the
unsolved questions and stimulate further researches.

The plan of the book is as follows. In the introductory Chapter 1 we
treat atomic aspects of TM physics which, unlike the case of simple metals,
are rather important since d- and especially f-states retain in a large mea-
sure atomic features. Detailed mathematical consideration of some related
questions is given in Appendices A-C. In particular, we review applications
of the Racah’s angular momentum formalism and Hubbard’s many-electron
operator representation in the solid state theory, which are seldom discussed
in the literature on the metal theory.

Chapter 2 considers the electronic structure of TM from the “band” side.
We review briefly methods of band structure calculations, including the den-
sity functional approach, with especial attention to TM peculiarities. Besides
that, we discuss some simple model approaches to the band spectrum and
related experimental (especially spectral) data. We consider also theoreti-
cal and experimental results concerning the Fermi surfaces. In Chapter 3
we discuss thermodynamical properties of TM: cohesive energy and related
properties, stability of crystal structures, and specific heat, electronic contri-
butions being treated in details.

Chapter 4 deals with magnetic properties. Here we discuss various theo-
retical models describing highly correlated d- and f-electrons. These models
permit all-round consideration of the complicated metallic magnetism prob-
lem which includes the atomic (“localized”) and band (“itinerant”) aspects
of d-electron behaviour. A large number of Appendices, related to this Chap-
ter (D-K), demonstrate concrete practical applications of the many-electron
models, mainly within the simple method of double-time retarded Green’s
functions.

Chapter 5 is devoted to transport phenomena in TM which demonstrate
a number of peculiarities in comparison with simple metals, e.g., occurrence
of spontaneous (anomalous) effects. Quantitative treatment of these effects
is performed with the use of density-matrix approach in the operator form
(Appendix M).

Finally, in Chapter 6 we treat some questions of the anomalous f-compound
theory. In particular, we discuss various mechanisms for occurence of “heavy”
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electron mass and the problem of competition between the Kondo effect
and magnetic interactions. We consider also model descriptions of electronic
structure in two-dimensional highly-correlated systems including copper-oxide
high-Tc superconductors.

We intended to consider in the book all main properties of TM and cor-
responding theoretical concepts. However, the choice and volume of the
material in different Chapters are determined to some extent by scientific in-
terests of the authors. In particular, we pay a great attention to the theory of
magnetism and transport phenomena, but discuss in less details lattice prop-
erties, and almost do not touch superconductivity (the latter topic develops
now extensively and is widely discussed in modern review and monograph
literature). We list once more some examples of non-traditional questions
which are treated in the book: the influence of density of states singular-
ities on electron properties; many-electron description of strong itinerant
magnetism; the problem of quenching and unquenching of orbital magnetic
magnetic momenta in solids and their significance for magnetic anisotropy;
microscopic theory of anomalous transport phenomena in ferromagnets.

The book is partly based on the lection course of the transition metal
physics, which was read for a number of years at the Ural State University.

Except for numerical estimations, we use often in formulas the system of
units with e = kB = h̄ = 1. We hope that the book may be of interest for
researchers which work in the solid state physics and for beginners, both for
theorists and experimentators. Some part of the material may be used in
lection courses for students.

The authors are grateful to A.Zarubin, A.Nasibullin and A.Katanin for
the help in preparing the electronic version of the book.
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Chapter 1

INTRODUCTION

1.1 Partly filled atomic shells and electron lo-

calization in transition metals

The “hydrogen-like” scheme of energy levels depending on one-electron prin-
cipal and orbital quantum numbers n and l corresponds to consecutive filling
of atomic shells with increasing n and l. (The “accidental” degeneracy of
the levels with different l for a given n in the purely Coulomb potential 1/r,
which is connected with a dynamical symmetry, is lifted for many-electron
atoms where the potential r-dependence is modified.) However, in the peri-
odic table this sequence is violated several times. This results in formation of
large periods of transition elements with partly filled d(f)-shells and peculiar
physical properties.

To first time, such a situation occurs in the fourth period where filling of
4s-states starts in potassium, the 3d-shell remaining empty. This tendency
holds also in calcium (configuration of valence electrons is 4s2), and filling of
3d-shell starts only for the next element, i.e.scandium (configuration 3d 4s ).
This element opens the 3d transition group (iron group). The filling of the
3d-shell goes in a not quite regular way (Table 1.1). So, chromium has the
atomic confuiguration 3d14s2 (instead of 3d4s2), and copper 3d104s (instead
of 3d94s2). One can see that a tendency to formation of configurations d0, d5

and d10 exists. The stability of these configurations is apparently connected
with that they correspond to zero summary orbital moment of all the d-
electrons, i.e. to a spherically symmetric electron density. It should be
noted that in some cases copper demonstrates a considerable contribution of
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12 CHAPTER 1. INTRODUCTION

d9s configuration, which is connected with an appreciable s-d hybridization.
Therefore we shall discuss Cu side by side with transition metals.

A situation, similar to 3d metals, takes place for 4d, 5d, 4f and 5f tran-
sition metals groups (Tables 1.1, 1.2). Thus the filling of d- and f-shells is
delayed, and, after it begins, the electrons from the 4s, 4p shells with higher
energies do not pass into “free” d(f)-states. These phenomena are connected
with inapplicability of the simple one-electron picture, which is based on the
hydrogen atom theory, for many-electron atoms.

Consider the radial atomic potential Vl(r), “felt” by electrons. This is
an effective potential which is obtained after averaging two- particle interac-
tion among electrons and including the rotational motion energy (centrifugal
potential):

Vl(r) = −Z(r)

r
+

l(l + 1)

r2
, (1.1)

where Z(r) is an effective nuclear charge, which depends on the electron coor-
dinate r (measured in Bohr radia). For the hydrogen atom we have Z(r) = 1
and Vl(r) has the usual form with a minimum at r0 = l(l + 1) (Fig.1.1).
This picture holds in hydrogen-like atoms where the condition Z(r) = const
is satisfied to high accuracy. However, in more complicated situations the
dependence Z(r) becomes important because of non-uniform screening of nu-
clear potential. It is this dependence that may lead to an anomalous form of
the function Vl(r) for a large centrifugal term (i.e. sufficiently large values of
l). In particular, for

Z(r) =

{
A/r , r1 < r < r2

const , r < r1, r > r2
, (1.2)

Vl(r) may have two minima separated by a potential barrier. Concrete cal-
culations demonstrate that V (r) may even become positive in an interval
[r1, r2]. The results for Ba and La are shown in Fig.1.2. In fact, the interval
[r1, r2] corresponds to the position of orbits of 5s- and 5p-electrons which
screen strongly the nucleus. In other words, strong repulsion between 4f and
s,p-electrons occurs in the region of localization of the latter.

In the presence of two minima, the electron density may be concentrated
in any one, depending on the form of Z(r). The energy of the correspond-
ing states is, generally speaking, considerably different, as one can see from
Fig.1.2. At passing from Ba to La, the lanthanoide collapse of 4f-states, i.e. a
sharp decrease of 4f-shell radius takes place. Further, for cerium 4f-states be-
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come more energetically favourable than 5s, 5p and 6s ones, the maximum of
4f-electron density passes to the first minimum and filling of 4f-levels starts.

Thus the main reason of irregular filling of atomic levels are interelectron
interaction and appreciable value of the orbital energy at l 6= 0. These effect
become important from l = 2 and are strongly pronounced for rare earths
(l = 3). In Fig.1.3 the data on energy levels of external electrons and their
density distribution are shown for the gadolinium atom.

Now we treat the question about true capacity of d(f)-states which re-
main in transition elements, from the point of view of the simple one-electron
theory, partially unfilled (despite filling of higher shells). According to the
latter theory, each shell with the orbital quantum number l may contain
2(2l + 1) electrons, their energies being equal because of spherical symme-
try. However, this is is not true when interelectron correlations are taken
into account. This may be performed in the many-configuration approxi-
mation [20] where a Hartree-Fock-type potential, which depends on electron
configuration, is introduced.

We present a simple illustration of this effect. Write down the energy of n
electrons in a l-shell (the principal quantum number is dropped for brevity)

En
l = nεl +

1

2
n(n− 1)Ql, (1.3)

where εl is the sum of the kinetic energy and additive part of the potential
energy, Ql is the interelectron repulsion for the shell. The energies of the
configurations ln+1 and lnl′ (e.g., d(f)n+1 and d(f)ns) read

En+1
l = (n + 1)εl +

1

2
n(n + 1)Ql, (1.4)

En
l = nεl + εl′ +

1

2
n(n− 1)Ql + nQll′

with Qll′ being the repulsion between l and l′-electrons. One can see that
the configuration l has the higher energy provided that

Ql −Qll′ > (εl′ − εl)/n. (1.5)

In transition elements, the intrashell repulsion is much stronger than the
intershell one, Qsd(f) ¿ Qd(f), and the difference εs − εd(f) is not too large.
Therefore the maximum possible filling of the d(f)-shell is not energetically
favourable.
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The atomic picture of 4f-electrons which are well localized holds in met-
als. A possible exception is given by cerium, which opens the 4f-series, so
that the f-electron lies apparently near the centrifugal potential barrier. The
γ − α transition in the metallic Ce is assumed now to be connected with
the tunneling of the f-electron through the barier and its appreciable delo-
calization (see 6.5). A similar situation occurs in Sm, Nd and Pr under high
pressure of order of 1Mbar [21]. Besides that, in some rare earth compounds
f-electrons become partly delocalized because of hybridization mixing with
conduction electrons.

The description of d-states in solids is rather difficult. Unlike 4f-electrons,
they demonstrate both “localized” and itinerant features. Such a behaviour is
determined by the corresponding atomic potential, which differs essentially
from that for s,p-electrons. The presence of a potential barrier results in
an appreciable localization of d-states and decrease of overlap between d-
functions at different lattice sites. However, the density of d-electrons still
lies partly outside the potential barrier. As a result, their kinetic energy
turns out to be considerable, and the corresponding bandwidth values are
comparable with those for s,p-electrons.

The second factor, which determines the d-electron spectrum, is the
Coulomb repulsion between them. This depends strongly on the number
of d-electrons inside the barrier. Therefore the effective one-electron energies
and wavefunctions should be rather sensitive to the many-electron configu-
ration dn±1s1∓1 , and the degeneracy is lifted:

εd = εd(d
n), εd(d

n) < EF < εd(d
n+1) ' εd(d

n) + Q (1.6)

(the Fermi energy EF determines the band filling). In Appendix C we discuss
these effects in more detail by using many-electron Hamiltonian and angular
momentum theory.

Owing to increase of the d-shell radius, the localization degree of d-
electrons decreases when we move in the periodic Table both from left to
right and from up to below. Thus 3d-electrons are considerably more lo-
calized than 4d- and especially 5d-electrons. This explains the fact that
magnetic ordering, which is connected with existence of pronounced local
moments, occurs for 3d-metals only. A similar difference in the localiza-
tion degree takes place between 4f-electrons in rare earths and 5f-electrons
in actinides. In light actinides (from Th to Pu) 5f-electrons form wide en-
ergy bands and may be considered as itinerant, and in actinides with higher
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atomic numbers they are localized. However, the delocalization in Am, Cm,
Bc and Cf may occur under pressure [22,23].

1.2 Atomic and band approaches in the tran-

sition element theory

Most important peculiarity of transition metals from the theoretical point
of view is an important role of electron correlations. There exist a number
of approaches to the problem of treating many-electron (ME) systems with
strong correlations. The first one was the self-consistent field (Hartree-Fock)
approximation at solving the Schroedinger equation for ME atoms, which
yielded satisfactory quantitative results. The Hartree-Fock method allows to
take into account ME atomic terms, but its full version requires the solution
of a complicated system of integro-differential non-linear equations [20], so
that its direct generalization on solids (systems of large number of atoms) is
hardly possible. Main successes of the solid state theory were connected with
first-principle one-electron band structure calculations. Modern versions of
this approach, which are based on the spin-density functional method (2.3),
enable one to obtain a precise description of ground state characteristics [24].

At the same time, the band theory is wittingly insufficient for strongly
localized f-states, and also at treating some physical phenomena, e.g. mag-
netism (especially at finite temperatures) and metal-insulator (Mott-Hubbard)
transition [25]. Such oversimplified versions of the Hartree-Fock method, as
the Stoner mean-field theory of itinerant magnetism, turned out to be not
too successful. Later, some shortcomings of the Stoner theory were improved
by semiphenomenological spin-fluctuation theories [26], which, however, do
not take into account in most cases correlation effects in the ground state. To
treat electron correlations, various perturbation approaches in the electron-
electron interaction (e.g., diagram techniques) were used. Besides that, the
Fermi-liquid theory was proposed to describe systems with strong electron
interactions [27]. However, this theory is violated in the cases where the
correlations result in a reconstruction of the ground state, e.g. for systems
with a Mott-Hubbard gap [25].

Another approach to the problem of electron correlations was proposed
by Hubbard [28-31] who considered the simplest microscopic model includ-
ing the strong on-site Coulomb repulsion. Starting from the atomic limit,
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Hubbard carried out a decoupling of Green’s functions and obtained an in-
terpolation solution, describing both atomic and band limits for s-states [28]
and the simplest model of degenerate band [29]. In the subsequent paper [30]
this solution was improved to describe the metal-insulator transition. In the
paper [31] Hubbard proposed a general formalism of ME X-operators (atomic
representation) which enables one to take into account intraatomic interac-
tions in the zeroth-order approximation. This formalism for real atomic
configurations is considered in Appendix A.

It is clear from the physical point of view that interelectron correlations
are most important for the electrons of the same atomic shell (the equivalent
electrons). The modern form of the theory of atomic spectra is based on the
Racah formalism for angular momenta (see, e.g., [20]). In some cases, calcula-
tions may be considerably simplified by using the irreducible tensor operator
technique in the second quantization representation [32] (related questions
are considered in Appendix B). This powerful mathematical technique intro-
duces the representation of many-electron quantum numbers Γ = {SLµM}
instead of one-electrons ones, γ = {lmσ},

S =
∑

i

si, L =
∑

i

li (1.7)

being the total angular spin and orbital momenta and µ and M their projec-
tions. Then numerous possible combinations of γ-sets for a partly occupied
shell are replaced by the sets of Γ. The total number of ME state is the
same, but the energy degeneracy is lifted, so that in most physical problems
one can retain only the lowest ME term. According to Hund’s rules, this
term corresponds to maximum L and S. Within this approach, the prob-
lem of electrostatic interaction in the system is reduced to calculating a few
Slater integrals F (p) (Appendix C). These integrals may be calculated with
the use of atomic wavefunctions [33] or determined from experimental data
on energies of atomic terms (see [34]).

Information on the energy of the Hund atomic terms may be obtained
from the values of atomic ionization potentials. Table 1.1 presents the values
of third ionizaton potentials (of M2+ ions) in d-rows, which characterize the
binding of d-electrons (first and second ionization potentials correspond as a
rule to moving away of s-electrons from the dns2 configuration). One can see
that with increasing atomic number the binding in the d-rows increases. Such
a dependence explains the corresponding increase of d-electron localization
in solids, which is discussed in previous Section.
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In solids the values of the Slater integrals become modified. In the recent
paper [35] the lowering ∆F (p)/F (0), which is due to the change in correlation
effects (in particular, in interconfiguration interaction) in a crystal, was cal-
culated. At p = 2, the values of this quantity of 0.22 and 0.16 were obtained
for Ti2+(d2) and Ni2+ (d8) ions respectively.

Besides the band approach, the ME approach with inclusion of the atomic
spectroscopy mathematical technique should be very useful for the develop-
ment of quantitative theory of solids. Such an approach is applicable in the
case of strong electron localization and especially effective for equivalent elec-
tron shells of d- and f-ions with a complicated term structure. It is important
for the solid state theory that the second quantization representation (unlike
the standard atomic theory) enables one to consider processes with changing
electron number in a shell or an atom (Appendix C). An account of band
energy dependence on many-electron quantum numbers corresponds to the
degenerate Hubbard model (Appendices C,H).

The localization degree of 4f-electrons is sufficient to justify using the
atomic picture. On the other hand, for d- and 5f-electrons the crystal field
effects result in at least partial quenching of orbital momenta and destruc-
tion of atomic terms. However, atomic structure is important for local effects
(e.g., in the case of d-metal impurities). Atomic description may be useful
also at considering some physical phenomena in periodic crystals (e.g., strong
magnetism with pronounced local magnetic moments, formation of an insu-
lating state in d-compounds).

An interesting many-electron term effect for a pure metal is the 6eV sat-
telite in the XPS spectrum of nickel which may be attributed to the multiplet
strucutre of the d8-configuration (see also 2.6). Another example is provided
by Auger spectra for d-states which exhibit clearly the term structure. This
is due to large localization of d-electrons in the presence of highly correlated
two-hole atomic states which occur after the core hole decay. The Coulomb
interaction of d-holes U in Cu is so large that the two-hole final state is split
off from the one-hole band states. Therefore one can distinguish in the Cu
spectrum (Fig.1.4) all the terms of the d8 configuration.

A somewhat less pronounced multiplet structure of the d-configuration is
observed in the Auger spectrum of metallic nickel. The value of U in Ni is of
order of the one-hole bandwidth and the two-hole states mix strongly with
band states (the initial state is a mixture of d and d configurations). Fig.1.5
shows an interpretation of the L3VV spectrum in terms of the multiplet
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structure corresponding to the main peak 1G with

U(1G) = F (0) +
4

49
F (2) +

1

441
F (4). (1.8)

The comparison of XPS and L3VV spectra for nickel and its compounds [37]
permitted to estimate the value of U and determine its dependence on crystal
surrounding. Experimental energies of the XPS satellite correlate with the
energy of the L3VV peak in all the cases. A fit of the Slater integral yields

F (0) = 1.7, F (2) = 9.6, F (4) = 6.4

(in eV) which leads to

U(1S) = 6.3, U(1G) = 2.5, U(3P ) = 7.85, U(1D) = 1.6, U(3F ) ' 0.

The considerable decrease in the value of F in comparison with atomic one
demonstrates strong screening of the Coulomb interaction by conduction elec-
trons. The overlap of the atomic 3F state with bandlike states may influence
appreciably electronic properties of nickel.

Besides the energy characteristics, the transition propabilities in spectral
measurements are also of interest for investigating the ME term structure fea-
tures in the solid state. The probabilities of the Auger processes L2,3M45M45

for the d8 multiplet of Cu were calculated in [38] with the use of modified
wavefunctions of continuum Auger electrons (using the plane waves yielded
a drastic disagreement with experimental data). The results are presented
in Table 1.3. One can see that the probabilities are not proportional to term
multiplicities, which indicates a considerable change of atomic states in the
metal.

The values of Slater integrals with account of Coulomb interaction screen-
ing by extra-atomic electrons in two-hole states, which were obtained in [38],
are

F (2) = 10.0, F (4) = 5.6.

They are appreciably suppressed in comparison with the atomic values

F (2) = 11.65, F (4) = 7.18.
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1.3 Crystal field and orbital momenta in solids

As discussed above, electrostatic interactions in free transition-element atoms
result in occurrence of partly filled d(f)-shells, their states being characterized
by many-electron quantum numbers. Now we consider the role of extra in-
teractions which are present in crystals containing such atoms. In particular,
we discuss the problem of role of orbital magnetic momenta in solids.

The orbital momentum L is one of principal atomic characteristics. This
quantum number determines the ground state of the atom according to the
second Hund’s rule and the general picture of excited terms. Existence of
orbital magnetic momenta (OMM) in ME atomic configurations should result
in a number of important effects in solids. In particular, one might expect the
occurence of the orbital magnetism with large magnetic momenta and strong
anisotropy. Such a situation does take place in rare-earth systems [16,39]
where magnetism is determined by the total angular momentum J = L + S.
Orbital momenta play also an important role in actinides because of strong
spin-orbital coupling.

In most d-metals and their compounds, the contribution of OMM to
physical properties is considerably smaller (e.g., for Ni the investigation of
L absorption edge [40] yielded l = 0.05m). This is explained by that d-
electrons are influenced by crystal field (CF) considerably stronger than well-
localized 4f-electrons. The ME levels of d-ions are split by CF, so that OMM
become quenched: 〈L〉 = 0 in not too high magnetic fields. However, other
interactions in the crystal unquench them partly, and (even small) OMM
that arise are important for the anisotropy of physical properties due to
coupling to the lattice. In particular, strong anisotropy of paramagnetic
susceptibility owing to the orbital contribution takes place in a number of
hexagonal transition metals (see a detailed discussion in Sect.4.2).

In the problem of quenching of orbital momenta, three basic interactions
should be taken into account: the Coulomb interaction VQ, the spin-orbit
coupling Vso and the CF potential Vcf . There occur three cases. For a weak
crystal field where

Vcf ¿ Vso ¿ VQ (1.9)

we have the coupling scheme
∑

i

si = S,
∑

i

li=L, L + S = J. (1.10)

Then OMM are unquenched (the whole quantum number set is {SLJM}).
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The coupling between L and S is rigid, and CF orients the total momen-
tum J in some crystallographic directions, which results in a large magnetic
anisotropy. The weak field approximation is valid for rare-earth ions where
4f-shells are strongly screened from Vcf by s,p,d shells, and the value of Vso

is appreciable due to large nuclear charge Z.
For the intermediate crystal field

Vso ¿ Vcf ¿ VQ (1.11)

L and S still persist, but the momentum J is not formed because of CF
splitting. Then OMM are oriented in easy crystal directions and spin mo-
menta are coupled to them by a weak spin-orbit coupling. At inclusion of an
external magnetic field H in a hard direction, the deviation of spin momen-
tum from the easy direction will be proportional to the ratio µBH/Vcf . The
orbital contribution to magnetization will be negligible because of smallness
of the ratio µBLH/Vcf in any realistic fields. The intermediate-field situation
apparently takes place for d-impurities in some salts [41] and for some non-
metallic d-compounds. This case is compatible with orbital ordering, which
exists in a number of d-systems [42].

Finally, for the strong crystal field

Vso ¿ VQ ¿ Vcf (1.12)

the Russel-Saunders coupling between d-electrons is totally destroyed. Then
their energy levels are to be considered as one-electron ones which are split
by CF. The Coulomb interaction should be now treated as a perturbation for
the states with a new symmetry, and orbital momenta are transformed into
quasimomenta which are determined by the corresponding irreducible repre-
sentations of the point group. The strong field situation is usually assumed
to take place for transition metals and their alloys. However, the estimation
Vcf ∼ VQ seems to be more realistic in such systems. This leads to difficulties
at developing a consistent quantitative theory.

The CF theory is well developed for paramagnetic ions in non-metallic
crystals where a general qualitative analysis of the d- shell structure can be
made on the basis of the local point group, corresponding to a given site.
General expansion of the CF potential in spherical functions has the form

Vcf =
∑

λµ

Aµ
λ rλ Yλµ(θ, φ). (1.13)
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For a l−shell, it is sufficient to retain in (1.13) the terms with λ ≤ 2l only; λ
is even in the presence of inversion symmetry. The crystal potential can be
also expanded in cubic harmonics V µ

λ . For λ = 2

V 0
2 = 3z2− r2, V 2

2 = x2− y2, V 1
2 = xz, V −1

2 = yz, V −2
2 = xy. (1.14)

In many cases, it is convenient to use the method of Stevens equivalent mo-
mentum operators which have the same matrix elements as spherical func-
tions. For example,

V 0
2 = αJ r2[3(Jz)2 − J(J + 1)], V 2

2 =
1

2
αJ r2[(J+)2 + (J−)2],

V 1
2 = V 2

2 =
1

2
αJ r2(JxJz + JzJx),

where αJ (and similar factors βJ , γJ for λ = 4, 6) are the Stevens propor-
tionality coefficients which depend on the configuration ln [16,41,43]. The
Stevens operator representation holds beyond the multiplet with a given J
(or L) only. Of course, the operator (1.5), unlike (1.7), has also matrix
elements between different terms. The method of equivalent operators in
problems with changing J or L is more complicated (see [41]).

Consider concrete examples of dn configurations in the crystal field. Since
various situations may take place for d-electrons in CF, constructing inter-
polation schemes is useful [43].

The picture of the two-hole spectrum for the Ni2+ ion (configuration d8) is
shown in Fig.1.6. We use Bethe’s notations 2S+1Γi for irreducible representa-
tions of the cubic group: Γ1 (A1g) and Γ2 (A2g) are one-dimensional, Γ3 (Eg)
is two-dimensional, Γ4 (T1g) and Γ5 (T2g) are three-dimensional. An arbitrary
position of one-electron levels is chosen; an analogue of the Hund rule takes
place for the effective orbital momentum in CF [41]. One can see that the
initial orbital momentum L = 3 is quenched in intermediate crystal field pro-
vided that the lowest state is the orbital singlet 3Γ2. For three-dimensional
“Hund” representations 3Γ4 and 3Γ5, quenching is absent. In the strong CF,
electron orbital momenta are quenched provided that the lowest one-electron
state is e (which corresponds to metallic nickel). We see that, a regrouping
of eg and t states takes place at increasing Coulomb interaction, which may
result in a new ground state with unquenched OMM.

The ion Fe2+ (configuration d6) posseses the lowest term 5D in the inter-
mediate CF and the configuration (eg)

4(t2g)
2 in the strong field (the case of
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the configuration (t2g)
6 is trivial). The corresponding interpolation scheme is

shown in Fig.1.7. We see that in the intermediate CF quenching takes place
only provided that the level 3Γ3 is lower. In the strong CF, the state 3Γ5,
corresponding to three-dimensional t2g representation, has an unquenched
orbital quasimomentum.

The examples considered demonstrate that, generally speaking, in the
case of a high lattice symmetry a local CF results in only partial degeneracy
lift which cannot provide total quenching of OMM. Even in the case where
such a quenching does take place, OMM may be partly unquenched by the
Coulomb interaction which has off-diagonal matrix elements between differ-
ent point group irreducible representations, both for intermediate and strong
CF cases. E.g., the matrix elements of the type 〈eg|Q|t2g〉 unquench OMM in
the state eg. On the other hand, in the case of intermediate CF, off-diagonal
matrix elements of crystal field itself may mix different terms and unquench
OMM of the ground state term.

Thus the local CF potential does not explain almost total quenching of
OMM in transition metals and their alloys. The quenching mechanism ow-
ing to the periodic lattice potential will be considered in Sect.4.8.1. This
potential results in an appreciable kinetic energy of d-electrons. The forma-
tion of rather wide energy d-bands leads also to destruction of localized spin
momenta and suppression of magnetism in most d-metals.

The role of OMM effects in highly-correlated d-compounds is debatable.
Often the description of the electronic structure of Mott insulators (e.g, tran-
sition metal oxides and sulphides) is performed within the density functional
approach, which does not take into account ME term structure [44,45]. At the
same time, there exist attempts of interpretation of their optical properties
within a picture including spectroscopic terms with account of CF splitting
[46,13]. Detailed investigations of optical and X-ray spectra (Sect.2.5), which
contain information on selection rules in L, seem to be useful for solving these
problems. It should be noted that the orbital contributions may be different
for the configurations s(p)dn−1 and dn which are mixed by crystal field.

The resonance photoemission spectrum of CuO is shown in Fig.1.8. The
resonance intensity allows the identification of the various atomic multiplets
of the d8 final state. Figs.1.9 and 1.10 [45] show a comparison of the XPS
valence band spectra of MnO and NiO with the results of cluster calculations.
The parameters of cluster calculations are shown in diagrams. One can see
from Fig.1.10 the strong hybridization between the d7 and d8 L−1 final state.



Chapter 2

BAND THEORY

Band theory is now a large and rather independent branch of solid state
physics, which uses the whole variety of modern computational methods. The
corresponding problems are discussed in detail in a number of monographs
and reviews [12,13,52-57]. Nevertheless, we include this material in the book
with two main purposes (i) to consider in a simple form main band calculation
methods bearing in mind their physical basis (ii) to concretize the advantages
and drawbacks of various methods as applied to transition metals. Further
we discuss the results of band calculations for TM and compare them with
experimental data.

Band theory deals with description of electron spectrum in a regular
lattice with a periodic crystal potential,

V (r) = V (r + R) =
∑

R

v(r−R)

where v(r) is the potential of an ion, R are the lattice sites. According to
the Bloch theorem, one-electron states in a periodic potential may be chosen
in the form

ψnk(r) =eikRunk(r) (2.1)

They are classified by the quasimomentum k and form a set of energy bands
with the index n.

At considering the band spectrum, two opposite approaches are possible.
The first one starts from the picture of isolated atoms and uses the crystal
potential of neighbour atoms as a perturbation, the intraatomic potential
being taken into account in the zeroth-order approximation. The simplest

23
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method of band calculations is the tight-binding method which uses one-
electron atomic wave functions φγ(r). The corresponding wavefunctions of a
crystal are written as

φγk(r) =
∑

R

eikRφγ(r−R) (2.2)

The band spectrum in this approximation contains a set of bands originating
from atomic levels. In the case of the s-band for the simple cubic lattice in
the nearest-neighbour approximation we have

Ek = εs + 2β(cos kx + cos ky + cos kz) (2.3)

where
β =

∫
drφ∗(r)v(r)φ(r + a) (2.4)

is the transfer integral. The width of the energy bands is determined by
the overlap of atomic wavefunctions at neighbour lattice sites and decreases
rapidly for inner shells. As a rule, the bands, which originate from different
levels, overlap considerably. Taking into account off-diagonal matrix elements
and combining the atomic functions with γ 6= γ′ we come to the method
of linear combination of atomic orbitals (LCAO). This method was widely
used in early band calculations. A version of this method was developed
by Slater and Coster [58]. An important drawback of the LCAO method is
non-orthogonality of atomic functions at different lattice sites (see Apendix
C) and absence of delocalized states with positive energies in the basis. Thus
it is difficult to describe weakly localized electron states in metals within this
method.

The opposite limiting case corresponds to the picture of nearly free elec-
trons with a large kinetic energy, so that the whole periodic crystal poten-
tial may be considered as a perturbation which results in formation of gaps
(forbidden bands) in the energy spectrum. Contrary to the tight-binding ap-
proximation, the strength of crystal potential determines the widths of gaps
rather than of electron bands.

Free electrons have the wavefunctions and the energy spectrum

ψk(r) =eikr ≡ |k〉, Ek =
h̄2k2

2m
(2.5)

The matrix elements of the periodic lattice potential are given by

〈k|V |k′〉 =
∑
g

Vgδk−k′,g (2.6)
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where g are reciprocal lattice vectors which are defined by

gR =2πn, n = 0,±1, ... (2.7)

For most values of k, corrections to the spectrum may be calculated to second
order of perturbation theory

∆Ek =
∑
g

|Vg|2
Ek − Ek−g

(2.8)

However, the denominators of the terms in (2.8) with Ek = Ek−g, i.e.

2(kg) = g2 (2.9)

vanish and we have to calculate the spectrum with the use of the Brillouin-
Wigner perturbation theory which yields

∣∣∣∣∣
E − Ek V ∗

g

Vg E − Ek−g

∣∣∣∣∣ = 0 (2.10)

or

E =
1

2
(Ek + Ek−g)± [

1

4
(Ek − Ek−g)

2 + |Vg|2]1/2 (2.11)

Thus we obtain the splitting of the spectrum with formation of the energy
gap

∆Eg = 2|Vg| (2.12)

The equation (2.9) just determines the boundaries of the Brillouin zone where
the gaps occur.

The nearly-free electron approximation is applicable provided that the
crystal potential is small in comparison with the bandwidth W . Since the
matrix elements of crystal potential are of order of a few eV, this condition
may be satisfied for external s and p-electrons with W ∼ 10 eV. On the
other hand, d-electrons form more narrow bands and disturb considerably
the conduction band because of s-d hybridization. Thus this approximation
describes satisfactorily the conduction electron states in simple (in particular,
alcaline) metals only.

In most cases both above pictures are insufficient to obtain a quantitative
description of the electron spectrum. Especially difficult is this problem for
d-electrons in transition metals, which are characterized by an intermediate
degree of localization.
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It should be noted that the shortcomings of the simplest band calculation
methods occur because of the approximate solution of the problem in any
real calculations. Using an infinite full set either of localized or extended
wavefunctions would in principle provide an exact result (of course, in the
one-electron approximation only). However, the use of a physically reason-
able basis enables one to obtain much better results for a finite set. Evidently,
the true wavefunctions should have an atomic character in the region near
the lattice site and are close to plane waves in the outer space. Therefore
modern methods of band calculations (e.g., the methods of augmented and
orthogonalized plane waves), which are discussed briefly in the next sections,
use combinations of atomic functions and plane waves.

The second difficulty of the band theory is connected with the problem
of electron correlations, which are large for transition metals. The Coulomb
interaction among electrons, which has a two- particle nature and prevents
reducing the many-electron problem to the one-electron one. In principle, the
possibility of such a reducing is provided by the Hohenberg-Kohn theorem
[59]. This theorem guarantees the existence of an unique density functional
which yields the exact ground state energy. However, explicit constructing
of this functional is a very complicated problem. In the situation, where
correlations are not too strong, the Coulomb interaction may be taken into
account by introducing a self-consistent potential which depends on electron
density. These questions are treated in Sect.2.3.

The correlation effects are especially important for narrow d- and f-bands.
The strong intrasite Coulomb repulsion may lead to splitting of one-electron
bands into many-electron subbands, and the usual band description (even in
the tight-binding approach) is inapplicable. In particular, in the case of one
conduction electron per atom the Mott-Hubbard transition takes place with
increasing interatomic distances, so that electrons become localized at lat-
tice sites. In such a situation, we have to construct the correlation Hubbard
subbands with the use of the atomic statistics and many-electron quantum
numbers (Appendices C, H). Development of first-principle band calculation
methods in the many-electron representation is an exciting problem. Such
calculations might be based on a modification of the eigenfunctions of a spher-
ically symmetic potential, which are used, e.g., in APW and OPW methods,
by expessing them in terms of many-electron functions of the atomic prob-
lem. In particular, the dependence of one-electron radial functions on many-
electron quantum numbers S, L occurs in the full Hartree-Fock approximation
(see Sect.2.3). Picking out the functions, which correspond to lowest (Hund)
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atomic terms should modify considerably the results of band calculations.

2.1 Orthogonalized plane wave method and

pseudopotential

Main shortcoming of the nearly-free electron method is a poor description
of strong oscillations of electron wavefunctions near atomic cores in terms of
not too large set of plane waves. This shortcoming is removed in the orthog-
onalized plane wave method (OPW) where the wavefunctions are chosen to
be orthogonal with respect to core states:

χk(r) = eikr +
∑

c

bcφ
c
k(r) (2.13)

where φc
k(r) are the tight-binding Bloch functions originating from the core

levels. The condition
∫

drχk(r)φ
c
k(r) ≡ 〈χ|c〉 = 0 (2.14)

yields

bc = −
∫

dre−ikrφc
k(r) ≡ −〈k|c〉 (2.15)

The orthogonalized plane wave (2.13) oscillates rapidly near atomic nucleus
and is close to the plane wave between the atoms. The trial wavefunction of
the crystal is chosen as a superposition of OPW:

ψk =
∑
g

αk−gχk−g (2.16)

(g are reciprocal lattice vectors). The coefficients a are determined from the
Schroedinger equation. The matrix elements of the crystal potential for OPW
(unlike those for plane waves) turn out to be small, so that it is sufficient to
take in the expansion (2.16) not too many terms. It should be noted that
the OPW basis is overfilled so that the increasing the number of functions in
the set does not necessarily increase the accuracy of calculations.

Further development of the OPW method led to the idea of introducing a
weak pseudopotential which permits (unlike the real crystal potential) the use
of perturbation theory. To this end one introduces the pseudowavefunction

ψ̃k =
∑
g

αk−ge
i(k−g)r = ψk +

∑
c

〈c|ψ̃〉φc
k (2.17)
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which coincides with the true wavefunction outside the core region but does
not exhibit oscillations, which are due to strong core level potential, within
it. Substituting (2.17) into the usual Schroedinger equation Hψ = Eψ we
get

Hψ̃k +
∑

c

(E − Ec)〈c|ψ̃〉φc
k = Eψ̃k (2.18)

which may be represented in the form of a new Schroedinger equation

(− h̄2

2m
∆ + W )ψ̃k = Eψ̃k (2.19)

where the non-local energy-dependent pseudopotential operator W is defined
by

W = V (r) + V R (2.20)

V Rψ̃k(r) =
∑

c

(E − Ec)〈c|ψ̃〉φc
k (2.21)

For E > Ec, the matrix elements of the potential V R

∫
drψ̃∗k(r)V

Rψ̃k(r) =
∑

c

(E − Ec)|〈c|ψ̃〉|2 (2.22)

are positive. At the same time, the matrix elements of the true periodic
potential V are negative and large in the absolute value in the core region.
Thus the diagonal matrix elements of W turn out to be positive and small
because of partial cancellation of two terms in (2.20). In particular, the
pseudopotential does not result, unlike the real crystal potential, in formation
of bound states, corresponding to core levels. Therefore the pseudopotential
method describes conduction electron states only.

Generally speaking, the pseudopotential approach is not simpler than
the original OPW method since it requires introducing a non-local potential
function which is not defined in a unique way. Therefore one uses frequently
empirical or model local pseudopotentials which are fitted to experimental
data, rather than first-principle ones. Perturbation theory with the use of
such potentials enables one to describe the whole variety of properties of
simple metals [55].

The standard form of the pseudopotential theory is inapplicable both in
noble and transition metals because d-electrons are much stronger localized
than s,p-electrons. To describe d-electron states one introduces into (2.17)
the contribution from d-functions [9]

|ψ〉 = |ψ̃〉 −∑
c

〈c|ψ̃〉|c〉+
∑

d

ad|d〉 (2.23)
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where, as well as for simple metals, the pseudowavefunction ψ̃ is a linear
combination of plane waves. One has to take into account the difference
between potentials of free ion and of ion in a crystal,

δv(r) = vion(r)− v(r)

Define the operator V h by

V h|d〉 = δv|d〉 − |d〉〈d|δv|d〉 (2.24)

Then we obtain

ad = −〈d|ψ̃〉+
〈d|V h|ψ̃〉
Ed − E

and the Schroedinger equation for the pseudowavefunction takes the form

(− h̄2

2m
∆ + W )|ψ̃〉+

∑

d

V h|d〉〈d|V h|ψ̃〉
E − Ed

= E|ψ̃〉 (2.25)

where the pseudopotential operator of the transition metal is given by

W |ψ̃〉 = V |ψ̃〉+ ∑

i=c,d

(E−Ei)|i〉〈i|ψ̃〉+
∑

d

(|d〉〈d|V h|ψ̃〉+V h|d〉〈d|ψ̃〉) (2.26)

The most important peculiarity of eq.(2.25) is the presence of the terms,
which have a resonance denominator E − Ed. The physical origin of this
is as follows. As discussed in Sect.1.1, the atomic potential for d-electrons
may have a centrifugal barrier where v(r) is positive. Therefore there exist
bound d-levels merged in the continuous spectrum. The strong scattering of
continuous spectrum electron by localized levels takes place with the phase
shift of π/2. Such a situation may be also described by the s-d hybridization
model. The corresponding energy spectrum is strongly distorted and should
be calculated by exact diagonalization which yields

E1,2
k =

1

2
(
h̄2k2

2m
+ Ed)± [

1

4
(
h̄2k2

2m
− Ed)

2 + |V h
k |2]1/2 (2.27)

Far above the resonance the hybridization potential may be considered, as
well as the usual pseudopotential, within the framework of perturbation the-
ory. This permits a satisfactory description withiin the modified pseudopo-
tential approach [60] of noble metals where the d-resonance, although crossing
conduction band, lies well below EF .
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In transition metals the resonance lies near the Fermi energy and per-
turbation theory is inapplicable. Thus one has to pick out the singularity,
corresponding to the resonance. A method of completely orthoghonalized
plane waves [61], application of which to transition metals is discussed in
[57,62], gives in principle a possibility to eliminate this difficulty. However,
this method is rather complicated and goes far beyond the original concept
of the OPW method. Generally, such approaches require in a sense ex-
act diagonalization of a matrix and lose in fact the main advantage of the
pseudopotential idea - applicability of perturbation theory. More recent ap-
plications of the pseudopotential method for band calculations of transition
metals are considered in [63,64].

There exist a number of model pseudopotential forms, in particular in-
cluding explicitly the d-resonance. However, they do not provide as a rule
sufficiently satisfactory description of TM. Recently a model pseudopotential
was successfully applied to explain properties of iridium [65]. The reasons of
the good fit to experimental data for this particular d-metal are not quite
clear.

2.2 Augmented plane wave (APW) and Korringa-

Kohn-Rostoker (KKR) methods

The idea of other modern band calculation methods is to describe electron
states in different space regions in a proper way using different bases. To this
end, one builds around each site an atomic sphere with the volume which is
somewhat smaller than that of the lattice cell, so that spheres centered at
different sites do not overlap. The crystal potential at each site is taken in
the so called muffin-tin (MT) form

vMT (r) =

{
v(r) , r < rMT

vc , r > rMT
(2.28)

Inside the sphere the potential is supposed to be spherically symmetric, and
the corresponding wavefunctions for a given energy may be expanded in
spherical harmonics

φ(r) =
∑

lm

ClmRl(r, E)Ylm(r̂), r < rMT (2.29)
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(Rl are the solutions of the corresponding radial Schroedinger equation)
which permits to simplify greatly the calculations due to using the angu-
lar momentum technique.

Since beyond the spheres the MT potential is constant, the basis wave-
functions φ(r) may be chosen in the form of plane waves. Using the expansion
(C.28) we may join continuosly the solutions at the sphere boundaries and
determine the coefficients Clm = Clm(k̂)

Clm = il(2l + 1)
jl(krMT )

Rl(rMT , E)
Y ∗

lm(k̂) (2.30)

Then the function (2.29) is called the augmented plane wave (APW). The
wavefunction of the crystal are searched as a linear combination of APW’s
with the same energy:

ψk(r) =
∑
g

αk−gφk−g(r) (2.31)

Substituting (2.31) into the Schroedinger equation one obtains the system
of linear equations. Poles of its determinant yield the dispersion law E(k)
which contains the crystal potential in a complicated way. To obtain accurate
results, it is sufficient to restrict oneself by not too large number of terms
in (2.31). Practically, one uses up to 100 APW’s, and for a larger set the
solution is as a rule stabilized.

The application of the APW method to d-bands requires an account of
a larger number of APW’s in comparison with s,p-bands. However, such
band calculations were performed for all the transition d-metals [53,54]. For
4d- and 5d-metals, relativistic effects (in particular, spin-orbital interaction)
are important. The corresponding version of the APW method (the RAPW
method) was developed by Loucks [66].

The Green’s function method, developed by Korringa, Kohn and Rostoker
(KKR), uses, as well as APW method, the expansion in spherical functions
inside the MT spheres (2.28). At the same time, the wavefunctions outside
them are constructed not from plane waves, but also from spherical waves
which are scattered from other sites. Formally, this is achieved by using the
integral form of the Schroedinger equation (κ = |E|1/2)

ψ(r) = − 1

4π

∫
dr′

exp(iκ|r− r′|)
|r− r′| V (r′)ψ(r′) (2.32)
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Using the Bloch theorem condition

ψk(r + R) = ψk(r)e
ikR

one reduces (2.32) to the form

ψk(r) = − 1

4π

∫
dr′Gk(r− r′, E)v(r′)ψk(r

′) (2.33)

where the integration goes over one lattice cell and

Gk(r, E) =
∑

R

exp(iκ|r−R|)
|r−R| eikR (2.34)

is the lattice Green’s function.
The functional describing the system and corresponding to (2.33) has the

form

Λ =
∫

dr|ψk(r)|2 +
1

4π

∫ ∫
drdr′ψ∗k(r)v(r)Gk(r− r′, E)v(r′)ψk(r

′) (2.35)

Substituting (2.29) into (2.35) yields [52]

Λ =
∑

lm,l′m′
(Alm,l′m′ + κδll′δmm′ cot ηl)ClmCl′m′ (2.36)

Here ηl is the l-dependent phase shift owing to the MT-potential,

cot ηl =
κrMT n′l(κrMT )−Dl(E)nl(κrMT )

κrMT j′l(κrMT )−Dl(E)jl(κrMT )
(2.37)

where jl and nl are the spherical Bessel and Neumann functions,

Dl(E) = rMT R′
l(rMT , E)/Rl(rMT , E) (2.38)

are the logarithmic derivatives of the radial wave function. The energy spec-
trum is determined by zeros of the determinant of the matrix Λ. The struc-
tural constants A are given by

Alm,l′m′ = 4πκ
∑

R6=0

eikR
∑

l′′m′′
[nl′′(κR)− ijl′′(κR)]Y ∗

l′′m′′(R̂)C̃ l′m′
lm,l′′,m′′ (2.39)

(the quantities C̃ are defined in (C.9)). These constants do not depend on
crystal potential and may be calculated once for all for a given lattice.
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The advantage of the KKR method in comparison with the APW one
is the decoupling of structural and atomic factors. For the same lattice
potentials, the KKR and APW methods yield usually close results. The
intimate relation of these methods is discussed in [52].

The main difficulty of the KKR method is the energy dependence of the
structural constants. However, this dependence may be eliminated if we
use so called atomic sphere approximation (ASA) where the volume of the
sphere in the MT potential (2.28) is put to be equal to the lattice cell volume,
rMT = s, so that the volume of the intersphere region vanishes. Then one
puts for simplicity the kinetic energy beyond the atomic spheres, E − vc to
be zero, and the ASA-KKR equations take a very simple form [56]

det |Slm,l′m′(k)− Pl(E)δll′δmm′| = 0 (2.40)

where the potential function is given by

Pl(E) = 2(2l + 1)
Dl(E) + l + 1

Dl(E)− l
(2.41)

and the structural constants are energy independent,

Slm,l′m′(k) = (4π)1/2(−1)m′+1(−i)λ (2l′ + 1)(2l + 1)

(2λ + 1)

× (λ + µ)!(λ− µ)!

(l′ + m′)!(l′ −m′)!(l + m)!(l −m)!

∑

R 6=0

eikRY ∗
λµ(R̂)(s/R)λ+1 (2.42)

where
λ = l + l′, µ = m−m′

The wavefunctions corresponding to the MT-potential with zero kinetic en-
ergy E − vc may be chosen in the form

φlm(r,E) = ilYlm(r̂)φl(r,E) (2.43)

φl(r,E) = Rl(r, E)×




1 , r < s
Dl+l+1

2l+1

(
r
s

)l
+ l−Dl

2l+1

(
r
s

)−l−1
, r > s

where the coefficients are determined from the condition of joining the tail
continuosly and differentiably at the boundary of the MT-sphere. It is con-
venient to substract the term which describes the diverging spherical wave.
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Then we obtain the so-called MT-orbitals

χl(r,E) = φl(r,E)×




φl(r,E)
φl(s,E)

− Dl+l+1
2l+1

(
r
s

)l
, r < s

l−Dl

2l+1

(
r
s

)−l−1
, r > s

(2.44)

Condition of cancellation of tails of the MT orbitals, which originate from
other sites, leads again to the KKR equations.

A modification of LCAO method which uses instead of atomic functions
the MT-orbitals is called the LCMTO method, the linear combinations of
MT-orbitals being constructed similar to (2.1). Substituting these trial func-
tions into the Schroedinger equation we obtain the LCMTO equations [67].

In the general APW, KKR and LCMTO methods the matrix elements are
functions of energy. Therefore, at calculating eigenvalues one has to compute
the determinants in each point of k-space for a large number values of E (of
order of 100) which costs much time. To simplify the calculation procedure
Andersen [67] proposed to expand the radial wavefunctions at some energy
value to linear terms in E. Then the Hamiltonian and overlap matrices do
not depend on energy. The error owing to the linearization does not as a
rule exceed that owing to the inaccuracy in the crystal potential (in partic-
ular, owing to the MT- approximation). The accuracy may be increased by
account of higher-order terms in the expansion. The linear methods (LMTO
and LAPW) permitted to perform band calculations of a large number of
transition metal compounds with complicated crystal structures [57].

Using the MT-orbital basis gives a possibility to carry out band calcula-
tions beyond MT-approximation for the potential itself. Such an approach
(the full-potential LMTO method) enables one to improve considerably the
accuracy of calculations. Very good results are achieved also within the
framework of the full-potential LAPW method [68].

2.3 The Hartree-Fock-Slater and density func-

tional approaches to the problem of elec-

tron correlations

The above consideration of the electron spectrum was performed within the
one-electron approximation. Main purpose of the calculation methods dis-
cussed was joining of atomic-like solutions near the lattice sites with wave-
functions in the outer space where the crystal potential V (r) differs strongly
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from atomic one. The Coulomb interaction among conduction electrons was
assumed to be included in V (r). Such an inclusion should be performed in a
self-consistent way. In the simplest approximation, this may be achieved by
introducing into the Schroedinger equation the averaged Coulomb potential,

εiψi(r) = [− h̄2

2m
∆ + V (r) + VC(r)]ψi(r) (2.45)

VC(r) = −e
∫

dr′
ρ(r′)
|r− r′| , ρ(r) =

∑

i

′|ψi(r)|2 (2.46)

where the sum goes over occupied electron states and integration includes
summaton over spin coordinate.

The Hartree equations (2.45) do not include the exchange interaction
which results from antisymmetry of electron wavefunctions. Substituting the
antisymmetrized product of one-electron wavefunctions (Slater determinant)
(A.2) in the Schroedinger equation for the many- electron system with the
Hamiltonian (C.1) and minimizing the average energy

E = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉

we obtain the Hartree-Fock equations

εiψi(r) = [− h̄2

2m
∆ + V (r) + VC(r)]ψi(r)

−e2
∑

j

′ψj(r)
∫

dr′
ψ∗j (r

′)ψi(r
′)

|r− r′| δσiσj
(2.47)

where εi are the Lagrange multipliers. The exchange term (last term in
the left-hand side of (2.47)) has a non-local form, i.e. is not reduced to
multiplication of the wavefunction ψi by a potential function. It should be
noted that the terms, describing the electron self-interaction (i = j) are
mutually cancelled in the Coulomb and exchange contributions to (2.47).
Due to orthogonality of spin wave functions, the exchange interaction occurs
between electron with parallel spins only.

Parameters of the Hartree-Fock equation depend, generally speaking, not
only on one-electron quantum numbers, but on the whole set of many-electron
quantum numbers in a given state. For example, in the many-electron atom,
the coeficients at the Slater parameters (except for F 0) in the multipole
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expansion of the Coulomb interaction (C.19) depend explicitly on the many-
electron SL-term. This results in the dependence of the radial wavefuctions
on the quantum numbers S, L. The corresponding expression for the param-
eters εi may be represented as [20]

εl = E(lnSL)− ∑

S′L′
(GSL

S′L′)
2Ẽ(ln−1S ′L′) (2.48)

where Ẽ is the energy of the “frozen” ion with the same radial functions as
the n-electron atom, G are the fractional parentage coefficients. Evidently, Ẽ
exceeds the energy of the true ion, which is calculated from the Hartree-Fock
equation. In systems with large number of electrons N the differences E− Ẽ
may be neglected since they give corrections of order of 1/N only [9]. The
quantity (2.48) differs from the energy, measured in spectral experiments

εl(SL, S ′L′) = E(lnSL)− ∑

S′L′
E(ln−1S ′L′) (2.49)

which corresponds to a concrete transition SL → S ′L′ (experiments with not
too high resolution yield the Lorentz broadening which differs from (2.48)).

In the band theory the dependence on ME quantum numbers is usually
neglected. Then the parameters εi have the meaning of one-electron energies,
−εi being equal to the ionization energy of the corresponding state in the
crystal (the Koopmans theorem [9]).

Obviously, the Koopmans theorem is inapplicable for partially filled shells
in transition metals where the energy of a level depends essentially on filling of
other states (see Sect.1.1). The self- consistent field method, which considers
one-electron levels only, does not take into account such correlation effects.
Nevertheless, simple averaged exchange-correlation potentials, expressed in
terms of electron density, are widely used to calculate electron structure of
partially filled d-bands in transition metals. When applied to free atoms, this
approach yields atomic levels with a non-integer filling. Altough not quite
physically correct, such a picture permits a satisfactory description of atomic
and molecular spectra [69]. To calculate the energy of optical transitions, one
takes the self- consistent potential calculated in the so-called transition state
which corresponds to the level filling of 1/2.

The solution of the Schroedinger equation with a non-local potential re-
sulting from the exchange interaction is a very complicated problem. The
case of free electron may be considered analytically. Performing the integra-
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tion for plane waves we obtain from (2.46)

εkψk(r) = [
h̄2k2

2m
+ Vx(k)]ψk(r) (2.50)

with the local exchange potential

Vx(k) = −8
(

3

8π
ρ
)1/3

F (k/kF ) (2.51)

where ρ = N/V is the electron density,

F (z) =
1

2
+

1− z2

4z
ln

∣∣∣∣
1 + z

1− z

∣∣∣∣ (2.52)

The logarithmic singularity in F (z), and, consequently, in the electron spec-
trum results in a non-physical behaviour of the density of states near the
Fermi level, N(E → EF ) → 0. This singularity is due to the long-range
character of the Coulomb interaction and should be in fact removed by corre-
lation effects which result in screening. Thus the Hartree-Fock approximaton
turns out to be insufficient to describe the free electron gas because of the
strong k-dependence. To avoid this difficulty Slater [69] proposed to use the
potential which describes the motion of an electron in an averaged exchange
field.

The exchange potential for a given state may be represented in the form

Vxi(r) = −e2
∑

j

′δσiσj

∫
dr′

ψ∗i (r)ψ
∗
j (r

′)ψj(r)ψi(r
′)

|r− r′| /[ψ∗i (r)ψi(r)] (2.53)

The expression (2.53) may be interpreted as the potential of a charge with a
value of e which is removed from the hole surrounding the i-th electron. We
may write for the averaged potential

Vx(r) = −e2
∑

ij

′δσiσj

∫
dr′

ψ∗i (r)ψ
∗
j (r

′)ψj(r)ψi(r
′)

|r− r′| /
∑

i

′ψ∗i (r)ψi(r) (2.54)

Averaging the free-electron gas potential (2.51) over k we obtain

F =
∫ 1

0
z2dzF (z)/

∫ 1

0
z2dz =

3

4
(2.55)
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Vx = −6
(

3

8π
ρ
)1/3

(2.56)

Starting from the expression (2.56), Slater introduced the local exchange-
correlation potential with the same dependence on electron density

VxS(r) = −6
(

3

8π
ρ(r)

)1/3

(2.57)

An alternative approach to the problem of constructing exchange- correlation
potential [70] uses the calculation of the total energy. Carrying out the
integration of one-electron energy for the electron gas one obtains

E = 2
∑

k<kF

[
h̄2k2

2m
+

1

2
Vx(k)]

=
e2

2aB

[
3

5
(kF aB)2 − 3

2π
kF aB]

=

[
2.21

(rs/aB)2
− 0.916

rs/aB

]
Ry (2.58)

where Ry = e2/2aB =13.6 eV,

rs =

(
3

4πρ

)1/3

(2.59)

is the radius of the sphere with the volume which corresponds to one electron
for a given uniform density ρ. When measured in the units of Bohr radius aB,
rs is of order of the ratio of potential energy of an electron to its mean kinetic
energy. The second summand in (2.58), which comes from the exchange
interaction, is comparable with the first one for realistic metallic values rs =
2 ÷ 6. In the high-density limit the problem of electron gas may be treated
more rigorously by expanding E in rs [12]:

E =

[
2.21

(rs/aB)2
− 0.916

rs/aB

+ 0.622 ln
rs

aB

− 0.096 + O
(

rs

aB

)]
Ry (2.60)

The corrections in (2.60) describe correlation effects beyond the Hartree-Fock
approximation.
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Taking into account the exchange energy of the uniform gas per parti-
cle and neglecting correlations we obtain the Gaspar-Kohn-Sham exchange
potential [70]

VGKS(r) = −4
(

3

8π
ρ(r)

)1/3

(2.61)

This potential differs from the Slater approximation (2.57) by a factor of
2/3. This fact is due to that the operations of varying the total energy and
of statistical averaging do not commute. The expression (2.60) may be also
obtained from the potential (2.51) by putting k = kF (F = 1/2).

A more general exchange-correlation potential (xα-potential) may be
written as

Vxα(r) = VxS(r) (2.62)

The optimization of the parameter α < 1 enables one to take into account ef-
fects of electron correlations. The potential (2.61) was succesfully applied for
calculations of electron structure of large number of solids [69,57]. However,
the reasons of this success were not clear until the density functional method
was developed. The results of xα-calculations for pure metals turn out to be
not too sensitive to the choose of α. Earlier calculations with α = 1 yielded
results, which agreed satisfactory with experimental data and are close to
those for optimal α. This is apparently due to that the error in the total
energy for α = 1 is partially compensated by increasing the depth of the
potential well. However, the correct choose of α is important for metallic
and insulating compounds. For transition metals the atomic densities are
usually taken for dn−1s configuration in the 3d- and 4d-series and for the
dn−2s2configuration in the 5d-series, the optimal values of α lying in the
interval 0.65÷0.8.

An important step in the theory of electron correlations in solids was made
by Hohenberg and Kohn [59] who proved the general theorem, according to
which the ground state energy is an unique functional of electron density.
Kohn and Sham [70] represented this density functional (DF) in the form

E [ρ(r)] =
∫

drρ(r)Vext(r) +
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)
|r− r′|

+T [ρ(r)] + Exc[ρ(r)] (2.63)

where Vext is the external potential of lattice ions, T is the kinetic energy of
non-interacting electrons with the density ρ, the functional Exccorresponds to
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exchange and correlation contributions. The DF appoach may be generalized
to consider spin-polarized systems.

Representing the electron density in the form (2.46) and varying (2.63)
with respect to ψi we obtain

εiψi(r) = [− h̄2

2m
∆ + Vext(r) + VC(r) + Vxc(r)]ψi(r) (2.64)

where the Lagrange multipliers εi correspond to the quasiparticle energies,
the exchange-correlation potential Vxc is defined by varying Excwith respect
to density,

Vxc(r) = δExc[ρ(r)]/δρ(r) (2.65)

Thus the many-electron problem is reduced to the one-particle one with the
local exchange-correlation potential. However, it should be stressed that the
DF approach guarantees the correct value of the ground state energy only
and describes exactly the distribution of charge and spin densities and re-
lated physical quantitities. Here belong elastic characteristics and exchange
parameters, which are expressed in terms of corresponding energy differences,
saturation magnetic moment etc. On the other hand, the Kohn-Sham quasi-
particles do not coincide with true electrons, so that the wavefunctions ψi do
not have a direct physical meaning. Therefore the possibility of calculation of
the whole excitation spectrum is, generally speaking, not justified. Especially
doubtful is the description of the states far from EF and of finite temperature
behaviour. Nevertheless, the DF method is widely used to consider various
physical properties.

The true functional (2.63) is of course unknown, and one has to use some
approximations. The formally exact expession for Exc may be represented
in the form of the Coulomb interaction of an electron with the exchange-
correlation hole which surrounds it:

Exc[ρ(r)] =
1

2

∫
drρ(r)

∫
dr′

ρxc(r, r
′ − r)

|r− r′| (2.66)

The corresponding electron density may be obtained by integration over the
coupling constant λ [71,72]

ρxc(r, r
′ − r) = ρ(r′)

∫ 1

0
dλ[g(r, r′, λ)− 1] (2.67)
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where g is the pair correlation function. Since the hole contains one electron,
the charge density should satisfy the sum rule

∫
dr′ρxc(r, r

′ − r) = −e (2.68)

The functional Exc depends in fact on the spherically averaged charge den-
sity, which follows from the isotropic nature of the Coulomb interaction [72].
Indeed, the variable substitution in (2.66) allows to perform integration over
angles of the vector r − r′:

Exc =
1

2

∫
drρ(r)

∫
R2dR

ρxc(r,R)

R

ρxc(r,R) =
∫

dΩρxc(r,R) (2.69)

Thus approximate expessions for Exc can give exact results even if the detailed
description of ρxc (in particular, of its non-spherical part) is inaccurate.

Further we have to concretize the form of the correlation function. In
the local density approximation (LDA), which is used as a rule in band
calculations, ρxc is taken in the same form, as for uniform electron density
with the replacement ρ → ρ(r) and the corresponding correlation function
g0:

ρxc(r, r
′ − r) = ρ(r)

∫ 1

0
dλ[g0(|r− r′|, λ, ρ(r))− 1] (2.70)

Substituting (2.70) into (2.69) we obtain the LDA functional, which has the
local form

Exc[ρ] =
∫

drρ(r)εxc(ρ) (2.71)

where εxc is the exchange and correlation energy per electron for the in-
teracting uniform electron gas. This quantity was calculated numerically
to a high accuracy and various interpolation analytical formulae are avail-
able. Therefore the LDF approach enables one to construct various local
exchange-correlation potentials. The simplest exchange potential is given by
the xα-expression (2.61). This expression may be generalized as

Vxc(r) = β(rs/aB)VGKS(r) (2.72)

Thus the xα-method becomes justified in the density functional theory, the
parameter α being dependent of electron density. The value of α changes
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from 2/3 to 0.85 as rs increases from zero (high-density limit) to values
which are typical for metals in interatomic region (rs/aB = 4). An example
of an interpolation approximation is the Hedin-Lundqvist potential [73] which
corresponds to

βHL(z) = 1 + 0.0316z ln(1 + 24.3/z) (2.73)

The functional of local spin density (LSD) approximation which is applied
to consider magnetic transition metals reads

Exc[ρ↑, ρ↓] =
∫

drρ(r)εxc(ρ↑(r), ρ↓(r)) (2.74)

The simplest LSDA von Barth-Hedin potential [74] has in the first order in
spin polarization m(r) = n↑(r)− n↓(r) the form

V σ
xc(r) =

1

3
σδ(n)

m(r)

n(r)
VGKS(r) (2.75)

where n(r) = n↑(r)+n↓(r) and the parameter δ takes into account correlation
effects. In the high-density limit δ = 1, and δ = 0.55 for rs = 4.

The LD approximation oversimplifies greatly the general DF approach
which is based on the Hohenberg-Kohn theorem. In particular, LDA does
not take into account correctly the dependence of ρxc(r, r

′) on ρ(r) in the
whole space (compare (2.67) with (2.70)). However, it provides good results
in the case of a slow varying density ρ(r). Besides that, this approximation
works well in the high-density limit since it includes correctly the kinetic
energy of the non-interacting system.

In the original papers [70], attempts were made to take into account
non-uniform corrections to LDA by expanding ρxcwith respect to grad ρ(r).
However, such an expansion yields small contributions only and does not hold
in the case of strongly non-uniform electron systems (e.g., for 4f-electrons in
rare earths and narrow d-bands), and is therefore, strictly speaking, not
justified for TM. Other modifications of LDA are discussed in the review
[72]. The problem of account of multiplet structure in the density functional
approach is treated in [75,76].

One of drawbacks of LDA is the inexact (unlike the full Hartree- Fock
approximation) cancellation of the unphysical interaction of an electron with
itself. In this connection, the so-called self-interaction correction (SIC) ap-
proach [72] was developed. The SIC functional within the LSDA reads

ESIC = ELSD[ρ↑(r), ρ↓(r)]−
∑

iσ

δEiσ (2.76)
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The substracted SI correction for the orital iσ has the form

δEiσ =
1

2

∫ ∫
drdr′

ρiσ(r)ρiσ(r′)
|r− r′| + Exc[ρiσ, 0] (2.77)

where the first term is the self-interaction energy, and the second term is
the LSD approximation to the exchange-correlation energy of a fully spin-
polarized system with the density ρiσ(r). The functional (2.76) is exact for
a system with one electron. The SI corections are negligible for plane-wave-
like states due to smallness of ρiσ(r). However, they may be important for
description of strongly localized states. The SIC approach was succsesfully
applied to model systems with Hubbard correlations and to transition-metal
oxides [72,77].

2.4 Discussion of band calculation results

Band structure calculations yield the whole picture of electron spectrum of a
given substance. The corresponding dependences E(k) and densities of states
may be found in [24,78]. The calculations of [24] are performed for cubic
symmetry only. Besides that, the 5d-metals are omitted since they require
relativistic methods. In the handbook [78], real crystal structure for all the
transition metals was taken into account. The Slater-Coster parametrization
of the band spectrum was applied, the basis containing t2g and eg states
being used even for metals with the hexagonal structure. Bibliography on
earlier band structure calculations is given in Sect.2.7 (see Table 2.6). Some
examples of densities of states for transition metals are shown in Figs.2.1-2.7.

Real accuracy of the detailed and complicated information on the electron
spectrum turns out often to be in fact insufficient. Therefore it is instructive
to consider some general characteristics of band spectra (classification and
widths of energy bands, position of the Fermi level, the value of the density
of states N(EF )) within simple model concepts.

The KKR method gives a possibility to separate the structural and dy-
namical aspects of the band structure. Using the atomic sphere approxima-
tion, which is discussed in Sect.2.2, enables one to obtain so-called canonical
bands which depend on the crystal structure only. These bands are ob-
tained by neglecting off-diagonal structural constants with l 6= l′ in the KKR
equations (2.40), considering the potential functions Pl(E) as independent
variables and diagonalizing the matrix Slm,l′m′(k) for each value of l. Then
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for the set n, l we get 2l + 1 unhybridized energy bands Eni(k) defined by

Sli(k) = Pl(E), i = 1, 2, ...2l + 1 (2.78)

The canonical bands Sl(k) for the bcc, fcc and hcp lattices are shown in
Figs.2.8-2.10, and the corresponding densities of states in Fig.2.11. Because
of the infinite range of s-type MT-orbitals, a pure canonical s-band diverges
at the centre of the Brillouin zone,

Ss(k) → −6(ks)−2 + const

Therefore one has to use in Figs.2.8-2.10 the free-electron-like scale [1 −
(2/π)2Ss]

−1. The width of a canonical band is estimated from the second
moment:

W̃l = (12S2
l )

1/2, S2
l =

1

2l + 1

2l+1∑

i=1

∑

k

S2
li(k)

= 2l+2(2l + 1)
(4l − 1)!!

l!(2l)!

∑

R6=0

(s/R)2(2l+1) (2.79)

and depends only on the number of atoms in coordination spheres. For the
bcc, fcc and ideal hcp lattices one has respectively

W̃l = 18.8, 18.7, 18.6

W̃l = 23.8, 23.5, 23.5

The canonical bands may provide a basis for further analysis of the band
structure. They reflect an important experimental fact: resemblance of band
structures of crystals with the same lattice. Real energy bands for various
elements are obtained from the canonical bands by specifying the functions
Pl(E). The hybridization of bands with different l does not influence strongly
the spectrum provided that the bands do not cross each other. However,
for crossing s,p,d-bands in transition metals the hybridization may lead to
qualitative changes.

Consider the problem of the shape of energy bands, in particular the
origin of peaks in the density of states N(E). As follows from the formula

N(E) =
∫

dkδ(E − Ek) =
∫ dS

|gradkEk| (2.80)

a peak of N(E) corresponds to a nearly flat region (e.g., extremum) of the
surface E(k) with a constant energy in the k-space. Such peculiarities of
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the spectrum occur in the one-dimensional case where dE/dk = 0 at the
boundaries of the Brillouin zones. As a result, DOS has divergences of the
form

N(E) = |E − Eb|−1/2 (2.81)

According to the Van Hove theorem, in the general situation, DOS singular-
ities (divergence of N(E) or N ′(E)) occur at some points Ec by topological
reasons. In the two-dimensional case, these singularities are logarithmic. The
N(E) pictures demonstrating the Van Hove singularities were obtained for
simple cubic, fcc and bcc lattices for an s-band in the nearest-neighbour ap-
proximation [79] (Figs.2.12, 2.13). The divergence of DOS at the band centre
in the bcc lattice and the logarithmic singularity in the fcc lattice at the band
bottom are removed when one includes next-nearest neighbours (Fig.2.14).
Thus in the three-dimensional case the usual Van Hove singularities have as
a rule the one-sided square-root form

δN(E) = |E − Ec|1/2θ(±(E − Ec)) (2.82)

and are too weak for explaining sharp DOS peaks. However, the peaks may
form at merging of Van Hove singularities along some lines in the k-space.
As demonstrated in [81], this leads to two-sided logarithmic singularities

δN(E) = − ln |E − Ec| (2.83)

As follows from analysis of calculations [24,78], the merging along the P −N
line in the bcc lattice results in formation of the “giant” Van Hove singular-
ities (2.83) in Li, V, Cr, Fe, Ba [81]. A similar situation takes place for fcc
Ca and Sr.

Some peaks in the canonical DOS’s may be identified with the Van Hove
singularities. Despite a general similarity, the DOS, obtained in realistic
band calculations, contain a more number of peaks than canonical DOS’s.
The additional peaks in calculated DOS pictures, which take into account
off-diagonal matrix elements (hybridization) between s,p,d-bands, may be
connected with splitting of a peak at the band intersection.

A comparison of canonical bands with real band calculations which take
into account hybridization is performed in the review [56]. The effect of
hybridization turns out to depend strongly on the mutual position of the
bands. As an example, Fig.2.15 shows the density of d-states for Nb. The
effect of p-d hybridization is weak since p- and d-band are well separated.
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The s-d hybridization effect is more appreciable since s- and d-bands overlap
(as well as in other transition metals). However, the s-band is influenced
stronger than the degenerate d-band with a large electron capacity. Another
typical example is provided by molybdenum where the splitting of some peaks
occurs due to s-d hybridization (Fig.2.16) [82].

Now we discuss the position and width of energy bands. These charac-
teristics of band structure may be investigated either by direct using results
of numerical calculations or by parametrization within simple models which
neglect unimportant details. The latter approach permits to obtain a more
clear physical picture and to treat the problem analytically.

The simplest model of transition metals is the Friedel model [83] which
considers their electron system as containing free s-electrons and the narrow
d-band with the constant density of states of 10/Wd. The lowering of electron
energy at formation of the d-band from the level is given by the expression

δEband = 5Wd

[
−nd

10
+

(
nd

10

)2
]

(2.84)

A model description of band spectrum was proposed by Harrison [13]. Using
the set of one s-function and five d-functions in the form of MT orbitals (2.44)
he reduced the potential matix elements to two parameters - the width of
d-band Wd and its position with respect to s-band bottom Ed.

As follows from (2.44), the R-dependence of the intersite matrix elements
of the potential has the form

Vll′m = Cll′m = (rMT /R)l+l′+1 (2.85)

where l, l′ are the orbital quantum numbers and m = σ, π, δ are determined by
the angle between the direction of the orbital and the vector which connects
the atoms. In particular,

Vssσ ∼ R−1, Vspσ ∼ R−2, Vppσ,π ∼ R−3, Vddm ∼ R−5 (2.86)

(Note that in the free-electron approximation all the matrix elements are
proportional to R−2 which results in a divergence after volume integration).
In an explicit form one may write down

Vddm = ηddm
h̄2r3

d

mR5
(2.87)
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where the d-state radius rd is a characteristics of the element, η are di-
mensionless constants which are tabulated in [13] (see also consideration of
f-elements in paper [84]). The values of rd are obtained from comparison with
first-principle band calculations. The quantities Wd are obtained in terms of
the matrix elements with the use of standard formulas. For example, for the
bcc lattice with account of nearest and next-nearest interactions,

Wd = −8

3
V

(1)
ddσ +

32

9
V

(1)
ddπ − 3V

(2)
ddσ + 4V

(2)
ddπ

The values of Ed and Wd in the d-rows, together with the results of band
calculations [78] and experimental data [85], are presented in the Table 2.1.
One can see that Ed and Wd increase from Sc to V and decrease from V to
Cu.

In the pseudopotential theory, one can derive also the relation between
the effective masses of s- and d-electrons [13]

ms

md

=
(
1 + 2.91

m

md

)−1

(2.88)

A number of theoretical models were proposed to describe the electronic
structure of ferromagnetic 3d-metals Fe, Co and Ni [85-88]. These models
are based on the idea of separating of localized and itinerant d-states with
different symmetry (e.g., of t2g and eg states).

Now we consider some general regularities in the results of band calcu-
lations. These results agree qualitatively with above-discussed simple model
notions. In agreement with the idea of canonical bands, the DOS pictures for
elements of one column in the periodic table demonstrate a similarity. This
is illustrated by comparison of DOS for hcp metals Ti, Zr and Hf (Figs.2.1-
2.3). A similar situation takes place for Sc and Y (hcp), V, Nb and Ta (bcc),
Cr, Mo and W (bcc). In Tc and Re (hcp) the heights of the DOS peaks
(especially of the lower ones) differ appreciably. The same difference occurs
between Ru and Os (hcp), Rh and Ir (fcc), Pd and Pt (fcc). The canonical
band idea works also for elements of different columns with the same lattice,
the position of the Fermi level being changed roughly according the rigid
band model. This may be illustrated by comparison DOS of V and Cr (bcc),
Rh and Pt (fcc).

The values of partial DOS of s,p,d-type, which are given in Table 2.2,
demonstrate that d-states in transition metals are dominating ones. They
make up about 70-90% of the total DOS at the Fermi level. One can see also



48 CHAPTER 2. BAND THEORY

from Table 2.2 that large and small values of Nd(EF ) alternate when passing
to a neighbour element. This rule holds even irrespective of the crystal
structure and demonstrates an important role of atomic configurations. The
regularity is to some extent violated in the end of d-periods. This may be
explained by ferromagnetism of Fe, Co, and Ni and violation of regularity in
d-shell filling. It should be also noted that the numbers of d-electrons per
ion in metals exceed by about unity the atomic values [78].

To end this section we discuss the problem of accuracy of band calcula-
tions. This problem is connected with a number of approximations: choose of
initial atomic configuration, the density functional approach for states which
are far from EF , the local approximation, the form of crystal potential (in-
cluding exchange- correlation contribution), the calculation method used, an
account of relativistic effects etc. The role of these approximations may be
clarified by comparing results of various calculations. Such a comparison is
performed in numerous review papers and monographs (see e.g. [57]). For
example, influence of initial atomic configuration is illustrated by band cal-
culations of vanadium (Fig.2.17). The width of s-band differs by two times
for the configurations 3d34s2 and 3d44s1. The Table 2.3 shows results of band
energy calculation at some Brillouin zone points in Pd by different methods
[91-94] and corresponding experimental results [92].

We may conclude that the accuracy of energy determination makes up
about 0.1÷0.3eV. The disagreemet with experimental data may be about
0.5eV. At comparing the calculated band spectrum with angle-resolved emis-
sion and de Haas - van Alphen effect data, one has often to shift it by such
values. In temperature units, the corresponding uncertainty is of order 103

K which makes difficult precise calculations of thermodynamic properties
within the band approach.

2.5 Experimental investigations of band struc-

ture: spectral data

A number of quantities, which are obtained in band calculations (e.g., the
positin of energy bands and the shape of the Fermi surface, the electronic
structure near the Fermi level) may be analyzed and compared with results
of experimental investigations.

There exist a large number of spectral methods for investigating electron
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structure. They may be divided in emission and absorption spectroscopy
methods. The first ones enable one to obtain data on the filled part of the
band (below EF ), and the second on the empty part (above EF ). Both
the optical and X-ray regions may be investigated. Let us list main spectral
methods and corresponding notations [40]:

PES Photoelectron (Photoemission) Spectroscopy

XPS X-ray Photoelectron Spectroscopy

UPS Ultraviolet Photoelectron Spectroscopy

IPES Inverse Photoemission Spectroscopy

AES Auger Electron Spectroscopy

BIS Bremsstrahlung Isochromat Spectroscopy

EELS Electron Energy Loss Spectroscopy

MXD Magnetic X-ray Dichroism

MXS Magnetic X-ray Scattering

SEC Secondary Electron Spectroscopy

XAS X-ray Absorption Spectroscopy

XANES X-ray Absorption Near Edge Spectroscopy

EXAFS Extended X-ray Absorption Fine Structure

When the spectroscopies are performed angle-resolved and spin-polarized,
acronyms AR and SP are added.

An advantage of the X-ray spectroscopy is the simple separation elec-
tron states with different angular moments. By virtue of the selection rule
∆l = ±1, K-spectra (transitions from 1s-states of inner core levels of an
atom) contain information on p-states of higher bands, and L-spectra (tran-
sitions from 2p-states) on s and d-states. Due to large difference in the
energies of K- and L-shells, these spectra are well separated. This simpli-
fies the comparison with band calculations which also yield separately s,p,d-
contributions. The optical part of the spectrum corresponds to transitions
between external overlapping energy bands or inside them. Therefore the
qualitative analysis of the optical spectra is much more complicated. We do
not discuss in detail these spectra of transition metals where the interpreta-
tion is especially difficult (see [95]).

On the other hand, the resolution of X-ray spectra in the energy mea-
surement is smaller than for optical spectra because of large intrinsic width
of internal levels (of order of 1eV, see the handbook [96]). The situation
is somewhat better only for soft X-ray spectra (e.g., for the N -spectra the
width of the internal 4f-level makes up about 0.15eV). Besides that, there
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exist the contribution to level width which is due to finite lifetime of elec-
trons and holes. This contribution increases with increasing distance from
the Fermi energy:

Γk ∼ (Ek − EF )2 (2.89)

Provided that the density of states in a band contains a symmetric maximum
which does not overlap with contributions of other bands, its position may
be determined with a satisfactory accuracy (about 0.1 eV). However, such
a determination is prevented in the presence of overlapping bands. Usually
comparison of X-ray data with calculated spectra is performed by smoothing
out the band structure with account of the level width.

Occupied states are investigated in PES and ultravilolet PS methods.
The former yields, in particular, information on K,L, M, N and O-spectra
of 3d, 4d and 5d-metals. Very promising is the angle resolved photoemission
method which yields information on not only the density of state, but also
the spectrum E(k). Methods of X-ray spectroscopy for empty states include
XAS, XANES, BIS, IPS. The relation between the IPES and BIS methods
is rougly the same as between the ultraviolet PS and X-ray PS ones.

Large widths of internal levels in K, L and M PES-spectra prevent as a
rule do resolve the density of state structure in the conduction band. The
comparison onK,L and M -spectra of vanadium with results of theoretical
calculations are shown in Fig.2.18. One can see that the complicated DOS
structure [78] becomes smeared. At the same time, total width of the spec-
trum coincides roughly with the calculated bandwidth after account of the
level broadening. So, the width is 8 eV for the K-spectrum and 6 eV for the
L spectrum, the calculated bandwidth being equal to 4 eV.

The second typical example is the spectrum of zirconium (Fig.2.19). Here
the LIII spectrum (4d-2p transitions) has the width of 3.4 eV, and the MV

spectrum (3d-4d transitions) the width of 2.9eV. High-energy maximum cor-
responds to the MIV spectrum, and low-energy maximum at 6-7eV has prob-
ably a satellite origin. Altough the width of the internal 4p-level is consid-
erably smaller than that of the 2p-level, the experimental broadening is ap-
proximately the same for the LIII and NIII spectra. Possibly, this is due to
larger contributions from the s-4p transitions to the NIII spectrum.

For next elements of 3d- and 4d-series, the widths of internal levels for
K, L,M spectra increase so that their quality becomes worse. The situation
is more favourable for the 5d series where the spectra NV I,V II (5d-4f) and
OII,III (5d-5p, 5s-5p) with a small internal level width occur. Because of
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the closeness of 4f and 5d levels, four lines lie in the interval of the order of
10eV. Nevertheless, because of small widths of f and 5p levels, these lines
are clearly resolved in the beginning of the 5d series, emission bands being
rather contrast and intensive. In the end of the series, the intensity of lines
decreases and their structure becomes unclear. For the NV I,V II bands an
opposite tendency takes place (Fig.2.20).

An important role in the spectra of 5d-metals belongs to the spin-orbital
interaction. According to the selection rules, the transitions into internal
doublets f5/2 , f7/2 go from d3/2 and d5/2-levels of the conduction band. Anal-
ysis of experimental data demonstrates that the distributions of d3/2 and
d5/2 -states in the conduction band are different. Fig.2.21 shows the NV I,V II

-spectra of iridium and platinum with resolution of NV I (i.e. d3/2) and NV II

(d5/2) states. The main maximum b2 is connected with states of both types.
The high-energy maximum b3 is due to d3/2 -states, and the low-energy one
b1 to the d5/2 -states. Thus the d5/2 -states dominate at the d-band bottom
and the d3/2 -states near the Fermi level. It is interesting that the spectra of
Ir and Pt are satisfactory explained by atomic calculations which indicates
a considerable localization of 5d-electrons in these metals.

A more complicated situation occurs for the NV I,V II -spectra in the mid-
dle of the 5d-series (Ta, W, Re, Os), see [57]. The experimental width of the
OIII -spectrum turns out to be larger than the calculated one. This is con-
nected with extra interactions and many-electron effects (e.g., the influence
of the vacancy in the OIII -shell).

The ARP method takes into account not only energy, but also quasimo-
mentum of an electron in the conduction band. Consequently, it enables one
to determine experimentally the dispersion law E(k) for various branches,
which gives a possibility to calculate the density of states to high accuracy.
This method was applied to investigate Cu [97], Ag [98], Au, Pt [99], Pd [90],
Ir [100].

The results for the spectrum of Cu in the < 211 > direction [97] agree
well with the free electron model. Himpsel and Eastmann [90] measured
E(k) for Pd in the < 111 > direction to accuracy of 0.1÷0.2eV, the accuracy
in the determining k being about 5% of kmax (Table 2.3). One can see that
agreement is not too good. A similar situation takes place as for Pt and Au
[99].

Although investigating the occupied part of the conduction band is more
important for electron properties of a metal, data for the empty part of
the band from absorption spectra are also useful from the point of view of
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comparison with band calculations.
The BIS data for 3d and 4d-metals were obtained and compared with

band calculations in the paper [102] (see Table 2.4). The total resolution
was about 0.7eV, and the lifetime broadening at EF about 0.25eV. On the
whole, the band shapes obtained are close to those for canonical bands. The
agreement with calculated N(E) turns out to be better than for XPS spectra
which are strongly distorted in the beginning of periods [103]. Besides that,
BIS specta do not exhibit satellites which correspond to the dn+1 configura-
tion. The d-bandwidth increases up to the middle of periods by about 25%.
The s-d hybridization is important near the band bottom and is most strong
for hcp metals. Peaks near EF , which correspond to the empty d-band,
are followed by a structureless plateau and at 7-10eV by a step, which is
interpreted as the van Hove singularity. The peaks (d-band tails) at EF are
observed even in Cu and Ag. Two peaks are observed for Sc, Ti,V and Zr,
and one peak in other metals, which is in agreement with band calculations.
Strong asymmetry of the peak is observed in molybdenum in agreement with
theoretical predictions. The position of 1.6eV peak in Fe corresponds to DOS
in ferromagnetic rather than paramagnetic state (Figs.2.22, 2.23). The rel-
ative d-band BIS intensity in the 3d-series was derived and demonstrate to
have a maximum in the middle of the series.

Calculated spin-resolved densities of states of ferromagnetic transition
metals Fe and Ni [24] are shown in Figs.2.24,2.25. Of great interest for the
theory of both the electron structure and magnetism is the investigation of
spin splitting ∆. In principle, such investigations may be carried out within
the standard PES and IPES methods. However, these methods provide only a
rough estimations of averaged values of ∆. According to band calculations,
∆ depends considerably on E and k, so that angle resolved methods are
required for obtaining detailed information. Data on spin and angle resolved
photoemission were obtained for Fe [103-107], Ni [103,107-109] and Co [103].

According to the review [40], there exist in Fe both collapsing and non-
collapsing spin subbands which demonstrate different types of behaviour at
crossing the Curie point. Fig.2.26 shows spin-polarized angle-resolved spectra
of Fe in the (100) direction near the Γ-point at hν = 60 eV. These data
demonstrate the energy and temperature dependence of ∆.

The ultraviolet photoemission spectrum of Fe was investigated by Pessa
et al [110]. The observed peaks at 0.58 and 2.4 eV below the Fermi energy
may be interpreted within the calculated density of states of ferromagnetic
iron provided that one shifts the latter by 0.5eV to higher energies. The value
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of N(EF ) for Fe obtained in [110] coincides approximately with the results
of band calculations [194], but is considerably smaller than that determined
from electronic specific heat [266] and paramagnetic susceptibility (see the
detailed discussion in the corresponding Chapters). It should be noted that
an error of order 0.1 eV in the energy measurement may influence strongly
the N(EF ) value. Comparison of results [110] with the spin-polarized spectra
[111] confirms that the 0.58eV peak belongs to the majority spin subband.
The energy dependence of spin polarization is not explained by the theoretical
density of states. The experimental estimation of spin splitting yields the
value not more than 1.9eV which is considerably smaller than theoretical
one (2.35 eV). No shift of the spectrum at the Curie point is observed which
may indicate retaining of strong short-range order above TC .

The d-bandwidth of Ni from the ARP data [108] makes up 3.4 eV at
the point L, the theoretical value being about 4.5eV. The measured value
of the exchange splitting is 0.31 eV at 293K (the theoretical value is 0.7eV)
and about 0.2eV above the Curie point (Fig.2.27). Evidence of the existence
of spontaneous spin splitting above TC in Ni was obtained by the positron
annihilation technique [112].

Spin-resolved photoemission data on the short-range magnetic order above
TC in Co were obtained in [113]. The problem of spontaneous spin splitting
in iron group metals may be also investigated in optical experiments [114].

Recently, the Magnetic X-Ray Dichroism (MXD) method was applied to
determine the conduction electron spin polarization [40]. The L23 absorption
edge (2p→3d transitions) was investigated for Ni, and the asymmetry in
photon absorption with different polarization permitted to find both spin
and orbital momenta which turned out to be s = 0.52 µB and l = 0.05µB .
These values are close to theoretical ones, which are obtained with account of
many-electron effects [115]. According to the latter paper, the ground state
of the Ni ion is a superposition of the 3d10 , 3d9 and 3d8 states with the
weights of 15-20%, 60÷70% and 15÷20% respectively.

Consider the question about the origin of low-energy satellites in spectra
of some d-metals. Such satellites are observed in X-ray emission spectra
of Ni (at 6eV below EF ) (see, e.g., [116]) and Zr [57]. There exist the
mechanisms of satellite formation which are connected with vacancies at
excited atoms, Auger processes, shake up potential changes etc.(see [57]).
We discuss more interesting many-electron mechanisms which are specific
for transition metals.

Liebsh [117] treated the Coulomb interaction between two d-holes in Ni.
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Introducing atomic Slater integrals F (p) (p = 0, 2, 4), he obtained in the
low density approximation additional peaks in the spectrum and compared
them with experimental data. Besides the 6eV satellite, the theory yields the
second satellite which lies lower by 2eV. The occurence of satellites resulted
in narrowing of the d-band since the total number of states is constant. The
exchange splitting obtained turned out to be different for eg and t2g states
(0.37 and 0.21 eV), the average value 0.3eV being in satisfactory agreement
with experiment. Penn [118] performed calculations within the degenerate
Hubbard model. The fitted value of the Hubbard parameter was U = 2 eV.

The authors of the paper [119] treated this problem exactly at restricting
to four point in the Brillouin zone, which is equivalent to consideration of a
four-atom cluster. An agreement with experimental data was obtained for
U = 4.3 eV and the ratio of the Hund and Coulomb parameters J/U = 1/7.

A more consistent consideration of the satellite formation problem should
include many-electron terms (the satellite corresponds to the multiplet struc-
ture of the configuration d8). The corresponding data of the Auger spec-
troscopy which contain more information on many- electron effects are dis-
cussed in Sect.1.2.

The ARP investigations of γ-cerium [120] yielded two dispersionless den-
sity of states peaks near EF which did not obey the one-electron selection
rule. They were attributed to atomic-like 4f-states.

To describe high-energy spectroscopy data for cerium and its compounds,
Gunnarsson and Schoenhammer [121] proposed a model, based on the one-
impurity Anderson Hamiltonian and including effects of d-f hybridization.
Further this model was applied to consider spectra of actinides and Ti (see
[40]).

2.6 Band calculations of rare earths and ac-

tinides

One-electron band calculations of rare earths are performed by the same
methods as for 5d-metals, the role of relativistic effects becoming here still
more important because of strong spin-orbital interaction. Since the 4f-shell
lies well below the conduction band, one may assume that the picture of this
band is similar for all the 4f-elements (especially for heavy rare earths). This
is confirmed by data of photoemision spectroscopy from the 6s,5d band [122].
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However, attempts of description in the one-electron approach of highly-
correlated f-electron themselves meet with serious problems.

Results of band structure calculations of various RE metals by non-
relativistic and relativistic augmented plane wave method (APW and RAPW)
are presented in the review [19] (see also the discussion of electronic structure
for heavy rare earths [15]). For most RE metals (except for Ce, Sm, Eu, Tm
and Yb) the conclusions are as follows. The 4f-band lies by about 51÷10 eV
below the conduction (5s,6sp) band and has the width about 0.05eV. The 5d-
band moves up relative to the conduction band with increase of the atomic
number from La to Lu, the d-electron density of states at EF increasing from
1.9 to 2.5 eV−1atom−1 .

For elements with unstable valence Ce, Eu and Yb, especial attention was
paid to investigation of 4f-level position εf . A strong sensitivity to x was
found in APW calculations of Ce in 4f2−x5dx6s2 (x = 0.5÷2.0) configurations
[123]. The 4f-level is considerably lower than 5d-6s band for x = 0, but
rapidly becomes higher and broader with increasing x. The calculated in
[124] distance EF − εf equals to 0.36 and 0.24 Ry, and 4f-bandwidth to 0.01
and 0.02 Ry for γ- and α-cerium respectively.

The full calculation of band structure of Ce in the linear RAPW method
with account of correction to MT-approximation was performed by Pickett
et al [125]. The width of 4f-band is about 1 eV and increases by about 60%
at the γ − α transition. The occupation numbers of f-electron (about 1.1)
changes weakly under presure. This leads to the conclusion that the γ − α
transition is accompanied by delocalization of 4f-electrons rather than by
promotion into sd-band.

Relativistic APW calculation for Yb in 4f146s2 configuration [126] yielded
unexpectedly the 4f-level position which is by 0.1Ry higher than the 6s con-
duction band (but still lower than EF by 0.2÷0.3Ry). A small gap near
EF was obtained in contradiction with experimental situation. In the self-
consistent calculation by Koelling (see [127]), EF ' εf and the gap in the
spectrum vanishes.

APW calculation of 4f-band in thulium [128] with account of 5s6d-4f
hybridization yielded ε5d − ε4f = 0.69Ry, ε6s − ε4f = 1.27Ry and the f-
bandwidth of order 10−2 eV.

According to the first calculation of ferromagnetic gadolinium with ac-
count of 4f-states within the self-consistent RAPW method by Harmon [127],
the f-level for spin down states (with the width about 0.03Ry) lies slightly
above EF because of large spin splitting. This should lead to giant values of
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N(EF ), and, consequently, of electronic specific heat, which drastically con-
tradicts to experimental data. Similar conclusions were obtained in [129-131]
for Tb, Dy and Gd. These results demonstrate inadequacy of usual band cal-
culations within local-spin-density approximation for 4f-states. This problem
is discussed in the recent papers [132] with application with gadolinium.

In a number of works, attempts to take into account correlation ef-
fects were made. Authors of papers [133-134] obtained a picture of 4f- and
conduction-electron states with account of correlation, screening and relax-
ation. The f-level energies for the ground and excited configurations fn and
fn+1 were determined by

∆− = E(fn)− E(fn−1), ∆+ = E(fn+1)− E(fn) (2.90)

Calculations were performed within non-relativistic [133] and relativistic [134]
approximations.

The crystal potential in [133] was constructed from renormalized Hartree-
Fock functions for the configurations 4fn5dm−16s1 and 4fn±15d m−1∓16s1 (m =
2, 3). The renormalization (transfer of atomic wavefunction tails inside the
Wigner-Seitz cell) resulted in a strong change of density for 5d, 6s electrons
and, because of screening effects, in a considerable (by about 0.5Ry) increase
of one-electron f-energies. The values of ∆+ were corrected by introducing
correlation effects from comparison with spectral data (the correlation energy
was assumed to be the same in the cases of free atom and crystal). Although
the correlation energy in each state may be large, their difference

ξ+ = Ecorr(f
nd2s)− Ecorr(f

n+1ds) (2.91)

makes up about 0.1Ry only. The results of calculation of the quantity ξ+ are
shown in Fig.2.28.

The edges of 5d- and 6s-bands were determined from the zero of the wave-
function and its derivative at the Wigner-Seitz cell boundary. The results
turned out to be somewhat different from those of standard calculations. The
4f-bandwidth made up 0.03Ry for γ-Ce, 0.01Ry for Pr and Nd and smaller
than 0.005Ry for other rare earths.

One of important drawbacks of the calculation [133] was using of f-level
energies εf which are averaged over many- electron terms. At the same
time, spectral data, which were used, corresponded to transitions between
ground states with definite S and L. Since the difference in energies of terms
reaches 5eV, the error in the correlation energy may be large. A detailed
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calculation of the term structure for the fn−1 configuration was performed in
[135]. The corresponding line spectrum should be observed in experiments
with high resolution. As follows from equation (2.48), the averaged energy
ε4f may differ considerably from the ionization energy with the final state
corresponding to the Hund term. The difference may be presented in the
form

(−2
b

n
+ ∆b)F (2), ∆b = b(fnSL)− b(fnS ′L′) (2.92)

where the coefficient b(fn SL) determines the contribution of the Slater inte-
gral F (2) to the SL-term energy, 2bF (2)/n is the Coulomb energy per electron
in the Hartree- Fock approximation, which is averaged over terms. In the
rare earth series the value of ∆b changes from 0 (f0-configuration) to 113 (f7

-configuration), and ∆b(fn+7) = ∆b(fn). Since the values of F (2) ' 0.05eV
are not too small, this contribution to the f-electron energy should be impor-
tant.

