
Digital Signal Processing

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

WILEY SERIES ON TOPICS IN
DIGITAL SIGNAL PROCESSING

� DFT/FFT and Convolution Algorithms and Implementation
by C. S. Burrus and T. W. Parks

� Digital Signal Processing: Laboratory Experiments Using C and the
TMS320C31 DSK
by Rulph Chassaing

� Digital Signal Processing with the TMS320C25
by Rulph Chassaing and Darrell W. Horning

� A Simple Approach to Digital Signal Processing
by Craig Marven and Gillian Ewers

� Digital Filter Design
by T. W. Parks and C. S. Burrus

� Theory and Design of Adaptive Filters
by John R. Treichler and C. Richard Johnson

Digital Signal Processing
Laboratory Experiments
Using C and the TMS320C31 DSK

RULPH CHASSAING
University of Massachusetts, Dartmouth

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
New York � Chichester � Weinheim � Brisbane � Singapore � Toronto

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial
capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Copyright © 1999 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic or mechanical, including uploading, downloading, printing, decompiling,
recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third
Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @
WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional person should be sought.

ISBN 0-471-20065-4.

This title is also available in print as ISBN 0-471-29362-8.

For more information about Wiley products, visit our web site at www.Wiley.com.

Preface ix

List of Examples xiii

List of Programs/Files on Accompanying Disk xv

1 DIGITAL SIGNAL PROCESSING DEVELOPMENT SYSTEM 1

1.1 Introduction 1

1.2 DSK Support Tools 2

1.3 Programming Examples to Test the DSK Tools 3

1.4 Additional Support Tools 14

1.5 Experiment 1: Testing the DSK Tools 16

References 17

2 ARCHITECTURE AND INSTRUCTION SET OF THE 19
TMS320C3x PROCESSOR

2.1 Introduction 19

2.2 TMS320C3x Architecture and Memory Organization 21

2.3 Addressing Modes 25

2.4 TMS320C3x Instruction Set 26

2.5 Assembler Directives 30

2.6 Other Considerations 32

2.7 Programming Examples Using TMS320C3x and C code 34

2.8 Experiment 2: TMS320C3x Instructions and Associated Tools 47

References 48

3 INPUT AND OUTPUT WITH THE DSK 51

3.1 Introduction 51

3.2 The Analog Interface Circuit (AIC) Chip 53

v

1
Contents

3.3 Interrupts and Peripherals 59

3.4 Programming Examples Using TMS320C3x and C code 60

3.5 PC Host - TMS320C31 Communication 80

3.6 External/Flash Memory and I/O with 16-bit Stereo Audio Codec 87

3.7 Experiment 3: Input and Output with the DSK 88

References 89

4 FINITE IMPULSE RESPONSE FILTERS 91

4.1 Introduction to the z-Transform 91

4.2 Discrete Signals 96

4.3 Finite Impulse Response Filters 97

4.4 FIR Implementation Using Fourier Series 99

4.5 Window Functions 103

4.6 Filter Design Packages 106

4.7 Programming Examples using TMS320C3x and C Code 106

4.8 Experiment 4: FIR Filter Implementation 129

References 131

5 INFINITE IMPULSE RESPONSE FILTERS 135

5.1 Introduction 135

5.2 IIR Filter Structures 136

5.3 Bilinear Transformation 143

5.4 Programming Examples Using TMS320C3x and C Code 150

5.5 Experiment 5: IIR Filter Design and Implementation 160

References 163

6 FAST FOURIER TRANSFORM 165

6.1 Introduction 165

6.2 Development of the FFT Algorithm with Radix-2 165

6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 167

6.4 Decimation-in-Time FFT Algorithm with Radix-2 174

6.5 Bit Reversal for Unscrambling 178

6.6 Development of the FFT Algorithm with Radix-4 179

6.7 Inverse Fast Fourier Transform 183

6.8 Programming Examples Using C and TMS320C3x Code 183

6.9 Experiment 6: FFT Implementation 193

References 194

vi Contents

7 ADAPTIVE FILTERS 195

7.1 Introduction 195

7.2 Adaptive Structures 197

7.3 Programming Examples Using C and TMS320C3x Code 199

7.4 Experiment 7: Adaptive Filtering Implementation 221

References 222

8 DSP APPLICATIONS AND PROJECTS 223

8.1 Banks of FIR Filters 223

8.2 Multirate Filter 228

8.3 Pass/Fail Alarm Generator 235

8.4 External Interrupt for Control 239

8.5 Miscellaneous Applications and Projects 242

References 254

APPENDIX A TMS320C3X INSTRUCTION SET AND REGISTERS 257

A.1 TMS320C3x Instruction Set 257

A.2 TMS320C3x Registers 257

Reference 263

APPENDIX B SUPPORT TOOLS 265

B.1 Code Explorer Debugger from GO DSP 265

B.2 Virtual Instrument Using Shareware Utility Package 269

B.3 Filter Design and Implementation Using DigiFilter 271

B.4 MATLAB for FIR/IIR Filter Design, FFT, and Data Acquisition 275

References 281

APPENDIX C EXTERNAL AND FLASH MEMORY 283

C.1 External Memory 286

C.2 Flash Memory 287

References 289

APPENDIX D INPUT AND OUTPUT WITH 16-BIT STEREO 291
AUDIO CODEC

References 298

Index 299

Contents vii

Digital signal processors, such as the TMS320 family of processors, are found in a
wide range of applications such as in communications and controls, speech process-
ing, and so on. They are used in Fax, modems, cellular phones, etc. These devices
have also found their way into the university classroom, where they provide an eco-
nomical way to introduce real-time digital signal processing (DSP) to the student.

With the introduction of Texas Instruments’ third-generation TMS320C3x pro-
cessor, floating-point instructions and a new architecture that supports features
which facilitate the development of high-level language compilers appeared. The C
optimizing compiler takes advantage of the special features of the TMS320C3x
processor such as parallel instructions and delayed branches. Throughout the book,
we refer to the C/C++ language as simply C. Generally, the price paid for going to a
high-level language is a reduction in speed and a similar increase in the size of the
executable file. Although TMS320C3x/assembly language produces fast code,
problems with documentation and maintenance may exist. A compromise solution
is to write time-critical routines in TMS320C3x code that can be called from C.

This book is intended primarily for senior undergraduate and first-year graduate
students in electrical and computer engineering and as a tutorial for the practicing
engineer. It is written with the conviction that the principles of DSP can best be
learned through interaction in a laboratory setting, where the student can appreciate
the concepts of DSP through real-time implementation of experiments and projects.
The background assumed is a system course and some knowledge of assembly lan-
guage or a high-level language such as C.

Most chapters begin with a theoretical discussion, followed by representative ex-
amples that provide the necessary background to perform the concluding experi-
ments. There are a total of 60 solved programming examples using both
TMS320C3x and C code. Several sample projects are also discussed.

Programming examples using both TMS320C3x and C code are included
throughout the text. This can be useful to the reader who is familiar with both DSP
and C programming, but who is not necessarily an expert in both. Although the

ix

1
Preface

reader who elects to study the programming examples in either TMS320C3x or C
code will benefit from this book, the ideal reader is one with an appreciation for
both TMS320C3x and C code.

This book can be used in the following ways:

1. For a laboratory course using many of the Examples and Experiments from
Chapters 1-7. The beginning of the semester can be devoted to short program-
ming examples and experiments and the remainder of the semester used for a
final project.

2. For a senior undergraduate or first-year graduate design project course, using
Chapters 1-5, selected materials from Chapters 6-8, and Appendices C and D.

3. For the practicing engineer as a tutorial and for workshops and seminars.

Chapter 1 introduces the tools through three examples. These tools include an as-
sembler and a debugger that are provided with the DSP Starter Kit (DSK). Program
examples in C can be tested without a C compiler since all associated executables
files are on the accompanying disk. Chapter 2 covers the architecture and the in-
structions available for the TMS320C3x processor. Special instructions and assem-
bler directives that are useful in DSP are discussed. Chapter 3 illustrates input and
output (I/O) with the two-input analog interface chip (AIC) on the DSK board
through several programming examples. An alternative I/O with a 16-bit stereo au-
dio codec that can be interfaced with the DSK is described.

Chapter 4 introduces the z-transform and discusses finite impulse response
(FIR) filters and the effect of window functions on these filters. Chapter 5 covers
infinite impulse response (IIR) filters. Programming examples to implement FIR
and IIR filters, in both TMS320C3x and C code, are included.

Chapter 6 covers the development of the fast Fourier transform (FFT). Program-
ming examples on FFT are included. Chapter 7 demonstrates the usefulness of the
adaptive filter for a number of applications with the least mean square (LMS).
Chapter 8 discusses a number of DSP applications.

A disk included with this book contains all the programs discussed in the text.
See page xv for a list of the programs/files included on the disk.

During the summers of 1996-1998, a total of 115 faculty members from over 100
Institutions took my DSP and Applications workshops supported by grants from the
National Science Foundation (NSF). I am thankful to them for their encouragement,
participation and feedback on this book. In particular, Dr. Hisham Alnajjar from the
University of Hartford, Dr. Armando Barreto from Florida International University,
Dr. Paul Giolma from Trinity University, Dr. William Monaghan from the College
of Staten Island—CUNY, and Dr. Mark Wickert from the University of Colorado at
Colorado Springs. I also thank Dr. Darrell Horning from the University of New
Haven, with whom I coauthored the text Digital Signal Processing with the
TMS320C25, for introducing me to book-writing. I thank all the students who have
taken my DSP and Senior Design Project courses. I am particularly indebted to two
former students, Bill Bitler and Peter Martin, who have worked with me for many

x Preface

years and have contributed to this book as well as to my previous book Digital Sig-
nal Processing with C and the TMS320C30.

The support of the National Science Foundation’s Undergraduate Faculty En-
hancement (UFE) Program in the Division of Undergraduate Education, Texas In-
struments, and the Roger Williams University Research Foundation is appreciated.

RULPH CHASSAING

Preface xi

1.1 Matrix/vector multiplication using TMS320C3x code 4
1.2 Sine generation with 4 points using TMS320C3x code 8
1.3 Matrix/vector multiplication using C code 11
2.1 Addition of four values using TMS320C3x code 34
2.2 Multiplication of two arrays using TMS320C3x code 35
2.3 Background for digital filtering using TMS320C3x code 37
2.4 Matrix/vector multiplication using TMS320C3x code 42
2.5 Addition using C and C-called TMS320C3x assembly function 42
2.6 Matrix/vector multiplication using C and C-called TMS320C3x 45

assembly function
3.1 Internal interrupt using TMS320C3x code 60
3.2 Sine generation with AIC data using TMS320C3x code 62
3.3 Loop/echo with AIC routines in separate file, using TMS320C3x code 65
3.4 Loop/echo with interrupt using TMS320C3x code 69
3.5 Sine generation with interrupt using TMS320C3x code 70
3.6 Pseudorandom noise generation using TMS320C3x code 70
3.7 Alternative pseudorandom noise generation with interrupt using 73

TMS320C3x code
3.8 Loop/echo with AIC data using C code 75
3.9 Loop/echo Calling AIC routines in separate file, using C code 75
3.10 Loop/echo with interrupt using C code 79
3.11 PC-TMS320C31 communication using C code 82
3.12 Loop control with PC-TMS320C31 communication using C code 84
3.13 Data acquisition with the DSK using C and TMS320C3x code 85
4.1 FIR lowpass filter simulation with 11 coefficients using TMS320C3x 108

code
4.2 FIR bandpass filter simulation with 45 coefficients using TMS320C3x 111

code
4.3 Generic FIR filter specified at run-time, using TMS320C3x code 112
4.4 FIR filter incorporating pseudorandom noise as input, using 115

TMS320C3x code

xiii

1
List of Examples

4.5 Mixed-code FIR filter with main C program calling filter function in 117
TMS320C3x code

4.6 FIR filter with data move using C code 121
4.7 FIR filter using C code 123
4.8 FIR filter with samples shifted, using C code 125
4.9 FIR filter design using filter development package 127
5.1 Sine generation by recursive equation using TMS320C3x code 152
5.2 Cosine generation by recursive equation using TMS320C3x code 154
5.3 Sine generation by recursive equation using C code 154
5.4 Sixth-order IIR bandpass filter using TMS320C3x code 156
5.5 Sixth-order IIR bandpass filter using C code 160
6.1 Eight-point complex FFT using C code 184
6.2 Eight-point FFT with real-valued Input, using mixed C and 187

TMS320C3x code
6.3 Real-time 128-Point FFT using mixed code 191
7.1 Adaptive filter using C code compiled with Borland C/C++ 200
7.2 Adaptive filter for noise cancellation using C code 203
7.3 Adaptive predictor using C code 206
7.4 Adaptive predictor with table lookup for delay, using C code 208
7.5 Adaptive notch filter with two weights, using TMS320C3x code 210
7.6 Adaptive predictor using TMS320C3x code 215
7.7 Real-time adaptive filter for noise cancellation, using TMS320C3x code 218
B.1 FIR filter using Code Explorer for debugging and plotting 265
B.2 FIR filter design and implementation using DigiFilter 272
B.3 IIR filter design and implementation using DigiFilter 274
B.4 FIR filter design using MATLAB 275
B.5 Multiband FIR filter design using MATLAB 276
B.6 IIR filter design using MATLAB 277
B.7 H(z) from H(s) using bilinear function in MATLAB 278
B.8 Eight-point FFT and IFFT using MATLAB 279
B.9 Data acquisition, plotting, and FFT using MATLAB 279
C.1 Multirate filter with 10 bands using external memory and 287

TMS320C3x code
C.2 Sine generation with four points from flash memory, using C code 287
C.3 FIR bandpass filter from flash memory using C code 289
D.1 Loop programs for input and output with the Crystal 16-bit stereo 297

audio codec using TMS320C3x code
D.2 FIR filter with the Crystal stereo audio codec using TMS320C3x code 298

xiv List of Examples

README TXT 169
EGAVGA BGI 5363

Directory of CH1

MATRIX ASM 1628
SINE4P ASM 1118
MATRIXC ASM 6860
MATRIXC C 482
MATRIXC CMD 750
MATRIXC OUT 1901
AICCOM31 ASM 5308

Directory of CH2

ADD4 ASM 702
MULT4 ASM 1150
FIR4 ASM 3016
MATRIXMF ASM 1369
ADDMFUNC ASM 556
ADDM ASM 4179
FIR11 ASM 2595
ADDM C 393
MATRIXM C 488
ADDM CMD 804
ADDM OUT 1878
MATRIXM OUT 2053
FIR11L DAT 190
FIR11X DAT 242

1
List of Programs/Files on
Accompanying Disk

xv

Directory of CH3

INTERR ASM 1915
SINEALL ASM 3093
LOOP ASM 838
LOOPI ASM 1076
SINE8I ASM 1539
PRNOISE ASM 1829
PRNOISEI ASM 2214
VECS_DSK ASM 222
LOOPALL ASM 8525
LOOPC ASM 9635
PCLOOP EXE 212306
C31COM ASM 3169
DAQ EXE 250093
DAQ ASM 9627
LOOPALL C 2488
AICCOMC C 2271
LOOPC C 610
LOOPCI C 740
C31COM C 439
C31LOOP C 873
LOOPALL CMD 991
LOOPCI CMD 1029
C31COM CMD 905
C31LOOP CMD 905
LOOPALL OUT 2100
LOOPC OUT 2146
LOOPCI OUT 2422

C31LOOP OUT 2856
C31COM OUT 1664
PCCOM CPP 1309
PCLOOP CPP 1033
DAQ CPP 1632
DAQ DAT 3117
DSKLIB LIB 143872
SYMBOLS H 4190
DSKLIB H 293
VECS_DSK OBJ 427
SINEFM ASM 2622

Directory of CH4

BP45SIM ASM 2383
LP11SIM ASM 2385
FIRNC ASM 2147
FIRPRN ASM 3550
FIRMCF ASM 2016
FIRMC ASM 16714
AICCOMC C 2233
FIRDMOVE C 1106
FIRERIC C 1509
FIRMC C 713
FIRC C 1376
FIRMC CMD 1091
FIRDMOVE OUT 3018
FIRERIC OUT 3113
FIRMC OUT 3040
FIRC OUT 3089
BP45SIM DAT 371
LP11SIM DAT 190
FIR BAT 97
FIRPROGA BAS 20237
FIRPROG BAS 17752
BP55 COF 1080
PASS2B COF 1083
PASS3B COF 1088
LP55 COF 1095
BS55 COF 1082
LP11 COF 578
HP55 COF 1079
PASS4B COF 1084
STOP3B COF 1086
BP23 COF 551
BP41 COF 804

xvi List of Programs/Files on Accompanying Disk

BP45 COF 843
BP33 COF 706
COMB14 COF 273
KBP53 COF 2426
RBP53 COF 2424
BP45COEF H 721

Directory of CH5

SINEA ASM 1767
COSINEA ASM 1833
IIR6BP ASM 2335
SINEC C 1971
IIR6BPC C 1057
IIR6BPC CMD 1033
SINEC OUT 3986
IIR6BPC OUT 3115
AMPLIT CPP 17889
BLT BAS 5363
IIR6COEF H 639
SINECMOD C 2456
SINESW ASM 2553

Directory of CH6

TWID128 ASM 2096
FFT_RL OBJ 1011
FFT_RL ASM 6358
TWID8 ASM 221
FFT128C C 2498
FFT C 2294
SINEGEN C 540
TWIDGEN C 814
FFT8C C 680
FFT8MC C 1124
FFT128C CMD 1033
FFT128C OUT 8327
FFT8C OUT 5837
FFT8MC OUT 2985
TWIDDLE H 8557
COMPLEX H 212
FFT8C CMD 922

Directory of CH7

ADAPTP ASM 4110
NOTCH2W ASM 4072

ADAPTER ASM 3848
ADAPTC C 1684
ADAPTDMV C 1600
ADAPTIVE C 7783
ADAPTSH C 1938
ADAPTTB C 1639
ADAPTDMV CMD 983
ADAPTSH CMD 746
ADAPTDMV OUT 3414
ADAPTSH OUT 5227
ADAPTTB OUT 4543
SIN312 694
SIN312A 776
HCOS312 686
HCOS312A 749
COS312A 798
DPLUSN 730
DPLUSNA 840
SCDAT 3985
SIN1000 647
SHIFT C 812
ADAPTERC ASM 4321

Directory of CH8

MR7DSK ASM 33624
FIR8SETS ASM 10251
FIRALL ASM 10311
MR10SRAM ASM 46118
ALARMGEN ASM 6053
SIM2 C 3803
FIRALL CPP 1226
FIR8SETP 3057
FIRALL EXE 212589
EISINE C 1521
EISINE CMD 1061
EISINE OUT 4307
VEC_DSK ASM 215
VEC_DSK1 ASM 290
SINE4INT C 1454

List of Programs/Files on Accompanying Disk xvii

SINE4INT CMD 947
SINE4INT OUT 4035
SINE4C C 959
SINE4C CMD 959
SINE4C OUT 2317
FIREXT ASM 11292

Directory of APPB

BP45SIMP ASM 2573
BP45SIMP DAT 788
DAQ DAT 3117
MATBP33 COF 594
MAT33 M 523
MAT63 M 544
DAQ M 752

Directory of APPC

SINEHEX C 1254
BP45HEX C 1580
TESTMEM CPP 3690
C31DLHEX CPP 2087
SINEHEX CMD 1015
SINHEX30 CMD 448
BP45HEX CMD 1048
BPHEX30 CMD 471
BP45HEX OUT 3177
BP45HEX A0 4717
SINEHEX OUT 2632
SINEHEX A0 3113
SINEHEX MAP 4439

Directory of APPD

LOOPL_CS ASM 865
LOOPR_CS ASM 848
LOOPB_CS ASM 1015
CSCOM ASM 6646
BP45CS ASM 2702

AM, 156, 163
AMPLIT.CPP utility program, infinite

impulse response (IIR) filters,
149–150

Analog interface circuit (AIC) chip, DSK
input/output, 53–58

control, 54–55
data configuration, 60
desired Fs and filter BW values, 55–58
loop/echo with C code, 75–79
loop/echo with TMS320C3x code,

65–69
sine generation with TMS320C3x code,

62–65
ARn, TMS320C3x processor, 25
ARn++(d), TMS320C3x addressing, 25
ARn++(d)%, TMS320C3x addressing,

25–26
+ARn(d), TMS320C3x addressing, 25
++ARn(d)B, TMS320C3x addressing, 25
ARn++(IR0), TMS320C3x addressing, 26
Assembler directives, TMS320C3x

processor, 30–32
Assembly function, TMS320C3x:

C code, addition with, 42–45
matrix/vector multiplication, 5, 45–47

Bandpass filter:
finite impulse response filters, 111–112
infinite impulse response filters:

C code, 160
TMS320C3x code, 156–160

multirate filters, 228–235

Acoustic direction tracker, 242–245
Adaptive filters:

background, 195–197
C and TMS320C3x code programming,

199–221
adaptive predictor, C code, 206–210
adaptive predictor, TMS320C3x code,

215–218
C code compiled with Borland C/C++,

200–201
interactive adaptation, 200, 202
noise cancellation, 203–206
notch filter with two weights, 210–215
real-time adaptive filter, noise

cancellation, 218–221
table lookup for delay, adaptive

predictor, 208–210
implementation, 221–222
structure, 197–199
TMS320C30 EVM, 250

Adaptive notch filter:
TMS320C30 EVM, 250
two-weights, TMS320C3x code, 210–215

Adaptive predictor:
adaptive filter system identification, 198
C code programming, 206–210

table lookup delay, 208–210
TMS320C3x programming code,

215–218
ADDM.OUT execution, 45
AIC master clock, sine generation, four

points, loading and execution, 10–11
Aliased sinusoidal waveform, DSK

input/output, 52–53

299

1
Index

Bandstop filters:
finite impulse response (FIR), 117–118
infinite impulse response (IIR), 146–148

Batch file for finite impulse response
filters, generic filter, TMS320C3x
code, 114–115

Bilinear transformation (BLT), infinite
impulse response (IIR) filters,
143–150

AMPLIT.CPP utility program, 149–150
BLT.BAS utility program, 148
design procedure, 143–145
first-order highpass filter, 146
first-order lowpass filter, 145–146
fourth-order bandpass filter, 147–148
second-order bandstop filter, 146–147
sixth-order bandpass filter, C code,

160–162
sixth-order bandpass filter, TMS320C3x

code, 156–160
Bit reversal, fast Fourier transforms (FFT),

unscrambling applications,
178–179

Blackman window, finite impulse response
filters, 105

BLT.BAS utility program, infinite impulse
response (IIR) filters, 148

Boot loader, sine generation, four points,
loading and execution, 9–11

Borland’s C/C++ compiler:
adaptive filter programming, 200
PC host-TMS320C31 communication,

80–82
Branch conflicts, TMS320C3x processor,

32
Branch instructions, TMS320C3x

processor, 28–29

Cache, TMS320C3x processor, 33
Cascade structure, infinite impulse response

(IIR) filters, 140–141
C code programming:

adaptive filters, 199–210
adaptive predictor, C code, 206–210
C code compiled with Borland C/C++,

200–201
interactive adaptation, 200, 202
noise cancellation, 203–206
table lookup for delay, adaptive

300 Index

predictor, 208–210
DSK input/output, 60–80

loop/echo with AIC data, 75–79
loop/echo with interrupt, 79–80

external/flash memory:
FIR bandpass filter, 289
sine generation, 287–289

fast Fourier transform (FFT):
eight-point complex, 184–187
real-time 128-point FFT, mixed code,

191–193
real-valued input, 8-point mixed C and

TMS320C3x code, 187–191
finite impulse response filters:

data move, 121–122
filter convolutions, 123–124
flash memory, 285–289
sample shifting, 125–127

infinite impulse response (IIR) filters:
sine generation, 154–156
sixth-order bandpass filters, 160–162
linking, 44
matrix/vector multiplication, 45–46

PC host-TMS320C31 communication,
80–87

Circular buffering, TMS320C3x processor,
30

Code Explorer, DSK support, 14
Code Explorer debugger, GO DSP,

265–270
Computer-aided approximation, finite

impulse response filters, 105–106
Conflicts, TMS320C3x processor, 32–34
Convolution equation, finite impulse

response filters, 98–99
TMS320C31 memory organization,

106–108
Cosine generation, 152, 154
Crystal CS4216/CS4218 stereo audio

codec, DSK input/output,
external/flash memory, 88

C3x tools, DSK support, 14–16

Data acquisition:
DSK communications, C and

TMS320C3x code, 85–87
MATLAB design, 279–281

Data move applications, finite impulse
response filters, C code, 121–122

Debugger windows, matrix/vector
multiplication, TMS320C3x code,
5–7

Decimation-in-frequency FFT algorithm,
RADIX-2 development, 167–174

eight-point FFT, 170–172
sixteen-point FFT, 172–174

Decimation-in-time algorithm, fast Fourier
transform (FFT), RADIX-2
development, 174–176

eight-point FFT, 176–178
Difference equations, finite impulse

response filters, 95–96
DigiFilter:

DSK support, 14
filter design and implementation with,

271–274
Digital filtering, TMS320C3x code, 37–42
Digital signal processing (DSP):

applications and projects:
acoustic direction tracker, 242–245
external interrupt for control,

239–242
FFT-based security system, 248–249
FIR filter banks, 223–228
harmonic analyzer, 246–247
multirate filters, 228–235
pass/fail alarm generator, 235–239
speech processing for identification,

248
TMS320C30 EVM projects, 250–254

development system, 1–2
DSK support tools, 2–3
support tools, 14–16, 265–281
tools testing, 16–17

Direct form structures, infinite impulse
response (IIR) filters, 136–140

Discrete Fourier transform (DFT):
inverse discrete Fourier transform

(IDFT), 183
RADIX-2 algorithm development,

165–179
RADIX-4 algorithm development,

179–182
Discrete signals, finite impulse response

filters, 96–97
DMA, TMS320C3x processor, 33–34
DSP Starter Kit (DSK), 2

components of, 3

301 Index

input/output, 51–89
analog interface circuit (AIC) chip,

53–58
external/flash memory with 16-bit

stereo audio codec, 87–88
interrupts and peripherals, 59–60
PC host-TMS320C3x communication,

80–87

Euler’s formula, z-transforms of sinusoid,
93–94

External/flash memory:
board construction, 283–286
DSK input/output, 87–88
memory decode ranges:

external memory, 286–287
FIR bandpass filter, 289
flash memory, 287
sine generation, 287–289

External and flash memory, DSK support,
14–15

Fast Fourier transform (FFT):
background, 165
bit reversal for unscrambling, 178
MATLAB design:

data acquisition, 279–281
eight-point FFT, 279

RADIX-2 algorithm development,
165–170, 174–176

decimation-in-frequency algorithm,
167–174
eight-point FFT, 170–172
sixteen-point FFT, 172–174

decimation-in-time algorithm,
174–179
eight-point FFT, 176–178

RADIX-4 algorithm development,
179–182

sixteen-point FFT, 181–182
TMS320C3x/C code programming:

eight-point complex, 184–187
real-time 128-point FFT, mixed code,

191–193
real-valued input, 8-point mixed C and

TMS320C3x code, 187–191
Filter design packages:

DigiFilter components, 271–274
finite impulse response filters, 106

Filter development package (FDP), finite
impulse response filters, 127–129

Finite impulse response (FIR) filters:
adaptive filter structure and, 197
banks, implementation of, 223–228
Code Explorer debugging and plotting,

265–270
design criteria and techniques, 97–99
DigiFilter design and implementation,

271–274
discrete signals, 96–97
filter design packages, 106
filter development package, 127–129
generic, TMS320C3x code, 112–115
MATLAB design, 275–276, 281

multiband FIR filter, 276–278
s-plane to z-plane mapping, 94–95
window functions, 103–105

Flash memory, construction, 283–286
Floating-point tools, C compilation and

linkage, matrix/vector
multiplication, 12–14

FM, 70, 88
Four-channel multiplexer, TMS320C30

EVM, 253
Fourier series, finite impulse response

filters, 98–104
window functions, 104–106

Four values addition, TMS320C3x code,
34–35

Frequency shift modulation, TMS320C30
EVM, 253

Generated output frequency, sine
generation, four points, loading and
execution, 9–10

Goldwave software:
DSK support, 14
virtual instrument shareware, 269–271

Hamming window, finite impulse response
filters, 104

Hanning window, finite impulse response
filters, 104–105

Harmonic analyzer, 246–247
Highpass filters, infinite impulse response

(IIR)filters, 146

Index 302

Image processing, TMS320C30 EVM, 250
Indirect addressing:

bit reversal, fast Fourier transforms
(FFT), 178–179

TMS320C3x processor, 25–26
Infinite impulse response (IIR) filters:

AMPLIT.CPP utility program, 149–150
background, 135–136
bilinear transformation (BLT), 143–148
BLT.BAS utility program, 148
cosine generation, recursive equation,

TMS320C3x code, 154
cosine generation, TMS320C3x code,

154
design procedure, 143–145
DigiFilter design and implementation,

274
filter structures, 136–143

cascade structure, 140–141
direct form II structure, 137–139
direct form II transpose, 139–140
direct form I structure, 136–137
parallel form structure, 141–143

first-order highpass filter, 146
first-order lowpass filter, 145–146
fourth-order bandpass filter, 147–148
MATLAB design, 277–279
second-order bandstop filter, 146–147
sine generation, recursive equation, C

code, 154–156
sine generation, TMS320C3x code,

152–154
sixth-order bandpass filter, C code,

160–162
sixth-order bandpass filter, TMS320C3x

code, 156–160
Input/output:

DSK support, 51–89
analog interface circuit (AIC) chip,

53–58
16-bit stereo codec, 15, 88
interrupts and peripherals, 59–60
PC host-TMS320C3x communication,

80–87
TMS320C3x and C code programming

examples, 60–87
16-bit stereo audio codec design,

291–298
FIR filter, 298

loop programs, 297–298
TMS320C3x instruction, 28

Instruction sets, TMS320C3x processor,
26–30, 257–260

branch instructions, 28–29
circular buffering, 30
input/output instructions, 28
load and store instructions, 27–28
math instructions, 27
parallel instructions, 260
repeat and parallel instructions, 29–30

Interactive adaptation, adaptive filter, C
code programming, 200–202

Interactive implementation, FIR filter
banks, 225–228

Interrupts:
DSK input/output, 59

internal, with TMS320C3x code,
60–62

loop/echo using C code, 79–80
loop/echo using TMS320C3x code,

69–70
sine generation using TMS320C3x

code, 70
external control, 239–242

Inverse fast Fourier transform (IFFT):
eight-point IFFT, 183
MATLAB design, 279

Kaiser window, finite impulse response
filters, 105

Laplace transform, finite impulse response
filters, 91–92, 94

Least mean square algorithm (LMS),
adaptive filter structure, 196–197,
199

Linking command, 13
Load and store instructions, TMS320C3x,

27, 257
Loop/echo programs, 75–80

AIC routines using C code, 75–79
AIC routines using TMS320C3x code,

65–69
crystal 16-bit stereo audio codec,

297–298
interrupt using TMS320C3x code,

69–70
Lowpass filters:

303 Index

finite impulse response (FIR) filter:
Fourier series, 101–103
TMS320C3x simulation, 108–110

infinite impulse response (IIR) filter,
145–146

Math instructions, TMS320C3x processor,
27

MATLAB software:
data acquisition, plotting and FFT,

279–281
eight-point FFT and IFFT, 279
filter design, 275–279, 281
infinite impulse response (IIR) filter

design, 277–279
multiband FIR filter design, 276–278
real-time FIR/IIR filter design, 281

Matrix/vector multiplication:
C and C-called function, 45–47
C code, 11–14
TMS320C3x, 4–7, 42

Memory access:
external/flash memory, 286–289
organization, 21–25
TMS320C3x processor, 33

Memory conflicts, TMS320C3x processor,
33

Mixed-mode FIR filter, C and TMS320C3x
code, 117–121

Multiband FIR filter design, MATLAB
design, 276–278

Multirate filter, 228–235
design criteria, 228–233
external and TMS320C3x code, 287
implementation, 233–235
TMS320C30 EVM, 250

Neural networks, TMS320C30 EVM, signal
recognition, 253–254

Noise cancellation:
adaptive filter:

C code, 203–206
real-time filter, TMS320C3x code,

218–221
adaptive filter structure, 197
TMS320C30 EVM, 250

Oscilloscopes, DSK support tool, 2

Parallel form structure, infinite impulse
response (IIR) filters, 141–143

Parametric equalizer, TMS320C30 EVM,
250

Pass/fail alarm generator, programming for,
235–239

PC host-TMS320C31 communication:
C code, 81–87
library support file DSKLIB.LIB,

Borland’s C/C++ compiler, 81
support header file DSKLIB.H, 80–81

PID controller, TMS320C30 EVM, 251
Pseudorandom noise:

finite impulse response filters, 115–117
pass/fail alarm generator, 238–239

Pseudorandom noise generation,
TMS320C3x code, 70–74

RADIX-2 algorithm development, fast
Fourier transform (FFT), 165–179

decimation-in-frequency algorithm,
167–174

decimation-in-time algorithm, 174–178
RADIX-4 algorithm development, fast

Fourier transform (FFT), 179–182
sixteen-point FFT, 181–182

Read-only memory (ROM), 34
Real-time adaptive filter, noise cancellation,

TMS320C3x code, 218–221
Recursive equation, infinite impulse

response (IIR) filters:
cosine generation, 154
sine generation, 152–156

Recursive least squares (RLS) algorithm,
adaptive filter structure, 199

Register conflicts, TMS320C3x processor,
32–33

Registers:
interrupt enable (IE), 261
interrupt flag (IF), 263
status (ST), 261

Repeat and parallel instructions, 29–30
RIDE40, DSK support, 15

Sample shifting, finite impulse response
filters, C code, 125–127

Sampling frequency (Fs), sine generation,
four points, loading and execution,
10–11

Index 304

Security system design, fast Fourier
transform (FFT), 248–249

Serial port, DSK input/output, 59
SigLab, DSK support, 15
Signal generator, DSK support tool, 2
Signal recognition, TMS320C30 EVM,

neural networks, 253–254
Signal/spectrum analyzer, DSK support

tool, 2
Sine generation:

C code, 154–156
DSK input/output:

AIC data using TMS320C3x, 62–65
interrupt using TMS320C3x, 70

external/flash memory, 287–289
four points, TMS320C3x code, 8–11
TMS320C3x code, 150–154

16-bit stereo/audio codec:
DSK input/output, 87–88
input/output, 291–298

Speech processing for identification,
248–249

s-plane mapping, finite impulse response
filters, z-plane mapping, 94–95

Swept frequency response, TMS320C30
EVM, 250

Taylor series approximation, finite impulse
response filters, z-transforms of
exponential functions, 92–93

Timers, DSK input/output, 59
TMS320C30 EVM projects, 250–254
TMS320C3x:

adaptive filters, 210–221
adaptive predictor, TMS320C3x code,

215–218
real-time adaptive filter, noise

cancellation, 218–221
addressing modes, 25–26
architecture and memory organization,

21–25
conflicts, 32–34
CPU registers, 22–25
crystal 16-bit stereo audio codec:

FIR filter, 298
loop programs, 297–298

developmental background, 19–21
digital filtering background, 37–42
DSK input/output, 60–74

305 Index

Two arrays multiplication, TMS320C3x
code, 35–37

Two-weighted notch structure, adaptive
filters, 198

Unscrambling, bit reversal, fast Fourier
transforms (FFT), 178–179

Video line rate analysis, TMS320C30 EVM,
250–251

Virtual bench, DSK support, 14
Virtual instrument, shareware utility

package, 269–271

Wait states, TMS320C3x processor, 34
Window functions, finite impulse response

filters, 103–106
Wireguided submersible, TMS320C30

EVM, 251–253

z-transform, finite impulse response filters,
91–96

ZT of exponential function, 92–93
ZT of sinusoid, 93–94

loop/echo with AIC routines, 65–69
loop/echo with interrupt, 69–70
pseudorandom noise generation, 70–74

functional block diagram, 22–23
sine generation with AIC data, 62–65
sine generation with interrupt, 70

external memory, multirate filter, 287
finite impulse response filters, 106–121

generic filter specification, 112–115
lowpass filter simulation, 108–110
mixed-mode filter, C program calling,

117–121
infinite impulse response (IIR) filters:

cosine generation, 152, 154
sine generation, 150–154
sixth-order bandpass filter, 156–160

instruction set, 26–30, 257–260
memory organization, 21–25
registers, 22–25, 257, 259, 261–263

TMS320 floating-point DSP assembly
language tools, DSK support, 2–3

Tools testing, DSK experiments, 16–17
Transfer functions, finite impulse response

filters, 97–102

� Use of the TMS320C31 DSK

� Testing the software and hardware tools such as the debugger

� Programming examples in C and TMS320C3x code to test the tools

Chapter 1 introduces several tools available for digital signal processing (DSP).
These tools include the TMS320C31-based DSP Starter Kit (DSK) with com-
plete input and output support. Three examples are included to illustrate these
development tools and, in particular, to test the DSK.

1.1 INTRODUCTION

Digital signal processors, such as the TMS320C31, are just like fast micro-
processors with a specialized instruction set and architecture appropriate for
signal processing. The architecture of a digital signal processor is very well suit-
ed for numerically intensive calculations. These processors are used for a wide
range of applications from communications and controls to speech and image
processing. They are found in music synthesizers, cellular phones, fax/modems,
etc. They have become the product of choice for a number of consumer applica-
tions, since they can be very cost-effective. DSP techniques have been very suc-
cessful because of the development of low-cost software and hardware support.
For example, applications such as modems and speech recognition can be less
expensive using DSP techniques. Furthermore, general-purpose digital signal
processors can handle different tasks, since they can be readily reprogrammed
for a different application. While analog-based systems with discrete electronic
components such as resistors can be more sensitive to temperature changes,

1

1
Digital Signal Processing
Development System

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

DSP-based systems are less affected by environmental conditions such as tem-
perature.

Books and articles have been published that address the importance of digi-
tal signal processors for a number of applications [1–17]. Various technologies
have previously been used for signal processing. The more common applica-
tions using DSP processors have been for the audio-frequency range from 0 to
20 kHz, for which they have been very suitable. Speech can be sampled at 10
kHz, which implies that each sample or value is acquired at a rate of 1/(10 kHz)
or 0.1 ms. For example, a commonly used sample rate (how quickly samples are
acquired) of a compact disk (CD) is 44.1 kHz.

The basic system consists of an analog-to-digital converter (ADC) to cap-
ture an input signal. The resulting digital representation of the captured signal
is then processed by a digital signal processor such as the TMS320C31 and
then output through a digital-to-analog converter (DAC). Also included within
the basic system is a special input filter for antialiasing to eliminate erroneous
signals, and an output filter to smooth or reconstruct the processed output sig-
nal.

Most of the work presented here involves the design of a program to imple-
ment a DSP application.

1.2 DSK SUPPORT TOOLS

To perform the experiments, the following tools are needed:

1. Texas Instruments’ DSP Starter Kit (DSK), which includes a board with
the TMS320C31 floating-point processor and input and output (I/O) sup-
port. The DSK board contains an analog interface circuit (AIC) chip that
provides for programmable ADC and DAC rates, and input and output fil-
tering, all on a single chip. Software tools for assembling and debugging
as well as several applications examples are also included with the DSK
package [18].

2. An IBM compatible PC. The DSK board connects to the parallel printer
port in the PC, through a DB25 cable provided with the DSK package.

3. An oscilloscope, signal generator, speakers, and signal/spectrum analyzer
(optional). Shareware utilities are available that utilize the PC and a sound
card to create a virtual instrument such as an oscilloscope, a function gen-
erator, or a spectrum analyzer (see Section 1.4 and Appendix B).

4. TMS320 floating-point DSP assembly language tools (optional) to sup-
port C programs [19–23]. These tools include a C compiler, an assembler
(different than the one provided with the DSK), and a linker that creates
an executable common-object file format (COFF) file that can run on the
DSK [24]. They are not needed to run and test the C programs listed in

2 Digital Signal Processing Development System

this book and included on the accompanying disk, as long as these pro-
grams are not modified.

The DSK based on the TMS320C31 (C31) is a relatively powerful, yet inex-
pensive ($99) development board for real-time digital signal processing. The
DSK board contains the TMS320C31 processor and the TLC320C40 analog in-
terface circuit (AIC) chip for input and output [18].

The assembler provided with the DSK creates an executable file that can be
directly downloaded into the C31 on the DSK and run. It does not create a
COFF file, which is obtained using the TMS320 floating-point DSP assembly
language tools. The DSK assembler does not include or require a linker. Code
is assembled at an absolute address into specified memory sections using cer-
tain assembler directives. These directives serve as a linker and can be used to
include or chain several files together (discussed in Chapter 2). The assembled
executable file can be loaded into the C31 on the DSK by using the debugger
or boot loader provided with the DSK package, as illustrated later in this
chapter.

1.3 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS

Three examples are introduced to illustrate the DSK tools. Don’t worry about
the program code at this point, since these programs are only to test the tools, in
particular, the DSK. All the programs discussed in this book are on the accom-
panying disk. The programs coded in TMS320C3x or assembly language were
assembled using the DSK software tools version 1.22. The latest version of
these tools is available from Texas Instruments’ FTP site at FTP.TI.COM.

1. The DSK package includes a User’s Guide manual, a DB25 parallel print-
er cable, and a disk that contains the assembler, debugger, and various utilities
and applications examples [18,19]. The DSK (board) requires a DC adapter that
provides 7.5–12 Volts DC or an AC adapter that provides 6–9 Volts AC; both
must supply a minimum of 400 milliamps [18]. Adapters with lower voltage or
amperage specifications than recommended should not be utilized. When pow-
ered up, the light on the DSK board should change color (green and red). When
the DSK is not properly connected, it is usually because of the parallel port se-
lection. For example, the address is 0x378 for LPT1 (by default). If that port ad-
dress is already being used, select another communication port (0x278 for LPT2
or 0x3BC for LPT3). RCA type connectors are available on the DSK board for
input and output.

2. Create a directory dsktools and install the software tools provided on
the disk included with the DSK package. Add dsktools to the path in your
autoexec.bat file using PATH = C:\dsktools so that the software
tools can be accessed from other directories, with C representing the selected

1.3 Programming Examples to Test the DSK Tools 3

hard drive. The number of active files should be limited to 20 when using the
debugger by setting FILES = 20 in your config.sys file.

Example 1.1 Matrix/Vector Multiplication Using
TMS320C3x Code

This example illustrates the use of some of the tools. Don’t worry at this point
about the program code. Figure 1.1 shows a listing of the MATRIX.ASM pro-
gram to multiply a (3 × 3) matrix A by a (3 × 1) vector B, or

4 Digital Signal Processing Development System

;MATRIX.ASM - MATRIX/VECTOR MULTIPLICATION (3x3)x(3x1) = (3x1)

.start “.data”,0x809C00 ;starting address for data

.start “.text”,0x809900 ;starting address for text

.data ;data section

A .float 1,2,3,4,5,6,7,8,9 ;values for matrix A

B .float 1,2,3 ;values for matrix B

A_ADDR .word A ;starting address of matrix A

B_ADDR .word B ;starting address of matrix B

OUT_ADDR .word $;output (current) address

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP A_ADDR ;init to data page 128

LDI @A_ADDR,AR0 ;AR0=starting address of A

LDI @B_ADDR,AR1 ;AR1=starting address of B

LDI @OUT_ADDR,AR2 ;AR2= output address

LDI 3,R4 ;R4 used as LOOPI counter

LOOPI LDF 0,R0 ;initialize R0=0

LDI 2,AR4 ;AR4 used as LOOPJ counter

LOOPJ MPYF3 *AR0++,*AR1++,R1 ;R1=A[I,J]*B[J]

ADDF3 R1,R0,R0 ;accumulate in R0

DB AR4,LOOPJ ;decrement AR4.Branch until AR4<0

FIX R0,R2 ;convert R0 from float to integer

STI R2,*AR2++ ;store integer output in memory

LDI @B_ADDR,AR1 ;AR1=starting address of matrix B

SUBI 1,R4 ;decrement R4

BNZ LOOPI ;branch while R4 is not zero

BR $;branch to current addr (itself)

FIGURE 1.1 Matrix/vector multiplication program using TMS320C3x code
(MATRIX.ASM).

1 2 3 1 14� 4 5 6 � � 2 � = �32�
7 8 9 3 50

that yields a (3 × 1) vector containing the result (14, 32, 50). All the programs
discussed in this book are included on the accompanying disk.

Assembling
Assemble the source program MATRIX.ASM by typing:

dsk3a matrix.asm

The asm extension is not necessary, but it is a good practice to name the source
file with an extension asm. The assembler creates the executable file MA-
TRIX.DSK (not case-sensitive) that can be downloaded into the C31 on the
DSK and run using either the debugger or the boot loader (boot loading is illus-
trated in Example 1.2).

Loading an Executable File Into the DSK to Run
To invoke the debugger, type:

dsk3d

If the debugger is not successfully invoked, check for proper power supply con-
nection and the parallel printer port setup in your PC. The DSK connection to
the parallel port on the PC defaults to LPT1. [18].

The C31 processor should always be reset before running a program. Within
the debugger, you can reset the C31 with the command:

reset

Then load the executable file MATRIX.DSK by typing the command:

load matrix.dsk

These commands are not case-sensitive and the extension dsk is not necessary.
The debugger screen should now look as in Figure 1.2.

Note that the program code starts at the memory location 809900, as shown
in the first column within the DISASSEMBLY window. The hexadecimal nota-
tion 0x is implied. The first column represents the instruction memory address
and the second column represents the instruction opcode.

1. Press F8 to single-step through the first five lines of code in the matrix
program, shown in Figure 1.2. A summary of the instructions available for the

1.3 Programming Examples to Test the DSK Tools 5

C31 is listed in Appendix A; however, don’t worry for now about the code. The
right-top window screen shows that AR0 contains the value 809c00, which is
the starting address in memory where the nine values of the matrix A are stored.
AR1 contains the value 809c09, the starting address in memory where the
three values of the vector B are stored; and AR2 contains 809c0e, the starting
memory address for the three resulting output values. The matrix A multiplied
by the vector B yields the values e, 20, 32 in hex, equivalent to the decimal val-
ues 14, 32, 50.

In Chapter 2, we will see that AR0–AR7 are eight registers on the C31 that
are often used to designate a specific address in memory that contains an in-
struction or a data value. F0–F7 represent the eight registers R0–R7 that are
often used to contain a data value. The C31 has 2K words (32-bit) of internal or
on-chip memory (16 million memory spaces total); 809800 (in hex) represents
the starting address of this block of internal memory.

2. Access the MEMORY window using ALT-M (the ALT key together
with M). Use the down-arrow key to scroll down from 809800, the memory
address in the first column, to 809c00. Or, press ESC to access the command
window and type mem 0x809c00 to display the contents in memory start-
ing at the address 809c00. The notation 0x is necessary with a command.
Press F1 for help on available debugger commands. The data values stored
starting at memory address 809c00 are in floating-point format which you

6 Digital Signal Processing Development System

FIGURE 1.2 DSK Debugger window screen.

need not to worry about. The floating-point value 00000000 corresponds to a
decimal value of 1.

Type memf 0x809c00 to display the content in memory in float (decimal)
format starting at the address 809c00. Verify that the nine values of the matrix
A are stored in memory starting at the address 809c00, followed by the three
values of the vector B, starting at the address 809c09.

3. As you single-step through the program and execute each time the in-
struction STI R2,*AR2++(1), observe the register window within the de-
bugger (top-right window screen), which displays the contents of the CPU reg-
isters in hexadecimal format, by default. Press F3 and verify that each resulting
value 14, 32, 50 is contained in F0, which represents the register R0. Also, ver-
ify from the MEMORY window that the resulting output values e, 20, 32 in hex
are stored in memory starting at the address 0x809c0e, specified in AR2. The
three resulting values in memory locations 809c0e, 809c0f, and 809c10
can be displayed in 32-bit hex format or in 32-bit signed format (decimal) with
the commands memx 0x809c0e or memd 0x809c0e, respectively. While a
debugger command is not case-sensitive, the 0x notation for hexadecimal is re-
quired.

Press F2 or F3 to display the CPU registers in 32-bit hex format or float for-
mat, respectively. The F’s represent the float of the extended precision registers
R0–R7. These registers are on the C31 and displayed as F0–F7 within the CPU
registers window screen.

4. Run the program again by typing reset and load matrix from the
COMMAND window, and press F5 to run. Then, press ESC to stop execution,
since the instruction BR WAIT to branch back to itself (to wait) is still being
executed continuously. Note that F0 = 50, the last result.

5. Reset and load again the matrix program. Press ALT-D to access the
DISASSEMBLY window. Use the down-arrow key to scroll down to the STI
R2,*AR2++(1) instruction at the address 80990b. Press F2 to toggle or set a
breakpoint, which will highlight the instruction set with the breakpoint. Press
F4 to run until breakpoint. Note that the program counter (PC) contains
80990b, the address of the instruction to be executed next. Press F8 once to
execute that instruction. Verify from the MEMORY window that the content in
memory location 809c0e is the first resulting value of 14 (e in hex). Press F4
again to run until the set breakpoint, then F8 to execute the instruction STI
R2,*AR2++(1) a second time, and verify the second resulting value 32 in
memory location 809c0f. Repeat this process a third time to verify the third
resulting value of 50 in memory location 809c10.

We will see in Chapter 2 that the instruction STI R2,*AR2++(1) stores
each result from R2 into a memory location specified by AR2. The register AR2
is incremented for each output value and contains the address in memory where
each result is stored. In this fashion, AR2 is used as a “pointer,” pointing to a
memory address. Type quit from the command window to exit the debugger.

1.3 Programming Examples to Test the DSK Tools 7

Example 1.2 Sine Generation with Four Points Using
TMS320C3x Code

This example illustrates the generation of a sinusoid using a table look-up
method. There are two RCA connectors next to the light on the DSK board, one
for input and the other for output. Connect the DSK output to a speaker to hear
a generated tone or to an oscilloscope to view the generated sinusoidal wave-
form. An analog interface circuit (AIC) chip, on board the DSK, provides I/O
capabilities and will be discussed in Chapter 3.

Section 1.4 and Appendix B describe several tools available as virtual instru-
ments that can utilize the PC and a sound card as an oscilloscope or as a spec-
trum analyzer. For example, while the C31 on the DSK is running, the share-
ware utility Goldwave can be accessed and run as an oscilloscope to verify the
generated output sinusoid. The output of the DSK would then be connected to
the input of a sound card (such as Sound Blaster) plugged on a PC.

Figure 1.3 shows the program listing SINE4P.ASM, which generates a tone
using four points. Again, don’t worry about the code for now, since the empha-
sis is to become more familiar with the tools. This program invokes (includes)
another program AICCOM31.ASM (on the accompanying disk), which contains
several routines for communication with the on-board AIC for real-time input

8 Digital Signal Processing Development System

FIGURE 1.3 Sine generation program using TMS320C3x code (SINE4P.ASM).

;SINE4P.ASM - GENERATES A SINE USING ONLY 4 POINTS

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;start address for data

.include “AICCOM31.ASM” ;AIC communication routines

.data ;data section

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 kHz

SINE_ADDR .word SINE_VAL ;address of sine values

.brstart “SINE_BUFF”,16 ;align sine table

SINE_VAL .word 0,1000,0,-1000 ;sine values

LENGTH .set 4 ;length of circular buffer

.entry BEGIN ;start of code

.text ;text section

BEGIN CALL AICSET ;initialize AIC

LDI LENGTH,BK ;BK = size of buffer

LDI @SINE_ADDR,AR1 ;AR1 = addr of sine values

LOOP LDI *AR1++%,R7 ;R7 = table value

CALL AICIO_P ;call AICIO for output

BR LOOP ;loop back

.end ;end

and output capabilities. While we will discuss the AIC in Chapter 3, we will
mostly use the AIC communication routines by simply “including” the file
AICCOM31.ASM in other programs (fourth line in SINE4P.ASM).

1. Assemble the program SINE4P.ASM only and not AICCOM31.ASM.
2. Access the debugger, reset the C31 processor as in Example 1.1, and load

the program SINE4P.DSK.
3. Press F5 to run and verify a tone with a frequency of 2 kHz. The frequen-

cy f of the resulting output waveform is obtained using:

f = Fs /(number of points)

where Fs = 8 kHz is the sampling frequency, which also designates the output
sample rate. This rate determines how fast an output sample point representing
the generated sinusoidal waveform is produced. The sampling rate is specified
by the A/D and D/A converters on the AIC. Although there is no external input,
an output sample point is generated every T = 1/Fs = 0.125 ms, where T repre-
sents the sampling period.

Loading and Executing Using the Boot Loader
Run the sine generation program by invoking a boot loader program provided
with the DSK software tools. This procedure does not access the debugger. Type

dsk3load sine4p.dsk

to load and run this program. Verify that a 2-kHz signal is generated. Again the
extension dsk is not necessary. Care must be exercised when running a pro-
gram with the boot loader, since it does not reset the C31. Erroneous values can
result, for example, if an interrupt-driven program (interrupt will be discussed
in Chapter 3) was previously loaded into the C31. In such cases, use the debug-
ger to reset the C31.

Don’t modify the original programs on the accompanying disk. Before mak-
ing any changes to any file on the accompanying disk, copy it first into your
hard drive.

1. Changing the number of points to change the generated output fre-
quency. a) Replace the four points specified in the program (9th line) with the
following eight points:

0, 707, 1000, 707, 0, –707, –1000, –707

that represent a sequence of eight points from a sinusoid taken every 45 degrees
and scaled. Change also the length (LENGTH) from 4 to 8. Rename this pro-
gram SINE8P.ASM. Reassemble SINE8P.ASM only and run it using the de-
bugger or the boot loader. The file AICCOM31.ASM is included in

1.3 Programming Examples to Test the DSK Tools 9

SINE8P.ASM and should not be assembled separately. Verify a generated sinu-
soidal tone with a lower pitch or frequency, f = 8,000/8 = 1 kHz.

b) Replace the eight-point sequence with 12 points taken every 30 degrees
from a sinusoid, i.e., 0, 500, 866, . . . , –500, and scaled. Change the length to
12. Verify a generated output sinusoidal tone with a frequency of f = 8,000/12 =
666.66 Hz.

2. Changing the sampling frequency Fs. Four values are defined/set in
AICSEC (6th line in SINE4P.ASM). The first and third values specify the AIC
sampling frequency Fs. Change these values such that AICSEC is set to:

0E1Ch, 1h, 3872h, 67h

which specifies a sampling frequency Fs = 16 kHz, as will be shown in Chapter
3. These four values are specified in hex with an h after each value (or 0x before
the value). Reassemble the program SINE4P.ASM and use the boot loader to
load and run this program. Verify that the frequency of the new generated sinu-
soid is 4 kHz, since

f = 16,000/(number of points)

3. Changing the AIC master clock to change Fs. The first and the third
value specified in AICSEC are calculated in Chapter 3 using a specific value
for the AIC master clock. Changing the master clock frequency proportionately
changes the sampling frequency Fs.
a) Back up the file AICCOM31.ASM (on disk) and change the instruction
(twelfth line in the program):

LDI 1,R0

to LDI 0,R0, which doubles the AIC master clock and effectively doubles the
sampling frequency Fs with the values specified in AICSEC. Reassemble the
original program SINE4P.ASM with a four-point look-up table and a frequen-
cy set for 8 kHz. Note that the file AICCOM31.ASM should not be assembled
separately. Since it is “included” or incorporated in the program SINE4P.ASM,
only that program is to be assembled. Use the boot loader to run the resulting
executable file SINE4P.DSK. Verify that the generated output signal has a fre-
quency of 4 kHz since the new sampling frequency is 16 kHz, or

f = 16,000/4 = 4 kHz

b) The instruction LDI k,R0 with k = 2, 3, 4, . . . , can be used to divide
the AIC master clock. Let k = 2 and reassemble the original sine generation
program SINE4P.ASM and verify an output signal with a frequency of 1 kHz,

10 Digital Signal Processing Development System

since Fs is effectively reduced from 8 kHz to 4 kHz. Let k = 4, and verify that
the generated output signal frequency is

f = (8,000/k)/4 = 500 Hz

Example 1.3 Matrix/Vector Multiplication Using C code

You can test and run all the C-program examples in this book, since all the re-
sulting executable files, compiled/assembled and linked with the TMS320 float-
ing-point assembly language tools, are included on the accompanying disk.
However, if the C-source file is modified, it will need to be compiled, assem-
bled, and linked again.

Running C Programs Without the Floating-Point Tools
The source program MATRIXC.C listed in Figure 1.4 is the C version of the
program MATRIX.ASM in Example 1.1. Access the debugger as in Example
1.1. Reset the C31 by typing the debugger command:

reset

1.3 Programming Examples to Test the DSK Tools 11

FIGURE 1.4 Matrix/vector multiplication program using C code (MATRIXC.C).

/*MATRIXC.C - MATRIX/VECTOR MULTIPLICATION */

main()

{

volatile int *IO_OUTPUT = (volatile int *) 0x809802;

float A[3][3] = { {1,2,3},

{4,5,6},

{7,8,9} };

float B[3] = {1,2,3};

float result;

int i,j;

for (i = 0; i < 3; i++)

{

result = 0;

for (j = 0; j < 3; j++)

{

result += A[i][j] * B[j];

}

*IO_OUTPUT++=(int)result; /*result start in mem addr 0x809802*/

}

}

Then, within the debugger type the command

load matrixc.out

to load the executable COFF file MATRIXC.OUT (not case-sensitive) supplied
on the accompanying disk. The extension OUT is not necessary, since the de-
bugger detects such type of executable COFF file as opposed to an executable
file with a dsk extension.

Single-step through the program up to the instruction STI RS,*AR0 at the
memory address 80983e. Note that there is much initialization code added
from compiling. The STI instruction causes each resulting output value to be
stored in consecutive memory, starting at the address pointed by AR0, which
contains the output address 809802. Verify the three resulting values e, 20, 32
in hex. Type memd 0x809802 to verify from the memory-window screen the
three resulting values 14, 32, and 50 stored in memory addresses
809802–809804.

The DSK does not support a C-source debugger. Hence, the C-source file
cannot be displayed through the DSK debugger window screen. With a C-
source debugger, one could single-step through an instruction in C and observe
the corresponding steps through equivalent assembly instructions [1, 23]. Tools
that support debugging capabilities, such as the C3x debugger for the evaluation
module (EVM), are available from Texas Instruments [25], and Code Composer
is available from GO DSP (see Section 1.4)

C Compiling and Linking Using Floating-Point Tools
a) Compiling/Assembling. This section illustrates the use of the TMS320
floating-point DSP assembly language tools, version 5.0 [21–23]. These tools
are not included with the DSK package. The C-code programs in this book were
compiled/assembled and linked with these tools. Compile/assemble the C-
source program MATRIXC.C, by typing:

cl30 -k matrixc.c

The extension c is not necessary. This creates the source file MATRIXC.ASM
as well as the object file MATRIXC.OBJ. Various compiler options are avail-
able [22]. The -k option is to retain the assembly source file MATRIXC.ASM,
since the CL30 command compiles and assembles. Different levels of optimiza-
tion are available for compiling. Using CL30 -o3 selects the highest optimiza-
tion level (register, local, global, and file) for faster execution speed. The -o2
option invokes the second level (by default) of optimization (without the file
optimization available with the -o3 option). Care must be exercised when in-
voking these optimization levels if the resulting executable files is to be down-
loaded and run on the DSK, especially with older versions of the DSK tools.