In the relativistic calculations [134], an account of term structure was also
performed. Final results for the effective one- electron energies differ weakly
from those obtained in [133] (Table 2.5), but the changes in correlation cor-
rections are appreciable. In particular, the correlation energy difference ξ+,
which is negative for most rare earths according to [133], becomes positive.
One can interpret these data as increase of f-f correlation with increasing
number of f-electrons.

Although the absolute calculated values of ε4f and EF are not quite re-
liable because of numerous approximations, general regularities in the rare-
earth series seem to be qualitatively correct. This is confirmed by data on
photoelectron spectra for the f-shell [136,137].

A correct calculation should take into account also the change of wave-
functions in the final configuration fn−1. The total relaxation in the final
state (fndm → fn−1dm+1 transition, the hole in the 4f-shell is completely
screened by additional electron in 5d-state) was assumed in [133-134]. Such
an assumption explains the decrease of 4f-electron binding energy in com-
parison with the Hartree-Fock approximation. An attempt of the calculation
in absence of relaxation (fndm → fn−1dm transitions) [134] agrees worse with
experimental data.

Now we discuss briefly the results of band calculations for 5f- elements
[138,139,57]. Band structure of actinides is to some extent similar to that of
rare earths, but the strong spin-orbital coupling is accompanied with consid-
erable delocalization of f-states. Thus the spectrum is appreciably disturbed
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owing to overlap and hybridization between s,p,5d-states with 5f-bands. Con-
crete forms of bandstructure and f-level positions in the self-consistent calcu-
lations depend strongly on the choose of the exchange-correlation potential.
In the RAPW calculation of thorium by Keeton and Loucks [140] with the
Slater potential (α = 1) the position of 5f-band (in the middle of the valence
band) contradicted to de Haas - van Alphen data. However, the calculation
[141] with the Gaspar-Kohn-Sham potential (α = 2/3) yielded the correct
5f-band position (well above the Fermi level). Thus the band structure of Th
is similar to that of d-metals. Despite the absence of f-electrons, the shape
of d-band is appreciably influenced by d-f hybridization.

According to [138], the 5f-bandwidth decreases with increasing atomic
number from uranium ( 0.4Ry) to plutonium ( 0.3Ry). The electron spectrum
of U near EF contains s-d conduction band which is strongly hybridized with
a rather wide 5f-band. The 5f-bands in Pu are considerably more flat for
α = 1 than for α = 2/3. This indicates that Pu lies on the boundary of the
f-electron localization.

In the self-consistent calculation [142], the f-band turns out to be nar-
rower than in [138]. The density of states of Pu contains sharp peaks with
the height about 150Ry−1. The total value of N(EF ) is 123.6 states/Ry (the
f-contribution is about 50 states/Ry), which corresponds to linear term in
electronic specific heat with γ = 21mJ/mol K2 . The experimental value
makes up about 50 mJ/mol K2, so that the calculation seems to be qualita-
tively satisfactory, but account of correlation enhancement is needed.

Relativistic calculations of band structure in heavy actinides (Am, Cm,
Bc) was also performed by Freeman and Koelling [138]. As compared to light
actinides, the width of 7s-band increases, 5f-bands become rather narrow and
flat, the sd-5f hybridization being suppressed. Thus a strong localization of
5f-electrons takes place. As well as for rare earths, usual band description
becomes in such a situation inapplicable. An important role of correlations
is confirmed by high sensitivity of the spectrum to the number of f-electrons.
The calculation for Am in the configuration 5f77s2 (instead of the correct
one, 5f66d17s2 ) yields a shift of 5f-states by 0.5Ry. The delocalization of
5f-electrons in heavy actinides under pressure was investigated in the band
calculations [143].
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2.7 Fermi surface

One of most powerful tools to verify the results of band calculations is inves-
tigation of the Fermi surface (FS). The structure of FS determines a number
of electronic properties of metals, in particular their anisotropy. The shape
of FS depends on the geometry of Brillouin zones, crystal potential and in-
terelectron correlations. The volume under FS is fixed by the Luttinger
theorem: it has the same value as for the non-interacting electron system.
It should be noted that this theorem is valid only provided that the Fermi-
liquid picture (Landau theory) holds, and may be violated in system where
strong Hubbard correlations result in splitting of one-electron bands (e.g., in
systems which exhibit correlation-driven metal-insulator transitions [25]), so
that the statisitics of one-particle excitations changes.

In band calculations, FS is obtained as the constant energy surface which
separates occupied and empty states at T = 0. If FS lies far from the bound-
aries of the Brillouin zones (e.g., at small band filling), it differs weakly
from that of free electrons and has nearly spherical shape. At approaching
the zone boundaries, the influence of crystal potential becomes stronger and
anisotropy of FS increases. Especial strong singularities of FS occur at cross-
ing a boundary. Since a Brillouin zone contains two electron states per atom
(with account of the spin quantum number), in most cases one has to use
several zones to place all the conduction electrons. Due to the anisotropy of
the lattice and, consequently, of the electrons spectrum, zones with higher
numbers start to be filled up when the lower zones are only partially filled,
so that FS crosses several zones.

In transition d-metals, the valence electrons include d-electrons. An im-
portant feature of d-states is that they are highly anisotropic and poorly de-
scribed by the free electron approximation even far from the Brillouin zone
boundaries. Therefore the shape of the Fermi suface is very complicated and
one has to use a large number of zones to describe it. Usually one considers
Fermi surfaces of transition metals in the reduced zone picture.

2.7.1 Methods of Fermi surface investigation and de
Haas-van Alphen effect

Experimental information on FS may be obtained from investigation of anisotropic
electron characteristics of a metal. Most widely used methods of constructing
FS which are based on magnetic field effects in electron spectrum. To first
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place, here belong so-called oscillation effects - de Haas - van Alphen (dHvA)
effect (oscillations of magnetic susceptibility) and Shubnikov - de Haas effect
(oscillations of conductivity), and also a number of magnetoacoustical and
resonance effects [10].

Microscopical basis for the oscillations effects is the Landau quantization
in magnetic field. It is well known that at inclusion of the field Hz the orbital
motion of free electron is quantizised in the xy-plane. The quantization
condition is written in terms of the area of the circumference with the radius
(k2

x + k2
y)

1/2:

Sν = π(k2
x + k2

y) =
2πeH

h̄c
(v +

1

2
) (2.93)

where ν = 0, 1, ... are the numbers of Landau levels. The corresponding
condition for energy reads

Eν ≡ E(kx, ky, kz)− E(kz) = h̄ωc(v +
1

2
) (2.94)

with

E(kz) =
h̄2k2

z

2m
, ωc =

eH

mc
(2.95)

being the kinetic energy of an electron moving in z-direction and the classical
cyclotron frequency which describes rotation of an electron in the xy-plane.
Therefore the quantization in magnetic field results in occurrence of an oscil-
latory contribution to the electron energy. Comparing (2.93) and (2.94) we
may write down

Sν =
2πmc

h̄2 Eν (2.96)

where

mc =
h̄2

2π

∂Sν

∂Eν

(2.97)

the expression (2.97) being valid for an arbitrary dispersion law of conduction
electrons [10-12]. Thus at considering the electron motion in magnetic field
the free-electron mass m is replaced by the cyclotron mass mc. Unlike the
band effective mass, which is defined at a point of the k-space, mc is defined
for a closed curve coresponding to an electron trajectory on the Fermi surface
in the magnetic field.

The difference of energies for two neighbour Landau levels reads

Eν+1 − Eν = h̄ωc =
2πeH

h̄c

(
∂S

∂E

)−1

(2.98)
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Since the numbers ν are large and the energy differences are small in com-
parison with energies themselves, we may put

∂

∂E
S(Eν) =

S(Eν+1)− S(Eν)

Eν+1 − Eν

(2.99)

As follows from (2.98), (2.99), the areas of orbits in the k-space differ by the
constant value

∆S = h̄ωc
2πeH

h̄c
(2.100)

or
S(Eν , kz) = (ν + λ)∆S (2.101)

where λ does not depend on ν (typically, λ = 1/2).
Quantization of electron motion in xy-plane leads to that the quasicon-

tinuous distribution of electron states is influenced by a discrete dependence
on Landau level numbers. Therefore the resulting electron density of states
N(E) in the external magnetic field will exhibit an oscillating behaviour. To
demonstrate the occurrence of oscillations we suppose that the ν-th Landau
level crosses EF at some H for a given kz , i.e.

E(kz) + h̄ωc(ν + λ) = EF (2.102)

At slight decreasing H, ωc increases and N(E) decreases. However, with
further decreasing field the Fermi level is crossed by the (ν + 1)-th Landau
level and N(E) takes again the maximum value at H = H ′. Subtracting the
equalities (2.93) for two adjacent Landau levels one can see that the oscillat-
ing behaviour of N(E) (and of related physical properties) as a function of
the inverse magnetic field has the period

∆
(

1

H

)
=

1

H
− 1

H ′ =
2πe

h̄c
[Sv(EF )]−1 (2.103)

To complete the consideration we have to sum over kz which was up to now
fixed. Since the energy E depends on kz, for most kz the condition (2.102) will
be satisfied at different values of H and the summary oscillating contribution
will be absent. However, this condition will approximately hold for a finite
segment of kz values provided that the energy varies very weakly in the kz

direction, i.e.
∂Ek

∂kz

= 0 (2.104)
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or, which is equivalent,
∂Sν(kz)

∂kz

= 0 (2.105)

Thus the Landau quantization results in an oscillating behaviour of the elec-
tron density of states N(E), this quantity having a singularity if E equals
to the energy of a stationary (extremal) orbit determined by (2.105). The
value of N(EF ) which determines most electron properties of a metal should
be singular at

Sextr(EF ) = (ν + λ)
2πeH

h̄c
(2.106)

This permits to determine the extremal cross section areas by measuring the
oscillation period.

At T = 0, near each energy E0 which satisfies the quantization condition,
N(E) ∼ |E − E0|−1/2 (as well as in the case of one-dimensional Van Hove
singularity). In real situations, the oscillation effects are smeared due to
thermal excitations at the Fermi surface over the energy interval of order T
or due to impurity scattering. The oscillations are observable at

kBT < h̄ωc ∼ eh̄

mc
H = 2µBH (2.107)

Usually one has to use the magnetic fields of order 10 kG at temperatures of
a few K.

To obtain the oscillating contributions to physical quantities one has to
perform the integration over kz. In the case of free electrons the result for
the magnetization at T = 0 reads [144]

M =
eEF

4π2h̄c
(mµBH)1/2

∑
p

(−1)p

p3/2
sin

(
πpEF

µBH
− π

4

)
(2.108)

The oscillation amplitude may be repesented in the form

M ∼ 1

2π3

(
µBH

EF

)1/2

µB (2.109)

and, for small H, is large in comparison with the smooth part of the mag-
netization (of order of H). The diamagnetic susceptibility χ = dM/dH may
be of order of unity, so that its oscillations are very strong.
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The corresponding results for an arbitrary dispersion law are analyzed
in detail in the monograph [10]. The oscillation period is obtained by the
replacement

πEF /µB → h̄c

e
Sextr(EF )

in (2.108). Thus investigations of magnetic susceptibitlity oscillations (de
Haas - van Alphen effect) allow one to determine the areas of extremal cross
sections of the Fermi surface. The temperature dependence of magnetization
oscillation amplitude enables one to determine the cyclotron mass:

M ∼ T exp(−2π2mckBT/eh̄H) (2.110)

In ferromagnetic metals, oscillation effects take place on the background
of large spontaneous magnetization Ms. In particular, cross sections of the
Fermi surface, which correspond to both spin projections, should be observed.
For iron, the oscillation amplitude is by approximately nine orders smaller
than Ms [145], but is still several order larger than which can be measured
by most sensitive modern technique.

2.7.2 Experimental and theoretical results on the Fermi
surfaces

Investigation of the Fermi surface in TM is a considerably more difficult prob-
lem in comparison with simple metals. The reasons for this are as follows.
High orbital degeneracy of d-electrons (unlike s,p-electrons) results in a large
number of sheets of FS. Some of these sheets correspond to large cyclotron
masses, which requires using strong magnetic fields in de Haas - van Alphen
measurements. For magnetically ordered metals (Fe, Co, Ni, Mn, Cr) the
picture is complicated by the presence of spin splitting of conduction band
states. Besides that, there exist technical problems at preparing the sam-
ples which possess sufficient purity to observe oscillations. As a result, the
situation in the fermiology of TM is far from total clearness - there are un-
certainties in experimental results for a number of elements and ambiguities
in theoretical models. Several d-metals (Sc, Hf, Mn, Tc, Ru) and many rare-
earths and actinidies are practically not investigated. Data on cross sections
with large mc are often absent.

From the theoretical point of view, there exist problems connected with
the applicability of one-electron picture in systems where electron correlations
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play an important role. Even within one- electron band calculations the
results are rather sensitive to the choose of the crystal potential, so that
the shape of FS may exhibit essential (in particular, topological) changes.
This leads to difficulties in the interpretation of experimental data (e.g., in
identification of different FS sheets and their details). The accuracy of band
calculations does not as a rule exceed 0.5eV. In a number of case, one has to fit
theoretical results to experimental data by modifying some parameters, e.g.,
by shifting the Fermi level position or changing values of the gaps between
different branches of electron spectrum.

However, some important results are now well established. First of all,
existence of FS sheets with heavy electron effective masses, which are char-
acteristic for TM and their compounds, should be mentioned. (Especially
large values were found for so-called heavy-fermion rare-earth and actinide
systems which are discussed in detail in Chapter 6.) Thus FS investigations
yield direct proof of delocalization of d-electrons. In particular, these data
demonstrate itinerant character of strong magnetism in iron group metals.

General information about the Fermi surfaces of TM (and, for compari-
son, of Li, Na and Ca) may be found in the Table 2.6 which contains data
on classifications of sheets, stationary cross sections S and corresponding ef-
fective masses mc. Since there exist a large number of different data for S
and mc/m, the results presented should not be considered as unambiguous.
As a rule, we write down later data. In many cases, we restrict ourselves
to writing down the interval of corresponding values. Most data on S are
taken from the handbook [146], which contains the information up to 1981
and the detailed bibliography. More recent data are included provided that
they seem to be important. Unlike [146], we give all the values of S in units
of Å−2. The transition from oscillation frequencies in Tesla (or periods in
T−1) may be made according to the formula

S(Å
−2

) = 9.55 · 10−5F (T)

The values of mc/m, which are also included in the Table 2.6, are of especial
interest for transition metals.

Before discussing the FS characteristics of metals of each group (and,
separately, of ferromagnetic TM Fe, Co, and Ni) we make some prelimi-
nary notes. As well as in the case of simple metals, correspondence between
Fermi surfaces of TM with the same lattice structure may be established.
In the rigid band approximation, the modification of FS reduces to a shift
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of the Fermi energy. This circumstance was used often (especially in the
early works) for constructing FS at lack of theoretical calculations [11]. For
example, the FS of Rh was obtained by Coleridge from that of Ni. The FS
of bcc Fe was used to determine FS of a number of bcc TM (e.g., Cr, Mo,
W). The type of FS is fairly good retained within a given column of the
periodic system. However, with increasing the atomic number Z, the role of
spin-orbital interaction increases. The latter may change qualitatively the
form and topology of FS: because of degeneracy lift for some energy bands,
additional gaps in the spectrum occur and some open orbits may be trans-
formed into closed ones. Deviations of FS in TM from that for free electrons
become more appreciable with increasing Z in a given period, which agrees
with the general statement about increasing the d-electron localization.

The role of d-electrons in the FS formation may be characterized by the
value of mc/m. One can see that this quantity increases in each d-period from
left to right. In the beginning of d-periods (up to the Fe column) usually
mth

c /m < 1 (except for Ti where mth
c /m = 1.95), but maximum values of

mth
c /m are considerably larger. The latter fact is apparently connected with

effective mass enhancement (electron-phonon, spin fluctuation etc.) which is
not taken into account in band calculations. At the same time, a satisfactory
agreement between theory and experiment takes place for cross section areas.
Starting from the Co column, large values mth

c /m = 3.02÷ 10.53 occur, but
the experimental values turn out to be smaller (e.g, for Ni, mth

c /m ' 8,
mexp

c /m ' 1.9; the largest values belong to palladium). Probably this is due
the heaviest electron masses are still not found. Unfortunately, incompletness
of experimental data does not permit to trace a regularity of mc/m values in
the periodic table.

Li, Na, Ca

To pick out peculiar features of TM, it is instructive to discuss first alcaline
metals which are satisfactorily described by the free electron model (FEM).
In particular, FEM yields correctly all the FS cross sections and effective
masses of sodium (both experimental and theoretical). However, for lithium
there exist some deviations, especially in mc values. This is explained by a
strong localization of the valence electron in Li near the nucleus, which is
due to weakness of nuclear charge screening by the 1s2 shell (a similar effect
takes place for d-electrons in TM since their mutual screening is also small).
With increasing Z, disagreement with FEM increases and is appreciable for



66 CHAPTER 2. BAND THEORY

caesium.
The band spectrum and Fermi surface of calcium, which stands before d-

metals in the periodic system, already differ qualitatively from predictions of
FEM. Not all predicted stationary cross sections are experimentally observed.
This may be explained by the presence of the above-discussed DOS peak near
the Fermi level. Very strong are the deviations from FEM near the band top.
Probably, they are connected with the hybridization with d-states which lie
somewhat higher.

Sc, Y, La

Unfortunately, experimental data on d-elements of first column are poor
because of absence of pure samples. Calculated FS of Y and Sc are similar
and have multiconnected form with open orbits. They are stongly disturbed
in comparison with FEM. Results of various calculations differ considerably,
and their verification is difficult because of lack of experimental information.

Ti, Zr, Hf

The results of various band calculations demonstrate considerably different
results. Thus unambigous theoretical models of FS are absent for both Ti
and Zr. In the work on dHvA effect in Zr [164], an attempt of interpretation
in the nearly-free electron model was performed. In the papers [159-161],
experimental and theoretical cross section and mc/m values for Ti are pre-
sented. The calculated FS is very sensitive to small variarions of EF position.
The maximum value of mexp

c /m is 2.8. The FS of Hf is not investigated, but
theory predicts its similarity to FS of Zr.

V, Nb, Ta

First attempt to construct the Fermi surfaces of these bcc metals was made
in the rigid band model by using the calculation [192] for the bcc Fe. DHvA
measurements in Nb and Ta [170,171] yielded two oscillation periods which
were related to holes at the point N . Other periods were attributed to “jungle
gym” features. A detailed comparison with theory for Nb and Ta was carried
out in [172]. A satisfactory agreement (about 5%) was obtained for the cross
sections areas of the types 2 and 3. The holes in the second zone at the point
Γ were observed in dHvA experiments [171]. Maximum values of mc/m is
1.8 which agrees with the data on specific heat.
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Cr, Mo, W

The Fermi surface of chromium is strongly influenced by antiferromagnetism.
The spin-density waves are connected with definite pieces of FS [11]. One
of recent calculation was performed by Kulikov and Kulatov [181]. Unlike
previous papers, appreciable deviations of from the sphere were obtained. It
was found that the electron masses of the ball orbits exceeds considerably
those of the ellipsoid orbits.

To understand main features of Mo and W one has to remember that the
Fermi level lies at a minimum of density of states. Thus the role of d-states
is not so strong as in other TM. Probably, this is the reason for that orbits
with large mc/m are absent in both experiment and theory. For all the four
FS sheets the values mc/m < 1 are characteristic. First calculations of FS in
Cr, Mo, W used the band calculation for Fe [192]. More recent calculations
[176,177] supported in general the rigid band model. However, because of
the strong spin-orbital interaction in W, the hole surface hH in the third zone
and electron surface eΓH in the fifth zone vanish or strongly diminish. The
LAPW calculation [178] confirms these old results.

Mn, Tc, Re

α-manganese, which has a complicated cubic structure and is antiferromag-
netic at low temperatures, is poorly investigated, as well as the radioactive
technetium. Band calculations of bcc γ-Mn were made in [188,189]. At the
same time, there exist detailed results on rhenium, the theory [190] being in
good agreement with experiment. Some uncertainty takes place for open or-
bits e(8) (cylinder or tor?). Besides mc/m ' 2.8, there are very light masses
mc/m ' 0.07.

Fe, Co, Ni

Extensive investigations of FS in Fe and Ni were performed by using dHvA
and halvanomagnetic effects. It turned out that the dHvA data may be
obtained in an usual way, although the oscillations are periodic in 1/B =
1/(H +4πM) rather than in 1/H. However, full picture of the Fermi surface
is up to now absent.

Experimental data for Fe and Ni are discussed the review [145]. The main
conclusion is the corroboration of itinerant electron ferromagnetism picture:
the sum of volumes, corresponding to spin up and down surfaces, agrees
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with the total number of conduction electrons, and the difference with the
magnetization. It should be, however, noted that this conclusion is based not
only on experimental results, but uses also some model notions. Besides that,
the picture of spin-split bands is complicated by the spin-orbital interaction.
The latter results in the degeneracy lift at points of accidental crossing of
different spin and orbital subbands.

A detailed comparison of the dHvA results for Ni with the theoretical
calculations is performed in [145]. The theoretical and experimental pictures
demonstrate similarities. The s-d hybridization turns out to be important
for understanding the experimental situation.The quasiellipsoidal pocket X5

has an unusual form which is connected with the anisotropic interaction with
the neighbour X2 band. The largest experimental mass mc = 1.8m seem to
correspond to the X2↓ pocket. The band calculation yields for the large belly
surface in the [001] direction mth/m ' 8 (from the electronic specific heat,
m∗/m ' 10). Unlike Pd and Pt, such large values were not observed in dHvA
experiments.

The situation with FS of iron is considerably less clear. In particular,
no theoretical calculations explain its shape in detail, and there exist several
theoretical model to describe this [145].

Calculation of FS of cobalt was performed in [197]. In subsequent papers
[198-200] detailed theoretical information on stationary cross sections and
effective masses was obtained. Experimentally, a few of dHvA oscillation
frequencies were found [201-203]. Two of them, α and β, correspond to
cyclotron masses of 0.08m and 0.2m.

Ru, Os

DHvA data for ruthenium [212] was interpreted in terms of the rigid band
model by using the band structure of rhenium (see also [213]). For osmium,
two groups of dHvA frequencies were found which difffer by two orders of
magnitude [214]. The largest ratio mc/m is 1.5. The dependence mexp

c /m
on the area S turns out to be linear which corresponds to the quadratic
dispersion law E(k).

Rh, Ir, Pd, Pt

Despite the difference in the d-electron number, it is convenient to combine
the d7 and d8 metals since they have the same fcc lattice and possess similar
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properties. Early experiments on dHvA effect for Rh and Ir [216,217] and
Pd and Pt [223,224] were interpreted in the rigid band model with the use
of results for Cu and Ni. The model of the Fermi surface obtained is shown
in Fig.2.29. The calculation in the relativistic APW method was performed
in [215]. Comparison of theoretical and dHvA experimental values demon-
strates an appreciable enhancement of mc in Pt and Pd for light electron
and holes. However, dHvA frequencies corresponding to heavy holes at open
sheets (which yield about 80% of N(EF )) with mth

c /m = 9.1 and 6.23 were
not observed in early experimental works. Only in the paper [225], the values
mc/m = 5.7 ÷ 8.1 were found for these holes in Pd. These values are still
somewhat lower in comparison with the theoretical ones [215] and are by
about 15% smaller than those required to explain data on electronic specific
heat. At the same time, data on cross section areas [225] agree well with the
theoretical predictions.

Rare earths and actinides

Fermi surfaces of 4f- and 5f-metals were calculated in a number of works (see
[11]). On the other hand, direct experimental data are not numerous. DHvA
measurements in ytterbium [229] demonstrated the presence of hyperboloid
pieces of FS. DHvA investigations of gadolinium [230 ] yielded the estimation
of the spin splitting ∆ = 0.57 eV.

Provided that 4f-states (that lie as a rule well below the conduction band)
are not taken into account, FS of all the rare earth metals should be similar
for the same crystal lattice. A FS model for the hcp structure which describes
Gd and Tb is presented in Fig.2.30. The Fermi surface lies within third and
fourth zones and is multiconnected. The shape of Fermi surface is in general
similar to that of yttrium. At passing to heavy rare earths, changes occur
which are connected with the degeneracy lift at some Brillouin zone points
owing to the relativistic interactions. According to [231], the latter result
in that the “arms” at the point M vanish, and the “arms” at the point L
become touching, so that the similarity with FS of ittrium increases. Thus
one may expect that, at increasing atomic number, the Fermi surfaces of
heavy hcp rare earths change their shape between those of Gd and Y. A
number of attempts were made to use information on FS in rare earths for
considering concrete physical effects. To first place, here belong explanation
of complicated non-collinear magnetic structures (Sect.4.7).

Actinides (5f-elements) are investigated still less than rare earths. Un-
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like 4f-electrons, 5f-electrons, at least in light actinides, are delocalized and
take part in the electron spectrum near the Fermi level. First FS calcula-
tions within the relativistic APW method for Th and Ac were performed
in [232]. DHvA data for thorium, obtained in [233], were used to construct
an empirical FS model. The latter contains a nearly spherical sheet at the
centre of the zone and six closed sheets at the points X along the (100) direc-
tions. This model turned out to contradict the band calculation [140]. Some
contradictions were eliminated in the subsequent calculation [234].



Chapter 3

THERMODYNAMIC
PROPERTIES

3.1 Cohesive energy and related properties

Condensation of atoms from the gaseous states into liquid and solid ones
occurs due to various interatomic forces. Main contribution to the binding
energy comes from valence electrons which have large orbit radii, so that
the wavefunctions at different lattice sites overlap appreciably. For metals,
the valence electrons become itinerant and propagate freely in a crystal, the
energy gain being determined by their interaction with positively charged
ions.

As discussed in Chapter 1, d-electrons (and sometimes f-electrons) in
transition group metals exhibit the behaviour which is intermediate between
the localized and itinerant one. In particular, the collapse of d- and f-orbits
in the beginning of periods takes place, which is accompanied by formation of
high-energy states in the potential well (Fig.1.2). For d-elements the energy
is close to that of valence sp-electrons (although the radius of d-shell is much
smaller than the radii of sp-orbits). For 4f-electrons the well is much deeper,
so that they may contribute appreciably to the binding energy only at the
beginning of period, e.g., for cerium.

From the thermodynamical point of view, the total cohesive energy may
be experimentally determined from the Born-Haber cycle. Thus main phys-
ical characteristics of the binding energy are the melting and boiling tem-
peratures, Tm and Tb , and heats of fusion and sublimation, ∆Hf and ∆Hs.

71
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Besides that, the stability of the crystal is characterized by the density (or
atomic volume), ionization potentials, work function, Debye temperature,
elastic moduli, activation energy for diffusion, specific heat etc. The cor-
responding values may be found in reviews and standard handbooks, e.g.,
[235-239]. Some of these quantities for d-, 4f- and 5f- metals are presented in
Tables 3.1-3.3 and shown in Figs.3.1-3.8. As follows from comparison of the
values of Tm for d-metals with those for preceeding and following sp-elements,
d-electrons yield an appreciable contribution to the binding energy. At the
same time, the entropy change at melting ∆Sm in d-metals differs weakly
from that in simple metals. In the periodic table, values of ∆Sm vary in a
wide region (from 0.47 kcal/mol K for white phosphorus to 7.13 kcal/mol
K for Si). However, these regions become narrow for element groups with
a given lattice: ∆Sm (in kcal/mol K) equals to 1.76±0.34 for bcc crystals,
2.28±0.23 for fcc crystals, 2.33±0.23 for hcp crystals and 6.50±0.23 for the
diamond structure [235].

The change of the thermodynamic and lattice parameters in the d-series
enables one to investigate the dependence of the contribution of d-electrons
on their number n. Most strong influence of d-electrons may be seen in the
beginning of d-periods. The atomic volume decreases sharply (almost by
two times) at passing from Ca to Sc, which is connected with the collapse of
d-orbits. With further increasing n, Va continues to decrease, but increases
in Cu and Zn where the d-shell is completely filled. The values of the ther-
modynamic characteristics Tm , Tb , ∆Hf and ∆Hs , and elastic moduli of
d-metals also exceed corresponding values for simple metals and demonstrate
a smooth n-dependence. However, unlike Va, these quantities have maxima
in the middle of 3d-period (between V and Mn for different characteristics; a
similar situation takes place for 4d and 5d-periods). We shall see in following
Chapters that purely electronic characteristics (electronic specific heat coeffi-
cient γ and paramagnetic susceptibility χ) have a quite different (oscillating)
n-dependence.

Most simple explanation of such a behaviour of thermodynamic properties
is existence of several different factors which influence the total energy. In
particular, with increasing the number of d-electrons, d-levels become lower,
so that the participation of d- states in the cohesion decreases. Besides that,
the Coulomb repulsion among d-electrons also increases with n.

In the simple Friedel model the electron energy (2.84) has a minimum at
n = 5, i.e. for half-filled d-shell. This result is explained by that the energy
of d-electrons decreases for the lower half of d-band and is increases for the
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upper one. Such a picture is in agreement with the situation in 3d, 4d and
5d periods except for an appreciable deviation for manganese.

Since the d-band width Wd is inversely proportional to some power of
the interatomic distance r0, a dependence with a maximum for n = 5 should
take place for the compressibility which is determined in terms of dWd/dr0.

An attempt to explain the anomaly of Ecoh in Mn with account of corre-
lation effect were performed by Oles [240]. He started from the earlier paper
[241] where the cohesive energy was estimated as the energy difference be-
ween the atomic limit and condensed state. We illustrate the idea of this
explanation in the simplest case of s-band where the estimation gives

Ecoh =
n

2

(
1− n

2

)
W − n2

4
U (3.1)

where U is the Hubbard parameter, n < 1. The expression (3.1) has a
maximum at band filling

n =
W

W + U
< 1

Thus a maximum is shifted from the middle of the band because of the
Coulomb interaction. Since the the picture should be symmetric for the
second half of the band (electron-hole symmetry), a minimum at n = 1
occurs.

Unlike d-metals, most thermal and elastic characterisitics of rare earths
(Table 3.2, Fig.3.6) have only a weak (nearly linear) dependence on the num-
ber of f-electrons nf . This agrees with the statement about a weak partici-
pation of 4f-electrons in the chemical bond. At the same time, Tb and ∆H0

0

(Fig.3.4) demonstrate a rather pronounced nf -dependence. As discussed in
[235], this fact may be connected with the difference in electron configura-
tions of the solid and gaseous phases for some 4f-elements. It is interesting
that this dependence is reminiscent of the curves for the 4f- electron energy
which are obtained from spectral characteristics and band calculations [133-
135] (see Sect.2.6). One can see that the most strong change in Tb and ∆H0

0

takes place at passing from Eu and Gd (unfortunately, there is only a rough
estimation of Tb for Gd). In this sense, the situation is d and 4f-periods is
similar and may be related to high stability of the half-filled shells with the
configurations d5 and f7.

The situation in actinides (where 5f-electrons have an intermediate de-
gree of localization as compared to d and 4f electrons) is not clear in detail.
According to Table 3.3, the atomic volume decreases coniderably from Ac
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to Pu (there is an appreciable anomaly for Am). However, other thermody-
namic and lattice characteristics do not exhibit a regular dependence on nf .
An accurate consideration should take into account the role of 6d-electrons.
The number of these for free atoms changes non-monotonously from 1 in Ac
to zero in Pu with a maximum value of 2 in Th. However, the situation in
metallic phase changes considerably since 5f-states in light actinides where
5f-electrons are strongly delocalized and hybridized with d-electrons. Ex-
perimental data for heavy actinides where 5f-electrons are well localized are
insufficient to discuss regularities in thermodynamic properties.

Tables 3.1-3.3 demonstrate existence of some correlations between differ-
ent thermodynamic and lattice characteristics. A number of theoretical and
empirical relations, which describe these correlations, were established.

A correlation between the Debye temperature and Tm was obtained by
Lindemann (1910). It is based on the idea that melting takes place when the
atomic thermal displacement amplitude reaches some critical value u = xmd
with d being the lattice constant. The corresponding calculation may be per-
formed within the Debye model for lattice vibrations [6]. The displacement
u of an ion ν may be written in Fourier representation

uνα(t) =
∑
q

uqα exp(iqRν − iωqαt) (3.2)

(q is the wavevector, α is the polarization). Using the virial theorem we
obtain the expression for the vibration energy

E =
∑
να

M |u̇να|2 (3.3)

where M is the ion mass. On substituting (3.2) into (3.3) we obtain

E =
∑
qα

M |u̇qα|2ω2
qα ≡

∑
qα

Eqα (3.4)

Application of the Bose statisitics yields for the averaged square of vibration
amplitude

|uqα|2 = Eqα/(Mωqα) = h̄(Nqα +
1

2
)/(Mωqα) (3.5)

Performing the integraton at high temperatures where Nq = T/ωq in the
Debye approximation (ωq = sq, q < qD) we get for the average square of
atomic displacement

u2 = 3|uνα|2 = 3
∑
q

|uqα|2
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=
9kBT

Mω2
D

=
9h̄2T

kBMθ2
D

(3.6)

Then the melting temperature is estimated as

Tm = xmMd2kBθ2
D/(9h̄2) (3.7)

For most solids the parameter xm equals to 0.2÷0.25. This universality
supports strongly the adequacy of the Lindemann formula.

An empirical relation between the melting temperature Tm and cohesive
energy reads [235]

Tm =
0.08Ecoh

3R ln 2.045
(3.8)

where R is the gas constant. The relation between the thermal expansion
coefficient α and Tm has the form [235]

αTm = K (3.9)

For fcc, bcc and hcp crystals K = 0.0197÷ 0.0051, and for crystals with the
diamond structure K = 0.0039 ÷ 0.0018. This correlation may be justified
by that both a and Tm are connected with an anharmonic contribution to
lattice vibrations.

From this point of view, it is instructive to reconsider the Lindemann
correlation. Write down the expansion of the potential energy of a lattice
with account of anharmonic terms

V (u) = V0 =
1

2
au2 − bu3 − cu4 (3.10)

(we confine ourselves for simplicity to the one-dimensional case). Then the
average displacement reads

u =
3b

a2
kBT (3.11)

Assuming that melting takes place at u = um = ymd we obtain the relation

kBTm =
a2

3b
um (3.12)

Using the relation

α =
1

d

du

dT
=

3b

da2
kB (3.13)
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we derive the result (3.9) with K = u/d = ym, so that K is just the relative
average displacement. An experimental verification of this statement is of
interest.

In a similar way, the heat of fusion should be connected with the volume
change at melting ∆Vm . However, systematic data for ∆Sm in transition
metals are absent.

There exists also the relation between the melting temperature, the shear
modulus µ = C11 − C12 and the atomic volume

rTm/(µVa) = L (3.14)

where the constant L is the Leibfried number, and a similar relation for the
heat of fusion

∆Hf/(µVa) = B (3.15)

where B is the Bragg number. Since the entropy of fusion ∆Hf/Tm is ap-
proximately equal to R (the Richards rule [235]), we have L ' B. However,
the empirical values differ appreciably: L = 0.042,B = 0.034. One uses also
the modified Leibfried number L′ = KL which takes into account the lattice
structure (K = 1.76 for the bcc lattice and 2.29 for fcc and hcp lattices).
The value of L′ changes from 0.019 (Cr) to 0.041 (V) in the 3d-period and
from 0.02 (Mo) to 0.05 (Nb) in the 4d-period. One can see from the Table
3.1 that the deviations of L,L′ and B from their average values have a rather
regular character, so that correlation with electronic characteristics may be
established (e.g., with specific heat, see Sect.3.3.2).

Although thermodynamic and lattice properties of metals are often con-
sidered in a phenomenological way, there exist also a large number of mi-
croscopical calculations within the band theory. The results on the cohesive
energies, atomic volumes and bulk moduli for 3d and 4d row metals are pre-
sented in [24], and the atomic volumes and bulk moduli for 4d and 5d metals
are given in [56].

Fig.3.8 shows, besides the measured cohesive energy Ecoh of d-metals, the
calculated valence bond energy

Evb = Ecoh + ∆Eat

where ∆Eat is the preparation energy required to take the atom to a state
corresponding to the non-magnetic ground-state configuration of the metal.
This quantity is calculated as

∆Eat = Ep − ELDA
sp
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Here Ep is the preparation energy required to take the atom to the magnetic
ground state configuration, which may be obtained from experimental data
[34]; the spin-polarization energy is the LSDA equivalent of the first Hund’s
rule energy. It is ∆Eat which behaves irregularly in the d-rows, and Evb turns
out to vary smoothly (approximately as a parabolic function).

Analysis of cohesive energy of all the 3d- and 4d transition metals, and
calculations of equilibrium lattice constant and bulk modulus of two represen-
tative elements, Cu and Ti, were performed in [242] within a renormalized-
atom method (where the atomic valence wavefunction are truncated at the
Wigner-Seitz radius and multiplied by a renormalization constant). Cohesive
energy of a transition metal was presented as a sum of five terms: (i) the
atomic preparation energy required to excite a free atom from its ground state
to the dn−1s configuration appropriate to the crystal, ∆Eat(ds) - Ecr(d

n−1s)
(ii) the difference in total Hartree-Fock energy between the free dn−1s atom
and the renormalized atom (iii) the difference between the average energy
of a free-electron band containing one electron and that of the renormalized
atom s-level (iv) the change in one-electron energies which results from the
broadening of the renormalized atom d-level into the d-band (v) the change
in one-electron energy due to the hybridization between the conduction and
d-bands. These contributions are shown in Fig.3.9. The problem of large
cohesive energy in Cu, which exceeds by more than two times that of K, is
discussed. This fact may be explained by the d-electron contribution owing
to the s-d hybridization.

In the paper [243], results of calculation of the Debye temperature, Grueneisen
constant and elastic moduli are presented for 14 cubic metals including TM.
These results are obtained in the APW LDF approach with the use of Morse
potential parametrization. The theoretical expression

kBθD = (48π5)1/6h̄s(r0Bρ/M)1/2, s = (B/ρ)1/2 (3.16)

(r0 is is the rigid-lattice equilibrium separation between ions, ρ is the den-
sity, B is the bulk modulus, s is the sound velocity) strongly overestimates
the value of θD . Therefore the expressions (3.16) should be modified by
introducing a scaling factor:

s = 0.617(B/ρ)1/2, θD = 41.63(r0B/M)1/2

with r0 in atomic units, B in kbars. The equilibrium value of r0 is obtained by
minimization of the free energy (including temperature-dependent vibrating-
lattice contributions to entropy). The results for the temperature coefficient



78 CHAPTER 3. THERMODYNAMIC PROPERTIES

of linear expansion
α(T ) = d ln r0/dT (3.18)

are shown in Fig.3.10. The theory describes well the difference between
the “soft” alcaline metals and “hard” transition metals. The calculated De-
bye temperatures determine the position of the “knee”, and the Grueneisen
constants γ do the high-temperature amplitude of the α(T ) curves. The the-
oretical values of γ turn out to be to high for Li and Sr and too low for Al, V,
Cu and Nb. Authors of [243] conclude that the LDF approach may be used
for description not only of ground states characteristics, but also of thermal
properties.

Ab initio calculation of work function for 37 metals (including 3d, 4d and
5d series) was recently performed in the LMTO-ASA method [244]. The
results agree within 15% with experimental data.

3.2 Crystal structure

Crystal structures of elements in the periodic system at T = 0 under normal
pressure are shown in Fig.3.11.

A number of elements exhibit phase transformations with a change of
crystal structure (Table 3.4). In particular, for d-metals the closely packed
fcc and hcp structures, which are stable in the ground state, transform often
at high temperatures into a less dense bcc structure. This phenomenon may
be explained by more soft phonon spectrum of the bcc lattice. Thus with
increasing temperature the free energy for the bcc structure decreases more
rapidly owing to a large negative entropy contribution and this structure
becomes more favourable than the closely packed ones.

Most rare earth metals have at low temperatures the hcp structure and
transform with increasing T into the bcc one [16,246]. A tendency to de-
creasing the temperature interval for the bcc phase existence takes place
with increasing the atomic number. Cerium has a double hcp structure at
T = 0 and a complicated phase diagram, praseodymium a double hcp struc-
ture, samarium a rhomboedric structure, and europium possesses the bcc
lattice already at T = 0. There exist also data on existence of fcc phases for
Pr, Nd and Yb [246,247].

The light actinide metals with delocalized 5f-electrons have the structures
which are similar to those of d-metals, but the phase diagrams are more com-
plicated. For example, plutonium has the largest variety of crystals modifi-
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cations among the periodic table elements. The structures of heavy actinides
(starting from americium) with localized 5f-electrons are reminiscent of those
of lanthanides.

Consider some approaches to the problem of determining crystal struc-
tures in metals from the point of view of electronic structure.

The simplest empirical correlation was established by Hume-Rothery [248]
who found that crystal structures of stable phases for a wide class of metallic
alloys were determined by the mean number of valence electrons per atom,
n. A typical example is given by the Cu-Zn system [6]. From n = 1 (pure
copper) to n = 1.38 the alloy has the fcc lattice (α-phase) At larger n there
occurs the region of coexistence of α and β (bcc) phases, and starting from
n = 1.48 the pure β-phase is stable. The γ-phase with a complicated cubic
structure exists at 1.58 < n < 1.66. Finally, the hcp ε-phase becomes stable
at n = 1.75.

A geometrical interpretation of this regularity may be obtained by con-
sidering the position of the Fermi surface in the recirpocal space with respect
to the Brillouin zone boundaries [249]. Appearance of an energy gap in the
electron spectrum near Fermi level, which takes place near these boundaries,
is energetically favourable. Indeed, it results in lowering of the electron sys-
tem total energy since the energy of occupied states becomes lower. In the
one-dimensional case, this effect results in distortion of a lattice with the
formation of an insulating state (Peierls instability). Calculating the volume
of the sphere, which is inscribed into the first Brillouin zone, we obtain the
electron numbers n = 1.36 for the fcc lattice, 1.48 for the bcc lattice and 1.69
for the ideal hcp lattice in a satisfactory agreement with above experimental
data.

Thus the Hume-Rothery rule relates the stability of a crystal structure
to the touching of the Fermi surface with the Brillouin zone boundary where
electron spectrum is maximally disturbed. Unfortunately, justification of
this rule for simple metals within the qualitative band theory in the nearly-
free electron approximation (pseudopotential theory) meets with difficulties:
the singularity in the total energy turns out to be very weak in the three-
dimensional situation (see discussion in [55]). However, one may expect that
the influence of Brillouin zone boundary becomes appreciably stronger if
density of states peaks are present near the Fermi surface.

For transition d-metals, the Hume-Rothery rule usually does not hold (at
the same time, it may be applicable for rare earth alloys [16]). A different
concept of correlation between crystal structure and n was put forward by
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Engel and Brewer (see [250,251]). According to their theory, the type of
lattice is determined by the number of s,p electrons. So, Na, Mg and Al,
which possess one, two and three sp-electrons respectively, have bcc, hcp
and fcc lattices. An attempt was made to generalize this concept to d-
metals. In particular, the configuration d5s (the same as for isolated atoms)
is attributed to metals of the middle of d-periods (Cr, Mo, W) with the
bcc structure. Formation of the same structure in V and its analogues is
explained by high statistical weight of the d4s-configuration (unlike isolated
atoms). The hcp structure in the metals of III and IV groups corresponds
to dominating role of configurations dsp and and d2sp respectively. The
difference between bcc structure of iron (configuration d7s) and hcp metals
Ru and Os is related to strong s-d hybridization in the former.

At the same time, the applicability of the Brewer-Engel picture is rather
restricted, so that it was criticized [251,252]. Especially unsatisfactory is
this theory for fcc metals. In particular, it yields incorrect predictions for
alcaline earths Ca and Sr (s2-configuration) and noble metals Cu, Ag, Au
which have one s-electron. Generally, the supposition that d-electrons take
part in chemical bonding but do not influence the lattice symmetry does not
seem to be physically reasonable.

Of course, the direct calculation of the total energy from the real band
electron spectrum is more justified for predicting stable structures, although
this requires picking out small energy differences for various structures (of
order of 10−2-10−1 eV) on the background of large binding energy (of order
of 10 eV). As a rule, such differences are smaller than real accuracy of band
calculations. In particular, many-electron effects should give appreciable
contributions and be taken into account in a quantitative theory of crystal
structures. The problem of structural transitions at finite temperatures is
still more complicated since the density functional approach becomes, gener-
ally speaking, inapplicable, and collective excitations of the lattice and elec-
tron subsystems should contribute to the entropy term. However, standard
band calculations were rather successfully applied in the theory of crystal
structures.

Stabiltity of the bcc phase in the middle of the d-periods is connected
with double peak structure of the density of states for this lattice. Maximal
energy gain is achieved at filling of the lower peak. As follows from band
calculations [24,78], this peak is filled in vanadium at nd ' 4 (which is by
unity larger than in free V atom). For fcc and hcp lattices, the density of
states has a more complicated many-peak structure, so that they should be
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stable at the beginning or end of d-periods.
From the atomic level point of view, one may consider in cubic lattices

the states which have eg and t2g origin. The eg-states lie lower than t2g ones
in the fcc lattice and higher in the bcc lattice. Since the eg-band contains
four electrons and the t2g-band six electrons, the fcc structure should be
favourable up to nd = 4, and the bcc structure at nd between 4 and 6. This
agrees to some extent with the situation in the 3d-period (the bcc structure
between Ti and Fe). However, Sc and Ti (nd < 4) have the hcp (rather than
fcc) structure, the stability of which is not described in terms of t2g- and
eg-states.

Pettifor [253] calculated the energies of three basic structures (fcc, bcc
and hcp) the 3d-metal series within the model pseudopotential approach
with two d-resonance parameters. The stability of the crystal structures as a
function of the number of d-electrons nd = n−2 is described by the following
sequence

nd 1-1.5 1.5-2 2-4.5 4.5-6.5 6.5-7.9
Structure fcc hcp bcc hcp fcc

These results just correspond to the experimental situation in the 3d-row.
Skriver [245] evaluated the energy differences for various lattices in the 3d,

4d and 5d series and for rare-earths (Figs.3.12-3.16), and also for actinides,
by using the force theorem approach in the LMTO method. The results by
Pettifor were confirmed, and general sequence hcp-bcc-hcp-fcc in other d-
periods was also reproduced. Investigations of stability of crystal structures
in the lanthanide series yielded the sequence

hcp - Sm-type - double hcp - fcc - fcc′

The type of the lattice is determined by the number of 5d-electrons which is
changed from 2 (La) to 1.5 (Lu) (Fig.3.14).

The one-electron band calculations [245] turn out to agree qualitatively
with experimental data and give correctly the crystal structure of 35 metals
from 42 investigated (in particular, the theory fails for Au, Mn, Fe and Co).
As to quantitative agreeement (values of the phase diagram parameters, e.g.
transition temperatures and pressures), the problem is considerably more
difficult, so that satisfactory results are obtained for simple metals only.
The calculated energy differences for d-metals [245] turn out to be by 3-5
times greater than enthalpy differences obtained from study of binary phase
diagrams (Fig.3.16).
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Structural and cohesive energies of 5d-elements were calculated in [254]
within the linear augmented-Slater-type-orbital method. Recent calculation
of total energies for 3d, 4d and 5d metals [255] was performed by scalar
(semirelativistic) RAPW method (unlike the calcullations by Skriver [245],
the frozen potential approximation was not used). The conclusions agree
on the whole with the results for lattice parameters and bulk moduli [24]
and crystal structure stability [245], relativistic corrections being not too
important. However, the experimental structure for Au was obtained in this
calculation.

Total energy calculations of crystal structure stability, equilibrium volume
and bulk moduli for light actinides Th, Pa and U within the full-potential
approach [256] yielded good agreement with experimental data.

3.3 Specific heat

In the previous sections of this Chapter we have treated energy character-
istics of a crystal which yield a general description of the electron and ion
systems. Here we consider the specific heat, which enables one to obtain a
more detailed information about electron and lattice spectrum.

3.3.1 Lattice specific heat

Investigation of specific heat played an important role in the development of
quantum solid state theory. We remind briefly of principal results. Specific
heat at constant volume is defined in terms of the average energy

cV =

(
∂E
∂T

)

V

(3.19)

In the classical picture, each degree of freedom of a particle contributes kBT/2
to the thermal energy. Thus the energy of a three- dimensional crystal which
contains N ions and n electrons is given by

E = 3NkBT +
3

2
nkBT (3.20)

(the average energy of ions, which are considered as oscillators, is doubled
owing to potential energy). Thus the lattice specific heat of a monoatomic
crystal should be equal to 3R (R = kBNA = 8.3 J/mol K is the gas constant,
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NA is the Avogadro number). This result corresponds to the Dulong-Petit law
which was established for a wide number of solids. However, experimentally
this law holds as a rule in a not too wide region near the room temperature.
With decreasing temperature, cV decreases and tends, in agreement with the
general Nernst theorem, to zero at T → 0. On the other hand, cV increases
considerably at high T .

The quantum theory of lattice contribution to specific heat was developed
by Einstein (1906) and Debye (1910). Einstein considered the crystal as a
system of independent oscillators with the constant frequency ωE . Then
application of the Bose statistics yields

E = 3Nh̄ωE[NB(ωE) +
1

2
] (3.21)

with

NB(ω) = (exp
h̄ω

kBT
− 1)−1

Then

cV = 3R

(
h̄ωE

kBT

)2

exp

(
− h̄ωE

kBT

) /[
exp

(
− h̄ωE

kBT

)
− 1

]2

(3.22)

Thus specific heat equals to 3R at high temperatures and is exponentially
small at low T . Experimental data demonstrate a more slow decreasing of
specific heat. This is due to that the Einstein model is well applicable only for
optical branches of lattice oscillations (phonons), frequencies of which depend
weakly on the wavevector. The calculation of acoustic branch contribution
with the model dispersion law

ωq = sq (q < qD), ωD = sqD = kBθD/h̄ (3.23)

was performed by Debye. The result reads

cV = 3R
(

T

θD

)3

3
∫ θD/T

0

ezz4dz

(ez − 1)2
(3.24)

At high T we come again to the Dulong-Petit law. At low T ¿ θD specific
heat obeys the Debye T 3-law

cV = 12
π4

5
R

(
T

θD

)3

(3.25)
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A more accurate calculation of the phonon contribution to specific heat in a
wide temperature region requires using a realistic dispersion law of phonons
which may be very complicated. As an example, experimental data for acous-
tic branches in Nb and Mo are shown in Fig.3.17. One can see that the
dependence ω(q) in Mo turns out to be non-monotonous. Anomalies in ω(q)
curves are connected with strong electron-phonon interaction in transition
metals.

Data on specific heat of simple and transition metals in a wide temper-
ature region are presented, and regularities in c(T ) behaviour for different
columns of the periodic table are discussed in the handbook [239]. The de-
pendences c(T ) within a column turn out to be similar and differ mainly by
singularities owing to structural and magnetic transitions. As an example,
Fig.3.18 shows specific heat of vanadium where such phase transitions are
absent, so that the dependence c(T ) has a simple form. One can see that
the Dulong-Petit law holds in a not too wide temperature region and is vio-
lated at both low and high T . More complicated behaviour takes place in Zr
(Fig.3.19) where the structural α−β transformation is present, and in heavy
rare earths (Fig.3.20) which have a complicated magnetic phase diagram.

The jump of specific heat at the melting point, ∆cm = c(T > Tm)−c(T <
Tm), is as a rule positive for transition metals which exhibit phase transition
(including light rare earths, Fe, Co, Ni) and negative for metals which do not
(e.g., for Nb, Ta, although a small positive ∆cm is observed in vanadium). It
should be noted that the situation is different for simple metals: ∆cm > 0 for
Zn, Cd, Al, Ga, In, Pb despite the absence of structural phase transitions.

In the liquid phase, specific heat of d-metals may reach the values of 4-
9R, which are considerably larger than those for simple metals (see, e.g., the
discussion in [258]).

The increase of c in comparison with 3R, observed above the room tem-
perature in most substances, is usually attributed to anharmonicity effects
which result in occurence of T -linear terms in the high-temperature lattice
specific heat. We illustrate this phenomenon in the simplest one-dimensional
model with the potential (3.10) (a more detailed discussion is given in [4]).
Write down the partition function of an ion as

Z(T ) =
∫

dpdu exp

(
[− p2

2M
+ V (u)]/kBT

)
(3.26)

Integrating over momentum p and expanding in the anharmonicity parame-
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ters up to b2 and c we derive

Z(T ) = (2πkBTM)1/2
∫

du exp
(
−1

2
au2/kBT

)

×

1 +

bu3

kBT
+

1

2

(
bu3

kBT

)2

+
cu4

kBT


 (3.27)

The integration over u yields

Z(T ) = 2π
(

M

a

)1/2

kBT

[
1−

(
3c

a2
− 15b2

a3

)
kBT

]
(3.28)

Then the specific heat is given by

c(T ) = −3NA
∂

∂T

(
T 2∂ ln Z(T )

∂T

)

= 3R

[
1 +

6

a

(
5b2

2a2
− c

a

)
kBT

]
(3.29)

Since a/b ∼ b/c ∼ d and the average displacement is given by (3.11), the
T -linear corrections owing to triple and quartic anharmonisms are of the
same order of magnitude and may be estimated as (u/d)3R. Therefore the
anharmonicity may hardly explain the increase of specific heat at high tem-
peratures in d-metals, which may be of order 100%, so that this problem
needs further investigations.

3.3.2 Electronic specific heat

Besides the violation the Dulong-Petit law at low temperatures, the second
difficulty of the classical theory of specific heat concerned the electronic con-
tribution to specific heat. According to (3.20), this contribution should be
equal to 3R/2 for a metal with one electron per atom. However, such large
contributions were never found in experiment. Only a small T -linear electron
term in specific heat is observed practically at any temperatures.

This contradiction was resolved only in twentieth years of our century af-
ter formulation of the Fermi-Dirac statistics for electrons. The corresponding
distribution function reads

f(E) = (exp
E − ζ

kBT
+ 1)−1 (3.30)
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where ζ = ζ(T ) is the chemical potential, ζ(0) being equal to the maximum
energy of occupied states - the Fermi energy EF . The latter quantity is
determined, according to the Pauli principle, by the number of electrons:

n =
∫ ∞

−∞
dEf(E)N(E) (3.31)

(in this Section the density of states N(E) is determined for both spin projec-
tions). In metals, EF /kB is large and makes about 104-105K. This explains
qualitatively small value of electronic specific heat. Indeed, only electrons in
a narrow layer with a width about πkBT near the Fermi energy may change
their energy and take part in thermal excitations, and most electrons are
“frozen”. The number of the “thermal” electrons is estimated as

n∗/n ∼ kBTN(EF ) ∼ kBT/EF (3.32)

so that

δEe(T ) ∼ 3

2
n∗kBT ∼ k2

BT 2N(EF ) (3.33)

and
ce ∼ k2

BN(EF )T

A more accurate calculation (see below (3.40)) yields

ce = γT, γ =
π2

3
k2

BN(EF ) (3.34)

Thus electronic specific heat should be linear in a wide temperature interval
0 < T < E/kB (practically, up to temperatures which exceed the melting
points). The electronic contribution may be picked out at low T where the
lattice contribution rapidly decreases. To this end one writes down

cV /T = γ + αT 2 (3.35)

and extrapolates the experimental dependence cV /T vs. T 2 to zero temper-
ature.

According to (3.34), the value of γ is determined by the most important
characteristic of electron system in a metal - the density of states at the
Fermi level. Since transition metals are characterized by large values of
N(EF ), their γ′s (Table 3.5) are considerably greater than for simple metals.
Especially large values are observed in d-compounds with N(E) peaks at the
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Fermi level. Here belong the superconductors with the A-15 structure (for
example, γ = 33 mJ/mol K2 for V3Ga, see also Fig.6.1).

The experimental values of γ may be compared with those obtained from
band calculation results,

γ (mJ/molK2) = 0.1734 ·N(EF ) (states/Ry)

As one can see from Table 3.5, a distinct correlation between these values
takes place. As well as N(EF ), γexp demonstrates a “toothed” behaviour as
a function of the d-electron number - large values for the configurations dn

with odd n and small values for even n (the ratio γexp/γtheor does not reveal
such a behaviour). In the middle of d-series, γexp/γtheor is somewhat smaller
than in the beginning or in the end.

The theoretical values of γ turn out to be as a rule smaller than exper-
imental ones. This difference is larger for transition elements. So, for Sc,
Ti, V, Y, Zr, Nb, Hf, Ta one has γexp/γtheor ∼ 2, and for neighbour simple
metals Ca, Ba, Cu, Ag, Au this ratio is close to unity. Thus the deviation
may be partially attributed to correlation effects which are more important
in transition metals. In this connection we mention the recent first-principle
band calculation beyond the density functional method [259] where a consid-
erable change in N(EF ) values is obtained, so that a better agreement with
experimental data on γ takes place.

Besides that, one has to bear in mind the inaccuracy in band calcula-
tions. Since the density of states in TM has a sharp energy dependence,
small errors in the Fermi level position may influence strongly the value of
N(EF ). The relation γexp < γtheor for chromium is probably connected with
the influence of antiferromagnetic ordering which is not taken into account
in band calculations, but may disturb considerably electron structure near
the Fermi level (formation of the antiferromagnetic gap).

The enhancement of γexp in comparison with γtheor may be explained
by effects of interaction of conduction electrons with various elementary ex-
citations in a crystal. Most frequently one discusses the electron-phonon
interaction which results in occurence of a factor 1 + λ in the electron effec-
tive mass, and, consequently, in γ. The theoretical calculation of λ is a very
difficult problem since this requires a detailed information on characteristics
of electron and phonon subsystems. In transition metals the electron-phonon
interaction is strong due to a strong dependence of total energy on the lat-
tice parameter. The large value of λ leads also to superconductivity with
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rather high Tc [257]. It should be noted that λ should exhibit an appreciable
temperature dependence. Calculations of this dependence were performed
both in the Einstein and Debye models by Grimvall [260] and Osuzu [261]
respectively. Results of [261] are shown in Fig.3.21. One can see that λ(T )
decreases rapidly at T > 0.2θD.

Another important mechanism of specific heat enhancement is the inter-
action with spin fluctuations. This mechanism, which is especially important
for weakly magnetic and nearly magnetic transition metals and their com-
pounds (e.g., γ = 56 mJ/mol K2 for the nearly antiferromagnetic system
TiBe2 [507]), is discussed in Sect.4.4 and Appendix G.

An interesting example is metallic praseodymium where the interaction
with crystalline electric field excitations is supposed to provide the enhance-
ment m∗/m ' 4 [263]. Such effects of spin and charge fluctuations in anoma-
lous rare-earth and actinide systems are considered in Sect.6.3.

Temperature dependence of electronic specific heat in transition metals
turns out to be strong. Corresponding experimental results are shown in
Fig.3.22. It should be noted that picking out the electronic contribution on
the background of the lattice one was performed in [262] within the Debye
approximation. The latter is not quite satisafactory at high T where ce makes
up about 10% of the total specific heat.

The most simple reason for the dependence γ(T ) is smearing of the Fermi
function with temperature. To consider this effect we consider the expressions
for the number of particles (3.31) and for average energy

Ee =
∫ ∞

−∞
EdEf(E)N(E) (3.36)

Further we use the expansion of the Sommerfeld integrals
∫ ∞

−∞
dEf(E)F (E)

=
∫ ζ

−∞
dEF (E) +

π2

6
(kBT )2F ′(ζ) +

7π4

360
(kBT )4F ′′(ζ) + ... (3.37)

which is obtained with the use of integrating by part. Then we derive

ζ(T ) = EF − π2

6
(kBT )2N ′(EF )/N(EF ) + ... (3.38)

Ee =
∫ N(EF )

−∞
dEN(E) + γ(T )T (3.39)
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where

γ(T ) =
π2

3
kBN(EF )

{
1 +

1

2
(πkBT )2

×

7

5

N ′′(EF )

N(EF )
−

(
N ′(EF )

N(EF )

)2





 (3.40)

The temperature corrections, although being formally small, are especially
important in the case of a strong dependence N(E), which is typical for
transition metals. The first term in the square brackets means that finite-T
specific heat is determined by the density of states, averaged over the energy
interval of order of πkBT near EF . In particular, at N ′(EF ) = 0, N ′′(EF ) > 0
(minimum of the function N(E)) γ increases with T , and at N ′′(E) < 0
decreases with T . This result agrees qualitatively with the band calculations
results and experimental data on the sign of the T -dependence (Fig.3.22):
for odd dn configurations (V, Ta, Nb, Pt, Pd) the great values of γ, which
correspond to a N(E) maximum, decrease with T , and for even configurations
(Zr, Ti, Cr, Mo, W) the small values of γ correspond to a N(E) minimum
and increase with T . The second term in square brackets of (3.40) occurs
because of the temperature dependence of the chemical potential (3.38).

Shimizu [262] carried out numerical calculations to compare the experi-
mental dependence γ(T ) with those following from the first-principle (Fig.3.23)
and empirical (Fig.3.24) densities of states. Although a qualitative agreement
takes place, the theoretical dependences turn out to be weaker and shifted
towards high temperatures.

Provided that the function N(E) possess a singular behaviour near EF

(narrow peaks), the expansion (3.37) does not hold and the analytical calcu-
lation is more complicated. The calculation of the dependence γ(T ) in the
presence of a DOS peak was performed in [264]. The simplest model of N(E)
with triangle peaks at E = Ei was used,

δN(E) =
∑

i

δNi(E) (3.41)

δN(E) =

{
Ai(E − Ei) , E < Ei

Bi(Ei − E) , E > Ei

Unlike the expansion (3.40), the relative temperature variation of

γ(T ) =
1

T 2
(I2 − I2

1/I0) (3.42)
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with

In =
∫ ∞

−∞
dE

(
−∂f(E)

∂E

)
(E − EF )nN(E) (3.43)

may be large. Using the position of the peaks Ei and the jumps of N ′(E) at
these points as parameters, one can restore from the experimental dependence
of γ the density of states and compare this with the calculated one. Such
an analysis was performed in [264] for the A-15 structure superconductors
Nb3Sn and V3Si.

Besides the one-electron mechanism, the dependence γ(T ) is determined
by the above-discussed temperature dependences of electron-phonon enhance-
ment and correlation mechanisms which are expected to be rather strong for
d-bands. The relative role of these effects in transition metals is still not
investigated in detail.

3.3.3 Specific heat of magnetic metals

In magnetically ordered crystals, contributions to entropy and specific heat
occur which are due to destruction of magnetic ordering with increasing
temperature. Experimental separation of the magnetic entropy may be per-
formed with the use of magnetocaloric effect (change of temperature at adi-
abatic magnetizing by the external magnetic field) [265].

In the model of localized spins with the value S the total magnetic entropy
change is given by

Smag(T →∞) =
∫ ∞

0

dT

T
cmag(T ) = R ln(2S + 1) (3.44)

The magnetic specific heat cmag is especially important at the magnetic phase
transition points TM = TC(TN) where it has a singularity. In the simplest
mean-field approximation cmag is exponentially small at low temperatures,
exhibits a jump at crossing TM and vanishes in the paramagnetic region,
so that expression (3.44) holds at arbitary T > TM . In fact, the presence
of short-range order, which is neglected in the mean-field theory, results in
that cmag is finite above TM due to interaction with spin fluctuations. Be-
sides that, fluctuations result in a weak power-law divergence of cmag at TM .
The experimental temperature dependences of specific heat in ferromagnetic
transition metals are shown in Figs.3.25, 3.26.

At low temperatures (well below TM) there exist contributions owing to
spin-wave (magnon) excitations (Appendix E). The corresponding average
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energy is given by
Esw(T ) =

∑
q

h̄ωqNq (3.45)

with ωq being the magnon frequency. Since in ferromagnets ωq ∼ q2 at
q → 0, we have

Esw(T ) ∼ T 5/2/T
3/2
C , csw ∼ (T/TC)3/2 (3.46)

At the same time, for antiferromagnets the dispersion law is linear and we
have

Esw(T ) ∼ T 4/T 3
N , csw ∼ (T/TN)3 (3.47)

The spin-wave contributions are present both in magnetic insulators amd
metals. In metals the linear electronic specific heat dominates at low tem-
peratures and the spin-wave corrections are less important. However, the
electronic contribution is appreciably influenced by magnetic ordering. Since
an enhancement of the linear γT -term takes place due to interaction with
spin fluctuations (Sect.4.4), the strict separation of magnetic and electronic
contribu- tions is, generally speaking, impossible. Some peculiar terms in
specific heat of conducting ferromagnets which are due to incoherent (non-
quasiparticle) contributions are discussed in Appendix G.

The electron density of states in the ordered phase of ferromagnetic met-
als (below the Curie temperature TC) differs considerably from that in the
paramagnetic phase because of spin splitting. As a rule, total N(EF ) =
N↑(EF ) + N↓(EF ) is smaller in the ferromagnetic state since the ordering
results in a shift of the peak, which is responsible for the Stoner instability,
from the Fermi level. At the same time, in nickel the value of γ(T < TC) =
7.0 mJ/mol K2 [266] is larger than γ(T > TC) = 5.8 mJ/mol K2 [267]. This
leads to the conclusion about an important role of correlation effects.

Consider the simplest theory of magnetic specific heat. In the mean-
field approximation the magnetic (exchange) energy is expressed in terms of
magnetization

Emag = −IM2 (3.48)

where I is an exchange parameter. Then the magnetic specific heat reads

cmag = −IM
dM

dT
(3.49)

In metals one has to take into account, besides the exchange energy, the ki-
netic energy of conduction electrons which depends on magnetization through
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the exchange splitting. The total energy in the Stoner model (see Sect.4.3)
may be transformed as

E =
∑

kσ

Eknkσ + In↓n↓

=
∑

kσ

Ekσnkσ − In↓n↓

=
∑
σ

∫
dEEf(E)Nσ(E)− I

(
n2

4
−M2

)
(3.50)

where
nσ =

n

2
+ σM, Ekσ = Ek − σIM

Nσ(E) =
1

2
N(E + σIM) (3.51)

Differentiating with respect to T one obtains

c(T ) = c↓(T ) + c↓(T ) +
π2

6

[
N ′
↑(EF )

N↑(EF )
− N ′

↓(EF )

N↓(EF )

]
T 2I

dM

dT
(3.52)

where cσ(T ) is the usual electronic specific heat, corresponding to the density
of states Nσ(E). One can see that the term of the type (3.49) is cancelled
by the corresponding contribution from the kinetic energy. The magnetic
specific heat is determined by the second term in (3.52). Only electrons in
the energy layer of order of T near the Fermi level contribute to cmag so that
it contains a small factor of order of (kBT/EF )2 and depends strongly on the
DOS shape. The jump of specific heat at the Curie point is given by [26]

∆c =
2

3
(πTC)2{[N ′(EF )

∂ζ

∂M
+ I2MN ′′(EF )]}T=TC

(3.53)

The situation may change somewhat in the presence of DOS peaks. Consid-
eration of specific heat of Ni with account of the realistic DOS structure is
performed in [268]. As well as in the Heisenberg magnets, spin fluctuations
result in a considerable mofifications of cmag(T ) behaviour at high tempera-
tures [26,268].



Chapter 4

MAGNETIC PROPERTIES

Strong magnetism is one of the most important peculiarities of transition
d- and f-elements. Iron group metals (Fe, Co and Ni) exhibit ferromagnetic
ordering and large spontaneous magnetization, chromium and manganese
are antiferromagnetic — magnetic moments are ordered, but the summary
magnetization is zero. Ferro- and antiferromagnetism are characteristic for
most rare earth metals. Many alloys and compounds of transition metals also
possess strong magnetic properties and have wide technical applications.

Basic magnetic characteristics of strongly magnetic substances are as fol-
lows
(i) the value of magnetic moment in the ground state
(ii) behaviour of spontaneous magnetization with temperature and magnetic
field; values of the ordering temperature TC(TN) and magnetic anisotropy
constants; the saturation field Ha

(iii) the type of temperature dependence of magnetic susceptibility (Pauli of
Curie-Weiss) and its anisotropy; presence of local moments above TC ; values
of the effective moment (Curie constant) and paramagnetic Curie tempera-
ture.

All these characterictistics are described by some microscopical parame-
ters (value of atomic magnetic moment in the localized model of magnetism
or the exchange splitting in the itinerant electron model, exchange param-
eters, spin-orbital interaction constant). The main purpose of the theory
is comparison of these parameters with observable physical properties. At
present, alternative and in some respects contradicting explanations of tran-
sition metal magnetic properties exist, and the problem of their strong mag-
netism is far from the final solution.

93
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4.1 Exchange interactions and the Heisenberg

model for localized spins

The history of theoretical investigation of ferromagnetism was rather dra-
matic. First attempts to explain this phenomenon gave rise to development
of the theory of exchange interactions within the Dirac-Heisenberg model
for localized spins. Although further theoretical developments demonstrated
inapplicability of this model to metallic magnets, we discuss this model to
first place.

Usual relativistic magnetic interactions between localized moments at
different lattice sites corresponds to the energy

µ2
B/a3 ∼ 10−17 erg/cm3 ∼ 10−1 K

so that magnetic ordering should be destroyed by thermal motion at very low
temperatures. However, transition metals of iron group and a number of their
compounds possess high values of ordering temperature (Curie point TC) of
order of 102 -103K. Such large interactions between magnetic moments are
not explained by classical electrodynamics and require a quantum mechanical
treatment.

In the absence of spin-orbital interaction the wave function of a two-
electron system has the form of the product of spin and coordinate functions

Ψ(r1s1,r2s2) = Ψ(r1r2)χ(s1s2) (4.1)

and, according to the Pauli principle, should be antisymmetric with respect
to permutation of electrons. For symmetric (antisymmetric) spin function,
which corresponds to the total spin S = s1+s2 of unity (zero), the trial co-
ordinate wavefunctions may be written in the form

Ψ(r1r2) =
1√
2
[ψ1(r1)ψ2(r2)∓ ψ1(r2)ψ2(r1)] (4.2)

respectively. Calculating the first-order perturbation theory correction to the
total energy from the electrostatic interaction we obtain

E =
∫

dr1dr2Ψ
∗(r1r2)

e2

|r1 − r2|Ψ(r1r2) = Q∓ J (4.3)

where we have introduced Coulomb integral

Q =
∫

dr1dr2ρ1(r1)
1

|r1 − r2|ρ2(r2), ρ(r) = −eψ(r)ψ(r) (4.4)
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and the exchange integral, which differs from (4.4) by permutation (ex-
change) of electrons

J =
∫

dr1dr2ψ
∗
1(r1)ψ

∗
2(r2)

e2

|r1 − r2|ψ1(r2)ψ2(r1) (4.5)

Unlike the relativistic magnetic interaction, the exchange interaction has the
electrostatic nature and is considerably larger. At the same time, exchange
interaction between electrons at different lattice sites is strongly reduced by
the squared factor of overlap of the corresponding wavefunctions. We may
estimate

J ∼ Q(10−2 − 10−3) ∼ 10−3 eV ∼ 10 K

The expression (4.3) may be rewritten in the form of the spin Hamiltonian

H = Q− J(
1

2
+ 2S1S2) =

{
Q− J , Stot = 1
Q + J , Stot = 0

(4.6)

where

2S1S2 = S2
tot − 2s2 = Stot(Stot + 1)− 3

2
(4.7)

Besides the “potential” exchange interaction (4.5), there exists another ex-
change mechanism which is due to kinetic energy of electrons. In the simplest
situation of s-band, we obtain (Appendix D)

H′
= −2t2

U
(2S1S2 − 1

2
) (4.8)

with t being the transfer integral and U the intraatomic Coulomb repulsion.
This mechanism results in an antiferromagnetic interaction since the gain in
the kinetic energy is achieved at antiparallel orientation of electron spins. As
demonstrate numerical calculations (see, e.g., [265]), at realistic interatomic
distances this contribution as a rule prevails over the ferromagnetic potential
exchange. Thus the localized model does not explain ferromagnetism of iron
group metals.

The derivation of Heisenberg model for orbitally degenerate atomic shells
and arbitrary values of spin S is presented in Appendix D. It turns out that
in this case the exchange Hamiltonian contains the interaction of not only
spin, but also orbital moments. Exchange mechanisms in rare earths owing
to indirect interaction via conduction electrons is discussed in Appendix K.
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In most cases, real exchange mechanisms are complicated, so that we have
to consider the Heisenberg Hamiltonian as an effective one.

Consider the system of interacting magnetic moments which is described
by the Heisenberg Hamiltonian in the magnetic field H

H = −gµBH
∑

i

Sz
i −

∑

ij

JijSiSj (4.9)

with Jij > 0 for nearest neighbours. Direct calculation of the magnetization
M = gmB〈Sz〉 (hereafter we put gµB = 1) in the model (4.9) is prevented by
the non-linearity of the interspin exchange interaction in spin operators. To
simplify the problem, we can linearize the Hamiltonian by introducing the
effective mean field H∗ which is expressed in terms of magnetization

H = −H̃Sz = −(H + H∗)Sz, Sz =
∑

i

Sz
i (4.10)

where
H∗ = λ 〈Sz〉 , λ = 2

∑

i

Jij = 2J0, J0 = Jq=0 (4.11)

(in the nearest-neighbour approximation J0 = zJ with z being the number
of the neighbour spins). In the case of spin S = 1/2 we have

〈Sz〉 =
1

2
(n↑ − n↓), n↑ + n↓ = 1 (4.12)

Using the Gibbs distribution

nσ = exp
σH̃

T

/
[exp

H̃

T
+ exp(−H̃

T
)] (4.13)

we obtain the self-consistent mean-field equation for the magnetization

〈Sz〉 =
1

2
tanh

H + λ〈Sz〉
2T

(4.14)

The result (4.14) is easily generalized to the case of arbtitrary S

〈Sz〉 = SBS

(
SH̃

T

)
(4.15)

where

BS(x) =
d

dx
ln

S∑

m=−S

e−
mx
S
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= (1 +
1

2S
) coth(1 +

1

2S
)x− 1

2S
coth

x

2S
(4.16)

is the Brillouin function. In particular cases

B 1
2
(x) = tanh x, B∞(x) = coth x− 1

x
(4.17)

The equation (4.15) has non-trivial solutions in the zero magnetic field pro-
vided that T < TC , the Curie temperature being given by

TC = S(S + 1)λ =
2

3
S(S + 1)J0 (4.18)

Using the expansion

coth x =
1

x
+

x

3
− x3

45
+ ...

we derive near the Curie point

〈Sz〉 =

√
5

3

S(S + 1)

(S2 + S + 1
2
)

√
1− T

TC

(4.19)

At low T ¿ TC equation (4.15) may be solved by iterations and yields an
exponential behaviour of the magnetization

〈Sz〉 = S[1− S−1 exp(−2TC/T )] (4.20)

A more accurate description of the low-temperature behaviour is obtained in
the spin-wave theory (Appendix E).

Consider the case of high temperatures µBH ¿ T . Performing expansion
of (4.15) in H we obtain

〈Sz〉 =
S(S + 1)H

3T [1− 1
3
λS(S + 1)/T ]

Thus we obtain the Curie-Weiss law for the paramagnetic susceptibilty χ =
M/H

χ(T ) =
C

T − θ
(4.21)

The Curie constant C is expressed in terms of the effective atomic moment,

C =
1

3
µ2

eff , mueff = gµB

√
S(S + 1) (4.22)
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The paramagnetic Curie temperature turn out to coincide in the simple model
under consideration with TC :

θ = λC =
2

3
λS(S + 1)J0 (4.23)

The case of antiferromagnetic exchange interaction J < 0 is considered in a
similar way. In such a case, neighbour spins are ordered in an antiparallel
way and the equation for the sublattice magnetization has the same form
(4.15) with J → −J . The magnetic susceptibility obeys the Curie-Weiss law
with a negative value of θ. In the nearest-neighbour approximation, the Neel
temperature TN , where magnetic ordering disappears, equals to |θ|.

4.2 Magnetic susceptibility of paramagnetic

transition metals

Now we return to discussion of situation in transition metals. Most d-
elements (3d-metals Sc, Ti, V and all the 4d and 5d-metals) do not possess
magnetic ordering. However, their magnetic properties differ considerably
from those of simple (e.g. alcaline) metals which demonstrate a weak Pauli
paramagnetism with χ ∼ 10 emu/mol. The values of paramagnetic suscepti-
bility of d-metals, which are presented in the Tables 4.1, 4.2 are by an order
of magnitude larger.

There exist some regularities in the behaviour of χ in the transition metal
rows. For metals of one group in the periodic system, the susceptibility
decreases with increasing atomic number. The change of χ in a given period
turns out to be non-monotonous: as a rule, metals with even number of
d-electrons have lower susceptibility than those with odd number (Fig.4.1,
Tables 4.1,4.2). Thus a correlation with electronic specific heat takes place.
The temperature dependences of χ (Figs.4.2-4.6) are appreciably stronger
than in simple metals. The sign of dχ/dT changes as a rule at passing to
neighbour element. So, for metals of IV group (Ti, Zr and Hf), which have
a small susceptibility, χ increases with T , and for metals of the V group
(V, Nb, Ta) dχ/dT < 0. The presented data for dχ/dT correspond to not
too low temperatures, since at low T the behaviour of χ may be masked by
the Curie-Weiss contribution from magnetic impurities. However, for Pd the
intrinsic susceptibility has a maximum at 80K, and for Y at 300K.
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Now we discuss various contributions to magnetic susceptibility of transi-
tion metals. To calculate the paramagnetic susceptibility we write down the
magnetization of band electrons in a magnetic field H

M = µB

∫
dEN(E) [f(E − µBH)− f(E + µBH)] (4.24)

(the density of states N(E) is put for one spin projection). Expanding (4.24)
in H we derive

χ =
M

H
= −2µ2

B

∫
dEN(E)

∂f(E)

∂E

= 2µ2
B

[
N(ζ) +

π2

6
N ′′(ζ)(kBT )2

]
(4.25)

Performing expansion in ζ − EF and taking into account the temperature
dependence of the chemical potential (3.38) we obtain

χ(T ) = 2µ2
BN(EF )



1 +

1

6
(πkBT )2


N ′′(EF )

N(EF )
−

(
N ′(EF )

N(EF )

)2





 (4.26)

Thus spin susceptibility, as well as specific heat, of conduction electrons is
determined by the density of states at the Fermi level and is to leading order
approximation temperature independent (Pauli paramagnetism). Such a be-
haviour, which is drastically different from the Curie-Weiss law for localized
electrons, is explained by the Pauli principle: only a small part (of order of
kBT/EF ) electrons contribute to χ. The dependence χ(T ), which is obtained
after account of next-order terms in T/EF , turns out to be weak.

One can see that the sign of dχ/dT should be determined by the shape of
density of states. Thus large values and strong T -dependence of χ in d-metals
may be related to the presence of narrow d-bands near the Fermi level.

Due to presence of partially filled degenerate bands in d-metals, orbital
contributions to susceptibility turn out to be important, which are analogous
to the Van Vleck contribution for localized magnetic ions. The total param-
agnetic susceptibility for a degenerate band may be represented in the form
[271,270]

χ = χS + χL + χSL (4.27)

with

χS = 2µ2
B

∑

m m′k

f(Emk)− f(Em′k)

Em′k − Emk

|〈mk|2S|m′k〉|2 (4.28)
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χL = 2µ2
B

∑

m m′k

f(Emk)− f(Em′k)

Em′k − Emk

|〈mk|L|m′k〉|2 (4.29)

χSL = 2µ2
B

∑

m m′k

f(Emk)− f(Em′k)

Em′k − Emk

〈mk|L|m′k|〉〈mk|2S|m′k〉 (4.30)

where m is the band index. A simple estimation of the orbital contribution
in terms of the number of d-electrons n has the form

χL ∼ 2µ2
B

n(10− n)

5W
(4.31)

where W is a characteristic energy difference between occupied and empty
states, which equals approximately to the d-bandwidth. Separation of spin
and orbital contributions may be performed by combined studying the de-
pendences of χ(T ) (with account of Stoner enhancement) and electronic
specific heat ce(T ), the orbital contribution being proposed to be weakly
temperature-dependent [270]. Spin susceptibility may be also picked out by
measuring the Knight shift.

According to the review [270], calculated orbital and spin susceptibilities
of d-metals are of the same order of magnitude, the orbital susceptibility of
d-electrons exceeding the spin susceptibility of s-electrons. The spin-orbit
contribution is negligible, except for 5d-metals. Band calculations of the
orbital and spin-orbital susceptibility in bcc transition metals are presented
in [272].

Data on orbital contributions are also obtained by measuring the gyro-
magnetic (magnetomechanical) ratio with the use of the Einstein - de Haas
effect [273]

g′ =
ML + MS

ML + 1
2
MS

(4.32)

This quantity differs somewhat from the g-factor

g =
ML + MS

1
2
MS

(4.33)

which is measured in magnetic resonance experiments (it is taken into ac-
count in (4.33) that the orbital mechanical momentum is not conserved in
the lattice). Thus the factors g and g′ are connected by

1

g
+

1

g′
= 1, g′ = g/(g − 1) (4.34)
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In the case of small orbital magnetization,

g = 2(1 +
ML

MS

), g′ = 2(1− ML

MS

) (4.35)

Investigations of gyromagnetic ratio in paramagnetic metals are much more
difficult than for ferromagnets since one has to measure very small rotation
angles. The results of the experiments [274] are as follows

V Nb Ta Pd Pt
g′ 1.18 1.05 1.02 1.77 1.62

Strong deviations of values from 2 show a presence of appreciable orbital
contributions. The measurements for iron group metals and ferromagnetic
alloys yield g − 2 ∼ 2− g ∼ 5− 10% [273].

Finally, the diamagnetic contribution to χ in the one-band approximation
is given by [275]

χdia =
e2

6c

∑

k

∂f(Ek)

∂Ek

[
∂2Ek

∂k2
x

∂2Ek

∂k2
y

− (
∂2Ek

∂kx∂ky

)2

]
(4.36)

(the magnetic field is directed along the z-axis). In the effective mass ap-
proximation where Ek = k2/2m∗ we obtain

χdia = −2

3
µ2

BN (EF ) (m/m∗)2 (4.37)

where c is the light velocity. Unlike the paramagnetic contribution, the dia-
magnetic susceptibility is inversely proportional to electron effective mass m
since the influence of magnetic field on the orbital motion is directly pro-
portional to electron velocity; for free electrons χdia = −χpara/3. For the
effective mass of d-electrons is large, the diamagnetic contribution may be as
a rule neglected.

Investigations of single crystals of paramagnetic d-metals with the hcp
structure demonstrated a considerable anisotropy of χ (Table 4.2). In Y,
Re, Ru, Os, ∆χ = χ‖ − χ⊥ < 0, a typical difference being tens of percents
(however, for osmium, ∆χ/χ ' 3). For Ti, Zr and Hf, ∆χ > 0 and the
anisotropy is also large. As a rule (with the exception of Os), the sign of ∆χ
is the same for the elements of one row, ∆χ being positive for the atomic
configuration dn with even n and negative for odd n. This may indicate a
partial adequacy of the atomic picture.
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Reliable theory of susceptibility anisotropy is now absent. Anisotropic
contributions may have orbital, spin-orbital and diamagnetic origin. The
estimations of anisotropy of the orbital contibution to χ in the band theory for

hexagonal metals (∆χ ∼
√

8/3− c/a = 1.633− c/a) [276] yielded the values

∆χ/χ ∼ 0.02 which are too small to explain experimental data. Recently
[277] an attempt to calculate Dc for Sc and Y within relativistic calculations
has been performed. Due to relativistic interactions, anisotropic part of spin
susceptibility was obtained with χ‖ > χ⊥, which disagrees with experimental
data. According to [277], the agreement with experimental data should be
restored after allowance for Van Vleck-type contributions. These conclusions
agree on the whole with results of earlier calculations [278,279].

4.3 Itinerant electron ferromagnetism and the

Stoner theory

Magnetic characteristics (values of paramagnetic and ferromagnetic Curie
temperatures and of corresponding magnetic moments) for some ferromag-
netic d- and f-metals and their compounds are presented in the Table 4.3. The
correlation between the values of Curie temperature and the ratio of param-
agnetic and ferromagnetic moments pC/ps is demonstrated by the Rhodes-
Wolfarth curve (Fig.4.7). In the Heisenberg model with spin S, pC = ps = 2S,
so that pC/ps should be equal to unity. This condition is well satisfied for
insulating localized-spin ferromagnets EuO and CrBr3 and f-metals (some
deviations in rare-earth metals may be explained by polarization of conduc-
tion electrons). One can see that for Fe and Ni pC/ps somewhat exceeds 1,
and the values of pC and ps correspond to no values of S, so that magnetic
moment turns out to be non-integer.

In metallic d-magnets, pC/ps is rougly inversely proportional to TC . For
intermetallic compounds with very small saturation moment Ms (ZrZn2,
Sc3In, Ni3Al), which are called weak itinerant ferromagnets, pC/ps is very
large, so that the situation is drastically different from the localized mag-
netism picture. On the contrary, for Heusler alloys T2MnZ, TMnZ we have
pC/ps < 1. The latter case is discussed in Sect.4.4.

One can also see from Table 4.3 that the values of TC and q in some
systems are quite different. (Especially strange is the situation for the com-
pound CeRh2B2; this belongs to anomalous systems where the Kondo effect
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plays apparently an important role, see Chapter 6.) Within the Heisenberg
model, a not great difference only may be explained by next-nearest neigh-
bour exchange interactions or fluctuation effects (Appendix E).

Thus the localized spin model is adequate for some insulator d- and f-
compounds and for f-subsystem in rare earths, but does not describe magnetic
properties of transition d-metals. In particular, the Heisenberg model does
not explain non-integer values of magnetic moments and, in the case of mag-
netic ordering, the difference between values of the moments in the ground
state and at high temperatures (as determined from the Curie constant).

To solve these problems, Stoner [285] put forward the model of itinerant
magnetism based on the exchange interaction among band electrons, which
was treated in the mean field approximation. The Fermi statistics of band
electrons (contrary to atomic statistics of localized electrons in the Heisen-
berg model) leads to a radical change of magnetic properties. The magnetic
ordering results in an increase of kinetic energy, but decreases the poten-
tial (exchange) energy. Thus the conditions for ferromagnetism to occur are
rather restricted.

First calculations by Stoner [285] used free-electron model and did not
take into account correlation effects. The system of equations for the mag-
netization and number of electrons of an itinerant electron system in the
molecular field H = H + 2IM (I is the exchange parameter for itinerant
electrons) has the form

M =
1

2
(n↑ − n↓) , n = n↑ + n↓, nσ =

∫
dEN(E)f(E − 1

2
σH̃) (4.38)

This system is an analogue of the equations (4.13). For free-electron density
of states

N(E) =
3

4
nE1/2/E

3/2
F

we have

n↑,↓ =
3

4

(
T

EF

)3/2

F
[
ζ ± 1

2
(H + 2IM)/T )

]
(4.39)

with

F (y) =
∫ ∞

0

dzz1/2

ez−y + 1

At high temperatures we may expand the Fermi integrals to obtain

M =
H + 2IM

T

F ′(ζ)

F (ζ)
n (4.40)
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Then the susceptibility reads

χ =
χp

1− 2Iχp

(4.41)

with

χp =
n

T

F ′(ζ)

F (ζ)

The condition of ferromagnetism (the Stoner criterion)

2Iχp > 1 (4.42)

corresponds to divergence of the ground state susceptibility, and the Curie
temperature is estimated as

2Iχp(TC) = 1, TC ∼ (2Iχp(0)− 1)1/2EF (4.43)

Now we have to consider the quantity F ′/F . If this would be weakly temper-
ature dependent, the expression (4.41) would yield above TC the Curie-Weiss
law

χ(T ) =
C

T − θ
, C = n

F ′

F
, θ = 2IC (4.44)

However, such a situation takes place only at very high temperatures T > EF

which exceed in fact melting points. On the contrary, provided that the ratio
TC/EF is small, i.e. 2Iχ(0) is close to unity, the susceptibilty above TC has
the usual Pauli (square) temperature dependence. Thus the Stoner theory
does not explain in fact the Curie-Weiss law.

Solving the Stoner equations for the parabolic band (4.39) at T = 0
demonstrates that at

I > 22/3EF /n (4.45)

there exist solutions which describe the saturated ferromagnetic state with
M0 = n/2. At

22/3EF /n > I >
4

3n
EF (4.46)

we have non-saturated ferromagnetism with partially filled spin down sub-
band, and at smaller I magnetic ordering is absent. In the limit of small
ground state magnetization we have the relation

2
√

2

3π

M0

n
∼ TC

EF

(4.47)
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Thus M0 is rougly proportional to the Curie point, in agreement with the
Rhodes-Wohlfarth correaltion (Fig.4.7).

The temperature dependence of magnetization at low T in the saturated
state turns out to be exponential

M =
n

2

[
1− 3

√
π

4

T

EF

exp
(
−EF

T

(
In

EF

− 22/3
))]

(4.48)

At the same time, corrections, which are proportional to T 2, occur in the non-
saturated state owing to electron-hole spin-flip processes (Stoner excitations):

M ' M0

[
1− 1

2

(
T

TC

)2
]

(4.49)

Near the Curie point the magnetization has the square-root behaviour, as
well as in the mean-field approximation in the Heisenberg model:

(M/M0)
2 = 3(1− T/TC)

[
1 +

2

3
(2π)−1/2 (EF /TC)3/2

]
(4.50)

Generally speaking, the results of the solution of the Stoner equations (4.38)
turn out to be rather sensitive to the density of states shape. In particular,
for the “rectangle” band with constant density of states, considered in [286],
only saturated ferromagnetic solutions are possible.

Consider the results of the Stoner theory for an arbitrary bandstructure.
The criterion of ferromagnetism reads

IN(EF ) > 1 (4.51)

Provided that IN(EF )− 1 is small, the saturation magnetization equals [26]

M0 = N(EF )

{
2 [IN(EF )− 1)]

[N ′(EF )/N(EF )]2 − 1
3
N ′′(EF )/N(EF )

}1/2

(4.52)

According to (4.41), the value of TC is

T 2
C =

6

π2

IN(EF )− 1

IN(EF )








[
N ′(EF )

N(EF )

]2

− N ′′(EF )

N(EF )








−1

(4.53)

The susceptibility above TC is presented as

1

χ(T )
=

1

χp(T )
− 1

χp(TC)
=

2I

[IN(EF )− 1]2

(
T 2

T 2
C

− 1

)
(4.54)
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Of course, the expansion of the Fermi integrals (3.37), used at derivation
of (4.52)-(4.54), holds only at TC ¿ EF and for a smooth (near the Fermi
energy) density of states.

Modern numerical calculations with account of correlation effects (see,
e.g., [287]) demonstrate that ferromagnetic ordering in the free electron sys-
tem is possible at unrealistic large values of rs (small densities). Thus the
occurence of ferromagnetism is intimately related to the crystal lattice po-
tential which modifies considerably the shape of electron density of states.
In particular, small widths of d-bands result in a considerable localizaton
of d-electrons and decrease of the kinetic energy, and consequently, favour
magnetic ordering. First-principle band calculations [24] demonstrate that
the values of the Stoner parameter I vary smoothly and not too strongly in
the periodic table. At the same time, the values of N(EF ) vary by orders
of magnitude because of presence of density of states peaks for d-electrons.
As a rule, such peaks are connected with the Van Hove electron spectrum
singularities (Sect.2.4). In particular, for non-magnetic iron (Fig.4.8) the
peak occurs due to merging of the singularities for eg-states along the P −N
line [288]. The situation for Ni is discussed in [289]. For the weak itinerant
ferromagnet ZrZn2 the fulfilment of the Stoner criterion is connected with
the presence of DOS peaks owing to C15 crystal structure [290].

Calculated values of the Stoner parameter turn out to describe satisfac-
torily ferromagnetism of transition metals in the ground state. On the other
hand, the experimental data, which are discussed in Sect.4.2, demonstrate
that the conclusions of the Stoner theory for finite temperatures turn out
to be poor. First, this theory may yield only very weak dependences χ(T ).
At the same time, experimental data on transition metals demonstrate as
a rule more strong dependences. One can see from Figs.4.2-4.6 that in the
temperature interval under consideration χ(T ) changes by tens of percents,
whereas expression (4.41) yields the change of order of (T/EF )2 ¿ 1. In a
number of cases (Fe, Co, Ni, Pt, Pd), the Curie-Weiss law, i.e. the linear
dependence χ(T ) approximately holds. Second, experimental values of TC

for iron group metals (of order of 103 K) are considerably smaller than those
predicted by (4.53).

To treat the latter problem in more detail, we consider the ratio of the
ground state spin splitting ∆0 = 2IM0 to the Curie temperature, δ = ∆0/TC

. In the mean field Stoner theory this quantity turns out to be rather stable.
This situation is reminiscent of the BCS theory of superconductivity where
the ratio of the energy gap to the critical temperature is an universal constant,
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2∆/Tc = 3.52. Deviations from this value, which occur, e.g., in high-Tc

superconductors, demonstrate inapplicability of the simple BCS theory.
At calculating δ for a ferromagnet with a smooth density of states we

may use the expressions (4.52), (4.53) to obtain [291]

δ =
2π√

3

{
[N ′(EF )/N(EF )]2 − 1

3
N ′′(EF )/N(EF )

[N ′(EF )/N(EF )]2 −N ′′(EF )/N(EF )

}1/2

(4.55)

Restricting ourself to the case N ′′ < 0 we get

2π√
3
≤ δ ≤ 2π (4.56)

In the case N ′′ > 0 (where ferromagnetism is a rule unstable since the Fermi
level is near the density of states minimum) δ may become still smaller.
Deviations of δ from the result (4.55) provide a measure of correlation (fluc-
tuation) effects. The corresponding data according to various authors are
presented in Table 4.4. The largest value of ∆ are obtained by Gunnarsson
[292]. The result of [293] is appreciably smaller because of an account of the
magnetization dependence for the exchange-correlation energy.

One can see that the experimental values of δ exceed considerably the-
oretical ones and lie in the interval (4.56) for nickel only. However, the
values of ∆0 and TC themselves do not agree with experiment in the latter
case too. Besides that, angle-resolved photoemission and other spectral data
(Sect.2.5) demonstrate an appreciable short-range order above TC , which is
not described by the mean-field theory.

The difficulties of the Stoner theory require new physical ideas. One of
simple ways to obtain a more strong temperature dependence of paramag-
netic susceptibility and lower the Curie point is changing the dependence
χp(T ). Evidently, presence of a T -linear term in the latter would give (after
allowance for the Stoner enhancement) the Curie-Weiss law for χ(T ). The
dependence χp(T ). for complicated electron densities of states was analyzed
in [294]. The expansion (4.26) is quite correct for smooth functions N(E).
However, the situation may be changed drastically in the case of a sharp
energy dependence, e.g., in the presence of a break owing to the van Hove
singularity.

Consider the simplest model of N(E) with a break

N(E) = Ñ(E) + N ′(E)(E − E0) (4.57)
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N ′(E) =

{
A1, E < E0

A2, E > E0

where Ñ(E) is a smooth function. Then exact integration in (4.25) gives

χp(T ) =
1

2

[
N(ζ) + (A2 − A1)T ln(1 + exp(−| E0 − ζ |

T
) + O

(
T 2

ζ2

)]
(4.58)

The effect of singularity vanishes at |E0 − ζ| À T .
According to the band calculations for palladium, there exists the van

Hove singularity with |E0 − EF | = 300K. To describe correctly the experi-
mental behaviour of χ(T ) in Pd (in particular, the position of the maximum),
it is necessary to shift the singularity to the Fermi level up to |E0−EF | = 100
K.

Presence of DOS peaks at the Fermi level, which is, as discussed above,
typical for both strong and weak itinerant ferromagnets, may influence ap-
preciably the χ(T ) behaviour and the TC value even in the Stoner theory of
ferromagnetism. In particular, the triangle peak model was used to describe
properties of weak itinerant ferromagnets [280]. Under condition of the linear
dependence χ−1(T ) owing to a DOS singularity the Curie temperature of a
ferromagnetic metal is estimated as

TC ∼ (2Iχp(0)− 1)EF (4.59)

and may be considerably smaller than (4.53).

4.4 Spin-fluctuation theories

A more radical way to improve the results of the Stoner theory for tempera-
ture dependences of magnetic properties is going out beyond the one-electron
mean-field theory. Formally, the Stoner model corresponds to the interaction
Hamiltonian of an infinite range,

Hint = In↑n↓ = I(
n2

4
− 〈Sz〉2), nσ =

∑

k

nkσ (4.60)

so that the mean-field approximation is exact. A more rich physics is de-
scribed by models which include electron correlations. The simplest among
them is the Hubbard model (G.1) with the on-site Coulomb repulsion U .
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The Stoner approximation for the electron spectrum in this model corre-
sponds to the simplest Hartree-Fock decoupling and may be justified only
in the small-U limit which is inconsistent with the ferromagnetism criterion.
Therefore correlation (spin-fluctuation) effects, generally speaking, turn out
to be important.

As well as for Heisenberg magnets, low-temperature thermodynamics of
itinerant magnets is determined by spin-wave contributions (see, e.g., [295]).
Spin-wave theory of metallic ferro- and antiferromagnets is considered in
Appendix G. The simple spin-wave treatment enables one also to reproduce
some of the results of spin-fluctuation theories.

Spin-fluctuation theories, which describe thermodynamics of itinerant
magnets in a wide temperature region, were developed during last twenty
years [26, 296-302]. They turned out to be especially successful for weak
itinerant ferromagnets which are characterized by extremely small values of
saturation magnetic moment M0 and large ratios pC/ps (Table 4.3, Fig.4.7).
These substances correspond to a near vicinity of the Stoner instability and
possess strong spin fluctuations. However, unlike systems with local mag-
netic moments, the fluctuations are localized not in real, but in reciprocal
space (near the wavevector q = 0).

Presence of the small parameter 2Iχ−1 yields a possibility of an analytical
treatment of weak itinerant ferromagnetism. The simple RPA expression
for magnetic susceptibilty (G.12), which follows from the spin-wave theory,
turns out to be thermodynamically inconsistent. In the theory of Moriya and
Kawabata [296] the expression for paramagnetic susceptibility was taken in
the form

χ(T ) =
χp(T )

1− 2Iχp(T ) + λ(T )
(4.61)

where λ(T ) is proportional to the squared amplitude of spin fluctuations.
Calculation of λ in a self-consistent way by using the expression for the free
energy yields in the immediate vicinity of TC

λ(T ) ∼ (T/EF )4/3

Thus λ dominates over 2Iχ in the temperature dependence of the inverse
susceptibility χ−1(T ). With increasing T the dependence χ−1(T ) becomes
practically linear. It should be noted that the Curie-Weiss behaviour in the
spin-fluctuation approach has a quite different origin in comparison with the
Heisenberg model. The Curie-Weiss law holds approximately not only for
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weakly ferromagnetic, but also for almost ferromagnetic metals where

0 < 1− 2Iχp(0) ¿ 1

e.g., for Pd, HfZr2. The Curie constant is determined by the electron struc-
ture near the Fermi level only and, unlike the Heisenberg magnets, does not
depend on the saturation magnetization.

At 0 < 2Iχp(0)− 1 ¿ 1 fluctuations result in a considerable decrease of
the Curie temperature in comparison with the Stoner theory:

TC ∼ [2Iχp(0)− 1]3/4 EF (4.62)

Near TC one has

M(T ) ∼
(
T

4/3
C − T 4/3

)1/2
(4.63)

Corresponding results for a weak itinerant antiferromagnet have the form

TN ∼ [2IχQ − 1]2/3 , MQ(T ) ∼ (T
3/2
N − T 3/2)1/2 (4.64)

Here χQ and MQ are the non-uniform (staggered) susceptibility of the non-
interacting system and the sublattice magnetization, which correspond to
the wavevector of the antiferromagnetic structure Q, 2IχQ − 1 ¿ 1. The
electronic specific heat of weakly and almost ferromagnetic metals is sub-
stantially enhanced by spin fluctuations:

C(T ) ∼ T ln(min[|1− IN(EF )|, EF

T
]) (4.65)

(4.65) (see also Appendix G). In the case of a weak antiferromagnet, the
logarithmic factor is absent, and one has for the spin-fluctuation contribtion
[26]

δC(T ) ∼ |1− 2Iχ
Q
|1/2T (4.66)

Thus main difficulties of the Stoner theory are eliminated for weak itin-
erant magnets. A number of attempts to generalize the spin-fluctuation
approach on strong itinerant ferromagnets (e.g., transition metals) were per-
formed [26,297,300-302]. In particular, an interpolation theory within the
path integral method is considered in [26]. An important shortcoming of
such theories is that spin-fluctuation effects are taken into account for finite-
temperature effects only, but the ground state is described by the Stoner
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theory. This approach is inapplicable in the case of strong correlations which
is discussed in Sect.4.6.

Generally speaking, equations of spin-fluctuation theories are rather com-
plicated and require numerical calculations. By these reasons, simple ap-
proaches, which provide analytical expressions, are of interest. A version of
such approach may be based on introducing the effective temperature Teff

which is related to the effect of smearing the electron densty of states by spin
fluctuations [303]. This quantity may be substituted into Fermi distribution
functions at calculating thermodynamical averages. Consider the local ap-
proximation for spin fluctuations [300-303]. For a fivefold degenerate d-band
the average square of fluctuation amplitude in the paramagnetic region is
estimated as

v2 =
3UT

10(1− 2Uχ0)
(4.67)

where U is the on-site Hubbard repulsion,

χ0 = − 1

2π

∫
dEf(E) Im [G(E)]2 (4.68)

is the local susceptibility, the quantity

G(E) =
∫

dE ′ N(E ′)
E − E ′ − Σ(E)

(4.69)

being the site-digonal Green’s function, Σ(E) the self-energy. Note that,
unlike the Stoner criterion 2Uχp > 1, the condition 2Uχ0 > 1 which cor-
responds to the formation of local magnetic moments (or to occurrence of
the Hubbard splitting, which means a reconstruction of the ground state) is
usually not satisfied in such approaches.

The effective smeared density of states is given by

Ñ(E) = − 1

π

∫ dE ′N(E ′) Im Σ(E)

[E − E ′ − Re(E)]2 + [Im Σ(E)]2
(4.70)

To lowest order in fluctuations

Im Σ(E) = −πN(E)v2 (4.71)

so that the fluctuations result in the Lorentz smearing. At calculating the
integrals which include the Fermi function, this smearing may be taking into
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account by the effective smearing the Fermi distribution

∂f(E)

∂E
= − 1

π

∫
dE ′∂f(E ′)

∂E ′
Im Σ(E ′)

[E ′ − E − Re Σ(E ′)]2 + [Im Σ(E ′)]2
(4.72)

Using near the Fermi energy the linear approximation

Re Σ(E) = Σ′E, f(E) ' 1

2
− E

4T
(4.73)

we obtain the simple analytical result

∂f̃(E)

∂E
= −κ−1

4T
= − 1

4Teff

, (4.74)

κ =

[
2

π
(1− Σ′)−1 tan−1 2T (1− Σ′)

πv2N(EF )

]−1

The effective temperature T = κT defined by (4.74) may be considerably
larger than T . Then the Curie temperature T = TS/kB is appreciably renor-
malized in comparison with the Stoner value TS . The effect of lowering
the Curie temperature becomes more appreciable in the presence of DOS
singularities.

Another approach based on introducing a spin-fluctuation temperature
was developed by Mohn and Wohlfarth [304]. Following to [305], they used
the Ginzburg-Landau expansion for the inverse susceptibility

H

M
= A + BM2 + B(3〈m2

‖〉+ 2〈m2
⊥〉) (4.75)

where, as well as in the Stoner theory,

A = − 1

2χ(0)
(1− T 2

T 2
s

) , B =
1

2χ(0)M2
0

(4.76)

and χ(0) is the enhanced susceptibility given by

χ(0)−1 = N−1
↑ (EF ) + N−1

↓ (EF )− I

2
(4.77)

The equilibrium magnetic moment is determined as

M2
0 = |A/B|T=0
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and are the mean suare values of the longitudinal and transverse local fluctu-
ating moments (the coefficients in (4.75) are determined by the condition of
vanishing of the scalar products (Mm) in the free energy). A renormalization
of the coefficients A and B owing to the last term in (4.75) was considered
by expanding in powers of magnetization

B
(
3〈m2

‖〉+ 2〈m2
⊥〉

)
= a1 − a2M

2 + a3M
4 (4.78)

The expression for a1 may be expessed in terms of the spin-fluctuation sus-
ceptibility

a1(T ) = (1− t2C)χ−1
sf (T ) , tC ≡ TC

TS

(4.79)

where TC is the true value of the Curie temperature, renomalized by spin
fluctuations. At T = TC we have

χsf (TC) =
〈m2〉
3TC

, (4.80)

〈m2〉 =
1

3

(
3〈m2

‖〉+ 2〈m2
⊥〉

)

The amplitude of the fluctuating moment at TC is given by

〈m2〉TC
=

3

5
M2

0 (1− t2C) (4.81)

so that
a1(TC) = 5TC/M2

0 (4.82)

The equation for TC , A′ = A + a1 = 0, yields

T 2
C

T 2
S

+
TC

Tsf

− 1 = 0 (4.83)

where
Tsf = M2

0 /10χ(0) (4.84)

is a characteristic temperature describing the influence of fluctuations.
The expression (4.83) differs somewhat from the corresponding result of

the more rigorous theory for weak itinerant ferromagnets by Lonzarich and
Taillefer [305]

(
TC

TS

)2

+

(
TC

Tsf

)4/3

− 1 = 0 (4.85)
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where the T 4/3-dependence is due to influence of a finite cutoff wavevector.
The paramagnetic susceptibility within the approach [304] is given by

2χ(0)/χ(T ) = t2C(T/TC)2 + (1− t2C)(T/TC)− 1 (4.86)

The curves χ(T ) interpolate between a Curie-Weiss law (spin fluctuations
predominate, tC = 0) and the Stoner square law (single-particle excitations
play the main role). The Curie constant is determined entirely by the ferro-
magnetic susceptibility χ(0).

Determining TS and χ(0) from band calculations, Mohn and Wohlfarth
calculated the values of Curie temperature for iron group metals (Table 4.5)
in a good agreement with experiment (however, a considerable uncertainty
of the parameters used should be noted). Calculations for some Y-Co and
Y-Fe compounds and borides were also performed. The results turn out to
be close to the universal curve which shows the dependence of TC/Tsf as a
function of TS/Tsf (Fig.4.9).

The results enable one to estimate the role of fluctuation effects in various
metals. The value of tC may be a quantitative measure of these effects:
according to [304], we have for tC > 0.5 the Stoner systems and for tC < 0.5
the fluctuation systems. Large values of M0 suppress fluctuations owing
to strong molecular field, and the high-field susceptiblity χ(0) works in the
opposite direction by lowering T and favouring magnetic moment fluctuations
at low temperatures. Although the value of M in iron exceeds by 15 times that
in nickel, the value of χ(0) in Ni is smaller since it is a “stronger” ferromagnet
which is close to the saturation limit. Therefore fluctuation effects in both
metals turn out to be comparable. At the same time, the large value of M0 in
cobalt is sufficient to suppress fluctuation effects, so that T is even larger than
TS , and TC is determined mainly by single-particle excitations. It should be
noted that these conclusions differ from the resuts of [291], according to which
fluctuations play an important role in Fe and Co, whereas Ni is satisfactorily
described by the Stoner theory with account of DOS singlularities.

4.5 Electronic structure and properties of half-

metallic ferromagnets

Opposite to weak itinerant ferromagnets is the limiting case of “strong” fer-
romagnets with a large spin splitting. In the old Stoner theory (Sect.4.3), a
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strongly ferromagnetic solution, where the spin splitting exceeds the Fermi
energy and one spin subband is empty or completely filled, was considered.
It was believed that such a situation (for the hole states) corresponds to fer-
romagnetic nickel. However, modern band calculations [24] within the LSDF
approach disproved this assumption (the spin up density of states at the
Fermi level turned out to be small but finite, Fig.2.25).

At the same time, band calculations did lead to discovery of real magnets,
which are similar to strong Stoner ferromagnets. Calculation by de Groot et
al of the band structure for the Heusler alloy NiMnSb [306], PtMnSb [306-308]
with the C1b (MgAgAs) structure demonstrated that the Fermi level for one of
spin projections lies in the energy gap. Since these systems behave for one of
spin projections as insulators, they were called “half-metallic ferromagnets”
(HMF). Later a similar picture was obtained for CoMnSb [309], ferrimagnet
FeMnSb [310], antiferromagnet CrMnSb [308]. Band structure calculations
for a large group of ferro- and antiferromagnetic Heusler alloys from another
series T2MnZ (T = Co, Ni, Cu, Pd) with the L21 structure demonstrated
that a state, which is close to HMF (N(E) is practically zero), takes place
in systems Co2MnZ with Z = Al, Sn [311] and Z = Ga, Si, Ge [312]. (In
the L21 structure, all the four sublattices in the fcc lattice are filled by the
atoms T, Mn and Z, whereas in the the C1b structure some of the positions
are empty, so that the symmetry lowers to tetraedric one). Besides that, a
half-metallic state was found in band calculations of CrO2 (rutile structure)
[313,314], UNiSn (C1b structure) [315,316], Fe3O4 [317].

The situation of strongly different spin up and spin down states, which is
realized in HMF, is of interest for the general theory of itinerant magnetism
[318]. The scheme of the “half-metallic” state formation in Heusler alloys
may be described as follows [306,308,311,316]. At neglecting hybridization of
T- and Z-atom states, d-band of manganese for above structures is character-
ized by a wide energy gap between bonding and antibonding states. Due to
strong intraatomic (Hund) exchange for manganese ions, in the ferromagnetic
state spin up and down subbands are moved apart considerably. One of spin
subbands comes closely to ligand p-band, and therefore the corresponding
gap is partially or completely smeared by p-d hybridization. Other subband
retains the gap, and the Fermi level may find itself at the latter, The energy
gap in other subband retains and may coincide under certain conditions with
the Fermi level, which just yields the HMF state. For the C1b structure we
have the true gap, and for the L21 structure a deep pseudogap. This is con-
nected with a considerable change in the character of the p-d hybridization
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(especially between p and t2g states) in the absence of inversion centre, as it
takes place for the C1b structure. Thus the latter structure is more favorable
for the HMF state.

According to [324], similar factors are responsible for the gap in the par-
tial density of states for one of manganese position (Mn(I)) in the compound
Mn4N, the structure of which is obtained from the T2MnZ structure by re-
moving some atoms. A qualitatively similar mechanism, which is based on
the strong Hund exchange and hybridization between d-states of chromium
with p-states of oxygen, is considered in [313] for CrO2. As discussed in [311],
stability of the ferromagnetic state itself is a consequence of difference in the
p-d hybridization for states with opposite spin projections. To describe such
a situation, Kuebler et al [311] have introduced the term “covalent mag-
netism” and stressed the distinction from the picture of the spectrum in the
Stoner model where the densities of states with oposite spin projections differ
by the constant spin splitting. The results of band structure calculations are
shown in Figs.4.10-4.13.

The interest in half-metallic ferromagnets (HMF) was connected to the
first place with their unique magnetooptical properties [307,308], which are
intimately related to the electronic structure near the Fermi level (absence
of states with one spin projection), which results in strong asymmetry of
optical transitions (see the discussion in Sect. 5.7.3). In particular, large
magnetooptical Kerr effect was observed in PtMnSb (for other compounds of
this series the effect is smaller because of smallness of relativistic interactions
for light atoms).

Besides that, the HMF are important in connection with the problem of
obtaining the large saturation magnetic momentum, since, evidently, their
electron spectrum is favourable for maximum spin polarization (further in-
crease of the spin splitting in the half-metallic state does not result in an
increase of magnetic moment). In fact, the electronic structure, which is
reminiscent of the half-metallic one (a deep minimum of DOS at EF for σ =
↓) was found in the system of alloys Fe-Co [319] and the systems R2Fe17,
R2Fe14B with the record value of M0 [320,321]. Such a minimum is typical
for systems with well-defined local magnetic moments and takes place also
in pure iron (Fig.2.24). Well-pronounced minima for the states with σ =↓
occur in the compounds RCo5 (R = Y, Sm, Gd) [322]. A comparison of mag-
netic properties of a large series of alloys YnCom, YnFem with their electronic
structure, calculated by the recursion method, was performed in [323]; the
state, close to HMF, was obtained for YCo5, YCo7, Y2Co17. The small par-
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tial values of N↑(EF ) were also found in Mn4N, Fe4N for the crystallographic
Mn(I) position [324-326].

Recently the interest in the half-metallic ferromagnetism has been greatly
increased in connection with the discovery of giant magnetoresistivity in fer-
romagnetic manganites [688].

Magnetic properties of some half-metallic Heusler alloys are presented in
the Table 4.3. These compounds possess large ground state moment and
high Curie temperature. Strong ferromagnetism of Heusler alloys is mainly
due to local moments of well-separated Mn atoms. An interesting feature
is that the Rhodes-Wolfarth ratio pC/ps exceeds considerably unity. More-
over, the effective moment in the paramagnetic state, determined from the
paramagnetic susceptibility, decreases appreciably with temperature.

This behaviour may be explained by that the change of electronic struc-
ture in half-metallic magnets at destruction of the magnetic ordering is espe-
cially strong - the gap in the electron spectrum vanishes. The temperature
dependence of magnetic moment in the paramagnetic state may be due to
short-range magnetic order (local densities of states are similar to those in the
ferromagnetic state). From the many-electron point of view, the decrease of
the local moment with increasing temperature is connected with the absence
of corrections to ground state magnetization of the type (G.49). However,
such corrections do occur at high temperatures.

From the theoretical point of view, HMF are also characterized, due to
quasimomentum conservation law, by absence of decay of a spin wave into
a pair electron-hole with opposite spins (Stoner excitations). Therefore spin
waves are well defined in the whole Brillouin zone, similar to Heisenberg
ferromagnets and degenerate ferromagnetic semiconductors. Thus effects of
electron-magnon interactions (spin-polaron effects) are not masked, unlike
usual itinerant ferromagnets, by the Stoner excitations and may be studied
in a pure form. At present, experimental data on neutron scattering in the
Heusler alloys Pd2MnSn, Ni2MnSn [327] and Cu2MnAl [328] are available.
Spin waves turn out to be well defined over the whole Brillouin zone, which
makes up, according to [26], a criterion of validity of localized moment model.

From the point of view of band theory, the smallness of magnon damping
may be explained by that the partial Mn-atom spin-up density of states
is small since the corresponding subband is almost empty [311]. One may
expect that the damping will be still smaller provided that the Fermi level for
one of spin projections lies in the energy gap. Thus a purposeful investigation
of spin-wave damping at comparing results for various Heusler alloys from
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the T2MnZ and TMnZ series is of great interest for verification of the theory.

As discussed above, the p-d hybridization plays an important role in
the Heusler alloys, so that they should be described within a generalized
Anderson-lattice model (Sect.6.7). However, this model is reduced in limiting
cases to the Hubbard or s-d exchange models. Within the latter models, HMF
are described as saturated ferromagnets where the spin splitting ∆ exceeds
the Fermi energy.

Consider the picture of density of states of a HMF within the s-d exchange
model with account of correlation effects [329]. Writing down the expansion
of the Dyson equation (G.30) we obtain

Nσ(E) = − 1

π
Im

∑

k

Gkσ(E) =
∑

k

δ(E − tkσ)

−∑

k

δ′(E − tkσ) Re Σkσ(E)− 1

π

∑

k

Im Σkσ(E)

(E − tkσ)2
(4.87)

The second term in the right-hand side of (4.87) describes renormalization
of quasiparticle energies. The third term, which arises from the branch cut
of the self-energy Σkσ(E), describes the incoherent (non-quasiparticle) con-
tribution owing to scattering by magnons. One can see that this does not
vanish in the energy region, corresponding to the “alien” spin subband with
the opposite projection −σ. The picture of density of states for the empty
conduction band is shown in Fig.4.14. The T 3/2-dependence of the magnon
contribution to the residue (G.53), which follows from (G.34), i.e. of the
effective electron mass in the lower spin subband, and an increase with tem-
perature of the incoherent tail from the upper spin subband result in a strong
temperature dependence of partial densities of states N(E), the corrections
being of opposite sign. The corresponding behaviour of conduction electron
spin polarization P (T ) ' 〈Sz〉 (see (G.39)) is confirmed by experimental
data on field emission from ferromagnetic semiconductors [330] and trans-
port properties of half-metallic Heusler alloys [331].

The picture of N(E) near the Fermi level in HMF (or degenerate semicon-
ductor) turns out to be also non-trivial. If we neglected magnon frequencies
in the denominators of (G.34), the partial density of incoherent states should
occur by a jump above or below the Fermi energy for I > 0 and I < 0 respec-
tively owing to Fermi distribution functions. An account of finite magnon
frequencies ωq = Dq2 (D is the spin stiffness constant) leads to smearing
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of these singularities on the energy interval ωmax ¿ EF (Figs.4.15, 4.16),
N(EF ) being equal to zero. For |E − EF | ¿ ωmax we obtain [329,332]

N−α(E)

Nα(E)
=

1

2S

∣∣∣∣
E − EF

ωmax

∣∣∣∣
3/2

θ(α(E − EF )), α = sign I (4.88)

With increasing |E − EF |, N−α/Nα tends to a constant value which is of
order of I2 within perturbation theory. In the strong coupling limit where
|I| → ∞ we have

N−α(E)

Nα(E)
=

1

2S
θ(α(E − EF )), |E − EF | À ωmax (4.89)

Similar calculations for the Hubbard ferromagnet with strong correlations
and electron concentration n > 1 yield [333]

N↑(E) =
∑

kσ

f(tk+q)δ(E − tk+q + ωq)

=

{
N↓(E) , EF − E À ωmax

0 , E > EF
(4.90)

(cf. (J.22)). This result has a simple physical meaning. Since the current
carriers are spinless doubles (doubly occupied sites), the electrons with spins
up and down may be picked up with an equal probability from the states
below the Fermi level of doubles. On the other hand, according to the Pauli
principle, only the spin down electrons may be added in the singly occupied
states in the saturated ferromagnet.

Thus the spin polarization P (E) in strong itinerant ferromagnets changes
sharply near EF . In the case of an antiferromagnetic s-d exchange (or in a
Hubbard ferromagnet) there exist occupied non-quasiparticle states which
may result in electron depolarization in photoemission experiments. At the
same time, empty non-quasiparticle states may be observed by inverse pho-
toemission. Since emission experiments have not too high energy resolution,
appreciable deviatons from 100% spin polarization should be observed. Data
on photemission in the HMF NiMnSb [334] have yielded the polarization
about 50%.

The incoherent contribution to the density of states should also result
in peculiar contributions to thermodynamic and transport properties. The
non-quasiparticle terms in electronic specific heat are discussed in Appendix
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G (see (G.65)-(G.67)). Since the impurity resistivity is determined by the
dependence N(E) near the Fermi level, it contains also non-quasiparticle
contributions (Sect.5.3). Asymmetry of N(E) should lead to an appreciable
contribution to thermoelectric power.

Peculiarities of electronic structure of HMF should be clearly observed at
investigation of nuclear magnetic relaxation. The T -linear Korringa contri-
bution to the longitudinal nuclear relaxation rate, which dominates as a rule
for ferromagnetic metals, is determined by the transverse spin susceptibity
and given by the Moriya formula [335,336]

1/T1 = − A2T

2πωn

Im
∑
q

〈〈S+
q |S−−q〉〉ω

= πA2TFN↑(EF )N↓(EF ) (4.91)

where ωn is the MNR frequency, γn is the nuclear hyromagnetic ratio, A is
the hyperfine interaction constant, F is the exchange enhancement factor. (A
detailed discussion and comparison of different contributions to 1/T1, includ-
ing orbital ones, is given in paper [335].) At the same time, the transverse
relaxation rate contains a contribution from the longitudinal susceptibility:

1/T2 = 1/2T1 +
π

2
A′2TF ′[N2

↑ (EF ) + N2
↓ (EF )] (4.92)

(generally speaking, A′ and F ′ differ from A and F ). Neglecting for simplicity
the exchange splitting and spin dependence of hyperfine interaction matrix
elements, we derive

1/T2

1/T1

=
[N2

↑ (EF ) + N2
↓ (EF )]

4N↑(EF )N↓(EF )
> 1 (4.93)

One can see that 1/T1 = 1/T2 in paramagnetic metals, but the ratio (4.93)
should considerably differ from unity in itinerant ferromagnets with an ap-
preciable dependence N(E). In fact, 1/T2 exceeds by several times 1/T1 in
iron and nickel [336].

In HMF the contribution (4.91) vanishes, which is connected with absence
of processes of magnon decay into Stoner excitations, whereas 1/T2, which
is determined by electron transitions without spin flips, should have usual
behaviour. To obtain the temperature dependence of 1/T1 in HMF one has to
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consider the contribution of two-magnon processes. Using (G.24) we obtain
[337,338]

1/T
(2)
1 =

A2TS

πωn

∑
q

γ(2)
q (ωn)

ω2
q

=
12π1/2

S

(
v0

16π2

)2

ζ(
3

2
)
T 5/2

D7/2
(k2

F↑ + k2
F↓) (4.94)

Qualitatively, the dependence T 5/2 may be interpreted as the Korringa law
with the value N↓(EF ) being replaced with the “thermal” value of density
of non-quasiparticle states, which is proportional to T 3/2. Experimentally,
strong deviations from the linear Korringa law were observed at measuring
1/T1 in the HMF NiMnSb [339]. At not too low temperatures T > 250K
(TC = 750K) the dependence of the form

1/T1(T ) = aT + bT 3.8

was obtained.
In the above-discussed ferrimagnet Mn4N with TC = 750K the nuclear

magnetic relaxation was investigated for the Mn(I) position (a narrow NMR
line was obtained only for this position) [340]. At low temperatures T < 77K
the behaviour 1/T1(T ) is linear, and at higher temperatures a square law
holds.

4.6 Magnetism of highly-correlated d-systems

The most difficult case for standard approaches in the itinerant electron mag-
netism theory (band calculations, spin-fluctuation theories) is that of systems
where strong interelectron correlations lead to a radical reconstruction of the
electron spectrum - formation of the Hubbard’s subbands. Examples of such
systems are oxides and sulphides of transition metals with a large energy
gap, e.g. MeO (Me = Ni, Co, Mn), NiS2 [25], basis systems for copper-oxide
high-Tc superconductors La2CuO4 and YBa2Cu3O6. At low temperatures
these compounds are antiferromagnetic, so that the gap may be described
as the Slater gap owing to AFM ordering. However, the gap retains in the
paramagnetic region and has therefore a Mott-Hubbard nature.

Standard band calculations within the density functional method [341]
did not yield satisfactory explanation of insulating properties of the MeO
compounds. The reasonable value of gap in MeO and CuO2-planes may be
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obtained by using special calculation methods which take into account in a
sense the Hubbard correlations (e.g., the self-interaction correction (SIC) ap-
proach [77,342] which considers the attraction of an electron to the field of the
hole formed, Sect.2.3). First-principle calculations [343] yield the reasonable
values of the Hubbard parameter in TM oxides, U = 6÷ 10eV.

The Hubbard splitting is apparently present also in some metallic ferro-
magnets, e.g., the solid solution Fe1−xCoxS2 which has the pyrite structure,
CrO2 [26]. For the latter compound, corresponding direct optical data are
present [344]. The spontaneous spin splitting above the Curie point, which
is observed in iron group metals, may be also interpreted as related to the
Hubbard subbands.

To treat the problem of ferromagnetic ordering in narrow bands from
experimental point of view, we discuss the system Fe1−xCoxS2. According
to [345], its electronic structure is rather simple: all the electrons, respon-
sible both for conductivity and magnetism, belong to the same narrow eg-
band. CoS2 is a ferromagnetic metal with strong correlations, and FeS2 is
a diamagnetic insulator. Recent band calculations of these compounds [346]
demonstrate that CoS2 has an almost half-metallic ferromagnet structure.

Experimental investigations of magnetic properties of Fe1−xCoxS2 have
been performed in [347]. The most salient feature is the onset of ferromag-
netism at surprisingly small electron concentrations n = x < 0.05. The mag-
netic moment equals to 1µB in the wide concentration region 0.15 < n < 0.95,
and magnetic state is non-saturated for n < 0.15. However, unlike usual weak
itinerant ferromagnets, there is no indications of an exchange enhancement
of the Pauli susceptibility above Tc, and the Curie-Weiss law works well at
arbitrary electron concentrations, the Curie constant being proportional to
n. Such a behaviour cannot be explained within one-electron Stoner-like
approaches, e.g. the T -matrix approximation [348], and demonstrates an
important role of local magnetic moments (LMM). The inconsistency of one-
electron approach for highly-correlated systems is demonstrated in Appendix
H.

The problem of the description of LMM is a crucial point of the strong
itinerant ferromagnetism theory. In the spin-fluctuation theories [26], LMM
are introduced essentially ad hoc (e.g., the static approximation in the path
integral, which corresponds to replacement of the translation-invariant sys-
tem by the disordered one with random magnetic fields). On the other hand,
the many-electron (atomic) picture describes LMM naturally. The role of
strong electron correlations in the formation of LMM can be qualitatively
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demonstrated in the following way. If the Hubbard intrasite repulsion U is
large enough, the electron spectrum contains the Hubbard subbands of singly
and doubly occupied states. At n < 1, the number of doubles is small and
tends to zero at U → ∞. Then the singly occupied states make up LMM,
and the empty site (holes) are the current carriers.

The simplest way to describe the formation of Hubbard subbands is cal-
culation of electron Green’s function with the use of Hubbard atomic repre-
sentation (Appendix H). The formation of the Hubbard subbands contradicts
the Fermi-liquid picture, in particular the Luttinger theorem about the con-
servation of the volume under the Fermi surface: each from two Hubbard
subbands, originating from a free-electron band, contains one electron state
per spin. Thus the energy spectrum of itinerant electron systems with LMM,
contrary to weak itinerant magnets, differs essentially from that of a normal
Fermi liquid. In the simplest Hubbard-I approximation, magnetic ordering
results in narrowing of spin subbands rather than in a constant spin split-
ting (see (H.10)). Therefore the condition of ferromagnetism in such systems
should not coincide with the Stoner criterion which corresponds to instability
of the non-magnetic Fermi liquid with respect to a small spin polarization.
Below we discuss the problem of ferromagnetism in strongly correlated Hub-
bard systems.

Rigorous investigation of ferromagnetism in the Hubbard model with
U → ∞ was performed by Nagaoka [349]. He proved that the ground state
for simple cubic and bcc lattices in the nearest-neighbour approximation with
electron number Ne = N +1 (N is the number of lattice sites) possesses max-
imum total spin, i.e. is saturated ferromagnetic. The same statement holds
for the fcc and hcp lattices with the transfer integral t < 0, Ne = N + 1,
or t > 0, Ne = N − 1. (For other sign combinations, the ground state is
more complicated because of divergence of the density of states at the band
edge.) The physical sense of the Nagaoka theorem is rather simple. For
Ne = N,U = ∞ each sites is singly occupied and the motion of electrons is
impossible, so that the energy of the system does not depend on spin config-
uration. At introducing of an excess electron or hole, its kinetic energy turns
out to be minimum for the uniform ferromagnetic spin alignment since this
does not prevent their motion. It should be, however, noted, that in fact the
proof of the Nagaoka theorem uses non-trivial topological consideration. In
particular, it does not work in the one-dimensional case where the dependence
of the kinetic energy on spin configurations is absent because of absence of
closed trajectories [349]. Evidently, the picture of saturated ferromagnetism
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is preserved at small finite concentrations of current carriers.
In the case of half-filled band (Ne = N), |t| ¿ U the ground state is an-

tiferromagnetic because of the Anderson’s kinetic exchange interaction (Ap-
pendix D). This interactions is due to the gain in the kinetic energy at virtual
transitions of an electron to a neighbour site, which are possible provided that
the electron at this site has an opposite spin directions. In systems with finite
U and Ne 6= N , a competition beween ferro- and antiferromagnetic order-
ing occurs (it should be noted that, as discussed in Appendix D, the kinetic
antiferromagnetic interaction emerges even in the formal limit U = ∞ due
to non-orthogonality corrections, see also Ref.[727]). As follows from the
calculation of the spin-wave energy [349], ferromagnetism preserves provided
that

|t|/U < αn (4.95)

where the constant α ∼ 1 depends on the lattice structure. At the same
time, antiferromagnetism is stable at Ne = N only. It was supposed in
early papers that a canted magnetic structure is formed in the intermediate
region [350]. However, numerical calculations [351] demonstrated that in
fact a phase separation takes place into insulating antiferromagnetic and
metallic ferromagnetic regions, all the current carriers being localized in the
latter ones. Such a phenomenon seems to be observed in some highly doped
magnetic semiconductors [352].

The problem of electron and magnon spectrum of a Hubbard ferromagnet
with nearly half-filled band may be considered rigorously in the spin-wave
temperature region (Appendix J). To obtain a simple interpolation scheme
for arbitrary current carrier concentrations and temperatures, we use the
simplest Hamiltonian of the Hubbard model with U → ∞, n < 1 in the
many-electron representation with inclusion of the external magnetic field
H:

H =
∑

kσ

εkX−k(0σ)Xk(σ0)− H

2

∑

i

[Xi(++)−Xi(−−)] (4.96)

with εk = −tk. This Hamiltonian describes the motion of current carriers
(holes) on the background of local magnetic moments - singly occupied sites.
Following to [353], we consider the dynamic magnetic susceptibility (H.14).
Its calculation (Appendix H) yields

Gq(ω) =

(
2〈Sz〉+

∑

k

(εk−q − εk)(nk↑ − nk−q↓)
ω −H − Ek↑ + Ek−q↓

)
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×
(
ω −H −∑

k

(εk−q − εk)(εknk↑ − εk−qnk−q↓)
ω −H − Ek↑ + Ek−q↓

)−1

(4.97)

where the Hubbard-I approximation energies Ekσ and the occupation num-
bers nkσ are given by (H.12).

At calculating the static magnetic susceptibility χ, one has to treat care-
fully the limits H → 0, ω → 0, q → 0 because of non-ergodicity of the
ferromagnetic ground state. Indeed, simple putting H = ω = q = 0, which
was made in some papers [354-356], yielded only the Pauli susceptibility
rather than the Curie-Weiss behavior, which is physically unreasonable. To
avoid the loss of the Curie-Weiss contribution from local moments, we apply
the approach, employed by Tyablikov [357] for the Heisenberg model (see
Appendix E). Using the sum rules

nσ =
1− c

2
+ σ〈Sz〉 =

∑
q

〈X−q(σ,−σ)Xq(−σ, σ)〉

and the spectral representation (E.18) we derive the equation for magnetiza-
tion

〈Sz〉 =
1− c

2
+

1

π

∫ ∞

−∞
dωNB(ω)

∑
q

Gq(ω) (4.98)

For small concentration of holes c ¿ 1 one obtains, in agreement with the
consideration by Nagaoka [349], the saturated ferromagnetism with

〈Sz〉 =
1− c

2
−∑

p

NB(ωp) (4.99)

ωp =
∑

k

(εk−p − εk)f(εk)

The magnon spectrum in (4.99) coincides with the exact result to lowest
order in the inverse nearest-neighbour number 1/z (Appendix J).

The equation (4.98) can be simplified under the condition 〈Sz〉 ¿ 1,
which holds both in the paramagnetic region (〈Sz〉 = χH, H → 0) and for
n ¿ 1 at arbitrary temperatures. Expansion of denominator and numerator
of (4.9) in 〈Sz〉 and H has the form

Gq(ω) =
ωAqω + 〈Sz〉Bqω + HCqω

ω − 〈Sz〉Dqω −HPqω

(4.100)
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Here the quantity

Aqω =
∑

k

fk−q − fk

ω + Ek−q − Ek

(
1 +

2

1 + c

∑

k

Ek−qfk−q − Ekfk

ω + Ek−q − Ek

)−1

(4.101)

determines the value of the effective magnetic moment, and

Dq0 = −∑

k

8Ek

(1 + c)2

(
Ek

∂fk

∂Ek

− Ek+q
fk−q − fk

ω + Ek−q − Ek

)

×
(

1 +
2

1 + c

∑

k

Ek−qfk−q − Ekfk

ω + Ek−q − Ek

)−1

≡ Jeff
0 − Jeff

q (4.102)

describes the effective exchange interaction owing to motion of current car-
riers. Roughly speaking, this differs from the RKKY interaction by the
replacement of the s-d(f) exchange parameter to the transfer integral. Such
a replacement is characteristic for the narrow-band limit.

The ground state magnetization for small electron concentration n ¿ 1
is given by

S0 =
n

2
=

1

π

∫ ∞

0
dω Im

∑
q

Aqω (4.103)

The non-zero value of S0 occurs because of the second term in brackets in
(4.11) and is formally small in the parameter 1/z (in the simplest “Debye
model” for the electron spectrum, εk = a+bk2, k < kD, one obtains S0 = n/8
[353]). Thus we have for small n the non-saturated ferromagnetic state,
in agreement with the experimental data [347]. Calculation of the critical
electron concentration for onset of ferromagnetism apparently requires more
advanced approximations.

At T > TC , putting in (4.100) 〈Sz〉 = χH one obtains the equation for
the paramagnetic susceptility

1− c

2
+

1

π

∫ ∞

0
dω cot

ω

2T
Im

∑
q

Aqω

= T
∑
q

(
χBq0 + Cq0

χDq0 + Pq0

+ Aq0

)
(4.104)
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The Curie temperature is determined by the condition χ(TC) = ∞. At small
n we have (cf.(E.25))

TC =
S0

2

(
D−1

q0

)−1
(4.105)

Expanding the right-hand side of (4.104) in χ at TC ¿ T ¿ EF one gets

χ = −1

4

∑

k

∂f(εk)

∂εk

+
C

T − θ
(4.106)

where the first term corresponds to the Pauli contribution and the second
one to the Curie-Weiss contribution of LMM,

C =
1

2
S0, θ =

∑
q

Dq0 > TC (4.107)

being the Curie constant and the paramagnetic Curie temperature. To lowest
order approximation in n,

θ ' TC ' C
v0

2π2
m∗kF ε2

max (4.108)

with

kF = (3π2n)1/3, frac1m∗ =
∂2εk

∂k2

∣∣∣∣∣
εk=εmax

Thus the many-electron approach provides a simple derivation of the Curie-
Weiss law. This approach may be generalized to the narrow-band s-d model
[353].

The above concepts may be useful for general theory of metallic mag-
netism too. Obviously, the assumption about strong (in comparison with the
total bandwidth) interelectron repulsion is not valid for transition d-metals.
However, it may hold for some electron groups near the Fermi level. This idea
was used in [353] to treat ferromagnetism of iron group metals. The narrow-
band Hubbard model was applied to describe the group of “magnetic” states
which form the narrow density of states peak owing to the “giant” Van Hove
singularities (Sect.2.4). Correlations for these states are to be strong because
of small peak width Γ ' 0.1eV. The rest of s,p,d electrons form broad bands
and are weakly hybridized with “magnetic” electrons of the peak. The peak
states were assumed to be responsible for LMM formation and other mag-
netic properties in Fe and Ni. Such a model enables one to explain simply



128 CHAPTER 4. MAGNETIC PROPERTIES

the low (as compared to the Fermi energy) values of the Curie temperature
which is, as follows from the above consideration, of order of Γ.

In the ferromagnetic phase the splitting of spin up and down peaks is
∆ ' 1 ÷ 2eV¿ Γ and structures of both peaks are similar. Since the lower
peak is completely filled, the situation for “magnetic” electrons turns out to
be close to the saturated ferromagnetism, i.e. to the half-metallic state in
the usual Hubbard model with large U . In such a situation one may expect
strong (even in comparison with the Heusler alloys) non-quasiparticle effects.
These may be important for the explanation of experimental data on spin
polarization, obtained by photo- [358] and thermionic [359] emission, which
contradict drastically to band calculation results for Fe and Ni.

4.7 Magnetism of rare earths and actinides

Since well-localized 4f-electrons retain their magnetic moment in a crystal,
rare earth metals exhibit strong magnetism. All the “light” rare earths (RE)
from Ce to Eu have at low temperatures complicated antiferromag netic
structures. All the “heavy” RE from Gd to Tm (except for Yb which is a
Pauli paramagnet) are ferromagnetic at low temperatures. With increasing
temperature, the ferromagnetic ordering is as a rule changed by antiferromag-
netic spiral structures, except for Gd which passes immediately into para-
magnetic state. The period of spiral structures turns out to be appreciable
temperature dependent, the spiral angle decreasing with lowering T .

Unlike d-ions, 4f-ions are as a rule rather weakly influenced by the crystal
field (Sect.1.3). Therefore magnetic moments of rare earth metals should be
close to those of the free ion R . However, there are a number of important
exceptions, especially among light rare earth elements. Consider magnetic
structures of RE metals [16,17,246].

Cerium exhibits AFM ordering in the β (double hcp) phase with TN =
12.5K. The ordered moment 0.62 µB is small in comparison with that for Ce3+

ion (2.51µB). Probably this is connected with strong crystal field influence
on the not too stable f-shell.

Magnetism of praseodymium is determined to a large measure by exis-
tence of low-lying excited states of Pr3+ ion. Praseodymium exhibits AFM
ordering below 25K with ordered moment about 1µB .

Neodymium has a complicated AFM structure. The moments at hexag-
onal sites of the double hcp lattice order at TN = 19.2K, their value being
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modulated along the [1010] axis in the basal plane with the amplitude of
2.3µB . The moments at cubic sites (in neighbour planes) order at 7.8K, the
modulation amplitude being 1.8µB . These moment values are considerably
smaller than that of free ion (3.2µB ) owing to crystal field.

Preliminary neutron investigations of promethium [360] demonstrate be-
low 98K a possible existence of ferromagnetic domains with ordered moment
of 0.24µB . These data require a verification.

Crystal structure of samarium contains sites with cubic and hexagonal
symmetry. Magnetic moments in the hexagonal layers order in a collinear
AFM structure at 106K, and in cubic layers at 13.8K. The ordered moments
are extremely small (about 0.1µB).

Europium, which has the bcc structure, possesses below 90K a helcoidal
AFM strucure with the [100] axis and ordered moment of 5.9µB .

Magnetic structures of heavy rare earths are shown in Fig.4.17. Gadolin-
ium is ferromagnetic with TC = 293K (see also Table 4.3). Below 232 K, there
occurs a finite angle of the ferromagnetic spiral, which reaches the maximium
value of 75o at 180 K and decreases up to 32o at low temperatures.

Terbium and dysprosium are feromagnetic below 221K and 85K respec-
tively. At higher T , they have a simple helicoidal structure, the spiral angle
being also appreciably temperature dependent.

Holmium has below 20K a ferromagnetic spiral structure with

µx
i = µ⊥ cosQRi, µy

i = µ⊥ sinQRi, µz
i = µ‖ (4.109)

and at higher T the helicoidal structure.

In erbium, the ferromagnetic spiral state (T < 20K) changes into a com-
plicated spiral stucture

µx
i = µ⊥ cosQRi, µy

i = µ⊥ sinQRi, µz
i = µ‖ cosQRi (4.110)

In the interval 52K< T < 84K, a static longitudinal spin wave state occurs
with

µx
i = µy

i = 0, µz
i = µ cosQRi, (4.111)

Thulium has at low T an antiphase domain structure, spins of four layers
being in up direction and of three layers in down direction. As the result,
average magnetic moment makes up 1µB , altough the moment at each site
is 7µB . Above 32K the static longitudinal spin wave state is realized.



130 CHAPTER 4. MAGNETIC PROPERTIES

Ytterbium is diamagnetic below 270K and paramagetic above 270K. Para-
magnetism is connected with presence of an “intrinsic” fracture of trivalent
ions Yb3+ .

Lutetium trivalent ions have a completely filled 4f-shell and do not posssess
magnetic moment. Therefore Lu is a Pauli paramagnet.

Theory of magnetic properties of rare earths was extensively developed
during 60s-70s [15,16,265]. Here we discuss briefly some points with especial
attention to connections beween magnetism and electronic structure.

Although, unlike d-metals, magnetic moments in 4f-metals have an atomic
nature, electronic structure of conduction band influences also magnetic or-
dering since the exchange interaction between well-separated f-spins at dif-
ferent lattice sites is mediated by current carriers (the Ruderman-Kittel-
Kasuya-Yosida, RKKY, indirect interaction). In the real space this interac-
tion has oscillating and long-range behaviour (Appendix K).

The wavevector of magnetic structure Q is determined by the maximum
of the function J(q). Phenomenologically, formation of spiral magnetic struc-
tures may be described in the Heisenberg model with interactions between
nearest and next-nearest layers J1 and J2 where

cos Qc = −J1/4J2 (4.112)

However, in the free-electron approximation, J(q), as well as the susceptibil-
ity of the electron gas,

χ(q) =
1

2

∑

k

f(Ek)− f(Ek+q)

Ek+q − Ek

=
m∗kF

8π2

(
1 +

4k2
F − q2

4kF q
ln

∣∣∣∣∣
q + 2kF

q − 2kF

∣∣∣∣∣

)
(4.113)

has a maximum at q = 0, which corresponds to the collinear ferromagnetic
ordering. Yosida and Watabe [361] obtained a shift of the minimum to finite
q by an account of reciprocal lattice vectors g (i.e. of the crystal structure),
other factors being taken in the free-electron theory. Calculation for the hcp
lattice with Q being parallel to the c-axis yielded

Q/2kF ' 0.11, Qc = 48o

which agrees with experimental data for Tm, Er and Ho (Qc = 51o). How-
ever, this theory does not explain the magnetic structures of Tb and Dy
which have the same lattice.
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Further development of the theory was connected with an account of the
real shape of the Fermi surface. It was realized that J(q) may have minimum
in the cases where the vector q connects large congruent pieces of the Fermi
surface (the “nesting” condition). Such a situation takes place in the itinerant
antiferromagnet Cr. It was supposed in [362] that in 4f-metals Q corresponds
to the vector of the “arms” near the point L in the Brillouin zone of rare
earths (Sect.2.7). Change of this vector in the rare earth series explains
satisfactorily the experimental tendency in the spiral angle. In particular,
absence of the “arms” in gadolinium corresponds to ferromagnetic ordering.

Besides the topology and shape of the Fermi surface, an important role
belongs to energy gaps near the superzone boundaries, which are determined
by the magnetic structure. The most strong energy gain takes place provided
that the gaps occur near the Fermi surface (the situation which is reminiscent
of the Hume-Rothery rule in the theory of crystal structures, sect.3.3). The
influence of superzone boundary on the spiral period was studied by Elliott
and Wedgwood [363]. They demonstrated that the value of Q, obtained in
[361], decreases with increasing the energy gap. This fact explains readily
the observed T -dependence of the spiral angle with temperature, since the
sublattice magnetization decreases with T .

An alternative mechanism which influences the spiral angle was proposed
by de Gennes [364]. He took into account the finite value of the mean
free path l for conduction electrons which mediate the exchange interac-
tion among 4f-moments. The damping of electron states, which is due to
scattering, weakens the longe-range antiferromagnetic components of the os-
cillating RKKY interaction and favours the ferromagnetic ordering. There-
fore Q should decrease with decreasing l. Since the value of localized spin
decreases from Gd to Tb, the magnetic resistivity changes from 10µΩ·cm in
Tm to 120µΩ·cm in Gd, which corresponds to l of 40 and 5 Å. Thus the
strong magnetic scattering may explain the absence of antiferromagnetism
in gadolinium. The increase of l with lowering T should give the tendency
which is opposite to the experimental data and to influence of superzone
boundaries. Combined effect of both mechanisms on the spiral angle was
considered by Miwa [365].

Fedro and Arai [366] investigated the influence of higher order Kondo-
like logarithmic corections (see (G.73)) to the electron spectrum on the spiral
angle. They obtained the strong effect for the negative sign of the s-f exchange
parameter I, as well as in the Kondo problem (Chapter 6). However, this
assumption is unrealistic for elemental rare earths where I > 0. Besides
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that, an account of spin dynamics results in a considerable smearing of the
logarithmic Kondo divergences [367].

Phenomenological treatment of formation of commensurate and incom-
mensurate magnetic structures in rare earth and of their temperature evolu-
tion was performed by Dzyaloshinsky [368].

Last time, inhomogeneities of spiral structures were investigated. In par-
ticular, so called “bunching” and “spin sleep” phenomena were discovered
(see, e.g., [369]). Methods of Moessbauer and µSR spectroscopy are exten-
sively applied to this problem [370].

Magnetic properties of actinide series metals are determined by local-
ization of 5f-electrons. As discussed in Sect 1.1, its degreee increases with
increasing atomic number. Light actinides (Th, Pa, U) exhibit usual Pauli
paramagnetism. These metals are satisfactorily described by the model where
itinerant 5f-electrons form wide bands so that the Stoner criterium is not
satisfied. Neptunium and plutonium have apparently, similar to Pt and
Pd, “nearly ferromagnetic” properties. Their magnetic susceptibility has
a non-monotonous temperature dependence at low T , and appreciable spin-
fluctuation T 2-contributions to resistivity and enhancement of specific heat
are observed.

Magnetic susceptibility of americium, although being somewhat larger,
depends weakly on temperature. However, its magnetic properties may be
already described within the model of localized 5f-electrons since the Am3+

ion (configuration 5f6) possesses, as well as Sm3+ ion, the ground term with
zero value of J , the first excited state with J = 1 lying higher by about 500K.
Thus americium should exhibit van Vleck paramagnetism.

In Cm, Bc and Cf (other heavy actinides are not investigated) the Curie-
Weiss law holds at high temperatures, the effective magnetic moments being
in agreement for those of corresponding three-valent ions [371]. Thus the
Russel-Saunders coupling scheme turns out to be a good approximation.
Neutron scattering data demonstrate that the double-hcp α-curium is ordered
antiferromagnetically below 50K. At the same time, the metastable fcc β-
curium possesses below 205K a finite saturation moment about 0.4µB and
probably has a ferrimagnetic order. α-Bc is antiferromagnetic with TN =
22÷34K according to data of various authors. The data on magnetism of α-
Cf are contradictory. In the work [372], AFM ordering below about 60K was
found which was changed by ferro- or ferrimagnetic ordering below 32K. Only
one transition into ferromagnetic (or ferrimagnetic) state with µ0 = 6.1µB

was observed at 51K in [373]. No magnetic ordering was found in the cubic
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β-Bc and β-Cf.

Actinide intermetallic and insulating compounds demonstrate a rich vari-
ety of magnetic properties. According the so-called Hill criterion (see [371]),
the f-f overlap ceases and formation of magnetic moment takes place at
sufficiently large distances between the actinide ions exceeding 3.25 ÷ 3.50
Å(Fig.4.18).

Quantitative theory of magnetic structure of actinides is now developed
insufficiently. Large spin-orbit coupling results in strong orbital contribu-
tions to magnetic properties. For example, the relativistic spin-polarized
self-consistent band calculation of δ-Pu [374] yielded the following values of
magnetic momenta (in µB): MS = 5.5, ML = −2.4, MJ = MS + ML = 2.1
whereas the experimental value of MJ makes up about 1µB . There is an open
question about the accuracy of the atomic sphere approximation (ASA). The
effect of the non-sphericity of the potential should be appreciable for orbital
contributions. Band calculation of hcp Bk [375] yielded the value ML = 2.36,
which is comparable with the spin magnetic momentum (but is still smaler
than the atomic value for the f8 configuration). This demonstrates consider-
able narrowing of 5f-band in heavy actinides.

4.8 Magnetic anisotropy

In zero magnetic field a ferromagnetic sample becomes divided in regions
(domains) which are magnetized along the easy magnetization axes of the
crystal, so that the total magnetic moment is zero. Existence of the easy and
hard directions is just determined by crystalline magnetic anisotropy (MA)
which is characterized by the dependence of the total energy for magnetically
saturated states on the magnetization direction.

Investigation of MA is of interest by two reasons. First, MA determines
main technical properties of ferromagnetic materials - size and shape of mag-
netic domains, magnetization process in the external field, coercitive force
etc. Second, MA reflects weak, but important relativistic interactions among
electrons in a crystal and study of corresponding effects gives a valuable
information for the microscopic theory. As well as exchange integrals, the
values of MA parameters are not explained by dipole forces. It is believed
now that the main source of MA is the spin-orbital interaction. The orders
of magnitude of MA parameters turn out to be different for iron group met-
als and rare earths, which is directly related to the different role of various
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interactions for corresponding ions.

From a phenomenological point of view, the anisotropy energy may be
expanded in spherical functions

Ea =
∑

λµ

Cµ
λY µ

λ (4.114)

One uses also often (especially for hexagonal and cubic crystals) the expan-
sion

Ehex
a = K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

+K4 sin6 θ cos 6φ

Ecub
a = K0 + K2(α

2
xα

2
y + α2

yα
2
z + α2

zα
2
x) + K2α

2
xα

2
yα

2
z (4.115)

with αi = Mi/M, the constant K1 being zero for cubic crystals. The con-
stants C (or K) depend on external parameters like temperature, pressure
etc.

Values of MA constants for iron group metals and gadolinium are given
in Table 4.6. Gd possesses, unlike other rare earths, zero atomic orbital
momentum and is similar in this respect to cobalt. Therefore MA of Gd is
rather small, the corresponding experimental data being contradictory and
the constant K1 demonstrating a non-monotonous temperature dependence
with the sign change [381]. Other rare earths have MA constants which are
by one-two order of magnitude larger (Table 4.7).

Theoretical calculation of the signs and values of the MA constants is
a complicated problem which is far from complete solution. First-principle
calculations of MA in iron group metals turn out to be highly sensitive to
their electronic structure, so that reliable results are now absent.

Especially difficult is the explanation of the MA temperature depen-
dences. In the phenomenological approach, the MA constants are propor-
tional to the corresponding powers of magnetization. In particular, perform-
ing the simplest averaging procedure we obtain the Akulov-Zener law [265]

Kn(T ) = Kn(0)

[
M(T )

M(0)

]n(2n+1)

(4.116)

so that

K1 ∼ M3, K2 ∼ M10 (4.117)
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A more accurate treatment of the dependences Ki(T ) in the spin-wave theory
of a Heisenberg ferromagnet was performed in papers [376-378]. These re-
sults describe well the behaviour of MA constants in insulators (e.g., yttrium
garnets). However, experimental T -dependences in ferromagnetic d-metals
turn out to be more complicated. The behaviour K2(T ) in iron and nickel
corresponds to higher powers of magnetization than given by (4.117). The
dependence K3(T ) in iron is non-monotonous. A change in K1(T ) sign oc-
curs in cobalt near 500 K [265] (note that the hcp-fcc transition takes place
at 700K).

4.8.1 Quenching of orbital momenta by periodic lattice
potential and magnetic anisotropy of d-metals

As discussed above, mechanisms of magnetic anisotropy are intimately re-
lated to spin-orbital interactions and orbital magnetic contributions: in the
absence of SOI electron spins do not ”feel” their orientation. In contrast
with rare earths, a very strong crystal field in the 3d-magnets destroys the
atomic structure of the SL-terms of the dn configurations and particularly
the multiplet structure of the total angular momentum J . Therefore we have
to consider the orbital momenta of single electrons. Experimental results
demonstrate that they are almost completely quenched (〈l〉 is close to zero
for the ground state in not too strong magnetic fields). In the case of the
atomic levels this occurs when the ground state is a singlet (i.e. spherically
symmetric). For d-electrons in a crystal, this can take place, e.g., in the
presence of a crystal field of sufficiently low point symmetry, which splits off
a sublevel m = 0 from other states (cf.Sect.1.3). However, real ferromagnetic
metals are characterized by high symmetry and the quenching of l is clearly
due to a different mechanism associated with the periodic crystal potential.

The idea of this quenching mechanism is as follows [379,39]. The degener-
acy of atomic levels, which is retained by the local crystal potential, becomes
lifted at spreading them into the energy bands in the k-space. Indeed, the
dispersion law of two bands E1(k) and E2(k), corresponding to atomic levels
E1 and E2 is, generally speaking, different. The accidental degeneracy takes
place only for those k where the bands are crossing. The electron orbital
momentum operator l = [rk] is diagonal in quasimomentum k. Then all the
diagonal matrix elements lii between crystal functions ψi

k vanish because of
their symmetry (or antisymmetry) in the sign of projection m, whereas the
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off-diagonal matrix elements lij , although non-zero, correspond to different
energies E1(k) and E2(k) for a fixed k. This means that the contribution
of the latter matrix elements to 〈l〉 in the presence of a perturbation with
matrix elements hij is of order of l/∆ij(k) (with ∆ij(k) = Ei(k) − Ej(k))
and, generally speaking, small.

Consider the simple example of the triple representation t2g for a cubic
crystal. It contains three functions ψi which are linear combinations of the
functions with specific values of m:

ψ1,2 =
1√
2
(φ1 ± φ−1), ψ

3 =
1√
2
(φ2 − φ−2) (4.118)

As is clear from the symmetry properties, we have l = 0 for all i. On the other
hand, e.g., 〈ψ1|lz|ψ2〉 = 1. With account of the point crystal potential only
we have the degenerate local level situation and the existence of lzij 6= 0 means
that in fact the orbital momenta are not quenched. Indeed, in a magnetic
field Hz a regrouping of the functions takes place and the degeneracy is lifted
by the values of the Zeeman energy gµBmHz. Thus effective orbital momenta
with the value l = 1 occur. However, for the crystal functions of the band
type the degeneracy of ψi

k is lifted for almost all values of k. This means
that, as long as gµBmHz ¿ ∆(k), strong regrouping of the functions in a
field Hz is energetically unfavourable and the value of orbital momentum
unquenched by the field is proportional to a small quantity gµBmHz/∆(k).

Intrinsic l-dependent mechanisms also mix the states ψi
k and thus un-

quench l. Especially important from this poit of view is the spin-orbit cou-
pling (Appendix L) since this connects the vectors s and l. This yields a
small unquenched momentum l̃ ∼ λ/∆, which becomes oriented in the crys-
tal. Again, the spin momentum is oriented due to spin orbit coupling, so that
the magnetic anisotropy energy Ea is proportional to λ2 for uniaxial crystals
(and to λ4 for cubic crystals). In fact, Ea corresponds to the spin-orbital
coupling energy for the unquenched momentum l̃:

Ea ' Ẽso = λ(̃ls) ∼ λ2/∆ (4.119)

For λ ∼ 10−14erg and ∆ ∼ EF ∼ 10−11erg we have Ea ∼ 10−11erg ∼ 10−1K.
The magnetization process is then as follows (Fig.4.19). In zero field the

vectors s and l̃ are oriented along the easy axis z. The application of field
Hx in a hard direction tilts the spin momentum from the z-axis as the ratio
Hx/Ẽso increases. (For simplicity, we do not take into account the contri-
bution of the l -component, which is possible provided that corresponding
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splitting is large.) The direction of l remains practically unchanged, since
this is fixed by strong CF (Ecr À Ẽso ). At H = Ha ∼ Ẽso/µB the coupling
between the vectors l̃ and s is broken and the magnetization is saturated,
its value being smaller by the quantity l̃ than along the easy direction. The
quantity Ha is called the anisotropy field and is an important characteristic
of the magnetic hardness of a material.

Concrete calculations of magnetic anisotropy of transition metals with
account of realistic band structure are discussed in papers [380,381]. The
degeneracy points in the k-space, where ∆(k) = 0, turn out to play an im-
portant role, quantitative results being strongly influenced by band structure
details. The unusual orientation dependence of the magnetic anisotropy en-
ergy in nickel was attributed in [382] to existence of very small pockets of
the Fermi surface, which undergo dramatic changes in size as a function of
magnetization [145]. However, such pockets were not found from dHvA or
halvanomagnetic effects data. Recent LMTO-ASA calculations of anisotropy
energy in iron group metals [383] have yielded the values, which are small in
comparison with experimental data.

The orbital contributions increase noticeably for surface and impurity
states, and in layered systems, since here the quenching mechanism owing
to periodic lattice potential becomes less effective. So, an appreciable en-
hancement of orbital magnetic momenta (OMM) at surfaces of Fe, Co, Ni
was obtained in the band calculation [384]. Further investigations of these
problems within many-electron models are required.

The unquenching of OMM due to Coulomb interaction, discussed above
in Sect.1.3, should be once more mentioned. The latter tends to satisfy the
Hund rules. Up to now, this mechanism was practically misregarded (see,
however, the paper [385] where such a possibility was considered within a
spin-density functional approach). On the other hand, intersite orbital ex-
change interaction (Appendix D) can also unquench OMM and induce an
orbital ordering. Corresponding quantitative calculations and comparison of
the electrostatic mechanisms with the spin-orbital one would be very inter-
esting.

To conclude this Section, we discuss some examples of OMM effects in
d-systems. Orbital momenta seem to play an important role in electron struc-
ture and physical properties of high-Tc superconductors. A strong anisotropy
of c is observed above T [386]. Its sign and absolute value may be used to
investigate the electron structure near EF . The calculation [387] shows that
the sign of Dc corresponds to the contribution of off-diagonal matrix elements
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between the states x2−y2 at EF and the xy-states, which lie below by about
1eV. Recent investigations of polarized X-ray spectra of copper ions [388]
confirm that the bands of the type x2 − y2 with a small admixture of z-type
bands are present at the Fermi surface. Thus unquenching of OMM is due
to transitions between the states 2−1/1(|2〉 ± | − 2〉).

A number of d-compounds (e.g., with perovskite, spinel and rutile struc-
ture) contain Jahn-Teller ions which possess an orbitally degenerate ground
state. Strong anisotropy of magnetization and g-factors takes place in such
systems (e.g., for the ions Cu2+, g‖ = 2.4, g⊥ = 2.08 [274]). A gain in the
total energy is achieved by the degeneracy lift at symmetry lowering which
is due to lattice distortion. A “ferro”- or “antiferromagnetic” orbital order-
ing may accompany the cooperative Jahn-Teller effect. Description of such
phenomena and their interpretation is usually given within an one-electron
approach [42]. Apparently, in a number of cases the interaction of ion L-
momenta with crystal field should be considered in the many-electron scheme
with account of spin-orbital coupling. However, such a consideration seems
to be up to now not performed.

4.8.2 Magnetic anisotropy of rare earths

Now we consider the situation in rare earths [39]. For 4f-electrons the energy
of crystal field E is small in comparison with not only the electrostatic in-
teraction, but also with the spin-orbital energy, so that the the total atomic
quantum numbers S, L, J are retained also in a crystal (Sect.1.3). Conse-
quently, the magnetization process in RE magnets occurs in a different way
as compared to the case of d-magnets.

In the case of easy-axis anisotropy, at H = 0 the vector J = L + S lies
along the z-axis governed by the minimum of Ecr for the angular momen-
tum L. In a field Hx the coupling between L and S is retained (because
Ecr ¿ Eso ) and they rotate as a whole, approaching the x-direction. The
angle of rotation is determined by the ratio gµBJH/Ecr. Although the energy
Ecr ∼ 10−2÷ 10−3eV is the smallest among the energies of other interactions
for 4f-electrons, it is considerably higher (by two or three orders of magni-
tude) than the effective energy Ẽso responsible for the magnetic anisotropy
of 3d-metals with quenched orbital momenta. This accounts for the giant
anisotropy exhibited by rare-earth magnets.

The existence of unquenched OMM results in another important conse-
quence in the theory of magnetic properties of rare earths. As demonstrated
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in Appendix K, the s-f exchange interaction leads, in the second order of
perturbation theory, not only to an indirect f-f exchange of the Heisenberg
(or de Gennes) type, but also results to the exchange interactions, which
are determined by orbital momenta (see (K.11)). Such interactions (in con-
trast to spin exchange) readily become anisotropic after allowance for the
anisotropy of the crystal. The contributions of the anisotropic exchange to
the magnetic anisotropy energy were calculated in [389]. The total result for
the hexagonal lattice with the parameters c and a reads

Ecr = (Kcr
1 + Kexch

1 ) cos2 θ + ...

Kcr
1 = αJJ(J − 1

2
)
Zeffe2

a

〈r2
f〉

a2
1.2(c/a−

√
8/3) (4.120)

Kexch
1 ∼ (g − 1)D1J

2I2
sfN(EF )

Here αJ is the Stevens parameter, Zeff is the effective ion charge, 〈r2
f〉 is the

averaged square of the f-shell radius, D1 is defined in (K.10). The expressions
(4.120) yield estimates of the order of magnitude of Kcr

1 and Kexch
1 . Since for

heavy rare earths αJ ∼ 10−2 ÷10−3, we get Kcr
1 ∼ 107÷ 108erg/cm3. Then,

D1 ∼ 10−2, so that Kexch
1 ∼ 106÷ 107erg/cm3 .

Thus the magnetic anisotropy of rare earths is one or two order of magni-
tude higher than that of the most strongly anisotropic hexagonal d-magnets.
This difference is a consequence of the fact that, for RE, magnetic anisotropy
is determined by the electrostatic interactions of the crystal field or an
anisotropic exchange type and not by the weak spin-orbital interaction (as
for d-magnets).

The MA constant K1 and the anisotropy of the paramagnetic Curie tem-
perature ∆θ = θ‖−θ⊥ of heavy of rare earths are given in Table 4.7. The lat-
ter quantity is found by extrapolating the Curie-Weiss law χ−1 = C−1(T −θ)
for corresponding crystal directions up to the temperatures where χ−1 = 0.
For clarity, a comparison with the experimental resuts is made separately for
the crystal field and exchange mechanisms. The largest difference between
two theoretical values is found in the case of Tm, which is therefore of the
greatest interest from the point of view of the magnetic anisotropy.

Although a complete comparison with experiment is difficult because of
absence of precise data, the crystal field contribution is probably dominant
and the anisotropic exchange contributes only 10-20%. A reliable experi-
mental determination of the latter would be of fundamental interest in the
theory of exchange interactions. In contrast with the single-ion crystal-field
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mechanism, the anisotropic exchange gives rise to a two-ion anisotropy so
that it can be separated on the basis of the alloy composition dependence.
Therefore experimental investigations of magnetic anisotropy of RE alloys
may be useful. It is worthwhile also to mention the methods for detecting
anisotropic exchange, which are based on hyperfine interactions [390].

Now we discuss the sign of magnetic anisotropy. Here the theory provides
precise predictions. The signs of both αJ and D1 are reversed on transition
from f3(f10) to f4(f11) configurations in the first (second) halves of the RE
series and also on transition from the first to the second half. If we bear
in mind that Pm has not yet been investigated, and Eu and Yb have cubic
lattices, the agreement with the experimental results is quite satisfactory.

This mathematical result has a clear physical meaning. The magnetic
anisotropy is related to the magnitude and orientation of the orbital compo-
nents of the total orbital momenta in an electric crystal field. One can see
from the Table 4.8 that, besides the trivial electron-hole symmetry in the
values of L between the first and second halves of the series, there is also a
symmetry within each half associated with the occupancy of orbital quantum
states. For example, f1- and f6-states have the same value L = 3 and it might
seem that the anisotropy should also be the same. However, we should take
into account that L(f1) is the angular momentum of one electron, whereas
L(f6) is the orbital momentum of a hole in the spherical f7 configuration
characterized by L = 0. Thus the anisotropy of the electric charge will be
opposite for the f1 and f6-configurations (Fig.4.20).

The same reversals of the sign of the first anisotropy constant in the RE
series are as a rule observed not only for pure RE metals, but also for their
alloys and compounds. Consider the situation in the practically important
intermetallic systems RCo5 . The theory predicts the orientational plane-
axis transition for the compounds with R = Ce, Pr, Nd, Tb, Dy, Ho. Indeed,
in the case of these elements, in the ground state the angular momentum
J is oriented in the basal plane of the hexagonal lattice. The Co ions have
an easy c-axis, but because of the exchange interaction with the R ions
they are oriented so that their magnetic moments are aligned in a plane
at low temperatures. As a sample is heated, the magnetization of the R
sublattice decreases faster than that of the Co sublattice. Thus the gain in
the anisotropy energy of the Co sublattice, which is characterized by a larger
magnetization, becomes dominating, the plane-axis transition takes place at
some temperature [391]. Such transitions are observed experimentally [392].

The possibility of occurrence of strong local anisotropy effects in RE al-
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loys because of lowering of the local symmetry of the environment for a given
RE ion is also of interest. An effect of this kind was considered in [393] with
application to the system RCoxNi5−x. It was found that, besides the usual
anisotropy constants corresponding to the macroscopic (average) symmetry
of the alloy, there are also constants of a local type. After averaging over var-
ious possible configurations of the nearest neighbours, these local constants
contribute to the observed macroscopic anisotropy of a crystal giving rise to
a specific dependence on the composition.

It is worthwhile to mention another factor which strongly affects both
the magnitude and sign of the anisotropy. This is the geomentric factor of

the hcp lattice
√

8/3 − c/a = 1.633 − c/a. For all the RE metals, c/a =
1.58 − 1.61 < 1.63. However, in principle we can change the sign of the
anisotropy by changing this factor.
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Chapter 5

TRANSPORT PROPERTIES

Besides practical significance, electronic transport phenomena in metals are
rather important from the theoretical point of view. They have played a
great role in formulation of principal statements of the modern quantum solid
state physics. In particular, the classical theory does not explain the zero
value of electrical resistivity at T = 0 which should be determined by cross
sections of electron scattering by ions. In the quantum theory, electrons in
a periodical crystal are described by Bloch states with a definite wavevector
k and carry current without a loss of energy. The scattering of electrons is
determined by various mechanisms in electron-lattice system which disturb
the periodicity (impurities, thermal vibrations etc.). It turns out also that,
as well as for electronic specific heat and magnetic properties, the degenerate
statistics of current carriers and the existence of the Fermi surface are crucial
for transport phenomena.

The theoretical description of transport phenomena includes a number
of parameters: concentration n and charge sign of current carriers, effective
mass m∗, electron velocity at the Fermi level vF , parameters of various inter-
actions: electron-lattice, electron-impurity, electron-spin, electron-electron.
These interactions influence not only energy spectrum, but also the mean
free path l and the relaxation time τ . The simplest expressions for the con-
ductivity and the Hall coefficient

σ =
e2nτ

m∗ , R = − 1

nec
(5.1)

enable one to determine n and τ (the effective mass may be determined from
de Haas-van Alphen effect data).

143
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In real substances the situation is more complicated than that described
by (5.1). This is connected with the presence of several groups of current
carriers, combined influence of different scattering mechanisms etc. Main
problem of the microscopic theory in such a stuation is separating these fac-
tors and determining their relative contributions. This problem is rather
important for transition metals which demonstrate a great variety of trans-
port phenomena. In this Chapter we pay especial attention to peculiarities
which occur in comparison with simple metals. Let us list some of these
peculiarities.

1) Existence of current carriers with strongly different characteristics (“s”
and “d”-electrons). Although 4f-electrons usually do not take part in con-
ductivity, they may influence the current carriers due to s-f hybridization,
especially in some rare-earth compounds. Besides that, current carriers with
opposite spins have different characteristics in ferromagnetic metals.

2) Presence of internal partially filled d-shells (narrow bands) may be an
subsidiary scattering source (due to the s-d transitions).

3) Occurence of additional scattering mechanisms by d- and f-shell magnetic
moments.

4) Anomalous (spontaneous) transport phenomena (e.g., the Hall, Faraday,
Kerr and ∆ρ/ρ effects), which are connected with the magnetization of d(f)-
ions rather than with external magnetic field.

5) Anomalous behaviour of transport coefficients near magnetic ordering
points.

6) Large correlation effects and possibility of electron localization in narrow
d-bands.

Thus main peculiarities of transition d-metals are connected with inter-
mediate degree of d-electron localization. This fact leads to that d-electrons
play simultaneously two roles: of current carriers and of scattering centres.
Below we analyze a number of scattering mechanisms which are specific for
transition metals.

5.1 General classification of transport phe-

nomena

The densities of charge and heat current j and W, produced by the external
electric field E = gradφ and temperature gradient, are determined by the
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equations
jα = σαβEβ + λαβgradβT (5.2)

Wα = qα − φjα = ναβEβ − καβgradβT (5.3)

where the electric and thermal conductivities σ and κ, and the coefficients
λ and ν are tensor quantities, which determine transport properties of the
crystal (summation over repeated indices is assumed). The term φj, which
yields transfer of electron potential energy in the electric field, is subtracted
in (5.3) from the total energy current q.

At considering transport phenomena, it is important to take into account
the Onsager symmetry principle. Within the framework of linear theory
(small deviations of the system from the equilibrium state) the coefficients
in the system

∂Xi

∂T
=

∑

j

γij
∂S
∂Xj

(5.4)

(Xi are quantities determining the state of the system, S is the density of
entropy) are symmetric in indices i, j:

γij = γji (5.5)

Equations (5.2),(5.3) are a particular case of the system (5.4) with

∂X1

∂T
= j,

∂X2

∂T
= W, (5.6)

∂S
∂X1

=
E

T
,

∂S
∂X2

= −gradT

T 2

The relations (5.6) are readily obtained from the expression

dS
dT

=
∫

dr
divq

T
=

∫
dr

Ej

T
−

∫
dr

1

T 2
WgradT (5.7)

In the presence of the magnetic field H the transport coefficients are functions
of H. Since the equations of motion in non-magnetic crystals are invariant
under simultaneous replacement H → −H, t → −t, the Onsager relations
read

σαβ(H) = σβα(−H), καβ(H) = κβα(−H), ναβ(H) = Tλβα(−H)
(5.8)
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The transport coefficients may be expanded in H, the transport phenomena
being subdivided into even and odd ones with respect to magnetic field.
Practically, it is sufficient to retain linear and quadratic terms only to obtain
from (5.1), (5.2)

Eα = (ραβ + RαβγHγ + rαβγδHγHδ)jβ

+(ααβ + QαβγHγ + ∆ααβγδHγHδ)gradβT (5.9)

Wα = (ααβ + QαβγHγ + ∆ααβγδHγHδ)jβ

+(−καβ + LαβγHγ + BαβγδHγHδ)gradβT (5.10)

Here ρ is the electical resistivity tensor, R is the Hall coefficient, r deter-
mines the magnetoresistivity (∆ρ/ρ-effect), α is the thermoelectric power
coefficient, the Nernst-Ettingshausen coefficient Q determines the change of
thermoelectric power in magnetic field, and the coefficients ∆α describe the
longitudinal and transverse magnetothermoelectric effect. In the equation
for the thermal current (5.10), κ is the thermal conductivity tensor, L de-
termines the occurence of transverse temperature gradient in magnetic field
(the Righi-Leduc effect), B describes thermal magnetoresistivity; other coef-
ficients coincide with those in (5.9) due to the Onsager relations.

Now we discuss magnetically ordered crystals. In ferromagnets we have
to take into account, besides the external magnetic field, the magnetization
M. In the cases of antiferro- or ferrimagnetic ordering we have to consider
the magnetization of each magnetic sublattice. In the simplest two-sublattice
case it is convenient to use the variables M = M1+M2 and L = M1−M2.
Expanding transport coefficients in H,M,L we write down by analogy with
(5.9), (5.10)

Eα(H,M,L) = Eα(0) + (
∑

i

Ri
αβγY

i
γ +

∑

ij

rij
αβγδY

i
γY j

δ )jβ

+(
∑

i

N i
αβγY

i
γ +

∑

ij

∆αij
αβγδY

i
γY j

δ )gradβT (5.11)

Wα(H,M,L) = Wα(0) + (
∑

i

N i
αβγY

i
γ +

∑

ij

∆αij
αβγδY

i
γY j

δ )Tjβ

+(
∑

i

Li
αβγY

i
γ +

∑

ij

Bij
αβγδY

i
γY j

δ )gradβT

where the indices i, j = H, M, L and Yi= H,M,L. A concrete form of the
tensor coefficients in (5.11) may be found for each crystal structure [394].
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One can see that, besides usual transport coefficients, there exist the Hall
and ∆ρ/ρ effects owing to the spontaneous magnetization. Such effects are
called spontaneous or extraordinary (anomalous). From the phenomenolog-
ical point of view, the spontaneous effects are similar to the corresponding
effect in non-magnetic crystals. However, in fact they possess essential pe-
culiarities. As a rule, the corresponding coefficients are large in comparison
with those for “normal” effects. So, the spontaneous Hall coefficient RM in
metals depends strongly on temperature, its absolute value at high temper-
atures exceeding by several orders that of RH . Thus the expressions (5.11)
may not in fact be treated as just a formal expansion, and the spontaneous
effects may not be reduced to normal ones, e.g., by introducing an effective
field.

Thus we meet with the problem of constructing a microscopic theory of
spontaneous transport effects on the basis of new mechanisms of interaction
of current carriers with the lattice ions in magnetic crystals. Evidently, one
of such mechanims is the exchange interaction. Surprisingly, spin-orbital
interaction (Appendix L) plays also an important role in a number of effects.

Of interest are also terms in (5.11) which contain the vector L. In par-
ticular, the RLL-term results in the even Hall effect and the rHLHL-term
in the odd ∆ρ/ρ-effect. Consider the corresponding experimental data. At
investigating the Hall effect in the ferrimagnet Mn5Ge2 [395] it was found
that the Hall coefficient R changes its sign at the compensation temperature
where the magnetizations of sublattices are opposite. This phenomenon was
explained in paper [396]. According to (5.11),

R =
Ey

jxMz

= RM + RL Lz

Mz

(5.12)

One can see that the second term in (5.12) diverges at the compensation
point (Mz = 0), Lz changing its sign, which yields an effective sign change
in Rs. Thus existence of the compensation point enables one to separate
the ferromagnetic and antiferromagnetic Hall effects. The odd ∆ρ/ρ-effect
in Mn5Ge2 was picked out in the paper [397].

The situation in true antiferromagnets where magnetic sublattices are
equivalent is different. The terms, which are linear in L, should vanish in
crystals where the sublattices are connected with crystal symmetry transfor-
mations. However, these terms may occur in crystals where the period of
magnetic structure coincides with the crystallographic period and magnetic
sublattices transform one into another under the antisymmetry operations
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(i.e. usual symmetry operations combined with time reversion). Since these
operations change the sign of magnetic moment, the L-linear terms turn out
to be not forbidden by symmetry requirements. According to [398], such a
situation takes place in the hematite Fe2O3 where the even Hall effect was
observed [399]. In this case one may also expect the odd magnetoresistivity

(
∆ρ

ρ

)

odd

=
ρ(H)− ρ(−H)

2ρ(0)
∝ H[L(H)− L(−H)] (5.13)

which was also found in hematite [400]. It should be noted that the micro-
scopic theory of L-linear effects is up to now absent.

Recently, the linear term in the magnetoresistivity was observed in the
normal phase of the high-Tc system YBa2Cu3Oy [401], the value of this term
strongly increasing in the narrow region of oxygen concentration 6.88 < y <
6.95. The authors relate the effect with existence of dynamically correlated
antiferromagnetic regions in these sample.

5.2 Calculation of transport coefficients

To evaluate transport coefficients (e.g., resistivity) we need to know the scat-
tering probability which is determined by the values and k-dependences of
interaction matrix elements. The simplest method to solve this problem is
consideration of the transport equation for the electron distribution function
in a crystal in the presence of external fields. In the stationary regime, the
evolution of this function is described by the equation

df

dt
=

(
∂f

∂t

)

field

+

(
∂f

∂t

)

collis

= 0 (5.14)

so that the effect of acceleration by external electric field Ex is balanced by
collisions for some non-zero electron velocity vx along the field direction. To
linear approximation in the field we may write down

f = f0 + f1 (5.15)

(
∂f

∂t

)

field

=

(
∂f0

∂t

)

field

=
∂f0

∂Ek

= −eEx
∂f0vx

∂Ek

∂Ek

∂k

dk

dt
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where f0 is the equilibrium Fermi distribution and f1 is the linear correction.
Introducing the scattering probability Wkk′ we represent the equation (5.14)
in the form ∑

k′
(Wkk′f1k −Wkk′f1k′) = −eExvx

∂f0k

∂Ek

(5.16)

Thus we have obtained the integral equation for the function f1k. After its
solution, the electric current and conductivity are calculated as

jx = −e
∫

dkvxf1, σxx = jx/Ex (5.17)

The quantity W may be calculated for each scattering mechanism (impu-
rities, phonons, spin inhomogeneities etc.). In the case of the independent
mechanisms

ρ(T ) = ρi + ρph + ρmag + ... (5.18)

The additivity of various mechanism contributions is called the Matthiessen
rule. Generally speaking, deviations from this rule occur which are connected
with interference of different scattering processes.

An alternative method for calculating the transport relaxation time is the
use of the Kubo formula for conductivity [402]

σxx =
1

2T

∫ ∞

−∞
dt〈jx(t)jx〉 (5.19)

where

j = −e
∑

kσ

vkσc
†
kσckσ,vkσ =

∂Ekσ

∂k
(5.20)

is the current operator. Representing the total Hamiltonian in the form
H = H0 +H′, the correlator in (5.19) may be expanded in the perturbation
H′ [403,404]. In the second order we obtain for the electrical resistivity [403]

ρxx = σ−1
xx =

kBT

〈j2
x〉

∫ ∞

0
dt〈[jx,H′

(t)][H, jx]〉 (5.21)

where H′(t) is calculated with the Hamiltonian H0. Provided that the per-
turbation Hamiltonian has the form

H′ =
∑

kk′σσ′
Ŵ σσ′

kk′ c
†
kσck′σ′ (5.22)
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(in particular, for the phonon and magnon scattering) we obtain

ρ =
kBT

〈j2
x〉

e2
∑

kk′σσ′
(vkσ − vk′σ′)

2
∫ ∞

0
dt〈Ŵ σσ′

kk′ (t)Ŵ
σ′σ
k′k 〉 exp[i(Ekσ − Ek′σ′)t]

(5.23)
with

〈j2
x〉 = e2

∑

kσ

(vx
kσ)2nkσ(1− nkσ) (5.24)

This approach is equivalent to solution of the transport equation by the
variational method [7,8].

The transport equation for elastic impurity scattering is considered in
Appendix M. The result for the impurity resistivity in the lowest-order Born
approximation has the form

ρi = σ−1
i =

e2nτi

m∗ , τi =
2πh̄4

niφ
2
(2m∗)3/2E

1/2
F

(5.25)

here φ is the average impurity potential, ni is the impurity concentration.
Thus the resistivity is temperature-independent.

The case of the scattering by acoustical phonons may be considered with
the use of either the transport equation (5.15) [1] or the formula (5.23) [7,8].
The situation is most simple in the case of high T > θD. Then the phonon
frequency is small in comparison with temperature, so that the scattering is
elastic and and we may put for the phonon occupation numbers

Nq = NB(ωq) ' kBT/ωq

Then the resistivity is proportional to the number of scattering particles, as
well as in the case of impurity scattering, and is linear in temperature:

σph = ρ−1
ph =

e2n

π3h̄3

M

kF

(
k

C

dEk

dk

)

kF

kBθD
θD

T
(5.26)

where M is the ion mass and

C =
h̄2

2m

∫
dr|graduk|2 (5.27)

is the Bloch constant, the function uk being determined by (2.1).
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At T ¿ θD the number of phonons decreases rapidly with lowering
T . Since the phonons with small q yield main contribution, replacement
ωq/T = x in the corresponding integral yields q2Nqdq ∼ T 3. Besides that,
only a small part of the electron quasimomentum k, of order of q2/k2, is
lost at scattering by long-wave phonons. This results in an extra factor of
ω2

q/k
2 ∼ T 2. Thus the total scattering probability is proportional to T 5 (the

Bloch law). An interpolation expression for the phonon contribution may be
presented in the form [1]

σph =
e2n

4π3h̄3

M

kF I(T )

(
k

C

dEk

dk

)2

kF

kBθD

(
θD

T

)5

(5.28)

where

I(T ) =
∫ θD/T

0

exx5dx

(ex − 1)2
(5.29)

At low temperatures

I(T ) ' I(0) = 5
∫ ∞

0

x4dx

ex − 1
= 124.4

The Bloch theory of resistivity describes well experimental data for simple
metals in a wide temperature region. So, for Ag and Cu the agreement is
within 5%.

5.3 Resistivity

Examples of ρ(T ) dependences for transition metals are shown in Figs.5.1-
5.8 [239]. Some of the Figures show also different contributions to resistivity
(impurity, ρi, phonon, ρph, magnetic, ρmag, Mott s-d scattering, ρsd, electron-
electron, ρee, etc.) which are discussed below.

The values of both ρ and dρ/dT are considerably larger than for simple
metals. There exist two types of ρ(T ) behaviour - convex and concave one.
The type is determined to some extent by the column number in the periodic
table: the convex dependence is observed for atomic dn-configurations with
odd n (such a behaviour takes place also in most rare-earth metals). However,
this regularity is not universal. In particular, the concave dependence is
observed in Cr, Mo, W (d4) and Ru, Os (d6), but not in Ti, Zr, Hf (d2).
The convex behaviour reflects a saturation tendency which becomes more
pronounced with increasing absolute values of ρ.
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The connection of conductivity with the energy dependence of density of
states may be obtained in the simplest approximation of the relaxation time
τ [8] where

f1 = −τEv
∂f0

∂Ek

(5.30)

so that

j = −1

3
e2E

∑

k

τv2 ∂f0

∂Ek

= − e2E

24π3

∫
dε

∂f0(ε)

∂ε

∫ dS

|gradkε|
τv2

≡
∫

dεσ(ε)

(
−∂f0(ε)

∂ε

)
E (5.31)

For the spherical Fermi surface

σ(ε) = − 4e2

3m∗ εN(ε)τ(ε) (5.32)

To lowest-order approximation we have

σ =
jx

Ex

= σ(EF ) =
e2nτ(EF )

m∗ (5.33)

Using the expansion (3.37) we obtain

σ = σ(EF ) +
π2

6
(kBT )2

(
∂2σ(ε)

∂ε2

)

ε=EF

(5.34)

The second term in (5.34) should be important at high temperatures.
The role of the N(E) dependence in transport properties for an arbitrary

electron system (including one with strong correlations) may be illustrated
by simple consideration of impurity scattering [405]. To this end we expand
the one-electron Green’s function to second order in the impurity potential
V

〈〈ck|c†k′〉〉E = δkk′Gk(E) + Gk(E)Tkk′(E)Gk′(E),

Tkk′(E) = V + V 2
∑
p

Gp(E) + ... (5.35)



5.3. RESISTIVITY 153

where G are exact Green’s functions for the ideal crystal. Then, at neglect-
ing vertex corrections, the transport relaxation time is determined from the
imaginary part of T -matrix

τ−1(E) = −2V 2 Im
∑
p

Gp(E) = 2πV 2N(E) (5.36)

which yields the required connection with the density of states.

5.3.1 Electron-electron scattering

The low-temperature resistivity of most transition metals is satisfactorily
described by the formula

ρ = ρ0 + AT 2 + BT 5 (5.37)

According to [406], the fitting yields negligible values of the coefficients at
T, T 3 and T 4 terms (however, the T 4-term was observed in V and Ta [407]).
The T 5-term is to be attributed to electron-phonon scattering, and the T 2-
term, which dominates at T < 10K, may be connected with various mech-
anisms. The simplest among them is the electron-electron scattering. The
considerations of this mechanism were performed in a number of papers [408-
411]. It was demonstrated that in the case of a single group of current carriers
the scattering is possible provided that umklapp processes are taken into ac-
count. These processes lead to an momentum transfer from electrons to
lattice so that the conservation law

k1 + k2 − k′1−k′2 = g

holds at non-zero reciprocal lattice vectors g. The calculations in the case of
the screened Coulomb interaction, which use solving the transport equation
by the variational approach [7], yield the estimate for the electron-electron
resistivity

ρee ' π2z′

32

e2

vF EF

G2 gkF

κ2

(
kBT

EF

)2

(5.38)

where κ is the inverse screening radius, z′ is the nearest-neighbour number
in the reciprocal lattice, G is an analogue of the atomic form factor (e.g., in
X-ray scattering theory):

G ' 1

v0

∫
dregr|u(r)|2 (5.39)
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with u(r) being the Bloch modulation function, v0 the lattice cell volume.
The occurrence of the factor (T/EF )2 is connected with that the scattering
is possible in a narrow layer near the Fermi level with the width of order of
T only. The formula (5.38) may be presented in the form

ρee =

(
e2nτe

m∗

)−1

, τe =
h̄Ekin

E2
coul


π2z′

32
G2 gkF

κ

(
kBT

EF

)2


−1

(5.40)

with

Ekin =
h̄2

m∗a2
0

, Ecoul =
e2

a0

being effective kinetic and potential energies of the electron gas, a0 the lattice
constant. Estimating numerical coefficients in (5.38) for a simple metal we
obtain [7]

ρee ∼ 5 · 10−3G2

(
kBT

EF

)2

Ω · cm (5.41)

This quantity would yield an appreciable part of the room-temperature resis-
tivity provided that G ∼ 1. However, apparently G ¿ 1 which is confirmed
by absence of the T 2-term in simple metals even at low temperatures.

The contribution of electron-electron scattering with account of the k-
dependence of the relaxation time was considered by Schroeder [411]. Then
the effect is determined by the quantity

k1τ(k1) + k2τ(k2)− k′1τ(k′1)−k′2τ(k′2) (5.42)

which does not vanish at g = 0.
The role of electron-electron mechanism may increase in the presence

of several carrier groups where scattering is possible without Umklapp pro-
cesses. For spherical Fermi sheets of s- and d-electrons with the effective
masses ms, md an analogue of the expression (5.38) reads

ρee ' π4

16

e2

vsEs
F

kF

κ

(
vs − vd

vd

)2
(

kBT

Es
F

)2

(5.43)

so that the small factor G2 is absent, and there occurs a large factor (vs/vd)
2.

The expression (5.43) may explain the value of the observed T 2 -contribution
in transition metals. The corresponding experimental situation by the begin-
ning of 70s is described in the review [406]. Measurement of low-temperature
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resistivity of pure d-metals permitted to determine the coefficients A at the
T 2-term and perform comparison with various theoretical models. An im-
portant question is the correlation between A and electron density of states.
This question was discussed by Rice [410]. As follows from (5.43), ρee should
be proportional to squared d-electron mass, i.e to squared coefficient at linear
specific heat γ. Fig.5.9 displays the coefficient A as a function of γ2 for some
d-metals. An approximate relation between these quantities is

A(µΩ cm/K2) ' 0.4 · 10−6[γ (mJ/mol ·K2)]2 (5.44)

The correlation beween A and γ is also evident from the Table 5.1. However,
the value of the coefficient in (5.44) may vary considerably. For Zr, Ta,
Hf, W this coefficient makes up (2÷10)·10−6. Possibly, this is connected
with insufficient purity of the samples. For very pure samples of W and Re
(ρ(273K)/ρ(4.2K)∼104-105) one has A ∼ 10−6γ2.

More later investigations demonstrated that the scattering at the sample
surface may be important in pure metals provided that the mean free path
is large in comparison with sample size (e.g, with diameter of a wire). The
interference of electron-phonon and surface scattering results in occurrence
of a T 2-like contribution [414,8]. It was demonstrated in papers by Volken-
shtein et al [412] that the value of A in pure W, Re, Os is determined by
the dimensional effect, and the contribution of electron-electron scattering is
smaller than 0.05·10−12Ω·cm/K2 In impure samples (e.g., in Ta and V) a con-
siderable contribution may originate from scattering by thermal vibrations
of impurity ions, according to the theory [415].