12 Digital Signal Processing Development System

A source file in TMS320C3x assembly code such as MATRIX.ASM can be
assembled with the floating-point tools using the command

ASM30 MATRIX.ASM

to create the object file MATRIX.OBJ. Note that the command CL30
MATRIXC.C compiles and assembles in one step.

b) Linking. Link the resulting object file MATRIXC.OBJ using the sample
linker command file MATRIXC.CMD listed in Figure 1.5 (on the accompanying
disk), by typing:

lnk30 matrixc.cmd

This creates the executable file MATRIXC.OUT. This is a linked common-ob-
ject file format (COFF), popular in Unix-based systems and adopted by several
makers of digital signal processors. The COFF format makes it easier for modu-
lar programming and managing code segments [24].

Note that the comments /* and */ used in C programming have the same
functions in the linker command file MATRIXC.CMD shown in Figure 1.5. The

1.3 Programming Examples to Test the DSK Tools 13

FIGURE 1.5 Linker command file for C coded matrix example (MATRIXC.CMD).

/*MATRIXC.CMD - LINKER COMMAND FILE */

-c /*using C convention */

-stack 0x100 /*256 words stack */

matrixc.obj /*object file */

-O matrixc.out /*executable output file */

-l rts30.lib /*run-time library support*/

MEMORY

{

RAMS: org=0x809800, len=0x2 /*boot stack */

RAM0: org=0x809802, len=0x3FE /*internal block 0*/

RAM1: org=0x809C00, len=0x3C0 /*internal block 1*/

}

SECTIONS

{

.text: {} > RAM0 /*code */

.cinit: {} > RAM0 /*initialization tables*/

.stack: {} > RAM1 /*system stack */

}

-l option invokes the file RTS30.LIB included with the floating-point tools,
which is an object-library file that contains run-time support C functions. Don’t
worry for now about the MEMORY and SECTIONS specifications within the
linker command file.

1.4 ADDITIONAL SUPPORT TOOLS

The following tools can be useful in conjunction with the DSK (see also Appen-
dix B).

1. Code Explorer is a free, scaled-down version of the popular debugger
Code Composer, available from GO DSP [26]. It can be retrieved at the web site
address www.go-dsp.com. as a zipped file and pkunzipped. An executable dsk
file can be readily downloaded into the Code Explorer and run. A sequence of
data stored within consecutive memory locations can be plotted in both the time
and frequency domains within the Code Explorer debugger environment and
saved on disk. The debugger includes capabilities to single-step, run to break-
point, and modify memory/register (see Appendix B). An example on filtering
is described in Appendix B to illustrate the use of the Code Explorer as a debug-
ger for running a program and plotting the resulting output within the debugger
environment. The programs in Examples 1.1 and 1.2 can be tested with the
Code Explorer debugger.

Code Explorer does not support COFF executable files. Code Composer,
with appropriate documentation, can be purchased from GO DSP and allows
you to download and execute COFF or DSK files.

2. Goldwave, a shareware virtual instrument (goldwave.zip), can be used as
an oscilloscope or as a spectrum analyzer in conjunction with a PC and a sound
card such as Sound Blaster [27]. Goldwave can also be used to generate func-
tions such as a sinusoidal signal with a specified frequency or random noise
(see Appendix B). It can be retrieved at the web address www.goldwave.com.

3. DigiFilter is a filter-design package that supports the DSK and is avail-
able from MultiDSP at multidsp@aol.com. It is illustrated in Appendix B in
conjunction with filtering, discussed in Chapters 4 and 5. The designed filter
characteristics can be downloaded directly into the DSK and run to implement a
filter in real time [28].

4. Virtual Bench is a virtual instrument available from National Instru-
ments (which produces LabView) at www.natinst.com. With a data acquisition
card that plugs onto a PC slot and an I/O board for input and output, Virtual
Bench can be used as a function generator, as an oscilloscope, or as a spectrum
analyzer.

5. External and Flash memory. Appendix C describes a daughter board
that contains 32K words of external SRAM memory and 32K words of flash
memory. The flash memory allows you to store a specific application program

14 Digital Signal Processing Development System

in the flash memory section and run on the DSK without any connection to a
PC. This daughter board connects directly to the DSK through the four 32-pin
connectors along the edge of the DSK board. All the TMS320C31 signals are
routed to these four expansion connectors on the DSK and are available for the
optional use of daughter boards with external memory or with alternative I/O
capability, as described in Chapter 3 and Appendices C and D.

6. Input/Output Alternative with 16-bit Stereo Codec. Appendix D de-
scribes a board that interfaces to the DSK and contains Crystal’s CS4216 (or
CS4218) 16-bit stereo audio codec with two complete channels for input and
output. An evaluation board based on the CS4216 (or CS4218) codec is avail-
able from Crystal Semiconductors.

7. SigLab is a virtual lab (box) with support software, available from
DSPTechnology at siglab@dspt.com. The SigLab box is interfaced to a PC via
an SCSI connector. A two-channel, 20-kHz bandwidth and a four-channel with
a 50-kHz bandwidth are available. The SigLab box includes a TMS320C31 for
real-time signal processing and two fixed-point digital signal processors from
Analog Devices for filtering support. SigLab, while connected to the PC
through an SCSI interface, can be accessed for real-time input generation and
output monitoring while the DSK is also running. For example, it can be used as
an oscilloscope or as a spectrum analyzer through one channel on the SigLab
box connected to the output on the DSK, while generating signals such as a
two-tone sinusoid or random noise through another SigLab channel connected
to the input on the DSK.

8. RIDE40, available from Hyperception at info@hyperception.com is a
virtual design tool that can be used to implement DSP algorithms. It contains a
wide range of functional blocks for FFT, correlation, filtering, etc., and can be
used for both simulation and real time. Within a few minutes, one can design
and test a DSP system that includes functional blocks such as sine generators,
filters, and the FFT. Results can be displayed on the PC monitor or to an exter-
nal device such as an oscilloscope. However, it currently supports the C30-
based EVM but not the C31-based DSK.

Digital filters can be readily designed with a filter package available from
Hyperception.

9. Updated DSK and C3x Tools. Texas Instruments’ web site contains the
most recent version of the C31 DSK software tools. These tools include the as-
sembler and debugger as well as several support and applications examples. The
DSK software tools, version 1.22, were used to assemble the programs dis-
cussed in this book. Texas Instruments’ FTP site is: FTP.TI.com. Select C3xdsk-
tools to retrieve the updated software support tools for the C31 DSK.

Several applications examples are included with the DSK software package
(first, assemble the support source files with the asm extension) such as:

a. DSK_OSC.EXE to use the DSK and the PC monitor as an oscilloscope.

1.4 Additional Support Tools 15

b. DSK_SG.EXE to obtain a signal generator with the following func-
tions: sine (SINE_SG.ASM), ramp (RAMP_SG.ASM), random
(RAND_SG.ASM), and sawtooth (SAWT_SG.ASM). Test the sine genera-
tor and verify that several sinusoidal signals with different frequencies
can be added and the resulting waveforms generated.

c. DSK_WAV.EXE calls DSKWAV files. Speech can be recorded as input to
the DSK, then played back.

Application programs on the fast Fourier transform (FFT), discussed in
Chapter 6, are also included with the DSK package. For example,
FFT_512.EXE implements a 512-point FFT.

1.5 EXPERIMENT 1: TESTING THE DSK TOOLS

This experiment illustrates the use of the tools, in particular, the software and
hardware support tools associated with the DSK.

1. Perform/implement the matrix program MATRIX.ASM in Example 1.1.
This assembly program executes faster than its C-coded counterpart MA-
TRIXC.C, discussed in Example 1.3, even though it is longer and looks more
difficult.

2. Perform/implement the sine generator program in Example 1.2.
3. Perform/implement the C-code matrix program discussed in Example

1.3. Note that both the source file MATRIXC.C as well as the executable file
MATRIXC.OUT are included on the accompanying disk. It is not necessary to
have the TMS320 floating-point DSP assembly language tools in order to run
the C programs included in this book. However, if you modify a C program,
then you need these tools in order to recompile it and relink to create an exe-
cutable file that can be run on the DSK. The C compiler command CL30 MA-
TRIXC.C compiles and assembles to create both the TMS320C3x assembly
source code MATRIXC.ASM and the object file MATRIXC.OBJ. This object
file is linked with a run-time library support file RTS30.LIB to create the ex-
ecutable COFF file MATRIXC.OUT that can be loaded directly into the DSK
and run.

4. Echo program. Run the program LOOP.ASM on the accompanying disk,
referred to as a “loop” or echo program. To test this program, connect to the in-
put of the DSK a sinusoidal signal from a function generator with an amplitude
of approximately 1–3 V and a frequency between 1 and 3 kHz. Observe a de-
layed output sinusoidal signal of the same frequency. Vary the input frequency
between 1 and 3 kHz and verify the same change in the frequency of the output
signal. The values set from AICSEC in the loop program LOOP.ASM specify a
sampling frequency of Fs = 8 kHz and a bandwidth of approximately 3,550 Hz
(discussed in Chapter 3). This bandwidth represents the cutoff frequency of an

16 Digital Signal Processing Development System

internal input filter, on-chip the AIC, called antialiasing filter. Increase the in-
put signal frequency above this bandwidth and verify that it is attenuated or cut-
off by the internal input filter on-chip the AIC. Deleting this input filter will
cause aliased output signals which we will verify in Chapter 3 (Example 3.3).

5. Test some of the applications examples that are provided with the DSK
package.

REFERENCES

1. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

2. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

3. P. Papamichalis ed., Digital Signal Processing Applications with the TMS320 Family:
Theory, Algorithms, and Implementations, Texas Instruments, Inc., Dallas, TX, Vol. 3,
1990.

4. K. S. Lin ed., Digital Signal Processing Applications with the TMS320 Family: Theory,
Algorithms, and Implementations, Prentice Hall, Englewood Cliffs, NJ, Vol. 1, 1988.

5. R. Chassaing, “Applications in digital signal processing with the TMS320 digital signal
processor in an undergraduate laboratory,” in Proceedings of the 1987 ASEE Annual
Conference, June 1987.

6. P. Lapsley, J. Bier, A. Shoham, and E. Lee, DSP Processor Fundamentals Architectures
and Features, Berkeley Design Technology, 1996.

7. R. Chassaing, W. Anakwa, and A. Richardson, “Real-Time Digital Signal Processing in
Education,” in Proceedings of the 1993 International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 1993.

8. R. Chassaing and B. Bitler (contributors), “Signal Processing Chips and Applications,”
The Electrical Engineering Handbook, CRC Press, Boca Raton, FL, 1997.

9. S. A. Tretter, Communication System Design Using DSP Algorithms, Plenum Press, New
York, 1995.

10. R. M. Piedra and A. Fritsh, “Digital Signal Processing Comes of Age,”in IEEE Spec-
trum, May 1996.

11. Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice
Hall, Englewood Cliffs, NJ, 1990.

12. I. Ahmed, ed., Digital Control Applications with the TMS320 Family, Texas Instruments,
Inc., Dallas, TX, 1991.

13. A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press,
New York, 1991.

14. R. Chassaing, “The Need for a Laboratory Component in DSP Education—A Personal
Glimpse,” Digital Signal Processing, Academic Press, Jan. 1993.

15. C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing, Wiley, New
York, 1996.

16. J. M. Rabaey ed., “VLSI Design and Implementation Fuels the Signal-Processing Revo-
lution,” IEEE Signal Processing Magazine, Jan. 1998.

References 17

17. S. H. Leibson, DSP Development Software, EDN Magazine, Nov. 8, 1990.

18. TMS320C3x DSP Starter Kit User’s Guide, Texas Instruments, Inc., Dallas, TX, 1996.

19. TMS320C3x User’s Guide, Texas Instruments, Inc., Dallas, TX, 1997.

20. TMS320C3x General-Purpose Applications User’s Guide, Texas Instruments, Inc., Dal-
las, TX, 1998.

21. TMS320C3x/C4x Assembly Language Tools User’s Guide, Texas Instruments, Inc., Dal-
las, TX, 1997.

22. TMS320C3x/C4x Optimizing C Compiler User’s Guide, Texas Instruments, Inc., Dallas,
TX, 1997.

23. TMS320C3x C source Debugger User’s Guide, Texas Instruments, Inc., Dallas, TX,
1993.

24. G. R. Gircys, Understanding and Using COFF, O’Reilly & Assoc., Inc., Newton, MA,
1988.

25. TMS320C30 Evaluation Module Technical Reference, Texas Instruments, Inc., Dallas,
TX, 1990.

26. Code Explorer, from GO DSP, at www.go-dsp.com

27. Goldwave, at www.goldwave.com

28. DigiFilter, from MultiDSP, at multidsp@aol.com

29. B. W. Kernigan and D. M. Ritchie, The C Programming Language, Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

18 Digital Signal Processing Development System

� Architecture and Instruction set of the TMS320C3x processor

� Memory addressing modes

� Assembler directives

� Programming examples using TMS320C3x assembly code, C code, and
C-callable TMS320C3x assembly function.

Several programming examples included in this chapter illustrate the architec-
ture, the assembler directives, and the instruction set of the TMS320C3x
processor and associated tools.

2.1 INTRODUCTION

Texas Instruments, Inc. introduced the first-generation TMS32010 digital signal
processor in 1982, the second-generation TMS32020 in 1985 followed by the
C-MOS version TMS320C25 in 1986 [1–5], and the TMS320C50 in 1991. The
first-generation processor contains 144 × 16 bits of internal or on-chip memory
(RAM), with a 200-ns instruction cycle time. Most of the instructions can be
executed in one instruction cycle. Members of the first-generation of processors
are currently available in C-MOS versions with faster execution speeds.

The second-generation TMS320C25 contains 544 × 16 bits of on-chip
RAM, is upward code-compatible with the TMS320C10 (C1x) family of
processors, and has an instruction cycle time of 100 ns, making it capable of ex-
ecuting 10 million instructions per second (MIPS). Other members of the sec-
ond-generation (C2x) family of processors are currently available with a faster
execution speed. The TMS320C50 processor is code-compatible with the first
two generations of C1x and C2x processors. Within the same generation, sever-
al versions of each of these processors—C1x, C2x, and C5x—are available with
different features, such as a faster execution speed and availability of on-chip

19

2
Architecture and Instruction Set
of the TMS320C3x Processor

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

ROM. The C1x, C2x, and C5x are fixed-point processors based on a modified
Harvard architecture with separate memory spaces for data and instructions that
allow concurrent accesses.

Quantization error or round-off noise from an ADC is a concern with a
fixed-point processor. An A/D only uses a best estimate digital value to repre-
sent an input. For example, consider an A/D with a word length of 8 bits and an
input range of ±1.5 volts. The steps represented by the A/D are: (input
range)/(28) = 3/256 = 11.72 mv. This produces errors which can be up to
±(11.72 mv)/2 = ±5.86 mv. Only a best estimate can be used by the A/D to rep-
resent input values that are not multiples of 11.72 mv. With an 8-bit ADC, 28 or
256 different levels can represent the input signal. An A/D with a larger word
length such as a 16-bit A/D (currently quite common) can reduce the quantiza-
tion error, yielding a higher resolution. The more bits an ADC has, the better it
can represent an input signal.

The TMS320C62 (C62) is the most recent fixed-point processor, announced
in 1997. Unlike the previous fixed-point processors, it is based on a very-long-
instruction-word (VLIW) architecture, and is not code compatible with the pre-
vious generations of fixed-point processors. The “fixed-point” TMS320C80
processor was available before the C62 and contains four fixed-point processors
and one reduced-instruction set (RISC) processor. The C62 is primarily intend-
ed for high-end applications such as video and multimedia. The floating-point
TMS320C67, code compatible with the C62, was also announced in 1997; it is
another member of the C6x family based on the VLIW architecture.

The TMS320C31 (C31), a general-purpose digital signal processor, is a
member of the third-generation family of floating-point processors,
TMS320C3x [6–10]. With a 40-ns instruction cycle time, it provides capabili-
ties for 50 million floating-point operations per second (MFLOPS) or 25 mil-
lion instructions per second (MIPS). The instruction cycle time or MIPS alone
do not provide the entire measure of performance, since one needs to consider
as well the efficient use of memory and the type of suitable instructions. The
TMS320C31 is a true 32-bit processor capable of performing floating-point, in-
teger, and logical operations. It contains 2K words of internal or on-chip memo-
ry and has a 24-bit address bus, making it capable of addressing 224 or 16 mil-
lion words (32-bit) of memory space for program, data, and input/output. With
such features and special addressing modes, the C31 is very well suited for ap-
plications ranging from communication and control to instrumentation, speech,
and image processing.

Even though the TMS320C31 has only one serial port whereas the
TMS320C30 has two, the C31 has a faster execution speed. Connectors avail-
able on the C31 DSK serve the function of a serial port, and can be used to in-
terface to another board with external memory or with alternative input/output
capability for faster processing, as described in Appendices C and D. An appli-
cation-specific integrated circuit (ASIC) has a “DSP core” with customized cir-

20 Architecture and Instruction Set of the TMS320C3x Processor

cuitry for a specific application. The C31 can be used as a standard general-pur-
pose processor programmed for a specific application.

The TMS320C32 is another member of the third-generation of floating-point
processors, but with one-fourth of the internal or on-chip memory available on
the C31 (although it has special features for accessing external memory).

The TMS320C40 is a fourth-generation floating-point processor, code-com-
patible with the C3x processor. It has the same amount of on-chip memory as
the C31, and six serial ports (the smaller C44 version has four serial ports). A
C40 can connect directly to six other C40 processors without any glue logic,
making the C40 suitable for parallel processing [11].

A fixed-point processor is better for devices such as cellular phones that use
batteries, since it uses less power than an equivalent floating-point processor.
The fixed-point processors C1x, C2x, and C5x have limited dynamic range and
precision, whereas the floating-point processors C3x and C4x provide greater
dynamic range. In a fixed-point processor, it is necessary to scale the data to re-
duce overflow, and this must be done with care. Overflow occurs when an oper-
ation such as the addition of two numbers produces a result with more bits than
can fit within a processor’s register. The 40-bit extended precision registers
R0–R7 available on the TMS320C3x make it possible to accumulate without
risking overflow. These registers are 40 bits wide, even though the busses on the
C31 are 32 bits wide. These extra bits provide more accuracy while avoiding
overflow. The floating-point representation used by Texas Instruments is not the
standard IEEE 754 floating-point format for data representation. Although a
floating-point processor is generally more expensive, since it has more “real es-
tate” or is a larger chip because of additional circuitry, it is generally easier to
program; and floating-point support tools are easier to use. The fixed-point C
compiler available for the C1x, C2x, and C5x fixed-point processors is not as
efficient as the floating-point C compiler that supports the C3x/C4x processors.
A fixed-point type is not included in the ANSI C standard, whereas a floating-
point compiler can take advantage of the floating-point hardware.

Other digital signal processors are available, such as the DSP96000 from
Motorola Inc.and the ADSP21060 SHARC [12] from Analog Devices Inc.

2.2 TMS320C3x ARCHITECTURE AND MEMORY ORGANIZATION

The TMS320C31 has 2K words (32-bit) of internal or on-chip memory and 224

or 16 million words of addressable memory containing program, data, and in-
put/output space. In a von Neumann architecture, program instructions and data
are stored in a single memory space. A processor with a von Neumann architec-
ture can make a read or a write to memory during each instruction cycle. Typi-
cal DSP applications require several accesses to memory within one instruction
cycle.

2.2 TMS320C3x Architecture and Memory Organization 21

The TMS320C3x is based on a modified Harvard architecture, with indepen-
dent memory banks, that allow for two memory accesses within one instruction
cycle. Two independent memory banks can be accessed using two independent
busses. One memory bank would hold either program instructions (or program
and data) while the other memory bank would hold data only. With separate
busses for program, data, and direct memory access (DMA), the TMS320C31
can perform concurrent program fetches, data read and write, and DMA opera-
tions. Since data and instructions reside in separate memory spaces, concurrent
memory accesses are possible. The C31 architecture allows for four levels of
pipelining; i.e., while an instruction is being executed, three subsequent instruc-
tions are being read, decoded, and fetched.

Operations such as addition/subtraction and multiplication are the key op-
erations in a digital signal processor. A very important operation is the multi-
ply/accumulate, which is useful for a number of applications requiring filter-
ing, correlation, and spectrum analysis. Since the multiplication operation is
so commonly executed and is so essential for most digital signal processing al-
gorithms, it is to be executed in a single cycle. A typical digital signal proces-
sor contains an internal multiplier/accumulator for fast and efficient opera-
tions.

Figure 2.1 shows the functional block diagram of the TMS320C31. The
TMS320C31 includes a number of registers, two blocks of internal memory, 32-
bit data busses, one serial port, etc.

CPU Registers

The TMS320C31 contains the following registers, which we will use later:

1. R0–R7, eight 40-bit registers that allow for extended-precision results.
These registers can store 32-bit integer and 40-bit floating-point num-
bers

2. AR0–AR7, eight general-purpose auxiliary registers that are commonly
used for indirect memory addressing

3. IR0 and IR1, for indexing an address

4. ST, for the status of the CPU

5. SP, the system stack pointer that contains the address of the top of the
stack

6. BK, to specify the block size of a circular buffer

7. IE, IF, and IOF, for interrupt enable, interrupt flag, and I/O flag, re-
spectively

8. RC, the repeat count to specify the number of times a block of code is to
be executed

22 Architecture and Instruction Set of the TMS320C3x Processor

9. RS and RE, contain the starting and ending addresses, respectively, of a
block of code to be executed

10. PC, the program counter that contains the address of the next instruction
to be fetched

11. DP, specifies one of 256 data pages, each page with 64K words.

2.2 TMS320C3x Architecture and Memory Organization 23

FIGURE 2.1 TMS320C31 functional block diagram (reprinted by permission of Texas In-
struments).

The CPU registers are described in Appendix A. Several examples illustrate
the utilization of these registers. For example, an extended-precision register R0
can store the 40-bit result of a multiplication of two 32-bit numbers.

Figure 2.2 shows the memory organization of the TMS320C31. RAM block
0 and RAM block 1 each contains 1K words (32-bit) of on-chip memory. How-
ever, the last 256 internal memory locations of the C31 on the DSK board are

24 Architecture and Instruction Set of the TMS320C3x Processor

FIGURE 2.2 TMS320C31 memory organization (reprinted by permission of Texas Instru-
ments).

used for the communications kernel and vectors. The starting address of internal
memory RAM block 0 is 809800 in hex, which is half the TMS320C31 total
addressable memory space of 224 or 16 million 32-bit words. Figure 2.1 (top-
left) shows A23-A0, which represents 24 bits of address lines. Appendix A con-
tains the instruction set and information on registers and timers associated with
the C31.

2.3 ADDRESSING MODES

Addressing modes determine how one accesses memory. They specify how data
is accessed, such as retrieving an operand directly from a register or indirectly
from a memory location. Several modes of addressing are available with the
TMS320C31; the most commonly used mode is the indirect addressing of
memory.

Indirect Addressing

Indirect memory addressing with displacement and indexing includes bit-re-
versed and circular modes of addressing. Registers ARn, n = 0, 1, . . . , 7 repre-
sent the eight general-purpose auxiliary registers AR0–AR7 commonly used to
specify or point to memory addresses. As such, these registers are pointers. Sev-
eral modes of indirect addressing follow.

a) *ARn. This indirect mode of memory addressing is represented with
the * symbol. For example, with n = 0, AR0 contains (or points to) the address
of a memory location where a data value is stored; i.e., the content in memory
with the address specified or pointed by AR0.

b) *ARn++(d). The content in memory with ARn specifying the memory
address. After the value in that memory location is fetched, ARn is postincre-
mented (modified), such that the new address is the current address offset by d,
or ARn+d. ARn would contain the next-higher memory address if the displace-
ment d = 1 (d is an 8-bit unsigned integer). The index registers IR0 and IR1
are frequently utilized as the displacement d. A double minus (– –), instead of
double plus, would update or postdecrement ARn to ARn-d.

c) *++ARn(d). The content in memory with an address preincremented
(modified) to ARn+d. A double minus would predecrement the memory ad-
dress to ARn-d.

d) *+ARn(d). The content in memory with the address ARn+d. ARn is
not updated or modified as in the previous case.

e) *ARn++(d)%. This is the same as in b) except that the modulus opera-
tor % (modulo arithmetic) represents a circular mode of addressing. The proces-
sor’s address generation unit automatically creates the desired circular buffer,
transparent to the programmer. It is used to specify an address within a circular

2.3 Addressing Modes 25

buffer. After ARn reaches the bottom or higher address of a circular buffer, it
will then point to the top address of that circular buffer when incremented next.
Circular buffers are utilized extensively to implement equations that model de-
lays in filtering and correlation, and for bit-reversal in a fast Fourier transform
(FFT) algorithm. A double minus (– –) would update the address to ARn-d. If
ARn is at the top address of a circular buffer, it would specify or point to the ad-
dress at the bottom of the circular buffer when it is decremented next. Note that
we visualize the “bottom” location of a buffer as having a higher memory ad-
dress. For example, as we increment an auxiliary register or pointer to the next-
higher memory address, that register will point to the subsequent lower memory
location.

f) *ARn++(IR0)B. The index register or displacement d represents an
offset address. This mode is similar to the previous one except that the B desig-
nates a bit-reversal process. This bit-reversal process with a reverse carry allows
the necessary resequencing of data in an FFT algorithm, as illustrated in Chap-
ter 6. ARn is updated to ARn+IR0 with reverse-carry.

Other addressing modes [6–8] such as direct addressing are also available.
For example,

ADDI @0x809802,R0

adds the data value in memory address 809802 to the value in register R0,
with the result stored in R0. The symbol @ represents direct addressing.

Another mode of addressing is register addressing. For example,

FIX R0,R1

converts a floating-point value in R0 to an equivalent integer value in R1. This
instruction is very useful before sending resulting data to a DAC for output.

2.4 TMS320C3x INSTRUCTION SET

Several code segments are presented in order to become familiar with the
TMS320C3x instruction set. The third-generation TMS320C3x processor has
an architecture and instruction set quite different from the C1x, C2x, and C5x
fixed-point processors. Even though the TMS320C3x contains a richer and
more powerful set of instructions compared to these fixed-point processors, it is
not any harder to program. Appendix A contains a summary of the C3x instruc-
tion set [8]. A general instruction syntax format follows:

label Instruction or Assembler Directive Operand Comment

26 Architecture and Instruction Set of the TMS320C3x Processor

For example, the following line of code,

LOOP SUBI 1,R0 ;subtract 1 from R0

consists of a label (LOOP), which must start in the first column and is case-sen-
sitive, followed by the subtract integer instruction SUBI, the operand 1,R0,
and a comment. One or more blank spaces must separate each of the fields.
Comments are optional and must begin with a semicolon after an operand (an
instruction or an assembler directive). Comments can also start in column 1
with either a semicolon or a *. It is very instructive to read the comments in the
programs discussed in this book.

Types of Instructions

1. Math Instructions to Add, Subtract, or Multiply. The instruction

ADDF3 R0,R2,R1

adds the floating-point values in registers R0 and R2 and stores the resulting
floating-point value in R1. Replacing the instruction ADDF3 by SUBF3 would
subtract R0 from R2, with the result stored in R1. The instruction

MPYF3 *AR0++,*AR1++,R0

multiplies the content in memory (indirect addressing) with the address speci-
fied or pointed by AR0 by the content in memory whose address is specified by
AR1, and stores the resulting floating-point value in R0. It is a three-operand in-
struction, the “F” in MPYF represents a floating-point multiplication; an “I”
would represent an integer operation. After this operation, both auxiliary regis-
ters AR0 and AR1 are postincremented by one (by default) or to the next-higher
memory address. Note that AR0 and AR1 contain the two addresses of the
memory locations where the two data values to be multiplied are stored.

2. Load and Store Instruction. A 32-bit word can be loaded from memory
into a register or stored from a register into memory. The two instructions

LDI @IN_ADDR,AR1
STF R0,*AR2++

loads directly (using the symbol @) the address represented by a label
IN_ADDR into the auxiliary register AR1, then stores a floating-point value R0
into memory, whose address is specified by AR2. Then, AR2 is postincremented
to point at the next-higher memory address (a displacement of one by default).

2.4 TMS320C3x Instruction Set 27

Note the “I” (integer) in LDI, since an address is an integer value. We can also
load a floating-point value using LDF.

3. Input and output Instructions. The two instructions

LDI @IN_ADDR,AR4
FLOAT *AR4,R1

loads an (input) address represented by the label IN_ADDR directly into AR4.
Then, the content in memory, whose address is specified by AR4 (IN_ADDR),
is stored in the extended-precision register R1 as a floating-point value. That
value might have been obtained from an analog-to-digital converter ADC as an
integer. The three instructions

LDI @OUT_ADDR,AR5
FIX R0,R1
STI R1,*AR5

loads an (output) address represented by OUT_ADDR directly into AR5. Then
the floating-point value in R0 is converted to an equivalent integer value into
R1, then stored in memory, whose address is specified by AR5. The floating-
point to integer conversion instruction FIX rounds down the result. For exam-
ple, the value 1.5 would become 1 and –1.5 would become –2.