At the same time, in a number of other pure transition metals the coeffi-
cient A remains large even after excluding the dimensional effect. Especially
surprising is the situation for Mo where A = 1.2 · 10−12Ω·cm/K2 exceeds
by several tens the value for an analogous metal W. This strong difference
may be hardly explained by the electron-electron scattering since the val-
ues of γ differ by 2.5 times only. Thus the question about origin of the
T 2-contribution in paramagnetic transition metals remains open. Further
investigation of this problem is prevented by absence of reliable experimen-
tal data on some d-metals, in particular for two first columns of periodic
table. Data for Sc and Ti are absent, and the purity of investigated sam-
ples of Zr and Hf is insufficient. Data for Y [412] yielded a large value of
A ∼ 10−10Ω·cm/K2. Since the value of γ in Y is rather high, this result
supports the idea of A− γ2 correlation.
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From the theoretical point of view, various interference mechanisms for
different scattering processes may be considered. However, more simple in-
terpretations of observed correlations between ρ and other characteristics
seem to be not excluded.

As will be discussed in Sect.5.3.3, an alternative mechanism for T 2-
dependence of resistivity in ferromagnetic metals is scattering by spin waves.
Separation of electron-electron and electron-magnon scattering is a rather
difficult problem. Since the T 2-term is comparable in ferromagnetic and
paramagnetic metals, main role is often attributed to the electron-electron
mechanism (see, e.g.,[406]). However, spin-density fluctuations, which occur
at finite temperatures even in paramagnets, should result in scattering of
current carriers due to exchange interaction. This scattering may be treated
as enhancement of the exchange part of electron-electron scattering by spin
fluctuations. Such an enhancement should be appreciable in metals like Pd.
Thus it is difficult to discriminate electron-electron and spin-fluctuation con-
tributions even in principle. Quantitative theoretical description of spin-
fluctuation effects in elemental paramagnetic d-metals is now absent. Spin-
fluctuation resistivity enhancement in weakly and almost magnetic metals
(Sect.4.4) is considered in [416,26]. In weakly and nearly ferromagnetic met-
als we have

ρmag ∼ |1− IN(EF )|−1/2T 2 (5.45)

In the antiferromagnetic case

ρmag ∼ |1− 2IχQ|−1/2T 2 (5.46)

(cf.(4.65),(4.66)). At the boundary of the magnetic instability, where the
prefactors in (5.45), (5.46) diverge, the type of the temperature dependence
changes:

ρmag ∼
{

T 5/3 , FM
T 3/2 , AFM

(5.47)

These results are confirmed by data on resistivity of some d-compounds (see
[26]). A Stoner-type renormalization of electron-electron scattering ampli-
tude by spin-spin interactions and its role in resistivity of transition metals
is considered in [417].
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5.3.2 Mott s-d scattering mechanism

An independent mechanism for resistivity of transition metals is the s-d scat-
tering considered by Mott [418]. This mechanism is based on the assumption
that an appreciable part of scattering corresponds to transitions of main cur-
rent carriers (s-electrons) to the unoccupied part of d-band, the states of
which possess much smaller mobility. Such interband transitions may oc-
cur due to any scattering mechanism (impurities, phonons, spin excitations
etc.), their probability being large because of high density of d-states near the
Fermi level. At the same time, the inverse d-s transitions may be neglected
at calculating conductivity since Ns(EF ) ¿ Nd(EF ) (electron numbers in
the subbands are restored mainly due to thermal relaxation). Thus we may
write down

σ = σs + σd = ρ−1
s + ρ−1

d

with
ρs = ρss + ρsd, ρd = ρdd + ρds ' ρdd (5.48)

The Mott’s model is widely used to explain concentration dependences of
resistivity of transition metal alloys. In particular, the resistivity decreases
at filling of d-shells of transition metal ions by electrons of another alloy
component, which results in prohibition of s-d transitions.

The s-d scattering owing to phonons was also considered by Wilson [479,2].
In the case T À θD he obtained the result

ρph
sd =

(
3

4π

)1/3 m1/2
s md

e2nMa0

(Es
F )3/2

kBθ2
D

T

(
1− h̄s∆ksd

kBθD

)
(5.49)

where s is the sound velocity, ∆ksd = ks
F − kd

F is the minimum scattering
quasimomentum of a phonon, as determined by the momentum conservation
law. Temperature corrections to (5.49) are obtained by the expansion of the
Fermi distribution functions which yields

ρph
sd = aT [1− b

(
kBT

EF

)2

] (5.50)

The formulas (5.49), (5.50) may explain values and temperature depen-
dence of transition metal resistivity at high T . On the other hand, at low T
phonons with small quasimomenta play the dominant role, so that we should
have

ρph
sd ∼ exp

(
− h̄s∆ksd

kBT

)
(5.51)
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(if one takes into account the overlap of s- and d-sheets of the Fermi surface,
ρph

sd ∼ T 5). However, such a strong decrease is not observed experimentally,
which leads to difficulties of the theory. In particular, Wilson [2] claimed that
s-d transitions do not play an important role in the resisitvity of transition
metals.

Generally, s-d transitions may take place for all scattering mechanisms
and are especially important for elastic processes. At low temperatures the
resistivity is determined mainly by impurity scattering. Due to strong energy
dependence of density of states in d-band, this contribution may exhibit a
considerable temperature dependence according to (5.34). For the parbolic
s- and d-bands one obtains [8]

ρi
sd(T ) = ρi

sd(0)


1− π2

6

(
kBT

Ed − EF

)2

 (5.52)

Unlike the electron-electron contribution ρee, ρsd is proportional to the den-
sity of states of d-electrons at EF and consequently to first power of γ. This
difference may be used to separate the s-d scattering contribution. One can
see from Table 5.1 that the ratio of the T -linear resistivity term to g in the
beginning of periods (of order of 10) exceeds considerably that in the end
of periods. Possibly this tendency is connected with different role of s-d
transitions. This seems be important for Sc and Ti columns, decreases ap-
preciably in the V column and further on (as well as for other properties,
the Mn column makes up an exception). Such a behaviour agrees with that
of the coefficient A at the T 2-term and reflects the tendency towards low-
ering and narrowing of d-bands to the end of periods. The narrowing may
result in hampering s-d transitions because of energy and quasimomentum
conservation laws.

5.3.3 Resistivity of magnetic metals

Existence of magnetic moments in transition elements results in additional
factors which influence the behaviour of current carriers in external elec-
tric field. Firstly, thermal fluctuations in the system of magnetic moments
provide a new scattering mechanism owing to s-d exchange interaction. Sec-
ondly, electron spectrum of magnetic crystals depends appreciably on sponta-
neous magnetization (or sublattice magnetization in antiferromagnets) and,
consequently, on temperature.
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The first effect may be described by introducing an additional contribu-
tion to resistivity,

ρtot = ρ + ρmag (5.53)

The second effect cannot be described by the simple expression (5.53). In
the simplest case where the influence of magnetic ordering is small we may
perform the expansion in magnetization to obtain

ρtot(M) = ρtot(0) + aM2 (5.54)

Unlike (5.53), the sign of the second term in (5.54) needs not to be positive.
The expansion (5.54) does not hold in the cases where the gap in the spec-
trum modifies strongly the states near the Fermi level. In such situations
the occurence of magnetic splitting may result in considerable anomalies of
resistivity and other transport properties at the magnetic ordering point.

For the antiferromagnetic structure with the wavevector Q, the disturba-
tion of electron spectrum by magnetic ordering is especially strong at 2k = Q.
Then we obtain from (G.70)

E1,2
k = tk ± |IS| (5.55)

This disturbation may influence strongly transport properties provided that
the Fermi level coincides with the antiferromagnetic gap. The corresponding
resistivity anomaly at the Neel point was discussed in [420]. The result in
the mean-field approximation has the form

ρ(T ) = aT + b[1−m2(T )] + cm2(T )T (5.56)

where
m(T ) = S/S ∼ (1− TN)1/2

is the relative sublattice magnetization. With lowering temperature, this con-
tribution increases rapidly at passing TN and may lead to a ρ(T ) maximum.
Such a behaviour is observed in α-Mn (Fig.5.10), Cr (Fig.5.3) and rare-earth
metals [265,406]. An alternative explanation of the maximum is based on
the critical scattering near the second-order magnetic transition point. In-
vestigations of Dy and Ho in strong magnetic fields [421] demonstrated that
the resistivity decreases sharply at field-induced transition into ferromagnetic
state with disappearance of the spiral magnetic superstructure.

Consider exchange scattering of conduction electrons by spin disorder
within the s-d exchange model. The result for the magnetic resistivity at
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high temperatures in the mean-field approximation is given by (M.84). For
spin S = 1/2 it takes the form

ρmag =
9π

2

m∗

ne2

I2

EF

(
1

4
− S

2
) (5.57)

In far paramagnetic region we have for arbitrary S

ρmag =
3π

2

m∗

ne2

I2

EF

S(S + 1) (5.58)

The result of the type (M.84) was first obtained by Kasuya [422]. It explains
rather well experimental data on the temperature dependence of resistivity
of ferromagnetic metals near the Curie point. For rare earth metals, the
expression (5.58) with the replacement

S(S + 1) → (g − 1)2J(J + 1)

describes satisfactory the change of high-temperature spin-disorder resisitiv-
ity in the 4f-series [16].

Consider magnetic scattering at low temperatures. Passing to magnon
operators with the use of the Holstein-Primakoff representation (E.1) we
obtain from (5.23)

ρ =
πkBT

〈j2
x〉

2I2Se2
∑

kq

(vx
k↑ − vx

k+q↓)
2Nqnk↑(1− nk+q↓)δ(Ek↑ − Ek+q↓ + ωq)

(5.59)
Integrating over k we derive the result for resistivity

ρ = C1T
2

∫ ∞

T0/T

xdx

sinh x
+ C2T0T ln coth

T0

2T
(5.60)

where the constants Ci are determined by the electron spectrum, C2 being
non-zero only for a non-parabolic electron spectrum, the quantity

T0 ∼ TCq2
0 ∼ (I/EF )2TC (5.61)

coincides with the boundary of the Stoner continuum ω− (Appendix G.1),
q0 = 2|IS|/vF is the threshold vector for the one-magnon scattering pro-
cesses. At very low temperatures T < T0 the one-magnon resistivity (5.60)
is exponentially small since the quasimomentum and energy conservation
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law cannot be satisfied at characteristic thermal magnon quasimomenta. At
T À T0 we have

ρ0(T ) ∼ T 2N↑(EF )N↓(EF ) (5.62)

(the second term in (5.60) yields small corrections of order T0T ln T and is
usually neglected).The same results follow from the solution of the transport
equation (Appendix M.3). Thus spin-wave scattering in the wide tempera-
ture interval T0 < T < TC results in the square temperature dependence of
resistivity. The difference from the electron-phonon scattering (see (5.28)) is
explained by the square disperson law of magnons, so that their number is
proportional to T 3/2 rather than T 3.

The T 2 -dependence was obtained by Turov [425] and Kasuya [426], and
further confirmed by many authors. However, at very low temperatures in
ferromagnetic transition metals there exist contributions to resistivity, which
are proportional to T 3/2 or T [265,406]. Linear temperature corrections ow-
ing to relativistic interactions were found in [425]. However, such corrections
are too small to explain the experimental data. An attempt was made in
[288] to explain the T 3/2-term by the non-quasiparticle contributions to the
impurity resistivity which occurs due to strong energy dependence of inco-
herent states near the Fermi level. Indeed, taking into account (5.36) we
obtain the correction to conductivity

δσ(E) ∼ −V 2
∫

dE

(
−∂f(E)

∂E

)
δN(E) ∼ −T 3/2

It should be noted that the T 2-term (5.62) is absent in the case of a half-
metallic ferromagnets (HMF, Sect.4.5) where the states with one spin pro-
jection only exist at the Fermi level and one-magnon scattering processes
are forbidden in the whole spin-wave region. This seems to be confirmed by
comparing experimental data on resistivity of Heusler alloys TMnSb (T =
Ni,Co,Pt,Cu,Au) and PtMnSn [331]. The T 2-contribution from one-magnon
processes to resistivity for half-metalic systems (T = Ni, Co, Pt) was really
not picked out, whereas the dependences ρ(T ) for “usual” ferromagnets were
considerably steeper (Fig.5.11). In the HMF situation, as well as for usual
ferromagnets at T < T0, the resistivity is determined by two-magnon scatter-
ing processes. These result in the weak T 7/2-dependence of resistivity [427]
(see also [428]) which is due to vanishing of the electron-magnon scattering
amplitude at zero magnon wavevector (Appendix G.1).
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Consider the situation in rare-earth metals which are ferromagnetic at
low temperatures. Because of strong anisotropy, the dispersion law of spin
waves differs from that in d-metals. The magnon spectrum in rare earths
contains a gap of order T ∗ ∼ 10K; in the absence of anisotropy in the basal
plane we have the linear law ωq ∼ q. The gap results in occurence of an
exponential factor exp(−T ∗/T ) in the magnetic resistivity. For the linear
dispersion we obtain dependence ρ ∼ T 4 [429] instead of T 2 since each power
of q yields at integration a factor of T/TC (instead of (T/TC)1/2 at ωq ∼ q2).
The latter result was confirmed by the experimental dependence ρ ∼ T 3.7 for
gadolinium in the region 4-20K [430].

Using the formula (5.23) with the Hamiltonian of the s-d model (G.2) in
the spin-wave region, we obtain for low-temperature magnetic resistivity of
antiferromagnetic metals

ρ =
πkBT

〈j2
x〉

2I2Se2
∑

kq

(vx
k − vx

k+q)
2nk(1− nk+q)[Nq(uq + vq)

2)

×δ(Ek −Ek+q + ωq) + Nq+Q(uq+Q − vq+Q)2)δ(Ek −Ek+q + ωq+Q)] (5.63)

The resistivity at very low temperatures is determined by contributions of
small q in (5.63), i.e. by transitions inside antiferromagnetic subbands (Ap-
pendix G.2). Due to the linear dispersion law of magnons, such transitions
result, as well as electron-phonon scattering, in a T 5-dependence of resistivity
[428]. (The earlier result ρ ∼ T 4 [426] was erroneous since the coefficients of
the Bogoliubov transformation (E.10), which have an essential q-dependence,
were not taken into account.) Because of singularity in uv-transformation
coefficients, the contribution from the region of small |q−Q| (i.e. of the in-
tersubband contibutions) is, generally speaking, larger. However, as well as
for ferromagnets, it is impossible to satisfy the quasimomentum conservation
law at q → Q because of antiferromagnetic splitting, so that this contribution
is in fact exponentially small at

T < T0 = ω(q0) ∼ (|IS|/EF )TN (5.64)

with q0 = 2|IS|/vF being the threshold value of |q−Q|. (Note that the
boundary temperature is not so small as for a ferromagnet, (5.61).) At
higher temperatures T > T0 the intersubband contributions yield the T 2-
behaviour of resistivity [433]. In the two-dimensional situation these con-
tributions become T -linear which may explain the characteristic dependence
ρ(T ) in high-Tc superconductors.
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5.3.4 Resistivity of transition metal alloys

Investigation of transport phenomena in alloys as a function of concentration
of various components gives a possibilty to obtain information on their elec-
tron structure. In particular, data on concentration dependence of residual
resistivity ρ(c) in transition metal alloys yields an important information on
change of d-states.

In disordered alloys of simple metals with the same valence (metals with
different valence do not form usually the continuous solid solution series),
the Nordheim rule usually holds

ρ(c) = ρ0c(1− c) (5.65)

1

ρ0

(
dρ(c)

dc

)

c=0,1

= ±1,
1

ρ0

(
d2ρ(c)

dc2

)

c=0,1

= ±2

In TM alloys the symmetry of ρ(c) curve is violated (see Fig.5.12). An
explanation of this violation can be obtained within the Mott s-d transition
model. To demonstrate this we write down the conductivity of the alloy
A1−cBc , with A being a transition metal and B a simple metal, in the form

σ = σs + σd ' σs = ρ−1
s , ρs = ρss + ρsd (5.66)

Taking into account the relations

ρss = ρ0
scB(1− cB), ρsd = acB(1− cB)Nd(EF ) (5.67)

and the concentration dependence

Nd(EF ) ' cB(1− cB)NA(EF ) (5.68)

we obtain [434]

ρ ' ρs = ρ0
scB(1− cB) + ãcB(1− cB)2 (5.69)

which yields a deviation from the Nordheim rule.
Other factors which lead to violation of this rule may exist. So, for Cu-Ni

alloys, d-electrons are at localized levels for small nickel concentrations and
form band states for c > 40% only [435]. At the critical concentration, an
abrupt change of the alloy properties takes place.
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5.3.5 Two-current model of ferromagnetic metals

The two-current models considers two types of current carriers in an itin-
erant ferromagnet which have different spin projections. Unlike the Mott
model, where the current of d-states is neglected, contributions of both types
of states are comparable. Effects of strong spin polarization are especially
important for d-bands, but may be appreciable for s-type current carriers
too.

The phenomenological treatment of the model is rather simple [436]. The
total current and, consequently, conductivity, are represented as a sum of
contributions from majority and minority current carriers:

j = σE, σ = σ↑ + σ↓ (5.70)

Then the resistivity takes the form

ρ = σ−1 =

(
1

ρ↑
+

1

ρ↓

)−1

=
ρ↑ρ↓

ρ↑ + ρ↓
(5.71)

which corresponds to a parallel junction. Further we have to take into account
transitions between both the types of carriers. These are due to spin-flip
scattering processes by spin inhomogeneities, spin waves, magnetic impurities
etc. Then we have

ρ↑ = ρ0
↑ + ρ↑↓, ρ↓ = ρ0

↓ + ρ↓↑ (5.72)

(consecutive junction). On substituting (5.72) into (5.71) we obtain

ρ =
ρ0
↑ρ

0
↓ + ρ0

↓ρ↑↓ + ρ0
↑ρ↓↑ + ρ↑↓ρ↓↑

ρ0
↑ + ρ0

↑ + ρ↑↓ + ρ↓↑
(5.73)

Such an approach may be applied to describe transport effects in ferromag-
netic transition metals and their alloys. Unfortunately, reliable microscopic
calculations of the quantities which enter (5.73) are hardly possible, and it is
more convenient to determine them from experimental data. One uses often
the data on the deviation from the Matthiessen rule.

To illustrate this approach we consider a ternary alloy M1−x−y Ax By. We
have for the impurity resistivity (ρ↑↓ = ρ↓↑ = 0)

ρAB = ρA + ρB + ∆ρ (5.74)
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where ρA,B are the resistivities of the corresponding binary alloys,

∆ρ = (αA − αB)2ρAρB[(1 + αA)2αBρA + (1 + αB)2αAρB]−1 (5.75)

with
αA,B = ρA,B↓/ρA,B↑

Varying the concentrations x and y one can experimentally determine the
parameters αA,B.

At finite temperatures, additivity of the impurity residual resistivity ρi

and T -dependent contributions for a binary alloy is also violated:

ρ↑,↓(T ) = ρi↑,↓ + ρl↑,↓(T ) (5.76)

ρ(T ) = ρi

[
1 +

(
α− µ

1 + α

)2
]

+ ρl(T ) +
(

α− 1

α + 1

)2

ρ↑↓(T )

with
α = ρi↓/ρi↑, µl = ρl↓/ρl↑, (5.77)

ρi =
ρi↑ρi↓

ρi↑ + ρi↓
, ρl =

ρl↑ρl↓
ρl↑ + ρl↓

where l stands for the index of a concrete temperature-dependent scattering
mechanism.

Using experimental data on ternary and binary alloys, parameters αA,
αB, µl, ρi, ρl(T ) and ρ↑↓ were determined for the ferromagnetic transition
metals [436]. In a number of cases, the parameters α deviate strongly from
unity. As an example, data on the alloy NiCo1−xRhx are shown in Fig.5.13.
Due to strong non-linearity of the ρ(x) dependence, the parameters ρ↑ and
ρ↓ turn out to be considerably different. Note that the deviations from the
linear dependence at small x cannot be explained by the Nordheim rule.

In a metal with transition metal impurities the scattering of conduction
electrons into d-resonance impurity states near the Fermi level plays the
dominant role. The behavior of the quantity α in the 3d-impurity series for
Fe and Ni hosts is presented in the Table:

T Ti V Cr Mn Fe Co Ni Cu
α (NiT) 1.9 0.52 0.3 10 15 20 - 3.4
α (FeT) 0.38 0.12 0.22 0.13 - 2.1 5 -

As discussed in [436], qualitatively this behavior may be explained on the
basis of the Friedel concept of the virtual bound d-state. The spin-up nickel
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d-band is practically filled, and only spin down states may screen the impurity
charge perturbation. For early 3d-impurities (Cr, V, Ti) in Ni the spin-up
impurity d-state is repelled above the spin-up d-band, so that the impurity
density of states gd↑(EF ) is rather large, the magnetic moment being opposite
to the host one. At the same time, for strongly magnetic Co, Fe and Mn
impurities only s-states are present at EF for spin up. The value of gd↓(EF ) is
rather large for all the 3d-impurities in the Ni host. Thus α strongly increases
at passing from the first half of 3d-series to the second one.

Magnetic moments of 4d-impurities are created mainly by host magne-
tization, the magnetization perturbation being strongly delocalized. The
behavior of α for the first half 4d-series impurities in Ni is similar to that in
3d-series.

In pure iron the Fermi level is just below the spin-up d-band. Therefore
in the Fe host the repulsive impurity potential pushes up the spin up d-level
for Mn, Cr, V and Ti impurity series through the Fermi energy, the magnetic
moment decreasing. At the same time, for Co and Ni impurities gd↑(EF ) is
small. For all the 3d-impurities in iron gd↓(EF ) is rather small. The qualita-
tive consideration of the problem may be performed also within the Anderson
impurity model (see [717]). Quantitatively, the local density of states and
other characteristics of the impurity electronic structure are obtained from
band calculations. Such calculations were performed for a large number of
impurities (including 3d- and 4d-impurities) in the Ni and in the Fe host
[718-722]. One can see from the results that even for 3d-impurities in Ni
the simple Anderson-model picture is in fact poor: the local impurity DOS
gdσ(E) is strongly influenced by the host. Besides that, the Fe host, which
has (unlike the Ni host) a large magnetization, determines in a great measure
formation of magnetic moment even for later 3d-impurities. The 4d-impurity
states are strongly hybridized with the valence host states so that the picture
of narrow virtual bound impurity d-state is not applicable. This is especially
obvious for Y, Zr and Nb impurities in Ni where gσ(EF ) for both σ are quite
small and differ by a small exchange spin splitting only [719]. However, for Tc
to Pd impurities rather sharp hybridization peaks are present. As compared
to Mn, Fe and Co, the spin up peaks for Tc, Ru and Rh are broader and
extent somewhat above EF . The most consistent calculation of resistivity
may be performed on the basis of the scattering phase shift analysis on the
base of band structure calculations. Such calculations were carried out for
d-impurities in Cu [723], the role of magnetic moments being neglected, and
in Ni [724]. In the latter case the agreement with experiment was not quite
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satisfactory. A simplified estimations in the case of a ferromagnetic host with
appreciable magnetization perturbations was performed in [717] by using the
results of band structure calculations and the Friedel sum rule.

A general (with neglecting crystal-field effects) expression for resistivity
per impurity in terms of the phase shifts ηlσ has the form

ρσ = ρuσ

∑

l

(l + 1) sin2(ηlσ − ηl+1,σ) (5.78)

where ρuσ is the resistivity unitarity limit for a given spin projection per
scattering channel (see Sect.6.1). In the approximation of free conduction
electrons we have

ρuσ = 2m∗/πzσegσ

where m∗, zσ and gσ are the effective mass, concentration and density of
states of conduction electrons at the Fermi level for a given spin projection,
e is the electronic charge. To estimate the phase shifts we use for each spin
projection (spin-flip processes are neglected) the Friedel sum rule

∆nσ =
1

π

∑

l

(2l + 1)ηlσ (5.79)

The changes of electron numbers are determined by

∆n↑,↓ =
1

2
(∆Z ±∆M)

where ∆Z is excess charge introduced by the impurity ion, i.e. the difference
between impurity and host atomic numbers, ∆M is the total magnetization
change induced by the impurity (in µB). Similar to the standard Friedel ap-
proach for non-magnetic hosts, only d-scattering (l = 2) contribution can be
taken into account. This is generally speaking, sufficient for rough estima-
tions. However, in a number of cases s,p-contributions play an important role.
In particular, for the impurities in the Ni host, which do not destroy strong
ferromagnetism (∆Z = −∆M), the density of spin-up d-states near the
Fermi level is rather small, and their disturbation by impurity is practically
absent [720]. A similar situation takes place for d-impurities from the begin-
ning of d-series where d-states are almost empty and ∆Z +∆M = −10. The
sp-contributions are also important for non-magnetic sp-impurities which in-
troduce a strong charge perturbation.
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The values of ∆M and some data on the partial contributions ∆nlσ =
(2l+1)ηlσ/π may be obtained from the band calculations results [720] for the
Ni host and in [721] for the Fe host. First we discuss the case of the Ni host.
To perform calculations we have to specify the values of ρuσ. For the Cu host
one puts usually ρu = ρuσ/2 = 3.8µΩ cm/at% [725]. As demonstrate band
structure calculations [24], the value of total density of states with spin up
for metallic nickel is two times larger, but the s-contribution is considerably
smaller than for Cu: although the spin up d-subband is practically filled,
its tail dominates at EF , so that gd↑/gs↑ ∼ 10. Still larger d-contributions
occur for spin down where a large density of states peak is present at EF and
gd↓/gs↓ ∼ 100. Thus, although d-electrons are usually assumed to possess
small mobility, the problem of their contribution to conductivity should be
investigated.

For non-magnetic impurities Cu, Zn, Ga, Ge in Ni the partial values of
∆nσ may be estimated from results of Ref.720. The calculations according
to (5.78) with ρu↑ = 15µΩ cm/at% yield satisfactory values of ρ. However,
the estimation of ρ↓ with the same value of ρu↓ yields very large values of α.
To reduce α up to reasonable values we have to put ρu↑/ρu↓ ' 5.

Thus the estimations of Ref.[717] lead to the conclusion that d-electrons
make an important contribution to conductivity, especially to the spin-down
current. Indeed, the s-electron contribution cannot provide such a large ra-
tio ρu↑/ρu↓; besides that, this is expected to yield an opposite tendency since
gs↑ > gs↓ [24]. Note that in the situation of several conduction electron
groups the quantities ρuσ should be considered as phenomenological fitting
parameters. Similar statement about the important role of d-states in elec-
tronic transport was made by Kondorsky [502,503] on the basis of data on
the anomalous Hall effect.

Now we consider briefly the case of the Fe host. Unlike nickel, iron is not
a strong ferromagnet since d-states with both spin projections are present
at EF . Moreover, the Fermi level lies in a pseudogap for the spin down d-
states. Therefore one may expect that spin up d-states should make a larger
contribution to the transport properties (besides that, band calculations [24]
give a strong spin polarization of sp-electrons at EF ). Indeed, for FeNi
and FeCo systems we have ∆M > 0, but α > 1, so that we may estimate
ρu↑/ρu↓ = 0.2.

At present, the two-current model was also applied to consider anisotropy
of electrical resistivity in magnetic field, temperature dependence of the nor-
mal Hall effect, thermoelectric power, magnetoresistivity, transport effects in
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bulk samples [726] and multilayers (especially, giant ∆ρ/ρ-effect [437]).

5.4 Thermoelectric power

In the presence of a temperature gradient, the electric and heat currents are
given by the linear relations (5.1), (5.2). For j = 0 we obtain

E = −λ

σ
gradT ≡ α gradT (5.80)

where α is the absolute differential thermoelectric power.
The coefficients in (5.1), (5.2) are determined by the disturbance of the

equilibrium distribution function by external fields. Provided that the k-
dependent relaxation time τ may be introduced,

f1k = −τkvk

[
eE + (εk − EF )

1

T
gradT

]
(5.81)

Using the expressions for electric and heat current, we obtain

σ = e2K0, λ = ν/T = eK1/T

where

Kn = −1

3

∑

k

v2
kτk(εk − EF )n ∂nk

∂εk

(5.82)

Then we have

α = − K1

eTK0

(5.83)

After expanding (5.83) in T/EF up to the second order we obtain

α = −π

3

k2
BT

e

(
∂ ln σ(E)

∂E

)

E=EF

(5.84)

where σ(E) is the conductivity as a function of the Fermi level position (see
(5.31),(5.32)). Thus the thermopower is expressed in terms of conductivity
and its energy derivative.

The sign of α is determined by the sign of electric charge (or effective
mass). In particular, it should be reversed when the Fermi level approaches
the Brillouin zone boundaries (a becomes positive).
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In the simplest approximation we may write down

σ(E) = e2n(E)τ(E)/m∗ (5.85)

where n(E) is the number of electrons in the k-space under the surface with
a given E = EF , so that dn(E)/dE equals to the density of states N(E).
Then we have

α = −π2

3

kB

e
kBT

[
N(E)

n(E)
+

1

τ(E)

∂τ(E)

∂E

]

E=EF

(5.86)

The expression (5.86) contains the concentration contribution which is de-
termined by the number of electrons, and the relaxation contribution which
depends on the function τ(E). The value of the first contribution is estimated
as

α ∼ −π2

3

kB

ne

kBT

EF

≈ −0.9 · 102kBT

EF

µV

K
(5.87)

which agrees roughly with experimental data (α ∼ 1µV/K at kBT/EF ∼ 10).
At the same time, in semiconductors α does not contain the small factor
kBT/EF and is considerably larger.

The dependences τ(E) are different for various scattering mechanisms.
At high temperatures,

τ(E) ∼ E3/2, n(E) ∼ E3/2, σ(E) ∼ E3

At low temperatures, where impurity scattering dominates and the electron
mean free path is constant,

τ(E) ∼ E−1/2, σ(E) ∼ E

Then (5.84) yields

α = −π2k2
BT

eEF

·
{

1 , T > θD

1/3 , T ¿ θD
(5.88)

The relation (5.88) gives reasonable results for Na and K which are described
by the free electron model, so that α and the Hall coefficient are negative.
However, generally speaking, such simple dependences do not reproduce ex-
perimental data even for simple metals (see Fig.5.14). One can see that
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α may become positive and in most cases the dependences α(T ) are non-
monotonous. The high-temperature behaviour is usually attributed to the
effect of phonon drag [8]. The corresponding contribution in the free electron
model may be presented in the form

αph = − cph

3ne
=

1

3
cphR (5.89)

where cph is the lattice specific heat, R is the Hall coefficient.
The dependences α(T ) in transition metals are still more complicated.

Especially large values of α are observed in Pd and Pt. An important fact
is a similarity in the α(T ) behaviour within each column of the periodic
table. The generalized dependences α(T ) are shown in Fig.5.15. A corre-
lation between signs of α and the Hall coefficient is as a rule absent, which
demonstrates inapplicability of simple theories to these quantities in transi-
tion metals. In some cases (e.g., for La near the a-b transformation and for
Ti near 500K), a simultaneous sign change takes place in R(T ) and α(T ). In
other cases (e.g., for Sc and Hf) the sign inversion temperatures are consid-
erably different. Sometimes the change of α(T ) sign is not accompanied with
that for R(T ) (however, one has to bear in mind that R(T ) is measured as a
rule in a more narrow temperature interval). As well as other transport prop-
erties, thermoelectric power exhibits also anomalies at the magnetic ordering
points (Fig.5.16).

To explain complicated α(T ) behavior one has apparently to take into
account presence of several current carrier groups and scattering mechanisms.
One of the possible approaches is using the Mott model of s-d transitions. In
this model, main contribution to scattering is connected with transitions of s-
electrons into the d-band. The corresponding relaxation time is proportional
to the inverse density of d-states. Assuming that the relaxation contribution
in (5.86) dominates we derive

α(T ) = −π2

3e
k2

BT

(
∂ ln Nd(E)

∂E

)

E=EF

(5.90)

The expression (5.90) is used frequently to describe the data on the ther-
mopower for metals in the end of periods (e.g., Pd and Pt) and for alloys like
Cu-Ni, Pd-Ag. It reproduces satisfactorily the temperature and concentra-
tion dependences of α in the cases where a filling of transition metal d-band
by electrons of second alloy component takes place near its top where the
value of dNd(E)/dE is very large.
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We may conclude that the investigation of the α(T ) behavior permits
to study the d-electron density of states. As discussed above, a sharp de-
pendence N(E) influences considerably a number of physical properties of
transition metals. However, the anomalies in thermopower are expected to
be especially sensitive to electron structure details due to presence of the
factor dτ(E)/dE in (5.86). However, one has to exclude other factors which
may influence α(T ).

In the presence of density of states singularities (e.g., Van Hove ones), the
standard scheme of calculating α(T ) should be modified. This is due to that
the expansion of the integrals which determine thermopower (see (5.83)) in
T/EF becomes impossible for peaks with the width of order kBT . Direct
integration was performed in paper [439] with application to palladium. A
triangle model with a jump of dN(E)/dE near EF was used. Although an
agreement with experimental data was obtained at high temperatures, the
maximum at low temperatures remained not explained. This maximum may
be due to the phonon drag effect [7] (however, the signs of R0 and α are
opposite in this temperature region). Freezing out of the s-d transitions and
occurence of a many-electron mechanism at low temperatures may also play
a role in the α(T ) dependence.

Non-monotonous dependences α(T ) are observed also in a number of
transition metal compounds, e.g., copper-oxide systems which provide a basis
for high-Tc superconductors (see experimental data [440,441] and theoretical
considerations [405,442]), Kondo lattices and heavy-fermion compounds (see
discussion in Sect.6.4). In such systems, very narrow density of states peaks
near the Fermi level have apparently a correlation (many-electron) origin and
are not obtained in band calculations.

5.5 The Hall effect

Investigation of electric properties of metals in an external magnetic field
lead to discovery of a number of interesting physical effects which provided a
powerful tool for analyzing their electron structure. This was realized already
in the beginning of modern solid state physics development. So, the physical
basis of galvanomagnetic effects (the Hall effect and magnetoresistivity) is
described correctly in the classical monograph [1]. However, concrete meth-
ods of the Fermi surface reconstruction with the use of such effects were
developed only after the extensive theoretical work in 50-60s (see [10]).



5.5. THE HALL EFFECT 173

Modern theory explains well most effects in normal metals. At the same
time, the situation in transition metals is less satisfactory, which is connected
with their complicated electronic structure and the presence of spontaneous
magnetization (in ferromagnets).

The Hall effect in transition metals includes in fact two effects of different
microscopic nature
(i) the normal effect connected with the Lorentz force
(ii) the anomalous (spontaneous) Hall effect owing to spin-orbit coupling.
The corresponding Hall constants are defined by

Ey = R0jxHz + R1jxMz, R1 = RM ≡ 4πRs (5.91)

Since Rs À R0, the anomalous Hall effect dominates in ferromagnetic crys-
tals. The Hall effect in magnetically ordered metals will be considered in
Sect.5.7.1. Here we note that the spontaneous effect takes place in paramag-
nets too. Putting in (5.91) M = χH we obtain

Ey/jx = R∗
0Hz, R∗

0 = R0 + 4πχRs (5.92)

Thus the spontaneous Hall effect may be picked out in the case of a strong
dependence χ(T ) and is appreciable for large χ, especially near the Curie
point.

Consider the simple quasiclassical theory of the normal Hall effect. Writ-
ing down the phenomenological equations

jx = σxxEx + σxyEy, jy = σyxEx + σyyEy (5.93)

where off-diagonal components are determined by the magnetic field we ob-
tain for cubic crystals (σxx = σyy = ρ−1)

jx =

(
σxy − σxxσyy

σyx

)
Ey, Ey ' −ρ2σyxjz, σ2

yx ¿ ρ−2 (5.94)

The Hall coefficient is introduced by

R =
Ey

jxHz

= −ρ2σyx(Hz)

Hz

(5.95)

In the presence of the field Hx and the Lorentz force

Fy = −e

c
[vH]y =

e

c
vxHz
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the off-diagonal component σyx is connected with the diagonal one by the
dimensionless parameter ωcτ (ωc is the cyclotron frequency, τ is the relaxation
time):

σyx = ωcτσxx (5.96)

so that the conductivity tensor in the field Hz has the form

σ̂ =
e2nτ/m∗

1 + (ωcτ)2




1 ωcτ 0
ωcτ 1 0

0 0 1 + (ωcτ)2


 (5.97)

It is interesting that according to (5.96) σyx ¿ ρ−2. Then we obtain from
(5.95)

R = −ρ2 eτσxx

m∗c
= − 1

enc
(5.98)

Thus in the simplest approximation the normal Hall effect coefficient is a
constant which does not depend on the scattering mechanism. We shall
see below that the situation changes drastically for the spontaneous Hall
effect. In particular, in the case of the phonon scattering (Appendix M.2)
the expansion of s in the scattering amplitude may start, in contrast with
(5.96), from zero-order terms, so that Rs ∼ ρ2 .

Now we consider the experimental situation. In simple (in particular, al-
caline) metals the Hall effect is satisfactorily described by the formula (5.98)
which may be used to determine the carrier concentration n. However, in
polyvalent metals, where the Fermi surface crosses the boundaries of the first
Brillouin zone and several current carrier group exist, there occur consider-
able deviations and a T -dependence arises [8]. Thus the Hall effect may
be used in principle to determine characterisitics of electron structure and
the number and mobility of current carriers in various regions of the Bril-
louin zone. The behaviour of the Hall coefficient in the d-series is shown in
Fig.5.17.

Unlike ∆ρ/ρ-effect (Sect.5.6), the Hall effect in non-ferromagnetic tran-
sition metals has essentially peculiar features. The normal Hall coefficients
of TM exhibit strong temperature dependences which are in some cases non-
monotonous. The forms of the R0(T ) behaviour are as a rule similar in the
periodic table columns. These dependences are shown in Figs.5.18-5.28. A
weak T -dependence is observed for Mo and W only. The local minimum
of R0(T ) dependence in Mn (Fig.5.29) is probably connected with antiferro-
magnetism of this metal.
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In principle, the complicated behaviour R0(T ) may be explained by the
presence of several groups of current carriers. Using (5.97) we obtain in the
case of two groups

R =
(
R(1)σ2

1 + R(2)σ2
2

)
/ (σ1 + σ2)

2

= ρ2
(
R(1)σ2

1 + R(2)σ2
2

)
(5.99)

where

R(i) = − 1

enic
, σi =

e2niτi

m∗
i

The result (5.99) may give a strong temperature dependence only provided
that the dependences σ1(T ) and σ2(T ) are appreciably different. This may
take place at low T , e.g., where light carriers (s-electrons) are mainly scat-
tered by phonons, and heavy carriers (d-electrons with large density of states)
due to electron-electron collisions. For example, this mechanism may be re-
sponsible for a maximum of |R0(T )| in Cu at low temperatures (Fig.5.30).
Similar (but appreciably more pronounced maxima) are present in Pd and
Pt. It is known that in all these three metals two groups of carriers with con-
siderably different effective masses exist which correspond to neck and belly
Fermi surfaces. Ziman [444] proposed that the increase of |R0(T )| in Cu be-
low 100K is connected with freezening out Umklapp processes, the lifetime of
light-mass belly states becoming lengthened with respect to one on the neck
region,τB/τN À 1 whereas τB ∼ τN at room temperatures. These arguments
are confirmed by the calculations [445]. The occurrence of the |R0(T )| max-
imum may be connected with the transition to strong field regime ωcτ À 1
and with strong anisotropy of τ . This hypothesis seems to be confirmed by
investigations of single crystals (see discussion in [443]). At the same time,
the explanation of the maximum in Pd and Pt at T ∼ 200K is more difficult.

At high T ∼ 100 − 1000K the electron-phonon mechanism domiinates
for all the carriers in paramagnetic metals. Therefore the quantitative ex-
planation of the strong R0(T ) change (by several times in Sc, Ti, Zr, Hf,
V, Re) is hardly possible on the basis of (5.99). The non-monotonous de-
pendence R0(T ) in V and Ta (Fig.5.28) is discussed in [446]. The authors
claim that usual Umklapp processes do not explain the R0(T ) minimum at
T = 20− 30K. since the temperatures of their freezing in these metals make
up about 300 and 200K respectively for closed sheets, and for open sheets
the Umkplapp processes do not freeze out up to T = 0. Only Umklapp
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processes between closed hole sheets hN(3) and the open hole surface in the
ΓNH plane, which are localized in the region of minimum distance between
the sheets, yield reasonable values of the freezing temperature T ∗. Below
T ∗ the anisotropy of scattering decreases which results in R0(T ) increase.
Adding impurities suppresses the anisotropy too and leads to vanishing of
R0(T ) minima in agreement with experimental data. This interpretation
agrees with the theory [415] which considers the anisotropy of inequlibrium
distribution function.

Another mechanism of strong dependence R(T ) in paramagnetic metals
may be the influence of the anomalous Hall effect. As follows from (5.92),
such a dependence may be connected with the dependences χ(T ) and Rs(T ).
This possibility was noted in early papers, in particular, in connection with
the anomalies at the Curie point. Kondorsky [447] used this idea for ex-
plaining the R(T ) behaviour in Zr and Re. Of course, reliable independent
methods for determining Rs in non-ferromagnetic metals are absent. The
expression (5.92) may give required values provided that Rs/R0 ∼ 102 − 104

, i.e. Rs is nearly the same or somewhat larger in comparison with ferromag-
netic metals. This assumption seems to be reasonable since the spin-orbital
coupling has the same order of magnitude for all the transition metals.

The expression (5.92) may explain also concrete temperature dependences
R(T ). As discussed in Sect.4.2, χ increases with T in the periodic table
columns with even configurations dn and decreases for odd configurations.
At the same time, Rs(T ) increases in absolute value as ρ2(T ) due to electron-
phonon scattering (Sect.5.7.1). Then we obtain

R∗
0 = R0 + 4πχ(T )bT 2 (5.100)

The sign of the temperature correction in (5.100) is determined by the sign
of Rs. In fact, the value of b is not known exactly and should be used as a fit-
ting parameter. Then we may reproduce various experimental dependences
R(T ). For example, one has to put R0 < 0, Rs > 0 for Ti, R0 > 0, Rs > 0
for Zr, R0 > 0, Rs < 0 for Re with Rs ∼ ρ2(T ) ∼ T 2 in all the cases. Unfor-
tunately, it is difficult to separate the normal and anomalous contributions.
Apparently, the value of R may be determined from low-temperature data
for high-purity samples where Rs → 0.



5.6. MAGNETORESISTIVITY 177

5.6 Magnetoresistivity

The resistivity change in magnetic field (magnetoresistivity, ∆ρ/ρ effect) cor-
responds to square terms in H, i.e. is an even effect. One distinguishes the
longitudinal (H E) and transverse (H E) effects. As well as the Hall effect,
magnetoresistivity occurs due to distortion of electron traectory owing to ex-
ternal field or magnetization. Naively, one might assume that this distortion
should diminish the velocity component v along the electric field and result
in a decrease of current, i.e. an increase of resistivity. In fact, the situation
is more complicated since one has to take into account the Hall field E which
compensates the influence of magnetic field.

The change of resistivity in magnetic field may be described by the Frank
law

∆ρ/ρ ≡ ρ(H)− ρ(0)

ρ(0)
=

BH2

1 + CH2
(5.101)

In weak fields (CH2 ¿ 1) we have the square-law increase, and in strong
fields the resistivity is saturated,

∆ρ/ρ = B/C = const

In some situations, the linear dependence ρ(H) (the Kapitza law) is observed
in strong fields (see [1,10]). Besides that, for Mo, Re, Pt, Fe and Pd the
experimental dependences may be fitted as [448]

∆ρ/ρ ∼ Hm, m < 2 (5.102)

According to the Kohler rule,

∆ρ/ρ = f

(
H

ρ

)
(5.103)

with f being an universal function. The Kohler plots for some simple and
transition metals are shown in Fig.5.31. The Kohler rule holds in wide in-
tervals of r and H almost in all cases.

Let us try to estimate the values of the coefficients B and C in (5.101)
in the simple theory which considers the motion of an electron in a crystal
in external electric and magnetic fields. We use the expansion in T/EF and
the relaxation time approximation. Then the longitudinal ∆ρ/ρ effect turns
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out to be absent to the second-order terms, and for the transverse effect one
obtains

B =
π2

3

(
el

m∗2
kBT

v3

)2

, C =

(
el

m∗v

)2

(5.104)

where l = vτ is the electron mean free path, the averages are taken over the
Fermi surface. The result (5.104) may be interpreted in terms of competition
between the circular motion under the influence of the Lorentz force and the
straightforward motion in the electric field on the path l. The former is
characterized by the orbit radius

rc = v/ωc = m∗vc/eH

Thus we have

CH2 =
(
l/rc

)2
, BH2 =

π2

3

(
l/rc

)2
(

kBT

m∗v2

)2

(5.105)

The occurence of the ratio l/rc ∼ H/ρ illustrates the Kohler rule. In weak
fields (l ¿ rc) the increase of ρ is determined by that the spiral motion of
an electron in the field Hz results in decreasing of the path in the x-direction
between collisions. At large fields,

∆ρ/ρ =
B

C
=

π2

3

(
kBT

m∗v2

)2

(5.106)

Although the result (5.106) is in agreement with the law (5.101), the value
of the coefficient B ∼ (T/EF )2 is considerably smaller than the experimental
one, and the strong temperature dependence is in fact not observed. The
difficulties of the above simple theory are eliminated when one includes a
dispersion of the relaxation time τ(k). Then the average value

τn =
∑

k

∂nk

∂Ek

v2
kτ(k)/

∑

k

∂nk

∂Ek

v2
k (5.107)

differs from τn, and we obtain the non-zero effect at T = 0:

∆ρ/ρ = Q2
(

eH

m∗c

)2

, Q =
[
τ 3τ − (τ 2)2

]
/ (τ)2 (5.108)

Since
τ 3τ ≥

(
τ 2

)2



5.6. MAGNETORESISTIVITY 179

∆ρ/ρ is positive.
Temperature dependence of∆ρ/ρ may be calculated provided that the

factorization
τ(k) = ϕ(T )χ(k) (5.109)

is possible (this may take place, e.g., at high temperatures). Then we derive

∆ρ/ρ ∼ σ2(T )H2 (5.110)

with σ(T ) being the conductivity. Thus ∆ρ/ρ is expected to increase with
lowering T . The relation (5.110) is in agreement with the Kohler rule. It
should be noted that the temperature dependence of (5.110) (a decrease with
ρ) contradicts to expressions (5.101), (5.104) for a single group of current car-
riers, which yield an increase as ρ2 with increasing T . Thus the experimental
T -dependences of ∆ρ/ρ-effect correspond to essentially anisotropic relaxation
time or to existence of several current groups.

Consistent calculation of the parameter Q, which is defined in (5.108), is
a very complicated problem. More convenient is the simple estimation from
experimental data with the use of

Q =
1

H
(∆ρ/ρ)1/2 ρ

R0

(5.111)

where R is the Hall coefficient. For most metals the value of Q makes up
from 1 to 4. An important exception are semimetals As, Sb, Bi where Q ∼
102 − 103. The giant ∆ρ/ρ-effect in these substances is connected with their
anomalous electronic structure [10]. Some transition metals also possess large
value. E.g., for zirconium Q = 20, which may be connected with strong
anisotropy for hcp crystals.

Higher-order approximations which take into account the k-dependence
of electron velocity permit to obtain the longitudinal ∆ρ/ρ-effect. The cor-
responding correction to the distribution function is given by [1]

f
(3)
k = −τ 3 e3

h̄2c2
EH2∂nk

∂εk

[
vy

(
∂vy

∂kx

∂vz

∂kz

− ∂vz

∂ky

∂vx

∂kz

+

vy
∂2vz

∂k2
x

− vx
∂2vz

∂kx∂ky

)
+ x ←→ y

]
(5.112)

According to experiments by Kapitza (see [1,10]), the longitudinal effect may
be comparable with the transverse one.



180 CHAPTER 5. TRANSPORT PROPERTIES

In 50s-60s, investigations of galvanomagnetic effects were widely applied
to reconstruction of the Fermi surface shape of metals. In strong magnetic
fields where

ωcτ = eHτ/m∗c À 1

three types of the ∆ρ/ρ-effect behaviour were found
(i) ∆ρ/ρ is saturated at arbitrary orientation of H in the crystal
(ii) ∆ρ/ρ is not saturated at arbitrary orientation of H
(iii) ∆ρ/ρ is saturated for some orientations of H and continues to increase
in strong fields for other orientations.

The type of behaviour depends on that whether a given metal is compen-
sated, i.e. the number of electrons equals to that of holes, ne = nh. Evidently,
the compensation situation is impossible for odd number of conduction elec-
trons per atom. Among transition elements, the compensated metals are Ti,
Cr, Mo, W, Re, Fe, Os, Ni, Pd, Pt, and Sc, V, Nb, Ta are uncompensated
(for other d-metals the data in [10,443] are absent).

As follows from (5.92), at ωe,h
c τ À 1 the off-diagonal conductivities do

not depend on τ and m∗, and the Hall fields are given by

Ee,h
y = − 1

ne,hec
jxHz (5.113)

so that
σyx = σe

yx + σh
yx = (nh − ne)

ec

H
(5.114)

At ne = nh the quantity σyx vanishes and

σxx ' ne2
(

τe

me

+
τh

mh

)
1

ωe
cω

h
c τeτh

(5.115)

so thatρxx ∼ H2 . Thus in the case of a compensated metal ∆ρ/ρ does not
exhibit saturation.

In a similar way one may explain existence of peculiar field directions in
a crystal where saturation is absent [10,144]. To this end we have to consider
open orbits in some direction v (which correspond to an open k orbit in
the k-space). Then the field H will not influence such electron states and
we obtain again ρxx ∼ H2 . The linear Kapitza law in strong fields may
be connected with the anisotropy of ∆ρ/ρ-effect in single crystals. Such a
behaviour is obtained after averaging over orientations with account of open
orbits [144].
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The above classification may be changed by magnetic ordering because of
lifting spin degeneracy. In particular, the compensation may become violated
for partial occupation numbers with a given spin projection.

5.7 Anomalous transport effects in ferromag-

netic metals

5.7.1 The extraordinary Hall effect

According to (5.91), the Hall resistivity in ferromagnetic crystals is given by

ρH = Ey/jx = R0H + R1M = R0B + 4πRsM (5.116)

where B = H + 4πM is the “true” macroscopic field in the substance,

R1 = 4π(R0 + Rs), Rs = R1/4π −R0 (5.117)

The presence of the peculiar Hall coefficient Rs in ferromagnets was estab-
lished in first experimental investigations of the Hall effects (see [265,384]).
Already in 1881 (the “normal” effect was discovered in 1879) Hall found the
influence of the magnetization on the transverse electric field, which occured
in an external magnetic field. At measuring the electric field as a function of
magnetic induction B in nickel, he noted that the slope of the linear increase
was changed after magnetic saturation.

A typical field dependence ρH(H) in a ferromagnet is shown in Fig.5.32.
At 0 < H < Hc (Hc is the field where magnetic domains become fully ori-
ented) the magnetization increases rapidly from 0 to Ms, so that ρH(Hc) =
4π(Rs + R0)Ms and the slope of the curve is determined by the quantity
4π(R0 + Rs). At H > Hc the slope is determined by the usual coefficient R0

and weak high-field susceptibility (paraprocess). The coefficient Rs deter-
mined in such a way turns out to exceed R0 by several order of magnitude,
which may be seen explicitly from the break of the plot ρH(B). This demon-
strates wittingly the existence of the extraordinary Hall effect.

Besides that, attempts to define the Hall coefficient in ferromagnets in the
standard form ρH = RB resulted in quite strange temperature dependences
of the Hall coefficient (in particular, in a jump at the Curie point). Therefore
Pugh [449] proposed to express the Hall field in terms of the magnetization.
Kikoin [450] investigated the temperature dependence of the Hall field of
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nickel in a wide region below and above TC . The results yielded convinc-
ing evidences for existence of the spontaneous Hall effect. Its temperature
dependence was described by the expression

R1(T ) = a
[
M2(0)−M2(T )

]
(5.118)

It was also found that the relation with the resistivity R(ρ) ∼ ρ takes place
in iron group metals for varying temperature and impurity concentration
where n = 1.2 ÷ 2 (see [394,457]). Experimental data on the temperature
dependence of Rs in iron group metals are shown in Fig.5.33.

The extraordinary contribution to the Hall effect in ferromagnets occurs
even in the paramagnetic phase where the magnetization is given by M = χH
and

R = R0 + χR1 (5.119)

Despite the small value of χ ∼ 10−3, the addition to R0 may be noticeable.
The extraordinary (anomalous) Hall effect is observed also in antiferromag-
nets and paramagnets. Its value is especially large in compounds with high
values of χ, including Kondo lattices and heavy fermion systems (Chapter 6)
[451,452].

First theoretical consideration of the anomalous Hall effect (AHE) was
carried out by Rudnitskii [453]. He demonstrated that the simplest suppo-
sition about the deviation of magnetized conduction electrons in the field
induced by electric current may not explain the value of the effect, leading
to quantities which are smaller by three orders of magnitude than the exper-
imental ones. Further, he put forward the idea to explain the effect by the
spin-orbit interaction. The corresponding energy

Eso = 〈Hso〉 , Hso = λls = λ[rp]s (5.120)

is proportional to the magnetization 〈Sz〉 = M and yields the force

Fso =
∂

∂r
Eso ∼ [pM]

which is similar to the Lorentz force. The estimation

Eso = µBHso ∼ 10−13 erg, Hso ∼ 107 Oe

just yields the effective magnetic field required.
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Already in the paper [453] the basic question about the averaging of the
spin-orbit interaction over a crystal with possible zero result was considered.
Indeed, the periodic SOI itself does not provide the Hall effect, but one has
to introduce inhomogeneities which scatter current carriers and lead to an
asymmetry of y and −y directions. Thus the value of Rs correlates with the
electrical resistivity.

The first attempt of quantum calculation of the Hall coeffucient in fer-
romagnets with account of SOI was carried out [454]. However, the authors
of this paper did not take into account symmetry properties of SOI matrix
elements. In fact, no linear in SOI corrections to the electron distribution
function exist, so that the result of the calculation [454] should vanish.

The absence of the AHE within the lowest order approximation in the
transport equation was demonstrated by Karplus and Luttinger [455]. To ob-
tain a non-zero effect, they considered dynamical corrections to the electron
energy in the electric field (i.e. to the field term) owing to interband matrix
elements of SOI and of velocity. The corresponding off-diagonal conductivity
does not depend on the scattering mechanism. Since

Rs ≈ 1

4π
R1 ≈ − 1

4πM

σyx(M)

σ2
xx

(5.121)

we obtain
Rs = αρ2

xx (5.122)

where the constant α does not depend on temperature. The result (5.122)
was widely used to fit experimental data.

Being important for the development of the theory, the calculations [455]
still had incomplete and rather artifical character. Indeed, they did not take
into account corrections to the collision term which have lower order in the
scattering amplitude and may yield larger contributions. Thus the theory of
AHE required a more consistent consideration.

A step in this direction was made in papers by Kohn and Luttinger [458]
where a new method of obtaining transport equations with the use of equa-
tions of motion for the density matrix was proposed. In [459] this method
was applied for calculation of AHE owing to scattering of magnetically polar-
ized current carriers by impurity centres. Unlike [457], contributions owing
to collision terms (“skew scattering”) occured in both the lowest and next
orders with respect to the scattering amplitude. The final result has the form

Ri
s = αρi + βρ2

i (5.123)
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where ρi is the impurity resistivity of a sample. The ratio of the first term in
(5.123) to the second one equals EF /(3niφ) where ni is the concentration of
impurity atoms, φ is the impurity potential. At small ni this ratio is large,
so that almost linear dependence Rs(ρi) should be observed.

Detailed derivation of the ρ-linear term is considered in Appendix M.1.
The expression for the coefficient a in (5.123) reads

α = − µ2
Bk3

F

18π∆2

ρeffϕ

M(0)
(5.124)

where the effective charge density ρeff is defined by (M.52) and includes
spin-orbital parameter, ∆ is the splitting of energy levels, which is of order
of bandwidth. Some peculiarities of this expression should be discussed. The
sign of Rs is determined by signs of not only current carrier charge and SOI,
but also the potential φ. Therefore this sign may be reversed by changing the
sign of impurity charge. The influence of impurities on the Hall coefficient is
stronger than that on resistivity since Rs is proportional to the third power
of scattering amplitude.

The results (5.123) cannot be easily extended by replacing r to the total
resistivity (such a replacement may be made only in the second term). Thus
a concrete consideration of various scattering mechanisms was needed. As
discussed above, the explanation of AHE is based on the spin-orbital interac-
tion which results in occurence of transverse contribution to current even for
isotropic scattering. Since SOI is linear in magnetization, we have to calcu-
late corrections to the distribution function which are linear in SOI. On the
other hand, for non-degenerate wavefunctions (i.e. for quenched orbital mo-
menta) the operator Hso has only off-diagonal matrix elements, so that linear
corrections to the electron energy are absent. Therefore the transport equa-
tion in the Born approximation, which depends only on the electron energy
and the squared scattering amplitude, does not yield AHE. Thus we have to
consider higher-order transport equations for various scattering mechanisms
(Appendix M).

The phonon mechanism was considered by Irkhin and Shavrov [460]. The
lowest-order transport equation which yields the phonon scattering contribu-
tion to AHE is the equation of the second order in the perturbation Hamil-
tonian H′. According to (M.72), the corresponding expression for the spon-
taneous Hall coefficient reads

Rph
s = −2

3
gµ2

B

e2nh̄

∆2
ρeff t

〈
1

m∗

〉
ρ2

M(0)
(5.125)
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where t is the number of subbands. Introducing the effective spin-orbital
field

µBHso = Eso = −π

3
µ2

Bρeff (5.126)

we derive

Rph
s = 2t

Eso

∆2

e2nh̄

m∗
ρ2

ph

M(0)
(5.127)

Thus the relation Rph
s ∼ ρ2

ph takes place. The expression (5.127) may be
rewritten in the form

Rph
s = ±2t

h̄

τph

Eso

∆2

ρph

M(0)
(5.128)

so that the sign of Rs is determined by the sign of m∗: Rs < 0 for electrons
and Rs > 0 for holes. Putting Eso ∼ 10−14 erg, ∆ ∼ 10−12 erg, ρ ∼ 10−5

Ω cm, τ ∼ 10−13 s we estimate Rs ∼ 10−13 Ω cm/G. Further theoretical
investigations of the phonon mechanisms were performed in papers [461,462].
The role of two-phonon scattering processes was investigated in [463].

The square dependence Rs (ρ) was also found in the paper [464] for the
scattering by spin inhomogeneities; the principal linear term was not found
because of too simple decoupling of spin correlators. Kondo [465] considered
the latter problem in the framework of the s-d exchange model with account
of the proper SOI among localized electrons. He did not derive the trans-
port equation, but used the equations by Kohn and Luttinger [458] for the
impurity scattering. Thus the inelastic part of the scattering was not taken
into account. The result by Kondo for d-metals reads

Rmag
s ∼ λ

∆

(m∗)5/2

E
1/2
F h̄4e2

G2

(
G2

0 −
4

3
G0G1

) 〈
(Sz − 〈Sz〉)3

〉

〈Sz〉 (5.129)

where G are the s-d exchange “Slater” integrals of the type (K.5), ∆ is the
energy difference for magnetic d-electrons. Main shortcoming of the calcula-
tion [465] was using d-electron states with unquenched orbital momenta. At
the same time, the unquenching of orbital momenta in d-metals is connected
with the same SOI which is responsible for AHE.

This point was taken into account by Abelskii and Irkhin [466] who con-
sidered within the two-band s-d model two types of SOI: “proper” d-d inter-
action λ and the interaction s-spin – d-orbit λ′ (see Appendix L). The magne-
tized d-electrons were supposed itinerant and described in the tight-binding
approximation with a small bandwidth, so that their orbital momenta were
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almost quenched. The result of this paper for high temperatures for spin
S = 1/2 reads (see (M.99))

Rmag
s =

9π

64

(
1

EF

)2 ρλ

M(0)

(
1

4
− 〈Sz〉2

)
(5.130)

where

ρλ = λeff
m∗

e2nh̄
, λeff ≈ λ

I(1)

∆E

2

3
lz + λ

′

Taking into account the expression for the spin-disorder resitivity (5.57) this
result may be presented in the simple form

Rmag
s = ± 3

16

λeff

EF

ρmag

M(0)
(5.131)

where the + and - signs correspond to electron and hole conductivity. Thus
we obtain a simple connection between ρmag and Rs.

The contribution of the electron-electron scattering to the extraordinary
Hall effect was calculated in [467]. The result reads

Ree
s ∼ λ

(
T

EF

)4

(5.132)

Separation of various contributions to AHE may be carried out by inves-
tigating the dependence Rs(T ) at crossing the Curie point, since in the far
paramagnetic region the magnetic scattering mechanism is saturated. An-
other possible way is considering the dependence of Rs on the magnetic field
in the ferromagnetic phase [468]. Since the magnetic field suppresses spin
disorder, dρmag/dH < 0 in the paraprocess region. Therefore the signs of Rs

and dRs /dH should be opposite provided that magnetic mechanism domi-
nates. According to [468], for nickel the signs of both Rs and dRs/dH are
negative. This may be explained by the large phonon contribution. However,
this does not quite agree with the dependence Rs (T ) above TC (the rapid
increase of Rs is not observed).

An attempt to formulate a new picture of AHE was made by Berger
[469] who considered the “side-jump” scattering of the electron wave packet
under influence of various mechanisms. The universal result Rs ∼ ρ2 is
obtained in such an approach. It was demonstrated later [470] that the side-
jump scattering is just another formulation of the Luttinger’s skew scattering
(corrections to the field term).
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On the whole, experiments at high temperatures are in agreement with
the above theoretical results. However, the measurements at low T do not
yield a linear dependence between lnRs and lnρ. Thus a special consideration
of the spin-wave region, where the mean field approximation is inapplicable,
is required. The calculation by Kagan and Maksimov [471] yielded the result
Rs ∼ T 4 . In the paper [472] another contribution, which was due to en-
ergy dependence of the distribution function, was found. It turns out that,
because of cancellation of lowest-order terms, such contributions to AHE
(unlike resistivity) are the most important ones. The final result of [472]
reads (see Appendix M.3)

Rs = ± 3π

512

h̄I2

e2kF M(0)

(
k
dEk

dk

)−2

k=kF

[
A

(
T

TC

)4

+ B
(

T

TC

)3
]

(5.133)

where the constants

A = 1.1l
I(1)

∆E
, B = 0.8λ

′
(5.134)

are determined by “proper” and “improper” SOI respectively. One can see
that a simple connection between the Hall coefficient and resistivity is vio-
lated at low temperatures and the dependence Rs(T ) may be rather com-
plicated. This is confirmed by experimental data on Fe, Co, Ni (Fig.5.33)
and diluted ferromagnetic alloys [473], which demonstrate non-monotonous
temperature dependences of Rs whereas ρ behaves monotonously.

A number of calculations of the anomalous Hall effect with account of real-
istic band structure (in particular, the Fermi surface topology and anisotropy)
were performed [474,475]. The results show the strong influence of the Fermi
surface details on the anomalous Hall effect at low temperatures.

The Hall effect in 4f-metals merits a special consideration. Due to variety
of magnetic structures and complicated phase diagrams in rare earths, the
role of various factors in the Hall effect may be investigated here. In par-
ticular, the influence of antiferromagnetism and strong magnetic anisotropy
becomes important. On the other hand, the situation is somewhat simlplified
in comparison with d metals because of a distinct separation between current
carriers (s,p,d electrons) and magnetic f-electrons, which permits to separate
proper and improper spin-orbital interaction effects.

The normal and anomalous Hall effects in 4f-metals were extensively
investigated starting from 60s. Detailed investigations were performed for
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heavy rare earths (a review is given the monograph [15]). The temperature
dependences of the Hall coefficient for heavy rare-earth metals are shown in
Fig.5.34. Main distinctive features of the anomalous Hall effect in comparison
with 3d-metals are as follows

(i) The dependence Rs(T ) has a more complicated non-monotonous charac-
ter. However, the temperature of extrema do not coincide with points of
transitions between magnetic structures. A change in Rs(T ) sign takes place
for Tb and Dy at T ∼0.8-0.9TN .

(ii) A good proportionality between Rs and magnetic resistivity takes place
(Fig.5.35).

(iii) R is highly anisotropic: the values in different crystallographic directions
vary by several times.

(iv) The dependence Rs(T ) is not influenced by ferro-antiferro transitions.

It would be instructive to compare the Rs behavior in AFM region with
data on other antiferromagnets, e.g., Cr and Mn [443]. However, this com-
parison is hampered by that the latter data are insufficient to separate the
normal and anomalous contributions. Theory of AHE in rare-earths is based
on the above-discussed general theory but some extra factors should be taken
into account.

The terms with the vector products [k,k′], which arise from the ma-
trix elements of the conduction electron orbital momenta (l)kk′ , describe the
anisotropic electron scattering. Such terms correspond to the coupling of
conduction electron current in the external electric field to the momentum J
and yield therefore the anomalous Hall effect. The Hall coefficient is propor-
tional to A(g − 2), which corresponds to the interaction of electron orbital
momenta with the localized orbital momenta (2 − g)J (see (B.20)). This
picture is different from that in d-metals where the anomalous Hall effect
is due to weak spin-orbit coupling. For f-electrons, this coupling is strong
(of order 10 eV), which enables us to consider only one J-multiplet, so that
the spin-orbit coupling constant does not enter explicitly the results. It is
worthwhile to mention that one of first papers, devoted to derivation of the
Hamiltonian of the type (K.4), was the paper by Kondo [465] on the theory
of the anomalous Hall effect (which preceeded to the famous papers on the
Kondo effect).

In the antifferromagnetic region one has to determine the saturation mag-
netization in terms of high-field susceptibility χs = dM/dH. Then one ob-
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tains the following equations for the Hall resistivity ρH

ρH(Hdm) = 4π (R0 + Rs) Ms (5.135)

∂ρH

∂H
= R0 + 4π [Rs + R0(1−N)] χs (5.136)

where H = 4πNMs , N is the demagnetization factor. Thus one can separate
the normal and anomalous Hall coefficients by measuring Ms, χs, N and
ρH(H). It should be noted that in the AFM region χ is not saturated up to
H ∼ 40 kOe.

Although the spin-disorder scattering mechanism [465,466] yields the be-
haviour Rs(T ) ∼ ρmag(T ) which is really observed at low temperatures, such
simple theory does not explain changes in the Rs(T ) sign. Attempts to do
this were performed by a number of authors [476-478].

The idea by Maranzana [476] was using higher-order terms in the s-f
Hamiltonian derived by Kondo (see also Appendix K). Besides the main
anisotropic-scattering term

iλ1(2− g) [k,k′] Jνc
+
kαck′α = iλ1 [k,k′] Lνc

+
kαck′α (5.137)

the terms were considered, which had the structure

iλ2〈JνJν〉〈[k,k′] σαβ〉c+
kαck′β (5.138)

the scalar product of tensors being defined by

〈AB〉 〈CD〉 =
1

2

{
(AC) (BD) + (AD) (BC)− 1

3
(AB) (CD)

}
(5.139)

As a result, higher powers of momentum operators occur, which result af-
ter averaging in new functions of magnetization. In particular, there exist
the contribution to Rs which is proportional to the second derivative of the
Brillouin function,

MS =
〈(

Sz − 〈Sz〉3
)〉

= −J3B
′′

J (y) = −J3f1

(
T

TN

)
(5.140)

where

y =
3 〈Jz〉
J + 1

TN

T
+

gJµBH

kBT
(5.141)
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Therefore this contribution is non-monotonous near TN . Giovannini [477]
introduced a still more complicated function

M4 = J4
{
B
′′′
J (y) + 2B

′′
J(y) + 2

[
B
′
J(y)

]2
}
≡ J4f2(T/TN)/BJ(y) (5.142)

which contains the higher-order derivatives of BJ . This led to the dependence
of the form

ρH = C1f1(T/TN) + C2f2(T/TN) (5.143)

The constants C1 ∼ λ1 and C2 ∼ λ2 were used as fitting parameters. For Tb
and Dy, C2/C1 ∼ 30 and 9 respectively, whereas C2 = 0 for gadolinium. The
value of C1 for Gd corresponds to the unreasonably large spin-orbital constant
λ ' 0.5eV. The values of Rsin paramagnetic regions, which are obtained from
the estimations of C1 and C2, turn out to be not quite satisfactory. It should
be also noted that the C2-term corresponds to a rather higher order in the
s-f Hamiltonian and hardly may give a dominating contribution. Therefore,
despite a qualitative explanation of the Rs(T ) behaviour, the mechanism
discussed is debatable.

Somewhat later Fert [478] considered the influence of the side-jump scat-
tering which corresponds to corrections to the field term in the transport
equation. This mechanism yields some renormalizations of the coefficients at
the Brillouin function derivatives. However, the value of AHE in gadolinium
remains unexplained.

The anomalous Hall efect in heavy-fermion systems is discussed in the
papers [479].

5.7.2 Magnetoresistivity in the presence of spontaneous
magnetization

The ∆ρ/ρ-effect in ferromagnets has important peculiarities. Its value may
be of order 10−2, which is much greater than in usual metals, and have both
positive and negative sign (Fig.5.36). The Kohler rule is usually not satisfied.

An important circumstance of the situation in a magnetized sample is
possibility of the non-zero effect in the absence of the external magnetic
field. The spontaneous effects are masked in multidomain samples where the
average magnetization is zero. The single magnetic domain forms in the fields
above the field of technical saturation Hc. In the low-field region (below Hc
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) the effect is due to a change in relative volumes of domains with M‖j and
M⊥j:

ρ(H) =
1

V

(
V‖ρ‖ + V⊥ρ⊥

)
(5.144)

For H = 0 we have

ρ =
1

3
ρ‖ +

2

3
ρ⊥ (5.145)

so that
∆ρ‖(Hc)/∆ρ⊥(Hc) = −2 (5.146)

(Akulov’s rule for even transport effects [265]).
Above the technical saturation H > Hc, the field dependence of resistivity

is considerably weaker and determined by the paraprocess (the field depen-
dence of magnetization M = Ms + χH). The dependence ρ(H) is owing to
suppression of spin disorder, which results in a decrease of exchange scatter-
ing of current carriers. This effect should take place also in the paramagnetic
region T > TC , resulting in a negative contribution to ∆ρ/ρ. Experimental
data are often described by the equation

∆ρ/ρ = a(M2
s −M2(H)) (5.147)

so that
∆ρ/ρ = −a1H − a2H

2 (5.148)

Thus we obtain the linear ∆ρ/ρ-effect. It should be noted that similar field
dependences of ∆ρ/ρ may take place also in antiferromagnetic metals. For
example, the behaviour ∆ρ/ρ ∼ H3/2 was found in Fe3Pt [480].

As it is clear from the above consideration, the ∆ρ/ρ-effect in a single
domain is determined by the difference of ρ⊥ and ρ‖ , i.e. by dependence
of resistivity on the angle between vectors j and M. This dependence turns
out by one-two order of magnitude stronger than in the usual ∆ρ/ρ -effect.
Therefore the Lorentz force does not explain the effect quantitatively. The
most natural relevant microscopical mechanism is, as well as for the extraordi-
nary Hall effect, the spin- orbital interaction. The extraordinary ∆ρ/ρ-effect,
which is quadratic in M , occurs in the second order of perturbation theory
in this interaction.

Unlike the Hall effect, the microscopic theory of the ∆ρ/ρ-effect in fer-
romagnets is not developed in detail, and the whole physical picture is still
absent. Some calculations with account of different scattering mechanisms
and the spin-orbital interaction were performed starting from 50s [265]. Smit
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[481] and Marsocci [482] investigated the Mott s-d transition mechanism.
Kondo [465] treated the scattering by magnetic inhomogeneities (as well as
for the Hall effect, the picture of unquenched orbital momenta was used).

Vu Dinh Ky [483] considered the transport equation for the impurity
scattering. In the second order in SOI, corrections, which are proportional
to[kM]2 , occur both in collision and scattering terms. They yield the resis-
itivity anisotropy required. The final result is rather cumbersome and may
be represented in the form

∆ρ/ρ ∼ λ2M2 (5.149)

so that ∆ρ/ρ decreases with temperature and vanishes above the Curie point.
A numerical estimation was made in [483] by using the comparison with the
anomalous Hall effect. Since the Hall resistivity ρH = 4πRsM occurs in the
first order in λ, but contains an extra power of the impurity potential φ, we
have

∆ρ/ρH ∼ Hso/φ (5.150)

Putting for nickel Hso ∼ 10−13 erg and φ ∼ 10−14erg one obtains ∆ρ/ρ ∼10
in a rough agreement with the experimental data (ρH/ρ ∼ 0.5%, ∆ρ/ρ ∼
3%).

The phenomenological consideration of magnetoresistivity in ferromag-
netic metals may be performed within the two-current model with strongly
different currents j↑ and j↓ [436].

5.7.3 Magnetooptical effects

Magnetooptical (MO) effects in ferromagnetic transition metals are closely
related to galvanomagnetic effects. Experimentally, the Faraday and Kerr
polarization plane rotation angles in ferromagnets are by several orders larger
than in paramagnetic metals. They are proportional to magnetization rather
than to magnetic field and strongly decrease above the Curie point.

Microscopic mechanisms of the large MO effects are connected with spin-
orbital interaction. In particular, the Faraday effect is analogous to the
high-frequency extraordinary Hall effect. Although the spontaneous Hall
effect is determined in the static limit by the magnetization, separation of
magnetic and electric characterisitics at high frequencies becomes impossible,
so that the similarity with magnetooptical effects occurs. Proportionality of
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the Hall field and the Faraday rotation was established already in 1893 by
Kundt [484].

From the phenomenological point of view, polarization plane rotation is
due to gyrotropy, i.e. presence of antisymmetric contribution, in dielectric
and magnetic permeability tensors εαβ(ω) and µαβ(ω). In the optical region
the magnetic gyrotropy is connected mainly with anisotropy of gyroelectric
properties, the q-dependence of ε(q, ω) playing an important role.

First physical explanation of MO effects in ferromagnets was given by
Hulme [485] and Kittel [486], and the theory of the frequency dependence was
developed by Argyres [487] and Cooper [488]. An account of electron scat-
tering permitted to extend the theory to the low-frequency region [489,490]
and the case of low temperatures [491,381].

Consider a simple theory of the MO Kerr effect. At reflection from the
magnetic medium with the complex refraction factor ñ = n + ik and off-
diagonal conductivity σxy, the light with the frequency ω changes its polar-
ization by the Kerr angle

θK =
4π

ω
(A Im σxy + B Re σxy) /

(
A2 + B2

)
(5.151)

where

A = n3 − 3nk2 − n, B = −k3 + 3n2k − k

At small damping k ¿ n the value of θK is determined mainly by Im σxy . In
the simplest case of a cubic structure with the magnetization vector which
is parallel to the (001) plane, the Argyres formula takes the form [316]

Im σxy =
π

ω

∑

k,m6=m′
[F xy

m′m↑(k)nkm′↑(1− nkm↑)δ(ω − ωmm′↑ (k))

−F xy
m′m↓(k)nkm′↓(1− nkm↓)δ(ω − ωmm′↓ (k))] (5.152)

where m is the band index,

ωmm′σ(k) =εkmσ − εkm′σ

is the interband transition frequency, n is the Fermi distribution function,

F xy
m′mσ(k) =2i

∑

m′′

[
(lzm′′m)∗

ωm′m′′σ
px

m′′mpy
mm′ +

lzm′′m

ωm′m′′σ
px

m′′m′p
y
m′m

]
(5.153)
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pα
m′m = 〈km′σ | −i∂/∂xα | kmσ〉
lzm′m = 〈km′σ | ξlz | kmσ〉

lz is the orbital momentum operator z-projection,

ξ =
2

rc2

∂Veff

∂r

with Veff being the effective potential for conduction electrons.

The formula (5.152) demonstrates a strong dependence of the Kerr angle
on electronic structure and magnetic ordering. Thus MO effects are promis-
ing from the point of view of comparison with band structure calculations.
Comparison of magnetooptical properties with results of band calculations
is performed, e.g., for nickel [381], Fe-Co alloys [492] and gadolinium [493].

An almost total compensation of the first and second term in the square
brackets of (5.152) takes place provided that the spectrum e depends weakly
on σ. At the same time, the effect is large in strongly ferromagnetic case.
In particular, for half-metallic ferromagnets (Sect.4.4) at ω < δσ (δσ is the
gap for the spin projection σ) the corresponding term in (5.152) vanishes, so
that one may expect large values of Kerr rotation. Indeed, for the system
NiMnSn1−x Sbx the intensity of peaks in the frequency dependence of θK

decreases sharply with increasing x, i.e. as the Fermi level goes out of the
gap [494]. According to (5.153), the angle θK is proportional to the spin-
orbit coupling, i.e. increases for heavy elements. Therefore one may expect
that the HMF which contain platinum should have larger values of θK . In-
deed, giant values θK ' 0.150 (for the red light), which exceed considerably
the values for NiMnSb, were observed the compound PtMnSb [307,308] (the
results of the calculation are given in [316]). Note, however, that accord-
ing to [495] main difference between electronic structures of HMF’s PtMnSb
and NiMnSb, which results in smaller value of θK in the latter compounds,
is connected not so much with the spin- orbit matrix element values, as
with a shift of some energy levels owing to “scalar” relativistic effects (ve-
locity dependence of mass and the Darvin correction). In this sense, the
simplest assumption about the direct connection between the spin-orbit cou-
pling strength and the Kerr rotation is not quite adequate.

Record values of θK might be observed in the ferromagnetic phase of the
compound UNiSn, which should also have a half-metallic structure [315,316].
However, experimentally this turns out to be antiferromagnetic [496,497]
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(see discussion in Sect.6.6). Nevertheless, investigation of isostructural com-
pounds containing actinides (e.g., UCoSn, UPdSn) is of interest from this
point of view.

The polar, meridional and equatorial Faraday and Kerr effects, as well as
the gyrotropic effect (change of reflected light intensity with magnetization)
in ferromagnetic metals were studied systematically in [498-500]. In the
case where the magnetization is perpendicular to the plane of the ingoing
light wave it is posssible to determine simultaneously real and imaginary
part of the tensors ε and µ [500]. Both intraband (indirect) and interband
transitions turn out to play a role. The latter are important near resonance
absorption frequencies, so that the frequency dependence of magnetooptical
effects is a 1/ω-hyperbola with peaks owing to interband transitions. A
simple expression for the intraband contribution to off-diagonal magnetic
permeability may be presented in the form [499]

µxy(ω) = − h̄

2m∗c2
iκ

ω2
p

ω
(5.154)

(5.154) where ωp is the plasma frequency, κ is an averaged (over the Fermi
surface) dimensionless parameter which determines the correction to electron
quasimomentum owing to spin-orbital interaction. For ω ∼ 1014s−1 one has
µxy ∼ 10−6 − 10−4 in agreement with experimental data.

It is instructive to establish a correlation between temperature depen-
dences of magnetooptical and galvanomagnetic effects and compare quanti-
tatively the corresponding microscopic SOI parameters. In the paper [489],
the relation between the extraordinary Hall coefficient Rs and the MO pa-
rameters defined by

j = σ1(ω)E + σ2(ω)

[
M

M̃
E

]

σ2(ω)/σ1(ω) ≡ iq (5.155)

was obtained in the form

4πRsM = − σ2 (0)

σ2
1 (ω)

(5.156)

Using the expression for the one-band conductivity

σ1(ω) = σ1(0)
γ

γ + iω
(5.157)
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where γ = 1/τ is the relaxation rate we obtain

Re q = −4πRsMσ1(0)
ω

γ
, Im q = 4πRsMσ1(0) (5.158)

so that the signs of Re q and Im q are opposite and determined by the sign
of Rs , which agrees with the data [501,451]. At the same time, in the case
of the normal MO effect the signs of Re q and Im q coincide. The formulas
(5.159) provide the correct order of magnitude for Im q. Since

Rs˜ [σ1(0)]−2 , γ ∼ [σ1(0)]−1 (5.159)

we obtain from (5.158) the temperature dependences

Re q ∼ M(T ), Im q ∼ M(T )

σ(T )
(5.160)

Their verification is hampered by that the experimental T -dependences [501]
correspond to the resonance region. Therefore investigation of the long-wave
region would be of interest.

MO effects in the X-ray region seem also to be promising to investigate
the band structure. In particular, the magnetic X-ray dichroism (MXD)
effect is discussed in Sect.2.5.

5.7.4 Thermomagnetic effects

Besides above-discussed electric, thermoelectric and galvanomagnetic effects,
there exist a number of effects owing to combined action of the fields E,H
and gradT [7,8,265]. Although not investigated now in detail, the thermo-
magnetic effects (TME) may be of interest since they provide an additional
information about microscopic transport mechanisms in solids.

Difficulties in studying TME increase for transition metals, especially in
the case of magnetic ordering. First paper in this direction have demon-
strated that TME are described by the same concepts and are determined
by the same microscopic parameters as galvanomagnetic effects. In a number
of cases one can perform a separation of “normal” and “spontaneous” TME.
Therefore a correlation between TME and galvanomagnetic effects should
exist which may be used to verify values of the microscopic parameters and
separate different scattering mechanisms. Some attempts of this kind were
made (see [475]).
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At present, most investigated TME are the Nernst-Ettingshausen and
Righi-Leduc effects (see also Sect.5.1). The transverse Nernst-Ettingshausen
effect is the occurrence of the electric power Ey in the presence of the mag-
netic field Hz and temperature gradient in the x-direction. Similar to the
Hall effect, we have

ENE
y = (Q0Bz + 4πQsMz)gradxT (5.161)

where Q0 and Qs are the normal and spontaneous Nernst-Ettingshausen
coefficients. The general expression (5.1) under the conditions

j = 0, ∂T/∂y = ∂T/∂z = 0 (5.162)

yields

Ey ' λxxσyx − λyxσxx

σ2
xx

∂T

∂x
(5.163)

The experimental dependence Qs(T ) turn out to be stronger than Q0(T ).
This dependence is described by the empirical equation [502]

Qs(T ) = −T (α + βρ) (5.164)

where α is determined by impurities. A derivation of the formula (5.164)
with the use of the density-matrix appoach was performed by Kondorsky
[503] by analogy with the Hall effect. The case of alloys was considered in
papers [504]. The result (5.164) was confirmed also within the “side-jump”
mechanism approach by Berger [204].

The spontaneous Righi-Leduc effect (occurrence of gradyT in the presence
of gradxT and Mz) and the Ettingshausen effect (occurence of gradyT in the
presence of electric current jx and magnetization Mz ) were also investigated
[475]. The normal Righi-Leduc coefficient is known to be expressed in terms
of the Hall coefficient and conductivity,

A0 = σR0 =
eτ

m∗c
(5.165)

Search of a similar relation for the spontaneous coefficient is of interest.
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Chapter 6

THE KONDO EFFECT AND
PROPERTIES OF
ANOMALOUS d- AND
f-COMPOUNDS

In this Chapter we consider physics of some types of 4f- and 5f-compounds
which exhibit anomalous electronic properties. Here belong so-called heavy-
fermion, Kondo lattice and intermediate valence systems; in some aspects
close is physics of some d-systems, in particular of copper-oxide high-Tc su-
perconductors where strong electron correlation effects in CuO2 planes take
place. We shall demonstrate applications of many-electron models to the
description of unusual physical phenomena in these substances. Of course,
we do not claim to cover completely this topic which is very wide and rapidly
develops, but consider some selected questions which are determined by the
authors’ scientific interests.

Most exotic properties are characteristic for heavy-fermion compounds.
They possess giant values of effective electron mass, which are manifested
most brightly in the huge linear specific heat. In a somewhat arbitrary def-
inition of heavy-fermion systems, the boundary value of γ = 400 mJ/mol
K2 was established. Besides that, large paramagnetic susceptibility at low
temperatures and large coefficient at the T 2-term in resistivity are observed.

An especial interest in the heavy-fermion compounds was stimulated by
the discovery of unconventional superconductivity in CeCu2Si2, UBe13, UPt3.
The superconducting state is characterized by an anisotropic (non-zero an-
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gular momentum) pairing and is possibly not caused by electron-phonon in-
teraction [505,506]; often superconductivity coexists with antiferromagnetic
ordering.

The properties of the “classical” heavy-fermion systems CeAl3, CeCu6,
CeCu2Si2, UBe13, UPt3, U2Zn17, UCd11, NpBe13 are considered in detail in
the review [507]. For recent years, a number of ternary Ce-based compounds
with huge (of order 1 J/mol·K2 and larger) values of γ, e.g., 2.5 J/mol K2 for
CeInPt4, 1.2 J/mol·K2 for CeInCu2, were synthesized. Besides that many
Ce, Yb and U-based systems possess “moderate” value of g (of order 100
mJ/mol K2). Data on electronic specific heat and magnetic properties of
some anomalous rare earth and actinide compounds, and corresponding bib-
liography are given in Table 6.1 (see also the reviews [512,520,545-547]).

As well for transition metals, the ratio of the coefficient at the T 2-term
in resisitivity to γ2 is universal, but has a magnitude about 25 times larger:
A/γ2 ∼ 10−5µΩ cm (mol K/mJ)2 . This correlation is seen in Fig.6.1 [548].
For comparison, the data on d-systems with large γ (A15 structure com-
pounds which exhibit superconductivity with moderately high Tc) are also
shown.

Modern de Haas - van Alphen investigations yielded the possibility to
observe directly some bands with large effective masses [288,549,550]. Thus
the substances under consideration provide an extremely interesting example
of strong renormalization of electron characteristics owing to interelectron
correlations. Standard band structure calculations of heavy-fermion systems
usually greatly underestmate the values of N(EF). A satisfactory agreemeent
may be achieved in a semiphenomenolgical way by introducing large phase
shifts corresponding to the strong resonance scattering of electron states at
the Fermi level (see [550,551]).

The simplest theoretical model describing the formation of heavy- fermion
state is the s-f exchange model. It should be stressed that, unlike the case
of systems with strong Hubbard correlations (Sect.4.6), the bare interaction
between current carriers and localized moments, which leads to the anoma-
lous behaviour, is rather weak. However, owing to resonance character of s-f
scattering near the Fermi level, the effective interaction in the many-electron
system tends to infinity. Thus we deal with an essentially many-particle
problem. In the next Section, we start the consideration of this problem
from the case of one magnetic d(f)-impurity.
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6.1 The one-centre Kondo effect

It is believed now that the main cause for anomalous properties of heavy-
fermion systems is the Kondo effect. This effect was first discussed in connec-
tion with the problem of resistivity minimum in diluted alloys of transition
metals. Even in “pure” samples of copper, gold and zinc, an increase of re-
sistivity was observed at low temperatures below 10-20 K. It was established
experimentally that this phenomenon is closely related to the presence of a
small amount (10−2 − 10−3%) of impurities of transition metals (Cr,Fe,Mn),
which retain magnetic moment in the host metal. Such a strong effect cannot
be explained within simple one-electron approximations for impurity resistiv-
ity. Kondo [552] demonstrated that in the third order of perturbation theory
the s-d exchange interaction of conduction electrons with localized moments
results in a singular ln T -correction to resistivity owing to many-body ef-
fects (Fermi statistics). When combined with the usual low temperature T 5-
contribution owing to electron-phonon scattering, this correction does yield
the minimum of resistivity. Minimizing the expression

ρ = Ac ln T + BT 5 (6.1)

with c being the impurity concentration we obtain Tmin ∼ c1/5, i.e a weak
c-dependence.

Consider the occurence of Kondo anomalies in the s-d exchange model
with one impurity atom

H =
∑

kσ

tkc
†
kσckσ − I

∑

kk′σσ′
(Sσσσ′)c

†
kσck′σ′ (6.2)

The lowest-order matrix element of the elastic s-d scattering (tk = tk′ = EF)
do not differ from those of the usual potential impurity scattering:

〈k′ ↑ |T |k ↑〉 = −ISz (6.3)

In the second order of perturbation theory, two types of scattering processes
contribute to the matrix element (6.3):
1) An electron passes from the state |k ↑〉 into the state |k′ ↑〉. The interme-
diate state |k′′σ〉 should be empty.
2) An electron from the occupied state |k′′σ〉 passes into the state |k′ ↑〉, and
then an electron from the state |k ↑〉 passes into the state |k′′σ〉. The sign of
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this contribution is opposite to that of the first contribution because of the
antisymmetry of the many-electron wave function.

The whole expression for the second order contribution reads

〈k′ ↑ |T |k ↑〉(2) = I2(SzSz + S−S+)
∑

k′′

1− nk′′

tk − tk′′
(6.4)

−I2(SzSz + S−S+)
∑

k′′

1− nk′′

tk − tk′′

= I2S(S + 1)
∑

k′′

1

tk − tk′′
+ I2Sz

∑

k′′

1− 2nk′′

tk − E

where we have used the commutation relation [S+, S−] = 2Sz; similar expres-
sions may be obtained for other matrix elements 〈kσ|T |k′σ′〉. The first term
in the right-hand side of (6.4) yields only a small correction to the potential
scattering. At the same time, the second term, which occurs because of non-
commutativity of spin operators and contains Fermi distribution functions,
contains a large logarithmic factor which diverges as E approaches the Fermi
energy:

∑

k′′

1− 2nk′′

tk − tk′′
=

∫
dE ′ρ(E ′)

1− 2f(E ′)
E ′ − E

≈ 2ρ ln
W

max{|E|, T} (6.5)

where W is of order of conduction band width, E is referred to the Fermi
level, ρ(E) is the bare density of states of conduction electrons with one
spin projection, ρ = ρ(EF). The total contribution of magnetic scattering
to resistivity is obtained after averaging of the squared matrix elements over
the localized spin projections:

ρsd = ρ
(0)
sd

(
1− 4Iρ ln

W

T

)
, ρ

(0)
sd ∼ I2S(S + 1) (6.6)

(at calculating resistivity, |E| ∼ T ). Thus the singular Kondo contribution
occurs in the third order in I.

Similar perturbation calculations may be performed for other physical
properties [552]. The magnetic susceptibility is diminished by logarithmic
corrections of the second order:

χ =
S(S + 1)

3T

(
1− 4I2ρ2 ln

W

T

)
(6.7)
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The s-d contribution to specific heat occurs in the fourth order [560]

Csd(T ) = 16π2S(S + 1)I4ρ4
(
1− 8Iρ ln

W

T

)
(6.8)

The logarithmic term in (6.6) results in an resistivity increase with lowering T
for I < 0. This sign of the s-d exchange parameter takes place for magnetic
impurities in noble metals where the effective s-d exchange is in fact due
to combined action of the s-d hybridization and Coulomb interaction (see
Appendix N):

I = V 2
(

1

∆
− 1

∆ + U

)
(6.9)

where V is hybridization matrix element, ∆ is the position of the d-level
calculated from EF, U is the one-site Coulomb interaction.

The resistivity increase is suppressed at very low temperatures by mag-
netic ordering of impurities owing to long-range RKKY-interaction among
them (in the ordered phase, the orientation of spins becomes fixed and the
scattering becomes ineffective). For d-impurities the third-order correction
(6.6) is in most cases sufficient to describe experimental data since at not too
small c the higher order contributions of perturbation theory are small up to
the magnetic ordering temperature. On the other hand, rare-earth impurities
(e.g., Ce, Yb, Sm, Tm in Y or La-based hosts) may be considered as isolated
ones up to c ∼ 1%; even at larger concentrations the interaction among them
does not necessarily result in usual magnetic ordering, but leads to the for-
mation of “dense” Kondo systems [545]. Therefore the problem of accurate
treatment of many-electron effects owing to s-d(f) exchange interaction at
low temperatures (the Kondo problem) occurs.

Summing up the leading logarithmic terms yields

ρsd = ρ
(0)
sd

(
1 + 2Iρ ln

W

T

)−2

(6.10)

In the case of “ferromagnetic” s-d exchange I > 0 this “parquet” approxima-
tion [14] solves the Kondo problem. However, in more important case I < 0
this approximation yields a divergence of resistivity at the temperature

TK = W exp
1

2Iρ
(6.11)

which is called the Kondo temperature.
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Unlike the critical temperature of a ferromagnet or superconductor, the
Kondo temperature does not correspond to a phase transition, but is just a
characteristic energy scale for a crossover between high-and low-temperature
regions. The consideration of the region T < TK is a very difficult and beau-
tiful mathematical problem. The case T ¿ TK was investigated within phe-
nomenological Fermi-liquid theory [553,10] and analytical renormalization
group methods [554,555]. The numerical solution was obtained by Wilson
with the use of renormalization group approach [556]. Finally, under some
simplifying approximations (which reduce the problem to one dimension)
the exact solution of the one-impurity s-d model was obtained by Andrei
and Wiegmann with the use of the Bethe ansatz [557,558].

It turns out that at T → 0 the effective (renormalized) s-d interaction
becomes infinitely strong, so that the impurity magnetic moment is totally
compensated (screened) by conduction electrons. Strictly speaking, in the
usual s-d model with zero orbital momentum (6.2) such a compensation
occurs only for S = 1/2, and for a general S the Kondo effect results in
the contraction of the impurity spin, S → S − 1/2. However, in a realistic
situation of degenerate electron bands, the number of “scattering channels”
for conduction electrons is sufficient to provide the screening.

The resistivity tends at T → 0 to a finite unitarity limit (which corre-
sponds to the maximum possible phase shift of π/2), the corrections at low
T being proportional to (T/TK)2 [14,552,558]:

ρsd =
3

π
(ρvFe)−2

(
1− π2T 2

T 2
K

+ O
(

T

TK

)4
)

(6.12)

The specific heat of the system has a maximum at T ∼ TK and behaves
linearly at T → 0:

Csd(T ) =
π

3

T

TK

(
1 + O

(
T

TK

)2
)

(6.13)

which is reminiscent of electronic specific heat with EF → πTK.
The magnetic entropy at T = 0,

S(0) = R ln(2S + 1)

is removed owing to the magnetic moment screening rather than to magnetic
ordering. The magnetic susceptibility

χ =
(gµB)2

2πTK

(
1−O

(
T 2

T 2
K

))
(6.14)
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demonstrates the Pauli behaviour (in contrast with the Curie law (6.7) at
T > TK) and is greatly enhanced, as well as specific heat. These results may
be described in terms of a narrow many-particle Abrikosov-Suhl resonance
at the Fermi level with a width of order TK and a height of order 1/TK, so
that TK plays the role of the effective degeneracy temperature. Thus a new
Fermi-liquid state is formed which is characterized by large many-electron
renormalizations.

The interpolation formula for χ(T ) may be presented in a form of the
Curie-Weiss law with a negative paramagnetic Curie temperature, |θ| ∼ TK

. It should be noted in this connection that the difference between transi-
tion metal impurities, which retain magnetic moment in a given host, from
“non-magnetic” ones has quantitative rather than qualitative nature. The
second case may be viewed as that of high TK of order 102-104 K, some-
times higher than the melting point (in the case of usual Pauli susceptibility
T → EF). Similar considerations may be applied to pure substances where
local magnetic moments do not exist at low temperatures (although concrete
theoretical models may be quite different). For enhanced Pauli paramagnets
like Pd, Pt, UAl2 , where the Curie-Weiss holds at high temperatures, one
introduces, instead of the Kondo temperature, the so-called spin-fluctuation
temperature.

6.2 The Kondo temperature for d-impurities

Due to the strong exponential dependence on the model parameters, the
Kondo temperature varies in a large interval from 10−2 to 104 K. Values of
TK for transition metal impurities in copper and gold [559,560], which are
determined from anomalies of various physical properties (resistivity, ther-
mopower, specific heat, magnetic susceptibilty) are presented in Fig.6.2. One
can see a characteristic V -shape dependence in the 3d-series with a sharp
minimum in the middle of the series (n = 5). In the papers [559] these data
were interpreted within the Schrieffer model

Hsd = − I

n

∑

kk′σ

Sσσσ′
∑
m

c†klmσck′lmσ′ (6.15)

[561] which is rather artificial since it does not take into account scattering
by orbital degrees of freedom, despite they should play an important role
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[562]. The model (6.15) yields the following n-dependence of TK

TK = W exp

(
− n

2|I|ρ

)
(6.16)

Consider the calculation of the Kondo temperature with account of the or-
bital scattering for the localized degenerate d-level (the configuration dn,
n < 5) at neglecting intraconfiguration splitting. Then the dependence on
quantum numbers of ME terms vanishes, so that the Hamiltonian of the
one-impurity model takes the form

H =
∑

km

tkc
†
kmckm − I

∑

kk′mm′mi

[X({m1 . . . mn−1,m
′}, {m1 . . .mn−1,m})

− 1

2[l]
δmm′ ]c†kmck′m′ (6.17)

where all the indices in the sets {mi} (mi = 1, 2...2[l] include both spin
and orbital indices, [l] = 2l + 1, l = 2 for d-electrons) are different, X-
operators mark all the possible transitions, the second term in the brackets
is subtracted to exclude the potential scattering, I < 0. For l = 0 the model
(6.17) is reduced to the usual s-d exchange model (6.2) with S = 1/2.

The Kondo temperature is determined from the pole of the T -matrix
defined by

〈〈ck′m|c†km〉〉E =
δkk′

E − tk
+

Tkk′(E)

(E − tk)(E − tk′)
(6.18)

Write down the equation of motion

(E − tk′)〈〈ck′m|c†km〉〉E = δkk′ − I
∑
p

Γkpm(E) (6.19)

Γkqm(E) =
∑

m1...mn−1m′
〈〈[X({m1 . . .mn−1, m

′}, {m1 . . . mn−1,m}) (6.20)

− 1

2[l]
δmm′ ]cqm|c†km〉〉E

Performing the simplest decoupling in the equation of motion for Γ (which
is an analogue of the Nagaoka decoupling, see [552]) we derive

(E − tq)Γkqm(E) = −I{1− [l]−1(2[l]− n + 1)−1 +
1

4
[l]−2
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+(n− 2)
∑

m′m′′p
〈c†pm′′cqm′ [X({m1 . . .mn−1, m

′}, {m1 . . . mn−1,m})

− 1

2[l]
δm′m′′ ]〉}∑

k

〈〈ck′m|c†km〉〉E − I{(2[l]− 2n + 2)nq

−n− 1− 1

2[l]
}∑

p

Γkpm(E) (6.21)

Solving the equation (6.21) we obtain the estimate for TK from the divergence
in the “parquet” approximation, which corresponds to the second Born ap-
proximation for resistivity,

TK = W exp

(
− 1

2[l]− 2n + 2

1

|I|ρ

)
(6.22)

For the second half of the d-series n > 5 the degeneracy of the configuration
dn is smaller than that of dn−1. Thus we have to consider the situation where
the level dn lies above the Fermi level, i.e. ∆ > 0 (otherwise, the Kondo effect
is absent). Then we may pass to the hole representation and reproduce the
result (6.22) with the replacement n → 2[l]− n. The formula (6.22) may be
fitted to experimental data of Fig.6.2 with |I|ρ = 1/16, whereas using (6.16)
yields the unreasonably large value |I|ρ = 1/4.

The dependence on ME term quantum numbers, which is neglected in
above consideration, seems to be important since the distance between dif-
ferent terms in free atoms is of order of several eV. An account of ME term
splitting is performed in Appendix N within the degenerate Anderson model.
The result has the form

TK = W exp


−

(
[S][L]

[S ′][L′]
− 1

)−1 (
n1/2GSL

S′L′
)−2 1

|I|ρ


 , I =

v2
l (kF)

∆

(6.23)
Although the general picture of ion levels (especially in a crystal field) is
very complicated, the occurence of the squared fractional parentage coeffi-

cients
(
n1/2GSL

S′L′
)−2

in (6.23) is expected to lead to a further sharpening

of the dependence TK(n). Indeed, the n-dependence of fractional parentage
coefficients on the average has a minimum in a middle of the d-series. Such
a dependence is due to that the total number of ME terms is maximum near
n = 5 by combinatorial reasons, and for a given n the values of G2 satisfy
the sum rules (A.8). However, direct use of the formula (6.23), which yields
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a strongly oscillating dependence TK(n) in contradiction with experimental
data, probably overestimates the role of ME term effects.

At derivation of (6.23) we have restricted ourselves to the case of LS-
splitting and neglected crystal-field (CF) effects which may be very impor-
tant. In particular, CF results in that L = 0 for some d-impurities (e.g., for
V, Ni [555]). The CF splitting may be taken into consideration in a similar
way, but this requires more cumbersome calculations with the use of Clebsh-
Gordan and fractional parentage coefficients for a point group (these may
be found, e.g., in [565]). At accurate estimations of TK , the influence of
several groups of degenerate levels (e.g., corresponding to different atomic or
crystal-field split terms) should be also taken into account. The expression
for two level groups (∆1 with degeneracy N1 and ∆2 with degeneracy N2)
has the form [565]

TK = T
(0)
K


 T

(0)
K

∆2 −∆1




N2/N1

(6.24)

where

T
(0)
K = W exp

(
∆1

ρV 2(N1 + N2)

)

However, such calculations require a detailed information on the electronic
structure of Kondo impurities.

The role of variation of the interconfiguration splitting should be also
discussed. It was supposed above that the effective s-d parameters, i.e. the
values of v, ∆ and ρ do not depend on the configuration dn. However, it
is well known that in the many-electron picture these configurations possess
different stability (e.g., the value of ∆ should be related to atomic ioniza-
tion potentials). In particular, the spherically symmetric configuration d5 is
rather stable which may result in a large value of |∆| thereby lowering TK

for manganese.

6.3 Spin dynamics and electronic properties

of Kondo lattices

The anomalous rare-earth and actinide compounds are classified as concen-
trated Kondo systems or Kondo lattices since the formation of low-temperature
Kondo state gives most natural explanation of their unusual properties (large
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values of γ and χ(0)). Most of these compounds exhibit ln T -contribution
in resitivity at high temperatures, but have a metallic ground state with
ρ(T → 0) ∼ T 2 . However, examples of insulating Kondo lattices are known
too. The system CeNiSn possesses at low temperatures extremely small en-
ergy gap of order of a few K [566,567]. Partial replacing of Ni by Cu results
in heavy-fermion metallic behaviour [568]. A similar situation takes place for
the narrow-gap compound CeRhSb [569]: the system Ce1−xThxRhSb demon-
strates at x ∼ 0.4 the huge value γ > 1 J/mol K2 [570]. Narrow energy gaps
are found also for NdBiPt [571], Ce3Bi3Pt4 [572].

The picture of the insulating Kondo lattice is also used sometimes for the
narrow-gap intermediate valence semiconductors SmB6, SmS (golden phase)
[545], which are discussed in Sect. 6.5. The formation of the insulating
Kondo state may be described in terms of the coherent Kondo scattering, the
Abrikosov-Suhl resonance being transformed into the narrow many-electron
gap.

Consider the Kondo effect manifestations for the periodic lattice of local-
ized f-moments within the framework of the s-f exchange model (G.2). This
case differs from that of a single Kondo impurity by the presence of intersite
exchange interactions and, consequently, of spin dynamics which tends to
weaken usual Kondo divergences and also leads to some new effects.

We apply perturbation theory in the s-f exchange parameter, the Heisen-
berg f-f interaction being taken into account exactly. The calculation of the
second-order contribution to the electron self-energy yields [367]

Σ
(2)
k (E) = I2

∑
q

∫
dωKq(ω)

(
1− nk+q

E − tk+q + ω
+

nk+q

E − tk+q − ω

)
(6.25)

where Kq(ω) is the spectral density of the localized spin subsystem, defined
by

〈S−q(t)Sq〉 =

+∞∫

−∞
dωeiωtKq(ω) (6.26)

One can see that in the presence of spin dynamics Kondo-like divergences in
the self-energy arise already in the second order. They are formally due to
the Fermi functions:

∑
q

nk+q

E − tk+q ± ω̄
' ρ ln

W

max{|E|, T, ω̄} (6.27)
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where ω̄ is the characteristic spin-fluctuation frequency. As follows from the
spectral representation for the commutator Green’s functions (E.18),

Kq(ω) = − 1

π
NB(ω) Im χqω

χqω = 〈〈Sq|S−q〉〉ω, Im χqω = − Im χq−ω (6.28)

Then in the classical limit ω ¿ T one has

Kq(ω) = Kq(−ω) = − 1

π

ω

T
Im χqω

so that the terms with the Fermi functions cancel out mutually. However, in
the quantum case Σ(E) varies sharply in an energy region of order ω̄ near EF.
This leads to an appreciable renormalization of the Green’s function residue Z
(see (G.53)) and, consequently, of the electronic effective mass m∗ and specific
heat. These renormalizations vanish at T À ω̄. In particular, the result
(6.25) with I → U yields the spin-fluctuation (paramagnon) renormalization
in the Hubbard model [573].

Expressions, similar to (6.25) may be also obtained in other situations.
For

Kq(ω) ∼ [1− f(∆cf)]δ(ω + ∆cf) + f(∆cf)δ(ω −∆cf) (6.29)

the formula (6.25) describes effects of the interaction with crystalline-electric-
field excitations [263], ∆cf being the CF level splitting. In the case of the
electron-phonon interaction I is replaced by the corresponding matrix ele-
ment, and

Kq(ω) = [1 + NB(ωq)]δ(ω + ωq) + NB(ωq)δ(ω − ωq) (6.30)

A spectral density of the form (6.29) with ∆, which depends weakly on q,
corresponds to localized spin fluctuations. The renormalization of m∗ owing
to such fluctuations is much stronger than that owing to “soft” paramagnons
because of smallness of fluctuation phase volume in the latter case.

Thus the definition of the Kondo effect in systems exhibiting dynamics
is non-trivial. The condition Z ¿ 1, characteristic for the Kondo lattices,
may be satisfied not only due to the usual Kondo effect (the formation of the
Abrikosov-Suhl resonance at T < TK), but also due to the interaction with
low-energy spin- or charge-density fluctuations.

The result m∗ ∼ 1/ω̄, which follows from (6.25), (6.27), does not change
in form when account is taken of higher orders terms even for arbitrarily small
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∆. This problem is investigated in [574] for a simple model which describes
the interaction with local excitations of a two-level system (ω̄ = ∆). After
collecting all the singular terms of the type under consideration, we obtain in
the (n + 1)-th order the singular factors lnn |(E ± ω̄)/ω̄|, i.e. the divergences
are shifted from E and the cutoff parameter is ω̄ rather than the bandwidth
W . Besides that, all the singularities are cancelled at ω̄ → 0 due to the
factors of the type tanh(∆/2T ).

Now we consider the true Kondo divergences, corresponding to another
sequence of singular terms which describes spin-flip processes and starts from
the third order in the s-f parameter. These divergences do not vanish in the
absence of dynamics and do yield at E → 0 the factors ln(W/ max{ω̄, T}).
The corresponding contribution to the imaginary part of the self-energy with
account of spin dynamics reads

Im Σ
(3)
k (E) = 2πI3ρ(E)

∫
dω

∑
q

Kq(ω)
nk+q

E − tk+q − ω
(6.31)

(the real part of the singular contribution is absent [367]). The quantity
(6.31) determines the damping of one-particle state and, consequently, the
relaxation rate τ−1(E). Comparing (6.31) with (6.4) we see that spin dy-
namics results in a smearing of logarithmic term in resistivity. Using, e.g.,
the simplest diffusion approximation for the spectral density,

Kq(ω) =
S(S + 1)

π

Dsq
2

ω + (Dsq2)2
(6.32)

with Ds being the spin diffusion constant, we obtain

δτ−1(E) = 4πI3ρ2S(S + 1) ln
E2 + ω̄2

W 2
(6.33)

where ω̄ = 4Dsk
2
F . Thus in resistivity

ln T → 1

2
ln(T 2 + ω̄) ≈ ln(T + aω̄), a ∼ 1 (6.34)

A similar replacement occurs in other physical properties (e.g., in paramag-
netic susceptibility and specific heat). In this connection, shifts in ρ(T ) and
c(T ) curves with changing content of components in heavy-fermion systems
were discussed in [367].
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Now we discuss the thermoelectric power α(T ) in Kondo lattices. At
moderately high (as compared to TK ) temperatures α(T ) is usually large
and has an extremum (a maximum at α < 0, a minimum at α < 0). Large
Kondo contributions to α(T ) correspond to the anomalous odd contribution
toτ−1(E) [552], which should arise, by analytical properties of Σ(E), from
the logarithmic singularity in ReΣ(E) [367]. Although such singularity is
absent in the usual Kondo problem, it occurs in the presence of the potential
scattering V which leads to emergence of complex factors

1 + V
∑

k

(E − tk + i0)−1 (6.35)

which “mix” ImΣ and ReΣ in the incoherent regime. Then spin dynamics
leads to the replacements (6.36)

ln
|E|
W

→ 1

2
ln

E2 + ω̄2

W 2
, signE → 2

π
tan−1 E

ω̄
(6.36)

in ImΣ and ReΣ respectively, and the anomalous contribution to α(T ) reads

α(T ) ∼ I3V

eρ(T )

∫
dE

E

T

∂f(E)

∂E
tan−1 E

ω̄
∼ I3V

eρ(T )

T

max{T, ω̄} (6.37)

Thus the quantity ω̄ plays the role of a characteristic fluctuating magnetic
field which is introduced in [552] to describe thermoelectric power of diluted
Kondo systems.

Near the magnetic ordering point TM, the quantity ω̄ contains non-analytic
contributions, proportional to (T − TM)1−α (α is the critical index for spe-
cific heat). Therefore the Fisher-Langer transport properties anomalies near
magnetic phase transitions [575] should be enhanced in Kondo magnets. This
is confirmed by experimental data on Ce3Al [576], UCu5 [577], Ce1−xLaxIn3

[578] where appreciable breaks of thermopower at the Neel point were ob-
served (Fig.6.3).

6.4 Ground state of the Kondo lattices

The calculations of the previous Section correspond to the temperature region
T À TK . As well as in the case of one Kondo impurity, below TK the
perturbation theory regime passes into the strong coupling regime where
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magnetic momnets are suppressed and a new Fermi-liquid state with greatly
enhanced electronic effective mass occurs.

Besides the Kondo temperature, one introduces sometimes the second
energy scale - the coherence temperature Tcoh, which corresponds to onset of
coherent Kondo scattering by different lattice sites. This is usually small in
comparison with TK. The picture of the coherent state formation enables one
to treat experimental data on low-temperature anomalies of thermoelectric
power in heavy-fermion systems [545,579,580]. With decreasing T below the
above-discussed high-temperature extremum, α(T ) often changes its sign,
has an extremum again and vanishes linearly at T → 0 (see Fig.6.4). Such
a behaviour may be attributed to occurence of a pseudogap with reversing
the sign of the quantity dN(E)/dE at the Fermi level, which determines
the α(T ) sign (Sect.5.4). Besides that, formation of the coherent state is
indicated by the positive magnetoresistivity and a sharp negative peak in
the Hall coefficient.

To describe the formation of the singlet Kondo state in the strong coupling
region we may use the simplest Hamiltonian of the SU(N) Anderson-lattice
model

H =
∑

km

tkc
†
kmckm + ∆

∑

im

Xi(mm)

+V
∑

km

[
c†kmXk(0m) + X−k(m0)ckm

]
(6.38)

(m = 1...N). This model is convenient at describing the interconfigura-
tion transitions f0-f1 (cerium, J = 5/2) or f14-f13 (ytterbium, J = 7/2) and
is treated often within the 1/N -expansion. A more realistic model of s-f
hybridization with inclusion of two (generally speaking, magnetic) configu-
rations is investigated in Appendix N. The model (6.38) may be mapped
by a canonical transformation, which excludes the hybridization, onto the
Coqblin- Schrieffer model

HCS =
∑

km

tkc
†
kmckm − I

∑

imm′
Xi(mm′)c†km′ckm (6.39)

I =
V 2

∆

However, it is easier to treat the Kondo-lattice state in the strong-coupling
regime directly in the model (6.38). To avoid difficulties owing to complicated
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commutation relations for the X-operators, the representation may be used
[581,551]

Xi(m0) = f †imb†i , Xi(m
′m) = f †im′fim, Xi(00) = b†ibi (6.40)

where f † are the Fermi operators, b† are the auxiliary (slave) Bose operators.
This representation enables one to satisfy the needed commutation relations
(A.35). At the same time, according to (A.28), one has to require fulfilment
of the subsidiary condition

∑
m

Xi(mm) + Xi(00) =
∑
m

f †imfim + b†ibi = 1 (6.41)

Then the parameter 〈bi〉 renormalizes the hybridization matrix elements.
A description of the crossover to the coherent regime was constructed

within a modified SU(N) Anderson model [582]. The temperature depen-
dence of effective hybridization parameter was obtained in the form

V 2
ef ∼ 〈b†ibi〉 ∼ ϕ(T )

ϕ(T ) = (N + e−TK/T + 1)−1 =

{
1 , T ¿ Tcoh

O(1/N) , Tcoh ¿ T ¿ TK
(6.42)

with the coherence temperature Tcoh = TK/ ln N .
Below we describe a simple approach to the problem of the ground state

of Kondo lattices, which uses directly the X-operator representation [367].
(An alternative treatment of the Kondo-lattice state, which starts directly
from the s-f exchange model with S = 1/2 and uses the pseudofermion rep-
resentation for spin operators, is performed in Appendix O and Sect.6.6.)
Consider the retarded Green’s function for the localized level states

Gf
km(E) = 〈〈Xk(0m)|X−k(m0)〉〉E (6.43)

Write down the Dyson equation in the form

Gf
km(E) = R

[
E −∆− Σf

k(E)
]−1

(6.44)

where

R = N0 + Nm = 1− N − 1

N
nf (6.45)
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The equation of motion for Gf
km(E) has the form

(E−∆)Gf
km(E) = R


1 + V 〈〈ckm|X−k(m0)〉〉E + V

∑

m′ 6=m

〈〈Xq(m
′m)ck−qm′ |c†km〉〉E




(6.46)
Here we have carried out the decoupling of the term which corresponds to
processes without change of m and yields the formation of hybridization gap,
the corresponding spectrum being given by

(E − tk)(E −∆) = V 2R (6.47)

Further we neglect for simplicity the influence of this gap, which is possible
provided that the latter lies well below the Fermi level (besides that, these
contributions are formally small in the inverse degeneracy of f-level, 1/N).

The terms with m 6= m′ contribute to Kondo divergences. Carrying out
decouplings in the equations for the Green’s function in the right- hand side
of (6.46) we obtain

Σf
k(E) = (N − 1)V 2

∑
q

nq

E − tq
≈ (N − 1)ρV 2 ln

W

|E| (6.48)

Here we have applied again the approximation (6.5).
Then the Green’s function (6.44) has the pole, which is exponentially

close to the Fermi level,

|E| = |∆∗| = TK ≈ W exp

( |∆|
(N − 1)ρV 2

)
(6.49)

Near this pole we may expand

Gf
km(E) ≈ Z

E −∆∗ (6.50)

where the residue of the Green’s function, determining the inverse effective
mass, is

Z = R

(
1− ∂Σf

k(E)

∂E

)−1

E=∆∗
≈ R

N − 1

TK

ρV 2
¿ 1 (6.51)

Thus the pole (6.49) determines a characteristic low-energy scale — the
Kondo temperature. Note that one has to neglect, in spirit of the 1/N -
expansion, unity in comparison with N to obtain the result which is correct
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in the case N = 2, which corresponds to the s-f model with S = 1/2. Sim-
ilar calculations may be performed within the models with realistic atomic
configurations (N.9), (N.5) to obtain the results (N.23), (N.24). These for-
mulas have a simple physical meaning: we have in the exponent the ratio of
degeneracies of the multiplets Γn and Γn−1.

The results for the Kondo temperature in the present approximation is
valid also for the case of one magnetic impurity. Then the value of TK ob-
tained determines the position of the Abrikosov-Suhl resonance. Exponential
dependence on external parameters (in particular, on the f-level position ∆)
makes difficult to establish experimentally reliable correlations of TK with
ME quantum numbers. However, the expression (N.23) enables one to ex-
plain very low values of TK , which are observed for Tm impurities (these are
not obtained within the large-N approach [565]). Indeed, in this case both
the configurations Γn and Γn−1 are magnetic: J = 7/2 for Tm2+ and J = 6
for Tm3+ , so that the ratio (J − J ′)/(2J ′ + 1) in the exponent of (N.23) is
small.

In a periodic lattice of f-moments (anomalous rare earth and actinide
compounds), the Green’s function of conduction electrons has the form

〈〈ckm|c†km〉〉E =
[
E − tk − V 2Gf

km(E)
]−1

(6.52)

As follows from comparison of (6.52) with (6.47), (6.50), the effective hy-
bridization parameter near EF is estimated as v∗ ∼ V Z1/2 ∼ (TK/ρ)1/2.
Thus, instead of the Abrikosov-Suhl resonance, a Kondo gap (or pseudo-
gap), which has a width of order of TK, and corresponding density-of-states
peaks occur near the Fermi level, the latter being, generally speaking, shifted
from the gap. Such a picture of the energy spectrum is confirmed for met-
alic heavy-fermion compounds, by direct far-infrared and point-contact spec-
troscopy data [583].

6.5 Intermediate valence systems

A number of rare-earth elements (Ce, Sm, Eu, Tm, Yb and possibly Pr)
do not possess a stable valence, but vary it in different compounds. In some
systems these elements may produce so-called mixed (or intermediate) valent
state which is characterized by non- integer number of f-electrons per atom.
Such a situation may occur provided that the configurations 4fn(5d6s)m and
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4fn−1(5d6s)m+1 are nearly degenerate, so that interconfiguration fluctuations
are strong. In metallic systems, this corresponds to the f-level located near
the Fermi energy, f-states being hybridized with conduction band states.

The intermediate valence (IV) state is characterized by the single line
in Moessbauer experiments (the time scale of these measurements is about
10−11s), which has an intermediate position. On the other hand, in X-ray ex-
periments (the time is about 10−16s) two lines are seen, which correspond to
configurations fn and fn−1. A peculiar feature of the transition into IV state
is also the change of the lattice parameter to a value which is intermediate
between those for corresponding integer-valent states. Such transformations
(e.g., under pressure) are as a rule sharp (first-order) transitions. Besides
that, IV compounds possess at low temperatures substantially enhanced elec-
tronic specific heat and magnetic susceptibitlity. At high T , χ(T ) obeys the
Curie-Weiss law with the effective moment which is intermediate beween the
the values for the corresponding atomic configurations.

Examples of IV compounds are metallic compounds YbAl2, YbZn, YbCu2Si2,
YbAgCu4, CeN, CeBe13, CeSn3, EuCu2Si2 (see reviews [512,520,584]) and
narrow-gap semiconductors TmSe, SmB6, the “golden” phase of SmS (under
pressure above 6 kbar), YbB12.

The metallic cerium in the α-phase was earlier considered as an IV sys-
tem [584] which seemed to be confirmed by the volume change at the γ − α
transition under pressure. However, it is believed now that this transition
is in fact the Mott-Hubbard transition in the f-band (delocalization of 4f-
electrons due to overlap of f-states at different sites) without a considerable
valence change [585]. This is confirmed by both spectroscopic data [586] and
band calculations [587]. Besides that, the energy difference of the f0 and f1

configurations in metallic cerium is too high for explanation of small heats
for formation of metallic Ce alloys. According to paper [588], the “tetrava-
lent” state of cerium (without localized f-electrons) should be attributed to
f2 rather than to f0 configuration. As follows from atomic calculations (see
[81]), a collapse of f-electrons in cerium takes place at small variations of the
atomic potential. This phenomenon is accompainied by a strong decrease of
f-bandwidth.

For d-metals and their compounds, one can hardly use the term “inter-
mediate valence” since the hybridization and, consequently, the widths of
d-peaks are as a rule large, and valence fluctuations are too rapid. Thus we
shall observe in any experiment the ion states with non-integer number of
d-electrons.
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The 5f-ions in actinide compounds demonstrate a great variety of valence
states – from 1+ to 7+ [371], hybridization being also rather strong. Only
the compounds with ion binding have relatively stable valence configura-
tions. Thus the situation for actinides is more close to 3d-elements than to
rare earths. Delocalization of 5f-electrons and analogy between intermediate
valence in actinides and cerium is discussed in [81,589].

The “homogeneous” intermediate valence should be distinguished from
the inhomogeneous case where lattice sites corresponding to different valences
are inequivalent and the interconfigurational fluctuations are very slow. Such
a situation takes place, e.g., in the compound Sm3S4 which is characterized
by static charge ordering (similar to the well-known case of magnetite Fe3O4).
The inhomogeneous mixed-valent state demonstrates two distinct lines not
only in X-ray, but also in in Moessbauer spectra. This case is opposite to
rapid valence fluctuations in d-metals. In a number of systems, e.g., EuM2Si2
(M = Fe, Co, Ni, Pd, Cu), EuPd2P2 [584], a transition from inhomogeneous
mixed-valent state to the homogeneous one is observed with increasing tem-
perature.

Consider simplest theoretical models for description of the IV state. The
Hamiltonian of spinless Falicov-Kimball model reads

H =
∑

k

[
tkc

†
kck + ∆f †kfk + V

(
c†kfk + f †kck

)]
+ G

∑

i

f †i fic
†
ici (6.53)

where G is the parameter of on-site d-f Coulomb repulsion, we neglect for
simplicity the k-dependence of hybridization. This Hamiltonian enables one
to take simply into account strong on-site f-f repulsion (in the spinless model,
doubly-occupied states are forbidden by the Pauli principle) and is convenient
at description of valence phase transitions, the interaction G being impor-
tant for many-electron “exciton” effects. The Falicov-Kimball model may
be generalized by inclusion of Coulomb interaction at different sites, which
permits to describe charge ordering.

Unlike the model (6.53), the periodic Anderson model takes into account
spin degrees of freedom and permits to describe magnetic properties, but
includes explictitly the Hubbard repulsion. At neglecting orbital degeneracy
the Anderson Hamiltonian has the form

H =
∑

kσ

[
tkc

†
kσckσ + ∆f †kσfkσ + V

(
c†kσfkσ + f †kσckσ

)]
+ U

∑

i

f †i↑fi↑f
†
i↓fi↓

(6.54)
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The intermediate valent situation corresponds to the situation where the
width of f-peak owing to hybridization, Γ = πV 2ρ, is small in comparison
with the distance |∆| = |εF−EF|. On the contrary, the Kondo-lattice (heavy-
fermion) state may be considered as the nearly integral limit of the IV state
(the valence change does not exceed of a few percents). In a sense, IV
systems may be treated as Kondo lattices with high values of TK [545]. Unlike
the Kondo lattice state, not only spin, but also charge fluctuations play an
important role in the IV state.

The excitation spectrum in IV systems may be obtained via diagonalizing
the Hamiltonian (6.53) in the simplest Hartree-Fock approximation which
corresponds to the picture of “exciton condensate” (formation of electron-
hole pairs) [590]. This is achieved, similar to the superconductivity theory,
by the Bogoliubov transformation

c†k = cos
θk

2
α†k + sin

θk

2
β−k

f †k = cos
θk

2
β−k − sin

θk

2
α†k (6.55)

Substituting (6.55) into (6.53) we derive

〈H〉 =
∑

k

[
tkn

α
k + ∆(1− nβ

k)
]
+

1

2

∑

k

′(tk −∆)(1− cos θk)

+V
∑

k

′ sin θk +
1

4
G


1−

(∑

k

′ cos θk

)2

− 1

4
G

(∑

k

′ sin θk

)2

(6.56)

where the fourth and fifth terms correspond to the Hartree and Fock decou-
pling, nα,β

k = f(Eα,β
k ∓ ζ) are the Fermi distribution functions for “electron”

and “hole” excitations,
∑

k

′ . . . ≡ ∑

k

(
1− nα

k − nβ
k

)
. . .

The one-particle energies are given by

Eα,β
k =

δ〈H〉
δnα,β

k

=
1

2

[
Eα,β

k ± (tk + ∆)
]

(6.57)

where

Ek =
[
X2 + (tk + Y )2

]1/2
, X = 2V−G

∑

k

′ sin θk, Y = ∆+G
∑

k

′ cos θk
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The hybridization picture of the electron spectrum (Fig.6.5) is confirmed by
optical spectra and other data for IV semiconductors SmB6, SmS and YbB12

[591] and by investigation of transport properties for TmSe [592].
In the case of the semiconductor, the chemical potential is determined

from the condition ∑

k

(
nα

k − nβ
k

)
= 0 (6.58)

The renormalized hybridization parameter X determines the “direct” energy
gap

|X| = min
k

(
Eα

k − Eβ
k

)
(6.59)

which is observed in optical transitions. Unlike the case of usual semiconduc-
tors, extrema of valence and conduction band do not coincide. The width
of the hybridization gap is estimated in terms of X and bandwidth W as
δ ∼ X2/W . The quantity Y is the position of f-level in the Hartree-Fock
approximation. Varying (6.56) with respect to θk we obtain

sin θk = − X

Ek

, cos θk =
tk − Y

Ek

and the equations for X and Y take the form

X = 2V

(
1−G

∑

k

′ 1

Ek

)−1

(6.60)

Y = ∆ + G

(
1−∑

k

′ tk − Y

Ek

)
(6.61)

These equations have, generally speaking, several IV solutions with various
values of the energy gap. Consider the case T = 0. For a narrow-gap IV state
with |X| ¿ W the quantity Y equals approximately to the Fermi energy and
the equation (6.60) takes the form

X = 2V

(
1− 2λ ln

aW

|X|

)−1

, λ = Gρ, a ∼ 1 (6.62)

The solution to

X1 = 2V

(
1− 2λ ln

aW

|V |

)−1

(6.63)
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describes the state with a hybridization gap, which is renormalized by cor-
relation effects. It should be noted that the logarithmic divergences in the
narrow-gap state are cut at the width of the energy gap, so that, unlike
metallic Kondo lattices, the strong coupling regime is not achieved.

At λ ≥ 1 the expression (6.63) yields the unique narrow-gap solution. In
this case, there exist also two broad-band solution, which are approximately
(at neglecting V ) determined from the equation

G
∑

k

′ 1

Ek

= 1 (6.64)

describing “excitonic” gap states owing to Coulomb interaction.
In the case λ ¿ 1 equation (6.62) has additional narrow-gap excitonic

solutions provided that

|V | < Vc = aWλ exp
(
− 1

2λ
− 1

)
(6.65)

For V ¿ Vc they are given by

|X2,3| = aW exp
(
− 1

2λ

)
± |V |

λ
(6.66)

The corresponding total energy is lower than for the state with the hybridiza-
tion gap (6.63). Thus, for a given valence there are metastable insulator
states. One can assume that in real IV semiconductors V ∼ Vc so that
the value of the gap is determined by a combined effect of hybridization
and many-electron (exciton) effects. Phase transitions between states with
different gaps were observed in the system TmSe1−xTex [593].

It should be noted that the hybridization gap can in principle be obtained
in band structure calculations. Such calculations with account of relativistic
effects were performed for SmS [594].

The expression for the density of states for the spectum (6.57) in terms
of the bare DOS ρ(t) for the s-band has the form

Nα,β(E) =

(
1 +

X2

4(E ∓ Y )2

)
ρ

(
X2

4(Y ∓ E)
± E

)
(6.67)

Near the tops of the bare band and of the lower “hole” hybridization band
we have respectively

ρ(T ) = A(tmax − t)1/2 (6.68)
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Nβ = Ã(Emax − E)1/2, Ã = A
(

2tmax

X

)2

≈ A
W

δ
(6.69)

Taking into account the renormalization of the chemical potential (calculated
from the band top) we obtain for the electronic specific heat enhancement in
a highly doped semiconductor

γ̃

γ
=

N(ξ̃)

ρ(ξ)
=

Ã

A

(
ξ̃

ξ

)1/2

=

(
Ã

A

)2/3

=
(

W

δ

)2/3

(6.70)

Thus the states near the gap possess large effective mass. This explains the
large value of the linear specific heat (γ = 145 mJ/mol K2) [595] in the
“golden phase” of SmS where the current carriers (heavy holes) lie near the
lower edge of the gap.

To consider finite temperature behaviour we treat the simplest case where
the conduction band is symmetric and f-level lies exactly at the conduction
band centre, so that the mean number of f-electrons equals to 1/2 and the
chemical potential does not depend on temperature. Then the equation
(6.61) takes the form

X =
2V

1−GL
, L =

∑

k

1− 2nk

Ek

(6.71)

In the narrow-gap state we have

L =

W∫

−W

dEρ(E)

(E2 + X2)1/2
tanh

(E2 + X2)1/2 + E

4T
≈ ρ

W/2T∫

−W/2T

dx

x
tanh x (6.72)

At high temperatures, the energy gap logarithmically decreases with T :

X(T ) ≈ 2V

λ ln(T/T ∗)
, T À δ(T = 0), T ∗ (6.73)

with

T ∗ =
π

4

W

1.14
exp

(
−1

λ

)
(6.74)

being of order of the direct excitonic gap. Such a behaviour explains qualita-
tively data on the IV semiconductor SmB6 where an appreciable temperature
dependence of the gap is observed in ESR experiments [596]. At low tem-
peratures, the corrections are exponentially small, as well as in the case of
superconducting gap.
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To calculate the electronic specific heat in the narrow-gap insulating state
we write down the expression for the entropy of quasiparticles α and β

S = − ∑

k,j=α,β

[
nj

k ln nj
k + (1− nj

k) ln(1− nj
k)

]

Then we get

C(T ) = T
∂S

∂T
= − 1

T

∑

kj

∂nj
k

∂Ej
k

(
1− T

2

∂

∂T

) (
Ej

k

)2
(6.75)

At low temperatures T ¿ δ(0) specific heat is exponentially small,

C(T ) ≈ 2ρ

T
X2(0) exp

(
δ

T

)
(6.76)

At high temperatures δ ¿ T < |X| we have

C(T ) =
ρ

T
X2(T )

[
1− 2

ln(T ∗/T )

]
+

π2

3
ρT (6.77)

The first term in (6.77) dominates over the usual linear term. Thus C(T )
should have a maximum at T ∼ δ. Such a behaviour of C(T ) is reminiscent
of the Schottky anomaly for localized states, but because of hybridization
the dependence 1/T 2 transforms into 1/T .

The magnetic properties of the IV state may be investigated after includ-
ing spin variables within the model (6.54) [597]. The corresponding energy
spectrum in magnetic field is given by

Eα,β
kσ (H) = Eα,β

kσ (0)− σ

2
H

[
µs + µf ± (µs − µf)

tk − EF

Ek

]
(6.78)

where µs and µf are magnetic moments of s- and f-electrons. The field de-
pendence of the energy gap turns out to be simple

δ(H) =
1

2

[
min

k
Eα

k↑(H) + min
k

Eβ
k↑(H)

]
≈ δ(0)− µfH (6.79)

One can see that at δ = µfH the gap vanishes and a transition into metallic
state takes place. Such a transition was observed in YbB12 at H ∼200 kOe
[598].
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The magnetic susceptibility is given by

χ(T ) = lim
H→0

∑
σ

σ
(
µf〈f †σfσ〉+ µs〈c†σcσ〉

)

H
(6.80)

At high temperatures T À δ, χ is determined by the contribution of transi-
tions between hybridization subbands

∆χ(T ) =
1

2

∑

k

{(
− ∂nα

k

∂Ek

) [
µf

(
1− tk − EF

Ek

)
+ µs

(
1 +

tk − EF

Ek

)]2

+

(
− ∂nα

k

∂Ek

) [
µf

(
1 +

tk − EF

Ek

)
+ µs

(
1− tk − EF

Ek

)]2
}

≈ µ2
f

T
ρW (6.81)

Thus we obtain, owing to strong energy dependence of density of states
(narrow peaks), a Curie-like behaviour with a non-integer magnetic moment.
This mechanism of temperature dependence was also discussed for transition
d-metals [599]. At T ¿ δ the contribution (6.81) is exponentially small, and
χ(T ) is determined by intrasubband transition contribution which is given
by

χ(0) = 2 (µs − µf)
2 ρ (6.82)

Note that at µs = µf expression (6.82) vanishes since the ground state is
singlet.

We see that χ(T ) should also have a maximum at T ∼ δ, characteristic
energy scale δ playing thereby the role of the “Kondo temperature”. Such
a maximum is weakly pronounced in SmB6 and SmS [512] and clearly ob-
served in YbB12 [600], the susceptibility at low T being masked by Van Vleck
contribution of the Sm2+ ion or by paramagnetic impurities.

6.6 Magnetic ordering in Kondo lattices and

heavy-fermion compounds

It was traditionally believed for many years that the competition of the
intersite RKKY exchange interaction and the Kondo effect should result
in the formation of either the usual magnetic ordering with large atomic
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magnetic moments (as in elemental rare-earth metals) or the non-magnetic
Kondo state with suppressed magnetic moments.

However, experimental investigations of last years have convincingly demon-
strated that magnetic ordering and pronounced spin fluctuations are widely
spread among heavy-fermion systems and other anomalous 4f- and 5f-compounds,
which are treated usually as concentrated Kondo systems. Data on magnetic
properties of such systems are presented in the Table 6.1.

The class of “Kondo” magnets is characterized by the following features
[601]
(i) Logarithmic temperature dependence of resistivity at T > TK character-
istic of Kondo systems (Fig.6.6).
(ii) Small value of the magnetic entropy at the ordering point, in compar-
ison with the value R ln(2S + 1), which corresponds to the usual magnets
with localized moments (Fig.6.7). This phenomenon is connected with the
suppression of magnetic specific heat owing to the Kondo effect (see Sect.6.1).
(iii)The ordered magnetic moment Ms is small in comparison with the “high-
temperature” moment µm determined from the Curie constant. The latter
has as a rule ”normal” value, which is close to that for the corresponding rare-
earth ion (e.g., µeff ' 2.5µB for Ce3+ ion). Such a behaviour is reminiscent
of weak itinerant magnets (see Sect.4.4).
(iv) Paramagnetic Curie temperature θ is as rule negative (even for ferro-
magnets) and exceeds appreciably in absolute value the magnetic ordering
temperature. This behaviour is due to the large single-site Kondo contribu-
tion to the paramagnetic susceptibility (χ(T = 0) ∼ 1/TK). The most bright
example is the Kondo ferromagnet CeRh3B2 with TC = 115K, θ = −370K
[284] with moderate γ = 16 mJ/mol K2. (Large value of TC in this com-
pound, which exceeds even that for GdRh3B2, TC = 105K, is not typical and
probably connected with strong d-f hybridization.)

There exist numerous examples of systems (ferromagnets CePdSb, CeSix,
Sm3Sb4, Ce4Bi3, NpAl2, antiferromagnets CeAl2, TmS, CeB6, UAgCu4, some
experimental data and bibliography are presented in Table 6.1) where “Kondo”
anomalies in thermodynamic and transport properties coexist with magnetic
ordering, the saturation moment Ms being of order of 1µB .

As for heavy-fermion systems themselves, the situation is more com-
plicated. There exist unambigous evidences for the antiferromagnetism in
UCd11 and U2Zn17 with the same order of magnitude of Ms [507]. For UPt3

and URu2Si2, Ms ' 2÷3 10−2 µB [524-526]. Antiferromagnetic ordering with
very small Ms was also reported for CeAl3 [509,510], UBe13 [527], CeCu2Si2
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[513,514]. Indications of possible magnetic transition at 2mK were obtained
for CeCu6 [515]. However, the data for CeAl3 and UBe13 were not confirmed
in papers [511] and [528] respectively. Generally, a characteristic feature of
heavy fermion magnets is high sensitivity of Ms to external factors such as
pressure and doping by a small amount of impurities. For example, UBe13 be-
comes an antiferromagnet with an appreciable M under the pressure P > 23
kBar; on the contrary, CeAl3 becomes paramagnetic above P = 3 kBar [510].
The moment in UPt3 increases up to values of order 1µB upon adding 5%
of Pd instead of Pt or 5% of Th instead of U [602]. A number of heavy-
fermion systems demonstrates metamagnetic transitions in weak magnetic
fields with a sharp increase of magnetic moment [603]. The “marginal” situ-
ation in the magnetic state of heavy-fermion systems is discussed in [604] by
using experimental data on their critical behaviuor.

The problem of magnetic ordering in the Kondo lattices was investigated
in a number of theoretical works [605-612]. The roles of the Kondo effect
and and the intersite RKKY interaction are determined by the relation of
the two energy scales: the Kondo temperature TK = W exp(1/2Iρ) which
determines the crossover from the free-moment regime to the strong coupling
region, and TRKKY ∼ I2ρ. The latter quantity is of the order of magnetic
ordering temperature TM in the absence of the Kondo effect. The ratio
TK/TM may vary depending on external parameters and alloy composition.
As an example, Fig.6.8 shows concentration dependences of the saturation
magnetization M0, TK and TC in the alloy CeNi1−xPdx.

In the non-magnetic case, TRKKY ∼ ω with ω being a characteristic
spin-fluctuation frequency. For most compounds under consideration, TK >
TRKKY . However, there exist also anomalous cerium and uranium-based
magnets with TK ¿ TN , e.g., CeAl2Ga2 [521], UAgCu4 (TN = 18K, TK =
3K [530]). This case is close to that of usual rare-earth magnets with the
Kondo effect almost suppressed by magnetic ordering.

To describe the formation of magnetic Kondo state, we consider Kondo
perturbation corrections to magnetic characteristics with account of spin
dynamics. Calculation of magnetic susceptibility [367] yields (cf. (6.7))

χ =
S(S + 1)

3T
(1− 4I2L) (6.83)

where

L =
1

S(S + 1)

∑
pq

∫
dωKp−q

np(1− nq)

(tq − tp − ω)2
(6.84)
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and the spin spectral density is defined by (6.26). A simple estimation of the
integral in (6.84) yields

χ =
S(S + 1)

3T
(1− 2I2 ln

W 2

T 2 + ω2
) (6.85)

where the quantity in square brackets describes the suppression of the effec-
tive moment. The Kondo corrections to the magnetic moment in the ferro-
and antiferromagnetic state are obtained by using the standard spin-wave
result

δS = −∑
q

〈b†qbq〉 (6.86)

and substituting zero-point corrections to magnon occupation numbers

δ〈b†qbq〉 = 2I2S
∑

k

nk↓(1− nk−q↑)
(tk↓ − tk−q↑ − ωq)2

(6.87)

δ

{ 〈b†qbq〉
〈b†qb†−q〉

}
= 2I2S

∑

k

(
nk(1− nk−q)

(tk − tk−q − ω2
q

± nk(1− nk+Q−q)

(tk − tk+Q−q)2 − ω2
q

)
(6.88)

respectively (see Appendix G). The integration in both the cases gives

δS/S = −2I2ρ2 ln
W

ω
(6.89)

The obtained corrections to the ground state moment occur in any conducting
magnets including pure 4f-metals. However, in the latter case they should
be small (of order of 10−2). On the other hand, it would be interesting to
search them in rare-earth compounds with high values of ρ.

To obtain a self-consistent picture for a magnet with appreciable Kondo
renormalizations, we have to calculate the corrections to characteristic spin-
fluctuation frequencies ω. In the paramagnetic phase, we can use the esti-
mation from the second-order correction to the dynamic susceptibility

ω2
q = (

.

S
z

−q,
.

S
z

q)/(S
z
−q, S

z
q) (6.90)

with

(A,B) ≡
∫ 1/T

0
dλ〈exp(λH)B exp(−λH)B〉 (6.91)

The calculation yields [608]

ω2
q =

4

3
S(S + 1)

∑
p

(Jq−p − Jp)2[1− 4I2L(1− αq)] (6.92)
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Here L is defined by (6.85),

αq =
∑

R

J2
R

(
sin kF R

kF R

)2

[1− cosqR]/
∑

R

J2
R[1− cosqR] (6.93)

Since 0 < αq < 1, the Kondo effect results in decreasing ω as T is lowered.
In the approximation of nearest neighbours (with the distance d) for J(R),
the value of α does not depend on q:

αq = α =

(
sin kF d

kF d

)2

(6.94)

The corrections to the spin-wave frequency in ferromagnetic and antiferro-
magnetic phase owing to magnon-magnon interactions are obtained by using
the results of Appendix G, (E.5), (E.13), (6.87), (6.88). Then we obtain

δωq/ωq = −4I2ρ2a ln
W

ω
(6.95)

where the factor a depends on the type of magnetic ordering.
The above perturbation theory results permit a qualitative description of

the magnetic Kondo-lattice state with a small magnetic moment. Suppose we
lower the temperature starting from the paramagnetic state. As we do it, the
magnetic moment is “compensated”, but, in contrast with the one-impurity
situation, the degree of compensation is determined by (T 2 + ω2)1/2 rather
than T . At the same time, w itself decreases according to (6.92). This process
cannot be described analytically in terms of perturbation theory. However,
one needs to take ω ∼ TK at T < TK if he has in view the establishment of an
universal energy scale of the order of TK . The latter fact is confirmed by a
large body of experimental data on quasielastic electron scattering in Kondo
systems, which demonstrate that at low T the typical “central-peak” width Γ
∼ ω is of the same order of magnitude as the Fermi degeneracy temperature
determined from thermodynamic and transport properties, i.e. TK . Thus
the process of the magnetic moment compensation terminates somewhere at
the boundary of the strong-coupling region and results in the state with a
finite (although possibly small) saturation moment Ms.

A quantitative consideration of the Kondo lattice magnetism problem
may be performed within renormalization group approach in the simplest
form of Anderson’s “poor man scaling” [554]. The above expressions, ob-
tained from perturbation theory, enable one to write down the renormal-
ization group equations for the effective s-f parameter and ω [612]. This is
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achieved by considering the integrals over k with the Fermi functions in the
Kondo corrections to electron self-energes (G.33), (G.73) and spin-fluctuation
frequencies. To construct a scaling procedure, one picks out the contribu-
tions from the energy layer C < E < C + δC near the Fermi level EF = 0.
For example, in the case of ferromagnet we have for the effective splitting in
the electron spectrum

2IefS = 2IS − [ΣFM
k↑ (EF )− ΣFM

k↓ (EF )]k=kF
(6.96)

Using (G.34) we derive

δIef = I2
∑

C<tk+q<C+δC

(
1

tk+q + ωq

+
1

tk+q − ωq

)

=
ρI2

ω
δC ln

∣∣∣∣
C − ω

C + ω

∣∣∣∣ (6.97)

where
ω = 4Dk2

F

D is the spin-wave stiffness. Introducing the dimensionless coupling param-
eters

g = −2Iρ, gef (C) = −2Ief (C)ρ (6.98)

we obtain the system of renormalization group equations. In the nearest-
neighbour approximation for the intersite Heisenberg exchange interaction it
has a simple form

∂gef (C)/∂C = −Φ

∂ ln ωef (C)/∂C = aΦ/2 (6.99)

∂ ln Sef (C)/∂C = Φ/2

with
Φ = Φ(C, ωef (C)) = [g2

ef (C)/C]φ(ωef (C)/C) (6.100)

The scaling function for para-, ferro- and antiferromagnetic phases has the
form

φ(x) =





x−1 arctan x PM
1
2x

ln
∣∣∣1+x
1−x

∣∣∣ FM

−x−2 ln |1− x2| AFM

(6.101)

In all the cases φ(0) = 1, which guarantees the correct limit of one Kondo
impurity (Sect.6.1).
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The results of investigation of the equations (6.99)-(6.101) [612] are as
follows. Depending on the relation between the one-impurity Kondo temper-
ature and the bare spin-fluctuation frequency, three regimes are possible at
I < 0:
(i) the strong coupling regime where gef diverges at some C is roughly de-
termined by the condition

ω < TK = W exp(−1/g) (6.102)

Then Ief (C → 0) = ∞, so that all the conduction electrons are bound into
singlet states and spin dynamics is suppressed.
(ii) the regime of a “Kondo” magnet with an appreciable, but not total
compensation of magnetic moments. This is realized in the interval TK <
ω < ATK (A is a numerical factor of order unity), which corresponds to a
small interval δg ∼ g2. In this interval, the renormalized values of magnetic
moment and spin-fluctuation frequency, Sef (0) and ωef (0), increase from zero
to approximately the bare values.
(iii) the regime of ”usual” magnets with small logarithmic corrections to the
ground state moment (see (6.89)), which occurs at ω > ATK . Note that
the same situation takes place in the case of “ferromagnetic” s-f exchange
interaction I > 0.

High sensitivity of the magnetic state to external factors, which was dis-
cussed above, is explained by that in the case (ii) the magnetic moment
changes strongly at small variations of the bare coupling constant. Of course,
the quantitative description should be different for the realistic long-range
behaviour of the RKKY-interaction. The renormalization of the latter may
be not described by the single constant α.

Outwardly, the described mechanism of the formation of magnetic state
with small Ms differs radically from the ordinary mechanism for weak itiner-
ant ferromagnets which are assumed to be located in the immediate vicinity
of the Stoner instability. Recall, however, that both the energy spectrum
of new Fermi quasiparticles and the effective interaction among them suffer
strong renormalizations. Therefore the inapplicability of the Stoner criterion
with bare parametes for Kondo magnets is practically evident.

Since a continuous transition exists between the highly-correlated Kondo
lattices and the “usual” itinerant-electron systems (in particular, Pauli para-
magnets may be viewed as systems with high TK of order of the Fermi en-
ergy), the question arises about the role which many-electron effects play in
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the “classical” weak itinerant magnets like ZrZn2 . It may turn out that
the closeness of the ground state to the Stoner instability point, i.e. the
smallness of Ms, in the latter systems is not due to accidental bare values of
N(EF ) and Stoner parameter, but determined by their renormalization. In
this context, it would be of interest to describe weak itinerant magnets not
from the “band” side, but from the side of local magnetic moments which
are nearly compensated. As it is customary now to treat UPt Pd , CeSi and
CeRh B as weak itinerant magnets (see, e.g., [613]), the second approach
appears already by far less natural than the first. From the formal point of
view, the calculations in the Hubbard model (Appendix G), which describes
itinerant electron systems, are similar to those in the s-f exchange model if
one postulates the existence of local moments.

The simple analytical description of crossover between the high-temperature
region T > TK , where perturbation theory holds, and the strong-coupling
regime is hardly possible. Therefore it is important to discuss approxima-
tions which work at T < TK . A special mean-field approximation for the
ground state of magnetic Kondo lattices is considered in Appendix O. This
approach exploits the pseudofermion representation for spin operators and
reduces the s-f exchange model to an effective hybridization model.

The corresponding energy spectrum contains narrow DOS peaks ow-
ing to the pseudofermion contribution (Fig.6.9). It should be noted that
f-pseudofermions become itinerant in the situation under consideration. De-
localization of f-electrons in heavy-fermion systems, which is confirmed by
observation of large electron mass in de Haas - van Alphen experiments, is
not simply understandable in the s-f exchange model (unlike the stituation
in the Anderson model with f-states near the Fermi level with bare s-f hy-
bridization included). This delocalization is analogous to the occurence of
the Fermi excitation branch in the resonating valence bond (RVB) theory of
high-Tc superconductors (see Sect.6.8).

As discussed above in Sect.6.4, the hybridization form of electron spec-
trum with the presence of DOS peaks is confirmed by numerous experimen-
tal investigations of Kondo lattices, including heavy-fermion systems. As for
ferromagnetic Kondo systems, of interest are the results on the temperature
dependences of magnetization in Sm4Sb3and Sm4As3 [542], which turn out
to be non-monotonous. Such a behaviour (temperature-induced ferromag-
netism) may be explained by the sharp energy dependence of DOS in the
hybridization model [614].

Because of the dependence of the effective hybridization on spin projec-



232CHAPTER 6. THE KONDO EFFECT AND PROPERTIES OF ANOMALOUS D- AND F-COMPOUNDS

tion, there exist, generally speaking, several ferromagnetic solutions. For
the constant bare DOS, only the saturated ferromagnetic state turns out to
be stable (remember that the same situation takes place in the Wohlfarth
model, i.e. the Stoner model with the rectangle DOS). One may assume that
in more general models (e.g., for large degeneracy of electron bands) the role
of this dependence is not so important, so that it may be neglected. Then
the criterion of ferromagnetism J ∼ TK reduces, roughly speaking, to the
Stoner criterion with the replacement of the intrasite interaction parameter
by the intersite exchange parameter J , the effective density of states at the
Fermi level N(EF ) ∼ 1/TK being large because of hybridization DOS peaks.
Thus magnetism of Kondo lattices has features of both localized spin mag-
nets (essential role of intersite exchange interaction) and of itinerant ones
(non-integer value of the magnetic moment and its connection with the DOS
structure).

The influence of spin-fluctuation corrections to the mean-field approxima-
tion was investigated in [608]. Calculating the contribution to the saturation
magnetization from the fluctuations of the Heisenberg interaction by analogy
with (6.88) we obtain

δS ∼ − J

TK

ln
TK

J
(6.103)

(TK plays the role of a characterisitc energy scale in the electron spectrum).
Thus at J ∼ TK we have δS ∼ S, and formation of a state with a small
moment is possible.

To consider antiferromagnetic ordering of the Kondo lattices one has to
pass to the local coordinate system (see (E.8)). Then the mean-field Hamil-
tonian of the f-subsystem in the pseudofermion representation takes the form

Hf = −JQS
∑

k

(f †k+Q↑fk↓ + f †k↓fk+Q↑) (6.104)

Unlike the case of a ferromagnet, one may neglect the σ-dependence of the
hybridization since corrections owing to spin polarization have the structure
(JQS)2/(tk+Q− tk)and are proportional to (JQS)2/W . Thus the criterion of
antiferromagnetism has the usual form

JQχQ > 1 (6.105)

with χQ being the non-enhanced (Hf → 0) staggered susceptibility of the
f-subsystem in the effective hybridization model (O.2). Using the Bogoliubov
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transformation (O.8) yields

χq =
∑

k


v2

kv
2
k+q

nα
k − nα

k+q

Eα
k − Eα

k+q

+ u2
ku

2
k+q

nβ
k − nβ

k+q

Eβ
k − Eβ

k+q

− 2u2
kv

2
k+q

nβ
k − nα

k+q

Eβ
k − Eα

k+q


 (6.106)

Owing to the hybridization peaks, the contribution from the intersubband
transitions (the last term in brackets of (6.106)) turns out to be large: χQ ∼
1/TK . Thus antiferromagnetism occurs at

JQ > νTK (6.107)

where the constant ν of order of unity is determined by the band structure.
The electron spectrum of antiferromagnetic Kondo lattices is disturbed

by both hybridization (Kondo) gap and an antiferromagnetic gap. Con-
sider some experimental examples. For the intermediate-valent semiconduc-
tor TmSe the gap at EF seems to be of a hybridization nature since there
exist indication of its retaining in the paramagnetic state [592]. As discussed
in Sect.6.4, the insulator Kondo state with very small (of order of 3K) gap
occurs in the compound CeNiSn which is non-magnetic (however, recently
static spin correlations with extremely small local moment of order 10−3µB

were found in this substance at T < 0.13 K [615]). The system YbNiSn has
a small canted ferromagnetic moment (see Table 6.1), the absence of gap
being probably connected with weakness of d-f hybridization in ytterbium
compounds.

The compound UNiSn turns out to be an antiferromagnet [496,497], in
contradiction with the band structure calculations [315] which yield a half-
metalic ferromagnetic structure. A transition from metallic antiferromag-
netic state to semiconductor paramagnetic one takes place at 47K with in-
creasing T (in contrast with the usual picture of the temperature-induced
metal-insulator transition [25]), the gap in the semiconducting state being
rather small (of order of 10K). Most simple explanation of this phenomenon
is that the emergence of the sublattice magnetization results in a shift of
the Fermi level outside the energy gap. The gap may have either Kondo
nature (as in CeNiSn) or usual band origin. The latter situation takes place
in the systems TiNiSn, ZrNiSn where the gap in the C1b lattice has the “va-
cansion” nature [566]. (This situation is reminiscent of the Heusler aloys
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RMnSb, see Sect.4.5; recently, a hypothesis about the formation of the half-
metallic ferromagnetic state in TiCoSn with TC = 143K was put forward
[616].) However, the gap in these compounds is large (of order of 103K).
Therefore the Kondo origin of the gap in UNiSn seems to be more probable.
Then the possible explanation of the metal-insulator transition observed is
that the antiferromagnetic exchange interaction suppresses the Kondo order
parameter V ∼ 〈c†f〉 (see Appendix O) and, consequently, the gap [508].

6.7 Current carriers in a two-dimensional an-

tiferromagnet

The interest in many-electron models with strong correlations has been re-
cently greatly revived in connection with the discovery of high-Tc supercon-
ductivity in copper-oxide ceramics La2−xSrxCuO4 [617] and YBa2Cu3O7−y

[618]. The current carriers in these systems move in weakly coupled CuO2-
layers and form rather narrow energy bands. A characteristic feature of these
systems are presence of pronounced spin fluctuations and, for some compo-
sitions, the antiferromagnetic ordering. The important role of correlations
is confirmed by that La2CuO4 is a typical Mott-Hubbard insulator. This
compound yields also the best known example of a quasi-two-dimensional
Heisenberg antiferromagnet with small magnetic anisotropy.

In the present Section we do not discuss the problem of high-temperature
superconductivity itself, but demonstrate the application of simple ME mod-
els to the description of current carrier states in highly correlated two-
dimensional systems.

The electron states in CuO2-planes of copper-oxide perovskites may be
described by the so called Emery model

H =
∑

kσ

[εp†kσpkσ + ∆d†kσdkσ + Vk(p
†
kσdkσ + d†kσpkσ)]

+U
∑

i

d†i↑di↑d
†
i↓di↓ (6.108)

where ε and ∆ are positions of p- and d-levels for Cu and O ions respectively.
The k-dependence of matrix elements of p-d hybridization for the square
lattice is given by

Vk = 2Vpd(sin
2 kx + sin2 ky)

1/2 (6.109)
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At |Vpd| ¿ ε − ∆ the Hamiltonian (6.108) is reduced by a canonical trans-
formation [619] to the Hubbard model with strong Coulomb repulsion and
the effective Cu-Cu transfer integrals

teff =
V 2

pd

ε−∆
(6.110)

At present, a large number of models for high-Tc superconductors are de-
veloped which take into account formation of several hybridized narrow and
wide bands with orbital degeneracy. Here we confine ourselves to a simple
consideration of the current carriers within the s-d exchange model [620].

An important property of two-dimensional (2D) Heisenberg magnets is
the absence of long-range order at finite temperatures since it is destroyed by
long-wavelength fluctuations. At the same time, the strong short-range order
with large correlation length ξ persists up to the temperatures of order of
the intersite exchange parameter J . Unlike purely 2D Heisenberg magnets,
quasi-2D compounds possess finite values of magnetic ordering temperature
because of a weak interlayer coupling J ′ and/or easy-axis magnetic anisotropy
which are estimated as

TM = 4π|J |S2

/
ln

|J |
max{|J ′|, |Jz − J⊥|} (6.111)

Thus the ordering temperature is small, which is reminiscent to weak itin-
erant magnets. In such a situation, a consistent perturbation theory can be
developed. Formulas, which are more exact than (6.111) and yield a quanti-
tative agreement with experimental data, were obtained in [728].

Experimental data on layered perovskites (including La-Cu-O systems)
demonstrate a pronounced short-range order above the Neel point. A similar
situation takes place in frustrated three-dimensional (3D) antiferromagnets
where long-range magnetic ordering is also partially suppressed (see Sect.6.8).

Recent developments in the theory of two-dimensional Heisenberg an-
tiferromagnets have provided a simple and successful description of their
thermodynamic properties. Unlike the usual mean-field approximation, the
self-consistent spin-wave theories (SSWT), based on the non-linear represen-
tations of Schwinger bosons [622,623] or the Dyson-Maleev ideal magnons
[624], yield a smooth transition from the ordered state at T = 0 to the finite-
temperature state with a strong short-range order, the correlation length
ξ being exponentially large at low T . The short-range order parameter is
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described as an anomalous average of Bose operators, and the long-range
ordering as the Bose condensation.

It is clear from the physical point of view that the electron spectrum
in 2D systems at low T does not change its form in comparison with the
ordered state and should be determined by short-range order (the situation
is reminiscent of spontaneous spin splitting above the Curie point in strong
itinerant ferromagnets). To obtain a quantitative description we calculate
the electron Green’s function. First we treat the broad band case with the
use of perturbation expansion in the s-d exchange parameter I. Substituting
the result for the spin spectral density Kq(ω) in SSWT (see (P.18), (P.22))
in the expression for electron self-energy (6.25) we obtain

Σk(E) =
I2S

2
ef

E − tk+Q

+ I2Sef

∑

q,|q−Q|>ξ−1

(
1− φq

1 + φq

)1/2

×
(

1− nk+q + NB(ωq)

E − tk+q − ωq

+
nk+q + NB(ωq)

E − tk+q + ωq

)
(6.112)

with

φq =
1

2
(cos qx + cos qy)

which has the same form as the self-energy of the usual 3D antiferromag-
net at T ¿ TN (G.69). The first term in (6.112) describes the formation
of antiferromagnetic gap (the effective “sublattice magnetization” Sef (T ) is
determined by the singular contribution to the spin correlation function and
has the linear T -dependence (P.21)), and the second terms corresponds to
the interaction with magnons.

Consider the peculiarities of the electron spectrum near the band bottom
in the case of a single current carrier. Summing up higher orders correc-
tions of perturbation series (i.e. replacing energy denominators by the exact
Green’s functions) [520] we derive the self-consistent equation

Σk(E) = Φk(E)− I2S
2
ef/Φk+Q(E) (6.113)

where
Φk(E) = I2

∑

|q−Q|>ξ−1

∫
dωKq(ω)Gk+q(E + ω) (6.114)

For T = 0 we obtain

Φk(E) = I2Sef

∑
q

(
1− φq

1 + φq

)1/2

Gk+q(E − ωq) (6.115)
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To solve the equation (6.113) one can use the “dominant pole” approximation
[625]

Gk(E) =
Zk

E − Ẽk

+ Ginc(k,E) (6.116)

where Ginc is the incoherent contribution to the Green’s function,

Zk =

(
1− ∂

∂E
Re Σk(E)

)−1

E=Ẽk

(6.117)

is the residue at the pole near the band bottom, corresponding to the spec-
trum of new quasiparticles,

Ẽk ' tmin + Zk(tk − tmin) ' tmin + Z|t|k2 (6.118)

Substituting (6.116) into (6.115) and performing integration over q we obtain
the estimation in the 2D case

Z−1 − 1 ∼ I2/|Jt| (6.119)

Thus, as |I| increases, the spectral weight passes into the incoherent con-
tribution and undamped qusiparticles become heavy, so that at I2 À J |t|
we have the “heavy-fermion” situation with m∗/m = Z−1 À 1. In the 3D
case the divergence is weaker, and corrections to effective mass contain a
logarithmic factor:

Z−1 − 1 ∼ I2S

t2
ln

∣∣∣∣
t

JS

∣∣∣∣ (6.120)

The terms with the Bose functions in (6.112) yield corrections to (6.119)
which are proportinal to T/ξJ , i.e. exponentially small. Therefore the pic-
ture of the electron spectrum holds at finite T ¿ J .

It should be noted that similar results are obtained in the case of the
interaction with acoustic phonons if we replace

I2Sef

(
1− φq

1 + φq

)1/2

→ Λ2q

with Λ being the electron-phonon interaction constant. Then the estimation
for the residue renormalization reads

Z−1 − 1 ∼ Λ2/ω|t| ∼ 1 (6.121)
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It is instructive to perform a comparison with the case of an usual paramag-
net without strong antiferromagnetic correlations, so that the electron-spin
interaction matrix element is constant at q → 0 rather than proportional to
q1/2. In such a situation we may use the spin diffusion approximation (6.32).
Then quasiparticles turn out to possess a strong damping

Γk = −I2
∑
q

Im
∫

dωKq(ω)
Zk+q

Ẽk − Ẽk+q + ω
(6.122)

At small k we have

Γk ∼ I2JS3

Zt2
×

{
| ln k| , D = 2
1 , D = 3

(6.123)

Using the dominant pole approximation (6.116) with Ẽk → Ẽk − iΓk we
obtain

Z−1 − 1 ∼
{
|t/JS|1/2 , D = 2
|I2S/tJ |1/2 , D = 3

(6.124)

Although the residue of the damped quasiparticles may still be small, it is
difficult to separate them from the background of the incoherent contribution.

Now we treat the s-d model with strong correlations |I| → ∞, which
includes as a particular case the Hubbard model with U →∞ (Appendix I).
Consider the Green’s function

Gkασ(E) = 〈〈gkασ|g†kασ〉〉E, α = signI

where the operators g are defined in (I.4). The result of calculation with
account of spin fluctuations has the form [520]

Gkα(E) =


E


Φkα(E)− S

2
ef tk+Q/(2S + 1)2

E −Ψk+Q(E)tk+Q



−1

− tk



−1

(6.125)

with

Ψkα(E) = Pα +
∑

|q−Q|>ξ−1

tk+q

(2S + 1)2

∫
dωKq(ω)Ψ−1

k+q,α(E)Gk+q,α(E + ω)

(6.126)

P+ =
S + 1

2S + 1
, P− =

S

2S + 1
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When neglecting spin fluctuations, Ψα = Pα and the electron spectrum con-
tains two quasiparticle subbands, as well as in the three-dimensional antifer-
romagnet (cf. (I.15)):

E1,2
kα =

Pα

2
(tk + tk+Q)±


P 2

α

4
(tk − tk+Q)2 +

S
2
ef

(2S + 1)2
tktk+Q




1/2

(6.127)

In the nearest-neighbour approximation (tk+Q = −tk) we have

E1,2
k = ± tk

2S + 1





[S2 − S
2
ef (T )]1/2 , α = −

[(S + 1)2 − S
2
ef (T )]1/2 , α = +

(6.128)

The second term in (6.126) (spin-fluctuation corrections) leads to qualitative
changes in the spectrum near the band bottom. To solve the system (6.125),
(6.126) at T = 0 we employ again the dominant pole approximation

Gkα(E) = Ψkα

[
Zk

E − Ẽk

+ Ginc(k,E)

]
(6.129)

The estimate for the residue is analogous to (6.119), I2 being replaced by
(t/2S)2 which is typical for the strong-coupling limit. Then we obtain

Z−1 − 1 ∼
{
|t/JS|1/2 , D = 2
S−1 ln |t/JS|1/2 , D = 3

(6.130)

Thus a narrow quasiparticle band with the width of order of |J | is formed
near the bare band bottom in the 2D case. This result was firstly obtained
analytically by Kane et al [625] and confirmed by numerical calculations in
the t− J model [626].

We see that strong electron-spin interaction in two-dimensional systems
may result in heavy electron mass formation near the band bottom even in
the case of one current carrier. Simultaneous consideration of this effect and
many-electron Kondo divergences is an interesting physical problem. In this
connection we mention the system Y1−xPrxBa2Cu3O7 where increasing x re-
sults in suppression of superconductivity and heavy-fermion behavior [627]
and the high-Tc superconductor Nd2−xCexCuO4 which posseses a logarith-
mic term in the temperature dependence of resistivity [628]. Recently [629],
heavy-fermion behaviour with very large γ was found in the latter system at
T < 0.3K.



240CHAPTER 6. THE KONDO EFFECT AND PROPERTIES OF ANOMALOUS D- AND F-COMPOUNDS

Investigation of electron spectrum in a 2D antiferromagnetic metal was
performed in Ref.[433]. It was demonstrated that a behavior, which is sim-
ilar to the marginal Fermi liquid [645] (the linear in |E − EF | dependence
of the electron damping) takes place in some interval near the Fermi en-
ergy due to intersubband transitions. This results in anomalous temperature
dependences of thermodynamic and transport properties at not too low tem-
peratures. A similar picture takes place in the 3D case for the “nesting”
situation where tk+Q − EF = EF − tk

Interaction with lattice degrees of freedom (strong polaron effects) should
also play an important role in the formation of electron spectrum of high-
Tc superconductors. The investigation of the interaction among electrons
and ions in a double-well potential was performed by Yu and Anderson [530]
with application to A15-superconductors with moderate Tc. A pseudo-Kondo
lattice model, which treats the interaction of current carriers with strongly
anharmonic displacements of oxygen atoms (which may be described as two-
level systems), is developed in papers [405,442].

6.8 Spin-liquid state in systems with spin and

charge degrees of freedom

The consideration of the ground state of Kondo lattices (Sect.6.6, Appendix
O) uses essentially the idea of physical reality of auxiliary pseudofermions
that arise when localized-spin operators are “dismantled”. The pseudofermion
representation was applied by Coleman and Andrei [711] to describe the spin-
liquid state in the two-dimensional periodic s-f model. Similar concepts were
extensively used in Anderson’s theory of resonating valence bonds (RVB) for
copper-oxide high-Tc superconductors [631]. This state is characterized by
absence of long-range magnetic ordering and formation of singlet bonds be-
tween neighbour spins on the square lattice. As well as in quantum chemistry
(e.g., for the benzol molecule), the bonds can move (resonate) in the crystal,
so that the ground state is a superposition of the corresponding wavefunc-
tions.

Anderson put forward the idea of separating spin and and charge degrees
of freedom by using the representation of slave Bose and Fermi operators

c†iσ = Xi(σ, 0) + σXi(2,−σ) = s†iσei + σd†isi−σ (6.131)
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where s†iσ are creation operators for neutral fermions (spinons) and e†i , d†i for
charged spinless bosons (holons). The physical sense of such excitations may
be explained as follows [632]. Consider the lattice with one electron per site
with strong Hubbard repulsion, so that each site is neutral. In the ground
RVB state each site takes part in one bond. When a bond becomes broken,
two uncoupled sites occur which possess spins of 1/2. The corresponding
excitations (spinons) are uncharged. On the other hand, the empty site
(hole) in the system carries the charge, but not spin.

The requirement of the Fermi commutation relations for electron opera-
tors yields

e†iei + d†idi +
∑

i

s†iσsiσ = 1 (6.132)

In the half-filled case only spinon excitations with the kinetic energy of order
of |J | are present. At doping the system by holes, there occur the current
carriers which are described by holon operators e†i . In the simplest gapless
version, the Hamiltonian of the system for a square lattice may be presented
as

H =
∑

k

(4tφk− ζ)e†kek + 4
∑

k

(∆ + tδ)φk(s
†
kσs

†
−k−σ + skσs−k−σ) + ... (6.133)

with ∆ being the RVB order parameter, which is determined by anomalous
averages of the spinon operators, δ = 〈e†e〉 the hole concentration. Thus a
spin-liquid state with long-range magnetic order suppressed, a small energy
scale J , and a large linear term in specific heat (γ ∼ 1/|J |), which is owing
to existence of the spinon Fermi surface, can arise in a purely spin systems
without conduction electrons. Experimentally, some data indicate presence
of a T -linear term in the insulating phase of copper-oxide systems.

Later, more complicated versions of the RVB theory, which use topologi-
cal consideration and analogies with the fractional quantum Hall effect, were
developed (see, e.g., [633]). These ideas led to rather unusual and beau-
tiful results. For example, it was shown that spinons may obey fractional
statistics, i.e. the wavefunction of the system acquires a complex factor at
permutation of two quasiparticles.

Here we demonstrate the suppression of long-range magnetic order at
T = 0 and occurence of the spin-liquid state within a simple spin-wave
treatment of a two-dimensional Heisenberg antiferromagnet [601,609]. To
this end we write down the correction to sublattice magnetization due to
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zero-point vibrations (see (E.14))

δS = −1

2

∑
q

[S(4JQ − JQ+q − JQ−q − 2Jq)/ωq − 1] (6.134)

At q → 0 we have

ω2
q ' S2(JQ − J0)[αq2 + βf(φ)q4] (6.135)

where β > 0 and f(φ) is a positive polar-angle function. For α → 0 (frustra-
tion situation) we find

S = S − a ln
β

α
, (6.136)

a =
1

16π2
(JQ − J0)

1/2
∫ 2π

0

dφ

[βf(φ)]1/2

so that S = 0 in some regions of parameters

α < β exp(−S/a) (6.137)

Thus, unlike the Kondo lattices (cf.(6.89), (6.103)), destruction of magnetic
ordering is due to frustrations of the f-f exchange interaction itself rather
than to Kondo screening of magnetic moments. One may assume that similar
frustration effects (e.g., large next- neighbour exchange interactions or pres-
ence equilateral nearest- neighbour triangles) may result in total or partial
destruction of magnetic moment in some three-dimensional systems. Such
Heisenberg systems, which possess developed spin fluctuations, reduced mag-
netic moments and strong short-range order above the Neel point [634] are
reminiscent in a sense of itinerant magnets.

There exist a number of experimental data which indicate realization
of a spin-liquid-type state in three-dimensional d- and f-systems [635,609].
Consider some examples.

The compound YMn2 has a frustrated AFM structure and pronounced
short-range order above TN [636]. In the system Y1−xScxMn2 with x =
0.03 the long-range order is destroyed, while linear term in specific heat
reaches very large value, γ = 140 mJ/mol K2 (a similar situation occurs
under pressure) [637]. This value exceeds by ten times the result of band
calculations and is a record for d-systems.

The Mott insulator NiS2−y [638] exhibits magnetic ordering, but one may
talk of a suppression of the magnetism in the sense that, similar to magnetic
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Kondo lattices, TN = 45K is small in comparison with |θ| ' 1500K. The slope
of the phase diagram line indicates a high entropy value for the insulator
phase [44], which is characteristic of a spin-liquid-type state. In metallic
NiS2−xSex near the transition (x ' 0.5), the value of γ = 30 mJ/mol·K2 is
rather large.

The most striking of the spin-liquid state realization is probably the in-
termediate valence semiconductor Sm3Se4 [639], a system with not only spin,
but also charge degrees of freedom, where the ions Sm2+ and Sm3+ are dis-
tributed over crystallographically equivalent sites in the Th3P4-lattice. This
situation may be described by an effective (generally speaking, anisotropic)
pseudospin Hamiltonian for the charge degrees of freedom [635]. By contrast
with isostructural compounds like Eu3S4, there is no indication of charge
ordering up to T = 0 in Sm3Se4, and γ has at T < 1K the giant value 4.5
J/mol·K2.

In the system Yb4As3−xP4 with the anti-Th3P4 structure, where charge
ordering occurs near 300K, γ increases from 200 to 400 mJ/mol·K2 as x is
varied from 0 to 0.3, the current carrier concentration n (of order of 10−3

per atom) remaining practically unchanged [640]. Thus we deal with a new
class of heavy-fermion systems with extremely small concentration of current
carriers. Here belong also the compound YbAs with n ∼ 10−2, γ = 270
mJ/mol·K2 [538], and possibly YbNiSb [541], YbBiPt [571,641]. In the latter
system, γ reaches the value of 8J/mol·K2.

Although in most cases there are no serious grounds in doubting that the
Kondo effect is the major cause of anomalous behaviour of f-systems, which
were discussed above, the role of f-f interaction in the formation of low-energy
spectrum should be also investigated. Apparently, an intermediate state be-
tween the usual magnetic state and the spin liquid arises in some compounds.
In Kondo lattices with a small number of carriers, the exchange interaction
frustrations can be even more important than the Kondo effect. Thus, the
semimetal CeSb (a classical example of a system with competing exchange
interactions) displays a complicated magnetic phase diagram — the “devil’s
staircase” [642]. According to [643], the system Ce0.8La0.2Sb possesses large
electronic specific heat. The “frustrated” picture of magnetism, that is remi-
niscent of spin-glass state (absense of a marked phase transition) is discussed
for CeAl3 [508]. The problem of role of frustrations and of the Kondo effect
in the formation of complicated magnetic structures and reduced magnetic
moments is also of interest for rare-earth metals (Sect.4.7).

To conclude this Chapter, we discuss briefly some modern concepts in
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the theory of systems with strong correlations. The idea of unusual excita-
tion spectrum in correlated metallic systems was extensively developed by
Anderson [644]. He put forward the concept about the inadequacy of the
Fermi-liquid picture and formation of the Luttinger liquid state. The latter
is characterized by the absence of simple poles for the one-electron Green’s
function, i.e. of usual single-particle Fermi excitations). The transition into
the Luttinger liquid is connected with the phase shift at the Fermi level owing
to strong electron scattering.

A phenomenological “marginal Fermi-liquid” theory of high-Tc supercon-
ductors, which yields close results, was proposed by Varma et al [645]. The
non-Fermi liquid behaviour (unusual power-law temperature dependence of
electronic specific heat, resistivity etc.) is found now for a number of f-
electron systems [646]. Besides that, the power-law divergence of magnetic
susceptibility, χ(T ) ∼ T−α, is observed in low-dimensional organic conduc-
tors; the analogy with the behaviour of yttrium-based ceramics was discussed
in [647].

In the Luttinger model [648], which was developed for the one-dimensional
electron systems, the bare spectrum contains two linear branches

E1,2
k = ±vF k (k > 0) (6.138)

which is reminiscent of relativistic models in quantum electrodynamics (the
vacuum of the states with k < 0 is excluded). The Luttinger Hamiltonian
may be “bosonized” by introducing the collective excitation operators (n =
1, 2; q > 0)

ρn(q) =
∑

k

c†k+q,nckn, rhon(−q) = ρ†n(q) (6.139)

so that

b†q =

(
2π

N |q|

)1/2

×
{

ρ1(q) , q > 0
ρ2(q) , q < 0

(6.140)

(the summation in (6.139) goes over both positive and negative k, N is the
number of lattice sites). The operators (6.140) turn out to satisfy the Bose
commutation relations, which is connected with account of the “vacuum”
states in (6.139) [649]. Charge and spin operators may be introduced by

a†k =
1√
2
(b†k↑ + b†k↓), s†k =

1√
2
(b†k↑ − b†k↓) (6.141)

In the representation (6.140), both kinetic energy (6.138) and interaction
Hamiltonians contain quadratic terms only. Then the one-electron Green’s
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function is calculated exactly and turns out to have the singularities of the
form

G1,2
k (E) ∼ (E ∓ vF k)α−1 (6.142)

where the parameter α > 0 is determined by the electron interaction. Then
the electron distribution function at T = 0 has, instead of a jump, a power-
law behaviour at the “Fermi surface”,

〈c†knckn〉 − 1

2
∼ |k ∓ kF |αsign(k ∓ kF ) (6.143)

Such a behaviour may be derived rigorously for the one-dimensional Hubbard
model which permits rigorous consideration (in this case, in contradiction
with the Landau theory, an arbitarily small interaction leads to a recon-
struction of the ground state, e.g. to the metal-insulator transition for a
half-filled band). However, generalization of these results to two-dimensional
systems of interacting electrons is a very difficult problem. As discussed by
Anderson [644], the violation of the Fermi-liquid picture may be described
in terms of the Hubbard splitting: the states in the upper Hubbard sub-
band correspond to the anomalous forward scattering. Modern treatment
of the Fermi-liquid state and of its instabilities with the use of the “Bose”
representation is given, e.g., in [650].
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CONCLUSIONS

In the present book we have attempted to consider the whole variety of
physical properties of transition metals. The characteristics of TM are much
more complicated and interesting than those of simple metals. Simultaneous
consideration of all the properties permits to establish some regularities with
filling of d- and f-shells and their connection with the electronic structure.
One might expect similarity of the properties within a given transition series,
since, with some exceptions, the total number of external sp-electrons does
not change.

In fact, chemical and most physical properties (crystal structure etc.) of
rare earths are very close. At the same time, magnetic characteristics of
4f-metals change appreciably with the number of f-electrons. Moreover, as
demonstrated in Sect.4.8.2, there exists some periodicity within the 4f-series,
so that the latter forms a miniature “periodic table”. This regularity is
connected with the many-electron term structure of the 4f-shell.

On the other hand, non only magnetic, but also other properties of d-
metals depend strongly on the number of d-electrons nd, and they play an
important role in the formation of a crystal. An appreciable delocalization of
d-states is directly observed in the experimental investigations of the Fermi
surface.

In some anomalous rare earth and actinide systems, f-electrons also take
part in formation of the Fermi surface, due to both one-electron mechanisms
(hybridization) and many-electron effects (as in Kondo lattices). This may
lead to occurence of states with rather exotic properties, e.g. to greatly
enhanced electronic effective masses (Chapter 6). In metallic cerium, direct
f-f overlap plays an important role.

The “dual” (localized vs. itinerant) nature of d-electrons requires using
various approaches for analyzing physical properties of TM and their com-
pounds. One can pick out two main approaches. The first one starts from

247



248CHAPTER 6. THE KONDO EFFECT AND PROPERTIES OF ANOMALOUS D- AND F-COMPOUNDS

first-principle one-electron band calculations. According to the Hohenberg-
Kohn theorem, these calculations can provide an accurate description of some
ground state characteristics. At the same time, standard band calculations,
which use the local density aproximation, are often insufficient for narrow
d-, 5f- and especially 4f-bands. Besides that, the density functional approach
is, generally speaking, unable to describe the whole excitation spectrum and
thermodynamic properties.

The band approach can explain anomalies in TM properties, which are
connected with singularities of electron density of states. Presence of such
singularities leads sometimes to considerable modifications of standard for-
mulas of solid state theory, e.g., for electronic specific heat and paramagnetic
susceptibility. It should be also noted that for “flat” regions of spectrum
with small values of gradE(k), i.e. for density of states peaks, many-electron
perturbation corrections become large and the role of correlation effects in-
creases.

The second approach takes into account electron correlations in a micro-
scopic way starting from the atomic picture. The adequacy of this picture
is evident for strongly localized 4f-states. However, atomic features are re-
tained to some extent for d-states too. In particular, this is confirmed by a
characteristic “toothed” nd-dependence of electronic properties in transition
metals and by many-electron term effects in spectral measurements.

In this connection, the problem of strong (ten-fold) degeneracy of d-states
seems to be important. Altough the degeneracy is lifted at broadening of the
atomic levels into energy bands by the periodic lattice potential, it surives in
some points of the Brillouin zone. This degeneracy is important, e.g., for the
orbital momenta which determine anisotropy of a number of properties. It
should be stressed that such a scheme of degeneracy lift takes place in the one-
electron picture only, and the classification of electron states changes in the
many-electron representation where additional quantum numbers occur. The
corresponding new quasiparticles may possess different degree of localization
and mobility. This may change essentially the results of the standard band
theory.

From the point of view of the qualitative microscopic description, in-
vestigation of simple theoretical models, which include effects of strong in-
traatomic electron correlations, turns out to be very useful. Such effects
turn out to be especially bright for some d- and f-compounds. In the case of
narrow bands (large Coulomb interaction) the correlations result in a radical
rearrangement of electron spectrum — formation of the Hubbard subbands.
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A convenient tool for describing atomic statististics of excitations in such a
situation is the formalism of many-electron Hubbard operators. On the other
hand, even small interaction among localized and itinerant electrons may re-
sult in a reconstruction of electron spectrum at low temperatures owing to
peculiarities of resonance scattering in many-particle systems (the Kondo
effect).

Methods which combine band structure calculations and model consid-
erations seem to be promising. As discussed in the book, such approaches
were developed, e.g, for transition metal oxides and heavy-fermion systems.

In a number of cases, correlation effects are reduced to a modification of
electron spectrum and density of states (e.g., formation of hybridization gap
or Abrikosov-Suhl resonance in intermediate valence and Kondo systems),
so that electron properties may be further calculated in a phenomenological
way with the use of one-electron theory results. However, the modifica-
tions of electron spectrum parameters themselves may not be obtained in
the standard band theory. In particular, the parameters are often strongly
temperature dependent owing to many-electron renormalizatons.

On the other hand, sometimes the excitation spectrum is not described
within the usual quasiparticle picture and has an essentially incoherent na-
ture. Simple examples are provided by the electron spectrum of the Hubbard
ferromagnet (Appendix J) and two-dimensional conducting antiferromagnet
(Sect.6.7).

The spectrum of highly-correlated systems is often described in terms of
auxiliary (slave) Fermi and Bose operators, which correspond to quasiparti-
cles with exotic properties (neutral fermions, charged bosons etc.). Last time
such ideas are extensively applied in connection with the unusual spectra of
high-Tc superconductors and heavy-fermion systems. Investigation of these
problems leads to complicated mathematics, which uses the whole variety
of modern quantum field theory methods, and very beautiful physics. For
example, description of the Fermi liquid state in terms of Bose excitations
becomes possible. These concepts change essentially classical notions of the
solid state theory.
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Appendix A

Many-electron creation
operators for atomic
configurations and Hubbard’s
operators

In this Appendix we consider an operator description of many- electron sys-
tems with large intrasite Coulomb correlations.

At passing to the standard second quantization representation, the many-
electron (ME) wave function of a crystal Ψ(x1...xN) (x = {risi}, si is the
spin coordinate) is chosen in the form of a linear combination of the Slater
determinants. These are constructed from the one-electron wave functions
ψλ(x) (λ = {νγ}, ν are the indices of lattice sites and γ are the one-electron
quantum number sets):

Ψ (x1...xN) =
∑

λ1...λN

c (λ1...λN) Ψλ1...λN
(x1...xN) (A.1)

where

Ψλ1...λN
(x1...xN) = (N !)−1/2

∑

P

(−1)P P
∏

i

ψλi
(xi) (A.2)

with P being all the possible permutations of xi. The expansion (A.1) is
exact provided that the system of functions ψλ is complete [651]. The second
quantization representation is introduced by using the one-electron occupa-
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tion numbers nλ as new variables:

Ψ (x1...xN) =
∑

{nλ}
c (...nλ...) Ψ{nλ} (x1...xN) (A.3)

Then c (...nλ...) plays the role of a new wave function. The Fermi one-
electron creation and annihilation operators are defined by

aλc (...nλ...) = (−1)ηλ nλc (...nλ − 1...) (A.4)

a+
λ c (...nλ...) = (−1)ηλ (1− nλ) c (...nλ + 1...)

with
ηλ =

∑

λ′>λ

nλ′ , a+
λ aλ = n̂λ

Now we try to generalize this approach by introducing quantum numbers
of some electron groups. In particular, we may combine electrons at a given
lattice site (Λ = {νΓ}, Γi are ME terms) to obtain

Ψ (x1...xN) =
∑

{Nλ}
c (...Nλ...) Ψ{Nλ} (x1...xN) (A.5)

In the case of equivalent electron configuration ln, the ME wave function of
the electron group is constructed as (see [20])

ΨΓn (x1...xN) =
∑

Γn−1,γ

GΓn
Γn−1

CΓn
Γn−1,γΨΓn−1 (x1...xn−1) ψγ (xn) (A.6)

where C are the Clebsh-Gordan coefficients. In the case of LS-coupling we
use the notation

CΓn
Γn−1,γ ≡ CLnMn

Ln−1Mn−1,lmCSnµn

Sn−1µn−1, 1
2
σ

(A.7)

and the summation over γ = {lmσ} (we omit for brevity the principal quan-
tum number) stands for the summation over one-electron orbital projection
m and spin projection σ, but not over l. The case of jj-coupling, where
strong spin-orbit coupling should be taken into account in the first place, is
applicable for 5f actinide compounds. Here we have γ = jµ, Γ = JM with
j = l+1/2, so that the consideration is formally more simple. The quantities

GΓn
Γn−1

≡ GSnLnαn
Sn−1Ln−1αn−1
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are the fractional parentage coefficients (α are additional quantum numbers
which distinguish different terms with the same S, L, e.g., the Racah’s se-
niority; we will omit α for brevity where it is possible). They do not depend

on momentum projections, and the quantities
(
GΓn

Γn−1

)2
have the meaning of

fracture of the term Γn−1 at formation of the term Γn (at n < 2, G ≡ 1). The
fractional parentage coefficients satisfy the orthogonality relations [20,32]

∑

{S′L′α′}
GSLα

S′L′α′G
SLα′′
S′L′α′ = δαα′′ (A.8a)

n
∑

{SLα}
[S] [L] GSLα

S′L′α′G
SLα
S′L′α′′ = (2 [l] + 1− n) [S ′]

[
L
′]

δα′α′′ (A.8b)

where
[A] ≡ 2A + 1

The relation (A.8b) is obtained from (A.8a) after passing to the hole
representation in the atomic shell. In the case of jj-coupling

[S] [L] → [J ] , 2 [l] → [j] (A.9)

The recurrence relation (A.6) enables one to obtain the ME functions with
an arbitrary electron number n. The fractional parentage and Clebsh-Gordan
coefficients ensure the antisymmetry of the function (A.6) with respect to
permutation of electron coordinates.

If the added electron belongs to another shell, we can write down

ΨΓn (x1...xn) = h−1/2
∑

i,Γn−1,γ

(−1)n−i CΓn
Γn−1,γΨΓn−1 (x1...xi−1, xi−1...xn−1) ψγ (xi)

(A.10)
(unlike the case of equivalent electrons, antisymmetrization is required).
Note, however, that introducing ME functions and operators, which describe
several electron shells, is advisable in the solid state theory only provided
that the interaction between the shells is large in comparison with the band
energies (e.g., in the narrow-band s-d exchange model, see Appendix I).

The wave function of the the whole crystal (A.5) may be now obtained
as an antisymmetrized product of ME functions for electron groups.

By analogy with (A.6), (A.10) we can introduce ME creation operators
for electron groups [652]. For equivalent electrons

A+
Γn

= h−1/2
∑

Γn−1,γ

GΓn
Γn−1

CΓn
Γn−1,γa

+
γ A+

Γn−1
(A.11)
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At adding an electron from another shell

A+
Γn

=
∑

Γn−1,γ

CΓn
Γn−1,γa

+
γ A+

Γn−1
(A.12)

Antisymmetry of the functions

|Γn〉 = A+
Γn
|0〉 (A.13)

is provided by anticommutation of the Fermi operators. Extra factors of
(1/n)1/2 in (A.11), (A.12) in comparison with (A.6), (A.10) respectively arise
at passing from the x-representation to second quantization one.

In the particular case of two equivalent electrons

A+
Γ =

1√
2

∑
m1m2
σ1σ2

CLM
lm1,lm2

CSµ
1
2
σ1, 1

2
σ2

a+
lm2σ2

a+
lm1σ1

(A.14)

One can see from (A.14) that only the terms with even S + L are possible
[20]: as follows from the properties of the Clebsh-Gordan coefficients, AΓ is
identically zero if S + L is odd.

Unlike the Fermi operators, the commutation relation for the operators
A are complicated. For example, we obtain from (A.14)

[AΓ, A+
Γ ] = δΓΓ′ + 2

∑
γ1γ2γ3

CΓ
γ1γ3

CΓ′
γ2γ3

a+
γ2

aγ1

Representing the operator products in terms of one-electron Fermi operators,
performing the pairings of the latter and using the orthogonality relations
for the Clebsh-Gordan and fractional parentage coefficients, we obtain

〈0|AΓ′A
+
Γ |0〉 = δΓΓ′ (A.15)

AΓ′nA+
Γn
|0〉 = δΓnΓ′n|0〉

However, for m < n
AΓ′mA+

Γn
|0〉 6= 0

Therefore the operators (A.11), (A.12) are convenient only for the treat-
ment of configurations with a fixed number of electrons (e.g., in the Heitler-
London model). At the same time, they are insufficient at considering prob-
lems with electron transfer between different shells or sites because of the
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“non-orthogonality” for different n. In such situations, it is suitable to de-
fine new ME creation operators, which contain projection factors [653, 654]

Ã+
Γ = A+

Γ

∏
γ

(1− n̂γ) AΓ (A.16)

Formally, the product in (A.16) goes over all the relevant one-electron states
γ. Howewer, because of the identity a+

γ n̂γ = 0, it is sufficient to retain only
those γ which do not enter the corresponding operator products in AΓ. It
should be noted that introducing the ME operators, which depend on all the
one-electron quantum numbers (both for occupied and empty states), is in a
sense the next step in the quantum-field description after the usual second
quantization.