4. Branch Instructions. A standard branch instruction executes in four cy-
cles and should be avoided whenever possible. Unconditional as well condition-
al branch instructions are available. A delayed branch, with or without condi-
tion, is preferable, since it can effectively execute in a single cycle. The delayed
branch instruction is illustrated with the following program segment:

BD FILTER
FIX R0,R1
NOP
STI R1,*AR5

The unconditional branch with delay instruction BD is to branch or go to the in-
struction with the label FILTER, which takes place after the STI R1,*AR5
instruction. Note the no operation NOP instruction. The delayed branch instruc-
tion allows the subsequent three instructions to be fetched before the program
counter is modified. A conditional delayed branch instruction is illustrated with
the following program segment:

DBNZD AR0,FILTER
ADDF R0,R2
FIX R2,R2
STI R2,*AR3

28 Architecture and Instruction Set of the TMS320C3x Processor

In the instruction DBNZD, the first D stands for decrement, the second D is for de-
lay, and the NZ represents the condition of not zero. The auxiliary register AR0 in
this case serves the function of a loop counter. AR0 is decremented by 1, and
branching to the label FILTER (which could be a function) takes place after the
STI instruction. Branching to FILTER would continue as long as AR0 � 0.

5. Repeat and Parallel Instructions. a) A block of instructions can be re-
peated a number of times using the repeat block RPTB instruction, as illustrated
in the following program segment:

LDI 10,RC
RPTB END_BLK
CALL FILTER
FIX R0,R1

END_BLK STI R1,*AR5

The starting address (address of the repeat block instruction RPTB) of the block
of code to be executed is loaded into a special repeat start address register RS
and the ending address specified by the label END_BLK (which must be in col-
umn one) is loaded into the special repeat end address register RE. Note that the
starting and ending address registers RS and RE are not accessed directly by the
programer. The repeat counter register RC must be loaded first with the number
of times the block of code is to be repeated. The block of code starting with the
CALL FILTER instruction, including the store integer STI instruction, is exe-
cuted 11 times (repeated RC = 10 times). Within this block of code, a subroutine
FILTER is called 11 times. Execution returns each time from the FILTER sub-
routine to the subsequent instruction FIX R0,R1 to convert R0 from a float-
ing-point value to an equivalent integer value R1, then stored in a memory loca-
tion, whose address is specified by AR5.

b) The RPTS instruction is used to repeat the execution of a subsequent in-
struction a number of times, as illustrated in the following program segment:

LDI 10,AR2
RPTS AR2
MPYF *AR0++,*AR1++,R0

| | ADDF3 R0,R2,R2
ADDF R0,R2

The subsequent instruction to the RPTS instruction is MPYF3, which is executed
11 times (repeated 10 times). The parallel symbol | |, which must start in column
one, designates that the first addition instruction ADDF3 is in parallel with the
multiply instruction; hence, it is also executed 11 times (in parallel). The second
addition instruction ADDF R0,R2 is executed only once. The second R2 is not
necessary in the ADDF instruction, since R2 contains the sum of R0 and R2. Note
that AR2 could have been set to 10 as the operand of the repeat instruction RPTS.

2.4 TMS320C3x Instruction Set 29

The value contained in memory whose address is specified by AR0 is multi-
plied by the content in memory whose address is specified by AR1, and the re-
sult is stored in R0. At the same time (in parallel), R0 is added to R2 and the re-
sult stored in R2. The first R0 value in the ADDF3 instruction is not the first
resulting product, since the ADDF3 and the MPYF3 instructions are performed
in parallel. The second time that the instruction ADDF3 is executed, R0 contains
the resulting product of the first multiplication. The third time that ADDF3 is
executed, R0 contains the resulting product of the second multiplication, and so
on. The second addition instruction ADDF R0,R2 accumulates the resulting
product of the last or eleventh multiplication, and is executed only once. A sec-
ond R2 in that instruction is implied and can be omitted. After each multiply ex-
ecution, both AR0 and AR1 are postincremented to point at the next-higher
memory addresses.

The RPTS instruction is not interruptable, and if an interrupt (discussed in
Chapter 3) is allowed to occur within a loop controlled by a repeat command,
then RPTS must be replaced by the block repeat RPTB instruction.

6. Instructions Using Circular Buffering. A circular buffer can be utilized
to model the delays in a convolution or correlation equation, and for resequenc-
ing data in an FFT algorithm using bit reversal. Consider the following program
segment:

LENGTH .set 32
LDI LENGTH,BK
RPTS LENGTH-1
MPYF3 *AR0++,*AR1++%,R0

| | ADDF3 R0,R2,R2
ADDF R0,R2

We will see in the next section how a directive such as .set defines the
value for LENGTH as 32. The special register BK specifies the size of a circular
buffer with 32 memory locations. After each multiplication, AR1 is postincre-
mented to the next-higher memory location until it reaches the bottom memory
address of the circular buffer. When it is next postincremented, AR1 points
“back” to the initial or top (lower) memory address of the circular buffer.

Other types of instructions are available, such as logical instructions AND,
OR, NOT, and XOR for bit manipulation, which can be useful in a decision-mak-
ing process. A particular bit can be tested and a decision made based on the re-
sult. A specific bit can be tested in conjunction with a shift instruction.

2.5 ASSEMBLER DIRECTIVES

Assembler directives such as .set begin with a period. An assembler directive
is a message for the assembler and is not an instruction. It is resolved during the

30 Architecture and Instruction Set of the TMS320C3x Processor

assembling process and does not occupy memory space as an instruction does.
For example, the starting addresses of different sections can be specified with
assembler directives, thereby eliminating the need for a linker. Consider the fol-
lowing program segment:

.include “prog1.asm”

.start “.text”,0x809900

.start “.data”,0x809C00
LENGTH .set 32

A source file prog1.asm is “included.” Several source files can be appended
with the assembler directive .include as in C programming. The text and the
data (names are case-sensitive) sections start in memory locations 0x809900 and
0x809C00, respectively. These are typical functions of a linker. LENGTH is set to
32. The following are some commonly used assembler directives and many will
be illustrated through several programming examples in Section 2.7 [13]:

.include “prog.asm” To include the source file prog.asm
A .set 5 A is set to the value 5
B .word k B is initialized to the 32-bit integer value k
C .float k C is initialized to the 32-bit floating-point

value k
.text To assemble into program memory

section, equivalent to .sect “.text”
.data To assemble into data memory section,

equivalent to .sect “.data”
.start “sect”,addr To start assembling at address addr.

Serves the function of a linker, where
sect could be .text

.sect “mysect” To assemble into user’s defined section
mysect. Must have a .start directive
before defining a section

.entry addr Starting address when loading a file

.brstart “sect”,n Align named section (sect) as a circular
buffer to the next n address boundary, with
n a power of 2

.align K Align section program counter (SPC) on a
boundary with K being a power of 2

.loop n Loop n times through a block of code

.endloop End of loop

.end End of program

.if cond Assemble code if cond is not zero (true)

.else Otherwise (else), assemble if cond is
zero (false)

2.5 Assembler Directives 31

.endif End of conditional assembly of code
A .space n Reserve n words in current section with A

as the beginning address of the reserved
space

.ieee k k is converted to IEEE single-precision
32-bit format

.fill 45,0 To fill 45 memory locations with zero

2.6 OTHER CONSIDERATIONS

In programming the C31, a number of considerations, such as memory access-
es, should be taken into account.

Conflicts

A basic instruction has four levels of pipelining: fetch, decode, read, and exe-
cute. While an instruction is being executed, the subsequent three instructions
are being read, decoded, and fetched, respectively. Various stages for executing
an instruction overlap and are performed in parallel. Pipelining is the overlap-
ping of the fetch, decode, read, and execute phases of an instruction. A pipeline
conflict occurs when the processing sequence of an instruction is ready to go
from one pipeline level onto the next one, and that level is not yet ready to ac-
cept the transition. Fortunately, such conflicts are transparent to the program-
mer, and one need not to worry about that unless speed becomes a very crucial
consideration [8].

Branch conflicts
Nondelayed branch instructions such as CALL, RPTB, RETS, DB cause pipelin-
ing conflicts. Since the pipeline can only handle the execution of one of these
instructions, the pipeline is flushed, discarding a subsequent fetch. This flushing
process prevents partial execution of a subsequent instruction. For example, a
nondelayed RPTB instruction flushes the pipeline in order to load the registers
RS, RE, and RC, which contain the starting address, the ending address, and the
count number, respectively. With a delayed branch, execution delay can be
avoided.

Register Conflicts
These conflicts occur during a read from or write to a register, within a specific
group of registers (such as auxiliary registers AR0–AR7) for addressing when a
register within that same group is not ready to be used. More specifically, if an
instruction writes to an auxiliary register, no other auxiliary register can be de-
coded until the write (execution) cycle is completed. For example, a load to a
register instruction followed by an instruction using that same register, i.e.,

32 Architecture and Instruction Set of the TMS320C3x Processor

LDI K,AR0
MPYF *AR0,R0

The decode phase of the MPYF instruction is delayed two cycles, since it needs
the result of the preceding write to AR0. In the following example,

ADDI3 AR0,AR2,R1
MPYF *AR2,R0

the decode stage of the MPYF instruction is delayed one cycle until AR2 is read.

Memory Conflicts
These conflicts occur because internal memory (RAM0 or RAM1) can support
only two accesses per cycle. For example, two data accesses to an internal RAM
block and a program fetch from the same internal RAM block. The C31 pro-
vides one external interface that supports only one access per cycle. Conflicts
also occur when three CPU data accesses in one cycle are required. For exam-
ple, a store (write) followed by two loads (reads) in parallel. The write must be
completed before the two reads can be completed, delaying the reads by one cy-
cle. The same type of conflict occurs with two writes (two stores in parallel) fol-
lowed by a read.

Efficiency of Memory Access
If it is desired to have a program fetch and either one or two data accesses in one
cycle, a number of alternatives can yield maximum performance within a single
cycle. For example: one program access from the primary bus and two data ac-
cesses from internal RAM.

Cache
The cache is a small memory section used to store program instructions. If an
instruction is being fetched from external memory, the cache feature automati-
cally determines whether the instruction is already contained in the 64 × 32
cache memory (see Figure 2.1). If so, a “cache hit” occurs and the requested in-
struction is read from cache. If not, a “cache miss” occurs and the requested in-
struction is copied into the cache.

Since on the DSK board all program instructions are stored in internal RAM,
the cache is not used. However, Appendix C describes a daughter board with
32K words each of external and flash memory that can be connected to the DSK
board.

DMA
Data transfer can occur without the processor’s CPU involvement. It can occur
in parallel with program execution. Separate busses for program, data, and
DMA allow for parallel program fetch, data read and write, and a DMA opera-

2.6 Other Considerations 33

tion. For example, the C31 can perform an external program fetch, access two
data values within one block of internal RAM, and use the DMA to load data to
the other block of internal RAM; all within a single cycle. By performing input
and output operations, the DMA can reduce the pipelining effects associated
with the CPU.

Wait States
With slower peripherals such as external memory, wait states can be inserted by
the programmer to accomodate access to such memory. Different numbers of
wait states can be programmed and applied to different banks of memories with
different speeds. As a result, slower and less-expensive memory devices can still
be used.

ROM
ROM can be programmed using a PROM to store a specific application pro-
gram. On-chip as well as external additional (if needed) ROM can be used for
the application program as well as a boot-loader program. The TMS320C30 has
an on-chip ROM while the C31 does not have one. Appendix C describes a
board with external memory and flash memory connected to the DSK, and il-
lustrates how a specific application program can be stored on flash and run
without the DSK being connected to a PC host.

2.7 PROGRAMMING EXAMPLES USING TMS320C3x
AND C CODE

Six programming examples are included in this chapter, using both C and
TMS320C3x assembly code as well as mixed-mode with an assembly function
that is called from C. Although C is more portable and more maintainable than
assembly code, a C-code program does not achieve the efficiency and process-
ing speed of a program coded in assembly. Many applications are computation-
ally intensive and may necessitate a time-critical function to be written in as-
sembly code. These examples will provide more familiarity with the
TMS320C3x instructions, the assembler directives, and associated tools.

Example 2.1 Addition of Four Values Using TMS320C3x Code

Figure 2.3 shows the program listing ADD4.ASM for adding the four values 2,
3, 4, and 5. The assembler directive .text specifies that text or code section
starts at memory location 809C00 (hex implied), which corresponds to the
starting address of internal memory RAM block 1, as shown in Figure 2.2. The
.float assembler directive (there is also a FLOAT instruction) defines the
four values 2, 3, 4, and 5 as 32-bit floating-point constants and stored in consec-

34 Architecture and Instruction Set of the TMS320C3x Processor

utive memory location starting at the address specified by VAL_ADDR. The
.entry BEGIN directive designates that the starting address of code is at
BEGIN.

While it is not necessary to load or initialize the data page register to 128 us-
ing the DSK debugger, it is necessary to do so if you use another debugger such
as the Code Explorer described in Appendix B. There are 256 pages (each with
64K words) of addressable memory, for a total of 224 memory addresses. The
instruction LDP VAL_ADDR loads the data page register DP with an address
that is on page 128 (0 × 80 in hex). Alternatively, LDP @0x809800 would ini-
tialize the data page to 128, since 809800 (hex implied) is the starting address
of internal memory (half the total memory space).

The ADDF instruction adds the content in memory starting at the address
specified by AR0, which is loaded first with VAL_ADDR using the LDI instruc-
tion. The addition instruction is executed four times (repeated three times). Af-
ter each execution, AR0 is postincremented to point at the next-higher memory
location where the subsequent value to be added resides. The accumulation is in
F0 which represents the extended-precision register R0.

This program is on the accompanying disk. Assemble it and load the result-
ing executable file ADD4.DSK into the debugger (after resetting the C31). Sin-
gle-step through the program and verify that F0 = 14. Press F3 to display F0 in
floating-point decimal. Note that F0–F7 from the CPU registers window
screen represent the eight extended-precision registers R0–R7.

Example 2.2 Multiplication of Two Arrays Using TMS320C3x Code

Figure 2.4 shows the program listing MULT4.ASM, which multiplies two ar-
rays, each containing four values.

2.7 Programming Examples Using TMS320C3x and C Code 35

;ADD4.ASM - ADD 4 FLOATING-POINT VALUES

.start “.text”,0x809C00 ;where text begins

.text ;text section

VAL_ADDR .word VALUES ;starting address for values

VALUES .float 2,3,4,5 ;the 4 values to be added

.entry BEGIN ;start of code

BEGIN LDP VAL_ADDR ;init to data page 128

LDI @VAL_ADDR,AR0 ;AR0=starting address of values

LDF 0,R0 ;set R0=0

RPTS 3 ;execute next instr. 4 times

ADDF *AR0++,R0 ;accumulate in R0

BR $;branch to current addr(itself)

FIGURE 2.3 Addition program with four values (ADD4.ASM).

1. The four values 1, 2, 3, and 4 in the first array HN reside in memory loca-
tions starting at the address HN_ADDR which is at 809900, where data section
starts. The values 2, 3, 4, and 5 follow in the XN array. This can be verified from
the MEMORY window screen in the debugger.

2. The starting memory addresses of the HN and XN arrays are loaded direct-
ly (using the @ symbol) into the auxiliary registers AR0 and AR1, respectively.
These two addresses (809900 and 809904) are designated by HN_ADDR and
XN_ADDR.

3. The content in memory (in the HN array) whose address is specified by
AR0 is multiplied by the content in memory (in the XN array) whose address is
specified by AR1, and the resulting product is stored in R0. Since the first addi-
tion instruction is executed in parallel with the multiply instruction, the first
value in R0 that is being added is not the product that resulted from the first
multiplication operation. That first product is not yet available to be added. The
multiply instruction in parallel with the first addition instruction are executed
four times. The second time that the ADDF3 instruction is executed, the result of
the first product in R0 is accumulated. Hence, the second addition instruction
ADDF R0,R2 is executed once to accumulate the last or fourth product.

36 Architecture and Instruction Set of the TMS320C3x Processor

;MULT4.ASM - MULTIPLY TWO ARRAYS HN AND XN EACH WITH 4 VALUES

.start “.data”,0x809900 ;starting address of data

.start “.text”,0x809C00 ;starting address of text

.data ;data section

HN .float 1,2,3,4 ;HN values

XN .float 2,3,4,5 ;XN values

HN_ADDR .word HN ;starting address of HN array

XN_ADDR .word XN ;starting address of XN array

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP HN_ADDR ;init to data page 128

LDI @HN_ADDR,AR0 ;AR0=starting address of HN array

LDI @XN_ADDR,AR1 ;AR1=starting address of XN array

LDF 0,R0 ;init R0=0

LDF 0,R2 ;init R2=0

RPTS 3 ;execute next 2 instr. 4 times

MPYF3 *AR0++,*AR1++,R0 ;R0=(AR0)*(AR1)

|| ADDF3 R0,R2,R2 ;in parallel with accumulation=>R2

ADDF R0,R2 ;last multiply result added to R2

WAIT BR WAIT ;wait

FIGURE 2.4 Multiplication of two arrays program (MULT4.ASM).

4. The branch instruction BR causes a branch to the address specified by the
WAIT label, effectively causing execution to the same instruction indefinitely
(waits). An alternative instruction is BR $, which branches to the current ad-
dress (itself).

5. Single-step through this program. Press F3 and verify through the C31
registers window screen that F2 = 40, since

R2 = (1×2)+(2×3)+(3×4)+(4×5) = 40

Example 2.3 Background for Digital Filtering Using
TMS320C3x Code

This program example builds upon the previous two examples and provides the
background necessary for implementing digital filters discussed in Chapter 4.
Figure 2.5 shows a listing of the program FIR4.ASM for this example. The pre-
vious example discusses the multiplication of two sets of four numbers in two
arrays or buffers HN and XN. In this example, there are three buffers:

a) an HN buffer starting at the address specified by HN_ADDR, which con-
tains the four values 1, 2, 3, and 4

b) an input buffer IN starting at address IN_ADDR, which contains the four
values 10, 0, 0, and 0

c) a special circular buffer XN_BUFFER starting at the address XN_ADDR.

The way the two arrays of numbers are being multiplied is very important,
since the same method is used when implementing a digital filter called FIR,
discussed in Chapter 4. In fact, this example can be readily extended to program
an FIR filter. The input values in the buffer IN are transferred into the circular
buffer in the same fashion as used to implement an FIR filter. This example il-
lustrates how it is done, and in Chapter 4 it is explained why. Single-step
through the program and verify the following:

1. The length of each array or buffer is four. XB_ADDR is the address at the
bottom (higher-memory location) of the circular buffer XN_BUFFER, since it is
specified as XN+4-1.

2. The .brstart assembler directive designates a circular buffer
“XN_BUFFER” to be “aligned” on a 16-word boundary. The actual size of the
circular buffer is four. A circular buffer must be aligned on an n-word bound-
ary, where n is a power of two and is greater than the size of the circular
buffer. If there were 65 values, the buffer would have to be aligned on a 27 or
128-word boundary for circular buffering. A 128-word boundary size would
be required, since 128 represents the smallest power of two that is greater than
65. While a buffer could be “naturally” aligned (by luck) for circular buffer-

2.7 Programming Examples Using TMS320C3x and C Code 37

38 Architecture and Instruction Set of the TMS320C3x Processor

;FIR4.ASM - BACKGROUND FOR FILTER PROGRAM

.start “.data”,0x809900 ;starting address of data

.start “.text”,0x809C00 ;starting address of text

.data ;data section

HN .float 1,2,3,4 ;HN values

IN .float 10,0,0,0 ;4 input values

HN_ADDR .word HN ;starting address of HN array

IN_ADDR .word IN ;starting address of IN array

XN_ADDR .word XN ;starting address of XN buffer

XB_ADDR .word XN+LENGTH-1 ;last (bottom) address of XN

OUT_ADDR .word 0x809802 ;address of output result

LENGTH .set 4 ;size of circular buffer

.brstart “XN_BUFFER”,16 ;align a buffer of size 16

XN .sect “XN_BUFFER” ;buffer section of XN

.loop LENGTH ;loop length times

.float 0 ;init all XN values to zero

.endloop ;end of loop

; +————————+ +————————+

;lower address -> | H3 = 1 | | X3 = 0 | <-top of XN_BUFFER

; +————————+ +————————+

; | H2 = 2 | | X2 = 0 |

; +————————+ +————————+

; | H1 = 3 | | X1 = 0 |

; +————————+ +————————+

;higher address-> | H0 = 4 | | X0 = 10| <-bottom of XN_BUFFER

; +————————+ +————————+

.text ;text section

.entry BEGIN ;start of code

BEGIN LDP HN_ADDR ;init to data page 128

LDI @IN_ADDR,AR5 ;AR5=starting address of input

LDI @XB_ADDR,AR1 ;AR1=bottom address XN buffer

LDI @OUT_ADDR,AR2 ;AR2=address of result (output)

LDI LENGTH,BK ;BK=4, size of circular buffer

LDI LENGTH,R4 ;R4=4, used as loop counter

LOOP LDF *AR5++,R3 ;R3=1st input value

STF R3,*AR1++% ;store value at bottom of XN buffer

LDI @HN_ADDR,AR0 ;AR0=starting address of HN array

CALL FILTER ;go to subroutine FILTER

FIX R2,R0 ;convert from float to integer

FIGURE 2.5 Background program for digital filtering (FIR4.ASM).

(continued on next page)

ing, one needs to guarantee such condition. A naturally aligned buffer starts at
an address in memory with the least significant four bits being zero.
Otherwise, erroneous results will be produced when using such buffer for cir-
cular buffering.

3. The .loop and .endloop assembler directives specify a loop to be ex-
ecuted four times, and the directive .float 0 sets to zero all the memory lo-
cations within the XN_BUFFER. Such initialization method is effective, since
the buffer can be initialized to zero without using instructions that occupy mem-
ory space and contribute to the program-execution time. Note that all the direc-
tives are resolved during the assembling (not the execution) process.

4. Memory locations 809900–809903 contain the four floating-point val-
ues 00000000, 01000000, 01400000, and 02000000, which are equiva-
lent to the HN array values 1, 2, 3, and 4 [6,8]. The four values 10, 0, 0, and 0 for
IN are displayed in floating-point format (03200000, 80000000,
80000000, 80000000) in memory locations 809904–809907. Note that
the decimal values 1 and 0 correspond to the floating-point values 00000000
and 80000000, respectively. It is not necessary to worry about the floating-
point format.

5. AR5 is loaded with 809904 (hex is implied), the starting address of the
input buffer; AR1 is loaded with 809913, the bottom or higher-memory ad-
dress within the circular buffer; and AR2 is loaded with 809802, the starting
address for the resulting output. BK is loaded with 4, the actual size of the circu-
lar buffer (aligned within a 16-word boundary), and the value 4 is loaded into
R4, which is used as a loop counter.

6. The block of code between the instruction with the label LOOP and the

2.7 Programming Examples Using TMS320C3x and C Code 39

STI R0,*AR2++ ;store result to “output” address

SUBI 1,R4 ;decrement loop counter R4

BNZ LOOP ;branch back until R4=0

WAIT BR WAIT ;wait indefinitely

;SUBROUTINE FILTER

FILTER LDF 0,R0 ;init R0=0

LDF 0,R2 ;init R2=0

RPTS LENGTH-1 ;execute next 2 instr 4 times

MPYF3 *AR0++,*AR1++%,R0 ;R0=(AR0)*(AR1)

|| ADDF3 R0,R2,R2 ;in parallel with accumulation=>R2

ADDF R0,R2 ;last accumulation => R2

RETS ;return from subroutine

.end ;end

FIGURE 2.5 (continued)

conditional-branch (if not zero) instruction BNZ LOOP is executed four times.
Each time that this block of code is executed, the subroutine FILTER is called
with the instruction CALL FILTER. Within this block of code, R3 is loaded
with the content in memory (the first input value 10), whose address is speci-
fied by AR5 as 809904. The value 10 in R3 is then stored in memory loca-
tion 809913, specified by AR1, which is the address at the bottom of the cir-
cular buffer (the starting or top address is at 809910). AR1 is then
postincremented to point “back” to the top or lower-memory address 809910
of the circular buffer. AR0 is loaded with 809900, the starting address of the
HN buffer.

7. The code within the FILTER subroutine was previously discussed in a
program segment in Section 2.4. It multiplies the content in memory pointed by
AR0 (the first value 1 in HN) by the content in memory (initialized before to 0)
pointed by AR1 and stores the result in R0. The first resulting product is not yet
available in R0 when the parallel instruction ADDF3 R0,R2,R2 is executed
the first time. The multiplication instruction MPYF3 in parallel with the ADDF3
instruction are executed four times, while the second addition ADDF R0,R2
instruction is executed only once to accumulate the last product. After each
multiply operation both AR0 and AR1 are postincremented to point at the next-
higher memory location. After the last multiplication, AR1 increments and
points back to the top address of the circular buffer. The result in R2 from the
FILTER subroutine is

R2 = H3×X3 + H2×X2 + H1×X1 + H0×X0 = 1(0) + 2(0) +
3(0) + 4(10) = 40

Press F3 and verify that F2 = 40.
8. Execution is then returned to the subsequent instruction FIX R2,R0 to

the CALL instruction, which converts R2 from floating-point format to integer
format in R0. The result in R0 is then stored in memory, whose address is spec-
ified by AR2 as 809802. AR2 is postincremented to point at 809803 (where
the second resulting value will be stored). The loop counter R4 is then decre-
mented and execution returns to the top of the block of code within the loop
with the conditional branch if not zero instruction BNZ LOOP. The program
flow is then back to the address specified by the label LOOP. As you single-step
the first time through the block of code within the loop, observe that the float-
ing-point input value of 03200000, equivalent to decimal 10, is stored in
memory location 809913, which is at the bottom of the circular buffer. Note
that the program can be readily reloaded (after resetting) and single-step
through again.

9. The block of code within the loop is now executed a second time. AR1
points to 809910, the top address of the circular buffer. AR5 points to the
memory address 809905 (having been postincremented before), which con-

40 Architecture and Instruction Set of the TMS320C3x Processor

tains the second input value zero in the buffer IN. This value is loaded into R3,
then stored in memory location 809910 (the top memory location of the circu-
lar buffer). AR1 is then postincremented to point at the memory location
809911, the second memory location of the circular buffer (from the top),
which already contains the initial value of zero (initialized with the .float 0
directive). AR0 is reinitialized to the top of the HN address. The subroutine
FILTER is called a second time to yield a second value for R2, or

R2 = H3×X2 + H2×X1 + H1×X0 + H0×X3 = 1(0) + 2(0) +
3(10) + 4(0) = 30

Verify that F2 = 30. After processing the FILTER subroutine a third time,
the third value of R2 returned by the FILTER subroutine is

R2 = H3×X1 + H2×X0 + H1×X3 + H0×X2 = 1(0) + 2(10) +
3(0) + 4(0) = 20

and the fourth or last value of R2 is

R2 = H3×X0 + H2×X3 + H1×X2 + H0×X1 = 1(10) + 2(0) +
3(0) + 4(0) = 10

10. Note that the last multiplication operation each time that the FILTER
subroutine is called involves the last HN value and the “newest” or the most re-
cently transferred input value from the buffer IN. The first time, the newest in-
put value of 10 was stored as X0 in the bottom memory of the circular buffer.
The second time, the newest input value of zero was stored as X3 in the top
memory address of the circular buffer, then as X2, and then as X1.

11. Type the command memd 0x809802 (or meml) to display the con-
tents in memory, starting at the address 809802, and verify the four values 40,
30, 20, and 10 in memory locations 809802–809805. Each of these values
was displayed in F2. While debugger commands are not case-sensitive, the hex
notation 0x is necessary within a debugger command.

This program can be modified to implement the convolution equation in
Chapter 4, which represents a digital filter (see Experiment 2).

For a real-time filter implementation, each input value is obtained from an
analog-to-digital converter ADC, in lieu of the input buffer IN, and stored in
memory within a circular buffer in a similar fashion as in this example. The out-
put in R2, converted from floating-point to integer, would be sent to a DAC. The
block of code within the loop would be continuous, since each time that the
FILTER subroutine is processed, an output value is obtained for a specific time
n, where n = 0, 1, 2, 3 In Chapter 4, we will make this program more effi-
cient. For example, a call or a branch without delay instruction takes four cycles

2.7 Programming Examples Using TMS320C3x and C Code 41

to execute, and also it is not efficient to decrement a loop counter using the sub-
tract instruction SUBI 1,R4.

Example 2.4 Matrix/Vector Multiplication Using
TMS320C3x Code

Consider again the matrix/vector multiplication in Example 1.1 and the pro-
gram listing in Figure 1.1. Even though this program looks more difficult than
its C-coded counterpart in Example 1.3, it executes faster. The execution speed
can be observed from _DT within the CPU register window screen. _DT dis-
plays the instruction cycle time of each instruction as you single-step through
each one. Since this program executes in 100 cycles (without the last BR in-
struction) at 40 ns per cycle, the time is 4 �s. Note the following:

1. The (3 × 3) matrix values are in the array A, and the (3 × 1) vector values
are in the array B, both in floating-point. The starting addresses of the A matrix
and the B vector are specified by A_ADDR and B_ADDR, respectively. AR0,
AR1, and AR2 are loaded with the starting addresses of the A matrix, the B vec-
tor, and the resulting output, respectively (809c00, 809c09, and 809c0e).

2. R4 is used as a loop counter for the outer loop between LOOPI and the
instruction BNZ LOOPI, which is executed three times for each row of the ma-
trix A. An inner loop is between LOOPJ and the instruction DB AR4,LOOPJ
and is executed three times for each row in the vector B. The inner loop process
continues until AR4 is less than zero, with AR4 being decremented each time,
using the decrement and branch instruction DB.

3. The result is a (3 × 1) vector and each value is accumulated in R0. R0 is
converted from floating-point to integer with the FIX instruction, and stored
(using the STI instruction) in the memory address pointed or specified by AR2.
Since AR2 is postincremented after each result is stored in memory, the three
resulting values—14, 32, and 50—are stored in consecutive memory locations.
Each resulting value can be verified from F0.

4. Within the outer loop, after each resulting value is obtained, the starting
address of the vector B is reloaded into AR1 in preparation for the multiplica-
tion of the values in the next row of the matrix A with the column values in the
vector B.

5. Type memd 0x809c0e and verify the resulting values 14, 32, and 50
stored in memory locations 809c0e–809c10.

This program can be extended to a (3 × 3) matrix A multiplying a (3 × 3) ma-
trix B using three nested loops.

Example 2.5 Addition Using C and C-Called TMS320C3x
Assembly Function

This example illustrates a main C program ADDM.C, listed in Figure 2.6, that
calls an assembly function ADDMFUNC.ASM, listed in Figure 2.7. It is instruc-

42 Architecture and Instruction Set of the TMS320C3x Processor

tive to reexamine Example 1.3, a C program that multiplies a (3 × 3) matrix A
by a (3 × 1) vector B. The executable file ADDM.OUT is on the accompanying
disk and can be used to test this example. However, if those programs are modi-
fied, the floating-point DSP tools are needed in order to create a new executable
file (see Example 1.3). These tools, version 5.0, include a C compiler, an as-
sembler, and a linker, which were used to create the executable COFF file
ADDM.OUT (on disk). They are available from Texas Instruments or other
vendors. The C program was compiled using CL30 -k addm.c to create a
source file addm.asm and an object file addm.obj. The compiling and link-
ing procedures associated with a C-source code were introduced in Chapter 1 in
conjunction with Example 1.3.

2.7 Programming Examples Using TMS320C3x and C Code 43

/*ADDM.C - PROGRAM IN C CALLING A FUNCTION IN ASSEMBLY*/

extern int addmfunc(); /*external assembly function*/

int temp = 10; /*global C variable */

main()

{

volatile int *IO_OUT=(volatile int *) 0x809802; /*addr for result*/

int count;

for (count = 0; count < 5; ++count)

{

*IO_OUT++=addmfunc(count); /*calls assembly function five times*/

}

}

FIGURE 2.6 Addition program in C that calls an assembly function (ADDM.C).

FIGURE 2.7 C-called assembly function (ADDMFUNC.ASM).

*ADDMFUNC.ASM - ASSEMBLY FUNCTION CALLED FROM C PROGRAM

FP .set AR3 ;frame pointer in AR3

.global _addmfunc ;global ref/def

.global _temp ;global ref/def

_addmfunc ;function in assembly

PUSH FP ;save FP into stack

LDI SP,FP ;point to start of stack

LDI *-FP(2),R0 ;1st count value into R0

ADDI @_temp,R0 ;add global variable to R0

POP FP ;restore FP

RETS ;return from subroutine

Linking
The assembly program ADDMFUNC.ASM must be assembled first with
the command asm30 ADDMFUNC.ASM to create the object file ADDM-
FUNC.OBJ. The linker command file ADDM.CMD (on disk) and listed in Figure
2.8 links the two object files ADDM.OBJ and ADDMFUNC.OBJ and a run-time
library support file RTS30.LIB with the command LNK30 ADDM.CMD. The
commands listed in the linker command file are case-sensitive. ADDM.CMD can
serve as a sample linker command file. It can be readily changed to link differ-
ent object files and create a COFF executable file with the -O option. The re-
sulting executable file ADDM.OUT can be downloaded directly into the DSK
and run. The extension OUT is optional within the DSK debugger, since the
DSK detects an executable COFF file as opposed to an executable DSK file.

The .text section where text or code resides is specified to be in RAM0,
where RAM0 is defined as a memory section starting at the address 809802
(hex implied) with a length of 0x3FE = 1022. This represents the size of inter-
nal memory block 0 (see Figure 2.2) less the first two internal-memory loca-
tions 809800 and 809801 reserved for boot loading. The second block of in-
ternal memory starts at the address 809c00 with a length of 0x3C0 = 1024
(1K).

44 Architecture and Instruction Set of the TMS320C3x Processor

FIGURE 2.8 Linker command file for mixed-mode addition (ADDM.CMD).

/*ADDM.CMD - LINKER COMMAND FILE */

-c /*using C convention */

-stack 0x100 /*256 words stack */

addm.obj /*object file */

addmfunc.obj /*object function file */

-O addm.out /*executable output file */

-l rts30.lib /*run-time library support*/

MEMORY

{

RAMS: org=0x809800, len=0x2 /*boot stack */

RAM0: org=0x809802, len=0x3FE /*internal block 0*/

RAM1: org=0x809C00, len=0x3C0 /*internal block 1*/

}

SECTIONS

{

.text: {} > RAM0 /*code */

.cinit: {} > RAM0 /*initialization tables*/

.stack: {} > RAM1 /*system stack */

}

Executing ADDM.OUT

1. Consider the assembly function ADDMFUNC.ASM. Certain registers are ded-
icated and any of the registers R4–R7, AR4–AR7, SP, DP, and FP (used as
AR3) that are modified within the assembly function must be preserved on the
stack, using PUSH or PUSHF and POP or POPF in order to save and restore
them, respectively. This is illustrated in ADDFUNC.ASM listed in Figure 2.7.
These registers must be saved as integers, except R6 and R7. The value returned
from the assembly function must be saved in R0.

2. The frame pointer FP is set in auxiliary register AR3. All C identifiers are
referenced in the assembly function with underscores, such as _addmfunc and
_temp. The frame pointer, with offset, is used for passing the address of an ar-
gument from the C program to the assembly function. In this case, the only ar-
gument, count, is at *-FP(2). The old frame pointer FP is at the first loca-
tion in the stack.

3. Access the debugger and download the executable COFF file ADDM.OUT
into the DSK (as with a DSK file). Single-step through the program. There are
several instructions associated with the C31 initialization. The auxiliary register
AR0 contains the starting output address 809802. The instruction STI
R0,*AR0 at the address 809813 stores each output value—10, 11, 12, 13, and
14—in consecutive memory locations starting at 809802. Type the command
memd 0x809802 and verify these results. They represent the initial value of
10, set in temp within the C program, added to count each time that the as-
sembly function is called, where count takes on the values 0, 1, 2, 3, and 4. As
you single-step through the program, observe the five equivalent resulting hex
values a, b, c, d, and e in F0 (representing R0).

In the next example, a C program calls an assembly function to implement
the (3 × 3) × (3 × 1) matrix/vector multiplication in Examples 1.1, 1.3, and 2.4.

Example 2.6 Matrix/Vector Multiplication Using C and C-Called
TMS320C3x Assembly Function

The C program MATRIXM.C, listed in Figure 2.9 calls the TMS320C3x assem-
bly function MATRIXMF.ASM, listed in Figure 2.10. See also Examples 1.1,
1.3, and 2.4 as well as the previous example.

1. The addresses of the A and the B arrays, and the address of the (3 × 1) ar-
ray for the result are passed into the assembly function using the frame pointer
FP, with offsets of –2, –3, and –4, respectively. Since the dedicated registers R4
and AR4 in the assembly function are used as loop counters for LOOPI and
LOOPJ, respectively, they must be saved with the PUSH instruction and later re-
stored with the POP instruction.

2. Download and run the executable COFF file MATRIXM.OUT (on disk).
Single-step through much of the initialization-code section. Verify that the in-
struction STI R0,*AR2++ at 809833 stores each result 14, 32, and 50 into

2.7 Programming Examples Using TMS320C3x and C Code 45

/*MATRIXM.C - MATRIX/VECTOR MULT. CALLS ASSEMBLY FUNCTION */

volatile int *IO_OUTPUT = (volatile int *) 0x809802;

extern void matrixmf (float *, float *, int *); /*function*/

main()

{

float A[3][3] = {{1,2,3},

{4,5,6},

{7,8,9}}; /*3x3 matrix A */

float B[3] = {1,2,3}; /*3x1 vector B */

matrixmf ((float *)A, (float *)B, (int *)IO_OUTPUT);

}

FIGURE 2.9 Matrix/vector multiplication program in C that calls an assembly function
(MATRIXM.C).

FIGURE 2.10 C-called assembly function for matrix/vector multiplication
(MATRIXMF.ASM).

*MATRIXMF.ASM - ASSEMBLY FUNCTION CALLED FROM C PROGRAM

FP .set AR3 ;frame pointer in AR3

.global _matrixmf ;global ref/def

_matrixmf ;function in assembly

PUSH FP ;save old frame pointer

LDI SP,FP ;point to start of stack

PUSH R4 ;R4 is a dedicated C register

PUSH AR4 ;AR4 is a dedicated C register

LDI *-FP(2),AR0 ;A array

LDI *-FP(3),AR1 ;B array

LDI *-FP(4),AR2 ;pointer to IO_OUTPUT

LDI 3,R4 ;R4 is LOOPI counter

LOOPI LDF 0,R0 ;initialize R0

LDI 2,AR4 ;AR4 is LOOPJ counter

LOOPJ MPYF *AR0++,*AR1++,R1 ;A[I,J] * B[J] = R1

ADDF R1,R0 ;R0 accumulates result

DB AR4,LOOPJ ;decr AR4 and branch til AR4<0

FIX R0 ;float to integer conversion

STI R0,*AR2++ ;output result to IO_OUTPUT

LDI *-FP(3),AR1 ;reload start addr of B array

SUBI 1,R4 ;decrement R4

BNZ LOOPI ;branch while R4 <> 0

POP AR4 ;restore AR4

POP R4 ;restore R4

POP FP ;restore FP

RETS ;return from subroutine

memory starting at the address 809802 (as specified by AR2). Type memd
0x809802 and verify the three resulting decimal values in memory locations
809802–809804.

2.8 EXPERIMENT 2: TMS320C3x INSTRUCTIONS AND
ASSOCIATED TOOLS

1. Perform/implement the addition and multiplication Examples 1.1 and 1.2.
2. Perform/implement Example 1.3 as background for implementing a digi-

tal filter.
3. Edit the FIR4.ASM program on your hard drive and save it as

FIR11.ASM with the following changes:

a) Increase the size of each buffer to allow for the following 11 input values
in the buffer IN: 10,000, 0, 0, . . . , 0; and 11 values (coefficients) in the
buffer HN: 0, 0.0468, 0.1009, 0.1514, 0.1872, 0.2, 0.1872, 0.1514,
0.1009, 0.0468, 0.

b) Create a circular buffer of size 11 (aligned within a 16-word boundary).

c) Create an output address starting at 0x809802 labeled OUT_ADDR

d) Run this program and show that the resulting values in hexadecimal nota-
tion stored in consecutive memory starting at 0x809802 are: 0, 1d3,
3f1, 5e9, 74f, 7d0, 74f, 5e9, 3f1, 1d3, 0; and in decimal: 0, 467, 1009,
1513, 1871, 2000, 1871, 1513, 1009, 467, 0. These values are the HN val-
ues scaled by 10,000 and are stored in the files FIR11X.DAT and
FIR11L.DAT. The two commands memx 0x809802 or memd
0x809802 display the content in memory in hex or signed (decimal)
format, respectively, starting at the address 809802. The command:

SAVE FIR11X.DAT,0x809802,11,X

d) saves in hex (X for ASCII hexadecimal, or L for ASCII long) format the
content of 11 consecutive memory locations starting at the address
809802 into a file FIR11X.DAT. See the debugger help menu with F1
for other options.

e) The fast Fourier transform (FFT), discussed in Chapter 6, of the 11 result-
ing values would yield a plot of the characteristics of a lowpass filter with
a cutoff frequency at Fs/10. An FFT utility can be obtained from MAT-
LAB or within the Code Explorer debugger (Appendix B).

4. Test the program FIR11.ASM with the Code Explorer described in Ap-
pendix B. From the Code Explorer debugger window screen shown in Appendix

2.8 Experiment 2: TMS320C3x Instructions and Associated Tools 47

B, select File, then Load FIR11.DSK. Click on run, then halt. The output re-
sults are in memory locations 809802–80980c. View Memory and select 32-
bit signed integer to display the results.

To graph the results within the debugger environment, select View, Graph, a
starting address of 0x809802, a buffer size and display size of 11, a sampling
frequency of 10,000, and Frequency Domain: FFT representation. The resulting
plot shows the characteristics of a lowpass filter with a cutoff frequency of
Fs/10 or 1 kHz. Increasing the buffer size (padding with zero) will yield a graph
with finer resolution. These results will again be discussed in Chapter 4, in con-
junction with FIR filtering, and we will see how the filter’s characteristics can
be made sharper or more selective by increasing the number of the values in HN.

5. Generalize the matrix/vector multiplication program to an (N × M) × (M
× K) matrix multiplication. Test this program by setting N, M, and K to 3, and us-
ing the same values for the B matrix as the values set in the A matrix (see Exam-
ples 1.3, 2.4, and 2.6). Implement it using either:

a) TMS320C3x assembly code or

b) C code or

c) mixed-mode with a main program in C calling an assembly function.

REFERENCES

1. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

2. D. W. Horning, “An Undergraduate Digital Signal Processing Laboratory,” in Proceed-
ings of the 1987 ASEE Annual Conference, June 1987.

3. R. Chassaing, “Applications in Digital Signal Processing with the TMS320 Digital Sig-
nal Processor in an Undergraduate Laboratory,” in Proceedings of the 1987 ASEE Annu-
al Conference, June 1987.

4. K. S. Lin ed., Digital Signal Processing Applications with the TMS320 Family: Theory,
Algorithms, and Implementations, Prentice Hall, Englewood Cliffs, NJ, Vol. 1, 1988.

5. R. Chassaing, “A Senior Project Course in Digital Signal Processing with the TMS320,”
IEEE Transaction on Education, 32, 139–145 (1989).

6. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

7. P. Papamichalis ed., Digital Signal Processing Applications with the TMS320 Family:
Theory, Algorithms, and Implementations, Vol. 3, Texas Instruments, Inc., Dallas, TX,
1990.

8. TMS320C3x User’s Guide, Texas Instruments, Inc., Dallas, TX, 1997.

9. TMS320C30 Evaluation Module Technical Reference, Texas Instruments, Inc., Dallas,
TX, 1990.

10. Digital Signal Processing Applications with the TMS320C30 Evaluation Module: Select-
ed Application Notes, Texas Instruments, Inc., Dallas, TX, 1991.

48 Architecture and Instruction Set of the TMS320C3x Processor

11. R. Chassaing and P. Martin, “Parallel Processing with the TMS320C40,” in Proceedings
of the 1995 ASEE Annual Conference, June 1995.

12. R. Chassaing and R. Ayers, “Digital Signal Processing with the SHARC,” in Proceedings
of the 1996 ASEE Annual Conference, June 1996.

13. TMS320C3x DSP Starter Kit User’s Guide, Texas Instruments, Inc., Dallas, TX, 1996.

References 49

� Input and output with the Analog Interface Circuit (AIC) chip

� Communication between the PC host and the C31 DSK

� Alternative memory using external and flash memory

� Alternative input and output with a 16-bit stereo codec

� Programming examples and experiments using C and TMS320C3x code

3.1 INTRODUCTION

Typical applications using DSP techniques require at least the basic system
shown in Figure 3.1, consisting of an analog input and analog output. Along the
input path is an antialiasing filter for eliminating frequencies above the Nyquist
frequency, defined as one-half the sampling frequency. Otherwise, aliasing oc-
curs, in which case a signal with a frequency higher than one-half Fs is dis-
guised as a signal with a lower frequency. The sampling theorem tells us that the
sampling frequency must be at least twice the highest frequency component f in
a signal, or

Fs > 2f

Hence,

1/Ts > 2(1/T)

where Ts is the sampling period, or

(1/2)T > Ts

and

51

3
Input and Output with the DSK

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

Ts < (1/2)T

The sampling period Ts must be less than one-half the period of the signal. For
example, if we assume that the ear cannot detect frequencies above 20 kHz, we
would sample a music signal at Fs > 40 kHz (typically at 44.1 kHz or 48 kHz) in
order to remove frequency components higher than 20 kHz. We can then use a
lowpass input filter with a bandwidth or cutoff frequency at 20 kHz to avoid
aliasing.

Figure 3.2 illustrates an aliased signal. Let the sampling frequency Fs = 4
kHz, or a sampling period of Ts = 0.25 ms. It is impossible to determine whether
it is the 5-kHz or the 1-kHz signal that is represented by the sequence (0, 1, 0,
–1). A 5-kHz signal will appear as a 1-kHz signal; hence, the 1-kHz signal is an

52 Input and Output with the DSK

FIGURE 3.1 DSP system with input and output.

FIGURE 3.2 Aliased sinusoidal waveform.

5 kHz

1 kHz

aliased signal. Similarly, a 9-kHz signal would also appear as a 1-kHz aliased
signal. We will verify this aliasing phenomenon with a programming example
in Section 3.4.

The A/D converts the input analog signal to a digital representation to be
processed by the digital signal processor. The maximum level of the input signal
to be converted is determined by the specific analog-to-digital converter
(ADC). Discrete levels or steps are used to represent the input signal. The num-
ber of steps is based on the range of the input-signal level and the number of
bits of the ADC. After the captured signal is processed, the result needs to be
sent to the outside world. Along the output path is a digital-to-analog converter
(DAC) that performs the reverse operation of the ADC, with different output
levels produced by the DAC based on its input. An output filter smooths out or
reconstructs the steps into an equivalent analog signal.

3.2 THE ANALOG INTERFACE CIRCUIT (AIC) CHIP

The DSK board includes an analog interface circuit (AIC) chip that connects to
the serial port on the C31. The AIC contains an ADC and a DAC as well as
switched-capacitor antialiasing input filter and reconstruction output filter, all
on a single C-MOS chip. Figure 3.3 shows the TLC32040 AIC functional block
diagram with two inputs, one output, 14-bit ADC and DAC, and input and out-
put filters. Programmable sampling rates with a maximum of 20 kHz for maxi-

3.2 The Analog Interface Circuit (AIC) Chip 53

FIGURE 3.3 TLC32040 AIC functional block diagram (reprinted by permission of Texas
Instruments).

mum performance are possible, although higher sampling rates for audio appli-
cations can be obtained, as described later.

The TLC32040 AIC is a member of the TLC3204x family of analog inter-
face circuit chips [1–5]. The evaluation module (EVM) contains the TLC32044
AIC, which has an input lowpass filter as well as a bypassable highpass input
filter in lieu of the bandpass input filter shown in Figure 3.3 [3].

The AIC primary input IN can be accessed from an RCA connector on the
DSK board. The AIC auxiliary input AUX IN is accessed through pin 3 from
the 32-pin connector JP3 along the edge of the DSK board. The input bandpass
filter is bypassable and can be programmed for a desired cutoff frequency or
bandwidth based on the sampling frequency. The output reconstruction lowpass
filter is fixed.

AIC Control

Data transmission occurs through the data receive (DR) and the data transmit
(DX) registers, two of the AIC’s serial port registers. The AIC is controlled
through the data transmit register. The two least significant bits (LSBs) are used
for communication functions. When the two LSBs are zeros, normal transmis-
sion occurs, and when they are ones, secondary communication takes place.
Secondary communication initializes and controls the AIC, allowing one sec-
ondary transmission before switching back. Figure 3.4 shows the AIC sec-
ondary communication protocol. Control functions are initiated by writing to
several of the AIC’s registers. Certain AIC specifications, such as input port and
input filter, are obtained using the control register. For example, as shown in
Figure 3.4, setting bit d2 and d4 to ones in the control register, inserts the AIC’s
input bandpass filter and enables the auxiliary input AUX IN, respectively.

Registers A and B on the AIC designate the location of control. The A regis-
ters consist of TA and RA and represent filter control, and the B registers consist

54 Input and Output with the DSK

FIGURE 3.4 AIC secondary communication protocol (reprinted by permission of Texas In-
struments).

of TB and RB registers and represent the A/D and D/A control. These registers
are associated with the AIC’s internal timing configuration [1]. The bit locations
for the transmit and receive registers TA and RA are:

bits 0–1 0,0

bits 2–6 RA

bits 7–8 don’t care (x)

bits 9–13 TA

bits 14–15 don’t care (x)

The bit locations for the transmit and receive registers TB and RB are:

bits 0–1 0,1

bits 2–7 RB

bit 8 don’t care (x)

bits 9–14 TB

bit 15 don’t care

The AIC can be configured for a specified sampling frequency and filter band-
width by requesting secondary communication and loading ones in the first two
LSBs. Secondary communication follows a primary communication that has
the two LSBs set to ones. The following sequence of data is loaded to the serial
port data transmit register and sets the two LSBs to one for each secondary
communication request:

a) 0x3 (or 3h) to request secondary communication

b) value for the A registers

c) 0x3 to request secondary communication again

d) value for the B registers

e) 0x3 to request secondary communication a third time

f) value to configure the control register

We can now proceed to find the A and B values in order to achieve a desired
sampling frequency and input filter bandwidth BW.

Calculating Values for A and B for a Desired Fs and Filter BW

The C31 DSK has a 50-MHz input clock (CLKIN) that can generate a maxi-
mum timer frequency of MCLK = (CLKIN/4) = 12.5 MHz, which is above the
AIC’s maximum master clock frequency of 10 MHz specified for maximum
performance. The AIC master clock MCLK can be accessed and measured from

3.2 The Analog Interface Circuit (AIC) Chip 55

pin 8 on JP1 [4]. To achieve maximum performance with the AIC, we can di-
vide the input clock by 8, or

MCLK = CLKIN/8 = (50 MHz/8) = 6.25 MHz (3.1)

The switched-capacitor filter frequency (SCF) is related to the A transmit regis-
ter, or

SCF = MCLK/(2 × TA) (3.2)

and the sampling frequency is related to the transmit A and B registers, or

Fs = MCLK/(2 × TA × TB) (3.3)

The input filter bandwidth or cutoff frequency is set at 3600 Hz for an SCF of
288 kHz [1]. A new SCF will result for a different BW. The following calcula-
tions illustrate the above and how to find the A and B values to set the AIC.

1. Fs = 8 kHz (Desired)
The desired cutoff frequency of the input antialiasing filter is 3600 Hz for an
SCF of 288 kHz. From (3.2)

TA = MCLK/(2 × SCF) = 6.25 MHz/(2 × 288 kHz) = 10.85
� 11 = (01011)b (3.4)

From (3.3)

TB = MCLK/(2 × TA × Fs) = 6.25 MHz/(2 × 11 × 8,000) = 35.51
� 36 = (100100)b

From (3.4), the actual SCF is

SCF = 6.25 MHz/(2 × TA) = 284.09 kHz

The actual cutoff frequency or input filter bandwidth is shifted accordingly, or

BW = 3600(New SCF/Set SCF)
= 3600 (284.09 kHz/288 kHz) = 3551.14 Hz

The actual sampling frequency is then

Fs = 6.25 MHz/(2 × TA × TB) = 6.25 MHz/(2 × 11 × 36) = 7891.41 Hz

56 Input and Output with the DSK

From Figure 3.4, using the bit locations for the control register, and setting TA =
RA, with 5 bits for TA, 6 bits for TB, and x for don’t care,

0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 ⇒ 162Ch
x x | TA | x x | RA |

Separating the bits into nibbles or groups of four, A = 162Ch. Similarly, with
TB = RB

0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 ⇒ 4892h
x | TB | x | RB |

B = 4892h. These values can be verified using a utility program AICCALC
included with the DSK software tools.

2. Fs = 10 kHz (Desired)
Using the same cutoff frequency or BW for the input antialiasing filter as previ-
ously obtained with Fs = 8 kHz, TA = 11. Then,

TB = 6.25 MHz/(2 × 11 × 10,000) = 28.41 � 28 = (011100)b

The actual sampling frequency is

Fs = 6.25 MHz/(2 × TA × TB) = 6.25 MHz/(2 × 11 × 28) = 10,146 Hz

The B value is then

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 ⇒ 3872h
x | TB | x | RB |

or B = 3872h.

3. Fs = 20 kHz (Desired)
Let BW = 8000 Hz (desired). Since the bandwidth is

BW = 3600(New SCF/Set SCF)

the new switched-capacitor filter frequency is

SCF = 8000(288 K)/3600 = 640 kHz

and the TA and TB register values are

3.2 The Analog Interface Circuit (AIC) Chip 57

TA = 6.25 MHz/(2 × 640 K) = 4.88 � 5 = (00101)b

TB = 6.25 MHz/(2 × 5 × 20000) = 31.25 � 31 = (011111)b

The actual SCF is

SCF = 6.25 MHz/(2 × 5) = 625 kHz

The actual bandwidth is

BW = 3,600(625 K/288 K) = 7812.5 Hz

The actual sampling frequency is

Fs = 6.25 MHz/(2 × 5 × 31) = 20,161.29 Hz

The A value is then

0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 ⇒ 0A14h
x x | TA | x x | RA |

or A = 0A14h and the B value is

0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 ⇒ 3E7Eh
x | TB | x | RB |

or B = 3E7Eh. The A and B registers for four different sampling rates follow:

(Desired)Fs, Hz (Actual) Fs A B

8,000 7,891.41 0x162C 0x4892
10,000 10,146 0x162C 0x3872
16,000 15,943 0x0E1C 0x3872
20,000 20,161.29 0x0A14 0x3E7E

For Fs = 16 kHz, the actual BW = 5580 Hz.
There is an additional set of registers TA� and RA� that can be used for

fine-tuning the sampling rate and filter bandwidth. In Section 3.4, we will set
the A and B values in the program examples in order to obtain a desired Fs and
BW.

58 Input and Output with the DSK

3.3 INTERRUPTS AND PERIPHERALS

Interrupts

The TMS320C31 supports both internal and external interrupts that can inter-
rupt the CPU or the DMA, as well as a nonmaskable external reset interrupt [6].
Figure A.1 in Appendix A shows the global interrupt enable (GIE) bit register,
within the status register (ST), that controls all CPU interrupts. The GIE bit is
set to one to enable an interrupt. To disable an interrupt, disable the interrupt
enable (IE) register shown in Figure A.2 by setting it to zero, then set the GIE
bit also to zero. Figure A.3 shows the memory-mapped locations used for inter-
rupts [6].

Timers

The TMS320C31 supports two timers that can be used to count external events.
They provide the timing necessary to signal an ADC to start conversion. Figure
A.4 in Appendix A shows the peripheral bus memory-mapped registers. The
timer global control register (Figure A.5) at memory location 808020 monitors
the timer’s status, and the timer period register at the memory address 808028
specifies the timer’s frequency. The timer counter register at memory location
808024 contains the value of the incrementing counter. When the value of the
period register equals that of the timer counter register, the counter register re-
sets to zero. At reset, both the timer counter and the period registers are set to
zero. We will use these registers to set a desired interrupt rate, effectively
achieving a desired Fs.

Programming examples will further illustrate the use of an interrupt generat-
ed internally with a timer. Section 8.4 describes a project to control the ampli-
tude of a generated sinewave using both internal and external interrupts.

Serial Port

The TMS320C31 supports one serial port (the C30 has two) with a set of con-
trol registers as shown in Figure A.4. Figure A.6 shows the serial port global
control register format. The AIC on board the DSK connects to the C31 serial
port, through a 22-pin connector jumper block JP1 that connects the C31
signals to the AIC. These jumpers can be removed to disconnect the on-
board AIC from the C31 and use JP1 to access the C31 signals and interface
to an external board. Appendix D describes a board that contains a CS4216
(or CS4218) 16-bit codec that interfaces to the C31 signals through the 22-pin
connector JP1.

3.3 Interrupts and Peripherals 59

AIC Data Configuration

The following registers are set in order to initialize the AIC:

Register Address Command

Timer 0 period 0x808028 Load 0x1
Timer 0 global control 0x808020 Load 0x3C1
I/O flag IOF Load 0x2
SP0 transmit port control 0x808042 Load 0x131
SP0 receive port control 0x808043 Load 0x131
SP0 global control 0x808040 Load 0x0E970300
SP0 data transmit 0x808048 Load 0x0
I/O IOF Load 0x6
Interrupt flag IF Load 0x0
Interrupt enable IE OR 0x10
Status register ST OR 0x2000

In the next section, we will illustrate how to configure the AIC through pro-
gramming examples.

3.4 PROGRAMMING EXAMPLES USING TMS320C3x
AND C CODE

Several programming examples using both assembly and C code illustrate inter-
rupts and I/O communications with the AIC. We developed a program in both
assembly and C that contains several routines to communicate with the AIC for
input and output. Such program can be used as an AIC “communication box.”
In Example 1.2, we generated a real-time sinusoid with the program
SINE4P.ASM. The program SINE4P.ASM “includes” the AIC communica-
tion program AICCOM31.ASM that contains the AIC routines for initialization
and input/output capabilities.

Example 3.1 Internal Interrupt Using TMS320C3x Code

Figure 3.5 shows a listing of the program INTERR.ASM that illustrates an in-
terrupt generated internally by the C31 timer 0. The rate at which an interrupt
occurs is determined without the use of the AIC. Consider the following from
the program.