We obtain, instead of (A.15), the operator identities

ÃΓÃ+
Γ = δΓΓ′

∏
γ

(1− n̂γ) (A.17)

ÃΓÃΓ′ = Ã+
Γ′Ã

+
Γ = 0 (|Γ〉 6= 0) (A.18)

(after reducing to the normal form, the terms with Fermi operators in the
left-hand side of (A.17) are cancelled by the factors (1− n̂γ)). Thus we may
pass to the representation of ME occupation numbers NΓ at a given site:

ÃΓ|Γ′〉 = δΓΓ′|0〉, Ã+
Γ |Γ′〉 = δΓ′0|Γ〉 (A.19)

Ã+
Γ ÃΓ = N̂Γ, N̂Γ|Γ〉 = δΓΓ′ |Γ〉

∑

Γ

N̂Γ = 1

Note that, unlike (A.4), only one of the numbers NΓ is non-zero, and the
commutation relation for the operators (A.16) differ considerably from those
for the Fermi operators:

[ÃΓ, Ã+
Γ ]± = N̂0δΓΓ′ ± Ã+

Γ′Ã
+
Γ (A.20)

with
N̂0 =

∏
γ

(1− n̂γ) =
∏

Γ

(
1− N̂Γ

)

Therefore, at practical calculations, it is convenient to pass from the ME cre-
ation and annihilation operators to X-operators, which possess more simple
properties.
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For different Γ and Γ′, the product

X (Γ, Γ′) = Ã+
Γ ÃΓ′ (A.21)

transforms the state Γ′ into the state Γ. Such operators were firstly in-
troduced by Hubbard [31] in the axiomatic way as generalized projection
operators:

X (Γ, Γ′) = |Γ〉〈Γ′| (A.22)

where |Γ〉 are the exact eigenstates of the intraatomic Hamiltonian.
Using the introduced operators of electron configurations enables one to

obtain explicit expressions for X-operators in terms of one-electron operators.
In particular,

X (Γ, 0) = Ã+
Γ , X (Γ, Γ) = N̂Γ (A.23)

For example, we consider the simplest case of s-electrons where γ = σ = ±(↑
, ↓), Γ = 0, σ, 2 with |0〉 being the empty state (hole) and |2〉 the doubly-
occupied singlet state (double) on a site. Then we have

X (0, 0) = (1− n̂↑) (1− n̂↓) , X (2, 2) = n̂↑n̂↓

X (σ, σ) = n̂σ (1− n̂−σ) , X (σ,−σ) = a+
σ a−σ (A.24)

X (σ, 0) = a+
σ (1− n̂−σ) , X (2, σ) = σa+

−σn̂σ

As follows from (A.17), the simple multiplication rules, postulated by
Hubbard [31], hold

X (Γ, Γ′) X (Γ′′, Γ′′′) = δΓ′Γ′′X (Γ, Γ′′′) (A.25)

For each number of electrons n, the sum rule is satisfied

∑

Γn

X (Γ, Γ′) =
1

n!

∑

γi 6=γj

n̂γnn̂γn−1 ...n̂γ1

∏

γ 6=γi

(1− n̂γ) ≡ Xn (A.26)

which may be verified by direct muliplication

X (Γ′, Γm) Xn = δnmX (Γ′, Γm) (A.27)

Finally, one can prove the completeness relation

∑

Γ

X (Γ, Γ) =
∑
n

Xn = 1 (A.28)
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An arbitrary operator Ô acting on the electrons at a given site i, is ex-
pressed in terms of X-operators as

Ô =
∑

ΓΓ′

∫
dx1...dxnΨ∗

Γ (x1...xn) ÔΨΓ′ (x1...xn) Ã+
Γ ÃΓ′ =

∑

ΓΓ′
〈Γ|Ô|Γ′〉X(Γ, Γ′)

(A.29)
It follows from (A.11) that the matrix elements of the one-electron Fermi
operators read

〈Γn|a+
γ |Γn−1〉 = n1/2GΓn

Γn−1
CΓn

Γn−1,γ (A.30)

Then we obtain the representation [32]

a+
γ =

∑
n

n1/2
∑

ΓnΓn−1

GΓn
Γn−1

CΓn
Γn−1,γX (Γn, Γn−1) (A.31)

In particular, for s-electrons one gets

a+
σ = X (σ, 0) + σX (2,−σ) (A.32)

Using (A.31) and the orthogonality relations for Clebsh-Gordan and frac-
tional parentage coefficients (A.8) we obtain

∑
γ

a+
γ aγ =

∑

nΓn

nX (Γn, Γn) (A.33)

∑
γ

aγa
+
γ =

∑

nΓn

(2 [l]− n) X (Γn, Γn)

The fullfilment of Fermi commutation relations is ensured by the identity

n
∑

Γn−1

GΓn
Γn−1

G
Γ′n
Γn−1

CΓn
Γn−1,γ′C

Γn
Γn−1,γ+(n + 1)

∑

Γn−1

G
Γn+1

Γn
G

Γn+1

Γ′n C
Γn+1

Γn,γ C
Γn+1

Γ′n,γ′ = δγγ′δΓnΓ′n

(A.34)
After multiplying by Cγ′′

γγ , and summing over momentum projections, this
identity may be expressed in terms of 6j-symbols and used to obtain recur-
rence relations for fractional parentage coefficients [32].

Up to now we have considered the algebra of ME operators at one lattice
site. General commutation relations for X-operators at sites ν and ν ′ read

[Xν (Γ, Γ′) , Xν (Γ′′, Γ′′′)]± = δνν′{X (Γ, Γ′′′) δΓ′Γ′′ ±X (Γ′′, Γ′) δΓΓ′′′} (A.35)

where the plus sign corresponds to the case where both X-operators have
the Fermi type, i.e. change the number of electrons by an odd number, and
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minus sign to all the other cases. For the Fourier-transforms of X-operators,
equation (A.35) takes the form

[Xk (Γ, Γ′) , X−k′ (Γ
′′, Γ′′′)]± = Xk−k′ (Γ, Γ′′′) δΓ′Γ′′ ±Xk−k′ (Γ

′′, Γ′) δΓΓ′′′

(A.36)
The Hubbard operators may be introduced not only for the eigenstates

of the Hamiltonian with spherical symmetry, but also in the presence of a
strong crystal field. In such a situation, we have to use the irreducible repre-
sentations of the point group and corresponding Clebsh-Gordan coefficients
[564].



Appendix B

Angular momentum operators
and double irreducible tensor
operators

In a number of problems of solid state physics, it is convenient to pass into
the angular-momentum operator representation. The first example of such
approach was introducing spin operators for S = 1/2 by Dirac

a+
↑ a↓ = S+, a+

↓ a↑ = S− (B.1)

1

2

(
a+
↑ a↑ − a+

↓ a↓
)

= Sz

to represent the electron exchange Hamiltonian for singly-occupied s-states
in the form of a scalar product:

−∑

σσ′
a+

1σa1σ′a
+
2σa2σ′ = −

(
1

2
+ 2S1S2

)
(B.2)

This yielded a basis for the Heisenberg model of magnetism (Sect.4.1),
which was also applied for arbitrary S. However, for S > 1

2
one has to con-

sider electrons in orbit-degenerate states and, consequently, to treat orbital
momenta.

Consider the connection of spin and orbital momentum operators for an
atomic shell (1.7) with Hubbard’s operators. The momentum operators are
diagonal in LS-terms:

〈SLµMα|Lq|S ′L′µ′M ′α′〉 = δSLα,S′L′α′δµµ′
√

L (L + 1)CLM
LM ′,1q (B.3)
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〈SLµMα|Sq|S ′L′µ′M ′α′〉 = δSLα,S′L′α′δMM ′
√

S (S + 1)CSµ
Sµ′,1q (B.4)

where we have introduced the cyclic components of a vector

A±1 = ∓ 1√
2
A± = ∓ 1√

2
(Ax ± iAy)

A0 = Az

In the presence of spin-orbit coupling, we have to construct the functions
with definite total angular momentum J = L + S. In the Russel-Saunders
approximation we have

|SLJMJ〉 = ΨSLJMJ
=

∑

µM

CJMJ
Sµ,LM |SLµM〉 (B.5)

and the corresponding ME creation operator reads

A+
SLJMJ

=
∑

µM

CJMJ
Sµ,LMA+

SLµM (B.6)

The matrix elements of the total momentum operator within the multiplet
with a given J are

〈JM |Jq|JM ′〉 =
√

J (J + 1)CJM
JM ′,1q (B.7)

Standard components of the vector I = S, L, J are expressed as

I+ =
∑

M

[(I −M) (I + M + 1)]1/2 X (M + 1,M) (B.8)

I− =
∑

M

[(I −M + 1) (I + M)]1/2 X (M − 1,M)

Iz =
∑

M

MX (M, M)

At passing from exchange Hamiltonians, which are expressed in terms of ME
operators, into momentum representation, we need the inverse transforma-
tions from X-operators to momentum operators. To obtain them, we can
write down expressions for all the powers (Iα)k with k = 0...2I (higher pow-
ers are not linearly independent) and solve this system of (2I + 1)2 equations,
which is very cumbersome. It is more convenient to use the irreducible tensor
operators

I(k)
q =

∑

MM ′
CIM

IM ′,kqX (IM, IM ′) (q = −k...k) (B.9)
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so that
Sq =

√
S (S + 1)S(1)

q (B.10)

L(1)
q =

√
L (L + 1)L(1)

q

The operators (B.9) are connected with the Stevens equivalent operators
in the crystal field theory (see Sect.1.3). Using the orthogonality relations
for the Clebsh-Gordan coefficients, it is easy to obtain the inverse relations
required

X (IM, IM ′) =
∑

kq

CIM
IM ′,kqI

(k)
q (B.11)

The commutation rules for the operators (B.9) have the form

[I(k)
q , I

(k)
q′ ]− =

∑

k′′q′′

(
(−1)k′′ − (−1)k+k′

) {
k k′ k′′

I I I

}
([K ′′] [I])

1/2
Ck′′q′′

kq,k′q′I
(k′′)
q′′

with

{
. . .
. . .

}
being the 6j-symbols. Explicit expressions for the irre-

ducible tensor operators in terms of usual momentum operators are tabulated
[41,43]. Besides that, one can apply at analytical calculations the recurrence
relation

(−1)k ([k − p][p][I])1/2

{
k − p p k

I I I

}
I(k) = [I(k−p) × I(p)](k) (B.12)

where the tensor product of rank c is defined by

[A(a) ×B(b)](c)γ =
∑

αβ

Ccγ
aα,bβA(a)

α B
(b)
β (B.13)

To express X-operators, connecting terms with different L, S, J one can use
“hyperbolic” operators which change the value of the momentum itself [656].
They satisfy the commutation relations

[K±, Kz] = ∓K±, [K+, K−] = 2Kz (B.14)

and have the following non-zero matrix elements

〈JM |K+|J − 1M〉 = [(J + M) (J −M)]1/2 (B.15)

〈JM |Kz|JM〉 = J +
1

2
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This problem is discussed also by Popov and Loginov [657].
At passing from the LS-representation to the J-representation for the

multiplet with a given J , we have to express the products L(k)S(κ) in terms
of operators J (p). Using (A.11), (B.6) and summing the product of four
Clebsh-Gordan coefficients with the use of a 9j-symbol we get

S
(κ)
ξ L(k)

q =
∑

Pρ





J S L
J S L
p κ k





([S][L][J ][p])1/2 CPρ
κξ,kqJ

(P )
ρ (B.16)

Note that p + κ + k is even (in the opposite case, the 9j-symbol in (B.15) is
zero due to its symmetry properties). For k = 0 or κ = 0 the 9j-symbol is
simplified, so that we obtain

S(κ) = (−1)J+S+L+κ ([S] [J ])1/2

{
J S L
S J κ

}
J (κ) (B.17)

L(k) = (−1)J+S+L+k ([L] [J ])1/2

{
J L S
L J k

}
J (k) (B.18)

In particular, at κ = 1 or k = 1, substituting explicit values of 6j-coefficients
yields

S = (g − 1)J (B.19)

L = (2− g)J (B.20)

where

g = 1 +
(LS)

J2
= 1 +

J (J + 1)− S (S + 1)− L (L + 1)

2J (J + 1)

is the Lande factor. Thus the well-known de Gennes formula (B.19) (see
Sect.4.7) is obtained from the general relation (B.16).

Now we discuss another approach to description of the Fermi operator
products. Since matrix elements of the Fermi creation operators a+

lmσ (A.10)
are proportional to the Clebsh-Gordan coefficients, these operators may be
considered as 2(2l + 1) components of a double tensor operator acting in the
spin and orbital spaces. At calculating matrix elements of products of Fermi
operators at one site, it is convenient to introduce for a given shell the double
irreducible tensor operators with the components

W
(κk)
ξq =

∑

mm′σσ′
C lm

lm′,kqC
1/2σ
1/2σ′,κξa

+
lmσal′m′σ′ (B.21)
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(we use the definition, slightly different from that in [32]). Any operator of
the form

F̂ =
∑

i

f̂i

where f̂ is an arbitrary one-electron operator, may be represented in terms
of the operators (B.21). In particular,

W (00) =
∑
mσ

a+
lmσalmσ = n̂ (B.22)

is the number-of-particle operator for the shell. The cyclic components of
the total spin and orbital momentum operators (1.7) are given by (cf.(B.10))

Sξ =

√
3

2
W

(10)
ξ (B.23)

Lq =
√

l (l + 1)W (01)
q (B.24)

and the inner scalar product

1

2

√
3l (l + 1)

∑
q

(−1)q W
(11)
q,−q =

∑

i

sili (B.25)

is proportional to the operator of spin-orbit coupling.
The operators (B.21) for k + κ > 1, unlike the operators (B.23), (B.24),

have non-zero matrix elements between terms with different S and L and
are, generally speaking, not reduced to products of the momentum operators
(B.9). However, the connection may be established within a concrete term
with given L, S (or J). Calculating the matrix element of the product of
Fermi operators with account of (3.10) we obtain in agreement with the
Wigner-Eckart theorem

〈SLµMα|W (κk)
ξq |S ′L′µ′M ′α′〉 (B.26)

= ([S] [L])−1/2 CLM
L′M ′,kq〈SLα|W (κk)|S ′L′α′〉

where the reduced matrix elements have the form

〈SLα||W (κk)||S ′L′α′〉 = n (2 [l] [S] [S ′] [L] [L′])1/2
(B.27)

× ∑

{S̄L̄ᾱ}
GSLα

S̄L̄ᾱGS′L′α′
S̄L̄ᾱ

{
1
2

κ 1
2

S S̄ S ′

} {
l k l
L L̄ L′

}
(−1)1/2+l+S+L+S̄+L̄+κ+k



264APPENDIX B. ANGULAR MOMENTUM OPERATORS AND DOUBLE IRREDUCIBLE TENSOR OPERATORS

〈SLα||W (0k)||S ′L′α′〉 = nδSS′ ([l] [S] [L] [L′])1/2
(B.28)

× ∑

{S̄L̄ᾱ}
GSLα

S̄L̄ᾱGSL′α′
S̄L̄ᾱ

{
l k l
L L̄ L′

}
(−1)l+L+L̄+k+1

They can be also taken from the tables available (see, e.g., [10, 659]). Thus
we have for a given term

W (κk) = ([S] [L])1/2 〈SLα||W (κk)||SLα〉S(κ)
ξ L(k)

q (B.29)

Comparing (B.27), (B.29) with (B.3), (B.4), (B.23), (B.24) one can see
that the double irreducible tensor operator approach yields a summation of
fractional parentage coefficients at k = 0, κ = 1 or k = 1, κ = 0 [660]. We
shall see in Appendix D that this leads to a simplification of some terms in the
exchange Hamiltonian. In particular, substituting the values of 6j-symbols
at SLα = S ′L′α′, we derive

∑

{S̄L̄ᾱ}

(
GSLα

S̄L̄ᾱ

)2
(−1)S−S̄+1/2 [S]−1 =

1

n
(S 6= 0) (B.30)

∑

{S̄L̄ᾱ}

(
GSLα

S̄L̄ᾱ

)2
L̄

(
L̄ + 1

)
= l (l + 1) +

(
1− 2

n

)
L (L + 1) (L 6= 0)

(B.31)
The double irreducible tensor operator formalism may be generalized by

considering triple tensor operators a(qls) (q = s = 1/2) with the components

a
(qls)
1/2mσ = a+

lmσ (B.32)

a
(qls)
−1/2mσ = (−1)l+s−m−σ almσ

and constructing from them the operators

T
(Λκk)
λξr =

∑

ϕϕ′σσ′
mm′

Cqϕ
qϕ′,ΛλC

Sσ
Sσ′,κξC

lm
lm′,kra

(qls)
ϕmσa

(qls)
ϕ′m′σ′ (B.33)

In particular, for κ = 0, k = 0, Λ = 1 we obtain the quasispin operator with
the components

Q+ =
1

2

∑
mσ

(−1)l+1/2−m−σ a+
lmσa

+
l−m−σ (B.34)
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Qz = −1

2

(
2l + 1−∑

mσ

a+
lmσalmσ

)

which satisfy the usual commutation relations for spin operators. Note that
the operator Q+ coincides to a numerical factor with the creation operator
(2.14) for the two-electron singlet zero-L state 1S and adds such a pair to
configuration ln−2 . The value of quasispin for a given term sequence equals
to maximum value of Qz:

Q =
1

2
(2l + 1− v) (B.35)

where v is the Racah’s seniority quantum number, (n−v)/2 being the number
of closed electron pairs with zero spin and orbital momenta in the given
ME term. Using the Wigner-Eckart theorem in the quasispin space enables
one to establish additional symmetry of the ME problem (in particular, to
present the dependences of reduced matrix elements and fractional parentage
coefficients on the electron number in terms of v) [32]. This formalism may
be useful in the solid state theory at considering charge fluctuations. Further
applications of the group theory to the classification of many-electron states
are discussed in the book [65].
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Appendix C

Hamiltonian of a crystal with
many-electron atoms

To present derivation of some many-electron (ME) models we treat the gen-
eral Hamiltonian of the ME system in a crystal

H =
∑

i

(
− h̄2

2m
∆ri

+ V (ri)

)
+

1

2

∑

i6=j

e2

|ri − rj| (C.1)

where V (r) is the periodic crystal potential. Further we pass to the second
quantization representation. To this end one has to use orthogonal wave
functions. However, the atomic wave functions

ϕlmσ(x) = ϕlm(r)χσ(s) = Rl(r)Ylm(r̂)χσ(s) (C.2)

(s is the spin coordinate, Rl is the radial wavefunction, Y is the spherical
function, r̂ = (θ, φ)) do not satisfy this condition at different sites ν. The
non-orthogonality problem is one of most difficult in the magnetism theory
[656,661]. Here we use the orhtogonalization procedure developed by Bo-
golyubov [651]. To lowest order in the overlap of atomic wavefunctions the
orthogonalized functions read

ψνlm(r) = ϕνlm(r)− 1

2

∑

ν′ 6=ν

∑

l′m′
ϕν′l′m′(r)

∫
dr′ϕ∗ν′l′m′(r′)ϕνlm(r) (C.3)

The non-orthogonality corrections may be neglected at considering intrasite
interactions and two-site Coulomb (but not exchange) matrix elements.
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Then we obtain the many-electron Hamiltonian of the polar model [651,662,
663] in the general case of degenerate bands

H =
∑

νlmσ

εla
†
νlmσaνlmσ +

∑

ν′ 6=ν

∑

limiσ

βν1ν2(l1m1, l2m2)a
†
ν1l1m1σaν2l2m2σ (C.4)

+
1

2

∑

νilimiσ1σ2

Iν1ν2ν3ν4(l1m1, l2m2, l3m3, l4m4)a
†
ν1l1m1σ1

a†ν2l2m2σ2
aν4l4m4σ2aν3l3m3σ1

Here we have used the orthogonality of spin wave functions χσ(s),

εl =

∞∫

0

r2drRl(r)

[
− 1

2mr2

d

dr

(
r2 d

dr

)
+

l(l + 1)

2mr2
+ v(r)

]
Rl(r) (C.5)

are the one-electron levels in the central potential of a given site v(r) (we
neglect the influence of potentials of other atoms, i.e. crystal-field effects),

βν1ν2(l1m1, l2m2) =
∫

drψ∗ν1l1m1
(r)

(
− h̄2

2m
∆ + V (r)

)
ψν2l2m2(r) (C.6)

are the transfer matix elements between the sites ν1 and ν2,

Iν1ν2ν3ν4(l1m1, l2m2, l3m3, l4m4) (C.7)

=
∫

drdr′ψ∗ν1l1m1
(r)ψ∗ν2l2m2

(r′)
e2

|r− r′|ψν3l3m3(r)ψν4l4m4(r
′)

are the matrix elements of electrostatic interaction. Consider the electrostatic
interactions between two atomic shells on the same lattice site ν1 = ν2 = ν3 =
ν4. We use the standard expansion

1

|r− r′| =
∞∑

p=0

4π

[p]

rp
<

rp+1
>

p∑

q=−p

Ypq(r̂)Ypq(r̂
′) (C.8)

and the expression for the matrix element of a spherical function

π∫

0

sin θdθ

2π∫

0

dϕY ∗
l1m1

(r̂)Yl2m2(r̂)Yl3m3(r̂) (C.9)

=

(
[l2][l3]

4π[l1]

)1/2

C l10
l20,l30C

l1m1
l2m2,l3m3

≡ C̃ l1m1
l2m2,l3m3
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The quantity C̃ vanishes if l1 + l2 + l3 is odd, and for l1 + l2 + l3 = 2g one has

C l10
l20,l30 = (−1)l1+g[l1]

1/2g!{(2g + 1)}−1/2
3∏

i=1

{(2g − 2li)!}1/2

(g − li)!

Carrying out the integration, we obtain for the Coulomb term (l1 = l3, l2 = l4
)

Hcoul(l1l2) =
∑
p

C l10
l10,p0C

l20
l20,p0F

(p)(l1l2)(W
(0p)
1 W

(0p)
2 ) (C.10)

where

F (p)(l1l2) = e2
∫

r2
1dr1r

2
2dr2

rp
<

rp+1
>

R2
l1
(r1)R

2
l2
(r2) (C.11)

are the Slater parameters, the irreducible tensor operators W are given by
(B.21) and the scalar product is defined by

(
A(a)B(a)

)
=

∑
α

(−1)αA(a)
α B

(a)
−α ≡ (−1)a[a]1/2[A(a) ×B(a)](0) (C.12)

The Hamiltonian (C.10) may be expressed in terms of many-electron X-
operators with the use of (B.29) (see Appendix D).

For the exchange integral we obtain

Iν(l1m1, l2m2, l3m3, l4m4) =
∑
pq

4π

[p]
C̃ l1m1

l2m3,pqC̃
l2m2
l1m4,pqG

(p)(l1l2)

where

G(p)(l1l2) = e2
∫

r2
1dr1r

2
2dr2Rl1(r1)Rl2(r2)

rp
<

rp+1
>

Rl2(r1)Rl1(r2) (C.13)

Transforming the product of Clebsh-Gordan coefficients

∑
q

C l1m1
l2m3,pqC

l2m2
l1m4,pq =

∑

kµ

{
l1 l2 p
l2 l1 k

}
C l1m1

l1m4,pqC
l2m2
l2m3,pq(−1)k−µ (C.14)

we derive

Hexch(l1l2) = −1

2

∑

kpκ

{
l1 l2 p
l2 l1 k

}
(−1)k[k][κ]

(
[l2]

[l1]

)1/2

(C.15)

×
(
C l10

l20,p0

)2
G(p)(l1l2)

(
W

(κk)
1 W

(κk)
2

)
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For k = 0 we obtain from (B.22), (B.23) the intraatomic exchange Hamilto-
nian

∑

κ
H(κ0)

exch (l1l2) = −1

2

∑
p

(
[l2]

[l1]

)1/2 (
C l10

l20,p0

)2
G(p)(l1l2)[n1n2 + 4(S1S2)]

(C.16)
and for κ = 0, k = 1 from (B.24) the orbital exchange Hamiltonian

H
(01)
exch(l1l2) = −3

4

∑
p

(
C l10

l20,p0

)2 l1(l1 + 1) + l2(l2 + 1)− p(p + 1)

l1(l1 + 1)l2(l2 + 1)[l1]
G(p)(l1l2)(L1L2)

(C.17)
In the case of electrostatic interaction between electrons of the same shell,

F = G, so that we may represent the Hamiltonian in both forms (C.10) and
(C.15). Thus

H(l) =
1

2

∑
p

(
C l10

l20,p0

)2
F (p)(ll)

[
(W (0p)W (0p))− n

]
(C.18)

where the second term in square brackets arises because of the condition
i 6= j in (C.1). In the ME representation, the Hamiltonian (C.18) takes the
quasidiagonal form. Calculating the matrix elements of the scalar product
we obtain

H(l) =
∑

SLµM

∑

αα′
Eαα′

SL X(SLµMα, SLµMα′)

with

Eαα′
SL =

1

2

∑

SLMµ

∑
p

(
C l10

l20,p0

)2
F (p)(ll){[S]−1[L]−1

∑

L̄ᾱ

〈SLα‖W (0p)‖SL̄ᾱ〉
(C.19)

×〈SLα′‖W (0p)‖SL̄ᾱ− δαα′n〉}
and the reduced matrix elements are given by (B.27). If several ME terms
with the same values of L,S are present (which is typical for d-and f -
electrons), additional diagonalization is required. Retaining in (C.19) the
contribution with p = 0 only we obtain

EΓ =
1

2
n(n− 1)F (0)(ll) (C.20)

The contributions with p = 2, 4... yield the dependence of term energy on
the ME quantum numbers S, L according to the Hund rules.
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Expressions (C.10), (C.16), (C.18) reduce the problem of electrostatic in-
teraction between electrons to calculation of the Slater integrals. These may
be considered as parameters, which should be taken from experimental data
(such a procedure is used often in the atomic spectroscopy). In this case,
the wave functions, which enter the Slater integrals, are to be calculated
in a self-consistent way from the corresponding integro-differential equations
[20]. Consider the one-band Hamiltonian of a crystal in the many-electron
representation. Besides the on-site Coulomb repulsion and the intersite elec-
tron transfer (which are taken into account in the Hubbard model) we take
into account the electron transfer owing to matrix elements of electrostatic
interaction (C.7) with ν1 6= ν3, ν2 = ν4. We confine ourselves to the terms
with ν1 = ν2 or ν2 = ν3 (three-site terms are smaller due to decrease of the
Coulomb interaction with distance). Using (B.21), (C.19) and taking into
account corrections owing to the non-orthogonality we obtain

H =
∑

νΓ

EΓXν(Γ, Γ) +
∑

ν1 6=ν2

∑

ΓnΓn−1Γn′Γn′−1

Bν1ν2(ΓnΓn−1, Γn′Γn′−1) (C.21)

×Xν1(ΓnΓn−1)Xν2(Γn′Γn′−1)

where
Bν1ν2(ΓnΓn−1, Γn′Γn′−1) = (nn′)1/2GΓn

Γn−1
G

Γn′
Γn′−1

(C.22)

× ∑
γ1γ2

CΓn
Γn−1,γ1

C
Γn′
Γn′−1,γ2

δσ1σ2βν1ν2(lm1, lm2)

+[n(n− 1)n′(n′ − 1)]1/2

×[
∑

Γ̄n−1Γ̄n−2

GΓn

Γ̄n−1
G

Γ̄n−1

Γ̄n−2
G

Γn−1

Γ̄n−2
G

Γn′
Γ̄n′−1

× ∑
γ1...γ4

GΓn

Γ̄n−1,γ1
G

Γ̄n−1

Γ̄n−2,γ2
G

Γn−1

Γ̄n−2,γ3
G

Γn′
Γ̄n′−1,γ4

δσ1σ3δσ2σ4

×Iν1ν2ν3ν4(lm1, lm2, lm3, lm4)

+{Γn, Γn−1} ↔ {Γn′ , Γn′−1}
are the many-electron transfer integrals. E.g., for the s-band we have

H = U
∑
ν

Xν(2, 2) +
∑

ν1ν2σ

{β(00)
ν1ν2

Xν1(σ, 0)Xν2(0, σ) + β(22)
ν1ν2

Xν1(2, σ)Xν2(σ, 2)

(C.23)
+σβ(02)

ν1ν2
Xν1(σ, 0)Xν2(−σ, 2) + Xν1(2,−σ)Xν2(0, σ)
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where U = Iνννν = F (0)(00) is the Hubbard parameter,

β(00)
ν1ν2

= βν1ν2 (C.24)

β(22)
ν1ν2

= βν1ν2 + 2Iν1ν1ν2ν1

β(02)
ν1ν2

= β(20)
ν1ν2

= βν1ν2 + Iν1ν1ν2ν1

are the transfer integral for holes and doubles, and the integral of the double-
hole pair creation; according to (C.3),

Iν1ν1ν2ν1 = I(0)
ν1ν1ν2ν1

− U

2

∫
drϕν2(r)ϕν1(r) (C.25)

with I(0) being calculated for the atomic functions ϕ. It should be noted
that the dependence of the transfer integrals on the atomic ME terms may
be more complicated if we use at solving the atomic problem the approaches
which are more complicated than in Appendix A. For example, the general
Hartree-Fock approximation (see [20]) yields the radial one-electron wave
functions which depend explicitly on atomic term. In some variational ap-
proaches of the many-electron atom theory (see [664] the ME wavefunction
is not factorized into one-electron ones. Then the transfer integrals are to be
calculated with the use of ME wave functions:

Bv1v2(ΓnΓn−1, Γn′Γn′−1) =
∫ ∏

dxiΨ
∗
v1Γn′

Ψ∗
v2Γn′

(C.26)

×∑

i

(
− h̄2

2m
∆ri

+ V (ri)

)
Ψv1Γn′Ψv2Γn′

In particular, for the s-band the integrals (C.24) may be different even at
neglecting interatomic Coulomb interactions and non-orthogonality. Besides
that, the many-configuration approach, which takes into account the inter-
action of different electron shells, is sometimes required.

To analyze the m-dependence of two-site matrix elements, it is convenient
to transform them into one-site ones by expanding the wave functions ϕν2(r)
about the first atom [665]. Passing to the Fourier transforms

ϕlm(r) =
∫

dkeikrR̃l(k)Ylm(k̂) (C.27)

(with R̃l(k) being the Fourier transforms of radial functions) and expanding
plane waves in spherical harmonics

eikr = 4π
∑

λµ

iλjλ(kr)Y ∗
λµ(k̂)Ylm(r̂) (C.28)
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where jλ(x) are the spherical Bessel function, we obtain

ϕν2lm(r) ≡ ϕν1lm(r + ρ) = 4π
∑

λµηξ

C̃ηξ
lm,λµRlηλ(r,ρ)Y ∗

λµ(ρ̂)Yηξ(r̂) (C.29)

with

Rlηλ(r,ρ) =

∞∫

0

k2dkRl(k)iλ+ηjη(kr)jλ(kρ) (C.30)

As well as in (C.3), we retain only the crystal potential at the site ν1 is
retained; in this approximation, non-orthogonality corrections to one-electron
transfer integrals are absent [651]. Then, substituting (C.29) into (C.6) we
pick out the dependence of transfer matrix elements on magnetic quantum
numbers [660]

βν1ν2(l1m1, l2m2) = 4π
∑

λµ

C̃ l1m1
l2m2,λµβ̄ν1ν2(l1l2λ)Yλµ(ρ̂ν1ν2) (C.31)

where

β̄ν1ν2(l1l2λ) =

∞∫

0

r2drRl1(r)v(r)Rl2l1λ(r, ρν1ν2
) (C.32)

One can see that for even l1−l2 (in particular, for intraband transfer integrals
with l1 = l2 ) λ is even, and for odd l1 − l2 (in particular, for the matrix
elements of s − p, p − d and d − f hybridization) the angle dependence
with λ = 1 emerges. The Coulomb contributions to (C.22) turn out to have
qualitatively the same anisotropy as (C.31) yields.

In the case of strong intraatomic Coulomb interaction we may retain in
the Hamiltonian (C.21) only two lower ME terms, Γ = {SL} and Γ = {S ′L′}.
Then the intraatomic Hamiltonian yields a constant energy shift only and
may be omitted. The transfer Hamiltonian may be represented through the
spin and orbital momentum operators corresponding to the term Γn. To
this end, we pick out from X-operators one Fermi operator with the use of
(A.21), (A.17), (A.11). Substituting (C.31) and transforming products of
Clebsh-Cordan coefficients we get

H = (4π)1/2
(
G

Γn+1

Γ̄n

)4 ∑
νimiσiσ

∑

k1k2λpqk

β̄ν1ν2(llλ)[k1][k2]([k][p])1/2 (C.34)

×[L′]2[L]−1

{
L L k1

l l k2

} 



k1 l l
k2 l l
k p λ





(−1)qC l0
l0,λ0C

lm1
lm2,pq
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×a+
ν1lm1σ1

Pν1σ1σ

[
Y (λ)(ρ̂)×

[
L

(k1)
λ1

× L
(k2)
λ2

](λ)
](p)

−q
Pν2σσ2aν2lm2σ2

where

P̂ν =
1

2[S]
([S ′] + (−1)S−S′+1/22(Sνσ))

Here σ are the Pauli matrices, Y (λ) is the irreducible tensor with the compo-
nents Yλµ , the vector product of irreducible tensor operators is defined by
(B.14).



Appendix D

Interatomic electrostatic
interaction and derivation of
the Heisenberg Hamiltonian

In this Appendix we treat, starting from the general many- electron of a
crystal (C.1), the “direct” Coulomb and exchange interaction between two
degenerate atomic shells at different sites. The consideration of this mech-
anism enables one to establish general features of Hamiltonian of magnetic
ion systems with unquenched orbital momenta.

Putting in (C.7) ν1l1 = ν3l3, ν2l2 = ν4l4, making the expansion (C.29),
transforming the product of Clebsh-Gordan coefficients and using the multi-
plication formula for spherical harmonics

Yλ1µ1(ρ̂)Yλ2µ2(ρ̂) =
∑

λµ

C̃λµ
λ1µ1,λ2µ2

Yλµ(ρ̂) (D.1)

we obtain, similar to (C.10), the Hamiltonian of the intersite Coulomb inter-
action [660]

Hcoul(ν1ν2) = (4π)1/2
∑

pbλ

∑

λ1λ2η1η2

F (p)(l1l2η1η2λ1λ2)[b][λ1][λ2][l2]
1/2 (D.2)

×(−1)λ1C(l1pl1, l2λ1η1, η2pη1, l2λ2η2, λ1λ2λ)





l1 λ1 η1

l2 λ2 η2

l λ p





×
(
[W

(0p)
1 ×W

(ab)
2 ](λ)Y (λ)(ρ̂)

)

275
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where

F (p)(l1l2η1η2λ1λ2) = e2

∞∫

0

r2
1dr1r

2
2dr2R

∗
l1η1λ1

(r2, ρ)
rp
<

rp+1
>

Rl1η1λ1(r2, ρ)R2
l1
(r1)

(D.3)
is a generalized Slater integral for two-site interaction, and the notation is
used for brevity

C(a1, b1, c1, a2, b2, c2, . . .) =
∏

i

Cci
ai0,bi0

(D.4)

One can see from (C.9) that p, λ1 +λ2 and λ are even (b is also even because
of time-reversal invariance), p ≤ 2l1, b ≤ 2l2, λ ≤ 2(l1 + l2). Further we
pass to the many-electron representation. According to (B.29), for a given
LS-term we have to substitute

W
(ok)
i = ([Si][Li])

−1/2 〈SiLi‖W (ok)
i ‖SiLi〉L(k)

i (D.5)

with the reduced matrix elements being given by (B.28). The transition to
usual vectors is performed with the use of equation (B.13) and factorization
of spherical harmonics according to (D.1). For example,

(
L

(2)
1 L

(2)
2

)
= 20

√
5

3

∏

i=1,2

[Li]
1/2(2Li − 1)−1(2Li + 3)−1 (D.6)

×
{

1

3
L1(L1 + 1)L2(L2 + 1)− (L1L2)

2−1

2
(L1L2)

}

(
L

(2)
1 Y (2)(ρ̂)

)
= 5(2π)−1/22Li − 1)−1(2Li + 3)−1

{
1

3
L1(L1 + 1)− (L1ρ)2

ρ2

}

(D.7)
In the classical limit (L1, L2 À 1) we obtain the expansion

Hcoul(ν1ν2) =
∑

αβγ

Qαβγ
(L1ρ)α(L2ρ)β(L1L2)

γ

ρα+β
(D.8)

where the coefficients Q are linear combinations of the Slater integrals (D.3),
the powers of L1, L2 and ρ̂ in each summand are even and α + γ ≤ 2l1,
β + γ ≤ 2l2 . Anisotropic terms, which depend on orientation of only one
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orbital momentum in the lattice, are present. Vector products do not appear
since they are transformed into scalar ones:

([L1 × L2]ρ)2 = det




L1(L1 + 1) (L1L2) (L1ρ)
(L1L2) L2(L2 + 1) (L2ρ)
(L1ρ) (L2ρ) ρ2


 (D.9)

For concrete electron configurations, the total number of terms in the series
(D.7) is small. So, maximum powers of L1 and L2 do not exceed 2 for p-
electrons and 4 for d-electrons.

At considering the intersite direct exchange interaction [660, 666, 667]
(ν1l1 = ν4l4 , ν2l2 = ν3l3), which is small in the overlap of atomic wave
functions at different sites, one has to take into account corrections owing
to non-orthogonality since they have the same (second) order of smallness.
Calculating the integral (C.6) for the functions (C.3), and expanding the
wavefunctions, that arise, about the site ν with the use of (C.29), we obtain
the intersite exchange Hamiltonian [660]

Hexch(ν1ν2) = −1

2

∑

k1k2λκ

(4π)1/2[κ]3/2(−1)κI(l1l2k1k2λ) (D.10)

×
(
[W

(κk1)
1 ×W

(κk2)
2 ](0λ)Y (λ)(ρ̂ν1ν2)

)

where effective exchange parameters are given by

I(l1l2k1k2λ) =
1

2
[

∑

pη1η2λ1λ2

{G(p)(l1l2η1η2λ1λ2)− Re[G(p)(l1l2η1η2λ2)Z(l2η2λ2)]

(D.11)

+
1

2
G(p)(l1η1η2)Z(l1η1λ1)Z

∗(l2η2λ2)}

×(−1)l1−l2 [k1][k2][λ1][λ2]

(
[l2][η1]

[λ]

)1/2

×C(η1pl1, l1pη2, l2λ2η2, l2λ1η1, λ1λ2λ)

×
{

η1 η2 k1

l1 l1 p

} 



l2 λ1 η1

l2 λ2 η2

k2 λ k1





+
1

4

∑

pλiΛiηia

F (p)(l1l2η1η2λ2λ3λ4)Z(l1η1λ1)Z(l2η3λ3)
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×(−1)η3

3∏

i=1

[λi][k1][k2][a]

(
[Λ1][Λ2][η1][η3]

[λ]

)1/2

×C(l1λ1η1, η3pl1, η1λ4η4, l2λ3η3, η2pη4, l2λ2η2, λ1λ4Λ1, Λ1λ3Λ2, Λ2λ2λ)

×
{

l1 η4 Λ1

λ4 λ1 η1

} {
l2 a Λ2

Λ1 γ3 η3

} 



l1 η3 Λ1

l1 Λ1 η4

k a η2









l2 λ2 η2

l2 Λ2 a
k λ k1





]

+
1

2
[{ν1l1k1} ↔ {ν2l2k2}]∗

with k1 + k2 and λ being even, k1 ≤ 2l1, k2 ≤ 2l2 , λ ≤ 2(l1 + l2), κ ≤ 1.
Here we have introduced the two-site Slater integrals

G(p)(l1l2η1η2λ1λ2) = e2
∫

dr1r
2
1dr2r

2
2Rl1(r1)R

∗
l2η2λ2

(r2, ρ)
rp
<

rp+1
>

Rl2η1λ2(r1, ρ)Rl1(r2)

(D.12)

G(p)(l1l2η1η2λ1) = e2
∫

dr1r
2
1dr2r

2
2Rl1(r1)Rη2(r2)

rp
<

rp+1
>

Rl2η1λ1(r1, ρ)Rl1(r2)

(D.13)

G(p)(lη1η2) = e2
∫

dr1r
2
1dr2r

2
2Rl1(r1)Rη2(r2)

rp
<

rp+1
>

Rη1(r1)Rl1(r2) (D.14)

F (p)(l1l2η1η2η3η4λ2λ3λ4) = e2
∫

dr1r
2
1dr2r

2
2Rl1(r1)R

∗
l2η2λ2

(r2, ρ)
rp
<

rp+1
>

Rl3η3λ3(r1, ρ)Rη1η4λ4(r2, ρ)

(D.15)
and the non-orthogonality integrals

Z(lηλ) =

∞∫

0

r2drRl(r)Rlηλ(r, ρ) (D.16)

Putting k1 = k2 = λ = 0 we obtain, similar to (C.16), the spin Hamiltonian

∑
κ

H(κ0)
exch(ν1ν2) = −1

2
I(l1l2000)[n1n2 + 4(S1S2)] (D.17)

Putting k1 = k2 = 1, κ = 0 we obtain the orbital exchange Hamiltonian

H(01)
exch(ν1ν2) = −1

2
(l1(l1 + 1)l2(l2 + 1))−1/2 (D.18)

×{I(l1l2110)(L1L2) + (8π)−1/2I(l1l2112)[
1

3
(L1L2)− (L1ρ)(L2ρ)

ρ2
]}
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For all the other contributions, we have to pass to the operators S(κ) and L(k)

for a concrete term with the use of (B.29). Then we obtain the expansion

Hexch(ν1ν2) = − ∑

αβγκ

Iαβγκ
(L1ρ)α(L2ρ)β(L1L2)

γ(S1S2)
κ

ρα+β
(D.19)

with even α+β, α+γ ≤ 2l1, β +γ ≤ 2l2, κ = 0, 1. It should be stressed that
the powers of orbital momentum operators in (D.7), (D.19) are restricted in
the microscopic treatment not only by 2L (as follows from kinematic rela-
tions), but also by 2l. Higher-order terms in spin operators, e.g., biquadratic
exchange ones, do not occur in (D.19) since the electron spin s equals to
1/2. Such terms may be obtained from the higher-order corrections owing to
non- orthogonality [656,668]. However, they are considerably smaller in the
overlap of wave functions at different sites.

The above treatment of the two-site problem is, generally speaking, in-
sufficient for obtaining the exchange Hamiltonian of a crystal. However,
neglect of multi-site terms is justified in the nearest-neighbor approxima-
tion. Corrections to the two-centre approximation are especially important
if some nearest neighbour form equilateral triangles (e.g., for the fcc and hcp
lattices).

It should be noted that the electrostatic interaction may be investigated
by direct using the representation of ME wave functions [655]. We obtain

H(ν1ν2) =
∫ ∏

ij

dxidx′jΨ
∗
ν1Γ1

({xi})Ψ∗
ν2Γ2

({x′i}) (D.20)

×∑

ij

e2

|ri − rj|(1− Pij)Ψν1Γ3({xi})Ψν2Γ4({x′i})Xν1(Γ1, Γ3)Xν2(Γ2, Γ4)

where Pij is the permutation operator. Such an approach does not yield
immediately the results (D.17), (D.18) and requires a summation of frac-
tional parentage coefficients. However, this approach permits to take into
account the dependence of radial wavefunctions on ME quantum numbers
which occurs, e.g., in the Hartree-Fock approximation and is therefore more
general.

In the case of strong (in comparison with crystal field) spin-orbital in-
teraction the orbital and spin momenta are coupled into the total momen-
tum J (the Russel-Saunders scheme, appropriate for rare-earth ions). In the
Coulomb term, the spin-orbital coupling results in the replacement Li → Ji
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according to (B.18). For the exchange term, one has to make some additional
manipulations. Using (B.16) and performing summation of Clebsh-Gordan
coefficients, we derive the result (D.10) with the replacement

[W
(κk1)
1 W

(κk2)
2 ](0λ) → [κ]−1/2

∑

P1P2

[J
(P1)
1 × J

(P2)
2 ](λ)

{
P1 P2 λ
k1 k2 κ

}
(D.21)

× ∏

i=1,2

[pi] ([Si][Li][Ji])
1/2





Ji Si Li

Ji Si Li

Pi κ ki




〈SiLi‖W (κki)

i ‖SiLi〉

Then the expansion of the exchange Hamiltonian reads

Hexch(ν1ν2) = −∑

αβγ

Iαβγ
(J1ρ)α(J2ρ)β(J1J2)

γ

ρα+β
(D.22)

with α + γ ≤ 2l1 + 1, β + γ ≤ 2l2 + 1, α + β being odd.
In the limit of strong spin-orbital coupling under consideration, antisym-

metric Dzyaloshinsky-Moriya-type exchange interaction of the form K12[J1×
J2] may be obtained with account of crystal-field effects only. Unlike the case
of weak spin-orbital coupling considered by Moriya [669], where the antisym-
metric exchange is determined by matrix elements of orbital momenta, the
components of the pseudovector Kij are given by matrix elements of electro-
static interaction in the local coordinate system [666].

Besides the “potential” exchange (D.10), we have to consider the “kinetic”
exchange interaction. We consider the degenerate Hubbard model (C.21)
with large Coulomb interaction. Then in the ground state the electron states
at all sites correspond to the same SL-term, so that perturbation theory is
applicable. The kinetic exchange occurs in the second order in the electron
transfer

H̃ = 2
∑

νimiσi

βν1ν2(lm1, lm2)βν2ν1(lm3, lm4)
∑

Γ
(i)
n Γn−1Γn+1

(2EΓn−EΓn+1−EΓn−1)
−1

×〈Γn+1|a+
ν1lm1σ1

|Γn−1〉〈Γn−1|aν1lm4σ2|Γ′n〉〈Γ′′n|aν2lm2σ1|Γn+1〉 (D.26)

×〈Γn+1|a+
ν2lm3σ2

|Γ′′′n 〉Xν1(Γn, Γ
′
n)Xν2(Γ

′′
n, Γ

′′′
n )

where sum over Γ(i) stands for the sum over momentum projections of the
term Γn = {SLµM}. In particular, for the s-band we obtain the standard
result for the Anderson’s kinetic exchange (4.8).
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Generally speaking, in the problem of kinetic exchange for degenerate
bands we cannot use the double irreducible tensor operators (B.21) since the
denominators in (D.26) depend on ME quantum numbers S, L of virtual
states. This may be, however, made if we take into account the dependence
of EΓ on the number of electrons only (C.20) to obtain

H̃ =
∑
ν1ν2

{
β̄2

ν1ν2
(ll0)

F (0)(ll)

}
{n1n2 + 4(S1S2)− [l](n1 + n2)} (D.27)

The interaction (D.27) is antiferromagnetic and dominates as a rule over the
potential exchange interaction (D.10). It should be noted that the kinetic
exchange interaction survives even in the limit F (2) = U → ∞ owing to
non-orthogonality corrections (the second term in (C.25)).

In the general case we have to apply directly the ME operator approach.
Substituting the expressions for matrix elements of Fermi operators (A.30),
taking into account the m-dependence of transfer integrals (C.31) and per-
forming summation of the Clebsh-Gordan coefficients we obtain [660]

H̃ = (4π)1/2n(n + 1)
∑

νikiλiλ
{Sn±1,Ln±1}

(
GΓn

Γn−1
G

Γn+1

Γn

)2 β̄ν1ν2(llλ1)β̄ν1ν2(llλ2)

EΓn+1 + EΓn−1 − 2EΓn

(D.28)
×C(lλ1l, lλ2l, λ1λ2λ)[l][λ1][λ2][k1][k2][Ln+1][λ]−1/2(−1)Ln+1−Ln−1

×
{

L L k1

l l Ln−1

} {
L L k2

l l Ln+1

} 



k1 k2 λ
l l λ1

l l l2





([L
(k1)
1 ×L

(k2)
2 ](λ)Y (λ)(ρ̂1,2))

×(−1 + 4(−1)Sn+1−Sn−1([Sn+1][Sn−1])
−1(S1S2))

with λ1, λ2, λ and k1 + k2 being even, λ1, λ2 ≤ 2l, k1, k2, k ≤ 2l, 2L.
Passing to the usual vectors, we obtain the multipole expansion in the same
form as (D.19). The Hamiltonian (D.28) contains only bilinear terms in spin
operators. The biquadratic exchange may be obtained in the fourth order
of perturbation theory [661,668-670] which also corressponds to higher order
corrections in the overlap parameter.

The sign of contributions of virtual configurations Γn−1 and Γn+1 to the
effective exchange parameter (k1 = k2 = 0) is determined by their spins. The
coupling is antiferromagnetic if Sn+1 = Sn−1 = Sn ± 1

2
and ferromagnetic if

Sn+1 − Sn−1 = ±1.
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Similar rules for the coupling between orbital momenta (k1 = k2 = 1,
λ1 = λ2 = 0) are obtained after substituting explicit values of 6j-coefficients
in (D.28). The orbital exchange interaction is “antiferromagnetic” if both
the differences

∆± = L(L + 1) + l(l + 1)− Ln±1(Ln±1 + 1) (D.29)

have the same sign and “ferromagnetic” in the opposite case.
In real situations, the form of exchange Hamiltonians is strongly mod-

ified by crystal field (CF) which quenches, at leat partially, orbital mo-
menta. Even in the case of intermediate CF, one has to consider, instead
of the many-electron SL-terms, the corresponding irreducible representations
of point groups. Besides that, the overlap between partially occupied d(f)-
shells and, consequently, the direct exchange is as a rule small, so one has to
take into account more complicated “superexchange” mechanisms via non-
magnetic atoms [661]. The kinetic exchange may be treated as a particular
case of the superexchange interaction (the indirect interaction via valence
band). The case of a narrow-band metal or semiconductor with non-integer
band filling where exchange interaction is mediated by current carriers (the
“double exchange” situation) [668] may be described within the Hubbard and
s−d exchange models with strong correlations. The corresponding Hamilto-
nians (D.28), (I.10) describe the interaction of electrons with spin and orbital
degrees of freedom. In this case the exchange interaction is not reduced to a
Heisenbergian form.



Appendix E

Spin waves in Heisenberg
magnets and the Green’s
function method

The exponential behaviour of magnetization at low temperatures in the
mean-field approximation (4.20) contradicts experimental data on both in-
sulator and metallic ferromagnets. At T ¿ TC the excitation spectrum and
thermodynamics of the Heisenberg model may be investigated in detail. This
is achieved by passing from spin operators Sz, S± = Sx ± iSy to Bose oper-
ators which correspond to weakly interacting excitations in the ferromagnet
– spin waves (magnons). The simplest way to do this is using the Holstein-
Primakoff representation

Sz = S − b†b, S† = (2S)1/2(1− 1

2S
b†b)1/2b, (E.1)

S− = (2S)1/2b†(1− 1

2S
b†b)

In fact, this representation is well defined only on the basis of physical states
where spin deviations (magnon occupation numbers) on a site do not exceed
2S. Unlike the representation (E.1), the Dyson- Maleev representation of
ideal bosons

Sz = S − b†b, (E.2)

S† = (2S)1/2(1− 1

2S
b†b)1/2b, S− = (2S)1/2b†
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does not contain irrational functions of Bose operators, but is not-Hermitian.
However, this lead to errors which are exponentially small at low tempera-
tures.

Performing expansion of (E.1) in the quasiclassical parameter 1/2S we
reduce the Heisenberg Hamiltonian (4.9) to the form

H =
∑
q

ωqb
†
qbq +

1

2

∑
pqr

(Jq + Jp − 2Jq−p)b†qb
†
rbpbq+r−p + ...

ωq = 2S(J0 − Jq) (E.3)

The first term of the Hamiltonian (E.3) describes the system of magnons with
the frequencies ωq, and the second term the dynamical interaction (magnon-
magnon scattering). At small q for a cubic lattice we have

ωq = Dq2, D =
1

3
J0S ≈ Tc/2S(S + 1) (E.4)

The quantity D is called the spin stiffness constant. The temperature de-
pendent correction to the spin-wave spectrum owing to magnon-magnon in-
teraction is obtained by decoupling the second term of (E.3) with the use of
the Wick theore

δωq = 2
∑
p

(Jq + Jp − Jp−q − J0)Nq, Nq = 〈b†qbq〉 (E.5)

and is proportional to T 5/2. The temperature dependence of magnetization
is given by the Bloch law

δ〈Sz〉 = −∑
p

Np = − v0

2π2

∫ ∞

0

q2dq

exp(Dq2/T )− 1
= −ζ

(
3

2

)
v0

8π3/2

(
T

D

)3/2

(E.6)
where v0 is the lattice cell volume, ζ(x) is the Riemann zeta-function.

Now we consider the case of an antiferromagnet. We treat a general case
of the spiral structure, characterized by the wavevector Q. The corresponding
classical spin configuration is written as

〈Sx
i 〉 = S cosQRi, 〈Sy

i 〉 = S sinQRi, 〈Sz
i 〉 = 0 (E.7)

In particular, for the usual “chess” ordering in the simple cubic lattice one
has Q = (πππ), and in the case of ferromagnetic planes with alternating
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magnetization direction Q = (00π). It is convenient to introduce the local
coordinate system where spins at each site are directed along the new local
z-axis:

Sx
i → Sz

i cosQRi − Sy
i sinQRi, (E.8)

Sy
i → Sz

i sinQRi + Sx
i cosQRi, Sz

i → −Sx
i

Passing from the spin operators in the local coordinate system to the oper-
ators of spin deviations with the use of (E.1) we represent the Heisenberg
Hamiltonian as

H =
∑
q

[Cqb
†
qbq +

1

2
Dq(bqb−q + b†qb

†
−q)] + ... (E.9)

Cq = S[2JQ − 1

2
(JQ+q + JQ−q)− Jq],

Dq = S[
1

2
(JQ+q + JQ−q)− Jq]

The Hamiltonian (E.9) can be diagonalized by the Bogoliubov-Tyablikov
transformation

bq = uqβq − vqβ
†
−q, (E.10)

u2
q =

1

2

(
Cq

ωq

+ 1

)
, v2

q =
1

2

(
Cq

ωq

− 1

)

to obtain
H = const +

∑
q

ωqβ
†
qβq + ... (E.11)

where the spin-wave spectrum reads

ωq = (C2
q −D2

q)
1/2 = 2S{[JQ − 1

2
(JQ+q + JQ−q)][JQ − Jq]}1/2 (E.12)

The spin-wave frequency tends to zero at both q → 0 and q → Q, the q-
dependence being linear, unlike the case of a ferromagnet (we do not discuss
here magnetic anisotropy which results in a disturbation of spin-wave spec-
trum at small q, |q−Q| [15,16]). Using the Wick theorem for the quartic
terms, which are neglected in the Hamiltonian (E.9), we may obtain correc-
tions to Cq and Dq owing to magnon-magnon interaction

δCq = −1

2

∑
p

(4JQ + 2JQ+q−p + 2JQ−q−p − 2Jp − 2JQ (E.13)
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−JQ+q − JQ−q −−2JQ+p)〈b†pbp〉 −
∑
p

(JQ+p − Jp)〈b†pb−p〉

δDq = −1

2

∑
p

(JQ+q + 2JQ+p + JQ−q − 2Jq − 2Jp)〈b†pbp〉

+
∑
p

(JQ+p + Jp)〈b†pb†−p〉

The low-temperature behaviour of the sublattice magnetization is given by

S = 〈Sz〉 = S − 〈b†b〉 = S −∑
q

[
u2

qNq + v2
q(1 + Nq)

]
(E.14)

so that

δS(T ) ∼ − (T/TN)2

The spin-wave approach enables one to obtain an interpolation description of
the Heisenberg ferromagnet in the whole temperature region. This was made
by Tyablikov [357] within the Green’s function method. Define the anticom-
mutator (commutator) double-time retarded Green’s function for operators
A and B by [671]

〈〈A|B〉〉±E =
∫ 0

−∞
dteiEt〈[eiHtAe−iHt, B]±〉, Im E > 0 (E.15)

The Green’s function (E.15) satisfies the equation of motion

E〈〈A|B〉〉±E = 〈[A,B]±〉+ 〈〈[A,H]|B〉〉±E (E.16a)

or

E〈〈A|B〉〉±E = 〈[A,B]±〉+ 〈〈A|[H, B〉〉±E (E.16b)

and is thereby expressed in terms of more complicated Green’s functions. As
one can see from (E.16), it is convenient to use the commutator Green’s func-
tion in the case of Bose-type operators A,B (where the commutator [A,B],
which stands in the average, is a “simpler” operator), and the anticommuta-
tor ones in the case of Fermi-type operators. In the cases of free bosons and
fermions, where the Hamiltonian has a diagonal form, the equations (E.16)
are closed and we find

〈〈bq|b†q〉〉−ω =
1

ω − ωq

, 〈〈ck|c†k〉〉+E =
1

E − Ek

(E.17)
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Calculation of the Green’s function permits to restore the corresponding
thermodynamical averages by using the spectral representation

〈BA〉 = − 1

π

∫ ∞

∞
dE

1

eE/T ± 1
Im〈〈A|B〉〉±E+iδ (E.18)

In particular, we obtain from (E.17)

〈b†qbq〉 = NB(ωq), 〈c†kck〉 = f(Ek) (E.19)

In the general case, the infinite sequence of equations (E.16) may be
”decoupled” by reducing higher-order Green’s functions to simpler ones. In
the case of interacting quasiparticles the Green’s function are expressed by
the Dyson equations

〈〈bq|b†q〉〉ω = [ω − ωq − Πq(ω)]−1 (E.20)

〈〈ck|c†k〉〉E = [E − Ek − Σk(E)]−1

The real part of the self-energy Σ (or of the polarization operator Π) yields
the energy shift, and the imaginary part determines the quasiparticle damp-
ing. Provided that the interaction Hamiltonian contains a small parameter,
the method of equations of motion permits to construct the perturbation ex-
pansion in a convenient form. In particular, applying both equations (E.16)
we obtain the expression for the self-energy

Σk(E) = Λk + 〈〈[ck,Hint]− Λkck|[Hint, c
†
k]− Λkc

†
k〉〉irr

E ,

Λk = 〈
{
[ck,Hint], c

†
k

}
〉 (E.21)

where the symbol ‘irr’ means that the divergent contributions, containing
the denominators (E − εk)

n , should be omitted at further calculations of
the irreducible Green’s function (E.21). In this book we apply the method
of double-time retarded Green’s functions to various many-electron models
describing highly-correlated d- and f-systems. In transition metal theory,
this technique turns out to be very useful since we meet with operators
which do not possess simple commutation relations, so that standard diagram
expansions [27] are inapplicable. Here belong many-electron X-operators
of the Fermi and Bose type (Appendix A) and spin operators (Appendix
B). Below we describe briefly the derivation of the Tyablikov equation for
magnetization in the Heisenberg model for spin S = 1/2(the general case
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is discussed in Appendix F within framework of the Hubbard X-operator
approach). Write down the equation of motion for the commutator transverse
spin Green’s function

(ω −H)〈〈S+
q |S−−q〉〉ω = 2〈Sz〉+ 2

∑
p

(Jp−q − Jp)〈〈Sz
pS+

q−p|S−−q〉〉ω

Performing the simplest decoupling at different lattice sites we derive

〈〈S+
q |S−−q〉〉ω =

2〈Sz〉
ω − ωq

, ωq = 2〈Sz〉(J0 − Jq) + H (E.22)

Presence of the factor 2〈Sz〉 in comparison with (E.17) is connected with
non-Bose commutation relation for spin operators. The result (E.22) is valid
for arbitrary S. For S = 1/2, using (E.18) and the identity

Sz
i =

1

2
− S−i S+

i (E.23)

we obtain the self-consistent equation for 〈Sz〉

〈Sz〉 =
1

2
[1 + 2

∑
q

NB(ωq)]
−1

which may be transformed to the form

〈Sz〉 =
1

2

[∑
q

coth
2〈Sz〉(J0 − Jq) + H

T

]−1

(E.24)

The equation (E.24) differs from the mean-field equation (4.14) by the
presence of dispersion (q-dependence) of excitation spectrum. It describes
satisfactorily thermodynamics of the Heisenberg model at both high and low
temperatures, although higher-order terms in the low-T expansion do not
quite agree with the rigorous Dyson’s results (in particular, the spurious T
-term in magnetization occurs). Numerous attempts to improve the spin-
wave region description by using more complicated decoupling procedures
(see [357]) resulted in fact in deterioration of the interpolation. The val-
ues of ferromagnetic and paramagnetic Curie temperature in the Tyablikov
approximation for arbitrary S value are given by

Tc =
S(S + 1)

3

(∑
q

1

J0 − Jq

)−1

(E.25)
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θ =
S(S + 1)

3
J0 (E.26)

and are somewhat different (the mean-field result (4.18) is obtained from
(E.25) by averaging the denominator over q, i.e. in the lowest order in
1/z). The corresponding expressions for an antiferromagnet are obtained
from (E.25), (E.26) by the replacement J0 → Jq . To end this Appendix,
we discuss one more method in the theory of Heisenberg magnets [672]. To
take into account kinematical interactions, this approach introduces auxiliary
pseudofermion operators c into the Dyson-Maleev representation (E.2):

Sz = S − b†b− (2S + 1)c†c, S− = (2S)1/2b† (E.27)

S† = (2S)1/2
(
1− 1

2S
b†b

)
b− 2(2S + 1)(2S)1/2bc†c

The distribution function of the dispersionless “fermions” turns out to be

〈c†ici〉 = −NB((2S + 1)H̃), H̃ = H = 2J0〈Sz〉 (E.28)

We see that the pseudofermion operators exclude non-physical states, so
that an extrapolation to high temperatures becomes possible. In particular,
neglecting dispersion of spin-wave excitations we obtain from (E.27), (E.28)

〈Sz〉 = S −NB(H̃) + (2S + 1)NB((2S + 1)H̃) = S −BS(SH̃/T ) (E.29)

Thus we have rederived the mean-field equation for the magnetization (4.15).
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Appendix F

Hubbard operator approach in
the Heisenberg model

Using the Hubbard operators yields a possibility to obtain in a simple way
main results of the theory of Heisenberg magnets. In particular, this formal-
ism enables one to take into account the strong single-ion magnetic anisotropy
in the zeroth order approximation [673-677]. The Hamiltonian of the Heisen-
berg model with an arbitrary single-site anisotropy has the form

H = −∑

ij

JijSiSj +Ha = −∑
q

JqSqS−q +Ha (F.1)

Ha =
∑

i

ϕ(Sx
i , Sy

i , Sz
i , H) (F.2)

where Jq are the Fourier transforms of exchange parameters, H is the ex-
ternal magnetic field, ϕ is an arbitary function. Note that, as follows from
the results of Appendix C, the Hamiltonan (F.1) with S → L describes
the system of interacting orbital momenta in the intermediate crystal field,
Ha having the sense of the crystalline electric field Hamiltonian. Thus the
anisotropic Heisenberg model may be applied to the problem of quenching
of orbital momenta. First, we consider the easy-axis ferromagnet where

Ha = −∑

i

ϕ(Sz
i )−H

∑

i

Sz
i (F.3)

We use the representation of momentum operators in terms of Hubbard op-
erators (Appendix B)

S±i =
S∑

M=−S

γS(±M)Xi(M ± 1,M), Sz
i =

S∑

M=−S

MX(M,M)
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γS(M) ≡ [(S −M)(S + M + 1)]1/2 (F.4)

Then the anisotropy Hamiltonian takes the diagonal form

Ha = −∑

iM

[ϕ(M) + HM ]Xi(M,M) (F.5)

It is convenient to introduce the commutator Green’s functions

Gq(ω) = 〈〈S+
q |S−−q〉〉ω, (F.6)

GqM(ω) = 〈〈Xq(M + 1,M)|S−−q〉〉ω
Write down the equation of motion

(ω −H − ϕ(M + 1) + ϕ(M)− 2J0〈Sz〉)GqM(ω)

= γS(M)(NM+! −NM)[1− JqGq(ω)] (F.7)

where we have carried out a simplest decoupling, which corresponds to the
Tyablikov’s decoupling at different sites (E.22),

NM = 〈X(M, M)〉

After summing over M one obtains

Gq(ω) =
ΦS(ω)

1 + JqΦS(ω)
(F.8)

where

ΦS(ω) =
∑

M

γ2
S(M)(NM+1 −NM)

ω −H − ϕ(M + 1) + ϕ(M)− 2J0〈Sz〉 (F.9)

The structure of expession (F.8) is reminiscent of the Green’s functions in the
itinerant electron magnetism theory (see Appendices G,H). The excitation
spectrum is determined by the equation

1 + JqΦS(ω) = 0 (F.10)

and contains 2S branches. The expressions (F.7), (F.8) enable one to cal-
culate the occupation numbers NM and obtain a self-consistent equation for
the magnetization

〈Sz〉 =
∑

M

MNM (F.11)
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For simplicity we restrict ourselves to analyzing this equation in the isotropic
case where reduces to (E.22). Using the multiplication rule for the Hubbard
operators and the spectral representation (E.18) we obtain

〈S−i Xi(M + 1,M)〉 = γS(M)NM (F.12)

= γS(M)(NM+1 −NM)
∑
q

NB(ωq)

Then the system for NM reads

NM = (NM+1 −NM)PS,
∑

M

NM = 1, PS ≡
∑
q

NB(ωq) (F.13)

Solving this system we derive the equation for 〈Sz〉 [675]

〈Sz〉 = SBS(−S ln(PS/[1 + PS])) (F.14)

The equation (F.14) has the form, which is somewhat different from the
standard one [357], and is more convenient. Now we discuss the general case
[675-677]. The Hamiltonian (F.2) may be diagonalized to obtain

Ha|ψµ〉 = Eµ|ψµ〉 (F.15)

The eigenfunctions ψµ are be expanded in the eigenfunctions |M〉 of the
operator Sz:

|ψµ〉 =
∑

M

cµM |M〉 (F.16)

Then the spin operators are presented in terms of the Hubbard operators as

S+
i =

∑

µµ/M

cµ/Mc∗µ,M+1γS(M)Xi(µ, µ/) (F.17)

Sz
i =

∑

µµ/M

cµ/Mc∗µ,MMXi(µ, µ/) (F.18)

For H||〈Sz〉, in the simplest mean-field approximation we may take into
account the intersite exchange interaction by replacing H to the effective
field

H̃ = H + 2J0〈Sz〉 (F.19)

Then the occupation numbers NM are given by

NM =
∑
µ

|cµM |2Nµ =

∑
µ |cµM |2 exp(−Eµ/T )
∑

µ exp(−Eµ/T )
(F.20)
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Consider the easy-plane ferromagnet where

Ha = 2D
∑

i

(Sx
i )2 −H

∑

i

Sz
i , D > 0 (F.21)

The results turn out to be essentially different for integer and half-integer
spins. (Such a difference is typical for quantum spin systems, see, e.g., [678].)
This is due to the fact that the ground state of an ion with an integer S is
singlet, and excited magnetic states are separated by an energy gap. In
particular, for S = 1 we have [673]

|ψ1,3〉 = cos θ| ± 1〉 ± sin θ| ∓ 1〉 (F.22)

E1,3 = D ∓ (H2 + D2)1/2, E2 = 2D

where

cos 2θ =
H

(H2 + D2)1/2
, sin 2θ = − D

(H2 + D2)1/2
(F.23)

According to (F.10),(F.20) the equation for the magnetization has the form

〈Sz〉 =
cos 2θ̃ sinh[(H̃2 + D2)1/2/T ]

cosh[(H̃2 + D2)1/2/T ] + 1
2
exp(−D/T )

(F.24)

At zero temperature and magnetic field we obtain

〈Sz〉 =

{
[1− (D/2J0)

2]1/2 , D < 2J0

0 , D > 2J0
(F.25)

Thus at D > 2J0 the ground state |ψ1〉 is a singlet superposition of the
states |1〉 and |−1〉 (sin θ = cos θ), and ferromagnetic ordering is suppressed.
Easy-plane higly-anisotropic systems exhibit also a non-trivial behaviour of
magnetization at changing magnetic field [679,680], which is reminiscent of
the Hall conductivity behaviour in the situation of the quantum Hall effect
[681]. For half-integer S, the ground state is ordered at arbitrary D. However,
the value of magnetization is diminished due to mixing of states with different
M by the anisotropy field. So, for S = 3/2 we have

|ψ1,4〉 = cos θ±| ± 3/2〉 ∓ sin θ±| ∓ 1/2〉 (F.26)

|ψ2,3〉 = cos θ∓| ± 1/2〉 ∓ sin θ∓| ∓ 3/2〉
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E1,4 =
1

2
(5D ∓H)∓ E±, E2,3 =

1

2
(5D ±H)∓ E∓

where
cos θ± = [H ±D + E±]/[3D2 + (H ±D + E±)2]1/2

E± = [(H ±D)2 + 3D2]1/2 (F.27)

One can see that the lowest level |ψ1〉 is a mixture of the states with M = 3/2
and M = −1/2. The magnetization at T = 0 is given by

〈Sz〉 =
3

2
− 6D2

3D2 + (H̃ + D + Ẽ+)2
(F.28)

At D À J one obtains from (F.28) 〈Sz〉 = 1, and the ground state is a
doublet.

For cubic ansotropic ferromagnets we have

Ha = −1

2
K

∑

i

[
(Sx

i )4 + (Sy
i )4 + (Sz

i )
4
]
−H

∑

i

Sz
i (F.29)

At S ≤ 3/2 the single-ion cubic anisotropy does not occur by kinematical
reasons. For S = 2 one obtains

|ψ1,2〉 = cos θ| ± 2〉 ± sin θ| ∓ 2〉, |ψ3,4〉 = | ± 1〉, |ψS〉 = |0〉
E1,2 = C ∓ E, E3,4 = C + K ∓H, ES + C −K (F.30)

C = −21

2
K, E = (H2 + K2)1/2

where

cos θ =
2H + E

[K2 + (2H + E)2]1/2
, sin θ =

D

[K2 + (2H + E)2]1/2
(F.31)

We treat the case where K > 0, so that the easy magnetization direction
corresponds to the z axis. Then the ground state is |ψ1〉. The equation for
the magnetization has the form

〈Sz〉 =
2 cos 2θ̃ sinh(ε̃/T ) + exp(−K/T ) sin(H̃/T )

cosh(ε̃/T ) + 1
2
exp(K/T ) + exp(−K/T ) cos(H̃/T )

(F.32)

The ground state magnetization reads

〈Sz〉 = 2[1− (K/8J0)
2]1/2 (F.33)
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and vanishes at K > 8J. The ferromagnetic ordering at large K does not also
occur for S = 4. Thus the orbital momenta L = 2 and L = 4 are quenched by
the cubic crystal field. The intraatomic orbital exchange interaction, which
is required for unquenching, is determined by (F.19), (F.32). For S = 5/2, 3
and 7/2 the ground state turns out to be always ordered, the values of 〈Sz〉
at T = 0 in the strong anisotropy limit being 11/6, 3/2 and 7/6 respectively
[676].



Appendix G

Electron-magnon interaction in
magnetic metals

In this Appendix we calculate the spectrum of single-particle and spin-wave
excitations in metallic magnets. To this end we use many-electron models
which permit to describe effects of interelectron correlations. The simplest
model of such a type is the Hubbard model. In the case of a non-degenerate
band its Hamiltonian reads

H =
∑

kσ

tkc
†
kσckσ +Hint, (G.1)

Hint = U
∑

i

c†i↑ci↑c
†
i↓ci↓

with U being the on-site repulsion parameter. The Hubbard model was
widely used to consider itinerant electron ferromagnetism since this takes
into account the largest term of the Coulomb interaction – the intraatomic
one. Despite apparent simplicity, this model contains a very reach physics,
and its rigorous investigation is a very difficult problem.

Besides the Hubbard model, it is sometimes convenient to use for theo-
retical description of magnetic metals the s-d(f) exchange model. The s-d
exchange model was first proposed for transition d-metals to consider pecu-
liarities of their electrical resistivity [265]. This model postulates existence of
two electron subsystems: itinerant “s-electrons” which play the role of cur-
rent carriers, and localized “d-electrons” which give the main contribution
to magnetic moment. Such an assumption may be hardly justified quantita-
tively for d-metals, but it may be useful at qualitative consideration of some

297
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physical properties (especially of transport phenomena). At the same time,
the s-f model provides a good description of magnetism in rare-earth metals
and their compounds with well-localized 4f-states.

The Hamiltonian of the s-d(f) model in the simpest version has the form

H =
∑

kσ

tkc
†
kσckσ −

∑
q

JqS−qSq +Hint

≡ Hs +Hd(f) +Hint (G.2)

Hint = −I
∑

iσσ′
(Siσσσ′)c

†
iσciσ′

where Sq are operators for localized spins, σ are the Pauli matrices, I is the
parameter of the s-d(f) exchange interaction which is assumed to be contact
(derivation of the s-d(f) model in a more general situation is considered
in Appendix K), Jq are the Fourier transforms of the exchange parameters
between localized spins. In rare earth metals the latter interaction is usually
the indirect RKKY exchange via conduction electrons which is due to the
same s-f interaction. However, at constructing perturbation theory, it is
convenient to include this interaction in the zero-order Hamiltonian.

Altough more complicated in its form, the s-d model turns out to be in
some respect simpler than the Hubbard model since it permits to construct
the quasiclassical expansion in the small parameter 1/2S. Within simple
approximations, the results in the s-d(f) and Hubbard models differ as a rule
by the replacement I → U only.

Below we perform a systematic investigation of spin-wave and electron
spectra of conducting ferro- and antiferromagnets within the above models.
We demonstrate similarities and differences in comparison with localized-
moment isulator magnets which are described by the Heisenerg model.

G.1 Ferromagnets

Here we consider spin-wave theory of the Hubbard ferromagnet using the
Stoner spin-split state as the zero-order approximation following mainly to
paper [338]. (The limit of strong correlations is discussed in Sect.4.6 and
Appendices H,J.) The simplest Hartree-Fock (Stoner) approximation in the
Hubbard model, which corresponds formally to first-order perturbation the-
ory in U , yields the electron spectrum of the form

Ekσ = tk + Un−σ = tk + U(
n

2
− σ〈Sz〉) ≡ tkσ (G.3)
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so that we have for the spin splitting

∆ = U(n↑ − n↓) = 2U〈Sz〉 (G.4)

and U plays the role of the Stoner parameter. The Hartree-Fock decoupling
does not take into account correctly the formation of doubles, i.e. doubly
occupied states at a site. (This can be made within the Hubbard many-
electron approach [28-31], see Appendix H). Note that this error does not
play a role for the saturated ferromagnetic state.

Unlike the Stoner theory, the Hubbard model enables one to describe
spin-wave excitations in an itinerant ferromagnet. To this end we present
the interaction Hamiltonian in the form

Hint =
U

2

∑

kσ

c†kσckσ − U

2

∑
q

(S−−qS
+
q + S+

q S−−q) (G.5)

where we have introduced the Fourier components of spin density operators

S+
q =

∑

k

c†k↑ck+q↓, S−q =
∑

k

c†k↓ck+q↑ (G.6)

Sz
q =

1

2

∑

k

(c†k↑ck+q↑ − c†k↓ck+q↓)

The first term in (G.5) yields a renormalization of the chemical potential and
may be omitted. Consider the spin Green’s function

Gq(ω) = 〈〈S+
q |S−−q〉〉ω

Writing down the sequence of equations of motion for this we derive

Gq(ω) = 2〈Sz〉+
∑

k

(tk+q − tk)〈〈c†k↑ck+q↓|S−−q〉〉ω (G.7)

(ω − tk+q + tk −∆)〈〈c†k↑ck+q↓|S−−q〉〉ω
= (nk↑ − nk+q↓)[1− UGq(ω)] (G.8)

where we have introduced the irreducible Green’s function

Lkqp = δ〈〈c†k↑S+
p ck+q−p↑ − c†k+p↓S

+
p ck+q↓

−δpq(nk↑ − nk+q↓)S+
q |S−−q〉〉ω (G.9)
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(the symbol δ means that the Hartree-Fock decouplings have to be excluded).
Substituting (G.8) into (G.7) we get

Gq(ω) =
〈Sz〉 − Ωq(ω)/U

ω − Ωq(ω)− πq(ω)
(G.10)

Ωq(ω) = U
∑

k

tk+q − tk
tk+q − tk + ∆− ω

(nk↑ − nk+q↓) (G.11)

where the self-energy π is determined by the Green’s function (G.9). When
neglecting π we come to the random phase approximation (RPA). Unlike the
standard form

Gq(ω) =
Πq(ω)

1− UΠq(ω)
(G.12)

with

Πq(ω) =
∑

k

nk↑ − nk+q↓
ω + tk↑ − tk+q↓

the representation (G.10) yields explicitly the magnon (spin-wave) pole

ωq ' Ωq(0) =
∑

kσ

Aσ
kqnkσ (G.13)

where

Aσ
kq = σU

tk+q − tk
tk+q − tk + σ∆

(G.14)

has the meaning of the electron-magnon interaction amplitude. Expanding
in q we get

ωq = Dαβqαqβ

where

Dαβ =
U

∆

∑

k

[
∂2tk

∂kα∂kβ

(nk↑ + nk↓)− 1

∆

∂tk
∂kα

∂tk
∂kβ

(nk↑ − nk↓)

]
(G.15)

are spin-wave stiffness tensor components. For a weak ferromagnet (∆ ¿
EF , U) we derive

Dαβ =
U∆

4

∑

k

[
∂2tk

∂kα∂kβ

∂2nk

∂t2k
+

1

6

∂tk
∂kα

∂tk
∂kβ

∂3nk

∂t3k

]
(G.16)
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so that D ∼ ∆. The magnon damping in the RPA is given by

γ(1)
q (ω) = − Im Ωq(ω) = πU∆ω

∑

k

(
−∂nk↑

∂tk↑

)
δ(ω − tk+q↓ + tk↑) (G.17)

γ(1)
q ≡ γ(1)

q (ωq) ' πU∆ωqN↑(EF )N↓(EF )θ(ωq − ω−) (G.18)

with θ(x) being the step function. Here ω− = ω(q0) is the threshold energy
which is determined by the condition of entering into the Stoner continuum
(decay into the Stoner excitations, i.e. electron-hole pairs), q0 being the
minimal (in k) solution to the equation

tk+q0↓ = tk↑ = EF (G.19)

The quantity ω− determines a characteristic energy scale separating two tem-
perature regions: the contributions of spin waves (poles of the Green’s func-
tion (G.10)) dominate at T < ω−, and those of Stoner excitations (its branch
cut) at T > ω−.

In the case of weak ferromagnets, the contribution of the branch cut of the
spin Green’s function may be approximately treated as that of a paramagnon
pole at imaginary ω, and we obtain

q0 = kF↑ − kF↓, ω− = D(kF↑ − kF↓)2 ∼ ∆3 ∼ T 2
c /EF (G.20)

Since q0 is small, we have at smal q > q0 , instead of (G.18),

γ(1)
q (ωq) ' U∆ω

q

v0

4π
(m∗)2 ≡ A/q (G.21)

The estimation (G.20) holds also for the s-d(f) exchange model with the
indirect RKKY-interaction where

D ∼ Tc/S ∼ I2S/EF (G.22)

The damping at very small q < q0 (where (G.17) vanishes) is due to the
two-magnon scattering processes. To consider these we have to calculate the
function π to leading order in the fluctuating part of the Coulomb interaction.
Writing down the equation of motion for the Green’s function (G.9) we obtain

Πq(ω) =
∑

pk

(A↑
kq)

2[B(k ↑,k + q− p ↑,ωp − ω) + B(k + p ↓,k + q ↓,ωp − ω)
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−B(k + p↓,k ↑ ,ωp)−B(k + q ↓,k + q− p ↓,ωp)] (G.23)

where

B(k′σ′,kσ, ω) =
Np(nk′σ′ − nkσ) + nk′σ′(1− nkσ)

ω − tk′σ′ + tkσ

The magnon damping needede is given by the imaginary part of (G.23). After
some transformations we derive

γ(2)
q (ω) = π

∑

kpσ

(A↑
kq)

2(nkσ − nk+q−pσ) [Np −NB(ωp − ω)]

×δ(ω + tk − tk+q−p − ωp) (G.24)

Integration for the isotropic electron spectrum gives [682,683]

γ(2)
q (ω) =

v2
0

12π3

q4

4〈Sz〉2
∑
σ

k2
Fσ ×

{
ωq/35 , T ¿ ωq

(T/4)
(
ln(T/ωq) + 5

3

)
, T À ωq

(G.25)
Real part of (G.23) describes the temperature dependence of the spin stiffness
owing to two-magnon processes (besides the simplest T 2-contribution which
occurs from the temperature dependence of the Fermi distribution functions
in (G.10)). The spin-wave conribution connected with the magnon distribu-
tion functions is proportional to T . More interesting is the non-analytical
many-electron contribution owing to the Fermi functions:

δDαβ =
1

4〈Sz〉2
∑

pk

∂tk
∂kα

∂tk
∂kβ

[
nk↓(1− nk−p↑)
tk − tk−p − ωp

+ (G.26)

+
nk+p↓(1− nk↓)
tk+p − tk − ωp

− nk+p↓(1− nk↑)
tk+p↓ − tk↑ − ωp

− nk↓(1− nk−p↓)
tk↓ − tk−p↑ − ωp

]

Performing integration for parabolic spectra of electrons and magnons (tk =
k2/2m∗, ωq = Dq2) yields

δD(T ) =

(
πv0T

12〈Sz〉m∗

)2
1

D

[∑
σ

N2
σ(EF ) ln

T

ω+

− 2N↑(EF )N↓(EF ) ln
max(ω−, T )

ω+

]
(G.27)

with
ω± = D(kF↑ ± kF↓)2, Nσ(EF ) = m∗v0kF /2π2 (G.28)
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At ω− ¿ T ¿ ω+ we have

δD(T ) =

(
πv0T

12〈Sz〉m∗

)2
1

D
[N↑(EF )−N↓(EF )]2 ln

T

ω+

(G.29)

It should be noted that the correction (G.27) dominates at low tempera-
tures over the above-mentioned T 2-correction, which demonstrates an im-
portant role of corrections to the RPA approximation. Unfortunately, the
T 2 ln T -term has not yet to be considered at analyzing magnon spectra of
ferromagnetic metals. We see that temperature dependences of spin-wave
characterisitics in conducting magnets differ considerably from those in the
Heisenberg model.

To obtain corrections to the Stoner approximation for the electron spec-
trum (G.3) we have to calculate the one-electron Green’s function

Gkσ(E) = 〈〈ckσ|c†kσ〉〉E = [E − tkσ − Σkσ(E)]−1 (G.30)

One obtains for the self-energy [573]

Σkσ(E) = U2
∑
q

∫ ∞

−∞
dω

π
Im〈〈Sσ

q |S−σ
−q〉〉ω

NB(ω) + nk+q,−σ

E − tk+q,−σ + ω
(G.31)

Retaining only the magnon pole contribution to the spectral density (i.e.
neglecting the spin-wave damping) we may put

− 1

π
Im〈〈Sσ

q |S−σ
−q〉〉ω = 2σ〈Sz〉δ(ω − σωq) (G.32)

so that
〈S−−qS

+
q 〉 = 2〈Sz〉Np (G.33)

Then we get

Σk↑(E) = U∆
∑
q

Nq + nk+q↓
E − tk+q↓ + ωq

Σk↓(E) = U∆
∑
q

1 + Nq − nk−q↑
E − tk−q↑ − ωq

(G.34)

The results (G.34) are valid in the s-d model (U → I) to first order in the
small parameter 1/2S [323].Taking into account the relation

〈Sz〉 = S0 −
∑
p

Np (G.35)
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where S is the saturation magnetization one obtains for the spin-wave cor-
rection to the electron energy

δEkσ(T ) =
∑
q

Aσ
kqNq (G.36)

=
v0

2〈Sz〉
ξ(5/2)

32π3/2

(
T

D

)5/2

∂2tk

∂k2
x

− σ

U〈Sz〉

(
∂tk
∂k

)2



The T 5/2-dependence of the electron spectrum owing to magnons is weaker
than the T 3/2-dependence of the magnetization. This fact is due to vanish-
ing of electron-magnon interaction amplitude A at zero magnon wavevector,
which is connected with the symmetry of exchange interaction. Such a weak-
ening of temperature dependence of the spin splitting was observed in iron
[145]. It should be noted that the same T 5/2-dependence takes place also in
a ferromagnet with the Hubbard subbands [337,338].

The one-electron occupation numbers are obtained via the spectral rep-
resentation for the anticommutator Green’s function (G.30):

〈c†k↑ck↑〉 = f(tk + Re Σk↑(tk↑)) (G.37)

+U∆
∑
p

Np(nk+p↓ − nk↑) + nk+p↓(1− nk↑)
(tk+p↓ − tk↑ − ωp)2

〈c†k↓ck↓〉 = f(tk + Re Σk↓(tk↓)) (G.38)

+U∆
∑
p

Np(nk↓ − nk−p↑) + nk↓(1− nk−p↑)
(tk−p↑ − tk↓ + ωp)2

where the second term comes from the imaginary part of the self-energy.
Retaining only the magnon contributions up to T 3/2 we get

〈c†kσckσ〉 ' nkσ
S0 + 〈Sz〉

2S0

+ nk−σ
S0 − 〈Sz〉

2S0

(G.39)

with 〈Sz〉 defined by (G.35). Thus, despite the presence of the spin splitting,
electron occupation numbers have a strong T 3/2-dependence rather than an
exponential one (as in the Stoner theory). This dependence arises because
of thermal magnon emission and absorption processes. Thus the conduction
electron spin polarization

P =
n↑ − n↓
n↑ + n↓

(G.40)
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is equal to the relative magnetization, which is obvious for an itinerant ferro-
magnet. However, such a behaviour takes place also in arbitrary conducting
ferromagnets, e.g., for ferromagnetic semiconductors which are describe by
the s-d(f) exchange model [329]. Formally, the T 3/2-dependence of P (T )
is due to the strong temerature dependence of the residues of the electron
Green’s functions and to the occurence of the non-quasiparticle states in
“alien” spin subband owing to electron-magnon scattering. The picture of
the density of states is discussed in more details in Sect.4.5.

Consider corrections to the magnetization 〈Sz〉. We have

〈Sz〉 =
n

2
−∑

q

〈S−q S+
q 〉 − 〈n̂i↑n̂i↓〉 (G.41)

The first average involved in (G.41) is calculated from the spectral represen-
tation of the RPA Green’s function (G.10):

〈S−−qS
+
q 〉 = 2S0Nq (q < q0) (G.42)

〈S−−qS
+
q 〉 =

1

π

∫ ∞

−∞
dω

NB(ω)γ(1)
q (ω)(∆− ω)/U

[ω − Re Ωq(ω)]2 + [γ
(1)
q (ω)]2

(q > q0) (G.43)

Using the identity

NB(tk+q↓ − tk↑)(nk↑ − nk+q↓) = nk+q↓(1− nk↑) (G.44)

we derive from (G.43)

〈S−−qS
+
q 〉 =

∑

k

(tk+q↓ − tk↑)2nk+q↓(1− nk↑)

(tk+q↓ − tk↑ − ωq)2 +
[
γ

(1)
q (tk+q↓ − tk↑)

]2 (G.45)

In contradiction with (G.41), (G.42), the true Bloch spin-wave contribution
to magnetization should be given by (G.35) since every magnon decreases
〈Sz〉 by unity. The agreement may be restored by allowing not only the
magnon pole, but also branch cut contributions. Replacing in (G.45) nkσ →
〈c†kσckσ〉 and using (G.39) we obtain

δ〈Sz〉SW = −∑
q

Nq [2S0+ (G.46)

+
1

2S0

∑

kk′

(tk − tk′)
2(nk↑ − nk↓)

(tk′↓ − tk↑ − ωk−k′)2
(1− nk′↑ + nk′↓)


 ' −∑

q

Nq
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where we have neglected the spin splitting in the denominator.
In the semi-phenomenological manner, it is convenient to introduce “magnon”

operators which satisfy on the average the Bose commutation relations:

bq = (2S0)
−1/2S+

q , b†q = (2S0)
−1/2S−−q (G.47)

Then we have

δ〈Sz〉 = −∑
q

〈b†qbq〉 =
1

(2S0)

∑
q

〈S−−qS
+
q 〉 (G.48)

Performing integration over ω in (G.43) at T = 0 we obtain

δ〈Sz〉 = − 1

π

∑
q

γ(1)
q

ωq

ln
W

ωq

(G.49)

with W being the bandwidth. This contribution describes zero-point de-
crease of the magnetization due to the ground-state magnon damping which
is owing to the Stoner excitations. For parabolic electron and magnon spec-
tra, neglecting the damping in the denominator of (G.43) we obtain at low
temperatures T < ω−

δ〈Sz〉cl ' −U∆
∑

kk′

nk′↓(1− nk↑)
(tk′↓ − tk↑ − ωk−k′)2

= −
(

m∗v0

2π2

)2 U∆

4D

[
ω+ ln

W

ω+

− ω− ln
W

ω−

+
2π2

3
T 2

(
1

ω−
− 1

ω+

)]
(G.50)

(G.50) with ω± defined in (G.28). For a weak ferromagnet, the temperature
correction to 〈Sz〉 in (G.50) is proportional to (T/TC)2, in agreement with
the self-consistent renormalization theory [296,26]. It should be stressed that
the T 2-correction obtained is much larger than the Stoner contribution of the
order of (T/EF )2.

An account of the damping at low T influences numerical factors in (G.50)
only. At the same time, at high T > ω− the damping in the denominator
dominates at small q in the case of a weak ferromagnet. Taking into account
(G.21) we obtain from (G.43)

δ〈S−−qS
+
q 〉 =

∆

πU

∫ ∞

−∞
dωNB(ω)

∫ ∞

0

ωAqdq

(Dq2)2 + A2ω2/q2
∼

(
T

EF

)4/3

(G.51)
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Thus we get from (G.41) the T 4/3-contribution to the magnetization, which
agrees with the result of the phase transition scaling theory near T = TC .
For a ferromagnet with well-localized magnetic moments the damping may
be neglected and we derive [716]

δ〈Sz〉el ∼ −I2ω− ln(T/ω−) (G.52)

Consider the renormalization of electronic specific heat in an itinerant
ferromagnet due to interaction with spin fluctuations. Integration in (G.34)
at T = 0 gives

Re Σσ(kFσ, E) = − U∆

ω+ − ω−
N−σ(EF )

∑

α=±
α(E − ωα) ln

|E − ωα|
W

(G.53)

Then the inverse residue of the electron Green’s function

Z−1
kσ (E) = 1− ∂

∂E
Re Σkσ(E)

takes the form

Z−1
σ (kFσ, EF ) = 1 +

U∆

ω+ − ω−
N−σ(EF ) ln

∣∣∣∣∣
E − ω+

E − ω−

∣∣∣∣∣ (G.54)

The quantity (G.54) determines the renormalization of the electron effective
mass owing to the electron-magnon interaction. Thus we obtain for the
coefficient at the linear term in the electronic specific heat at T ¿ ω−

γσ = γ(0)
σ /Zσ(kFσ, EF ) =

π2

3
Nσ(EF ) [1+

+
U∆

ω+ − ω−
N−σ(EF ) ln

ω+

ω−

]
(G.55)

For weak itinerant ferromagnets we have

ln
ω+

ω−
' −2 ln(UN(EF )− 1) (G.56)

so that the expression (G.55) describes the paramagnon enhancement of the
specific heat [297,573] discussed in Sect.4.4. The numerical factor in (G.55)
is inexact in this limit because of neglecting longitudinal spin fluctuations
(see [26]). On the other hand, our consideration is not restricted to the
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case of weak ferromagnets. This is important since a considerable enhance-
ment of specific heat owing to spin fluctuations is observed in a number of
strong ferromagnets. For example, the experimental value of g in the system
CeFe1−xCoxS2 (where a ferro-antiferro transition takes place at increasing x)
in the ferromagnetic phase, γ = 48 mJ/mol K2 at x = 0, exceeds by two
times the theoretical value obtained from the calculated density of states,
and is considerably larger than the values in para- and antiferromagnetic
phases [684].

Other thermodynamic properties may be investigated by calculating the
free energy of the system. At low T < ω− the many-electron (branch cut)
contribution reads

Fel =
1

2S0

∑
q>q0

ωq〈S−−qS
+
q 〉 (G.57)

' U∆
∑

kk′

nk′↓(1− nk↑)
tk↑ − tk′↓ + ωk−k′

≡ Fel(0) + δFel(T )

where

Fel(0) =
1

π

∑
q

γ(1)
q ln

W

ωq

≈ 1

8D

(
m∗v0

2π2

)2
[
ω2

+ ln
W

ω+

− ω2
− ln

W

ω−

]
(G.58)

δFel(T ) = − U∆

ω+ − ω−
N↑(EF )

π2

3
T 2 ln

ω+

max(ω−, T )
(G.59)

The spin-wave contribution to the free energy has the form, usual for the
Bose excitations with the square dispersion law

δFSW = −2

3
δ〈H〉SW , (G.60)

δ〈H〉SW =
∑
q<q0

ωqNq =
3v0

16π3/2
ξ

(
5

2

)
T 5/2

D3/2

Temperature-dependent corrections to physical properties are obtained from
(G.59), (G.60). Differentiating (G.59) over T we obtain

δCel = − ∂

∂T
δFel(T ) (G.61)

= U2 2〈Sz〉
ω+ − ω−

N↑(EF )N↓(EF )
2π2

3
T ln

ω+

max(ω−, T )
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Thus at T À ω− we obtain instead of (G.55) the T ln T -dependence of specific
heat.