1. The interrupt rate is determined by a value set in the period register, or
rate = 12.5 MHz/(2 × period)

2. The period register at the memory address 808028 and the global regis-
ter at the memory address 808020 are initialized. Bit 8 within the interrupt en-
able (IE) register TINT0 is enabled. Appendix A contains information on these
registers.

60 Input and Output with the DSK

3. Execution continues within a loop containing the two instructions WAIT
IDLE and BR WAIT until an interrupt occurs. The counter register at memory
address 808024 increments from 0, 1, . . . , until it reaches the period value of
2000h set in the period register at which time an interrupt occurs. The counter
register is reset to zero and is incremented again.

3.4 Programming Examples Using TMS320C3x and C Code 61

;INTERR.ASM - DEMONSTRATES INTERNAL INTERRUPT WITHOUT THE AIC

.start “intsect”,0x809FC9 ;starting address for interrupt

.start “.text”,0x809A00 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.sect “intsect” ;section for interrupt

BR ISR ;interrupt vector TINT0

.data ;data section

PERIOD .word 2000H ;interrupt rate=12.5MHz/(2*PERIOD)

IE_REG .word 100H ;enable timer 0 (TINT0) for interrupt

PER_ADDR .word 808028H ;(TLCK0) period register location

TCNTL .word 2C1H ;control register value

ST_REG .word 2000H ;set status register

OUTPUT .word 0xA ;initial output value

OUT_ADDR .word 0x809A30 ;output address

STACKS .word 809F00h ;init stack pointer

.entry BEGIN ;start of code

.text ;assemble into text section

BEGIN LDP STACKS ;init data page

LDI @STACKS,SP ;SP -> 0809F00h

LDI @PER_ADDR,AR0 ;TINT0 period register =>AR0

LDI @OUT_ADDR,AR1 ;output address =>AR1

LDI @PERIOD,R0 ;period value => R0

STI R0,*AR0—(8) ;set TLCK0 period @ 808028H

LDI @TCNTL,R0 ;control register value =>R0

STI R0,*AR0 ;set TLCK0 global control @ 808020H

LDI @OUTPUT,R0 ;R0 = output value

OR @IE_REG,IE ;enable TINT0 interrupt bit 8

WAIT IDLE ;wait for interrupt

BR WAIT ;branch to WAIT until interrupt

; INTERRUPT VECTOR

ISR ADDI 2,R0 ;increment output value by 2

STI R0,*AR1++ ;store output value

RETI ;return from interrupt

.end ;end

FIGURE 3.5 Interrupt program using TMS320C3x code (INTERR.ASM).

4. On interrupt, execution proceeds to the interrupt service routine (ISR).
An initial value of 0xA = 10 (decimal) set as output is incremented by two
(within the interrupt service routine) and the result stored in memory location
809a30, the starting output address specified by OUT_ADDR.

5. Execution returns to the WAIT loop until the next interrupt occurs.
6. Run this program for one or two seconds, then stop/halt execution. Type

memd 0x809a30 to verify the output values 12, 14, 16, 18, The C31
should be reset first, before displaying the output values, if an old version of the
DSK tools is used.

Due to the interrupt structure, it is not possible to single-step and observe the
counter register at 808024 incrementing, or to observe the sequence of the
program counter PC illustrating the instruction to be executed next, specifically
when the timer counter register equals the period register value. A modified ver-
sion of this program can be single-stepped through using a simulator available
from Texas Instruments [3]. The simulator is a software program similar in
function to the debugger but which models and does not require the C31. With a
debugger, the executable file is downloaded into an actual C31 chip.

Example 3.2 Sine Generation with AIC Data Using
TMS320C3x Code

Figure 3.6 shows a listing of the program SINEALL.ASM that generates a sinu-
soid with four points in a look-up table and contains the necessary code to com-
municate with the AIC. This example can serve as a sample program that illus-
trates how to integrate AIC communication data directly within a specific
program.

Example 1.2 illustrates a sine generation program using a table look-up pro-
cedure with four points that calls the AIC routines included in a separate file

62 Input and Output with the DSK

FIGURE 3.6 Sine generation program with AIC data incorporated (SINEALL.ASM).

;SINEALL.ASM - GENERATES A SINE WITH 4 POINTS USING AIC POLLING

.start “.text”,0x809900 ;starting addr for code

.start “.data”,0x809c00 ;starting addr for data

.data ;data section

PBASE .word 808000h ;peripheral base address

SETSP .word 0E970300h ;serial port set-up data

ATABLE .word AICSEC ;SP0 AIC init table addr

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 kHz

SINE_ADDR .word SINE_VAL ;address of sine values

.brstart “SINE_BUFF”,8 ;size of sine table

(continued on next page)

3.4 Programming Examples Using TMS320C3x and C Code 63

SINE_VAL .word 0,1000,0,-1000 ;sine values

LENGTH .set 4 ;length of circular buffer

.entry BEGIN ;start of code

.text ;assemble into text section

BEGIN LDP AICSEC ;init to data page 128

LDI @PBASE,AR0 ;AR0=peripheral base address

LDI 1h,R0 ;Timer CLK=H1/2*(AIC master CLK)

STI R0,*+AR0(28h) ;timer period reg(TCLK0=6.25MHZ)

LDI 03C1h,R0 ;to init timer global register

STI R0,*+AR0(20h) ;reset timer

LDI 62h,IOF ;AIC reset = 0

LDI @ATABLE,AR1 ;AR1=AIC init data

RPTS 99 ;repeat next instr 100 times

NOP ;keep IOF low for a while

LDI 131h,R0 ;X & R port control register data

STI R0,*+AR0(42h) ;FSX/DX/CLKX=SP operational pins

STI R0,*+AR0(43h) ;FSR/DR/CLKR=SP operational pins

LDI @SETSP,R0 ;RESET->SP:16 bits,ext clks,std mode

STI R0,*+AR0(40h) ;FSX=output & INT enable SP global reg

LDI 0,R0 ;R0=0

STI R0,*+AR0(48h) ;clear serial port XMIT register

OR 06h,IOF ;bring AIC out of reset

LDI 03h,RC ;RC=3 to transmit 4 values

RPTB SECEND ;repeat 4 data transmit of sec com

CALL TWAIT ;wait for data transmit

LDI 03h,R0 ;valuefor secondary XMIT request

STI R0,*+AR0(48h) ;secondary XMIT request to AIC

CALL TWAIT ;wait for data transmit

LDI *AR1++(1),R0 ;R0=next AIC data

SECEND STI R0,*+AR0(48h) ;DTR=curent AIC data

LDI LENGTH,BK ;BK=size of circular buffer

LDI @SINE_ADDR,AR1 ;AR1=address of sine values

LOOP LDI *AR1++%,R7 ;R7=table value

CALL TWAIT ;wait for data transmit

LSH 2,R7 ;Two LSB MUST = 0 for primary AIC com

STI R7,*+AR0(48h) ;DTR=next data for AIC D/A

BR LOOP ;branch back to LOOP

TWAIT LDI *+AR0(40h),R0 ;R0=content of SP global control reg

AND 02h,R0 ;see if transmit buffer is ready

BZ TWAIT ;if not ready, try again

RETS ;branch from subroutine

FIGURE 3.6 (continued)

AICCOM31.ASM. A C version of the AIC communication program is described
later. These routines enable the initialization of the AIC for input/output. While
it is more efficient to integrate these AIC routines within each specific program
for faster execution, it is more convenient to use these routines as a “black box,”
as was done in Example 1.2.

Appendix A describes a number of special registers on the C31 that are
available for communicating with the AIC. Assemble and run SINEALL.ASM
to verify a generated output sinusoid with a frequency of f = Fs /4 = 2 kHz. Con-
sider the following from the program.

1. The values in AICSEC specify a sampling rate of 8 kHz with a band-
width of 3551 Hz. The DAC output rate is the same as the input ADC rate (no
input is used in this program example). The AIC master clock is set to 6.25
MHz with the instruction LDI 1,R0 with R0 stored in the timer-period regis-
ter. Example 1.2 illustrates how the AIC master clock can be changed with that
instruction. For example, a value of two in the timer-period register with LDI
2,R0 reduces the AIC master clock to 3.125 MHz, and effectively also reduces
the sampling rate by two. The AIC master clock frequency can be verified from
pin 8 on the DSK board connector JP1. Figure A.4 in Appendix A shows the
memory-mapped timer locations. The second value of 1h in AICSEC sets the
registers TA� and RA� on the AIC for fine-tuning the sampling frequency
(though not used).

2. The following registers are initialized: the global control register at mem-
ory location 808020 (using timer 0), the IOF register, the serial port control
registers at 808042 and 808043, the serial port global control register at
808040, and the data transmit register at 808048 (see Figures A4–A8).

3. By initializing the timer global control register with 0x3C1, bit 8 (C/P�)
in Figure A.5 is set to one and the clock mode is chosen (not the pulse mode),
which allows for an external output of 50% duty cycle.

4. Request for secondary communication is made through the data transmit
register to transmit the four values set in AICSEC that specify a sampling rate
of 8 kHz, the filter’s BW, the AIC primary input IN, and the insertion of the
AIC input bandpass filter.

5. The sequence of four values represents a sine waveform, set in
SINE_VAL, and are then transmitted through the data transmit register at mem-
ory location 808048 (Figure A.4) through a polling procedure within the
TWAIT routine.

6. The IOF register is kept low for a while. The AIC reset pin is connected
to the C31 XF0 pin (see Figure A.8).

7. The serial port global control register is loaded with 0E970300 and
causes the following (Figures A.4 and A.6):

a. Configures FSX as input

b. Disables handshake mode

64 Input and Output with the DSK

c. Sets both transmit and receive sync pulses to variable rate

d. Sets both transmit and receive frame sync modes to standard mode

e. Sets all clocks and data interface pin polarities to active high

f. Sets all frame sync pulses to active low

g. Transfers 16-bit data

h. Disables all interrupts except the transmit interrupt

i. Starts serial port operations

j. Loads the data transmit register with an initial value of zero

8. Within the block of code or loop starting at the instruction RPTB
SECEND and ending at the label SECEND, the first three lines of code load the
data transmit register with the primary communication data for the AIC and the
subsequent three lines of code load the data transmit register with the secondary
communication data for the AIC.

9. The AIC will issue the transmit sync pulse to the C31 to start primary
communication. After the data is received, the AIC uses bits 2–15 as D/A data
and bits 0–1 as control data. Both control bits being set to 1 will cause the AIC
to issue another transmit sync pulse (four AIC shift clock cycles after the prima-
ry communication ends) to the C31 to start secondary communication. After the
secondary communication data is received, the AIC uses bits 0–1 to control the
register that will be loaded and bits 2–15 as the data that will be loaded in the
AIC register. The next data received by the AIC will be treated as primary com-
munication data. All primary communications are performed at an interval that
is determined by the A/D and D/A conversion rates.

10. The AIC is ready for transmission of a new word when bit 1 of the serial
port global control register XRDY is set to 1 (Figure A.6), otherwise wait.

Example 3.3 Loop/Echo with AIC Routines in Separate File,
Using TMS320C3x Code

This example illustrates input and output with the AIC and the effects of alias-
ing. Figure 3.7 shows a loop or echo program LOOP.ASM that “includes”
the program AICCOM31.ASM shown in Figure 3.8. This separate program
AICCOM31.ASM contains the AIC communication routines (see also
SINEALL.ASM). This program was introduced in Example 1.2 in Chapter 1. It
is instructive to read the comments in these programs. The program AIC-
COM31.ASM includes options to achieve a data conversion rate using either in-
terrupt or polling, and to access the primary and auxiliary inputs. Consider the
following.

1. The routine AICSET in AICCOM31.ASM is called to initialize the AIC,
followed by calling the routine AICIO_P for input and output using a polling

3.4 Programming Examples Using TMS320C3x and C Code 65

66 Input and Output with the DSK

;LOOP.ASM - LOOP PROGRAM. CALLS AIC ROUTINES IN AICCOM31.ASM

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “AICCOM31.ASM” ;AIC communication routines

.data ;data section

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 kHz

.text ;text section

.entry BEGIN ;start of code

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET ;init AIC

LOOP CALL AICIO_P ;R6 = input, R7 = output

LDI R6,R7 ;output R7=new input in R6

BR LOOP ;loop continuously

.end ;end

FIGURE 3.7 Loop/echo program using TMS320C3x code (LOOP.ASM).

FIGURE 3.8 AIC communication program (AICCOM31.ASM).

*AICCOM31.ASM - AIC COMMUNICATION ROUTINES - POLLING OR INTERRUPT

.data ;assemble into data section

PBASE .word 808000h ;peripheral base address

SETSP .word 0E970300h ;serial port set-up data

ATABLE .word AICSEC ;SP0 AIC init table address

.text ;assemble into text section

AICSET PUSH AR0 ;save AR0

PUSH AR1 ;save AR1

PUSH R0 ;save R0

PUSH R1 ;save R1

LDI @PBASE,AR0 ;AR0 -> 808000h

LDI 1,R0 ;timer CLK=H1/2*(AIC master CLK)

STI R0,*+AR0(28h) ;timer period reg(TCLK0=6.25 MHZ)

LDI 03C1h,R0 ;init timer global register

STI R0,*+AR0(20h) ;reset timer

LDI 62h,IOF ;AIC reset = 0

LDI @ATABLE,AR1 ;AR1 -> AIC init data

RPTS 99 ;repeat next instr 100 times

NOP ;keep IOF low for a while

LDI 131h,R0 ;X & R port control register data

STI R0,*+AR0(42h) ;FSX/DX/CLKX=SP operational pins

STI R0,*+AR0(43h) ;FSR/DR/CLKR=SP operational pins

(continued on next page)

3.4 Programming Examples Using TMS320C3x and C Code 67

LDI @SETSP,R0 ;RESET->SP:16 bits,ext clks,std mode

STI R0,*+AR0(40h) ;FSX=output&INT enable SP global reg

LDI 0,R0 ;R0 = 0

STI R0,*+AR0(48h) ;clear serial port XMIT register

OR 06h,IOF ;bring AIC out of reset

LDI 03h,RC ;RC=3 to transmit 4 values

RPTB SECEND ;repeat 4 data transmit of sec com

CALL TWAIT ;wait for data transmit

LDI 03h,R0 ;value for secondary XMIT request

STI R0,*+AR0(48h) ;secondary XMIT request to AIC

CALL TWAIT ;wait for data transmit

LDI *AR1++(1),R0 ;AR1 -> next AIC init data

SECEND STI R0,*+AR0(48h) ;DTR = current AIC data

POP R1 ;restore R1

POP R0 ;restore R0

POP AR1 ;restore AR1

POP AR0 ;restore AR0

RETS ;return from subroutine

AICSET_I ;—-CONFIG FOR INTERRUPT —————-

CALL AICSET ;call AICSET routine

LDI 0h,IF ;clear IF register

OR 10h,IE ;enable EXINT0 CPU interrupt

OR 2000h,ST ;global interrupt enable

RETS ;return from subroutine

;——————————TRANSMIT WAIT ROUTINE————————————-

TWAIT PUSH AR0 ;save AR0

PUSH R0 ;save R0

LDI @PBASE,AR0 ;AR0 -> 0808000h

TW1 LDI *+AR0(40h),R0 ;R0=content of SP global control reg

AND 02h,R0 ;see if transmit buffer is ready

BZ TW1 ;if not ready, try again

POP R0 ;restore R0

POP AR0 ;restore AR0

RETS ;return from subroutine

;——————————AIC TRANSFER ROUTINE—————————————

AICIO_I LDI R7,R6 ;copy output to modify for AIC

LSH 2,R6 ;two LSB must=0 for primary AIC comm

IO PUSH AR0 ;save AR0

LDI @PBASE,AR0 ;AR0 -> 0808000h

STI R6,*+AR0(48h) ;DTR = next data for AIC D/A

FIGURE 3.8 (continued)

(continued on next page)

procedure. The two extended-precision registers R6 and R7 are selected for in-
put and output, respectively.

2. Assemble LOOP.ASM (not AICCOM31.ASM) and run it. Apply a sinu-
soidal input with an amplitude between 1 and 3 V and a frequency between 500
and 3 kHz. Verify a delayed output signal of the same frequency as the input
signal.

3. To test the AIC auxiliary input AUX IN, change the fourth value in AIC-

68 Input and Output with the DSK

LDI *+AR0(4Ch),R6 ;R6 = DRR data from AIC A/D

LSH 16,R6 ;left shift for sign extension

ASH -18,R6 ;right shift keeping sign

POP AR0 ;restore AR0

RETS ;return from subroutine

;——————————AIC POLLING ROUTINE—————————————-

AICIO_P CALL TWAIT ;wait for data to be transferred

CALL AICIO_I ;call AIC transfer routine

RETS ;return from subroutine

SW_IO PUSH AR0 ;save AR0

LDI @PBASE,AR0 ;AR0 -> 0808000h

LDI R7,R6 ;copy output to modify for AIC

LSH 2,R6 ;prepare for secondary AIC com

OR 03h,R6 ;set two LSB for secondary com

CALL TWAIT ;wait for data to be transferred

CALL IO ;call AIC transfer routine

CALL TWAIT ;wait for data to be transferred

STI R1,*+AR0(48h) ;DTR = next data for AIC control

POP AR0 ;restore AR0

RETS ;return from subroutine

;SUBROUTINES FOR PRIMARY OR AUXILIARY INPUT

IOPRI PUSH R1 ;save R1

LDI 063h,R1 ;load secondary com data into R1

CALL SW_IO ;call IO routine to switch inputs

POP R1 ;restore R1

RETS ;return from subroutine

IOAUX PUSH R1 ;save R1

LDI 073h,R1 ;load secondary com data into R1

CALL SW_IO ;call IO routine to switch inputs

POP R1 ;restore R1

RETS ;return from subroutine

FIGURE 3.8 (continued)

SEC from 67h to 77h. This sets bit d4 to 1 (see Figure 3.4) and selects AUX
IN, available from pin 3 of the 32-pin edge connector JP3 on the DSK board.
Verify that the delayed output has the same frequency as the input but with an
amplitude reduced by two.

4. Verify that the primary input IN is available from pin 1 on JP3. Note that
bit d4 within the AIC control register in Figure 3.4 must be set to zero in order
to access the primary input.

5. Bits d6 and d7 in the AIC control register determine the gain control.
Change the fourth value 67h to 27h to set bits d6 and d7 to zero and verify that
the output amplitude is reduced by two. Change 67h to 0A7 to set bit d6 to zero
and bit d7 to one, and verify that the output amplitude is increased by two.

6. Bypass the AIC input bandpass filter with bit d2 in the AIC control regis-
ter set to zero by changing 67h to 63h in AICSEC. Increase the input signal
frequency to slightly above 4000 Hz. The output signal will appear as a signal
with a lower frequency, referred to as an aliased signal. The input bandpass fil-
ter on the AIC removes these imaging effects. The input filter is set with a band-
width less than the ideal Nyquist frequency, referred to as one-half the sampling
frequency. Increase the input signal frequency to approximately 5 kHz, then to 9
kHz and observe these imaging effects. An aliased signal is present at 3 kHz,
then at 1 kHz.

Example 3.4 Loop/Echo with Interrupt Using TMS320C3x Code

Figure 3.9 shows the loop or echo program LOOPI.ASM, which illustrates con-
version rate or sampling rate using interrupt. Consider the following.

1. An interrupt service routine with the label ISR is defined within the sec-
tion “intsect” which is at the address 809FC5. As shown in Figure A.3, inter-
rupt XINT0 is selected.

2. AICSET_I and AICIO_I initialize and invoke the AIC input and output
routines for interrupt. The IDLE instruction waits for an interrupt to occur. On
interrupt, execution proceeds to the interrupt service routine ISR. The AIC in-
put and output routines are then invoked with AICIO_I. Execution returns,
with the return from interrupt instruction RETI. The instruction LDI R6,R7
is then executed, which loads the input from R6 into R7 for output. The branch
instruction BR LOOP causes execution to return to the IDLE instruction and
wait for the next interrupt to occur.

3. The AIC input bandpass filter is bypassed by using 63h in lieu of 67h in
AICSEC with bit d2 = 0 in Figure 3.4. Input a sinusoidal signal and increase the
input frequency beyond 4 kHz. Observe the aliasing effects as you increase the
input signal frequency beyond the BW of the input filter on the AIC. Do you
observe an aliased 1-kHz signal when the input signal frequency is 9 kHz? See
also the previous loop program example, which uses a polling procedure to ob-
tain an output sample rate.

3.4 Programming Examples Using TMS320C3x and C Code 69

Example 3.5 Sine Generation with Interrupt Using
TMS320C3x Code

Figure 3.10 shows the program listing SINE8I.ASM, which is the interrupt-
driven version of SINE4P.ASM in Example 1.2 and uses eight points to gener-
ate a sinusoid. On interrupt, execution proceeds to the interrupt service routine
ISR. The first value (zero) contained in the memory address specified by AR1
is loaded into R7. When the AIC input/output routines are invoked, the output is
in R7. In this example, processing for input (using R6) is not necessary. The in-
struction RETI causes execution to return to the IDLE instruction either direct-
ly or after the BR WAIT instruction, and waits until the next interrupt occurs.

Run this program and verify that it generates an output sinusoid with a fre-
quency of f = 1 kHz, the ratio of the sampling rate and the number of points. An
FM signal can be implemented based on the program SINE8I.ASM. See Ex-
periment 3 in Section 3.7.

Example 3.6 Pseudorandom Noise Generation Using
TMS320C3x Code

A 32-bit random noise sequence is generated using the following scheme shown
in Figure 3.11:

a) A 32-bit seed or initial value is chosen (for example, 7E521603h).

70 Input and Output with the DSK

FIGURE 3.9 Loop/echo program with interrupt (LOOPI.ASM).

;LOOPI.ASM - LOOP PROGRAM USING INTERRUPT

.start “intsect”,0x809FC5 ;starting address for interrupt

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “AICCOM31.ASM” ;AIC communication routines

.sect “intsect” ;section for interrupt vector

BR ISR ;XINT0 interrupt vector

.data ;data section

AICSEC .word 162Ch,1h,4892h,63h ;Fs = 8 kHz

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET_I ;init AIC

LOOP IDLE ;wait for transmit interrupt

LDI R6,R7 ;output R7=new input in R6

BR LOOP ;branch back to LOOP

ISR CALL AICIO_I ;output R7, R6=input

RETI ;return from interrupt

;SINE8I.ASM - GENERATES A SINE WITH 8 POINTS USING INTERRUPTS

.start “intsect”,0x809FC5 ;starting addr for interrupt

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “AICCOM31.ASM” ;AIC communication routines

.sect “intsect” ;section for interrupt vector

BR ISR ;XINT0 interrupt vector

.data ;data section

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 kHz

SINE_ADDR .word SINE_VAL ;starting addr of sine values

.brstart “SINE_BUFF”,16 ;align sine table

SINE_VAL .word 0,707,1000,707,0,-707,-1000,-707 ;sine values

LENGTH .set 8 ;length of circular buffer

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET_I ;init AIC

LDI LENGTH,BK ;BK=size of circular buffer

LDI @SINE_ADDR,AR1 ;AR1=starting addr of sine values

WAIT IDLE ;wait for interrupt

BR WAIT ;branch to wait until interrupt

; INTERRUPT SERVICE ROUTINE

ISR LDI *AR1++%,R7 ;R7=sine value for output

CALL AICIO_I ;call AIC for output

RETI ;return from interrupt

FIGURE 3.10 Sine generation program with interrupt (SINE8I.ASM).

FIGURE 3.11 Pseudorandom noise generator diagram.

71

b) A modulo 2 sum of bits 17, 28, 30, and 31 is performed.

c) The LSB of the result (0 or 1) is tested and scaled to a positive or to a neg-
ative value.

d) The seed value is shifted left by one and the previous resulting bit is
placed in the LSB position and the process repeated.

Figure 3.12 shows the program listing PRNOISE.ASM that generates a

72 Input and Output with the DSK

;PRNOISE.ASM - PSEUDORANDOM NOISE GENERATOR

.start “.text”,0x809900 ;starting address of text

.start “.data”,0x809C00 ;starting address of data

.include “AICCOM31.ASM” ;AIC communication routines

.data ;data section

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 kHz

SEED .word 7E521603h ;initial seed value

PLUS .word 400h ;positive level

MINUS .word 0FFFFFC00h ;negative level

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET ;initialize AIC

LDI @SEED,R0 ;R0 =initial seed value

LOOP LDI R0,R4 ;put seed in R4

LSH -31,R4 ;move bit 31 to LSB =>R4

LDI R0,R2 ;R2 = R0 = SEED

LSH -30,R2 ;move bit 30 to LSB =>R2

ADDI R2,R4 ;add bits (31+30) =>R4

LDI R0,R2 ;R2 = R0 = SEED

LSH -28,R2 ;move bit 28 to LSB =>R2

ADDI R2,R4 ;add bits (31+30+28) =>R4

LDI R0,R2 ;R2 = R0 = SEED

LSH -17,R2 ;move bit 17 to LSB =>R2

ADDI R2,R4 ;add bits(31+30+28+17)=>R4

AND 1,R4 ;mask LSB of R4

LDIZ @MINUS,R7 ;if R4=0, R7 = MINUS value

LDINZ @PLUS,R7 ;if R4=1, R7 = PLUS value

LSH 1,R0 ;shift new seed left by 1

OR R4,R0 ;put R4 into LSB of R0

CALL AICIO_P ;output in R7 using AIC routine

BR LOOP ;repeat for next noise sample

FIGURE 3.12 Pseudorandom noise generation program (PRNOISE.ASM).

pseudorandom noise, with the output rate of each noise sample determined by
polling. Note the following from Figure 3.12.

1. The output sequence is scaled by 400h or by 0FFFFFC00h, defined in
PLUS or MINUS in the program, which correspond to ±1024.

2. The instruction LSH -31,R4 is a logical shift and is to the right (with
the minus), which brings bit 31 of the seed value into the LSB location. The se-
lected bits are first moved into the LSB location before being summed.

3. Assemble and run this program. Connect the output to a spectrum analyz-
er. The shareware utility Goldwave (see Section 1.4 and Appendix B) requires a
PC and a sound card to turn Goldwave into a virtual instrument as a spectrum
analyzer. The output appears flat (with averaging) and rolls off at approximately
3550 Hz, the AIC input filter bandwidth.

4. The amplitude level of the noise spectrum is determined by the PLUS and
MINUS scaling factors. Change PLUS and MINUS to 1000h and
0FFFFF000h, respectively, which correspond to ±4096 and verify that the am-
plitude spectrum is higher.

In Chapter 4, we will generate the output random noise (internally) as an in-
put to a filter so that we can observe the characteristics and frequency response
of the filter on a spectrum analyzer.

Example 3.7 Alternative Pseudorandom Noise Generation with
Interrupt Using TMS320C3x Code

Figure 3.13 shows the interrupt-driven program PRNOISEI.ASM that gener-
ates the same output noise as in the previous example. Consider the following.

1. Shifting the seed value 17 locations to the right moves bit 17 to the LSB
position. When the seed value is again shifted by 11, this places bit 28 into the
LSB location (having already been shifted by 17). In the previous example, the
original seed value is reloaded each time before it is shifted, whereas in this ex-
ample it is not.

2. On interrupt, execution proceeds to the interrupt vector address or service
routine specified by ISR, where each generated output sample is determined by
the interrupt rate or sampling rate (even though there is no input).

3. Before the procedure for generating each noise sample is repeated, the
seed value is shifted left by one, and the resulting bit (0 or 1) in R4 is placed in
the LSB position of R0, which now contains the new seed value (shifted by
one). After each noise sample, program execution returns to the IDLE instruc-
tion, either directly or first through the BR WAIT instruction to wait for the
next interrupt to occur, and then the interrupt service routine is repeated.

4. Verify the same type of output noise as in the previous example. Use a
larger sampling rate such as 20 kHz in order to obtain a wider spectrum before
it rolls off. For a sampling rate of 20 kHz, the A and B registers were calculated
previously in Section 3.2, where A = 0x0A14 and B = 0x3E7E.

3.4 Programming Examples Using TMS320C3x and C Code 73

74 Input and Output with the DSK

;PRNOISEI.ASM - ALTERNATIVE NOISE GENERATOR USING INTERRUPT

.start “intsect”,0x809FC5 ;starting address for interrupt

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “AICCOM31.ASM” ;AIC communication routines

.sect “intsect” ;interrupt vector section

BR ISR ;XINT0 interrupt vector

.data ;data section

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 kHz

SEED .word 7E521603H ;initial seed value

PLUS .word 1000h ;positive noise level

MINUS .word 0FFFFF000H ;negative noise level

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP AICSEC ;init to data page 128

LDI @SEED,R0 ;R0=initial seed value

LDI 0,R7 ;init R7 (output) tO 0

CALL AICSET_I ;initialize AIC

WAIT IDLE ;wait for interrupt

BR WAIT ;branch to WAIT

; INTERRUPT SERVICE ROUTINE

ISR LDI 0,R4 ;init R4=0

LDI R0,R2 ;put seed in R2

LSH -17,R2 ;move bit 17 TO LSB =>R2

ADDI R2,R4 ;add bit (17) =>R4

LSH -11,R2 ;move bit 28 to LSB =>R2

ADDI R2,R4 ;add bits (28+17) =>R4

LSH -2,R2 ;bit 30 (17+11+2)to LSB=>R2

ADDI R2,R4 ;add bits (30+28+17) =>R4

LSH -1,R2 ;move bit 31 to LSB =>R2

ADDI R2,R4 ;add bits (31+30+28+17)=>R4

AND 1,R4 ;mask LSB of R4

LDIZ @MINUS,R7 ;if R4 = 0, R7 = MINUS

LDINZ @PLUS,R7 ;if R4 = 1, R7 = PLUS

LSH 1,R0 ;shift new seed left by 1

OR R4,R0 ;put R4 into LSB of R0

CALL AICIO_I ;call AIC for output in R7

RETI ;return from interrupt

FIGURE 3.13 Alternative pseudorandom noise generation program with interrupt
(PRNOISEI.ASM).