Consider the local magnetic moment at a site

〈Sz〉 =
3

4
(n− 2N2), N2 = 〈ni↑ni↓〉 (G.62)

The number of doubles N2 may be determined by using the Hellman-Feynman
theorem N2 = ∂F/∂U . We obtain at T < ω−

δ〈Sz〉el(T ) ∼ −(T/∆)2δ〈Sz〉el(T ) ∼ −(T/Tc)
5/2 (G.63)

Thus the temperature dependence of the spin-wave contribution to 〈S2〉 is
weaker than that to 〈Sz〉, which justifies neglecting the former in the above
discussion of the magnetization (G.41). At high T , the local moment has the
T -dependence:

δ〈S2
i 〉 = δ

∑
q

〈S−−qS
+
q 〉 ∼ (T/EF )4/3 (G.64)

As one can see from (G.55), the enhancement of effective mass and elec-
tronic specific heat owing to spin fluctuations is absent in the half-metallic
state (Sect.4.5). We shall demonstrate that the specific heat of a conducting
ferromagnet may contain spin-fluctuation contributions of another nature.
Write down a general expression for the specific heat in the s-d exchange
model in terms of the total energy

C(T ) =
∂〈H〉
∂T

=
∂

∂T

∫
dEEf(E)Nt(E) (G.65)

=
π2

3
Nt(E)T +

∫
dEEf(E)

∂

∂T
Nt(E, T )

where

Nt(E) = − 1

π

∑

kσ

Im Gkσ(E)

is the total sensitiy of states. The first term in the right-hand side of (G.65)
yields the standard result of the Fermi-liquid theory. The second term is due
to the energy dependence of the density of states. Such a dependence occurs
in the conducting ferromagnet owing to non-quasiparticle (incoherent) states
(Sect.4.5). Substituting (4.87) into this term we derive [338]

δCσ(T ) = 2σI2〈Sz〉∑

kq

f(tk+q,−σ − σωq)

(tk+q,−σ − tk,σ)2

∂

∂T
nk+q,−σ (G.66)
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At low temperatures

f(tk+q,↓ − ωq) = 1, f(tk+q,↑ − ωq) = 0

(G.67) Thus the non-quasiparticle states with σ =↓ do not contribute to
linear specific heat since they are empty at T = 0. In the half-metallic state
the non-quasiparticle contributions (G.66) with σ =↑ are present for I < 0
only, and we obtain

δC↑(T ) =
2π2

3
I2〈Sz〉N↓(EF )T

∑

k

1

(tk↑ − EF )2
(G.67)

To avoid misunderstanding, it should be stressed that presence of such contri-
butions to specific heat means inapplicability of the Fermi-liquid description
in terms of dynamical quasiparticles only, which are determined by poles of
Green functions. It may be shown rigorously that the entropy of interacting
Fermi systems at low T is expressed in terms of Landau quasiparticles with
the energies, determined as variational derivatives of the total energy with
respect to occupation numbers [685]. Thus, even in the presence of non-pole
contributions to the Green functions, the description of thermodynamics in
terms of statistical quasiparticles [685] holds. (However, the quasiparticle
description is insufficient for spectral characteristics, e.g., optical and emis-
sion data.) The anomalous γT -term is determined by the difference of the
spectra of statistical and dynamical quasiparticles.

Similar contributions to specific heat in the Hubbard model with strong
correlations are discussed in the paper [338] too. They dominate in the
enhancement of specific heat for half-metallic ferromagnets and may be im-
portant, besides the effective mass enhancement (G.55), for “usual” magnets
with well-defined local moments.

G.2 Antiferromagnets

To consider the electron and magnon spectrum of a metallic antiferromagnet
in the s-d(f) exchange model, we have to pass to the local coordinate system
according to (E.8). Then the Hamiltonian of the s-d(f) exchange interaction
takes the form

Hsd = −I
∑

kq

[Sx
q(c†k+q↓ck↓ − c†k+q↑ck↑) (G.68)
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+iSy
q(c

†
k−Q↓ck−Q↑ − c†k+q↑ck−Q↓)

+Sz
q(c

†
k+q↑ck−Q↓ + c†k−Q↓ck−q↑)]

Passing to the magnon representation with the use of (E.1), (E.10) and cal-
culating the electron self-energy to second order in I we obtain

Σk(E) =
I2S

2

E − tk−Q

(G.69)

+
1

2
I2S

∑
q

{
(uq − vq)

2

[
1− nk−q + Nq

E − tk−q − ωq

+
nk−q + Nq

E − tk−q + ωq

]

+(uq + vq)
2

[
1− nk+q−Q + Nq

E − tk+q−Q − ωq

+
nk+q−Q + Nq

E − tk+q−Q + ωq

]}

with S being the sublattice magnetization. In the mean-field approximation
the electron spectrum contains two split antiferromagnetic subbands:

E1,2
k =

1

2
(tk + tk−Q)± 1

2
[(tk − tk−Q)2 + 4I2S

2
]1/2 (G.70)

The fluctuation correction (second term in (G.68)) are important, besides
the dependence S(T ), at calculating the temperature dependence of electron
spectrum. Consider the magnon corrections owing to the Bose functions

δEk(T ) = I2S
∑
q

[
−2

u2
q + v2

q

tk − tk−Q

+
(uq − vq)

2

tk − tk−q

+
(uq + vq)

2

tk − tk+q−Q

]
Nq (G.71)

The corrections to the band bottom (tk = tmin ) owing to sublattice magne-
tization (the first term in square brackets) and transverse fluctuations have
opposite signs. The contribution of fluctuations prevails which results in a
“blue” shift of conduction band bottom with decreasing temperature, as ob-
served in antiferromagnetic semiconductors [352,686], in contrast to the “red”
shift in ferromagnetic semiconductors (cf.(G.36)). (The same situation takes
place at high temperatures [686,687].) In particular, in the nearest-neighbour
approximation for simple lattices where tk+Q = −tk the fluctuation contri-
bution is larger in absolute value by two times. The integration yields (z is
the nearest-neighbour number)

δEmin(T ) = − 3

16

I2S

W

(
z

2

)3/2

(S + 1)3/2
(

T

TN

)2

(G.72)
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The T 2-dependence of electron spectrum (the same as of the sublattice
magnetization) is due to linear dispersion of spin-wave spectrum and q−1-
dependence of electron-magnon interaction amplitude, which are specific for
antiferromagnets. Therefore, the behavior of electron spectrum in a ferri-
magnet is qualitatively similar to that in ferromagnets (the T 5/2-dependence)
[687].

We write down also the third-order many-electron contribution to the self-
energy, which describes renormalization of the antiferromagnetic gap due to
Kondo-like divergences [367] (see Chapter 6)

δΣ
(3)
k (E) = 2I3S2

∑
q

nk+q(E − tk+q)
1

(E − tk+q)2 − ω2
q

(G.73)

×
(

1

tk+q − tk−Q+q

− 1

E − tk+Q

)

To investigate magnon spectrum we calculate the retarded commutator
Green’s functions

Γq(ω) = 〈〈bq|b†q〉〉ω, Γ̄q(ω) = 〈〈b†−q|b†q〉〉ω
Writing down the sequence of equations of motion to second order in I and
performing the simplest possible decouplings we derive [716] (cf.(E.9))

Γq(ω) =
ω + Cq−ω

(ω − Cqω)(ω + Cq−ω) + D2
qω

(G.74)

Γ̄q(ω) =
Dqω

(ω − Cqω)(ω + Cq−ω) + D2
qω

(G.75)

Cqω = S(J tot
Q+q,ω + J tot

qω − 2J tot
Q0) +

∑
p

[CpΦpqω

−(Cp −Dp)Φp00 + φ+
pqω + φ−pqω] + gq (G.76)

Dqω = Dq−ω = S(J tot
qω − J tot

Q+q,ω) +
∑
p

DpΦpqω + hq

where the s-d exchange contributions of the first order in 1/2S correspond
to the RKKY approximation

J tot
qω = Jq + JRKKY

q (ω) = Jq + I2
∑

k

nk − nk−q

ω + tk − tk−q

(G.77)
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JRKKY
q (ω) being the ω-dependent Fourier transform of the integral of indirect

exchange interaction via conduction electrons (cf.(K.1)). The function Φ,
which determines the second-order corrections, is given by

Φpqω = (φ+
pqω − φ−pqω)/ωp (G.78)

φ±pqω = I2
∑

k

nk(1− nk+p−q) + NB(±ωp)(nk − nk+p−q)

ω + tk − tk+p−q ∓ ωp

(note that φ+
pqω = −φ−pq−ω, so that the corrections of order of (1/2S)2 violate

the equality Cqω = Cq−ω) , ωp is the magnon frequency to zeroth order in I
and 1/2S. We have taken into account in (G.76) the equations of motion of
the type

(ω − tk + tk+q)〈〈c†k+q↑ck↑|b†q〉〉ω = I
(

S

2

)1/2

(nk+q − nk)〈〈bq|b†q〉〉ω (G.79)

and the expressions for the static correlation functions that occurred in the
equations of motion

I
∑

k

〈c†k−Q↓ck↑〉 = −S(J tot
Q0 − JQ) (G.80)

I
∑

k

〈b†p(c†k−p↑ck↑ − c†k−p↓ck↓)〉 = −(2S)1/2(Cp −Dp)Φp00 (G.81)

These are obtained by calculating the corresponding retarded Green’s func-
tions and using the spectral representation (E.8). The functions

gq =
∑
p

[(2JQ + 2Jq−p − 2Jp − JQ+q − Jq)〈b†pbp〉 − 2Jp〈b−pbp〉] (G.82)

hq =
∑
p

[(JQ+q − Jq)〈b†pbp〉 − 2Jq−p〈b−pbp〉]

describe the “direct” magnon-magnon interaction,The s-d exchange contri-
butions to the averages in (G.82) are obtained by using (G.74), (G.75) to the
first order in 1/2S and the spectral representation

{ 〈b†qbq〉
〈b†qb†−q〉

}
= − 1

π

∫ ∞

−∞
dωNB(ω) Im

{
Γq(ω)
Γ̄q(ω)

}
(G.83)

The energy denominators in (G.77), (G.78) do not take into account the
band splitting which comes from AFM ordering. At the same time, it is
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important to separate the contributions of the transitions within and be-
tween AFM subbands. Such a separation may be performed by taking into
account the AFM splitting ∆ = 2|I|S (S is the sublattice magnetization) in
the zero-order approximation, e.g. within perturbation theory in 1/2S. How-
ever, the corresponding expressions are very cumbersome (see the end of this
Appendix). Therefore we use the simple perturbation theory in I bearing
in mind that the transitions between AFM subbands correspond to the elec-
tron quasimonentum transfer q ∼ Q. Generally speaking, the intersubband
contributions to the spectrum characteristics and thermodynamic properties
are more singular, but in fact they should be cut off because of the AFM
splitting. The corresponding threshold value of the magnon quasimomentum
transfer is estimated as

min |q−Q| = q0 = ∆/vF

(vF is the electron velocity at the Fermi level). This quantity determines a
characteristic temperature and energy scale

T ∗ = ω(q0) = cq0 ∼ (∆/vF )TN (G.84)

with c being the magnon velocity and the magnon spectrum is given by the
pole of (G.74),

ω2
q = Ω2

q(ωq) = C2
q(ωq)−D2

q(ωq)

The dependence JRKKY
q (ω), which is lost in the standard method of canon-

ical transformation [265], is important at calculating the magnon damping.
The spin-wave damping owing to one-magnon decay processes, which is de-
termined by imaginary part of (G.77), reads at small q

γ(1)
q = πS[

A

L
ωq + Bψ(q)] (G.85)

where L = 2S(J0 − JQ), the function ψ describes entering the “Stoner con-
tinuum”, ψ(q < q0) = 0, ψ(q À q0) = 1,

A = cI2 lim
q→0

q
∑

k

δ(tk)δ(tk−q) (G.86)

B = LI2
∑

k

δ(tk)δ(tk−Q), (G.87)
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tk being referred to the Fermi level. Generally speaking, A depends on the
direction of the vector q. For an isotropic electron spectrum one has

A = cI2v0{4π2|k−1∂tk/∂k|2k=kF
}−1 (G.88)

where v0 is the lattice cell volume.
One can see that the one-magnon damping (G.85) is finite at arbitrarily

small q (in contrast with the FM case), but becomes considerably larger
when intersubband transitions begin to work (q > q0). Thus the ratio
γ/ω|q→0 makes up about I2S/W 2 and does not depend on wavevector and
electron concentration [689]. The same situation, which is similar to the case
of electron-phonon interaction, takes place for an itinerant antiferromagnet
[690]. The linear dependence of damping on wavevector was observed, e.g.,
in the antiferromagnet Mn0.9Cu0.1 [691]. An account of relaxation of con-
duction electrons, which occurs at disordering, results in a change of the
q-dependence. The calculation in such a situation [689] yields γ ∼ ω2 at
small q, which is in agreement with hydrodynamics.

Similar to (G.20), we obtain from (G.74), (G.77) and the spectral rep-
resentation the logarithmic correction to magnon occupation numbers and
sublattice magnetization (6.88), (6.89).

The damping owing to two-magnon scattering processes is determined by
the imaginary part of the function (G.78). The intersubband transitions turn
out to contain smaller powers of ω and T , but contribute at max(T, ωq) > T ∗

only. Using the identity

n(ε)[1− n(ε′)] = N(ε− ε′)[n(ε′)− n(ε)]

and expanding in ω = ωq and ωp we obtain from the pole of (G.77)

γ(2)
q =

π

2
I2

∑

k,p

∑

α,β=±

(
Cq − αDq

ω

Cp + αDp

ωp

− β

)
(G.89)

×(ω − βωp)[NB(ωp)−NB(ωp − βω)]δ(tk)δ(tk+p−q)

Integration at T ¿ ω with account of leading temperature corrections gives

γ(2)
q =

v0

24πc3

[
(
9

5
Aω + B̃)ω2 + 4π2(2Aω + B̃)T 2

]
(G.90)

with B̃(ω À T ∗) = B, B̃(ω ¿ T ∗) = 0. At ω ¿ T we find

γ(2)
q =

v0

2πc3

[
6ζ(3)AT +

π2

3
B̃

]
T 2 (G.91)
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with B̃(T À T ∗) = B, B̃(T ¿ T ∗) = 0, ζ(3) ' 1.2.
The non-analytic corrections to the sublattice magnetization and magnon

frequency come from both inter- and intrasubband transitions. The intra-
subband contribution to the magnon velocity reads [716]

(δc/c)1 = − v0

3πc3
AT 2 ln

ω

T
(G.92)

For T > T ∗ the intersubband contribution to the sublattice magnetization
has the form

(δSel)2 = − v0

π2c3
SLBT ∗ ln

T

T ∗ (G.93)

The above results are valid also in the Hubbard model. In the case of
small S the magnon damping plays an important role at calculating tem-
perature dependences of magnetic and thermodynamic properties at not too
low temperatures are determined by contribution of spin fluctuations with
small |q−Q| and, as well as for a ferromagnet, the magnon damping plays
an important role. However, unlike (G.21), the damping at q → Q does
not contain the factor of |q−Q|−1 (However, such a dependence occurs in
some q-region provided that the electron spectrum approximately satisfies
the “nesting” condition tk+Q = −tk in a large part of the Fermi surface.)
Then we have to replace in the denominator of the Green’s functions (G.74)

1

ω2 − Ω2
q(ω)

→ Aω

[ω2 − Ω2
q(ω)]2 + A2ω2

(G.94)

which yields for a weak itinerant antiferromagnet

δS ∼ −
∫

dωNB(ω)
∑
q

Aω

ω4
q + A2ω2

∼ −
(

T

EF

)3/2

(G.95)

Now we consider the electron and magnon spectrum of the Hubbard an-
tiferromagnet with strong correlations. Occurence of AFM ordering results
in splitting the bare electron band into two Slater subbands [44] which are
described by new electron operators [692,693]

α†k = Akc
†
k+Q/2↑ + Bkc

†
k−Q/2↓, (G.96)

β†k = Akc
†
k−Q/2↓ −Bkc

†
k+Q/2↑,
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Ak, Bk =
1

2

(
1∓ τk

Ek

)
, Ek = (τ 2

k + U2S
2
)1/2

θk, τk =
1

2
(tk+Q/2 ± tk−Q/2)

In the Hartree-Fock approximation, the transformation (G.96) reduces the
Hubbard Hamiltonian to the diagonal form

H =
∑

k

(Eα
kα†kαk + Eβ

kβ†kβk) (G.97)

where the one-particle energies are given by

Eα,β
k = θk ∓ Ek (G.98)

The quantity
S =

∑

k

〈c†k↑ck+Q↓〉

which determines the AFM splitting, satisfies the self-consistency equation

1 =
U

2

∑

k

nkα − nkβ

(τ 2
k + U2S

2
)1/2

(G.99)

If the Coulomb interaction is strong enough, the whole energy band is split,
so that the gap occurs in the all directions. In particular, for one electron per
atom, a metal-insulator transition takes place. Provided that the “nesting”
condition tk−EF = EF − tk+Q holds for a given vector Q, the insulator state
is favourable for arbitrarily small U , the gap being exponentially small [692].

To obtain the spin-wave corrections to the Hartree-Fock approximation
we pass to local coordinate system for electron operators

d†kσ =
1√
2
(c†k+Q/2↑ + σc†k−Q/2↓) (G.100)

and represent the Hubbard Hamiltonian in the form

H =
∑

kσ

[(θk +
U

2
)d†kσdkσ + τkd

†
kσdk−σ]− U

2

∑
q

(S−−qS
+
q + S+

q S−−q) (G.101)

where

Sσ
q =

∑

k

d†kσdk+q,−σ, Sz
q =

1

2

∑

kσ

σd†kσdk+q,σ (G.102)
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Calculating the transverse spin Green’s function with antiferromagnetic gap
being taken into account in the zero-order order approximation we obtain for
the magnon spectrum [693]

ω2
q =

U4S
2

4

∑

k


 2

Ek

(nkα − nkβ) +


1− U2S

2

EkEk+q


 (G.103)

×

nkα − nk+qα

Eα
k − Eα

k+q

+
nkβ − nk+qβ

Eβ
k − Eβ

k+q


 + 2


1 +

U2S
2

EkEk+q





nkα − nk+qβ

Eα
k − Eβ

k+q







2

−U4S
2

4


∑

k

τkτk+q

EkEk+q


nkα − nk+qα

Eα
k − Eα

k+q

+
nkβ − nk+qβ

Eβ
k − Eβ

k+q

− 2
nkα − nk+qβ

Eα
k − Eβ

k+q







2

For small U we may expand (G.103) to obtain the result (G.74)-(G.77) with
I → U. In the case of large U and half-filled conduction band we obtain the
result (E.12) with

Jq = − 2

U

∑

k

tktk+q (G.104)

(G.94) being the kinetic exchange integral (see Sect.5.1). Finally, in the case
of U → ∞ and non-integer band filling, where the current carriers result in
the non-Heisenbergian double exchange interaction, we obtain

ω2
q =

{
JH
Q − JH

q +
∑

k

[
(Θk+q −Θk)nk + τk(τk+q + τk)

nk+q − nk

Θk+q −Θk

]}

×
{

1

2
(JH

Q − JH
Q+q − JH

Q−q) (G.105)

+
∑

k

[
(Θk+q −Θk)nk − τk(τk+q − τk)

nk+q − nk

Θk+q −Θk

]}

where
nk = nkβ = f(Θk), nkα ≡ 1

and the Heisenberg interaction JH is introduced to stabilize the antiferro-
magnetic state.

The spin-wave corrections to electron spectrum are determined, as well
as for the ferromagnet (cf.(G.13), (G.36), (G.60)) by the electron-magnon
interaction amplitude

δEi
k

δNq

=
δωk

δnki

=
δ2〈Hsw〉
δNqδnki

(G.106)
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The corresponding correction to the free energy reads

δFsw = −1

3
δ〈Hsw〉 = −1

3

∑
q

ωqNq ∼ −
(

T

TN

)4

(G.107)

(the difference with (G.60) is due to the linear dispersion law of spin waves).
The temperature dependence of the local moment is given by the Hellmann-
Feynman theorem:

δ〈S2
i 〉 = −3

2
δN2 = −3

2

∂

∂U
δFsw ∼ T 4 (G.108)

The considered Hartree-Fock-type approximation with fluctuation correc-
tions yields the same results for electron and magnon spectra in the case of
s-d model (with the replacement U → I). In particular, for |I| → ∞ the
electron spectrum with account of spin-wave and many-electron corrections
reads [693]

Eα
k = −I(S + nβ), Eβ

k = −I(S + 1− nα)

Thus the generalized Hatree-Fock approximation yields correct “atomic” val-
ues E = ±IS, ±I(S + 1) (Appendix I) for integer values nα, nβ.
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Appendix H

The Hubbard model with
strong correlations

The Hubbard model with a degenerate band is applicable in some cases for
d-electrons in transition metals and their compounds. The corresponding
Hamiltonian has the form

H =
∑

kmσ

tka
†
klmσaklmσ +Hint (H.1)

where tk is the band energy. For simplicity, we do not take into account
m-dependence of transfer integrals, i.e. we neglect crystal-field effects and
retain in (C.31) the contribution with λ = 0 only. Such an approximation
enables one to treat in the simplest situation effects of many-electron term
structure in the electron spectrum. In the many-electron representation of
Hubbard’s operators (A.22) the interaction Hamiltonian takes the diagonal
form

Hint =
∑

iΓ

EΓXi(Γ, Γ) (H.2)

where the energies EΓ are given by (C.19) and do not depend on momentum
projections. However, the treatment of the kinetic energy term becomes
more difficult because of complicated commutation relations for X-operators
(A.36).

Consider the one-electron Green’s function. According to (A.31),

Gkγ(E) = 〈〈akγ|a†kγ〉〉E =
∑

nΓnΓn−1

n1/2GΓn
Γn−1

CΓn
Γn−1,γ〈〈Xk(Γn−1, Γn)|a†kγ〉〉E

(H.3)

321
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In the equation of motion for the Green’s function in the right-hand side of
(H.3) we perform the simplest decoupling which corresponds to the “Hubbard-
I” decoupling [28,29,31] at different lattice sites:

(E − EΓn + EΓn−1)〈〈Xk(Γn−1, Γn)|a†kγ〉〉E
= n1/2GΓn

Γn−1
CΓn

Γn−1,γ(NΓn + NΓn−1) [1 + tkGkγ(E)]

Then we obtain

Gkγ(E) =
Φγ(E)

1− tkΦγ(E)
(H.4)

where

Φγ(E) =
∑

nΓnΓn−1

n
(
GΓn

Γn−1
CΓn

Γn−1,γ

)2 NΓn + NΓn−1

E − EΓn + EΓn−1

(H.5)

Note that the expressions (H.4), (H.5) have the structure which is reminiscent
of (F.8),(F.9). As well as in the Appendix F, our consideration may be easily
generalized to include effects of single-site crystal field (see also [29]). If we
use for EΓ the approximation (C.20), the fractional parentage coefficients in
(H.5) may be summed up and the dependence on ME quantum numbers L, S
vanishes, which corresponds to the approximation [29].

In the absence of magnetic and orbital ordering the occupation numbers
NΓ in (H.5) do not depend on spin projections and we have

ΦΓ(E) =
∑

nΓnΓn−1

n

2[l]
([Sn−1][Ln−1])

−1(GΓn
Γn−1

)2 NΓn + NΓn−1

E − EΓn + EΓn−1

(H.6)

The excitation spectrum is given by

1− tkΦγ(E) = 0 (H.7)

Thus the intersite electron transfer results in a smearing of each transition
between atomic levels into an energy Hubbard subband. These subbands
are separated by correlation gaps. In particular, for s-band we obtain the
spectrum which contains in ferromagnetic region four subbands

E1,2
kσ =

1

2

{
tk + U ∓

[
(tk − U)2 + 4tkU(N−σ + N2)

]1/2
}

(H.8)

For a more general model (C.23),

E1,2
kσ =

1

2

[
β

(00)
k (N0 + Nσ) + β

(22)
k (N2 + N−σ) + U

]
∓ 1

2

{[
β

(00)
k (N0 + Nσ)

(H.9)
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− β
(22)
k (N2 + N−σ)− U

]2
+ 4

∣∣∣β(02)
k

∣∣∣
2
(N0 + Nσ)(N2 + N−σ)

}1/2

The expression (H.8), (H.9) may be also rewritten in terms of one-electron
occupation numbers since

Nσ + N2 = nσ, Nσ + N0 = 1− n−σ

One can see that the dependence of the spectrum on the occupation numbers
does not reduce to the constant shift of subbands, as it takes place in the
Stoner approximation (G.3). The Hubbard-I spectrum has the most simple
form in the case of large U where

E1
kσ = (1− n−σ)tk, E2

kσ = tkn−σ + U (H.10)

One can assume that some subbands are in fact ill-defined because of
large damping. Indeed, it is demonstrated in Appendix J for the saturated
ferromagnetic state that in higher-order approximations some energy denom-
inators are replaced by resolvents, and the corresponding states have a non-
quasiparticle nature. A similar situation takes place in the Hubbard-III ap-
proximation [30,694,695] where damping is finite and large at Fermi level (see
(H.17), (J.24)).

Consider the Hubbard model with U →∞, n = 1−c < 1 (c = N0 = n0 is
the hole concentration, N2 = 0) with inclusion of the external magnetic field
(4.96). In the “Hubbard-I” approximation” we obtain the Green’s function

〈〈Xk(σ0)|X−k(0σ)〉〉E =
c + nσ

E − τkσ − σH/2
(H.11)

τkσ = (c + nσ)εk = [(1 + c)/2 + σ〈Sz〉]εk

and, with the use of the spectral representation (E.18), the corresponding
expressions for the occupation numbers

nkσ ≡ 〈X−k(0σ)Xk(σ0)〉 =
(

1 + c

2
+ σ〈Sz〉

)
f(τkσ +

1

2
hσ) (H.12)

In principle, the equations (H.4), (H.5) may be used to investigate the
magnetic ordering in the Hubbard model. However, the Hubbard-I approxi-
mation is hardly satisfactory in this problem since it is difficult to formulate
a reasonable criterion of ferromagnetism by direct using the expressions for
one-electron Green’s functions like (H.4), (H.11). The first attempt of this
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kind was made by Hubbard [28], who found no magnetic solutions for sim-
ple bare densities of states (however, the situation may change considerably
in the case of degenerate d-bands [696]). The X-operator approach clarifies
the causes of this failure. In particular, one can see that the approximation
(H.11) violates the kinematical requirements (A.25) since it is impossible to
satisfy at 〈Sz〉 6= 0 the relation

∑

k

nkσ = 〈X(00)〉 = c (H.13)

for both spin projections σ. Besides that, as discussed above, such Stoner-
like approaches do not describe the formation of LMM and are physically
unsatisfactory. Therefore we use in Sect 4.5 the approach which is based on
the spin Green’s function

Gq(ω) = 〈〈Xq(+−)|X−q(−+)〉〉ω = 〈〈S+
q |S−−q〉〉ω (H.14)

To calculate this we write down the sequence of equations of motion

(ω −H)Gq(ω) = n↑ − n↓ +
∑

k

(εk−q − εk) (H.15)

×〈〈Xq−k(0−)Xk(+0)|X−q(−+)〉〉ω
(ω − τk↑ + τk−q↑ −H)〈〈Xq−k(0−)Xk(+0)|X−q(−+)〉〉ω

= nk↑ − nk−q↓ + (εk−qnk−q↓ − εknk↑)Gq(ω)

where we have performed the simplest decoupling, which corresponds to ne-
glecting fluctuations of hole occupation numbers. Substituting (H.15) into
(H.14) we obtain the expression (4.97).

Fluctuation correction to the electron spectrum (H.4) for a ferromagnet
with s-band were investigated in [337,338] within the 1/z-expansion, z being
the nearest-neighbour number. They are expressed in terms of one-particle
occupation numbers and spin and charge correlation functions. For the de-
generate Hubbard model, correlation functions of orbital operators L(k) will
also occur.

For paramagnetic phase, the gap in the spectrum (H.8) persists for arbi-
trarily small U . To describe the metal-insulator transition which takes place
at U ∼ W (with W being the bandwidth) more complicated self-consistent
approximations for the one-electron Green’s functions were used. First de-
scription of this type was proposed by Hubbard [30], and a more simple
approximation was used by Zaitsev [697].
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The Hubbard-III expression for the one-electron Green’s function in the
case of half-filled band may be represented in the form [695]

Gk(E) = [E − tk − Σ(E)]−1 (H.16)

the electron self-energy being determined in a self-consistent way in terms of
the exact resolvent

Σ(E) =
U2

16Ψ
R(E)/

[
1 + Σ(E)R(E) + ER(E)(

1

4Ψ
− 1)

]
(H.17)

R(E) =
∑

k

Gk(E)

where Ψ = 3/4. The expression (H.17) holds also for the classical (S →∞)
s-d exchange model (see Appendix I) if we put Ψ = 1/4, U → |IS|. Then
(H.17) is simplified and coincides with the coherent potential approxima-
tion (CPA) result in the disordered alloy theory [435]. Evolution of electron
spectrum vs. interaction parameter is shown in Fig.H1.

Some shortcomings of the approximations [30,697] (violence of analytical
properties of the Green’s functions and inconsistent description of thermody-
namic quantities) are discussed in [694,695] from the point of view of the 1/z-
expansion. Construction of a correct physical pictrure of the Mott-Hubbard
transition is up to now a serious physical problem. Last time, the large-d
(d is the space dimensionality) approximation is widely used in this problem
[705]. Such approaches yield sometimes two phase transitions: at U > Uc1

the Fermi-liquid picture breaks, and at U > Uc2 > Uc1 the system passes into
the insulator state. We have seen that the one-electron (Hartree-Fock) and
Hubbard approaches yield essentially different results for electron spectrum.

The failure of one-electron approach in the case of large U may be demon-
strated by treatment of the case of small electron concentrations n [353].
Consider the expansion of the one-electron Green’s function in the electron
occupation numbers. In the one-electron representation (fk = 〈a†kσakσ〉) we
obtain the equation of motion

(E − tk)〈〈ak↑|a†k↑〉〉E = 1 + U
∑

k1k2

Fk(k1k2E) (H.18)

Fk(k1k2E) = 〈〈a†k1↓ak2↓ak+k1−k2↑|a†k↑〉〉E
To lowest-order in fk we obtain the closed integral equation

(E − tk+k1−k2
+ tk1 − tk2)Fk(k1,k2, E) (H.19)
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= δk1k2fk + U(1− fk2)
∑
p

Fk(k,p,E)

Solving this we derive the expression for the electron self-energy

Σk(E) = U
∑

k1

fk1


1− U

∑

k2

(1− fk2)(1− fk+k1−k2
)

E − tk+k1−k2
+ tk1 − tk2



−1

(H.20)

which is finite at U → ∞ [348]. At the same time, according to (E.18),
(H.18) the number of doubles

N2 = 〈a†i↑ai↑a
†
i↓ai↓〉 = − 1

π

∫
dEf(E) Im

∑

kk1k2

Fk(k1k2E) (H.21)

= − 1

πU

∫
dEf(E) Im

∑

k

Σk(E)

E − tk

behaves as 1/U in this limit. Then the Hellmann-Feynman theorem N2 =
∂E/∂U yields a divergence of the ground-state energy E

E(U)− E(0) =
∫ ∞

0
dUN2(U) ∼ ln U (H.22)

This divergence indicates formation of the Hubbard subbands and inade-
quacy of the one-electron picture at large U . On the other hand, calculation
in the ME representation yields [353]

〈〈Xk(σ2)|X−k(2σ)〉〉E '
∑

k1

fk1


E + tk1 − U −∑

k2

(tk+k1−k2
+ tk2)

2

E − tk+k1−k2
+ tk1 − tk2



−1

(H.23)
so that

N2 = − 1

π
Im

∑

k

∫
dEf(E) Im〈〈Xk(σ2)|X−k(2σ)〉〉E (H.24)

' 1

U2

∑

kk1k2

(tk+k1−k2
+ tk2)

2fk1f(tk+k1−k2
− tk1 + tk2)

' n2

U2
tmin

Thus we obtain the correct asymptotics N2 ∼ 1/U2.



Appendix I

Narrow-band s-d exchange
model and t-J model

At considering the electron transfer in narrow degenerate bands, one can
use, besides the Hubbard model, the s-d exchange model with strong corre-
lations. This model corresponds to the case where the current carriers do
not belong to the same energy band where magnetic moments are formed.
Such a situation takes place in some magnetic semiconductors and insulators
[668].

Unlike the degenerate Hubbard model, the standard Hamiltonian of the
s-d exchange model (G.2) does not include orbital degrees of freedom. In the
case of large s-d exchange parameter |I| it is convenient to pass to the atomic
representation [698-700]. Substituting the values of the Clebsh-Gordan coef-
ficients, corresponding to the coupling of momenta S and 1/2, we obtain the
eigenfunctions of Hsd

|M〉 ≡ |SM〉|0〉, |M2〉 ≡ |SM〉|2〉 (I.1)

|µ±〉 =

(
S ± µ + 1/2

2S + 1

)1/2

|S, µ− 1

2
〉| ↑〉 ±

(
S ∓ µ + 1/2

2S + 1

)1/2

|S, µ +
1

2
〉| ↓〉
(I.2)

where |mα〉 are the singly-occupied states with the total on-site spin S +α/2
and its projection m. Then Hsd takes the diagonal form

Hsd = −IS
S+1/2∑

µ=−S−1/2

∑

i

Xi(µ+, µ+)+I(S+1)
S−1/2∑

µ=−S+1/2

∑

i

Xi(µ−, µ−) (I.3)

327
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The one-electron operators are expressed in terms of X-operators as

c†iσ =
∑
α

(g†iσα + h†iσα) (I.4)

g†iσ+ =
∑

M

{(S + σM + 1)/(2S + 1)}1/2 Xi(M +
σ

2
, +; M)

g+
iσ− =

∑

M

σ {(S − σM)/(2S + 1)}1/2 Xi(M +
σ

2
,−; M)

h†iσ+ =
∑

M

{(S + σM)/(2S + 1)}1/2 Xi(M2; M − σ

2
,−)

h†iσ+ =
∑

M

σ {(S − σM + 1)/(2S + 1)}1/2 Xi(M2; M − σ

2
, +)

In the limit I → α∞ and for conduction electron concentration n < 1 one
has to retain in (I.4) only the terms with giα and omit the Hamiltonian Hsd,
which yields a constant energy shift, to obtain

H =
∑

kσ

tkg
†
kσαgkσα +Hd, α = signI (I.5)

For n > 1, we have to retain only terms with hiα and pass to the “hole”
representation by introducing new localized spins S̃ = S ± 1/2. Then the
Hamiltonian takes the same form (I.6) with the replacement [700]

tk → −tk([S̃]/[S]) (I.6)

At theoretical consideration of higly-correlated compounds, e.g. copper-oxide
high-Tc superconductors the t − J model (the s-band Hubbard model with
U → ∞ and Heisenberg exchange included) is now widely used. Its Hamil-
tonian in ME representation reads

H = −∑

ijσ

tijXi(0σ)Xj(σ0)−∑

ij

Jij {Xi(+−)Xj(−+) (I.7)

+
1

4
[Xi(++)−Xi(−−)] [Xj(++)−Xj(−−)]

}

At derivation of the t − J model from the large-U Hubbard model, J =
−4t2/U is the antiferromagnetic kinetic exchange integral. However, it is
convenient sometimes J as an independent variable. In particular, one treats
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sometimes the “supersymmetrical” case with t = J [701] which permits to
use non-trivial mathematical methods.

One can see that the model (I.7) is a particular case of the s-d exchange
model, corresponding to I → −∞, S = 1/2, tk in (I.5) being replaced by 2t
(the factor of 2 occurs because of equivalence of both electrons in the Hubbard
model). The s-d model with arbitrary S is sometimes more convenient since
this enables one to use at calculations, besides the small parameter 1/z (z
is the nearest- neighbour number), the quasiclassical parameter 1/2S. The
quasiclassical s-d model with S À 1 in the atomic representation was used
to investigate the metal-insulator transition [695] (Appendix H).

The Hamiltonian (I.5), similar to (C.33), may be expressed in terms of
the Fermi and localized spin operators. To this end, we pick out a conduction
electron operator from X-operators with the use of (A.21), (A.11):

g†iσα =
∑

σ′
c†iσ′(1− ni,−σ′)

[
Pαδσσ′ +

α

2S + 1
(Siσσσ′)

]
(I.8)

where

P+ =
S + 1

2S + 1
, P− =

S

2S + 1
(I.9)

This result was obtained by Kubo and Ohata [702] by a canonical transfor-
mation. Using properties of the Pauli matrices we get

H =
∑

ijσσ′
tij

{
[
1

4
P 2

α +
SiSj

(2S + 1)2
]δσσ′ +

1

2

α

(2S + 1)2
Pα(Si+Sj)σσσ′ (I.10)

+
2i

(2S + 1)2
σσσ′ [Si×Sj]

}
c†iσ(1− ni,−σ)(1− ni,−σ′)cjσ′ +Hd

The terms with vector products (cf. (K.8)) describe anisotropic electron
scattering and may be important at considering transport phenomena in
narrow bands, e.g., the extraordinary Hall effect. The Hamiltonian in the
form (I.10) may be also useful at treating the states with the anomalous
“chiral” order parameters, which are now extensively investigated within the
two-dimensional Heisenberg and t− J models (see, e.g., [703]).

The Hamiltonian (I.5) is more convenient at considering simple approxi-
mations within 1/z-expansion [694]. Performing the simplest decoupling we
obtain the electron spectrum in the ferromagnetic phase

Ekσα =
(
Pα − ασ

2S + 1
〈Sz〉

)
tk (I.11)
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This expression demonstrates a strong dependence of electron spectrum on
magnetic ordering. Rigorous expression for spin-down Green’s function at
α = +, T = 0 [699] has the non-quasiparticle form

〈〈gk↓+|g†k↓+〉〉E =

[
E − tk − 2S(

∑
q

1

E − tq
)−1

]−1

(I.12)

The magnon spectrum in the model (I.5) was calculated in [79,80,83].
The result to leading order in 1/z reads

ωq =
1

2S

∑

k

(tk−q − tk)f(tk), α = + (I.13)

ωq =
1

2S + 1

∑

k

(tk−q − tk)f(
2S

2S + 1
tk), α = −

In an antiferromagnet with the spiral magnetic structure, corresponding
to the wavevector Q, we have to pass in the s − d Hamiltonian to the local
coordinate system by using (E.8), (G.90). Then, passing from the operators
d†iσ to the ME operators, we obtain instead of (I.5)

H =
∑

kσ

(θkgkσαgkσα + τkgkσαgk,−σ,α) +Hd (I.14)

τk =
1

2
(tk+Q/2 − tk−Q/2), θk =

1

2
(tk+Q/2 + tk−Q/2)

Performing the “Hubbard-I” decoupling, we obtain for the electron spectrum
[687]

E1,2
k = Pαθk ±

{
(

S

2S + 1
θk)

2 + [P 2
α − (

S

2S + 1
)2]τk

}1/2

(I.15)

with S being the sublattice magnetization. In the nearest-neighbor approx-
imation (θq = 0) for I > 0 the band at T = 0 is narrowed by (2S + 1)1/2

times. At the same same time, for I < 0 (and also in the t − J model) the
electron may not pass to neighbour sites in the approximation under consid-
eration, and its motion is possible due to quantum effects only. This problem
is discussed in Sect.6.7.

Fluctuation corrections to the spectrum (I.15) are discussed in [687,620].
The result for the magnon spectrum obtained in the ME representation turn
out to coincide with that of the generalized Hartree-Fock approximation
(G.95).



Appendix J

APPENDIX J Electron states
and spin waves in the
narrow-band Hubbard
ferromagnet

The electron and magnon spectra of a Hubbard ferromagnet with strong
correlations (U →∞), which is described by the Hamiltonian

H =
∑

kσ

εkX−k(0σ)Xk(σ0) (J.1)

may be investigated rigorously in the case of small concentrations of holes
c = 1−Ne/N (almost half-filled band) and low temperatures. This is formally
achieved by expansion in hole and magnon occupation numbers [333,699,700].
Consider the one-particle Green’s functions

Gkσ = 〈〈Xk(σ0)|X−k(0σ)〉〉E (J.2)

Using the commutation relation

[Xk(+0),H] =
∑
p

εk−p {[Xp(00) + Xp(++)]Xk−p(+0) + Xp(+−)Xk−p(−0)}

we write down for σ =↑ the equation of motion (E.16a)

(E − εk)Gk↑(E) = 1− n↓ +
∑
pq

(εk−p − εk+q−p) (J.3)

331
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×〈〈X−q(−+)Xp(+−)Xk+q−p(+0)|X−k(0+)〉〉E
Here we have taken into account the kinematical relations

Xp(++)+Xp(−−) = δp0−Xp(−−), Xp(−−) =
∑
q

X−q(−+)Xp+q(+−),

(J.5)
Xk−p(−0) =

∑
q

X−q(−+)Xk+q−p(+0)

which follow from (A.28), (A.25), reduced the operator products to the “nor-
mal form” where all the opeators X(−+) stand at the left, and retained only
the terms, which are linear in spin deviations and neglected the terms which
are proportional to the hole concentrations. Introducing the function

ϕkqp(E) = 〈〈X−q(−+)Xp(+−)Xk+q−p(+0)|X−k(0+)〉〉E/ [(E − εk)Nq]
(J.6)

with
Nq = 〈X−q(−+)Xq(+−)〉

we derive in the same way the closed integral equation

(E − εk+q−p)ϕkqp(E) = (E − εk)(δpq − 1)+ (J.7)

∑
r

(εk+q−p−r − εk+q−r)ϕkqr(E)

which describes the hole-magnon scattering. Writing down the Dyson equa-
tion

Gk↑(E) =
1− n↓
E − εk

[
1− 1

E − εk

Σk(E)
]
' (1− n↓) [E − εk − Σk(E)]−1 (J.8)

we obtain for the self-energy

Σk(E) =
∑
pq

(εk−p − εk+q−p)ϕkqp(E) (J.9)

The magnon spectrum is obtained from the spin Green’s function. The
equation of motion for this has the form (cf.(H.15))

ωGq(ω) = 1− c +
∑

kp

(εk−p − εk) (J.10)

×〈〈X−k(0+)Xq−k+p(+−)Xk(+0)|X−q(−+)〉〉ω
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Performing calcualations at T = 0 to lowest orderin magnon occupation
numbers

nk = 〈X−k(0+)Xk(+0)〉 = f(εk)

we obtain the magnon self-energy. This turns out to be determined by the
same function ϕ

Gq(ω) = (1− c)


ω −∑

kp

(εk−p − εk+q−p)ϕkqp(ω + εk)



−1

(J.11)

To lowest order in the small parameter 1/z (each order in 1/z corresponds
to a summation over a wavevector) we obtain for the temperature correction
to the the electron spectrum and for the magnon frequency

δεk(T ) =
∑
q

(εk−q − εk)Nq (J.12)

ωq =
∑

k

(εk−q − εk)nk

The equation (J.7) may be solved exactly for concrete lattices. For the simple
cubic lattice in the nearest-neighbour approximation we have for the band
bottom shift

δε0 = κ
3ζ(5/2)v0

32π3/2m∗

(
T

D

)5/2

(J.13)

and for the spin-wave frequency at small q

ωq = Dq2, D = κc|t| (J.14)

where κ is expressed in terms of the lattice Green’s function,

κ =
1− A

1 + A
≈ 0.656

A =
∑
q

cos qx

3− cos qx − cos qy − cos qz

≈ 0.208

It is convenient to calculate more complicated characteristics at finite
temperatures with the use of the expansion in 1/z [700]. The magnon damp-
ing is given by (cf.(G.23)-(G.25))

γq = π
∑

kp

(εk−q − εk)
2 [nk+q−p(1− nk) + (nk+q−p − nk)Np] (J.15)
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×δ(ω + εk − εk+q−p − ωp)

and turn out to be finite at T = 0, unlike the case of Heisenberg ferromagnet.
The temperature dependence of spin-wave stiffness reads (cf.(G.27))

δD(T ) =
π2

12
T 2N(EF )

d

dEF

(
∂2εk

∂k2

)

k=kF

(J.16)

−5π1/2

12
ζ(5/2)

(
v0

4π2

)2 kF

m∗

(
T

D

)5/2

− v2
0k

4
F

144πDk2
F

T 2 ln
4Dk2

F

T

The magnon Green’s function permits to calculate the spin-wave correc-
tion to magnetization

〈Sz〉 =
1

2
(n↑ − n↓) =

1− c

2
− n↓ (J.17)

=
1− c

2
+

1

π

∑
q

∫
dωNB(ω) Im Gq(ω)

The corrections owing to the damping turn out to be cancel the factor 1− c
in the denominator of (J.11) and we obtain to terms of order of 1/z2

〈Sz〉 =
1− c

2
−∑

p

Np (J.18)

Thus the ground state is really saturated ferromagnetic, and magnetization
at low temperatures obeys the usual Bloch T 3/2-law.

As follows from (J.9), spin-up states propagate freely on the background
of the saturated ferromagnetic ordering, and corrections to the spectrum at
low temperatures are proportional to T 5/2. The situation is more interesting
for spin-down states. Using again the kinematical relation (A.25) we obtain

Gk↓(E) =
∑
q

〈〈X−q(−+)Xk+q(+0)|X−k(0+)〉〉E (J.19)

The simplest decoupling in the equation of motion for the Green’s function
in the right-hand side of (J.19) yields

G0
k↓(E) =

∑
q

Nq + nk+q

E − εk+q + ωq

(J.20)
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The Green’s function (J.20) has a purely non-quasiparticle nature. Because of
the weak k-dependence of the corresponding distribution function at T → 0,

〈X−k(0−)Xk(−0)〉 = − 1

π

∫
dEf(E) Im G0

k↓(E) ' c (J.21)

the non-quasiparticle states possess a small mobility and do not carry current
[333,338]. Thus the “spin-down” excitations are reminiscent of Anderson’s
spinons (Sect.6.8) which are also described by the Green’s function with zero
residue [631]. The non-quasiparticle contribution to the density of states
turns out to be appreciable:

N↓(E, T = 0) =
∑

kσ

nk+qδ(E − εk+q + ωq) (J.22)

=

{
N↑(E) , EF − E À ωmax

0 , E > EF

The sense of this result is as follows. The states well below the Fermi level (of
holes) do not possess spin polarization, since elect- rons with any spin pro-
jection may be put into them (the holes are spinless). However, from states
above the Fermi level, only spin-up electrons may be extracted in the satu-
rated ferromagnetic state under consideration. The large non-quasiparticle
T -linear contribution to specific heat may be also picked up [338]. However,
it has more complicated origin in comparison with the spinon contribution
[631] since the non-quasiparticle states are absent at the Fermi level.

A more advanced decoupling yields the result [338]

Gk↓(E) =
{
E − εk +

[
G0

k↓(E)
]−1

}−1

(J.23)

At small c, the Green’s function (J.23) has no poles below the Fermi level,
so that the above conclusions are not changed qualitatively. However, with
increasing c, it acquires a spin-polaron pole below EF , and the saturated
ferromagnetism is destroyed [332].

The expression (J.23) should be compared with the corresponding result
for the paramagnetic phase in the “Hubbard-III” approximation (cf.(H.16))

Gk↓(E) =
{
E − εk +

1− c

2

[
G0

k↓(E)
]−1

}−1

(J.24)

Unlike (J.23), equation (J.24) does not contain Fermi functions, so that the
incoherent (non-quasiparticle) states do not vanish at EF .
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One may expect that in the non-saturated ferromagnetic state (or at high
temperatures) the expression (J.20) should be replaced by the Hubbard-I
result

Gk↓(E) =
c + n↓

E − εk(c + n↓)
(J.25)

which describes usual quasiparticle states with a narrowed band. Note that
the expression (J.25) may be obtained by averaging nominator and denomi-
nator in (J.20) over q, which corresponds to the large-z approximation. As
follows from (J.22), the expressions (J.8), (J.21), unlike (J.25), enable one to
satisfy the sume rule (H.13) since

∑

k

〈X−k(0−)Xk(−0)〉 =
∫ EF

−∞
dENσ(E) = c = n0 (J.26)

Thus the non-quasiparticle nature of spin-down current carriers is intimately
related to the description of the saturated ferromagnetic state.



Appendix K

s− f exchange model and
indirect exchange interaction in
rare earths

For rare-earth metals, where 4f-electrons are well localized, the s − f ex-
change model may provide a basis of a quantitative theory of magnetic prop-
erties. In particular, the main mechanism of exchange between 4f-shells in
rare earths and their conducting compounds is the Ruderman-Kittel-Kasuya-
Yosida (RKKY) indirect interaction via conduction electrons, which occurs
in the second order of perturbation theory in the s − f exchange parame-
ter. Excluding from the simplest Hamiltonian of the s − f model (G.2) the
s − f exchange interaction by a canonical transformation [265], we obtain
the effective Heisenberg Hamiltonian

Hf = −∑
q

JRKKY
q S−qSq, JRKKY

q = I2
∑

k

nk − nk+q

tk+q − tk
. (K.1)

In real space, the RKKY exchange integrals have an oscillating and slowly
decreasing dependence on distance. Performing integration for free electrons
we obtain

JRKKY
ij =

9πn2I2

2v2
0EF

F (2kF|Ri −Rj|), F (x) =
x cos x− sin x

x4
. (K.2)

Now we consider a more realistic model of 4f-metals. For most rare-earths
(except for Eu and Sm), the matrix elements of intersite exchange interac-
tions are small in comparison with the distances between LSJ-multiplets,
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and the Russell-Saunders coupling scheme is a good approximation. Using
for simplicity the representation of s-type plane waves for conduction elec-
trons, we derive for the s− f Hamiltonian (cf.(D.20))

Hsf =
∑

kk′σσ′

∑

νΓ1Γ2γ1γ2

ei(k−k′)Rν 〈γ1,kσ|∑
ic

e2

|ri − rc| |γ2,k
′σ′〉

×〈Γ1|a†νγ1
aνγ2|Γ2〉Xν(Γ1, Γ2)c

†
kσck′σ′ , (K.3)

where c†kσ are creation operators for conduction electrons, γi = {lmi}, Γi =
{SLJMi}, pic are operators of permutation of conduction and localized elec-
trons. Expanding the plane waves according to (C.28) and using (C.7) we
obtain the series in λ, λ′ with the “Slater integrals”

F
(p)
λλ′(kk′) = e2

∫
r2
1dr1r

2
2dr2R

2
l (r1)

rp
<

rp+1
>

Rl(r2)jλ(kr2)jλ′(k
′r1), (K.4)

G
(p)
λλ′(kk′) = e2

∫
r2
1dr1r

2
2dr2R

2
l (r1)jλ(kr2)

rp
<

rp+1
>

Rl(r2)jλ′(k
′r1), (K.5)

where l = 3 for f-electrons. The small parameter of the expansion is kFrf ∼
0.2 where rf is the radius of the 4f-shell. The matrix elements that arise
may be calculated by the method of double irre-ducible tensor operators and
expressed in terms of matrix elements of the total angular momentum J ,
as demonstrated in Appendix D. In particular, for the zeroth-order term we
obtain from (B.19)

Hsf (00) = −4π

[l]

∑

νσσ′
G

(0)
00

[
n

2
δσσ′ + (g − 1)(σσσ′Jν)

]
c†νσcνσ′ . (K.6)

Higher-order terms of the expansion are anisotropic and have the structure

Hcoul
sf =

∑

νkk′σσ′
ei(k−k′)Rνc†kσck′σ′

× (B0 + B1 [3 {(kJν), (k
′Jν)} − 2(kk′)J(J + 1)] + . . .) , (K.7)

Hexch
sf =

∑

νkk′σσ′
(A0δσσ′ + A1(σσσ′Jν) + iA2([kk′]Jν)δσσ′

+A3

{
(kJν), (k

′Jν)
}

+ A4

[
(kσσσ′)(k

′Jν) + (k′σσσ′)(kJν)
]

+A5 [(kσσσ′)(kJν) + (k′σσσ′)(k
′Jν)]
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+A6

[
(kJν)

2 + (k′Jν)
2
]
+ iA7 {(σσσ′Jν), ([kk′]Jν)}+ . . . , (K.8)

where { , } is anticommmutator. The maximum power q of momentum op-
erator J is determined by the maximum value of λ, retained in the expansion
(C.28), q = min{2J, 2λ + 1}. The terms with the vector products [kk′] de-
scribe the anisotropic electron scattering and are important in the theory of
the anomalous Hall effect. The coefficients of the expansion (K.8) are given
by [704]

A1 =
2

7
(g − 1)

[
G

(3)
00 + (kk′)η1

]
−D1

[
9

35
(kk′)η2 +

2

7

√
6G

(3)
02

]
,

A2 =
1

28
(g − 2)η3 − 9

√
5

70
η2D2, A3 =

9
√

5

35
D2η2,

A4 =
27

70
η2D1, A5

3
√

6

7
G

(3)
02 D1, A6 = −3

√
5

7
G

(3)
02 D2,

A7 = A8 =
9
√

15

14
η3(2J + 1)

[
(2J − 2)!

(2J + 3)!

]1/2




L J S
L J S
1 2 1




〈SL||W (11)||SL〉,

(K.9)
where the irreducible matrix elements are determined by (B.27),

η1 =
9

5
G

(2)
11 +

4

3
G

(4)
11 , η2 =

9

5
G

(2)
11 +

5

9
G

(4)
11 , η3 =

9

5
G

(2)
11 −G

(4)
11 ,

D1 =

[
2J + 1

J(J + 1)

]1/2




L J S
L J S
2 1 1




〈SL||W (12)||SL〉,

D2 = (−1)S+L+J 2√
3

2J + 1

(2S + 1)1/2
〈SL||W (02)||SL〉

{
L J S
J L 2

}
. (K.10)

The Hamiltonian of indirect f-f interaction is obtained in the second order
in Hsf and has the same structure as (D.22). The main conributions may be
written down in the form [389]

Hff (ν1ν2) = −I1(g − 1)2(J1J2)− I2D1(g − 1)
[
(J1J2)− 3(ρ12J

2
12

]

−I3nD3

[
(J1J2)− 3(ρ12J2)

2/ρ2
12

]
, (K.11)
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where Ii are linear combinations of the integrals of the type

Bµλλ′p
µ′λ′′λ′′′p′ =

∞∫

0

k2dknk

∞∫

−∞

k′2dk′

k2 − k′2
jµ(kρ12)jµ′(k

′ρ12)G
(p)
λλ′(kk′)G(p′)

λ′′λ′′′(kk′).

(K.12)
The largest term of this expansion, which is proportional to (g − 1)2, cor-
responds to the usual exchange between spins according to the de Gennes
formula (B.19). The dependence of the f-f exchange parameter Jeff ∼ (g−1)2

is in a good agreement with experimental data on the paramagnetic Curie
temperatures in the series of rare-earth metals. The orbital contributions to
the f-f interaction, which are proportional to D1 and D2 and vanish at L = 0,
are considerably smaller. A still smaller term of the purely orbital exchange
is obtained in the second order in A2:

H′
ff (ν1ν2) = −I4(g − 2)2(J1J2) = −I4(L1L2). (K.13)

The orbital terms may give an appreciable contribution to the exchange
anisotropy of crystal magnetization (Sect.4.8).



Appendix L

Spin-orbital interaction

Besides exchange interactions, an important role in magnetic crystals be-
longs to the relativistic spin-orbital interaction (SOI). The latter, although
being weak, results in a partial unquenching of orbital momenta and is re-
sponsible for anisotropy of magnetic and other properties. SOI is especially
important for transport phenomena, e.g., anomalous halvanomagnetic and
thermomagnetic properties.

The operator of SOI for an electron with the quasimomentum p and spin
s in the potential V (r) has the form

Hso =
h̄

2m2c2
[∇V ,p]s. (L.1)

For the Coulomb interaction

V (r) = −Ze2/r

we obtain

Hso = λ(r)(ls), (L.2)

where

l =
1

h̄
[r,p], λ(r) =

Ze2h̄2

2m2c2r3

For estimating the value of λ(r) one can use hydrogen-like wavefunctions to
obtain

λnl =
Z4h̄cα2

n3l(l + 1/2)(l + 1)
Ry (L.3)
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with Ry = 13.6 eV being the Rydberg constant, α = 1/137. SOI increases
rapidly with increasing atomic number. We have λ ∼ 10−14 erg for 3d-
electrons and λ ∼ 10−13 erg for 4f-electrons in rare earths. The quantity λ
may be also estimated from the data of atomic spectroscopy, which turn out
to agree qualitatively with the theory, provided that effective values of Z are
used.

At considering SOI, the question about degeneracy of electron states is
essential. Evidently, for non-degenerate wavefunctions (e.g., for Bloch elec-
trons in a crystal) diagonal matrix elements of Hso (L.2) vanish, so that
corrections to the energy, which are linear in Hso, are absent. On the other
hand, in the degenerate case (e.g, for a free atom) a splitting of levels in the
first order in Hso takes place.

Besides the proper SOI (orbital electron current in the magnetic field of
its own spin momentum), there exists also the interaction of orbital current
with spins of other electrons

H′
so =

h̄

m2c2

∑

i6=j

[∇Vij,pi]sj, (L.4)

where i, j are electron numbers,

Vij =
e2

|rij| , ∇Vij =
e2rij

|rij|3 , rij = ri − rj. (L.5)

In the case of two electrons, one of which has zero orbital momentum and
moves closely to the nucleus, we can put r1 = 0, r12 = r2. Then (L.5) takes
the form [20]

H′
so = −λ′(l2s1), (L.6)

with λ′ > 0 being proportional to Z3 rather than Z4 (as in (L.3)). The latter
fact results in that the interaction between spin and foreign orbit is more
important for light elements. As a rule, for 3d-electrons λ′ is smaller than λ
by two-three orders of magnitude, but, as we shall demonstrate below, the
corresponding interaction may play an important role because of its singular
k-dependence.

For a single electron, the “proper” SOI makes favourable the antiparallel
interactions of its spin and orbital momenta, but the interaction (L.6) orien-
tates its orbital momentum parallel to spin of other electrons. However, for
more than half-filled shell the sign of λ changes and the state with the total
momentum J = L + S has the lowest energy.
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Now we discuss SOI in periodic crystals. In the localized Heisenberg
model the treatment is close to that for isolated atoms. On the other hand,
for crystals containing 3d-elements the situation changes drastically. As dis-
cussed in Sect.1.3, the local crystal potential may quench orbital momenta
in the case of crystals with low symmetry only. At the same time, in real
d-systems with cubic or hexagonal local symmetry, which possess degener-
ate irreducible representations of the point group, the degeneracy is lifted
by the periodic potential in the band picture (Sect.4.8). Therefore the case
of quenched orbital momenta is of interest. Then only off-diagonal matrix
elements of SOI are non-zero and the perturbed wavefunctions read

Ψγ = Ψ(0)
γ +

∑

γ′ 6=γ

〈γ′|Hso|γ〉
Eγ − Eγ′

Ψ
(0)
γ′ (L.7)

with γ = {kmσ} are the states of magnetic d-electrons in the degenerate
d-band.

The wavefunctions (L.7) may be used to calculate corrections to various
physical quantities, owing to SOI. In particular, such corrections to ma-
trix elements of electrostatic interaction between conduction and localized
electrons will be anisotropic. It is these corrections which cause anomalous
transport phenomena in magnetic crystals. The role of the proper SOI and
the interaction (L.6) is different for different situations and concrete effects.
For halvanomagnetic effects in d-magnets one can consider two cases

(a) The mobility of d-electrons is large, so that they determine halvanova-
magnetic effects directly. Then the proper SOI for itinerant d-electrons plays
the dominant role.

(b) There exist two electron groups - conduction s-electrons with small
magnetization and “magnetic” d-electons with small mobility. Then, among
four possible types of SOI (s-s, d-d, s-d and d-s), the proper d-d interaction
and the s-d interaction of s-electron orbit with d-electron spin are most im-
portant. The s-s and d-s interactions yield small contributions because of
smallness of magnetization for s-electrons.

Finally, we derive the Hamiltonian of s-d model with account of SOI of
d-d and s-d type in the second quantization representation. We consider the
case of the strong crystal field which destroys total orbital magnetic momenta
of d-electrons. We have

H =
∑

kσ

tkc
†
kσckσ +

∑
γ

Eγa
†
γaγ
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+
∑

kσk′σ′
γ1γ2

[I(kσ, γ1,k
′σ′, γ2)− I(kσ, γ1, γ2,k

′σ′)

+ L(kσ, γ1,k
′σ′, γ2)− L(kσ, γ1, γ2,k

′σ′)] a†γ1
aγ2c

†
kσck′σ′ , (L.8)

where the Coulomb and exchange matrix elements

I(1, 2, 3, 4) =
∫

dxdx′ψ∗1(x)ψ∗2(x
′)

e2

|r− r′|ψ3(x)ψ4(x
′) (L.9)

(x = {r, s}) are to be calculated for the wavefunctions with account of SOI,
and the spin-orbital matrix elements are

L(1, 2, 3, 4) = − e2h̄

m2c2

∫
dxdx′ψ∗1(x)ψ∗2(x

′)
[r− r′,p]s′

|r− r′|3 ψ3(x)ψ4(x
′). (L.10)

In the representation γ = {kmσ} the diagonal matrix elements of Hso(dd)
vanish and the off-diagonal ones are obtained within perturbation theory
with the use of (L.7). Substituting (L.7) into the exchange part of (L.9) we
derive to linear approximation in Hso the correction

H(1)
sd = −λ

∑ 〈k1m1σ1|ls|k1m
′σ2〉

Ek1m1 − Ek′m′
1

×I(0)(kk1m
′
1,k2m2k

′)a†k1m1σ1
ak2m2σc

†
kσck′σ2 . (L.11)

The matrix elements in (L.11) are calculated, similar to Appendix K, with
the use of the plane-wave representation for conduction electrons. It is con-
venient to use the m-representation for d-electron functions (the functions,
corresponding to irrdeducible representations of a point group are expressed
as their linear combinations). This representation enables one to introduce
in a simple way spin operators for localized d-electrons:

a†mσamσ = (1 + σ2sz)ϕm(lz),

a†m±am∓ = s±ϕm(lz), (L.12)

where

ϕ0 = 1 +
1

4
(lz)2[(lz)2 − 5],

ϕ±1 =
1

6
lz(lz ± 1)[4− (lz)2],
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ϕ±2 =
1

24
lz(lz ± 1)[(lz)2 − 1], (L.13)

and the off-diagonal products a†mσam′σ are expressed in terms of operators
l±. Then we obtain for a cubic crystal

H(1)
sd =

λ

∆E

∑

ll′

∑

νkk′σ

Fll′(lν , sν)e
i(k−k′)Rνc†kσck′σ, (L.14)

where we have put for simplicity ∆Eγγ′(k) = ∆E = const. The expansion
term with l = l′ = 1 reads

H(1)
sd (11) = −i

λ

∆E

6

5
πe2

∑

νkk′σ

G
(1)
11 (k,k′)[kk′]sν〈ϕ(lν)〉

×ei(k−k′)Rνc†k′σckσ, (L.15)

(where the radial integral G is given by (K.5)) and describes anisotropic
scattering.

Now we calculate matrix elements of the “improper” SOI (L.10). Re-
placing for simplicity squares of wavefunctions of d-electrons by δ-functions
(which is possible since orbital momenta of d-electrons do not enter) we derive

L(kk′) = iλ
∑
ν

ei(k−k′)Rν
[kk′]

(k− k′)2
sν (L.16)

with λ′ ∼ 10−16 erg. The expression (L.16) does not yield a dependence on
orientation of localized spin in the crystal. However, such a dependence will
occur for more complicated d-wavefunctions.

Combining (L.15) with (L.16) we write down the correction to the Hamil-
tonian of the s-d model owing to SOI as

H′
sd =

∑

νkk′σ

ei(k−k′)Rν (sνΛkk′)c
†
kσck′σ, (L.17)

where

Λz
kk′ = iλl̄

I
(1)

kk′

∆E

[kk′]z
kk′

+ iλ′
[kk′]z

(k− k′)2
, (L.18)

l̄ =
2

9
〈(lz)2[4− (lz)2]

{
1

4
(lz)2[(lz)2 − 1] + 2(lz)2[4− (lz)2]

}
〉, (L.19)

I(1) is defined by (L.15). Although |λ′| ¿ |λ|, the role of the second term in
(L.17) may be important provided that small values of |k− k′| yield the dom-
inant contribution, as it takes place for extraordinary transport phenomena
at low temperatures.
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Appendix M

The density matrix technique
for derivation of transport
equations and the theory of the
anomalous Hall effect

Mathematical description of transport phenomena deals with an balance
equation for the distribution function of current carriers in external elec-
tric, magnetic and thermal fields (5.14). In simple cases such equations may
be obtained from a simple physical consideration of the electron motion in
the k-space due to external fields and collisions. However, in more com-
plicated situations, where higher orders in the scattering amplitude become
important, such simple arguments are not sufficient. Since often we do meet
with this situation for transport phenomena in magnetic crystals, construct-
ing a general method for derivation of transport equations is needed. Most
convenient is the approach which uses the density matrix. The equations of
motion for the latter quantity have usual quantum mechanics form and may
be simply reduced to transport equations.

Define the density matrix operator

ρ̂ = e−βH/Spe−βH, β ≡ 1/T (M.1)

where H is the total Hamiltonian of the system including current carriers,
scattering system and external fields. The coefficient in (M.1) is determined
by the normalization condition

Spρ̂ = 1
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The operator ρ̂, as well asH, may be written down in any quantum represen-
tation. In the solid state theory, it is convenient to use the second quantiza-
tion representation. Then the symbol Sp means the summation over all the
possible occupation numbers of quasiparticles in the system. For example,
in the case of electron-phonon system

Sp... =
∑

{nk}{Nq}
... (M.2)

where nk = 0, 1 are the electron occupation numbers and Nq are the phonon
ones.

Average value of a physical quantity A is obtained as

〈A〉 = Sp(ρ̂A) (M.3)

Calculate for example the average occupation numbers for non-interacting
conduction electrons. We find

〈nk〉 = 〈c†kck〉 =
∑

{nk′}
〈...nk... |

∏

k′
exp(−βεk′c

†
k′ck′)

×c†kck | ...nk...〉/
∑

{nk′}
〈...nk... |

∏

k′
exp(−βεk′c

†
k′ck′) | ...nk...〉

=
∑
nk

exp(−βεk)nk/
∑
nk

exp(−βεk) = (exp(βεk) + 1)−1

i.e. we derive the Fermi distribution function.
Provided that the Hamiltonian of the system is written in the form

H = H0 +H′

with H’ being a perturbation, the equilibrium density matrix ρ̂(H) may be
expanded in the powers of H’, which is required at calculating the field term
in the transport equation. To this end one may use the theorem about
expansion of exponential operators [706]:

〈n| exp(−β(H0 +H′))|n′〉 = δnn′ exp(−βE0
n)

−exp(−βE0
n)− exp(−βE0

n)

E0
n − E0

n′
〈n|H′|n′〉+

∑

n′′

〈n|H′|n′′〉〈n′′|H′|n′〉
E0

n′′ − E0
n′
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×
[
exp(−βE0

n′)− exp(−βE0
n)

E0
n − E0

n′
− exp(−βE0

n′′)− exp(−βE0
n)

E0
n − E0

n′′

]
(M.4)

where E0
n are the eigenvalues of H0. In the second quantization representa-

tion, the numbers n mean the occupation number sets, and summing over
them yields an expression of ρ̂(H) in terms of powers of H’ and ρ̂(H) = ρ̂0.
In an representation of the wavefunctions |l〉 we have

ρ̂ = ρ̂(0) + ρ̂(1) + ρ̂(2) + ...

ρ̂
(0)
ll′ = ρlδll′ , ρ̂

(1)
ll′ =

ρl − ρl′

εl − εl′
H′

ll′ (M.6a)

where

ρ̂
(2)
ll′ = γρlδll′ +

∑

l′′

H′
ll′′H′

l′′l′

εl − εl′

(
ρl − ρl′

εl − εl′
− ρl − ρl′′

εl − εl′′

)
(M.6b)

γ =
∑

ll′

|H′
ll′|2

εl − εl′

[
ρl − ρl′

εl − εl′
− ∂ρl

∂εl

]
(M.6c)

The equation of motion for the density matrix operator has the usual
form

∂ρ̂

∂t
= [H, ρ̂] (M.7)

In any representation |l〉, we may write down the system of equations for
diagonal and off-diagonal matrix elements. Under certain conditions this
system may be reduced to transport equations of the lowest Born and next-
order approximations. In this way, transport equations were obtained for
elastic scattering by impurities [458], and further for scattering by phonons
[460] and spin inhomogeneities [466]. The theory in the case of arbitrarily
strong scattering amplitude, but small impurity concentration was developed
by Luttinger [707]. However, for a complicated H0, calculations in the ma-
trix form are rather cumbersome even for impurity scatterng in the second
Born approximation. Therefore it is very convenient for practical calcula-
tions to derive transport equations in an operator form without concretizing
the Hamiltonian. Now we consider this technique constructed in [471,472].

The only requirement to the Hamiltonian is the possibility of the repre-
sentation

Ht = H0 +HEest +H′ (M.8)
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where H0 has a diagonal form in the n-representation, HE is the energy of
the system in the adiabatically included (s → 0) electric field E, H′ is an
off-diagonal part. The total density matrix operator is represented as

ρ̂t = ρ̂ + est(f̂a − f̂b) (M.9)

where ρ̂ is the equilibrium density matrix in the absence of electric field,
f̂a and f̂b are the diagonal and off-diagonal components of the correction.
Taking into account the relations

[H0, f̂a] = [H′, f̂a]a = [H0, f̂b]a

we obtain to linear approximation in E

sf̂a = [HE, ρ̂]a + [H′, f̂b]a (M.10)

f̂b = L̂−1
{
[HE, ρ̂]b + [H′, f̂a + f̂b]b

}
(M.11)

where

L̂−1 =
1

is−∆
, ∆f̂b = [H0, f̂b] (M.12)

∆ is the difference of the eigenvalues of H in the corresponding states. The
system (M.10), (M.11) may be solved by the iteration method. Substituting
(M.11) into (M.10) we derive

isf̂b = [HE, ρ̂]a + [H′, L̂−1
{
[HE, ρ̂]b + [H′, f̂a + f̂b]b

}
]a (M.13)

Repeating the procedure we have after the n-th iteration

isf̂a = [HE, ρ̂]a + [H′, L̂−1
{
[HE, ρ̂]b + [H′, f̂a]b

+ [H′, L̂−1
{
[HE, ρ̂]b + [H′, f̂a]b + [H′, L̂−1

{{
[HE, ρ̂]b + [H′, f̂a]b + ...

}

(M.14)

+ [H′, L̂−1
{
...

{
[HE, ρ̂]b + [H′, f̂a + f̂b]b

}
...

}}}
]a

where {...{ stands for n curly brackets. The iteration procedure allows one to
obtain the solution to any desired order in H′ provided that the expansion of
f̂a in H′ starts from a lower degree of H′ than that of f̂b. Then, to accuracy
of (H′)n+1, we may neglect the term [H′, f̂b] in (M.14) and solve for f̂a, and
further find f̂b from (M.10).
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Consider the first iteration. To lowest order in H′ we have

[HE, ρ̂(0)]b + [H′, L̂−1[H′, f̂a]b]a = 0 (M.15)

Taking into account the identity

L̂−1
nn′ + L̂−1

n′n = −
(

1

∆nn′
+

1

∆n′n

)
− iπ[δ(∆nn′) + δ(∆n′n)] (M.16)

multiplying by nλ = a†λaλ and summing over the occupation numbers we
obtain from (M.15)

C
(0)
λ + T

(0)
λ = 0 (M.17)

where
C

(0)
λ = Sp{[HE, ρ̂(0)]nλ} (M.18)

is the field term,
T

(0)
λ = Sp

{
[H′, L̂−1[H′, f̂a]b]anλ

}
(M.19)

= 2πiSp{H′f̂aH′ −H′H′f̂a}δ(∆)nλ

is the collision term (the δ-functions correspond to underlined operator H′).
One can see that f̂a = f̂ (−2) ∼ (H′)−2. Thus we obtain an usual Boltzmann-
type transport equation.

In the next order approximation with respect to H′ we have to take into
account terms with f̂ (−1) ∼ (H′)−1. One obtains

C
(1)
λ + C

′(1)
λ = T

(0)
λ (f (−1)) + T

(0)
λ (f (−2)) = 0 (M.20)

where
C

(1)
λ = Sp{[HE, ρ̂(1)]nλ} (M.21)

C
′(1)
λ = 2πiSp{[H′, ρ̂(0)HE −H′HE ρ̂(0)]nλδ(∆)} (M.22)

and, in the case of purely imaginary productH′H′H′ (e.g., for the spin-orbital
interaction),

T
(1)
λ = 6π2Sp{f̂aδ(∆)H′nλH′H′δ(∆)} (M.23)

We see that one of important advantages of the method is a simple formation
of δ-function terms.

To second order in H′

C
(2)
λ + C

′(2)
λ + C

′′(2)
λ + T

(0)
λ (f (0)) + T

(1)
λ (f (−)) + T

(2)
λ (f (−2)) = 0 (M.24)
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where
C

(2)
λ = Sp{[HE, ρ̂(2)]nλ} (M.25)

C
′(2)
λ = Sp{[H′, L̂−1[HE, ρ̂(1)]]nλ} (M.26)

C
′′(2)
λ = Sp{[H′, L̂−1[H′, L̂−1[HE, ρ̂(0)]]]nλ} (M.27)

T
(2)
λ = Sp{[H′, L̂−1[H′, f̂a]b[[H

′, n̂λ]L̂
−1,H′]bL̂−1} (M.28)

In the matrix form this result was derived by Kohn and Luttinger [478]. Fur-
ther we consider the transport equations for concrete scattering mechanisms.

M.1 Impurity scattering

The Hamiltonian of electron-impurity system is given by

H0 =
∑

l

εlc
†
l cl, HE = eE

∑

ll′
rll′c

†
l cl′ , H′ =

∑

ll′
Vll′c

†
l cl′ (M.29)

where l = {nk}, n is the band index

Vll′ =
ni∑

i=1

ei(k−k′)Riϕll′ (M.30)

ϕll′ =
∫

drei(k−k′)ru∗l (r)ul′(r)ϕ(r) (M.31)

ϕ(r) is the one-impurity potential, ni is the number of impurities, ul are the
Bloch factors in (2.1). Averaging over random distribution of the impurities
yields

〈|Vll′|2〉 = ni|ϕll′|2 (l 6= l′) (M.32)

The diagonal matrix elements of the impurity potential may be included into
and are not important at derivation of the transport equation. Consider the
lowest order equation (M.17). Substituting HE and H′ into (M.18), (M.19)
we obtain

C
(0)
l = eEα

∑

l′
(ρ

(0)
ll′ r

α
l′l − rα

ll′ρ
(0)
l′l ) = eE[ρ̂(0), r]l = ieE

∂nl

∂k
(M.33)

(hereafter we use the notation nl = ρ
(0)
l = f(εl) for the equilibrium Fermi

distribution function),

T
(0)
l = 2πi

∑

l′
|ϕll′|2(fl′ − fl)δ(εl′ − εl) (M.34)
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with
fl = Sp(f̂ac

†
l cl) (M.35)

The expressions (M.33), (M.34) yield the field and collision terms of the
transport equation for the elastic scattering by impurities in the Born ap-
proximation. The results in the two next approximation were obtained by
Luttinger [459]. The second Born approximation transport equation for im-
purity scattering reads (first-order corrections to the field term vanish)

T
(1)
l (f (−2)) + T

(0)
l (f (−1)) = 0 (M.36)

where
T

(1)
l = −2π

∑

l′l′′
δ(εl − εl′)[(L

(−1))ll′′〈Vll′′Vl′′l′Vl′l〉

+(L(−1))∗ll′′〈Vll′Vl′l′′Vl′′l〉(fl − fl′)] (M.37)

and T
(0)
l is given by (M.34).

Consider the case where the spin-orbital interaction is present. Picking
out in (M.37) the imaginary part, which is linear in SOI, and averaging over
impurities we obtain

T
(2)
l (f (−2)) = −(2π)2ni

∑

l′l′′
δ(εl − εl′)δ(εl − εl′′)(f

(−2)
l − f

(−2)
l′ ) Im(ϕll′ϕl′l′′ϕl′′l)

(M.38)
Assuming that the effective radius r0 of the potential ϕ(r) is small (kF r0 ¿ 1)
we may put

ϕkk′ ≈
∫

drϕ(r) = ϕ (M.39)

Then, using the effective mass approximation we obtain the solution to the
first Born approximation (only intraband transitions should be taken into
account due to the delta functions)

f
(−2)
l = −τ0eE

∂nl

∂εl

vl (M.40)

τ−1
0 =

ni

2π
ϕ2 (2m∗)3/2

h̄4 E
1/2
F (M.41)

To calculate corrections owing to SOI we have to expand the matrix elements
(M.31) in small |k− k′|:

Im(ϕll′ϕl′l′′ϕl′′l) =
i

2
ϕkk′ϕk′k′′ϕk′′k
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×(k′α − k′′α)(k′β − kβ)

(
∂J l

α

∂kβ

− ∂J l
β

∂kα

)
(M.42)

where

J l
α = Jnn

α (k), Jnn′
α =

∫
dru∗nk(r)

∂un′k(r)

∂kα

(M.43)

is proportional to SOI and purely imaginary.
Substituting (M.40), (M.42) into (M.38) we derive

iniϕ
3E2

F τ0(2m
∗)3

12πh̄7

∂nl

∂εl

eEαkβ

(
∂J l

α

∂kβ

− ∂J l
β

∂kα

)

+2πniϕ
2

∑

k

δ(εnk − εnk′)(f
(−1)
nk − f

(−1)
nk′ ) = 0 (M.44)

This equation has the structure of an usual Born equation with modified field
term. Its solution has the form

f
(−1)
l = − iEF

3niϕ

∂nl

∂εl

eEαkβ

(
∂J l

α

∂kβ

− ∂J l
β

∂kα

)
(M.45)

Now we estimate the quantities J . To first order of perturbation theory in
SOI we obtain

unk = u
(0)
nk +

∑

n′ 6=n

〈n′|HS0|n〉
εnk − εnk′

un′k (M.46)

J l
α = −2i

∑

n′ 6=n

rα
nn′〈n′|HS0|n〉
εnk − εnk′

(M.47)

where matrix elements of coordinate are connected with those of quasimo-
mentum

rα
nn′(k) =

−iPα
nn′(k)

m∗(εnk − εnk′)
(M.48)

Putting for simplicity εnk−εn′k = ∆ = const and substituting the expression
for Hso we derive

J l
α =

1

m∗∆2

∑

n′ 6=n

((HS0)nn′ P
α
n′n − Pα

nn′ (HS0)n′n)

=
h̄

m∗∆2
[Hso,p

α]n′n (M.49)
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Using the Poisson equation

∆V (r) = −4πe2ρ(r) (M.50)

(ρ(r) is the charge density) and (L.1) we obtain

J l
α = −i

2πh̄4e2ρeff

3m2c2m∗∆2M(0)
[kM]α (M.51)

where M is the magnetization,

ρeff =
∫

dr|unk(r)|2ρ(r) (M.52)

Substituting (M.51) into (M.45) we find the Hall conductivity

σyx =
evy

a3
0Ex

=
e

a3
0Ex

∑

l

vl
yf

(−1)
l (M.53)

= t
e2n

m∗
2π

3∆2
µ2

Bh̄ρeff
M

M(0)

EF

3niϕ

where t is the number of bands, n = k3
F /6π2 is the electron concentration.

Taking into account the expression for the diagonal component of the con-
ductivity tensor

σxx =
evx

a3
0Ex

=
e

a3
0Ex

∑

l

vl
xf

(−2)
l

= −τ0e
2

∑

l

(vl)
2∂nl

∂εl

= t
e2nτ0

m∗ (M.54)

we obtain for the Hall coefficient the result (5.124).

M.2 Scattering by phonons

In the case of electron-phonon interaction we have

H0 =
∑

l

εlc
†
l cl +

∑
q

ωqb
†
qbq (M.55)

H′ =
∑

ll′q
(Qll′qc

†
l cl′bq + Q∗

ll′qc
†
l′clb

†
q) (M.56)
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where

Qll′q =
2

3
i(2Mωq)

−1/2qCnn′δk−k′,q

ωq is the phonon frequency, b†q and bq are the Bose creation and annihilation
operators for phonons, C is the Bloch constant in the conductivity theory [1].
Inclusion of the second term in H0 takes into account the inelastic character
of electron-phonon scattering.

Consider the lowest-order approximation (M.17). Then the field term is
determined by (M.33), and the collision term is calculated from (M.19):

T
(0)
l = 2πi

∑

l′q
|Qll′q|2 {[(fl′ − fl)Nq − fl(1− nl′) + fl′nl′ ]δ(εl′ − εl + ωq)

+ [(fl′ − fl)(1 + Nq) + fl(1− nl′) + fl′nl′ ]δ(εl′ − εl − ωq} (M.57)

Here we have carried out decouplings of many-particle density matrices, so
that Nq and nnk are the equilibrium Bose and Fermi functions.

The lowest-order contribution to AHE owing to the phonon scattering
is described by the equation of the second order in H’. The corresponding
corrections to the distribution function, which are linear in SOI, occur both
from field and collision terms. To simplify the consideration, we follow to
paper [460] and do not take into account all such corrections, but restrict
ourselves to the equation

C
′(2)
l + T

(0)
l (f (0)) = 0 (M.58)

(see (M.24)) and neglect C(2), C ′′(2) and T (2). The contributions neglected
apparently do not influence qualitative results.

To calculate C
′(2)
l we have to expand equilibrium distribution functions

up to the first order in the scattering amplitude. Performing the decoupling
of many-particle averages with the use of the theorem about expansion of
exponential operators (M.6) we obtain

∑

l′q
|Qll′q|2[δ(εl′ − εl + ωq)ϕ

(0)
ll′q − δ(εl′ − εl − ωq)ϕ

(0)
ll′q]

+eE
∑

l′q
|Qll′q|2βnl′(1− nl)(rl′ − rl)[δ(εl′ − εl + ωq)Nq

+δ(εl′ − εl − ωq)(1 + Nq)] = 0 (M.59)
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where
ϕ

(i)
ll′q = Nq(nl′ − nl) + f

(i)
l (1− nl′) + f

(i)
l′ (M.60)

For high temperatures T À ωq we have

βnl′(1− nl′) = −∂nl

∂εl

so that the solution, which is linear in SOI, has the form

f
(0)
l = ieEαJ l

α

∂nl

∂εl

(M.61)

where the quantity J (see (M.43)) is determined by the diagonal part of the
coordinate, which is due to SOI [459]:

rα
ll′ = iδll′

∂

∂kα

+ iJnn′
α (k)δkk′ (M.62)

The off-diagonal part of f (0) is obtained from the equation (M.11):

f
(0)
l′l =

1

∆l′l



eEα[ρ̂(0), rα]l′l −

∑

l′′q


Ql′l′′qQll′′q

ϕ
(−2)
l′′lq

∆+
l′′lq

−Q∗
l′′l′qQl′′lq

ϕ
(−2)
ll′′q

∆−
l′′lq

− Qll′′qQ
∗
l′′l′q

ϕ
(−2)
l′l′′q

∆+
l′l′′q

+ Qll′′qQl′l′′q
ϕ

(−2)
ll′′q

∆−
l′l′′q






 (M.63)

where

∆l′l = εl − εl′ − is, ∆±
l′lq = εl − εl′ ± ωq − is, s → 0

Using (M.61) and (M.63) we can calculate average velocity of current carriers
to zeroth order in Q:

v =
∑

l

f
(0)
l vl +

∑

l′ 6=l

f
(0)
l′l vll′ ≡ va+vb (M.64)

vl =
∂εl

∂k
, vll′

α = −(εl − εl′)J
nn′
α δkk′ (M.65)

Taking into account (M.62) and the relation

∑

n′

(
Jnn′

β Jn′n
α − Jnn′

α Jn′n
β

)
=

∂J l
β

∂kα

− ∂J l
α

∂kβ

(M.66)
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we obtain

va = ieEα
∑

l

∂nl

∂εl

vlJ l
α (M.67)

vbβ = ieEα
∑

l

nl

(
∂J l

β

∂kα

− ∂J l
α

∂kβ

)
(M.68)

where we have neglected interband transitions. Integrating (M.68) by parts
and combining with (M.67) we get the final expression for the average velocity

vα = ieE
∑

l

∂nl

∂εl

vlJ l
α (M.69)

Substituting the expression (M.51) into (M.69) we obtain

σph
yx = −2π

3

e4h̄4

m∗(mc∆)2

M z

M(0)
ρeff

∑

l

∂nl

∂εl

vl
xkx (M.70)

Integrating over k and averaging over subbands yields, similar to (M.53)

σph
yx =

2π

3

e4nh̄4

(mc∆)2
tρeff〈 1

m∗ 〉
M z

M(0)
(M.71)

Then the spontaneous Hall coefficient reads

Rph
S = − σyx

4πM z
ρ2 = −2

3

µ2
Be2nh̄

∆2
ρeff t〈 1

m∗ 〉
ρ2

M(0)
(M.72)

M.3 Scattering by spin inhomogeneities

We describe the interaction of conduction electrons with magnetic moments
within the s-d exchange model with inclusion of spin-orbital interaction
(L.17). In the case of high temperatures we include into H the interaction
of electrons with the mean field:

Hd = −WM

∑

i

Sz
i , WM = 2J0〈Sz〉 (M.73)

In the lowest Born approximation we derive

−eEα ∂nl±
∂kα

= 2π
∑

l′

{
|Ill′ ± Λz

ll′|2(f (−2)
l′± − f

(−2)
l± )Kzzδ(εl± − εl′±)+
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+|Ill′|2(Φ(−2)
l±,l′±K±∓ − Φ

(−2)
l′±l±K∓±)δ(εl± − εl′± ±WM)+

Λ+
l′lΛ

−
l′l

[
(Φ

(−2)
l±,l′±K+− − Φ

(−2)
l′±l±K−+)δ(εl± − εl′± + WM)

+ (Φ
(−2)
l±,l′±K−+ − Φ

(−2)
l′±l±K+−)δ(εl± − εl′± −WM)

]}
(M.74)

where
Φ

(i)
λ′λ = f

(i)
λ (1− nλ′)− f

(i)
λ′ nλ (M.75)

εl± = εl ± Ill〈Sz〉
and we have introduced the on-site averages

Kzz = 〈(Sz)2〉−〈Sz〉2, K±∓ = 〈S±S∓〉 = 〈(S±Sz)(S∓Sz +1)〉 (M.76)

neglecting intersite spin correlators in spirit of mean-field approximation.
The equation (M.74) was first derived in [466] by the matrix method. Omit-
ting spin-orbital terms we obtain in the one-band approximation (l = k) for
Ikk′ = const the result by Kasuya [422]

−eEα ∂nk±
∂kα

= 2πI2
∑

k′
[(fk′± − fk±)Kzzδ(εk± − εk′±) (M.77)

+(Φ
(−2)

k±,k′∓K±∓ − Φ
(−2)
k′±,k±K∓±)δ(εk± − εk′± ±WM)]

The trial solution to the equation (M.77) has the standard form

f
(−2)
k± = −eEατ±0 (εk±)

∂nk±
∂εk±

vx (M.78)

On substituting (M.78) into (M.77) and performing integration over angles
we derive

τ±0 (ε) =
2π

v0

h̄4

I2ε
(2m∗)−3/2ϕ±

(
ε

T
,
WM

T

)
(M.79)

where

ϕ±(ε, η) =

[
Kzz + K∓± 1 + e−ε

1 + e−ε±η

]
(M.80)

In particular,

ϕ+(0, η) = ϕ−(0, η) ≡ ϕ(η) = [Kzz + 2K−+(1 + eη)]−1 (M.81)

since
K+− = eWM/T K−+
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For S = 1/2 one has

[ϕ(η)]−1 = 3
(

1

4
− 〈Sz〉2

)
(M.82)

Now we may introduce the transport relaxation time

τ0 = − 1

3π

h̄

I2

∫
dε

∂f(ε)

∂ε
(ϕ− + ϕ+) ' 2

3π

h̄

I2
EF ϕ

(
WM

T

)
(M.83)

Then the magnetic resistivity reads

ρmag =

(
e2nτ0

m∗

)−1

=
3π

2

m∗

e2n

I2

h̄EF

[
ϕ

(
WM

T

)]−1

(M.84)

Now we consider the case of low temperatures T ¿ Tc where one can use
the spin-wave approximation. Using the Holstein-Primakoff representation
for spin operators we derive

H′ = −(2S)1/2I
∑

kq

(c†k+q↑ck↓bq + c†k↓ck+q↑b†q) (M.85)

−I
∑

kpqσ

σ(I + σΛz
k,k+q−p)c†kσck+q−pσb

†
qbp

The lowest-order collision term is calculated similar to case of electron-
phonon interaction. We have

T
(0)
k± = 2πI2S

∑
q

Nq

[
f(±εk±) exp(βωq)

f(±εk± − ωq)
fk+q± − f(±εk± − ωq)

f(±εk±)
fk+q±

]

×δ(εk+q∓ − εk± ± ωq) (M.86)

The solution to the corresponding transport equation (M.17) which describes
scattering by spin waves has the form

fkσ =
1

T

∂nkσ

∂εkσ

χασ(εkσ)kα (M.87)

χασ(ε) = Cασ + ψασ(ε)

The energy dependence of χ(ε) is needeed to satisfy the integral equation.
However, it turns out that, as well as in the case of phonon scattering [1], this
dependence results in temperature corrections to resistivity of higher orders
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only; however, it is important at considering the anomalous Hall effect. Sub-
stituting (M.87) into the transport equation yields for the isotropic electron
spectrum

−eEx ∂nk

∂εk

= 2I2S
ka0

4π

(
∂εk

∂k

)−1
T

TC

∫ ∞

δ
dxNB(Tx)f(±εk)f(±εk − Tx)

(M.88)

×e±βεk{χx±(εk ∓ Tx)(1− αx)− χx±(εk)}
where we have neglected the small spin splitting,

δ =
T

T0

, T0 ∼
(

I

EF

)2

Tc(kF a0) → 0, α =
T

2Tc

(ka0)
−2

Integrating (M.88) over ε we evaluate the constant C

Cx = −eEx 4πka0

I2Sγ

(
∂εk

∂k

)2 (
Tc

T

)2

(M.89)

with

γ =
∫ ∞

−∞
dyγ(y), γ(y) =

∫ ∞

δ
dxNB(Tx)f(Ty)f(T (x + y))ey

Then the equation for ψ takes the form

∫ ∞

0
dxNB(Tx)f(ε)f(ε− Tx)eβε[ψx(ε− Tx)− ψx(ε)]

= − 2πeEx

I2Ska0

(
∂εk

∂k

)2
Tc

T

∂f(ε)

∂ε
(M.90)

One can see that ψx ∼ Tc/T , so that the contribution of the function ψ to
resistivity is proportional to (T/Tc)

3 and may be neglected. Integrating over
k we derive for the conductivity

σxx =
4

3πγ

e2n

I2Sm∗
a0

vF

(kF a0)
3

(
k

∂εk

∂k

)

kF

(
Tc

T

)2

(M.91)

which agrees with the result (5.62).
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The next-order approximation transport equation is important for con-
sideration of the contribution to the anomalous Hall effect in ferromagnets
owing to magnetic scattering. At high temperatures we obtain [466]

∑

l′
|Ill′ |2Kzz(f

(−1)
l± − fl′±)δ(εl± − εl′±) (M.92)

+(K±∓Φ(−1)
l±,l′±

−K∓±Φ
(−1)

l′±,l±)δ(εl± − εl′± ±WM)

2πi
∑

l′
W (1)

l± Λz
ll′(f

(−2)
l± − f

(−2)
l′± )δ(εl± − εl′±) = 0

where f (−2) is the solution to the equation (M.74),

W
(1)
l± =

∑

l′′
|Ill′′|2

{
〈(Sz − 〈Sz〉)3〉δ(εl± − εl′′±) (M.93)

+
[
〈(Sz − 〈Sz〉)S±S∓〉 ± (2Kzz −K±∓)nl′′∓ ±K∓±nl±

+ 2〈Sz〉nl′′∓nl±] δ(εl± − εl′′± ±WM)}
In the one-band approximation, on substituting into (M.92) the solution to
the lowest-order transport equation (M.78) and the matrix elements of SOI
(L.18) we obtain

−eEx ∂nk±
∂εk±

vyW
(1)
± τ±0 (εk±)

a3
0km∗

4πh̄3

(
64

35
l
I(1)

∆E
λ +

1

2
λ′

)

+I2
∑

k

[
Kzz(f

(−1)
k± − f

(−1)
k′± )δ(εk± − εk′±)

+ (K±∓Φ
(−1)
k±,k′± −K∓±Φ

(−1)
k′±,k±)δ(εk± − εk′±)

]
= 0 (M.94)

The solution to (M.94) is searched as

f
(−1)
kσ = −eExτσ(εkσ)

∂nkσ

∂εkσ

vy (M.95)

Then we derive

τσ(εkσ) =
m∗k

2h̄
a3

0λeffW
(1)
σ [τσ

0 (εk)]
2 (M.96)

with

λeff =
32

35

I(1)

∆E
lλ + λ′ (M.97)
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Now we can calculate the Hall current

jy = 2e
∑

kσ

f
(−1)
kσ vy

The result for the Hall coefficient reads

Rmag
S =

9π

32

(
I

EF

)2 m∗λeff

e2nh̄

S

M(0)
{Kzz + (4〈Sz〉)−1[2Kzz (M.98)

−1

2
(K+− + K−+) + 〈Sz〉 coth

βWM

2
]
sinh βWM − βWM

cosh βWM − 1
}

In particular, using the equation for magnetization (4.14) we obtain for S =
1/2

Rmag
S =

9π

64

(
I

EF

)2 m∗λeff

e2nh̄

1/4− 〈Sz〉2
M(0)

×
(

1 + coth
βWM

2

sinh βWM − βWM

cosh βWM − 1

)
(M.99)

At neglecting the weak temperature dependence of the function in the square
brackets the result (M.99) may be represented in the form (5.130).