Example 3.8 Loop/Echo with AIC Data Using C Code

Figure 3.14 shows a listing of the program LOOPALL.C, which incorporates
the AIC data for initialization and input/output communication using polling
(see also the program SINEALL.ASM in Example 3.2). It can serve as a sample
program that contains the code necessary to communicate with the AIC. The ex-
ecutable file LOOPALL.OUT is on disk and can be downloaded and run on the
DSK. Chapter 1 describes the use of the optional tools for compiling and link-
ing C-coded programs. Consider the following.

1. In certain situations, the optimizing C compiler reduces a repetitive state-
ment with a variable that changes as a result of an external event such as an in-
terrupt service routine to a single read statement. To prevent this, the volatile
declaration in the program tells the compiler not to optimize, for example, any
references to BPASE (Figure 3.14), since it is pointing at a peripheral address
808000. We use volatile int *PBASE as a pointer to that memory address.

2. Setting the timer period register to 1 at 808028 produces an output clock
frequency of 6.25 MHz, which can be verified from pin 8 on the DSK board
connector JP1.

3. When the UPDATE_SAMPLE function is called, an output occurs from
the data transmit register at 808048. This output is first shifted left by two to
enable primary AIC communication. Before each output and input, the transmit
buffer is first cleared. An input sample is obtained from the data receive register
at memory location 80804C. The input sample is sign-extended by first shift-
ing the data left by 16 bits and then right by 18 bits. Note that the AIC has a 14-
bit ADC and DAC.

In the next example, we will show a smaller program calling the AIC rou-
tines contained in a separate file.

The executable COFF file is on the accompanying disk. Input a sinusoidal
signal with a frequency between 1 and 3 kHz and an amplitude between 1 and 3
V, and verify the same result as with the loop programs implemented in C3x
code in Examples 3.3 and 3.4. Change the timer period register to double the
AIC master clock to 12.5 MHz. This effectively doubles the sampling frequency
or output rate and increases the bandwidth of the input filter on the AIC.

Example 3.9 Loop/Echo Calling AIC Routines in Separate File,
Using C Code

Figure 3.15 shows a listing of the program LOOPC.C that calls the AIC com-
munication routines contained in the program AICCOMC.C shown in Figure
3.16.

Verify the same result as in Examples 3.3, 3.4, and 3.8 yielding a delayed
output sinusoid with the same frequency as an input sinusoid.

3.4 Programming Examples Using TMS320C3x and C Code 75

/*LOOPALL.C - LOOP/ECHO WITH AIC DATA INCORPORATED FOR I/O */

#define TWAIT while (!(PBASE[0x40] & 0x2)) /*wait till XMIT buffer clear*/

int AICSEC[4]= {0x162C,0x1,0x4892,0x67}; /*config data for SP0 AIC */

volatile int *PBASE = (volatile int *) 0x808000; /*peripherals base addr*/

void AICSET() /*function to initialize AIC */

{

volatile int loop; /*declare local variables */

PBASE[0x28] = 0x00000001; /*set timer period */

PBASE[0x20] = 0x000003C1; /*set timer control register */

asm(“ LDI 00000002h,IOF”); /*set IOF low to reset AIC */

for (loop = 0; loop < 50; loop++); /*keep IOF low for a while */

PBASE[0x42] = 0x00000131; /*set xmit port control */

PBASE[0x43] = 0x00000131; /*set receive port control */

PBASE[0x40] = 0x0E970300; /*set serial port global reg */

PBASE[0x48] = 0x00000000; /*clear xmit register */

asm(“ OR 00000006h,IOF”); /*set IOF high to enable AIC */

for (loop = 0; loop < 4; loop++) /*loop to configure AIC */

{

TWAIT; /*wait till XMIT buffer clear */

PBASE[0x48] = 0x3; /*enable secondary comm */

TWAIT; /*wait till XMIT buffer clear */

PBASE[0x48] = AICSEC[loop]; /*secondary command for SP0 */

}

}

int UPDATE_SAMPLE(int output) /*function to update sample */

{

int input; /*declare local variables */

TWAIT; /*wait till XMIT buffer clear */

PBASE[0x48] = output << 2; /*left shift and output sample */

input = PBASE[0x4C] << 16 >> 18; /*input sample and sign extend */

return(input); /*return new sample */

}

main()

{

int data_in, data_out; /*initialize variables */

AICSET(); /*call function to config AIC */

while (1) /*create endless loop */

{

data_in = UPDATE_SAMPLE(data_out); /*call function to update sample*/

data_out = data_in; /*loop input to output */

}

}

FIGURE 3.14 Loop program with AIC data incorporated using C code (LOOPALL.C).

AICCOMC.C
1. The AIC communication program AICCOMC.C is the C-coded version of

the assembly coded program AICCOM31.ASM listed in Figure 3.8. It is derived
from the program LOOPALL.C listed in Figure 3.14.

2. The wait loop is used to keep the IOF register low for a while (recom-
mended by Texas Instruments). The transmit, receive, and serial port global con-
trol registers at 808042, 808043, and 808040, respectively, are initialized.
The serial port data transmit register at 808048 is initialized to zero. The AIC
is enabled by setting the IOF register high.

3. The AIC is ready to transmit a new word when bit 1 (XRDY) of the serial
port global control register at 808040 in Figure A.6 is set to 1; otherwise, a
wait loop is executed.

4. If the AIC is interrupt-driven, then AICSET_I, is accessed, which first
initializes the AIC as with polling, then enables the AIC for interrupt (with the
asm statements). The use of C3x code within a C program must be done care-
fully, such as the instructions to initialize the I/O flag (IOF), the interrupt flag
(IF), the interrupt enable (IE), and the status (ST) registers with asm com-
mands. The C3x code within these asm statements is ignored by the C compiler
and is executed as specified. Note the blank space after the quotation, since an
instruction must not start in column 1. The interrupt flag register is initialized to
zero in order to clear any pending interrupts. After the IE register is set and the
GIE bit within the status ST register is set to 1, interrupt is enabled.

5. Since the AIC has a 14-bit ADC and DAC, the output value is left-shifted
by two and the LSBs are cleared to zero to enable primary communication of
the AIC.

3.4 Programming Examples Using TMS320C3x and C Code 77

FIGURE 3.15 Loop program calling AIC routines using C code (LOOPC.C).

/*LOOPC.C - LOOP PROGRAM WITH POLLING */

#include “aiccomc.c” /*AIC comm routines */

int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*Config data for AIC */

main()

{

int data_in, data_out; /*init variables */

AICSET(); /*config AIC */

while (1) /*create endless loop */

{

data_in = UPDATE_SAMPLE(data_out); /*func to update sample*/

data_out = data_in; /*loop input to output */

}

}

/*AICCOMC.C - COMUNICATION ROUTINES FOR AIC*/

#define TWAIT while (!(PBASE[0x40] & 0x2)) /*wait till XMIT buffer clear*/

extern int AICSEC[4]; /*array defined in main prog */

volatile int *PBASE = (volatile int *) 0x808000; /*peripherals base addr*/

void AICSET() /*function to initialize AIC */

{

volatile int loop; /*declare local variables */

PBASE[0x28] = 0x00000001; /*set timer period */

PBASE[0x20] = 0x000003C1; /*set timer control register */

asm(“ LDI 00000062h,IOF”); /*set IOF low to reset AIC */

for (loop = 0; loop < 90; loop++); /*keep IOF low for a while */

PBASE[0x42] = 0x00000131; /*set xmit port control */

PBASE[0x43] = 0x00000131; /*set receive port control */

PBASE[0x40] = 0x0E970300; /*set serial port global reg */

PBASE[0x48] = 0x00000000; /*clear xmit register */

asm(“ OR 00000006h,IOF”); /*set IOF high to enable AIC */

for (loop = 0; loop < 4; loop++) /*loop to configure AIC */

{

TWAIT; /*wait till XMIT buffer clear */

PBASE[0x48] = 0x3; /*enable secondary comm */

TWAIT; /*wait till XMIT buffer clear */

PBASE[0x48] = AICSEC[loop]; /*secondary command for SP0 */

}

}

void AICSET_I() /*configure AIC, enable TINTO */

{

AICSET(); /*function to configure AIC */

asm(“ LDI 00000000h,IF”); /*clear IF Register */

asm(“ OR 00000010h,IE”); /*enable EXINT0 CPU interrupt */

asm(“ OR 00002000h,ST”); /*global interrupt enable */

}

int UPDATE_SAMPLE(int output) /*function to update sample */

{

int input; /*declare local variables */

TWAIT; /*wait till XMIT buffer clear */

PBASE[0x48] = output << 2; /*left shift and output sample*/

input = PBASE[0x4C] << 16 >> 18; /*input sample and sign extend*/

return(input); /*return new sample */

}

FIGURE 3.16 AIC communication program using C code (AICCOMC.C).

6. For input and output, the data receive register at 80804C and the data
transmit register at 808048, are used.

Example 3.10 Loop/Echo with Interrupt Using C Code

Figure 3.17 is a listing of the program LOOPCI.C which calls the AIC routines
in AICCOMC.C and is the interrupt-driven version of the program LOOPC.C in
the previous example. It uses the interrupt structure supported by C. Consider
the following.

1. Interrupt XINT0 is chosen using the transmit interrupt vector c_int05
(Figure A.3). After initializing the AIC so that it becomes interrupt-driven, exe-
cution proceeds to wait within an endless loop for the interrupt to occur.

2. On interrupt, execution proceeds to the interrupt vector function
c_int05. The data transmit register is at the peripheral address 808048,
where each output value is stored.

3. The program VECS_DSK.ASM is assembled with the TMS320 floating-
point tools to create the object file VECS_DSK.OBJ (on the accompanying
disk). It defines the interrupt address and is linked with the main program. It
contains the following:

.ref _c_int05 ;select XINT0

.sect “vecs” ;section for interrupt vectors
br _c_int05 ;use XINT0 for interrupt

3.4 Programming Examples Using TMS320C3x and C Code 79

/*LOOPCI.C - LOOP PROGRAM USING INTERRUPTS */

#include “aiccomc.c” /*AIC comm routines */

int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC data for Fs = 8 kHz */

int data_in, data_out; /*declare global variables*/

void c_int05() /*XINT0 interrupt routine */

{

data_in = UPDATE_SAMPLE(data_out); /*update sample to SP0 AIC*/

data_out = data_in; /*loop input to output */

}

main()

{

AICSET_I(); /*configure SP0 of AIC */

for (;;); /*wait for interrupt */

}

FIGURE 3.17 Loop program with interrupt using C code (LOOPCI.C).

The linker command file LOOPCI.CMD is on the accompanying disk. Chapter
1 describes the use of the TMS320 floating-point tools.

4. Run this program and verify the same result as in the two previous exam-
ples.

3.5 PC HOST–TMS320C31 COMMUNICATION

Communication between the PC host and the TMS320C31 on the DSK is initi-
ated by downloading the kernel via the PC’s parallel port. Before the kernel is
downloaded, the TMS320C31 is reset by toggling the INIT signal from the
PC’s parallel port. This causes the TMS320C31 to boot load from address
0xFFF000, which is mapped to the PC’s parallel port. Once the kernel is
downloaded, the communication routines are in place.

Depending on whether the parallel port is bidirectional, the actual data trans-
ferred to the DSK is either 8 bits or 4 bits. 32-bit wide data is reconstructed af-
ter several bytes or nibbles. The communication routines provided with the
DSK tools determine the correct transfer (byte or nibble).

The getmem routine used by the PC to communicate with the DSK can read
any block of 32-bit data accessible by the TMS320C31 address bus through the
parallel port to the PC. The putmem routine used by the PC to communicate
with the DSK can write any block of 32-bit data from the PC through the paral-
lel port to any memory location accessible by the TMS320C31.

Several utilities such as TARGET.CPP, DRIVE.CPP, OBJECT.CPP,
available on the disk with the software tools for the DSK, allow for communica-
tions with the C31, reads/writes a block of data from/to the C31.

The two following examples illustrate communication or interaction between
the PC host and the C31 on the DSK with the functions putmem and getmem
provided with the software tools. These two examples make use of the TMS320
floating-point DSP assembly language tools and Borland’s C/C++ compiler,
version 5.0 [7]. Two files—DSKLIB.H and DSKLIB.LIB—need to be created
first.

Support Header File DSKLIB.H

The header file DSKLIB.H (on the accompanying disk) contains the following
support header files:

#include <dos.h>
#include <bios.h>
#include <conio.h>
#include <ctype.h>
#include <stdio.h>

80 Input and Output with the DSK

#include <stdlib.h>
#include <time.h>
#include <string.h>
#include “dsk.h”
#include “errormsg.h”
#include “dsk_coff”
#include “keydef.h”

The first eight header files are included with the Borland’s C/C++ compil-
er and the last four header files are provided in the DSK software tools.

Library Support File DSKLIB.LIB Using Borland’s
C/C++ Compiler

Several utilities, such as TARGET.CPP, DRIVE.CPP, and OBJECT.CPP,
provided with the DSK tools, allow for communications with the C31. It is con-
venient to have one library file that contains these support files for communica-
tion between the PC host and the C31. The library support file DSKLIB.LIB
(on the accompanying disk) can be created using Borland’s C/C++ compiler,
version 5.0:

1. Select File � New � Project

2. Enter C:\DSKTOOLS\DSKLIB.IDE for the project Path and Name

3. Select Static Library [for .exe][.lib] as Target Type

4. Select DOS (Standard) and Large for Platform and Target Model, respec-
tively. Press OK for other options as default. This creates the project file
DSKLIB.IDE

5. Select DSKLIB.LIB and click with the right mouse button to Add
Node and add the following nine files as nodes (clicking with right
mouse button to add each node): driver.cpp, tmsfloat.cpp,
textwin.cpp, target.cpp, symbols.cpp, rand386.cpp,
object.cpp, errormsg.cpp, dsk_coff.cpp. These files are
provided with the DSK tools.

6. Select Project � Build all to create the library support file
DSKLIB.LIB

For this process, select the file symbols.h (on the accompanying disk),
which is slightly different than the version provided with the DSK tools (two
changes are made in symbols.h associated with typedef enum). Other-
wise, two errors (need an identifier to declare) will result in compiling. Several
additional files with other extensions for DSKLIB are created during this
process and they can be ignored.

3.5 PC Host–TMS320C31 Communication 81

Example 3.11 PC—TMS320C31 Communication Using C Code

This example illustrates the use of some utilities that support communication
between the PC host and the C31 on the DSK. Communication can be ac-
complished using the function putmem to transmit data from the PC host to
the C31 and the function getmem to receive data from the C31 DSK. Figure
3.18 shows a listing of the program PCCOM.CPP that sends a number to the
C31 through memory location 809800 using the function putmem(.);
where (.) consists of the memory address to send the data value, how many
values, and the data. The program PCCOM.CPP is compiled with the C/C++
compiler [7] to create the executable file PCCOM.EXE. Several header files
that support the PC-TMS320C31 communication are included within the sin-
gle header file DSKLIB.H (for convenience). This header file is “included” in
the program PCCOM.CPP. The number received by the C31 (sent by the PC
host) is multiplied by two and the result is sent back to the PC host through
memory address 809801, as shown in the program C31COM.C, listed in
Figure 3.19.

The program C31COM.C is compiled and linked with the TMS320
floating-point DSP assembly language tools (not included with the DSK pack-
age) to create the executable file C31COM.OUT (on the accompanying disk).
Example 1.3 describes the use of the floating-point tools.

Compiling/Linking PCCOM.CPP
Compile the source file PCCOM.CPP with Borland’s C/C++ compiler as fol-
lows:

1. Select File � New � Project

2. Enter C:\DSKTOOLS\PCCOM.IDE for the Project Path and Name

3. Select Application [.exe] as Target Type

4. Select DOS (Standard) and Large for Platform and Target Model, respec-
tively. Press OK for other options as default. This creates the project file
PCCOM.IDE

5. Select PCCOM.EXE, and click with right mouse button to Add Node,
and add the file DSKLIB.LIB (created previously) as a node within the
project (PCCOM.CPP is already added as a node)

6. Select Project � Build all to create the executable file PCCOM.EXE.

Execute on the PC host PCCOM.EXE and enter a value. Verify that the C31
multiplies the user’s value by two. Note the following from the source file PC-
COM.CPP:

1. PCCOM.EXE is executed by the PC host, which also downloads
C31COM.OUT into the C31 to run.

82 Input and Output with the DSK

//PCCOM.CPP PC - TMS320C31 COMMUNICATION TO MULTIPLY TWO NUMBERS

#include “dsklib.h” //contains several header files

char DSK_APP[]=”C31COM.OUT”;

char DSK_EXE[]=”PCCOM.EXE”;

void config_dsk_for_comm()

{

MSGS err; //enumerated message for looking up messages

clrscr();

Scan_Command_line(DSK_EXE);

Detect_Windows();

// Download the communications kernel

for(;;)

{

if(Init_Communication(10000) == NO_ERR) break;

if(kbhit()) exit(0);

}

HALT_CPU(); //load applications code

if((err=Load_File(DSK_APP,LOAD))!=NO_ERR)

{ printf(“%s %s\n”,DSK_APP,Error_Strg(err));

exit(0);

}

RUN_CPU(); //DSK is initialized & able to communicate

clrscr();

}

void main()

{

char ch[10];

unsigned long hostdata = 0;

config_dsk_for_comm();

do

{

clrscr();

printf(“Enter a number to transmit to C31 to be multiplied by 2\n”);

scanf (“%ld”, &hostdata);

putmem(0x809800L, 1, &hostdata);

printf(“The value written to the DSK is %ld. \n”, hostdata);

hostdata = 0;

getmem(0x809801L, 1, &hostdata);

printf(“The value returned by the DSK is %ld. \n”, hostdata);

printf (“Press ‘Y’ to continue or ‘Q’ to Quit. \n”);

scanf(“%s”, &ch);

} while (toupper(ch[0]) != ‘Q’);

}

FIGURE 3.18 PC program for communication with TMS320C31 (PCCOM.CPP).

2. The DSK is initialized and configured for communications using the
function config_dsk_for_comm.

3. The Detect_Windows function determines if Windows is currently
operating. If so, the multitasking feature is disabled before reading and writing
data to the parallel port.

4. The Init_Communication function attempts to communicate with
the DSK kernel if one exists. If not, the DSK is reset and the DSK kernel is
downloaded.

5. The Halt_CPU function halts the execution of instructions in prepara-
tion for downloading the DSK executable file.

6. The Load_File function downloads the DSK file and sets the program
counter. If the file is loaded successfully, the RUN_CPU function is executed,
which begins executing code at the current program counter.

7. The Long format (L) associated with the addresses 0x809800 and
0x809801 is used to allow for values greater than 16,383.

A real-time loop control in the following example further illustrates these
communication functions.

Example 3.12 Loop Control with PC—TMS320C31 Communication
Using C Code

The utility functions putmem and getmem are illustrated to provide real-
time control of a loop program. The function putmem is used to send/write

84 Input and Output with the DSK

FIGURE 3.19 TMS320C31 program for communication with PC (C31COM.C).

/*C31COM.C - C31 COMMUNICATION PROGRAM TO MULTIPLY NUMBER BY 2*/

main()

{

unsigned int hostdata;

unsigned int *pwAddrHD;

unsigned int *pwAddrTD;

asm(“ OR 2000h,ST “);

for (;;)

{

pwAddrHD = (unsigned int *)0x809800; /*PC host mail Addr */

pwAddrTD = (unsigned int *)0x809801; /*C31 target mail Addr*/

hostdata = *pwAddrHD;

*pwAddrTD = hostdata * 2;

}

}

to the C31 an attenuation value in order to change the amplitude of an output
signal.

1. Figure 3.20 shows a listing of the program PCLOOP.CPP, compiled and
linked using Borland’s C/C++ compiler as in the previous example to create the
executable file PCLOOP.EXE, which executes on the PC host. The program
C31LOOP.C shown in Figure 3.21 is compiled using Texas Instruments’ C
compiler to create the object file C31LOOP.OBJ, which must be linked (see
Example 1.3) to create the output executable file C31LOOP.OUT that runs on
the C31 DSK.

2. Execute PCLOOP.EXE to run both programs, since it downloads and
runs C31LOOP.OUT on the DSK.

3. Verify that a sinusoidal input produces a delayed output sinusoid with
the same frequency as the input, but with an amplitude determined by the
user’s selected attenuation value. Input a sinusoidal signal with an amplitude
between 1 and 3 V with a frequency between 1 and 3 kHz. Verify that a se-
lected attenuation value of two or four decreases the output sinusoid amplitude
by two or four, respectively. (See also the program LOOPC.C listed in Figure
3.15.)

Example 3.13 Data Acquisition with the DSK Using C and
TMS320C3x Code

This example illustrates the capability of the DSK as a data acquisition tool us-
ing some of the support files provided with the DSK tools. A total of 512 sam-
ple points are acquired, stored into a file, and can then be processed. An exam-
ple discussed in Appendix B uses MATLAB to plot and take the FFT (FFT is
discussed in Chapter 6) of the acquired data, displaying on the monitor screen
both the time and frequency domains of the acquired data. To implement this
data acquisition example:

1. Assemble/link the file DAQ.CPP (on the accompanying disk) with Bor-
land’s C/C++, as in the previous two examples with the programs PC-
COM.CPP and PCLOOP.CPP, to create the executable PC host file
DAQ.EXE.

2. Assemble DAQ.ASM (on the accompanying disk) with the DSK tools to
create the executable DSK file DAQ.DSK

3. Input a sinusoidal signal with a frequency of 3 kHz into the DSK.

4. Type DAQ.EXE to execute the data acquisition programs. This downloads
and runs the executable DSK file DAQ.DSK and stores 512 data sample
points, which represents the 3-kHz signal, into the file DAQ.DAT.

Verify that these sample points represent the 3-kHz sinusoidal signal.

3.5 PC Host–TMS320C31 Communication 85

86 Input and Output with the DSK

//PCLOOP.CPP - LOOP WITH AMPLITUDE CONTROL

#include “dsklib.h” //contains several header files

char DSK_APP[] = “C31LOOP.OUT”;

char DSK_EXE[] = “PCLOOP.EXE”;

void config_dsk_for_comm()

{

MSGS err; //enumerated message for looking up messages

clrscr();

Scan_Command_line(DSK_EXE);

Detect_Windows();

// Download the communications kernel

for(;;)

{

if(Init_Communication(10000) == NO_ERR) break;

if(kbhit()) exit(0);

}

HALT_CPU(); //load applications code

if((err=Load_File(DSK_APP,LOAD))!=NO_ERR)

{ printf(“%s %s\n”,DSK_APP,Error_Strg(err));

exit(0);

}

RUN_CPU(); //DSK is initialized & able to communicate

clrscr();

}

void main()

{

unsigned long hostdata = 0;

config_dsk_for_comm(); //call function to config for comm

for(;;)

{

clrscr();

printf(“\n\n”);

printf(“\nEnter Attenuation value (1-10) or CTRL-BREAK to quit: “);

scanf (“%d”, &hostdata);

putmem(0x809800L, 1, &hostdata);

}

}

FIGURE 3.20 PC program for real-time loop control with TMS320C31 (PCLOOP.CPP).

Change the input signal frequency to 2 kHz, execute DAQ.EXE again and veri-
fy that the newly acquired 512 data sample points represent the 2-kHz signal.
This can be done readily with MATLAB, as described in Appendix B.

3.6 EXTERNAL/FLASH MEMORY AND I/O WITH 16-BIT STEREO
AUDIO CODEC

External and Flash Memory

Although the C31 has 2K words of internal memory, the last 256 memory lo-
cations are used for the communications kernel and vectors. No additional
memory is available on the DSK board. Appendix C describes a daughter
board with 32K words (32-bit) of SRAM with zero wait state memory and
128K bytes of flash memory. See also references 6 and 8. This daughter board
fits underneath (connects to) the DSK board through the four connectors JP2-
3 and JP5-6 along the edge of the DSK board. All the necessary signals (ad-

3.5 PC Host–TMS320C31 Communication 87

/*C31LOOP.C - LOOP PROGRAM WITH AMPLITUDE CONTROL */

#include “aiccomc.c” /*AIC communications routines*/

int AICSEC[4]={0x162C,0x1,0x4892,0x67}; /*AIC setup data */

void main(void)

{

unsigned int *pAmpt;

unsigned int temp;

int data_IN, data_OUT, ampt = 1; /*declare variables */

asm(“ OR 2000h,ST “);

AICSET(); /*initialize AIC */

pAmpt = (unsigned int *)0x809800;

do

{

temp = *pAmpt; /*pAmpt is pointer to value from host*/

if (temp > 0 && temp < 11) ampt=temp; /*temp is attenuation value*/

data_IN = UPDATE_SAMPLE(data_OUT); /*input sample */

data_OUT = data_IN / ampt; /*scale input to output */

}

while (1); /*endless loop */

}

FIGURE 3.21 TMS320C31 program for real-time loop control with PC (C31LOOP.C).

dress, data, V+, GND, R/W, INT0-3, STRB) from the C31 are available
through these four connectors for use by the SRAM and the flash memory.
With the external memory, application programs that require more memory
space than allocated internally by the C31 can be implemented. A ten-band
multirate filter that requires more memory than available with the DSK is de-
scribed in Chapter 8.

Appendix C illustrates how an application-specific program can be stored on
this daughter board and run without the use of a PC. A power supply similar to
the one on the DSK is also on the daughter board. For example, without any PC,
a filter can be implemented (run) by simply turning on the power to the daugh-
ter board, which is connected underneath the DSK board.

Alternative I/O with the Crystal CS4216/CS4218 Stereo
Audio Codec

Appendix D describes a homemade board that contains a Crystal CS4216 (or
CS4218) 16-bit stereo audio codec and connects to the DSK board through the
connector JP1. This board contains jacks for line and microphone inputs. An
evaluation board with the CS4216/CS4218 is commercially available from
Crystal Semiconductor, Inc. The CS4216/CS4218 uses Delta-Sigma A/D and
D/A converters with internal 64x oversampling, and internal input antialiasing
and output reconstruction filters [8–10]. A maximum sampling rate of 50 kHz
can be obtained. Appendix D contains some programming examples with the
CS4216/CS4218.

Super DSK, commercially available from Kane Computing [11], interfaces
to the DSK. It contains external and flash memories as well as a 16-bit codec for
a maximum sampling rate of 50 kHz.

3.7 EXPERIMENT 3: INPUT AND OUTPUT WITH THE DSK

1. Implement Examples 3.1–3.5.
2. Verify the AIC master clock frequency from pin 8 on the DSK board JP1

connector. Verify that a timer value of 0 (from 1) in the program AICCOMC.C
doubles the AIC master clock from 6.25 MHz to 12.5 MHz, which effectively
doubles the sampling frequency.

33. The program SINEFM.ASM (on disk) extends the sine generator pro-
gram SINE81.ASM to implement an FM signal using 128 points. Verify a
sweeping sinusoidal signal. Note that the index register IR0 specifies the step
size.

4. Implement the two pseudorandom noise generation programs in Exam-
ples 3.6 and 3.7. Choose different scaling factors such as 800h and
0FFFFF800h and different sampling rates in the pseudorandom noise genera-

88 Input and Output with the DSK

tor program and verify changes in the amplitude spectrum and the frequency
before roll-off occurs.

5. Implement a pseudorandom noise generator using a method such that the
output values are stored in consecutive memory locations. Examples 3.6 and 3.7
illustrate the noise generator algorithm. In Experiment 2 (Chapter 2, questions 3
and 4), we showed how an output sequence can be stored in consecutive memo-
ry locations as well as on disk. Scale the output sequence by ±4096 setting
PLUS with 1000h and MINUS with 0FFFFF000h. Show that the output se-
quence is (before scaling): 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,

6. Implement Examples 3.8–3.10.
7. Implement Examples 3.11 and 3.12.
8. Implement a sine generator in C with four points, using interrupt (see the

loop program example generated with interrupt, LOOPCI.C). Select a sam-
pling frequency of 8 kHz. The following code can be useful:

int loop = 0;
int sin_table[4] = {0, . . . };

where {0, . . . } specifies the four data points (scaled) and represents the sine
sequence. The interrupt function follows:

PBASE[0x48] = sin_table[loop] << 2;
if(loop < 3) ++loop;
else loop = 0;

Note that the four values stored in the sine table array are sent to the data trans-
mit register one at a time at a rate specified by the sampling frequency. Verify
an output sinusoid at a frequency of Fs/4.

Section 8.4 describes a project which extends this example. It uses external
interrupt to control the amplitude of the generated sinewave.

REFERENCES

1. TLC32040C, TLC32040I, TLC32041C, TLC32041I Analog Interface Circuits, Texas In-
struments, Inc., Dallas, TX, 1995.

2. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

3. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

4. TMS320C3x DSP Starter Kit User’s Guide, Texas Instruments, Inc., Dallas, TX, 1996.

5. C. W. Solomon, “Switched-Capacitor Filters,” IEEE Spectrum, June 1988.

6. TMS320C3x User’s Guide, Texas Instruments, Inc., Dallas, TX, 1997.

3.7 Experiment 3: Input and Output with the DSK 89

7. Borland C/C++ Compiler, Borland International Inc., Scotts Valley, CA.

8. TMS320C3x General-Purpose Applications User’s Guide, Texas Instruments, Inc. Dal-
las, TX, 1998.

9. J. C. Candy and G. C. Temes eds., Oversampling Delta-Sigma Data Converters—Theory,
Design and Simulation, IEEE Press, New York, 1992.