The transport equation of the next Born approximation with account of
linear corrections in the spin-orbital interaction, which describes electron-
magnon scattering at low temperatures, has the form

T
(0)
λ (f (−1)) + T

(1)
λ (f (−2)) = 0 (M.100)

where the field term C(1) is zero (as well as for impurity scattering), T (0) is
given by (M.86), the solution to the lowest Born equation is given by (M.87).
To calculate T we write down for (M.85)

H′ = H′′ +H′′′

where H′′ contains the exchange terms and H′′′the spin-orbital ones. Using
(M.23) and the properties

H′′
n1n2

= H, H′′′
n1n2

= −H′′′
n2n1

(M.101)

calculating the commutators and performing the decouplings, which are valid
to the order under consideration, we obtain

T
(1)
k± = 3πI2S

∑
pq

NqNp

{
Λz

k,k+q−pδ(εk−p∓ − εk± ± ωq)δ(εk−p∓ − εk± ∓ ωq ± ωp)
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[
f(±εk±)f(±εk± + ωq − ωp)

[f(±εk± − ωp)]2
eβ(ωq+ωp)fk−p∓ − f(±εk±)eβωp

f(±εk± + ωq − ωp)
fk+q−p∓

]

+Λz
k−q,k−pδ(εk−p∓ − εk± ± ωp)δ(εk−q∓ − εk± ± ωp)

f(±εk± − ωq)

f(±εk± − ωp)
eβωpfk−p∓

}

(M.102)
An interesting feature of the equation (M.100) should be noted. Substituting
f (2) ∼ Cx = const into (M.102) yields zero after integration over ε in the
lowest order in q/k, and higher orders terms in q result in higher powers of
T/Tc. Therefore one has to take into account the energy dependence of the
function (M.87). Then the solution of (M.100) yields [472]

f
(−1)
kσ =

3a0

16π

(
∂εkσ

∂k

)−1
T

Tc

[
4.4λl

I(1)

∆E

T

TC

− 0.24λ′ − v(∓ε)

]
∂nkσ

∂εkσ

ky

(M.103)
with

v(ε) = λl
I(1)

∆E

∫ ∞

δ
dωNB(ω)ωeβω f(ε + ω)

f(ε)
− λ′ ln

(
1 + eβω

)

Calculating σyx with the use of (M.103) and using the expression for the
diagonal conductivity (M.91) we find the expression for the Hall coefficient

Rmag
S = − 3π

512

2h̄I2S

e2kF M(0)

(
k

dεk

dk

)−3

kF

(M.104)

×
[
1.1λl

I(1)

∆E

(
T

Tc

)4

+ 0.8λ′
(

T

Tc

)3
]

where the largest T 3-term occurs due to the energy dependence of ψ(ε).



Appendix N

Degenerate Anderson model

The periodic Anderson model describes the situation where highly corre-
lated d(f)-electrons do not participate directly in the band motion, but are
hybridized with the conduction band states. Such a situation takes place in
a number of rare-earth and actinide compounds (Chapter 6). The hybridiza-
tion (many-configuration) picture is sometimes useful also for discussing some
properties of transition d-metals and other d-electron systems. For example,
strong p-d hybridization takes place in copper-oxide high-Tc superconduc-
tors (Sect.6.7). At neglecting spin-orbit coupling, which is appropriate for
transition metals and their compounds, we write down the Anderson-lattice
Hamiltonian in the form

H = H0 +
∑

kσ

tkc
†
kσckσ +

∑

klmσ

(
Vklmc†kσaklmσ + h.c.

)
(N.1)

where H0 is the Hamiltonian of intrasite interaction between d-electrons. A
symmetry analysis of hybridization mixing in various situations is performed
in the reviews [708,565]. To simplify the model consideration, we describe
the states of conduction electrons by plane waves. Using the expansion in
spherical harmonics (C.28) we obtain for the matrix element of hybridization

Vklm = ilY ∗
lm(k̂)vl(k) (N.2)

where
vl(k) = 4π

∫
r2drRl(r)v(r)jl(kr) (N.3)

and v(r) is a spherically symmetric potential of a given site. In the limit of
jj-coupling (actinide compounds) one has to replace in (N.1) lmσ → jµ with
j = l ± 1/2 being the total electron momentum and m its projection.
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In the case of strong correlations for d-electrons it is convenient to pass to
the representation of the Hubbard operators which reduces H0 to the diagonal
form (H.2). Retaining two lowest terms Γn = {SL}, Γn−1 = {S ′L′} for the
configurations dn and dn−1 and defining new conduction electron operators

d†klmσ =
∑

µµ′MM ′
Csµ

sµ′,σ/2C
LM
L′M ′,lmXk(SLµM, S ′L′µ′M ′) (N.4)

c†klmσ = ilY ∗
lm(k̂)c†kσ

we present the Hamiltonian (N.1) in the form

H = H0 +
∑

kσ

{
tkc

†
kσckσ + ṽl(k)

(
c†klmσdklmσ + h.c.

)}
(N.5)

where

H0 = ∆
∑

klmσ

d†klmσdklmσ + const (N.6)

∆ = ESL − ES′L′ − ς

(we have passed to the grand canonical ensemble by introducing the chemical
potential ς), effective hybridization parameters are given by

ṽl(k) = n1/2GSnLn
Sn−1Ln−1

vl(k) (N.7)

Now we discuss rare-earth systems. Because of strong Coulomb interac-
tion between 4f-electrons, formation of the f-bands, containing 14 electron
states, is non-realistic. Thus one has to use the model with two configurations
fn and s(d)fn−1, which corresponds to delocalization of only one f-electron
per atom. In the Russel-Saunders scheme we may confine ourselves to two
lower multiplets of the 4f-ion, Γn = SLJ and Γn−1 = S ′L′J ′. Passing in
(N.1), (A.31) to the J-representation with the use of (B.5) and summing the
product of Clebsh-Gordan coefficients

∑

µµ′MM ′
CJMJ

Sµ,LMC
J ′M

′
J

S′µ′,L′M ′CLM
L′M ′,lmCSµ

S′µ′,σ/2 (N.8)

=
∑

jµ





S L J
S ′ L′ J ′

1/2 l j





([j][j′][L])
1/2

Cjµ
σ/2,lmCJMJ

J ′M ′
J ,jµ
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we derive the Hamiltonian, which is formally similar to that in the case of
jj-coupling,

H =
∑

kjµ

[
∆f †kjµfkjµ + tkc

†
kjµckjµ + ṽj(k)

(
c†kjµfkjµ + h.c.

)]
(N.9)

where we have introduced new electron operators

f †kjµ =
∑

MJMJ′
CJMJ

J ′M ′
J ,jµ

Xk(SLJMJ , S ′L′J ′M ′
J), (N.10)

c†kjµ = il
∑
mσ

Cjµ
σ/2,lmY ∗

lm(k̂)c†kσ

and the effective hybridization parameters are expressed in terms of a 9j-
symbol

ṽj(k) =





S L J
S ′ L′ J ′

1/2 l j





([j][j′][L])
1/2

GSL
S′L′vl(k) (N.11)

Thus hybridization effects in ME systems depend strongly on ME quantum
numbers S, L, J and, consequently, on the atomic number [709]. Such a
dependence in the rare-earth element series is similar to de Gennes correlation
for the s− f exchange parameter and paramagnetic Curie temperature. Its
experimental investigation, e.g., in spectroscopic data, is of great interest.

In the case where |∆| is large in comparison with the width of the d(f)
level we may exclude the hybridization term from the Hamiltonians (N.5),
(N.9) by a canonical transformation to obtain, respectively,

H = − 1

∆

∑
vl(k)vl(k

′)CLM
L′M ′,lmCSµ

S′µ′,σ/2C
LM ′′
L′M ′′′,lm′C

Sµ′′
S′µ′′′,σ′/2 (N.12a)

[Xk−k′ (SLµ′′M ′′, SLµM) δµ′µ′′′δM ′M

+Xk−k′ (S
′L′µ′M ′, S ′L′µ′′′M ′′′) δµµ′′δMM ′′ ] c†klmσck′lm′σ′

H = − 1

∆

∑
vj(k)vj′(k

′)CJM
J ′M ′,jµC

JM ′′
J ′M ′′′,j′µ′ (N.12b)

× [Xk−k′ (JM ′′, JM) δM ′M ′′ + Xk−k′ (J
′M ′, J ′M ′′′) δMM ′′ ] c†kjµck′j′µ′

For ∆ < 0 (∆ > 0) the filling of the level is n (n − 1) and only the first
(second) term in the brackets of (N.12) should be retained.
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The expressions (N.12) describe the exchange interaction of conduction
electrons with d(f)-electrons. It should be noted that in the case under con-
sideration the interaction is higly anisotropic because of spherical harmonics
which enter (N.4), (N.10). This should result in a strong anisotropy of indi-
rect RKKY-type f − f interaction which is obtained in the second order in
the s-f exchange. Such an anisotropy is observed in a number of rare-earth
and actinide compounds. Using the identity

∑

M ′
CLM

L′M ′,lmCLM ′′
L′M ′,lm′ =

∑
pq

(−1)p−q[p]

(
[L]

[l]

)1/2 {
l l p
L L′ L′

}
CLM ′′

LM,pqC
lm
lm′,p−q

(N.13)
the Hamiltonians (N.12) may be decomposed into sum of terms which cor-
respond to interaction of conduction electrons with different multipole com-
ponents of orbital and spin (or total momentum) degrees of freedom.

As well as in the usual s − f exchange model [552], perturbation the-
ory expansion in the models (N.12) yields logarithmic corrections to various
physical quantities which indicates reconstruction of the system state at low
temperatures. In particular, such a correction to electron self-energy and re-
sistivity occurs in the third order in I. Unfortunately, the complicated tensor
structure of the Hamiltonians (N.12) prevents the calculation of the unique
energy scale for the infrared divergences (the Kondo temperature). However,
such a calculation may be performed in the case where the energy of the d(f)
level ∆ does not depend on the many-electron term and is determined by the
number of electrons only (see Sect.6.2).

Consider the anticommutator retarded Green’s function of localized d-
electrons (H.3) in the non-magnetic phase of the model (N.1). The simplest
decoupling yields

Gklm(E) =

[
Φ(E)− |Vklm|2

E − tk

]−1

(N.14)

where the function Φ is defined by (H.5). The corresponding energy spec-
trum contains a system of subbands, separated by hybridization gaps (or
pseudogaps, provided that V (k) vanishes for some k) which are surrounded
by density-of-states peaks. In the model with strong correlations (N.7), we
have

E1,2
k =

1

2
(tk + ∆)±

[
1

4
(tk −∆)2 + |Ṽklm|2

]
(N.15)
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with

Ṽklm = ilY ∗
lm(k̂)ṽl(k)

{
[S][L]

2[l]
(NSL + NS′L′)

}1/2

(N.16)

One can see that the width of hybridization gap depends appreciably on the
many-electron occupation numbers (in particular, on the position of d-level).
The approximation (N.14) does not take into account spin-flip processes,
which result in the Kondo effect and can change substantially the structure
of electron spectrum near the Fermi level. To take into account the Kondo
anomalies, we perform a more accurate calculation of the Green’s function.
For brevity we consider the model (N.9); in the model (N.5)

[J ] → [S][L], ṽj → ṽl

It is convenient to use the operators, which are averaged over angles of
the vector k:

f †kjm =
∫

dk̂f †kjm, c†kjm =
∫

dk̂c†kjm (N.17)

Following to the consideration of the SU(N) Anderson model in Sect.6.4, we
write down the equation of motion

(E −∆)〈〈fkjm|f †kjm〉〉E = Rj

(
1 + ṽj(k)〈〈ckjm|f †kjm〉〉E

)
(N.18)

+
∑

j′m′µMq

ṽj′(q)C
Jµ
J ′M ′,,jm〈〈

[∑

M ′
CJµ

J ′M ′,jm′Xk−q (J ′M,J ′M ′)

+
∑

µ′
CJµ′

J ′M,j′m′Xk−q(Jµ′, Jµ)


 cqj′m′|f †kjm〉〉

where we have carried out a decoupling for the term, which describes the
processes without changing m,

Rj =
1

[j]

{
[J ]

[J ′]
−

(
[J ]

[J ′]
− 1

) ∑

M

〈X (JM, JM)〉
}

(N.19)

Further we neglect for simplicity the above-discussed influence of hybridiza-
tion gap, which is possible provided that the latter lies far below the Fermi
level (note that the corresponding contributions are formally small in the in-
verse degeneracy of f-level, 1/N). Carrying out decouplings in the equations
for the Green’s function in the right-hand side of (N.18) we obtain

(E − tq)〈〈Xk−q (Jµ′, Jµ) cqj′m′|f †kjm〉〉E (N.20)
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= ṽj′(q)nq

∑

M ′
CJµ′

J ′M ′′,,j′m′〈〈Xk−q (J ′M,Jµ′′) |f †kjm〉〉E,

(E − tq)〈〈Xk−q (J ′M,J ′M ′) cqj′m′ |f †kjm〉〉E
= −ṽj′(q)nq

∑

µ′′
CJµ′′

J ′M ′,,j′m′〈〈Xk−q (J ′M,Jµ′′) |f †kjm〉〉E

with nk = 〈c†kjmckjm〉 = f(tk) being the Fermi distribution functions. Substi-
tuting (N.20) into (N.19), averaging over angles and using the orthogonality
relations for the Clebsh-Gordan coefficients, we find

〈〈fkjm|f †kjm〉〉E = RJ [E −∆− Σf (E)]−1 (N.21)

Σf (E) = 2ρ
∑

j

ṽ2
j (kF )

J − J ′

[J ′]
ln

∣∣∣∣
W

E

∣∣∣∣ (N.22)

where we have used the approximation (6.5). At J > J ′ the Green’s function
(N.21) has the pole

|∆∗| = TK ≈ W exp




−

(
[J ]

[J ′]
− 1

)−1

|∆|

ρ

∑

j

ṽ2
j (kF )



−1





(N.23)

The usual Kondo effect corresponds to the total compensation of magnetic
moment (J ′ = 0). At J ′ > J the pole (N.23) is absent (the strong coupling
regime does not occur) since the model under consideration is mapped by
a canonical transformation into a Coqblin-Schrieffer model with a positive
exchange parameter. An analogue of the result (N.23) for d-impurities has
the form

TK = W exp



−

(
[S][L]

[S ′][L′]
− 1

)−1 |∆|
ρṽ2

j (kF )



 (N.24)

Note that the formula (N.24) satifies the condition of the particle-hole sym-
metry (n → n′ = 2[l]+1−n, ∆ → −∆) owing to the relation for the fractional
parentage coefficients

{
GSL

S′L′(n
′, n′ − 1)

}2
=

n[S ′][L′]
n′[S][L]

{
GS′L′

SL (n, n− 1)
}2

(N.25)

At neglecting the dependence ∆(LS), all the ME terms of configurations
dn and dn−1 contribute equally to spin-flip processes, and, consequently, to
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the Kondo temperature. Then the coefficients G which enter (N.7) may be
summed up in the equations of motion with the use of orthogonality relations
(A.8), (A.9) to obtain for the Kondo temperature

TK ≈ W exp
[
− (2[l] + 1− 2n)−1 (|I|ρ)−1

]
, I =

ṽ2
l (kF )

∆
(N.26)

Note that the expression (N.26) may be represented in the the form, which
is similar to (N.24),

TK ≈ W exp


−

(
2[l] + 1− 2n

n
− 1

)−1
1

n|I|ρ


 (N.27)

with the factor (2[l]+1−n)/n being again the ratio of statistical weights for
the configurations dn and dn−1:

2[l] + 1− n

n
=

(2[l])!

n!(2[l]− n)!
/

(2[l])!

(n− 1)!(2[l]− n + 1)!

The result (N.26) differs from the result of high-temperature perturbation
theory (6.22) by an unity in the denominator of the exponential only. Such
a difference is typical for the calculation of the Kondo temperature in the
degenerate Anderson model [565,574] and is explained by that this approach
is justified, strictly speaking, only in the large-N limit.
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Appendix O

Mean-field approximation for
the ground state of magnetic
Kondo lattices

To construct the mean-field approximation describing the ground state of
Kondo lattices we use the Abrikosov pseudofermion representation for local-
ized spins S = 1/2 (which coincides with the Dirac representation (B.1))

Si =
1

2

∑

σσ′
f †iσσσσ′fiσ′ (O.1)

with the subsidiary condition

f †i↑fi↑ + f †i↓fi↓ = 1

Making the saddle-point approximation for the path integral describing
the spin-fermion interacting system [711] one can reduce the Hamiltonian of
the s− f exchange interaction to the effective hybridization model:

−I
∑

σσ′
c†iσciσ

(
σσσ′Si − 1

2
δσσ′

)
→ f †i Vici + c†iV

†
i fi − 1

2I
Sp(ViV

†
i ) (O.2)

where the vector notations are used

f †i = (f †i↑, f
†
i↓), c†i = (c†i↑, c

†
i↓)

V is the effective hybridization matrix which is determined from a minimum
of the free energy. Coleman and Andrei [711] considered the formation of a
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spin-liquid state in the two-dimensional situation. Here we treat the more
simple case of ferromagnetic ordering following to [608]. The Heisenberg
Hamiltonian of the f -subsystem Hf is considered in the mean-field approxi-
mation. For a ferromagnet we have (S = 〈Sz〉)

Hf = −J0S
∑

iσ

σf †iσfiσ, Vσσ′ = Vσδσσ′ (O.3)

and the Hamiltonian of the s− f model takes the form

H − ζn =
∑

kσ

[(tk − ζ)c†kσckσ + wσf
†
kσfkσ (O.4)

+Vσ(c†kσfkσ + f †kσckσ) + const

where
wσ = w − σJ0S,

w being the energy of “f -level”. The equations for w, the chemical potential
ζ and S read

n†σ ≡
∑

k

〈f †kσfkσ〉 =
1

2
+ σS (O.5)

n =
∑

k

〈c†kσckσ〉 (O.6)

One can see that −w plays the role of the chemical potential for pseud-
ofermions (note that the numbers of electrons and pseudofermions are con-
served separately). After the minimization one obtains the equation for Vσ

Vσ = 2I
∑

k

〈f †kσckσ〉 (O.7)

Diagonalizing the Hamiltonian (O.4) by a canonical transformation

c†kσ = ukσα
†
kσ − vkσβ

†
kσ, f †kσ = ukσβ

†
kσ − vkσα

†
kσ (O.8)

ukσ = cos(θkσ/2), vkσ = sin(θkσ/2)

with

sin θkσ =
2Vσ

Ekσ

, cos θkσ =
tk − ζ − wσ

Ekσ

(O.9)

we obtain the energy spectrum of a hybridization form

Eα,β
kσ =

1

2
(tk − ζ + wσ ± Ekσ) (O.10)
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Then the equations (O.5)-(O.7) take the form

nf
σ =

1

2

∑

k

[
(1− cos Θkσ) nα

kσ + (1 + cos Θkσ) nβ
kσ

]
(O.11)

n =
1

2

∑

kσ

[
(1 + cos Θkσ) nα

kσ + (1− cos Θkσ) nβ
kσ

]
(O.12)

1 = −2I
∑

k

(
nβ

kσ − nα
kσ

)/
Ekσ (O.13)

At small |Vσ|, |wσ| and T = 0 we have

cos Θkσ ≈ sign (tk − ζ − ωσ) (O.14)

so that the equations (O.11), (O.12) are simplified. The edges of the hy-
bridization gaps in spin subbands are given by

Eα
kσ > wσ + V 2

σ /ζ, Eβ
kσ < wσ − V 2

σ /(W − ζ) (O.15)

Further we consider different types of ferromagnetic solutions. We confine
ourselves to the case where the conduction electron concentration n < 1 (the
results for n > 1 are obtained after the particle-hole transformation). As
follows from (O.15), at not too large S̄ for both σ the condition

wσ > V 2
σ /(W − ζ) (O.16)

holds, i.e the chemical potential lies below the energy gap, as well as in the
non-magnetic case. Define the function ζ(c) by

c = 2

ζ(c)∫

0

dEρ(E) (O.17)

with ρ(E) (0 < E < W ) being the bare density of states. Then the equation
(O.12) takes the form ζ(n) = ζ, and (O.11) and (O.13) yield

λσ ≡ V 2
σ /ωσ = ζ(n + 2nf

σ)− ζ(n) (O.18)

1 = −2I

ζ+λσ∫

0

dEρ(E)

[(E − ζ − wσ)2 + 4V 2
σ ]1/2

(O.19)
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Calculating the integral in (O.19) to leading and next-order terms in 1/ ln |W/Vσ|
we obtain

1 = −4Iρ ln
∣∣∣∣
C

Vσ

∣∣∣∣− 2I




ζ∫

C

dE
ρ(E + ζ)

E
+

ζ(n+2nf
σ)∫

C+ζ

dE
ρ(E)

E − ζ


 (O.20)

where C is a cutoff parameter which does not enter final results. In the
leading approximation Vσ does not depend on σ and we have

|Vσ| ∼ (WTK)1/2, TK ≡ W exp
1

2Iρ
(O.21)

Retaining next order terms we calculate the ratio and obtain the self-consistent
equation for magnetization

tanh




1

4ρ

ζ(n+1+2S̄)∫

ζ(n+1−2S̄)

dE
ρ(E)− ρ

E − ζ


 =

J0S̄

w
(O.22)

where
ω ≈ V 2/[ζ(n + 1)− ζ] ∼ TK (O.23)

The equation (O.22) has no non-trivial solutions for the bare DOS ρ(E) =
const. However, solutions with S̄ 6= 0 may occur for some ρ(E) if both
the left and right-hand side of (O.22) are of order unity, i.e. J0 ∼ TK (see
Fig.O.1).

Provided that

w↓ > V 2
↓ /(W − ζ), w↑ < −V 2

↑ /ζ (O.24)

i.e. ζ lies in the energy gap for σ =↑, we obtain the “half-metallic” ferro-
magnetic solution with

nf
↑ = 1− n/2, nf

↓ = n/2, S̄ = (1− n)/2 (O.25)

(see Fig.O.2). Such a solution exists under the condition

−ϕ/ζ < [ζ(2n)− ζ]−1 − J0(1− n)/V 2
↓ < ϕ/(W − ζ) (O.26)

ϕ ≡
∣∣∣∣∣
V↑
V↓

∣∣∣∣∣
2

= exp




1

ρ

W∫

ζ(2n)

dEρ(E)

E − ζ


 (O.27)
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For ρ(E) = const (O.26) takes the form

J0(1− n) < TK (O.28)

and the corresponding total energy

E =
n2

4ρ
− n

2
TK − J0S̄

2 = Enon−mag − J0S̄
2 (O.29)

is always lower than that of non-magnetic Kondo state. Thus the formation
of the state of half-metallic Kondo ferromagnet is energetically favourable. In
this state each conduction electron compensates one localized spin, and the
magnetic ordering is due to exchange interaction between non-compensated
moments. Such a picture is reminiscent of the stuation in the narrow-band
ferromagnet in the Hubbard or s − d exchange model with large intrasite
interaction (Sect.4.6). In our case the bare interaction is small, but effective
interaction is large in the strong coupling regime.

The expression (O.29) should be compared with the energy of the usual
ferromagnetic state with the Kondo effect suppressed:

E =
n2

4ρ
− J0/4 (Vσ = 0, S̄ = 1/2) (O.30)

We see that the latter state becomes energetically favourable at

J0(1− n

2
) > TK (O.31)

At the critical point, a first-order transition takes place.
Third type of possible ferromagnetic solutions correspond to the situation

of large energy splitting where ζ lies in the lower hybridization subband for
σ =↓ and in the upper one for σ =↓ (Fig.O.3). However, such solutions (at
least for ρ(E) = const) are energetically unfavourable [608].
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Appendix P

Schwinger and Dyson-Maleev
representations in the theory of
two-dimensional Heisenberg
antiferromagnets

The Schwinger boson representaton for spin operators has the form, which
is similar to the Abrikosov representation (O.1), the Fermi operators being
replaced by Bose operators biσ:

Si =
1

2

∑

σσ′
b†iσσσσ′biσ′

S+
i = b†i↑bi↓, S−i = b†i↓bi↑, Sz

i =
1

2

(
b†i↑bi↑ − b†i↓bi↓

)
(P.1)

For the given localized spin S, these operators should satisfy at each site
i the subsidiary condition (constraint)

∑
σ

b†iσbiσ = 2S (P.2)

It should be noted that the ”hyperbolic” operators (B.14) which change the
value of momentum may be easily represented in terms of the Schwinger
bosons [656]:

K+ = b†↑b
†
↓, K− = b↓b↑, Kz =

1

2

(
b†↑b↑ + b†↓bi↓ + 1

)
(P.3)
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The representation (P.1) turns out to be convenient at considering low-
dimensional systems which do not possess long-range ordering at finite tem-
peratures, but demonstrate developed spin fluctuations (short-range order).

Consider the “mean field” approximation for the two-dimensional Heisen-
berg model within the self-consistent spin-wave theory [623]. (This differs
drastically from the usual mean field approximation of Sect 4.1 since per-
mits to describe the strong short-range order above the ordering point.) The
constraint (P.2) is taken into account in the average by introducing the La-
grange multiplier λ which does not depend on i. Anomalous averages 〈bi↑bj↓〉
describe singlet pairing of bosons, i.e. the short-range order parameters. Oc-
curence of long-range ordering with the wavevector Q corresponds to the
Bose-Einstein condensation with the quasimomenta k = ±Q/2. It is con-
venient to introduce the interaction with small external magnetic field H.
Then the Bogoliubov transformation

bQ/2+k↑ = cosh
Θk

2
αk − sinh

Θk

2
β†−k

bQ/2−k↓ = cosh
Θk

2
β−k − sinh

Θk

2
α†k (P.4)

reduces the Heisenberg Hamiltonian to the diagonal form

Hd =
∑

k

(
Eα

kα†kαk + Eβ
kβ†kβk

)
(P.5)

where, for the square lattice with the parameter a0 = 1,

Eα,β
k = Ek ∓

(
1

2
H − 2|J |〈Sz〉

)
, Ek = (λ2 − γ2

k)
1/2 (P.6)

sinh Θk = γk/Ek, cosh Θk = λ/Ek (P.7)

with

γk =
1

2
γ(sin kx + sin ky)

Equations for λ and γ, which are obtained from (P.7), have the form

2S + 1 =
1

N

∑

k

λ

Ek

(1 + Nkα + Nkβ) (P.8)

1 =
1

2N

∑

k

|J |
Ek

(sin kx + sin ky)
2(1 + Nkα + Nkβ) (P.9)
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where Nkα,β = NB(Eα,β
k ), N is the number of lattice sites which should be

retained explicitly in the problem under consideration.
At T = 0 we have λ = γ and Nkα (but not Nkβ) contains the condensate

term at Eα
k = 0, i.e.

k = ±Q/2, Ek =
1

2
H − 2J〈Sz〉 ∼ H (P.10)

Then we obtain
N±Q/2 = N〈Sz〉 = NEQ/2nB/λ (P.11)

with 2nB being the density of condensed bosons. Equation (P.8) yields

nB = S +
1

2
− 1

2N

∑

k

[
1− 1

4
(sin kx + sin ky)

2
]−1/2

= S − 0.197 (P.12)

so that nB equals the ground state sublattice magnetization of the Neel
antiferromagnet S̄(0) with account of zero-point spin-wave corrections.

At finite T the boson spectrum (P.6) contains the gap and the condensate
is absent. Then we may put H = 0, Nkα,β = Nk from the beginning.

Consider the spin spectral density

Kq(ω) = − 1

π
NB(ω)Im〈〈Sq|S−q〉〉ω (P.13)

in the Schwinger boson representation. The spin Green’s function are ex-
pressed in terms of polarization operators of non-interacting bosons α and
β, and we derive

Kq(ω) =
1

4

∑

k

∑

ν,µ=α,β

{
(2− δµν) cosh2 Θk −Θk+q

2
Nkµ(1 + Nk+qν)

×δ(ω + Eν
k+q − Eµ

k) + (1 + δµν) sinh2 Θk −Θk+q

2
[NkµNk+qν

× δ(ω − Eν
k+q − Eµ

k) + (1 + Nkµ)(1 + Nk+qν)δ(ω + Eν
k+q + Eµ

k)]
}

(P.14)

As follows from (P.11), (P.14), the spectral density contains at T = 0, H → 0
the delta-function contribution

δKq(ω) =
3

2
n2

BNδqQδ(ω) (P.15)
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The factor of 3/2 in (P.15) should in fact be omitted since it is an artifact of
the mean field approximation which yields, because of inaccurate account of
the condition (P.2),

〈S2
i 〉 =

3

2
S(S + 1)

violating thereby the corresponding sum rule at the site.
At finite temperatures we have

E2
k =

1

2
λ2

[
(k∓Q/2)2 + ξ−2

]
, k → ±Q/2 (P.16)

where the correlation length is given by

ξ ∼ exp(πλnB/2T ) (P.17)

At q = Q the integral in (P.14) is “almost” divergent at the points k = ±Q/2
with the cutoff scale |k ∓Q/2| ∼ ξ−1. Using the expansion Nk

∼= T/Ek we
present the corresponding singular contribution in the form

δKq(ω) =
3

2

[
2T

πλ
ln ξ

]2

∆q∆ω ≈ 3

2
n2

B∆q∆ω (P.18)

where ∆q and ∆ω are δ(q − Q) and δ(ω) like functions smoothed on the
scales ξ−1 and ωξ ∼ J/ξ respectively. At T ¿ J we have ωξ ¿ T and
we may neglect the smoothing which yields a formal description of strong
short-range order. To obtain the temperature dependence of the coefficient in
(P.18) (“sublattice magnetization”) we estimate the intensity of the Ornstein-
Cernike peak at q = Q in the static spin correlator

Seff(T ) =


 ∑

|q−Q|<q0

〈S−qSq〉



1/2

(P.19)

where q0 À ξ−1 is a cutoff wavevector. Using the result of the scaling con-
sideration [712], which yields the correct preexponential factor

ξ = Cξ exp
(
πcS̄(0)/

√
2T

)
(P.20)

where c is the magnon velocity and Cξ
∼= 0.01/(2π) ¿ 1 is a numerical factor.

Substituting (P.20) into (P.19), (P.18) and neglecting ln q in comparison with
ln Cξ we obtain the linear dependence [713]

Seff(T ) = S̄(0)−
√

2T

πc
| ln Cξ| (P.21)
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The contributions to spectral density from antiferromagnetic spin waves
are determined by the terms, which are linear in nB . Putting Ek → 0,
Nk = T/Ek , but retaining Ek+q and vice versa, and performing integration
over k, we derive

δ1Kq(ω) =
3

2

T

Eq+Q/2

1

N

∑

k

λ2 − γkγk+q

E2
k

[(1+Nq+Q/2)δ(ω+Eq+Q/2)+Nq+Q/2δ(ω−Eq+Q/2)]

≈ 3

2
nB

(
1− ϕq

1 + ϕq

)1/2

{[1 + NB(ωq)]δ(ω + ωq) + NB(ωq)δ(ω − ωq)} (P.22)

where, for q, |q−Q| À ξ−1,

ωq = λ(1− ϕ2
q)

1/2 ≈ Eq+Q/2, ϕq ≡ 1

2
(cos qx + cos qy) (P.23)

so that ωq is the renormalized magnon frequency.
For comparison, we consider the application of the Dyson-Maleev repre-

sentation (E.2) to the same problem. In the case of a two-sublattice antifer-
romagnet this has the form

S−l = (2S)1/2a†l , S+
l = (2S)1/2(1− 1

2S
a†l al)al

Sz
l = S − a†l al, l ∈ A

S−m = (2S)1/2b†m, S+
m = (2S)1/2b†m(1− 1

2S
b†mbm)bm (P.24)

Sz
m = −S + b†mbm, m ∈ B

In the self-consistent approach [624] one puts on each site the condition
〈Sz〉 = 0, i.e.

〈a†l al〉 = 〈b†l bl〉 = S (P.25)

Using the Bogoliubov transformation

ak = cosh
Θk

2
αk − sinh

Θk

2
β†−k

b†−k = cosh
Θk

2
β†−k − sinh

Θk

2
αk (P.26)
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we diagonalize the Hamiltonian to obtain

H =
∑

k

ωk(α
†
kαk + β†kβk) (P.27)

with
〈α†kαk〉 = 〈β†kβk〉 = Nk = NB(ωk)

ωk = (λ2 − γ2ϕ2
k)

1/2, tanh 2Θk = γϕk/λ (P.28)

Here Σ′ stands for the sum over reduced Brillouin zone. The equations for λ
and γ read

S +
1

2
=

∑

k

′ λ

ωk

(1 + 2Nk) (P.29)

1 =
∑

k

′ |J |
ωk

(cos kx + cos ky)(1 + 2Nk) (P.30)

At T = 0 (in more general case, in the presence of the long-range ordering),
λ = γ + O(1/N), so that the spectrum is gapless. The 1/N -corrections
describe the Bose condensation:

(
1− γ2/λ2

)2
= NnB (P.31)

As follows from the constraint (P.25) and the structure of the Dyson-Maleev
transformation, the transvese spin correlation function 〈S+

q S−−q〉 vanishes.
Thus the corresponding spectral density reads

Kq(ω) = Kzz
q (ω) =

1

N

∑

k

′
{
cosh

Θk −Θk+q

2
Nk(1 + Nk+q)

×δ(ω + ωk+q − ωk) +
1

2
sinh2 Θk −Θk+q

2
{NkNk+qδ(ω − ωk+q − ωk)

+ (1 + Nk)(1 + Nk+q)δ(ω + ωk+q + ωk)]} (P.32)

The delta-function contribution is

δKq(ω) = Nn2
BδqQδ(ω) (P.33)

Unlike (P.15), the expession (P.33) does not contain the superfluous factor
3/2. On the other hand, in contrast with the “isotropic” Schwinger repre-
sentation, the Dyson-Maleev representation violates the rotational invariance
even in the paramagnetic phase.
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The versions of self-consistent spin-wave theory (SSWT), based on non-
linear boson representations, yield a gap in the spin-wave spectrum in the
absence of long-range order. This contradicts, e.g., to exact results for one-
dimensional lattice with half-integer spin S where the spectrum is gapless
(for integer spin, the spectrum contains so called Haldane gap [714] which
is reproduced qualitatively by SSWT). However, as discussed in [622], such
approaches are satisfactory in the cases where the ground state possesses
long-range order.

It should be noted that both approaches under consideration describe the
long-range order in terms of delta-function singularity of the spin correlation
function, the sublattice magnetization being always zero. The possibility of
such a description in the three-dimensional situation for a wide range of phys-
ical properties, including local characteristics, is demonstrated in [715]. In
particular, in such an antiferromagnetic state without sublattices the Green’s
function of a nuclear spin at each site turns out to have both poles ±AS (A
is the hyperfine interaction parameter).

Applications of the non-linear boson representations to systems with a
weak interlayer coupling and magnetic anisotropy are discussed in [713].
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FIGURE CAPTIONS

Fig.1.1. The effective potential for a hydrogen-like atom.

Fig.1.2. The effective potential Veff and radial wavefunctions P4f (r) for
BaI (broken lines) and LaI (solid lines) [18].

Fig.1.3. (a) energy levels (eV) of external atomic electrons in the Gd
atom [19] (b) radial distribution of the Hartree-Fock charge density for 4f-,
5s-, 5p- and 6s-electrons of the Gd3+ ion [16].

Fig.1.4. Experimental L2,3M45M45 Auger spectra from copper and zinc.
Atomic multiplet structures are shown as lines under spectra [36].

Fig.1.5. Effect of multiplets on the L3V V Auger spectra of nickel. Lower
panel: XPS VB after subtraction of satellite N(E) and its self-fold D0(E).
Middle and top panels: experimental spectrum and calculated contributions
from individual d8 terms with different values of Slater integrals [37].

Fig.1.6. Interpolation scheme of levels for Ni2+(d8) ion in the crystal field.
The numbers in brackets stand for degeneracy of a state.

Fig.1.7. Fragment of level scheme for Fe2+(d6) ion. Position of levels in
the ground state corresponds to unquenched orbital momenta for both strong
and intermediate CF. Unlike Fig.1.6, interpolation is not shown, since not
all corresponding levels are included.

Fig.1.8. Resonance photoemission experiment on CuO (a) spectra with
the photon energies sweeping to the point of the 2p reesonance (b) the reso-
nance intensity (c) a number of spectra on extendend scale [47].

Fig.1.9. XPS-valence band spectrum of MnO and analysis of the spectra
by cluster calculations of two groups [48,49].

Fig.1.10. Comparison of experimental XPS valence band spectra of NiO
with the results of cluster calculations [50,51].

Fig.2.1. Total and partial densities of states for titanium [78].

Fig.2.2. Total and partial densities of states for zirconium [78].

Fig.2.3. Total and partial densities of states for hafnium [78].
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Fig.2.4. Total and partial densities of states for vanadium [78].

Fig.2.5. Total and partial densities of states for chromium [78].

Fig.2.6. Total and partial densities of states for rhodium [78].

Fig.2.7. Total and partial densities of states for platinum [78].

Fig.2.8. The unhybridized canonical bands for the fcc lattice [56].

Fig.2.9. The unhybridized canonical bands for the bcc lattice [56].

Fig.2.10. The unhybridized canonical bands for the ideal hcp lattice [56].

Fig.2.11. Densities of states (per spin) for the unhybridized canonical
bands shown in Figs.2.8-2.10.

Fig.2.12. The density of states for s-band in the bcc lattice in the nearest-
neighbour approximation [79].

Fig.2.13. The density of states for s-band in the fcc lattice in the nearest-
neighbour approximation [79].

Fig.2.14. The density of states for s-band in the fcc lattice with the ratio
of next-nearest and nearest-neighbour transfer integrals γ = t2/t1 = 0.8 and
3 [80].

Fig.2.15. s-, p- and d-projected densities of states for fcc palladium and
bcc niobium [56].

Fig.2.16. Density of states of molybdenum for the lowest six bands [82].

Fig.2.17. Energy bands of vanadium, calculated for two possivle choices
of the crystal potential [83].

Fig.2.18. X-ray emission spectra of vanadium [57] (a) K-band (b) LIII-
band (c) MIII-band; 1 the experimental data, 2 and 3 results of calculations
with different perturbation operators.

Fig.2.19. X-ray emission spectra of Y and Zr; solid line shows experimen-
tal data, and broken line the results of calculations [57].

Fig.2.20. Experimental X-ray emission bands of 5d-metals [57].

Fig.2.21. NV I,V II emission spectra of Ir (a) and Pt (b). Lower curves are
experimental data [57].

Fig.2.22. Comparison of BIS and density of states curves for 3d- metals
and Cu. The dashed curves correspond to the unbroadened DOS, the solid
lines to the DOS broadened with Gaussian and Lorentz broadening to sim-
ulate instrumental and lifetime broadening respectively. The upper dotted
curve is the measured BIS spectrum [102].

Fig.2.23. The same data for 4d metals and Ag [102].

Fig.2.24. Calculated spin up and down densities of states of ferromagnetic
iron [24].



BIBLIOGRAPHY 431

Fig.2.25. Calculated spin up and down densities of states of ferromagnetic
nickel [24].

Fig.2.26. Spin and angle-resolved distribution curves form Fe (100) at
60eV photon enegy for two different temperatures (T/TC = 0.3 and 0.85)
[105]. The arrows refer to the spontaneous magnetization direction.

Fig.2.27. Angle-resolved energy distribution curve showing temperature-
dependent exchange splitting δEex = 1.09∆ex in Ni [108]. According to the
experimental conditions, only the uppermost d-band is observed.

Fig.2.28. Differences of correlation energies ξ for transitions 4fn+15d6s→4fn5d6s
in free rare earth atoms and for transitions 3d n+1 → 3dn between ground
state multiplets of iron group atoms [133].

Fig.2.29. The Fermi surface of Pd (a) electron surface at the point Γ (b)
multiconnected hole tubes [11].

Fig.2.30. (a) Theoretical model of the Fermi surface of gadolinium by
Freeman, Dimmock and Watson (b) The Fermi surface of Tb in the one-
band scheme: hole surface in the third zone and the electron surface in the
fourth zone [11].

Fig.3.1. Melting points of the IV, V and VI period elements of the periodic
table [235].

Fig.3.2. Heat of fusion of the IV, V and VI period elements of the periodic
table [235]. Open points are estimated values.

Fig.3.3. Boiling points of the IV, V and VI period elements of the periodic
table [235].

Fig.3.4. (a) Boiling points of rare earth metals (b) Cohesive energy of
rare earth metals. Open points are estimated values [235].

Fig.3.5. Linear coefficient of thermal expansion of 3d-metals.

Fig.3.6. (a) Linear coefficient of thermal expansion of rare earth metals
(b) Atomic volume of rare earth metals. Open points are estimated values
[235].

Fig.3.7. Debye temperature at T = 0 as determined from specific heat
data for the fourth, fifth and sixth periods of the periodic table [235]. Open
points are estimated values.

Fig.3.8. (a) The measured cohesive energies of the d-metal series. (b)
The corresponding calculated valence bond energies [236].

Fig.3.9. Components of the cohesive energy for the 3d and 4d transi-
tion metals. The experimental value is denoted by the open box, and the
calculated one by the filled box [242].
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Fig.3.10. The calculated coefficients of thermal expansion for non- mag-
netic cubic metals together with experimental points [243].

Fig.3.11. Crystal structures of elemental metals at low temperatures, nd

being the number of d-electrons in d-series [245].

Fig.3.12. Structural energy differences µS2∆ (∆ = Ebcc(hcp) − Efcc, µ
is the d-band mass, S is the atomic Wigner-Seitz radius), obtained from
canonical d-bands, as a function of the canonical d occupation [245].

Fig.3.13. Structural energy differences obtained from canonical d-bands
as functions of the canonical d occupation in the nd-range, corresponding to
the lanthanide crystal-structure sequence [245].

Fig.3.14. Diagram of the most stable close-packed crystal structure as
a function of the d-occupation number. Two estimates of the actual d-
occupation numbers for the d-metals together with the experimental crystal
structures are given below [245].

Fig.3.15. Structural energy differences for 3d, 4d and 5d rows calculated
at the experimentally observed equilibrium volume and plotted as functions
of the d-occupation numbers [245].

Fig.3.16. Calculated bcc-fcc and hcp-fcc structural energy differences
(solid and broken lines) for the 4d-metals [245] compared with the enthalpy
differences derived from phase-diagram studies (open circles).

Fig.3.17. Phonon dispersion curves in Nb and Mo [257].

Fig.3.18. Experimental specific heat of vanadium. The dash-dotted line
correspond to the Dulong-Petit value (R′ = R/M , M is the atomic weight)
[239].

Fig.3.19. Experimental specific heat of zirconium [239].

Fig.3.20. Experimental specific heat of gadolinium. The inset shows the
behaviour near the Curie point. The dependence near the melting point Tm

is typical for all the heavy rare-earth metals [239].

Fig.3.21. Temperature dependence of the electron-phonon enhancement
coefficient (ce(T ) = γ0[1 + λ(T )]T ) in the Debye model [262].

Fig.3.22. Experimental temperature dependence γ(T )/γ0 [262].

Fig.3.23. Temperature dependence γ(T )/γ0, calculated from the empiri-
cal density of states. The latter is obtained in the rigid-band model from the
experimental γ0 for alloys [262].

Fig.3.24. Temperature dependence γ(T )/γ0, obtained from the calculated
density of states [262].

Fig.3.25. Experimental specific heat of iron [239].
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Fig.3.26. Experimental specific heat of nickel according to the data of
various authors [239].

Fig.4.1. Paramagnetic susceptibility at 293K in 3d, 4d and 5d rows as a
function of valence electron number, z = ns + nd [269].

Fig.4.2. Temperature dependence of magnetic susceptibility for transition
metals of the third group [270]: (a) scandium (b) yttrium (c) lutetium.

Fig.4.3. Temperature dependence of magnetic susceptibility for transition
metals of the fourth group according to data of various aithors [270]: (a)
titanium (b) hafnium (c) zirconium.

Fig.4.4. Temperature dependence of magnetic susceptibility for transition
metals of the fifth group [270]: (a) vanadium (b) niobium (c) tantalum.

Fig.4.5. Temperature dependence of magnetic susceptibility for transition
metals of the sixth group [270]: (a) molybdenum (b) tungsten.

Fig.4.6. Temperature dependence of magnetic susceptibility for paramag-
netic transition metals of the eighth group [270]: (a) ruthenium and osmium
(b) rhodium and iridium (c) palladium and platinum.

Fig.4.7. The dependence of the ratio pC/ps on the Curie temperature
(the Rhodes-Wolfarth curve) [26].

Fig.4.8. Density of states (eV−1, right-hand axis) and integrated density
of states (dotted line, left-hand axis) of paramagnetic iron [24]. Energy is
referred to the Fermi level.

Fig.4.9. Comparison between equation (4.86) and experimental Curie
temperatures for iron group metals and intermetallic systems. The asymp-
totes corresponds to pure fluctuation behaviour and the tangent to pure
Stoner behaviour.

Fig.4.10. Density of states (Ry−1) in PtMnSb [307] (a) spin up (b) spin
down.

Fig.4.11. Density of states for the Heusler alloy Co2MnSn [311].
Fig.4.12. Partial densities of states (1/eV atom, energy in eV) for CrO2

[313]. The solid line corresponds to 3d states of Cr, dotted and broken lines
to 2s and 2p states of oxygen (a) spin up (b) spin down.

Fig.4.13. Partial densities of states (1/Ry atom) for Mn4N [324].
Fig.4.14. Density of states in the s-d model in the case of empty conduc-

tion band (I > 0). At T = 0 (solid line) the spin-polaron tail of spin-down
states reaches the band bottom. The broken line corresponds to finite tem-
peratures [329].

Fig.4.15. Density of states in a half-metallic ferromagnet with I > 0.
Non-quasiparticle states with σ =↓ are absent below the Fermi level [329].
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Fig.4.16. Density of states in a half-metallic ferromagnet with I < 0.
Non-quasiparticle states with σ =↑ occur below the Fermi level [329].

Fig.4.17. Magnetic structures of heavy rare-earth metals and the corre-
sponding temperature intervals.

Fig.4.18. The Hill diagram for uranium compounds which demonstrates
dependence of type and and temperature of magnetic ordering on the dis-
tance between uranium ions; 1 - antiferromagnetic ordering, 2 - ferromagnetic
ordering, 3 - temperature-independent paramagnetism [371].

Fig.4.19. Positions of vectors representing the orbital l̃ and spin s angular
momenta in 3d-ferromagnets (weak spin-orbit coupling): (a) in the absence
of an external field (b) in the presence of the field H directed along the hard
axis.

Fig.4.20. Anisotropic distribution of the f-electron density expected for
the f1 and f6 configurations with L = 3. The solid curve in the right part
represents an orbital hole which appears when f1 is replaced by f6. In the
presence of magnetic anisotropy, the hole and its vector L′ are rotated by 90o

(dashed curve) relative to the electron [39].

Fig.5.1. The temperature dependence of electrical resistivity of scandium
according to data of various authors [239].

Fig.5.2. The temperature dependence of electrical resistivity of vanadium
[239].

Fig.5.3. The electrical resistivity of chromium according to data of various
authors (1,3,4); the calculated anomaly near the Neel point (2,5) [239].

Fig.5.4. The electrical resistivity of rhenium in the direction of the hexag-
onal axis and perpendicular to it, and for a polycrystal (3) [239].

Fig.5.5. (a) The electrical resistivity of ruthenium in the direction of the
hexagonal axis and perpendicular to it, and for polycrystalline sample; (b)
the anisotropy of resistivity (1) and diffusivity (2), and the ratio c/a (3) [239].

Fig.5.6. The electrical resistivity of iridium (1); 2) the calculation based
on the Mott s-d model [239].

Fig.5.7. The electrical resistivity of platinum (1); 2) the temperature
coefficient of resistivity α [239].

Fig.5.8. The electrical resistivity of nickel (1); 2) the anomaly near the
melting point; 3) the temperature coefficient of resistivity as a function of
t = (T − TC)/TC near the Curie point [239].

Fig.5.9. Coefficient at the T 2-term A vs γ2 for transition metal elements
[410].
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Fig.5.10. Anomaly of the resistivity ρ(T ) (10−6Ω cm) at the Neel point
(TN = 96K) in α-Mn [265].

Fig.5.11. Temperature dependences of resistivity in the Heusler alloys
TMnSb (T = Cu (A), Au (B), Co (D), Ni (E), Pt (F)) and PtMnSn (C)
[331].

Fig.5.12. The concentration dependence of resistivity (µΩ cm) in Pd-Au
alloys.

Fig.5.13. Residual resistivity of NiCo1−xRhx alloy. The large deviation
from the “Matthiessen rule” (linear dependence) is accounted for strongly
different values of αCo and αRh; the solid curve corresponds to their values
of 13 and 0.3 respectively [436].

Fig.5.14. The typical temperature dependences of thermoelectric power
(µV/K) in metals (a) noble metals and refractory d-metals in a wide tem-
perature region (b) noble metals at intermediate temperatures (c) alcaline
metals at low temperatures [8].

Fig.5.15. A summary of thermoelectric power data for transition metals,
U and Th [438]. Roman numerals indicate the periodic table column.

Fig.5.16. The anomaly of thermoelectric power of chromium at the Neel
point [438].

Fig.5.17. The Hall coefficient as a function of the number of valence
electrons for polycrystalline transition metals and alloys according to data of
different authors [443].

Fig.5.18. The temperature dependence of the Hall coefficient in scandium
according to data of different authors [239].

Fig.5.19. The temperature dependence of the Hall coefficient in lan-
thanum [239].

Fig.5.20. The temperature dependence of the Hall coefficient in titanium
[239].

Fig.5.21. The temperature dependence of the Hall coefficient in zirconium
[239].

Fig.5.22. The temperature dependence of the Hall coefficient in hafnium
[239].

Fig.5.23. The temperature dependence of the Hall coefficient in molyb-
denum [239].

Fig.5.24. The temperature dependence of the Hall coefficient in rhenium
[239].

Fig.5.25. The temperature dependence of the Hall coefficient in ruthe-
nium according to data of different authors [239].
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Fig.5.26. The temperature dependence of the Hall coefficient in rhodium
[239].

Fig.5.27. The temperature dependence of the Hall coefficient in platinum
[239].

Fig.5.28. The temperature dependences of the Hall coefficient in the field
H = 13.5 kOe for Ta (open squares) and V (different measurement series,
other symbols) [446].

Fig.5.29. Temperature dependence of the Hall coefficient of polycrys-
talline α-Mn and α-Pu [443].

Fig.5.30. The temperature dependence of the Hall coefficient of polycrys-
talline Cu [443].

Fig.5.31. Reduced Kohler diagram showing the transverse magnetoresis-
tance of some metals in the high-field region [448].

Fig.5.32. The schematical behaviour of Hall resistivity as a function of the
field H in ferromagnetic metals. The dependence ρH(B), which demonstrates
expicitly the separation of the normal and spontaneous Hall effect, has the
same form.

Fig.5.33. The temperature dependences of the spontaneous Hall coeffi-
cient in iron group metals [451].

Fig.5.34. The extraordinary Hall resistivities of gadolinium, terbium and
dysprosium as a function of T/TN . The dashed curve is the theoretical plot
obtained from the results by Maranzana. Above TN , the values of Rs for
heavy rare earths are shown which are temperature independent [15].

Fig.5.35. The extraordinary Hall coefficient of dysprosium with the mag-
netic field along the a-axis as a function of spin-disorder resistivity [15].

Fig.5.36. The field dependence of ∆ρ/ρ in ferromagnetic nickel for parallel
and perpendicular orientations of current and magnetic field [265].

Fig.6.1. Coefficient at the T 2-term A vs γ2 for anomalous rare earth and
actinide compounds, and some d-systems [410].

Fig.6.2. Experimental data on the Kondo teperature for d-impurities in
copper and gold [559,560].

Fig.6.3. Anomaly of thermoelectric power in CeIn at the Neel point [578].

Fig.6.4. The temperature dependences of thermoelectric power of CeCu2Si2
and CeAl3; inset shows the dependence for CeAl3 between 0.15 and 350K on
a logarithmic scale [579].

Fig.6.5. The energy spectrum and density of states in the effective hy-
bridization model of an intermediate valent system.
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Fig.6.6. Temperature dependences of resisitivity for the system CexLa1−xGe2

(which is ferromagnetic at 0.4 < x < 1), the logarithmic scale being used.
Arrows show the value of TC [601].

Fig.6.7. Temperature dependences of magnetic entropy for the system
CexLa1−xGe2. Arrows show the value of TC [601].

Fig.6.8. Concentration dependences of saturation moment M0 (solid line),
TC (broken line) and TK (schematically, dash-dotted line) in the system
CeNixPd1−x [601].

Fig.6.9. The density of states picture in the mean-field approximation for
the s-f exchange model (the non-magnetic phase) [608].

Fig.H.1. Evolution of one-electron density of states (the metal-insulator
transition) with increasing the interaction parameter J = 2IS in the clas-
sical s-d model in the Hubbard-III approximation for semielliptic (a) and
rectangular (b) bare DOS, and simple cubic lattice (c) [695].

Fig.O.1. The density of states picture for the ferromagnetic solution with
a small spin splitting.

Fig.O.2. The density of states picture for the saturated (half-metallic)
ferromagnetic solution.

Fig.O.3. The density of states picture for the ferromagnetic solution
where the spin splitting exceeds the energy gap.
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TABLES

Table 1.1. Atomic configurations and ground terms for the free atoms and
M2+ ions, and third ionization potentials (eV) in d-series.

3d Sc Ti V Cr Mn Fe Co Ni Cu
4d Y Zr Nb Mo Tc Ru Rh Pd Ag
5d La Nb Ta W Re Os Ir Pt Au
3d d1s2 d2s2 d3s2 d5s d5s2 d6s2 d7s2 d8s2 d10s
4d d1s2 d2s2 d4s d5s d5s2 d7s d8s d10 d10s
5d d1s2 d2s2 d3s2 d4s d5s2 d6s2 d7s2 d9s d10s
3d 2D3/2

3F2
4F3/2

7S3
6S5/2

5D4
4F9/2

3F4
2S1/2

4d 2D3/2
2F2

6D1/2
7S3

6D9/2
5F5

4F9/2
1So

2S1/2

5d 2D3/2
3F2

4F3/2
5D0

6S5/2
5D4

4F9/2
4D3

2S1/2

M2+, d1 d2 d3 d4 d5 d6 d7 d8 d9

3d, 4d, 5d 2D3/2
3F2

4F3/2
5D0

6S5/2
5D4

4F9/2
3F4

2D5/2

3d 24.75 27.47 29.31 30.95 33.69 30.64 33.49 35.16 36.83
4d 20.51 22.98 25.04 27.13 31.9 28.46 31.05 32.92 34.82
5d 19.18 28.1 22.3 24.1 26 25 27 28.5 30.5

Table 1.2. Atomic configurations and ground terms for free atoms and
R3+ ions of rare earths and actinides. Rare earths and heavy actinides (start-
ing from Am) are characterized by the most stable valence of 3+. Beside that,
the 4+ state is possible for Ce, Tb and Pr, and the 2+ state for Nd, Sm, Eu,
Tm and Yb. Light actinides exhibit a large variety of valence states.
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La Ce Pr Nd Pm Sm Eu
R fod f1d f3 f4 f5 f6 f7

D2
3/2 H3

4 I49/2 I54 H6
5/2 F7

0 S8
7/2

R3+ f0 f1 f2 f3 f4 f5 f6
1S0

2F5/2
3H4

4I9/2
5I4

6H5/2
7F0

Gd Tb Dy Ho Er Tm Yb
R f7d f8d f10 f11 f12 f13 f14

9D2
8H17/2

5I8
4I15/2

3H6
2F7/2

1S0

R3+ f7 f8 f9 f10 f11 f12 f13

S8
7/2 F7

6 H6
15/2 I58 I415/2 H3

6 F2
7/2

Ac Th Pa U Np Pu Am Cm Bk Cf
R f0d1 f0d2 f2d1 f3d1 f5d0 f6d0 f7d1 f7d1 f8d1 f10d0

2D3/2
3F2

4K11/2
2L6

6H5/2
7F0

8S7/2
9D2

8H17/2
5J8

R3+ f0 f1 f2 f3 f4 f5 f6 f7 f8 f9
1S0

2F5/2
3H4

4I9/2
5I4

6H5/2
7F0

8S7/2
7F6

6H15/2

Table 1.3. Probabilities of Auger transitions in Cu (10−4a.u.) [38].

Term 1S 1G 3P 1D 3F
Multiplicity 1 9 9 5 21
L3M45M45 1.15 2.88 1.39 7.40 16.18
L2M45M45 0.58 21.43 0.69 3.69 8.10

Table 2.1. Calculated characteristics of band structure for d-metals: the
number of d-electrons nd, position of the Fermi level Ed (eV) and density
of states N(EF) (eV−1at−1) [78], the model parameters [13]: average energy
Ed (relative to the s-band bottom, eV) and the bandwidth Wd (eV); exper-
imental data on Wd from PES and IPES [40] are presented for 3d-metals
only.
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3d Sc Ti V Cr Mn Fe Co Ni Cu
4d Y Zr Nb Mo Tc Ru Rh Pd Ag
5d La Hb Ta W Re Os Ir Pt Au

4.6↑ 4.8↑ 4.82↑

1.76 2.90 3.98 4.96 5.98 9.91
nd 2.34↓ 3.06↓ 4.15↓

1.68 2.96 4.10 5.07 6.23 7.24 7.99 8.96 10.01
- 2.69 3.78 4.73 5.73 6.70 7.65 8.74 9.89

5.82 8.03 9.26 10.6 10.3 10.2 9.53 8.71 7.90
EF 5.39 7.42 9.06 10.6 10.3 10.1 8.61 7.06 6.30

- 7.87 9.31 11.3 10.9 11.6 10.4 8.68 7.32
0.85↑ 0.14↑ 0.15↑

1.76 0.54 1.61 0.65 2.72 0.15
0.24↓ 0.66↓ 1.54↓

N(EF) 1.69 0.53 1.20 0.52 0.91 0.81 1.32 2.31 0.06
- 0.41 1.04 0.36 0.70 0.65 0.90 1.67 0.18

7.05 7.76 8.13 8.01 7.91 7.64 7.36 6.91 5.90
Ed 6.75 7.17 7.29 7.12 6.67 6.02 5.08 4.52 2.49

- 9.12 9.50 9.45 8.99 8.38 7.35 6.51 5.18
5.13 6.08 6.77 6.56 5.60 4.82 4.35 3.78 2.80

Wd 6.59 8.37 9.72 9.98 9.42 8.44 6.89 5.40 3.63
- 9.56 11.2 11.4 11.0 10.3 8.71 7.00 5.28

Wexp
d (3d) 6.2 6.6 6.8 6.5 8.5 8.5 6.9 5.4 2.6

Table 2.2. Partial s,p,d densities of states at the Fermi level and the
number of d-electrons in 3d-metals [78].

Sc Ti V Cr Mn Fe↑ Fe↓ Co↑ Co↓ Ni↑ Ni↓
s 0.34 0.07 0.43 0.08 0.19 0.22 0.02 0.36 0.06 0.28 0.16
p 6.06 0.80 2.46 0.72 0.31 0.14 0.04 0.23 0.44 0.24 0.09
t2g 13.70 4.61 18.0 6.52 17.9 10.5 2.80 0.65 5.54 1.25 13.07
eg 10.12 2.69 3.95 2.31 19.1 1.07 0.41 1.22 3.48 0.74 7.94
nd 1.76 2.9 3.98 4.96 5.98 4.6 2.34 4.8 3.06 4.82 4.15

Table 2.3. Experimental (angle-resolved photoemission) and calculated
energy on the Γ∆L axis in palladium (in eV relative to the Fermi level) [90].
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k-point, Exper. RAPW RAPW HFS Pseudopot.
band number [90] [91] [92] [93] [94]
Γ2,3,4 −2.55± 0.15 −2.79 −2.49 −2.59 −2.56
L2,3 −2.4± 0.2 −2.98 −2.62 −2.70 −2.66
Γ5,6 −1.15± 0.1 −1.17 − −2.70 −2.66
L4 −0.4± 0.2 −0.14 − −0.06 −0.09
L5 −0.1± 0.1 +0.05 − −0.06 −0.09
L7 +7.7± 0.3 +7.30 − − −
Γ7 +18.4± 0.5 +17.71 − − −
Γ8 +21.7± 0.5 +21.65 − − −

Table 2.4. Positions of density of states peaks, and widths of empty and
occupied part of the band W± for 3d and 4d metals (in eV) [101].
3d Sc Ti V Cr Mn Fe Co Ni
4d Y Zr Nb Mo Tc Ru Rh Pd

1.8, 3.8 1.0, 2.8 2.3 1.0 1.4 1.6 0.5 0.3
Eexp

peak 2.0, 5.4 0.9, 4.4 3.5 2.0 - 1.2 0.4 0.2

1.4, 3.5 0.8, 3.1 2.5 1.2 1.6 0.5 0.3
Etheor

peak 1.3, 4.6 0.9, 4.6 3.4 1.8 - 1.3 0.5 0.1

1.7 3.1 3.2 4.5 - 5.3 5.5 5.0
W−

theor 2.0 3.1 3.5 5.4 - 6.2 5.8 4.8
4.0 3.65 4.0 2.5 - 2.6 1.15 0.4

W+
theor 5.3 5.3 5.6 3.9 - 1.95 1.2 0.4

4.4-4.7 3.2-3.8 3.4-3.8 1.8-2.3 3.5 2.9-3.5 1.4 0.4
W+

exp 6.1 5.2-5.7 5.2-5.9 3.9-4.5 - 1.95 1.1 0.4

W+
theor − -0.5 0.0 +0.4 +0.5 - -0.6 -0.25 0.0

− W+
exp -0.8 -0.1 0 -0.3 - 0.0 0.1 0.0

Table 2.5. Values of ∆− = EF − ε(4fn) and ∆+ = ε(4fn+1) − EF for
rare-earth metals.
∆±(eV) γ-Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu La
∆− 2.1 4.1 5.1 - 5.6 1.5 8.7 4.6 5.6 6.0 6.0 6.2 0.7 - -
∆− 1.9 3.8 5.1 - 5.5 1.9 8.3 3.3 4.7 5.5 5.4 5.4 1.1 7.5 -
∆− 1.9 3.3 4.5 4.5 4.5 - 7.0 1.9 3.4 4.8 4.8 5.2 - 8.5 -
∆+ 3.3 2.6 2.1 - 0.5 - 3.3 2.1 1.8 1.5 1.5 1.3 - - -
∆+ 3.1 2.0 1.3 - 0.2 - 3.2 2.1 1.4 1.6 1.6 1.0 - - 4.7

Table 2.6. Characteristics of Fermi surfaces of some simple and transition
metals. eN(i) and hN(i) stand for electron and hole orbits at the point N in
the Brillouin zone with the number i, jg - jungle gym, mc - multiconnected.
S are areas of cross sections; in some cases the corresponding kF values are
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given in brackets. A0, k0 are the cross section and Fermi quasimomentum
for free electrons.
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Metal Orbits S, Å
−2

(kF,Å
−1

) mc/m m/m Ref.
theor. exp. theor. exp.

Li eΓ(1) (110) 0.976A0 (1.06k0) 1.48 calc.147-149
spher. (100) 0.993A0 (0.98k0) 1.65 dHvA 150

(111) 1.011A0 (0.99k0) 1.82
Na eΓ(1) A0 A0 1 1 calc.147-149

spher. dHvA 11
Ca h(1) calc.151,152

eL(2) dHvA 153
Sc hΓ(3,4) calc.154

eΓK(4), hMK(4)
Y 0.03-2.18 calc.155,156

dHvA 156,157
La hΓA(5), hΓA(6) calc.158

emc(7)
eAH(7), eAH(8)

Ti hL(3,4),eΓ(5,6) calc.159-161
or hΓ(3,4), 0.10-0.72 0.18-0.64 0.65-1.95 1.6-2.8 dHvA 162

hA(3), eH(5,6)
Zr hΓ(3,4) 0.22-1.34 2.0-2.5 0.8, 1.2 calc.163

eH(5,6) 2.29-3.36 dHvA 164,165
V hΓ(2), hjg(3), calc.165-167

0.24-0.72 0.32-0.64 dHvA 168-171
hN(3), closed

Nb hΓ(2), 0.117- 0.138- 0.57- 1.12- calc.172,173
hjg,N(3) 2.68 1.862 1.92 1.60 dHvA 171,174
hjg,∆

Ta hΓ(2), 0.292- 0.279- 0.84- 1.09, calc.172,173
hjg,N(3) 2.00 2.00 1.66 1.35 dHvA 175
hjg,∆

Cr hH(3), calc.176-181
eΓ(4), (0.109- (0.17- dHvA 182,183
eΓH(5) 0.226) 0.27)

Mo hH(3) 0.06- 0.05- calc.82,184
hN(3),eΓ(4), 2.25 2.48 0.30 0.4-1.5 dHvA 145,

eΓH(5) 185,186
W hH(3) 0.014- 1-1.45 0.9 calc.177

hN(3) 0.43(2π/a)2 0.06- 0.25-1 dHvA 185,187
eΓ(4) 0.23

γ− calc 188,189
Re h(5,6,7) 0.48-1.18 0.42-1.6 calc.190

hL(7) 4.57-6.11 dHvA 191
eΓA(8) 6.6 4-6.7
e(9)

Fe hH↑ 0.041- 0.037 calc.192-194
hN↑ 4.16 4.16 0.36 0.71 145
eΓ↓ dHvA 195,196

Co eΓ↑, eΓ↓ 0.007- 0.01-0.16 0.1 0.08 calc.197-200
eML↓ 1.42 0.2 dHvA 201-203
eL↓ 0.025-

4.13
Ni e(5),e(6) 0.04-0.75 0.03-8.03 2.9,3.7 1-1.9 calc.204-206,

h(3),h(4) dHvA 207-209
145

Cu neck, 0.036A0 0.035A0 0.41 0.46 calc.210
belly 0.98A0 0.98A0 dHvA 211

Ru eΓ, emc, calc.11
hΓ, hLM dHvA 212,213

Os hLM(7) (0.057- 0.015-0.030 0.12-0.2 dHvA 214
eΓ(9) 0.119) 1.71-2.19 -
eΓ(10) 1.33-1.64 1.2
hLM,mc 0.73-1.18 1.1-1.5

Rh eΓ1 1.92-2.5 2.03-2.46 1.43-2.27 calc.215
eΓ2 4.04-5.47 4.30 3.04-4.35 dHvA 216-219
hX1 0.16-0.27 0.15-0.25 0.35-0.54
hX2 0.32-0.46 0.46 0.91-1.33 1.2
hL 0.025 0.022 0.11 0.11

Ir eΓ1,eΓ2, similar similar 1.34-3.02 calc.215,222
hX1, hX2 to Rh to Rh 0.21-1.05 dHvA 216-221

hL

Pd eΓ(s) 2.25-2.58 2.30-2.59 1.34-1.47 2.2 calc.215
hX(d) 0.10-0.72 0.10-0.60 0.41-0.7 0.63-1.91 dHvA 223-225

0.05-0.08
hmc(d) 0.25, 1.32 0.28 1.37, 2.18 2.40-8.1

0.24-0.98 9.1, 10.53
hL 0.02-0.03 0.84, 1.21

Pt eΓ(s) 2.41-3.00 2.48-3.09 1.42-2.05 2.06-3.16 calc.215
hopen(d) 0.25-1.22 0.25-0.78 0.91-6.23 1.53-3.62 dHvA 226,227
hclosed(d) 0.004 0.15 0.30 0.36

UPt3 a-axis 0.057-0.63 0.058-0.63 1.6-5.3 25-90 dHvA 228
b-axis 0.041-0.21 0.044-0.27 1.3-4.2 13-50
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Table 3.1. Atomic volume Va, Debye temperature ΘD, melting point Tm,
boiling point TB, linear coefficient of thermal expansion α, self-diffusion acti-
vation energy Q, heat of fusion ∆Hf , cohesive energy ∆H0, Young’s modulus
Y, shear modulus µ, Poisson’s ratio σ, bulk modulus B, Leibfried, modified
Leibfried and Bragg numbers, L, L′ and B, for 3d, 4d and 5d transition met-
als and neighbour elements. For some metals, estimated values are presented
[235,238].
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3d Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
4d Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
5d Ba La Hf Ta W Re Os Ir Pt Au Hg

d0 d1s2 d2s2 d3s2 d5s d5s2 d6s2 d7s2 d8s2 d10s d10

d0 d1s2 d2s2 d4s d5s d5s2 d7s d8s d10 d10s d10

d0 d1s2 d2s2 d3s2 d4s2 d5s2 d6s2 d7s2 d9s d10s d10

25.9 15.0 10.6 8.5 7.23 7.39 7.1 6.6 6.59 7.09 9.17
Va, 33.9 19.9 14.0 10.8 9.39 8.63 8.18 8.29 8.88 10.3 13.0
cm3/mol 38.1 22.5 13.4 10.8 9.55 8.86 8.44 8.52 9.09 10.2 14.1

234 470 426 326 598 418 457 452 427 342 316
ΘD, 147 268 289 241 459 351 600 480 283 228 352
K 110 142 256 247 388 429 500 425 234 165 75

1112 1812 1941 2178 2148 1512 1808 1765 1726 1356 692
Tm, K 1045 1775 2123 2741 2888 2443 2553 2233 1825 1234 594

998 1193 2495 3271 3653 3433 3300 2716 2042 1336 234
1765 3537 3586 3582 2918 2368 3160 3229 3055 2811 1175

TB,K 1645 3670 4650 4813 5785 5300 4325 3960 3200 2468 1038
1910 3713 4575 5760 6000 6035 5300 4820 4100 3240 630
22.4 10.0 8.35 8.3 8.4 22.6 11.7 12.4 12.7 16.7 29.7

α · 106, 20 12.0 5.78 7.07 4.98 8.06 9.36 8.40 11.5 19.2 30.6
K−1 18.8 10.4 6.01 6.55 4.59 6.63 4.7 6,63 8.95 14.1 61

48.0 91.5 73.2 64.0 61.9 67.0 48.9 23.9
Q·103, 61.1 52.0 98.0 96.9 63.5 45.8
kcal/mol 40.8 43.7 100 120 66.8 39.4

2.07 3.70 3.42 3.83 3.47 3.50 3.67 3.70 4.21 3.12 1.76
∆Hf , 2.19 2.73 3.74 4.82 6.66 5.42 5.67 4.96 4.10 2.78 1.48
kcal/mol 1.83 1.48 4.39 5.76 8.42 7.86 7.56 6.22 4.70 2.95 0.55

42.1 80.1 112 122 94.5 66.9 99.4 102 102 80.8 31.0
∆H0 39.3 97.6 146 174 157 152 154 133 89.9 68.3 26.8
kcal/mol 42.8 102 145 187 200 186 187 159 135 87.6 15.4

0.20 0.81 1.08 1.34 2.48 2.02 2.14 2.10 1.97 1.26 0.94
Y·10−6, 0.14 0.66 0.94 1.07 3.34 3.76 4.20 3.70 1.26 0.82 0.63
kg/cm3 0.13 0.39 1.40 1.85 4.05 4.7 5.50 5.38 1.74 0.74 0.28

0.07 0.32 0.40 0.47 1.19 0.78 0.83 0.78 0.76 0.46 0.38
µ · 10−6, 0.05 0.26 0.35 0.38 1.18 1.45 1.63 1.50 0.52 0.29 0.25
kg/cm2 0.05 0.15 0.54 0.70 1.56 1.82 2.14 2.14 0.62 0.28 0.10

0.31 0.27 0.34 0.36 0.21 0.24 0.28 0.33 0.30 0.34 0.29
σ 0.3 0.2 0.3 0.35 0.30 0.29 0.29 0.27 0.37 0.37 0.30

0 28 0.29 0.30 0.35 0.28 0.29 0.28 0.26 0.38 0.42 0.36
0.15 0.58 1.07 1.65 1.94 0.61 1.72 1.95 1.90 1.33 0.61

B·10−6, 0.12 0.37 0.85 1.74 2.78 3.03 3.27 2.76 1.84 1.03 0.48
kg/cm2 0.10 0.25 1.11 2.04 3.30 3.79 4.26 3.62 2.84 1.77 0.29

4.80 3.20 3.42 4.66 2.12 2.24 2.60 2.87 2.90 3.51 1.69
L 4.90 2.88 3.69 5.62 2.21 1.65 1.62 1.52 3.34 3.49 -

4.44 2.95 2.91 3.67 2.08 1.80 1.55 1.26 3.06 3.94 3.51
4.28 2.85 3.04 4.15 1.88 2.00 2.32 3.35 3.39 4.10 1.97

L′ 4.36 2.56 3.29 5.00 1.97 1.93 1.90 2.78 3.90 4.07 -
3.96 2.63 2.59 3.27 1.85 2.11 1.81 1.47 3.57 4.61 4.10
4.21 3.08 2.84 3.86 1.61 2.44 2.49 2.84 3.84 3.81 2.03

B 4.84 2.09 3.06 4.66 2.40 1.73 1.70 1.59 3.54 3.70 -
3.84 1.73 2.42 3.05 2.26 1.95 1.67 1.36 3.32 4.11 3.81
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Table 3.2. Atomic volume Va (cm3/mol), Debye temperature ΘD(K),
melting point Tm(K), boiling point TB(K), linear coefficient of thermal ex-
pansion α (10−6K−1), heat of fusion ∆Hf (kcal/mol), cohesive energy ∆H0

(kcal/mol), Young’s modulus Y(106kg/cm2), shear modulus µ (106kg/cm2),
Poisson’s ratio σ, bulk modulus B (106kg/cm2) for rare earth metals [235].

La Ce(γ) Pr Nd Pm Sm Eu
f0d f1d f3 f4 f5 f6 f7

Va 22.54 17.03 20.82 20.59 20.33 19.95 28.98
ΘD 142 146 85 159 158 116 127
Tm 1193 1070 1208 1297 1308 1345 1099
TB 3713 3972 3616 2956 2730 2140 1971
∆Hf 1.48 1.24 1.65 1.71 1.94 2.06 2.20
∆H0 101.9 97.9 85.8 75.9 64 50.2 42.9
α 10.4 8.5 6.79 9.98 9.0 10.8 33.1
Y 0.387 0.306 0.332 0.387 0.43 0.348 0.155
µ 0.152 0.122 0.138 0.148 0.17 0.129 0.060
σ 0.288 0.248 0.305 0.306 0.278 0.352 0.286
B 0.248 0.244 0.312 0.333 0.360 0.300 0.150

Gd Tb Dy Ho Er Tm Yb
f7d f8d f10 f11 f12 f13 f14

V 19.94 19.26 18.99 18.75 18.46 18.13 24.87
ΘD 170 150 172 114 134 127 118
Tm 1585 1629 1680 1734 1770 1818 1097
TB 3540 3810 3011 3228 3000 2266 1970
∆Hf 2.44 2.46 2.49 3.38 2.62 4.22 1.83
∆H0 82.7 89.9 66.9 70.5 70.7 58.3 40.3
α 8.28 10.3 10.0 10.7 12.3 13.3 24.96
Y 0.573 0.586 0.644 0.684 0.748 0.77 0.182
µ 0.227 0.233 0.259 0.272 0.302 0.31 0.071
σ 0.259 0.261 0.243 0.255 0.238 0.235 0.284
B 0.391 0.407 0.392 0.404 0.419 0.405 0.135

Table 3.3. Atomic volume Va (cm3/mol), Debye temperature ΘD(K),
melting point Tm(K), boiling point TB(K), linear coefficient of thermal ex-
pansion α (10−6K−1), heat of fusion ∆Hf (kcal/mol), cohesive energy ∆H0

(kcal/mol), Young’s modulus Y(106kg/cm2), shear modulus µ (106kg/cm2),
Poisson’s ratio σ, bulk modulus B (106kg/cm2) for 5f-elements [235].
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Ac Th Pa U Np Pu Am Cm Bk Cf
f0d1 f0d2 f2d1 f3d1 f5d0 f6d0 f7d0 f7d1 f8d1 f10d0

Va 22.56 19.79 15.03 13.16 13.11 12.06 17.78 12.8
ΘD 124 170 159 200 121 171
Tm 1323 2024 1698 1404 910 913 1473 913
TB 3200 4500 4680 3950 4150 3727
∆Hf 3.03 3.56 2.99 2.47 1.60 0.68
∆H0 104 136.7 132 125 113 91.8
α 14.9 11.2 7.3 12.6 27.5 55 7.5
Y 0.35 0.76 1.02 1.90 1.02 0.98
µ 0.138 0.284 0.398 0.75 0.406 0.446
σ 0.269 0.285 0.282 0.245 0.255 0.15
B 0.25 0.553 0.078 1.007 0.694 0.546

Table 3.4. Polymorphic transformations in Ca, Sr, d-metals, rare earths
and actinides [238,139]. The temperature intervals (K) for stablility of crystal
structures under normal pressure are given in parentheses.
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Ca fcc (0-737), hcp (737-1123)
Sc hcp (0-1223), bcc (1223-1811)
Ti hcp (0-1158), bcc (1158-1938)
Mn compl.cubic A12 (0-1000), compl.cubic A13 (1000-1365), fcc with

tetragonal distortions (1000-1365), bcc (1405-1517)
Fe bcc (α, 0-1183), fcc (γ, 1183-1163), bcc (δ, 1663-1912)
Co hcp (0-700), fcc (700-1763)
Sr fcc (0-506), hcp (506-813), bcc (813-1163)
Y hcp (0-1763), bcc (1763-1773)
Zr hcp (0-1135), bcc (1135-2128)
La hcp (0-583), fcc (583-1137), bcc (1137-1193)
Hf hcp (0-2050), bcc (2050-2222)
Ce fcc (α, 0-116), dhcp (β, 116-263), fcc (γ, 263-1003), bcc (δ,

1003-1068)
Pr dhcp (0-1071), bcc (1071-1208)
Nd dhcp (0-1141), bcc (1141-1297)
Pm dhcp (0-1163), bcc (1163-1315)
Sm rhomboedr.Sm-type (0-1190), fcc (1190-1345)
Eu bcc (0-1099)
Gd hcp (0-1535), bcc (1535-1585)
Tb hcp (0-1560), bcc (1560-1633)
Dy hcp (0-1657), bcc (1657-1682)
Ho hcp (0-1701), bcc (1701-1743)
Er hcp (0-1795)
Tm hcp (0-1818)
Yb hcp (0-1065), bcc (1065-1097)
Lu hcp (0-1929)
Th fcc (0-1400), bcc (1400-1750)
Pa bct (0-1170), bcc (1170-1575)
U orthorhomb.(0-662), tetr.(662-672), bcc (772-1132)
Np orthorhomb.(0-278), tetr.(278-577), bcc (577-637)
Pu monoclynic (α, 0-122), monoclynic (β, 122-206), orthorhomb.

(206-310), fcc (310-458), bct (458-480), bcc (480-641)
Am dhcp (0-1079), fcc (1079-1176)
Cm dhcp, fcc (0-1340)
Bk dhcp, fcc (0-986)
Cf dhcp (α, 0-600), fcc (β, 600-725), fcc (γ, ¿725)
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Table 3.5. Theoretical (obtained from band calculations) and experimen-
tal values of the coefficient of the linear specific heat in d-metals [78].

3d Sc Ti V Cr Mn Fe Co Ni Cu
4d Y Zr Nb Mo Tc Ru Rh Pd Ag
5d La Nb Ta W Re Os Ir Pt Au

5.25 1.40 4.31 1.67 6.49 2.63 2.08 4.13 0.70
γtheor 5.46 1.37 3.44 1.40 - 2.00 3.24 5.58 0.62
mJ/mol K2 - 1.15 2.96 0.99 1.91 1.65 2.20 5.18 0.69

10.7 3.35 9.26 1.40 9.20 4.98 4.73 7.02 0.69
γexp 10.2 2.80 7.79 2.0 - 3.3 4.9 9.42 0.65
mJ/mol K2 10.1 2.16 5.90 1.3 2.3 2.4 3.1 6.8 0.73

Table 4.1. Magnetic susceptibility (10−6 emu/mol) of paramagnetic d-
metals with a cubic lattice. To exclude the influence of magnetic impurities,
the signs of dχ/dT are given at not too low temperatures. References may
be found in the review [270].

V Nb Mo Tc Rh Pd Lu Ta W Ir Pt
d3s2 d3s2 d5s1 d5s2 d8s1 d10 d1s2 d3s2 d4s2 d7s2 d9s1

χ 300 212 89.2 270 ?07 550 336 162 53.3 24.1 192
dχ/dT − − + − + − − − + + −

Table 4.2. Longitudinal (H‖c) and transverse (H⊥c) magnetic suscep-
tibility (10−6 emu/mol) of paramagnetic d-metals with a hcp lattice. The
susceptibility of a polycrystal is given by χ = (χ‖+2χ⊥)/3. Two sets of data
correspond to results of various authors (see [270]).

Sc Y Ti Zr Hf Re Ru Os
d1s2 d1s2 d2s2 d2s2 d2s2 d4s2 d7s1 d6s2

χ‖ 294, 281 174, 270 169 147, 151 95 68.3 35.2 5.4
χ⊥ 232, 298 220, 445 145 86, 100 63 73.0 44.2 12.6
dχ/dT − + + + + + + +

Table 4.3. Values of the ground state moment ps determined from the sat-
uration magnetization (M0 = psµB), ferromagnetic and paramagnetic Curie
temperature TC and Θ, and paramagnetic moment pC , determined from the
Curie constant (C = µ2

eff/3 = pC(pC +2)µ2
B/3) for some d- and f-metals, and

their alloys and compounds. Rough estimates for non-ferromagnetic transi-
tion metals Pd and Pt, where the Curie-Weiss law holds approximately, are
also presented.
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ps T K p Θ K Ref.
Fe 2.22 1044 2.3 1101
Co 1.71 1388 2.3 1411
Ni 0.62 627 0.9 649
CrBr3 3.0 37 3.0 37 280
CoS2 0.84 116 1.00
CrO2 4.0 400
Pd - - 0.6 -200
Pd +1% Fe 0.084 50 0.72 280
Pt - - 0.6 -1000
ZrZn2 0.12 21 0.66 35 280
Sc3In 0.045 5.5 0.22 16 280
Ni3Al 0.075 41 0.64 280
Co2MnSi 5.10 1034 2.03 1044 281
Co2MnSn 5.37 826 3.35 870 281
NiMnSb 4.2 728 2.06 910 282
PtMnSb 3.96 572 3.56 670 282
Pd2MnSn 4.22 189 4.05 201 283
PtMnSn 3.5 330 4.2 350 282
Gd 7.13 289 7.05 316
Tb 9.34 221 8.2 232
EuO 6.80 69.4 6.8 76 280
EuRh3B2 0.56 46 3.5 -40 284
CeRh3B2 0.38 115 2.2 -373 284

Table 4.4. Calculated and experimental values of the spin splitting ∆
(eV), the Curie temperature TC (K) and the ratio ∆/TC for iron group metals
according to data of various authors [291,304].

Fe Co Ni

∆(1) [292] 2 1.54 0.58
∆(2) [293] 1.41 1.11 0.38
∆exp [104] 1.5 1.1 0.3

T
(1)
C 5300 4000 2900

T
(2)
C 2560 2240 1790

T exp
C 1040 1390 630

δ(1) 4.38 4.47 2.32
δ(2) 6.39 5.75 2.46
δ(exp) 16.7 9.16 5.5
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Table 4.5. Values of the Stoner and renormalized Curie points, TS and
TC, spin-fluctuation temperature Tsf , and the fluctuating magnetic moment
at T calc

C for iron group metals; tC = T exp
C /TS [304].

TS Tsf T calc
C T exp

C 〈m2〉1/2 tC
Fe 2560 1293 1068 1043 1.52 0.41
Co 2240 2439 1436 1388 0.93 0.62
Ni 1790 759 656 631 0,42 0.35

Table 4.6. Magnetic anisotropy constants (105 erg/cm3) and anisotropy
field (Oe) for iron group metals and gadolinium. Data of [265] with some
corrections are used.

Fe (bcc) Ni(fcc) Co (hcp) Gd (hcp)
K1(293K) - - 43 -
K1(4.2K) - - 77 -8.5
K2(293K) 4.8 -0.49 12 -
K2(4.2K) 6 -12 10 25
K3(293K) 2 0.4 - -
K3(4.2K) - 6
Ha(293K) 560 205 9500 -

Table 4.7. Magnetic anisotropy constants, 108 erg/cm3 at low temper-
atures [15,381], and anisotropy of paramagnetic Curie temperature ∆Θ =
Θ‖ −Θ⊥, K [39] for heavy rare earth metals. The corresponding theoretical
estimates are presented for the crystal field and exchange mechanism.

Tb Dy Ho Er Tm
Kexp

1 -5.5 -5 -2.2 - -
Kexp

2 -0.45 0.54 -1.7 - -

Kcf
1 -5.5 -5.05 -1.98 1.97 5.5

Kexch
1 -5.5 -4.6 -1.43 1.1 1.85

∆Θexp 44 48 15 -29 -58
∆Θcf 44 38 15 -16 -44
∆Θexch 48 40 12 -25 -24(-??)

Table 4.8. Values of orbital momentum and the type of magnetic anisotropy
for rare earth ions.
R3+ Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

F H I I H F S F H I I H F
L 3 5 6 6 5 3 0 3 5 6 6 5 3

Table 5.1. Electrical resistivity ρ (µΩ cm) at room temperatures, the
coefficient at the T 2-term A (10−6 µΩ cm/K2), the coefficient at linear specific
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heat γ (mJ/mol K2), and the ratios A/γ2 and ρ/γ in 3d, 4d and 5d rows
[406,412,413].

3d Sc Ti V Cr Mn Fe Co Ni Cu
4d Y Zr Nb Mo Tc Ru Rh Pd Ag
5d La Nb Ta W Re Os Ir Pt Au

52 48 20 12 144 10.2 6 7.4 1.7
ρ 67 43 15 5. 20 7.5 5 10.8 1.6

62 34 13 5. 20 10.6 5.3 10.8 2.3
- - 3.3a - - - - - -

A 100b 80 32 2 - 2.7 33 -
- 15 70c 1c 4-5c 0.2-0.5 0.9 12-19 -
9 4.5 8.5 2 17 5 5.1 7 1

γ 8 2.8 7.8 2 - 2.95 4.65 9.57
- 2.16 6.3 0.84 2.3 2.35 3.14 6.41
- - 0.045 - - - - - -

A/γ2 1.6 10.2 0.53 0.5 - 0.31 - 0.36 -
3.2 1.78 1.41 0.95 0.36 0.09 0.38 -

6 11 2.2 6 8.5 2 1.2 1.05 1
ρ/γ 8 15.5 1.9 2.75 - 2.6 1.1 1.13 -

- 15.75 2.15 6.48 8.68 4.5 1.7 1.68 -

aρ/ρ (4.2K) = 1400 bρ/ρ(4.2K) = 700 cAfter excluding dimensional effect,
A < 0.0510−6 µΩcm/K2

Table 6.1. Electronic specific heat and magnetic characteristics (param-
agnetic suceptibility, Neel or Curie (in brackets) point, paramagnetic Curie
temperature and the ground state moment) of some anomalous rare-earth
and actinide compounds (heavy-fermion, Kondo lattice and intermediate va-
lence systems)
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γ χ(0) TN(TC) Ms −θ Ref.
mJ/mol K2 10−3 emu

mol
K µB K

CeAl3 1620 36 1.2? 0.3? 46 507-511
CeAl2 135 44 3.8 0.89a 32 512
CeCu2Si2 1100 7 0.8 164 507,513,514
CeCu6 1450 27 45 507,515
CeCu2 90 3.5 516
CeCu5 100 3.9 517
CeCu2Ge2 100 4.1 1 18 518
CeIn3 260 11 10 0.6 50 512
CeInCu2 1200 20 1.6 0.1 20 519
CePb3 1000b 1.1 0.1 520
CeCu4Al 2000(<1K) 25 520
CeCu4Ga 1900 20 26 520
CeCu3Al2 540(1.6K) 29 40 520
CeCu3Ga2 730(1.5K) 520
CeAl2Ga2 80 8.5 1.2 18 521
CeInPt4 2500 225 520
CePtSi 800 47 520
CePtSi2 1700 (1.2K) 17 520
CePt2Sn2 3500c 0.88 25 520
CePtIn 700 73 520
CePdIn 330 1.8 520
CePdSn 7.5 68 522
CePdSb (17) 1.2 -10 520
CeRu2Si2 350 17 54 520
CeZn11 2500 2 523
CeRh3B2 16 (115) 0.37 370 284
UPt3 450 7 5.0 0.02 200 524
URu2Si2 180 17.5 0.03 65 525,526
UBe13 1100 15 53-70 507,527,528
UZn8.5 535 12.5 9.7 0.8 105 507,526,529
UCd11 800 45 5.0 23 507,526
UAgCu4 310 18 520,530
UNiAl 164 19 0.8 531
UNi2Al3 5.2 0.24 532
UPd2Al3 150 14 0.85 47 533
UPdIn 280 20d 534,535
U2PtSi3 400 (8) 536
YbCuAl 260 25.5 34 512
YbAsf 270 0.6 0.82 537,538
YbP 0.4 0.79 537
YbSb 0.3 0.63 537
YbSi 1.5 0.2 539
YbPdCu4 200 0.8 520
YbNiSn 300 (5.5) 0.4e 65 540
YbNiSbf 175 0.8 13 541
Sm4As3 (160) 2.5? 542
Sm4Sb3 (16) 1.5? 542
TmS 8.9 4.0 512
TmSe 3 1.7 512
PrCu2Si2 225 21 2.5 543
NpBe 900 56 3.4 42 507
NpAl2 193 (57) 544



BIBLIOGRAPHY 455

aMaximum value in modulated-moment structure.

bγ ' 200 above the Neel temperature

cAbove the Neel temperature

dSmall canted ferromagnetic moment 0.3µB below 7K.

eCanted ferromagnetic moment.

fLow carrier concentration.

Table 6.1. Electronic specific heat and magnetic characteristics (param-
agnetic suceptibility, Neel or Curie (in brackets) point, paramagnetic Curie
temperature and the ground state moment) of some anomalous rare-earth
and actinide compounds (heavy-fermion, Kondo lattice and intermediate va-
lence systems)
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γ χ(0) TN(TC) Ms −θ Ref.
hline mJ/mol K2 10−3emu/mol K µ K
CeAl3 1620 36 1.2? 0.3? 46 507-511
CeAl2 135 44 3.8 0.89a 32 512
CeCu2Si2 1100 7 0.8 164 507,513,514
CeCu6 1450 27 45 507,515
CeCu2 90 3.5 516
CeCu5 100 3.9 517
CeCu2Ge2 100 4.1 1 18 518
CeIn3 260 11 10 0.6 50 512
CeInCu2 1200 20 1.6 0.1 20 519
CePb3 1000b 1.1 0.1 520
CeCu4Al 2000(<1K) 25 520
CeCu4Ga 1900 20 26 520
CeCu3Al2 540(1.6K) 29 40 520
CeCu3Ga2 730(1.5K) 520
CeAl2Ga2 80 8.5 1.2 18 521
CeInPt4 2500 225 520
CePtSi 800 47 520
CePtSi2 1700 (1.2K) 17 520
CePt2Sn2 3500c 0.88 25 520
CePtIn 700 73 520
CePdIn 330 1.8 520
CePdSn 7.5 68 522
CePdSb (17) 1.2 -10 520
CeRu2Si2 350 17 54 520
CeZn11 2500 2 523
CeRh3B2 16 (115) 0.37 370 284
UPt3 450 7 5.0 0.02 200 524
URu2Si2 180 17.5 0.03 65 525,526
UBe13 1100 15 53-70 507,527,528
UZn8.5 535 12.5 9.7 0.8 105 507,526,529
UCd11 800 45 5.0 23 507,526
UAgCu4 310 18 520,530
UNiAl 164 19 0.8 531
UNi2Al3 5.2 0.24 532
UPd2Al3 150 14 0.85 47 533
UPdIn 280 20d 534,535
U2PtSi3 400 (8) 536
YbCuAl 260 25.5 34 512
YbAsf 270 0.6 0.82 537,538
YbP 0.4 0.79 537
YbSb 0.3 0.63 537
YbSi 1.5 0.2 539
YbPdCu4 200 0.8 520
YbNiSn 300 (5.5) 0.4e 65 540
YbNiSbf 175 0.8 13 541
Sm4As3 (160) 2.5emu/mol 542
Sm4Sb3 (16) 1.5emu/mol 542
TmS 8.9 4.0 512
TmSe 3 1.7 512
PrCu2Si2 225c 21 2.5 543
NpBe13 900 56 3.4 42 507
NpAl2 193 (57) 544
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aMaximum value in modulated-moment structure.
bγ 200 above the Neel temperature
cAbove the Neel temperature
dSmall canted ferromagnetic moment 0.3µB below 7K.
eCanted ferromagnetic moment.
fLow carrier concentration.