10. P. M. Aziz, H. V. Sorensen, and J. Van Der Spiegel, “An Overview of Sigma Delta Con-
verters,” IEEE Signal Processing Magazine, Jan. 1996.

11. Super DSK, from Kane Computing, at www.kanecomputing.com/kanecomputing.

90 Input and Output with the DSK

� Introduction to the z-transform

� Design and implementation of finite impulse response (FIR) filters

� Programming examples using C and TMS320C3x code

The z-transform is introduced in conjunction with discrete-time signals. Map-
ping from the s-plane, associated with the Laplace transform, to the z-plane, as-
sociated with the z-transform, is illustrated. FIR filters are designed with the
Fourier series method and implemented by programming a discrete convolution
equation. Effects of window functions on the characteristics of FIR filters are
covered.

4.1 INTRODUCTION TO THE z-TRANSFORM

The z-transform is utilized for the analysis of discrete-time signals, similar to
the Laplace transform for continuous-time signals. We can use the Laplace
transform to solve a differential equation that represents an analog filter, or the
z-transform to solve a difference equation that represents a digital filter. Consid-
er an analog signal x(t) ideally sampled

xs(t) = �
�

k = 0

x(t)�(t – kT) (4.1)

where �(t – kT) is the impulse (delta) function delayed by kT, and T = 1/Fs is the
sampling period. The function xs(t) is zero everywhere except at t = kT. The
Laplace transform of xs(t) is

91

4
Finite Impulse Response Filters

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

Xs(s) = ��

0
xs(t)e–st dt

Xs(s) = ��

0
{x(t)�(t) + x(t)�(t – T) + . . . }e–st dt (4.2)

From the property of the impulse function

��

0
f (t)�(t – kT)dt = f (kT)

Xs(s) in (4.2) becomes

Xs(s) = x(0) + x(T)e–sT + x(2T)e–2sT + . . . = �
�

n = 0

x(nT)e–nsT (4.3)

Let z = esT in (4.3), which becomes

X(z) = �
�

n = 0

x(nT)z–n (4.4)

Let the sampling period T be implied; then x(nT) can be written as x(n), and
(4.4) becomes

X(z) = �
�

n = 0

x(n)z–n = ZT{x(n)} (4.5)

which represents the z-transform (ZT) of x(n). There is a one-to-one corre-
spondence between x(n) and X(z), making the z-transform a unique transfor-
mation.

Exercise 4.1 ZT of Exponential Function x(n) = enk

The ZT of x(n) = enk, n � 0, and k a constant is

X(z) = �
�

n = 0

enk z–n = �
�

n = 0

(ek z–1)n (4.6)

Using the geometric series, obtained from a Taylor series approximation

�
�

n = 0

un = |u| < 1

(4.6) becomes

1
�
1 – u

92 Finite Impulse Response Filters

X(z) = = (4.7)

for |ek z–1| < 1, or |z| > |ek|. If k = 0, then the ZT of x(n) = 1 is X(z) = z/(z – 1).

Exercise 4.2 ZT of Sinusoid x(n) = sin n��T

A sinusoidal function can be written in terms of complex exponentials. From
Euler’s formula eju = cos u + j sin u

sin n�T =

Then

X(z) = �
�

n = 0

{e jn�T z–n – e–jn�T z–n} (4.8)

Using the geometric series as in the previous exercise, one can solve for X(z); or
the results in (4.7) can be used with k = j�T in the first summation of (4.8) and
k = –j�T in the second, to yield

X(z) = � – �

= � �

= (4.9)

= |z| > 1 (4.10)

where A = 2 cos �T
B = –1
C = sin �T

We will generate a sinusoid in Chapter 5 based on this result. We can readily
generate sinusoidal waveforms of different frequencies by changing the value of
� in (4.9).

Similarly, using Euler’s formula for cos n�T as a sum of two complex expo-
nentials, one can find the ZT of x(n) = cos n�T = (e jn�T + e–jn�T)/2, as

Cz
��
z2 – Az – B

z sin �T
��
z2 – 2z cos �T + 1

z2 – ze–j�T – z2 + ze j�T

���
z2 –z(e–j�T + e j�T) + 1

1
�
2j

z
�
z – e–j�T

z
�
z – e j�T

1
�
2j

1
�
2j

e jn�T – e–jn�T

��
2j

z
�
z – ek

1
�
1 – ek z–1

4.1 Introduction to the z-Transform 93

X(z) = |z| > 1 (4.11)

Mapping from s-Plane to z-Plane

The Laplace transform can be used to determine the stability of a system. If the
poles of a system are on the left side of the j� axis on the s-plane, a time-decay-
ing system response will result, yielding a stable system. If the poles are on the
right side of the j� axis, the response will grow in time, making such system un-
stable. Poles located on the j� axis, or purely imaginary poles, will yield a sinu-
soidal response. The sinusoidal frequency is represented by the j� axis, and � =
0 represents DC.

In a similar fashion, we can determine the stability of a system based on the
location of its poles on the z-plane associated with the z-transform, since we can
find corresponding regions between the s-plane and the z-plane. Since z = esT

and s = � + j�

z = e�Te j�T (4.12)

Hence, the magnitude of z is |z| = e�T with a phase of � = �T = 2�f /Fs, where Fs

is the sampling frequency. To illustrate the mapping from the s-plane to the z-
plane, consider the following regions from Figure 4.1.

1. �� < 0. Poles on the left side of the j� axis (region 2) in the s-plane repre-
sent a stable system, and (4.12) yields a magnitude of |z| < 1, because e�T < 1.
As � varies from –� to 0–, |z| will vary from 0 to 1–. Hence, poles inside the unit
circle within region 2 in the z-plane will yield a stable system. The response of
such system will be either a decaying exponential, if the poles are real, or a de-
caying sinusoid, if the poles are complex.

z2 – z cos �T
��
z2 – 2z cos �T + 1

94 Finite Impulse Response Filters

FIGURE 4.1 Mapping from s-plane to z-plane.

2. �� > 0. Poles on the right side of the j� axis (region 3) in the s-plane repre-
sent an unstable system, and (4.12) yields a magnitude of |z| > 1, because e�T >
1. As � varies from 0+ to �, |z| will vary from 1+ to �. Hence, poles outside the
unit circle within region 3 in the z-plane will yield an unstable system. The re-
sponse of such system will be either an increasing exponential, if the poles are
real, or a growing sinusoid, if the poles are complex.

3. �� = 0. Poles on the j� axis (region 1) in the s-plane represent a marginal-
ly stable system, and (4.12) yields a magnitude of |z| = 1, which corresponds to
region 1. Hence, poles on the unit circle in region 1 in the z-plane will yield a si-
nusoid. In Chapter 5, we will implement a digital oscillator by programming a
difference equation with its poles on the unit circle. Note that from the previous
exercise, the poles of X(s) = sin n�T in (4.9) or X(s) = cos n�T in (4.11) are the
roots of z2 – 2z cos �T + 1, or

p1,2 =

= cos �T ± �–�si�n�2���T� = cos �T ± j sin �T (4.13)

The magnitude of each pole is

|p1| = |p2| = �co�s2� ��T� +� s�in�2���T� = 1 (4.14)

The phase of z is � = �T = 2�f /Fs. As the frequency f varies from zero to ± Fs /2,
the phase � will vary from 0 to �.

Difference Equations

A digital filter is represented by a difference equation in a similar fashion as an
analog filter is represented by a differential equation. To solve a difference
equation, we need to find the z-transform of expressions such as x(n – k), which
corresponds to the kth derivative dk x(t)/dtk of an analog signal x(t). The order of
the difference equation is determined by the largest value of k. For example, k =
2 represents a second-order derivative. From (4.5)

X(z) = �
�

n = 0

x(n)z–n = x(0) + x(1)z–1 + x(2)z–2 + . . . (4.15)

Then, the z-transform of x(n – 1), which corresponds to a first-order derivative
dx/dt is

ZT{x(n – 1)} = �
�

n= 0

x(n – 1)z–n

2 cos �T ± �4� c�o�s2� ��T� –� 4�
���

2

4.1 Introduction to the z-Transform 95

= x(–1) + x(0)z–1 + x(1)z–2 + x(2)z–3 + . . .

= x(–1) + z–1 {x(0) + x(1)z–1 + x(2)z–2 + . . . }

= x(–1) + z–1 X(z) (4.16)

where we used (4.15), and x(–1) represents the initial condition associated with
a first-order difference equation. Similarly, the ZT of x(n – 2), equivalent to a
second derivative d2x(t)/dt2 is

ZT{x(n – 2)} = �
�

n = 0

x(n – 2)z–n

= x(–2) + x(–1)z–1 + x(0)z–2 + x(1)z–3 + . . .

= x(–2) + x(–1)z–1 + z–2 {x(0) + x(1)z–1 + . . . }

= x(–2) + x(–1)z–1 + z–2 X(z) (4.17)

where x(–2) and x(–1) represent the two initial conditions required to solve a
second-order difference equation. In general

ZT{x(n – k)} = z–k �
k

m = 1

x(–m)zm + z–k X(z) (4.18)

If the initial conditions are all zero, then x(–m) = 0 for m = 1, 2, . . . , k, and
(4.18) reduces to

ZT{x(n – k)} = z–k X(z) (4.19)

4.2 DISCRETE SIGNALS

A discrete signal x(n) can be expressed as

x(n) = �
�

m = –�

x(m)�(n – m) (4.20)

where �(n – m) is the impulse sequence �(n) delayed by m, which is equal to one
for n = m and is zero otherwise. It consists of a sequence of values x(1), x(2),
. . . , where n is the time, and each sample value of the sequence is taken one
sample-time apart, determined by the sampling interval or sampling period
T = 1/Fs.

The signals and systems that we will be dealing with in this book are linear

96 Finite Impulse Response Filters

and time-invariant, where both superposition and shift invariance apply. Let an
input signal x(n) yield an output response y(n), or x(n) � y(n). If a1x1(n) �
a1y1(n) and a2x2(n) � a2y2(n), then a1x1(n) + a2x2(n) � a1y1(n) + a2y2(n),
where a1 and a2 are constants. This is the superposition property, where an over-
all output response is the sum of the individual responses to each input. Shift-in-
variance implies that if the input is delayed by m samples, the output response
will also be delayed by m samples, or x(n – m) � y(n – m). If the input is a unit
impulse �(n), the resulting output response is h(n), or �(n) � h(n), and h(n) is
designated as the impulse response. A delayed impulse �(n – m) yields the out-
put response h(n – m) by the shift-invariance property.

Furthermore, if this impulse is multiplied by x(m), then x(m)�(n – m) �
x(m)h(n – m). Using (4.20), the response becomes

y(n) = �
�

m = –�

x(m)h(n – m) (4.21)

which represents a convolution equation. For a causal system, (4.21) becomes

y(n) = �
n

m = –�

x(m)h(n – m) (4.22)

Letting k = n – m in (4.22)

y(n) = �
�

k = 0

h(k)x(n – k) (4.23)

4.3 FINITE IMPULSE RESPONSE FILTERS

Filtering is one of the most useful signal processing operations [1–34]. Digital
signal processors are now available to implement digital filters in real-time. The
TMS320C31 instruction set and architecture makes it well suited for such filter-
ing operations. An analog filter operates on continuous signals and is typically
realized with discrete components such as operational amplifiers, resistors, and
capacitors. However, a digital filter, such as a finite impulse response (FIR) fil-
ter, operates on discrete-time signals and can be implemented with a digital sig-
nal processor such as the TMS320C31. This involves the use of an ADC to cap-
ture an external input signal, processing the input samples, and sending the
resulting output through a DAC.

Within the last few years, the cost of digital signal processors has been sig-
nificantly reduced, which adds to the numerous advantages that digital filters
have over their analog counterparts. These include higher reliability, accuracy,
and less sensitivity to temperature and aging. Stringent magnitude and phase

4.3 Finite Impulse Response Filters 97

characteristics can be realized with a digital filter. Filter characteristics such as
center frequency, bandwidth, and filter type can be readily modified. A number
of tools are available to quickly design and implement within a few minutes an
FIR filter in real-time using the TMS320C31-based DSK. The filter design con-
sists of the approximation of a transfer function with a resulting set of coeffi-
cients.

Different techniques are available for the design of FIR filters, such as a
commonly used technique that utilizes the Fourier series, as discussed in the
next section. Computer-aided design techniques such as that of Parks and Mc-
Clellan are also used for the design of FIR filters [4–5].

The convolution equation (4.23) is very useful for the design of FIR filters,
since we can approximate it with a finite number of terms, or

y(n) = �
N – 1

k = 0

h(k)x(n – k) (4.24)

If the input is a unit impulse x(n) = �(0), the output impulse response will be
y(n) = h(n). We will see in the next section how to design an FIR filter with N
coefficients h(0), h(1), . . . , h(N – 1), and N input samples x(n), x(n – 1), . . . ,
x(n – (N – 1)). The input sample at time n is x(n), and the delayed input samples
are x(n – 1), . . . , x(n – (N – 1)). Equation (4.24) shows that an FIR filter can be
implemented with the knowledge of the input x(n) at time n and of the delayed
inputs x(n – k). It is nonrecursive and no feedback or past outputs are required.
Filters with feedback (recursive) that require past outputs are discussed in
Chapter 5. Other names used for FIR filters are transversal and tapped-delay fil-
ters.

The z-transform of (4.24) with zero initial conditions yields

Y(z) = h(0)X(z) + h(1)z–1X(z) + h(2)z–2X(z) + . . . + h(N – 1)z–(N–1)X(z) (4.25)

Equation (4.24) represents a convolution in time between the coefficients and
the input samples, which is equivalent to a multiplication in the frequency do-
main, or

Y(z) = H(z)X(z) (4.26)

where H(z) = ZT{h(k)} is the transfer function, or

H(z) = �
N – 1

k = 0

h(k)z–k = h(0) + h(1)z–1 + h(2)z–2 + . . . + h(N – 1)z–(N–1)

= (4.27)
h(0)z(N–1) + h(1)zN–2 + h(2)zN–3 + . . . + h(N – 1)
�����

z–(N–1)

98 Finite Impulse Response Filters

which shows that there are N – 1 poles, all of which are located at the origin.
Hence, this FIR filter is inherently stable, with its poles located only inside the
unit circle. We usually describe an FIR filter as a filter with “no poles.” Figure
4.2 shows an FIR filter structure representing (4.24) and (4.25).

A very useful feature of an FIR filter is that it can guarantee linear phase.
The linear phase feature can be very useful in applications such as speech
analysis, where phase distortion can be very critical. For example, with linear
phase, all input sinusoidal components are delayed by the same amount. Other-
wise, harmonic distortion can occur.

The Fourier transform of a delayed input sample x(n – k) is e–j�kTX(j�)
yielding a phase of � = –�kT, which is a linear function in terms of �. Note that
the group delay function, defined as the derivative of the phase, is a constant, or
d�/d� = –kT.

4.4 FIR IMPLEMENTATION USING FOURIER SERIES

The design of an FIR filter using a Fourier series method is such that the magni-
tude response of its transfer function H(z) approximates a desired magnitude re-
sponse. The desired transfer function is

Hd(�) = �
�

n = –�

Cne jn�T |n| < � (4.28)

where Cn are the Fourier series coefficients. Using a normalized frequency vari-
able 	 such that 	 = f /FN, where FN is the Nyquist frequency, or FN = Fs /2, the
desired transfer function in (4.28) can be written as

Hd() = �
�

n = –�

Cne jn�	 (4.29)

where �T = 2�f/Fs = �	, and |	| < 1. The coefficients Cn are defined as

4.4 FIR Implementation Using Fourier Series 99

FIGURE 4.2 FIR filter structure showing delays.

h(N – 1)

h(N – 2)

h(1)

h(0)

Cn = �1

–1
Hd ()e–jn�	 d	

= �1

–1
Hd () {cos n�	 – j sin n�	}d	 (4.30)

Assume that Hd() is an even function (frequency selective filter), then (4.30)
reduces to

Cn = �1

0
Hd()cos n�	 dv n � 0 (4.31)

since Hd ()sin n�	 is an odd function and

�1

–1
Hd()sin n�	 d	 = 0

with Cn = C–n. The desired transfer function Hd() in (4.29) is expressed in
terms of an infinite number of coefficients, and in order to obtain a realizable
filter, we must truncate (4.29), which yields the approximated transfer function

Ha() = �
Q

n = –Q

Cne jn�	 (4.32)

where Q is positive and finite and determines the order of the filter. The larger
the value of Q, the higher the order of the FIR filter, and the better the approxi-
mation in (4.32) of the desired transfer function. The truncation of the infinite
series with a finite number of terms results in ignoring the contribution of the
terms outside a rectangular window function between –Q and +Q. In the next
section we will see how the characteristics of a filter can be improved by using
window functions other than rectangular.

Let z = e j�	, then (4.32) becomes

Ha(z) = �
Q

n = –Q

Cnzn (4.33)

with the impulse response coefficients C–Q, C–Q+1, . . . , C–1, C0, C1, . . . , CQ–1,
CQ. The approximated transfer function in (4.33), with positive powers of z, im-
plies a noncausal or not realizable filter that would produce an output before an
input was applied. To remedy this situation, we introduce a delay of Q samples
in (4.33) to yield

H(z) = z–QHa(z) = �
Q

n = –Q

Cnzn–Q (4.34)

1
�
2

1
�
2

100 Finite Impulse Response Filters

Let n – Q = –i, then H(z) in (4.34) becomes

H(z) = �
2Q

i = 0

CQ–i z–i (4.35)

Let hi = CQ–i and N – 1 = 2Q, then H(z) becomes

H(z) = �
N – 1

i = 0

hiz–i (4.36)

where H(z) is expressed in terms of the impulse response coefficients hi, and h0

= CQ, h1 = CQ–1, . . . , hQ = C0, hQ+1 = C–1 = C1, . . . , h2Q = C–Q. The impulse re-
sponse coefficients are symmetric about hQ, with Cn = C–n.

The order of the filter is N = 2Q + 1. For example, if Q = 5, the filter will
have 11 coefficients h0, h1, . . . , h10, or

h0 = h10 = C5

h1 = h9 = C4

h2 = h8 = C3

h3 = h7 = C2

h4 = h6 = C1

h5 = C0

Figure 4.3 shows the desired transfer functions Hd() ideally represented for the
frequency-selective filters: lowpass, highpass, bandpass, and bandstop for
which the coefficients Cn = C–n can be found.

1. Lowpass. C0 = 	1

Cn = �	1

0
Hd() cos n�	 d	 = (4.37)

2. Highpass. C0 = 1 – 	1

Cn = �
1

	1

Hd()cos n�	 d	 = – (4.38)

3. Bandpass. C0 = 	2 – 	1

Cn = �	2

	1

Hd()cos n�	 d	 = (4.39)

4. Bandstop. C0 = 1 – (2 – 	1)

sin n�	2 – sin n�	1
���

n�

sin n�	1
�

n�

sin n�	1
�

n�

4.4 FIR Implementation Using Fourier Series 101

Cn = �	1

0
Hd()cos n�	 d	 + �1

	2

Hd()cos n�	 d	 = (4.40)

where 	1 and 	2 are the normalized cutoff frequencies shown in Figure 4.3. Sev-
eral filter-design packages are currently available for the design of FIR filters,
as discussed later. When we implement an FIR filter, we will develop a generic
program such that the specific coefficients will determine the filter type
(whether it is a lowpass or a bandpass).

Exercise 4.3 Lowpass FIR Filter

We will find the impulse response coefficients of an FIR filter with N = 11, a
sampling frequency of 10 kHz, and a cutoff frequency fc = 1 kHz.

From (4.37),

C0 = 	1 = fc /FN = 0.2

where FN = Fs/2 is the Nyquist frequency, and

Cn = n = ±1, ±2, . . . , ±5 (4.41)

Since the impulse response coefficients hi = CQ–i, Cn = C–n, and Q = 5, the im-
pulse response coefficients are

sin 0.2n�
��

n�

sin n�	1 – sin n�	2
���

n�

102 Finite Impulse Response Filters

FIGURE 4.3 Desired transfer function: (a) lowpass; (b) highpass; (c) bandpass; (d) band-
stop.

|Hd()| |Hd()|

	1 		1 	

|Hd()| |Hd()|

	1 	2 	1 	2 		

h0 = h10 = 0

h1 = h9 = 0.0468

h2 = h8 = 0.1009

h3 = h7 = 0.1514

h4 = h6 = 0.1872

h5 = 0.2 (4.42)

These coefficients can be calculated with a utility program (on the accompany-
ing disk) and inserted within a generic filter program, as described later. Note
the symmetry of these coefficients about Q = 5. While N = 11 for an FIR filter
is low for a practical design, doubling this number can yield an FIR filter with
much better characteristics, such as selectivity, etc.

For an FIR filter to have linear phase, the coefficients must be symmetric as
in (4.42).

4.5 WINDOW FUNCTIONS

We truncated the infinite series in the transfer function equation (4.29) to arrive
at (4.32). We essentially put a rectangular window function with an amplitude
of 1 between –Q and +Q, and ignored the coefficients outside that window. The
wider this rectangular window, the larger Q is and the more terms we use in
(4.32) to get a better approximation of (4.29). The rectangular window function
can therefore be defined as

1 for |n| � Q
wR(n) = � (4.43)

0 otherwise

The transform of the rectangular window function �R(n) yields a sinc function
in the frequency domain. It can be shown that

WR() = �
Q

n = –Q

e jn�	 = e–jQ�	 ��
2Q

n = 0

e jn�	� = (4.44)

which is a sinc function that exhibits high sidelobes or oscillations caused by
the abrupt truncation, specifically, near discontinuities.

A number of window functions are currently available to reduce these high-
amplitude oscillations; they provide a more gradual truncation to the infinite se-
ries expansion. However, while these alternative window functions reduce the

sin�	�2Q

2

+ 1
�
�	�

��
sin(�	/2)

4.5 Window Functions 103

amplitude of the sidelobes, they also have a wider mainlobe, which results in a
filter with lower selectivity. A measure of a filter’s performance is a ripple fac-
tor that compares the peak of the first sidelobe to the peak of the main lobe
(their ratio). A compromise or trade-off is to select a window function that can
reduce the sidelobes while approaching the selectivity that can be achieved with
the rectangular window function. The width of the mainlobe can be reduced by
increasing the width of the window (order of the filter). We will later plot the
magnitude response of an FIR filter that shows the undesirable sidelobes.

In general, the Fourier series coefficients can be written as

C�n = Cn w(n) (4.45)

where w(n) is the window function. In the case of the rectangular window func-
tion, C�n = Cn. The transfer function in (4.36) can then be written as

H�(z) = �
N – 1

i = 0

h�i z–i (4.46)

where

h�i = C�Q–i 0 � i � 2Q (4.47)

The rectangular window has its highest sidelobe level down by only –13 dB
from the peak of its mainlobe, resulting in oscillations with an amplitude of
considerable size. On the other hand, it has the narrowest mainlobe that can pro-
vide high selectivity.

The following window functions are commonly used in the design of FIR
filters [9].

Hamming Window

The Hamming window function [9,24] is

0.54 + 0.46 cos(n�/Q) for |n| � Q
wH(n) = � (4.48)

0 otherwise

which has the highest or first sidelobe level at approximately –43 dB from the
peak of the main lobe.

Hanning Window

The Hanning or raised cosine window function is

104 Finite Impulse Response Filters

0.5 + 0.5 cos(n�/Q) for |n| � Q
wHA(n) = � (4.49)

0 otherwise

which has the highest or first sidelobe level at approximately –31 dB from the
peak of the mainlobe.

Blackman Window

The Blackman window function is

0.42 + 0.5 cos(n�/Q) + 0.08 cos(2n�/Q) |n| � Q
wB(n) = � (4.50)

0 otherwise

which has the highest sidelobe level down to approximately –58 dB from the
peak of the mainlobe. While the Blackman window produces the largest reduc-
tion in the sidelobe compared with the previous window functions, it has the
widest mainlobe. As with the previous windows, the width of the mainlobe can
be decreased by increasing the width of the window.

Kaiser Window

The design of FIR filters with the Kaiser window has become very popular in
recent years. It has a variable parameter to control the size of the sidelobe with
respect to the mainlobe. The Kaiser window function is

I0(b)/I0(a) |n| � Q
wK(n) = � (4.51)

0 otherwise

where a is an empirically determined variable, and b = a[1 – (n/Q)2]1/2. I0(x) is
the modified Bessel function of the first kind defined by

I0(x) = 1 + + + . . . = 1 + �
�

n=1
� �

2

(4.52)

which converges rapidly. A trade-off between the size of the sidelobe and the
width of the mainlobe can be achieved by changing the length of the window
and the parameter a.

Computer-Aided Approximation

An efficient technique is the computer-aided iterative design based on the Re-
mez exchange algorithm, which produces equiripple approximation of FIR fil-

(x/2)n

�
n!

(0.25x2)2

�
(2!)2

0.25x2

�
(1!)2

4.5 Window Functions 105

ters [4–5]. The order of the filter and the edges of both passbands and stopbands
are fixed, and the coefficients are varied to provide this equiripple approxima-
tion. This minimizes the ripple in both the passbands and the stopbands. The
transition regions are left unconstrained and are considered as “don’t care” re-
gions, where the solution may fail. Several commercial filter design packages
include the Parks–McClellan algorithm for the design of an FIR filter.

4.6 FILTER DESIGN PACKAGES

Within minutes, an FIR filter can be designed and implemented in real-time.
Several filter design packages are available to design FIR filters, described in
Appendix B:

1. The DigiFilter from DSPlus, which supports the TMS320C31 DSK

2. MATLAB from The Math Works [35]

3. From Hyperception, which includes utilities for plotting, spectral analy-
sis, etc. [36].

4. A “homemade” package (on the accompanying disk), which calculates
the coefficients using the rectangular, Hamming, Hanning, Blackman,
and Kaiser windows.

4.7 PROGRAMMING EXAMPLES USING TMS320C3X AND C CODE

Several examples illustrate the implementation of FIR filters using both C and
TMS320C3x code. This includes a C program calling a filter function in
TMS320C3x code. Utility packages for filter design will be introduced.

The convolution equation in (4.24) is used to program and implement these
filters, or

y(n) = �
N – 1

k = 0

h(k)x(n – k)

= h(N – 1)x(n –(N – 1)) + h(N – 2)x(n –(N – 2))

+ . . . + h(1)x(n – 1) + h(0)x(n) (4.53)

where the order of the summation is reversed. We can arrange the impulse re-
sponse coefficients within a buffer in memory starting (lower-memory address)
with the last coefficient h(N – 1). The first coefficient h(0) will reside at the
“bottom” of the buffer (higher-memory address) as shown in Table 4.1. The
memory organization for the input samples is also shown in Table 4.1. A circu-

106 Finite Impulse Response Filters

lar buffer is reserved for these samples, with the newest sample x(n) at time n at
the “bottom” memory location and the oldest sample x(n –(N – 1)) at the “top”
or starting address of the samples buffer. While we can also use a circular buffer
for the coefficients, it is not necessary.

Initially, all the input samples x(n), x(n – 1), . . . are set to zero. We start at
time n, acquire the first sample x(n) through an ADC converter and place it at
the bottom (higher-memory address) of the samples buffer as shown in Table
4.1. We can do so by storing this sample x(n) at time n into a memory location,
whose address is specified by an auxiliary register such as AR1. AR1 will then
be incremented to point at the top (lower-memory address) of the circular
buffer. The same scheme was used with the program FIR4.ASM in Example
2.3. We can now multiply h(N – 1), the content in memory pointed by AR0, by
x(n –(N – 1)), the content in memory pointed by AR1, and accumulate. We then
postincrement the two auxiliary registers AR0 and AR1 to multiply h(N – 2)x(n
–(N – 2)), which is the second term in (4.53), and continue this process within a
loop.

After the last multiplication at time n, AR1 is postincremented to point at the
top memory address of the samples buffer where a newly acquired sample x(n +
1), representing the newest sample at time n + 1, is stored next. AR1 is then
postincremented to point at the memory location which contains the sample x(n
–(N – 2)), as shown in Table 4.1. The output at time n + 1 in (4.53) then be-
comes

time n + 1:

y(n + 1) = h(N – 1)x(n –(N – 2)) + h(N – 2)x(n –(N – 3))

+ . . . + h(1)x(n) + h(0)x(n + 1) (4.54)

The above process is repeated to implement (4.54) for time n + 1. The first mul-
tiplication consists of h(N – 1)x(n –(N – 2)), since AR1 is initially pointing at
x(n –(N – 2)) at time n + 1. Similarly, at time n + 2, (4.53) becomes

4.7 Programming Examples Using TMS320C3x and C Code 107

TABLE 4.1 TMS320C31 memory organization for convolution

Input Samples

Coefficients Time n Time n + 1 Time n + 2

AR0 � h(N – 1) AR1 � x(n – (N – 1)) newest � x(n + 1) x(n + 1)
h(N – 2) x(n – (N – 2)) AR1 � x(n – (N – 2)) newest � x(n + 2)
h(N – 3) x(n – (N – 3)) x(n – (N – 3)) AR1 � x(n – (N – 3))
. . . .
. . . .
. . . .
h(1) x(n – 1) x(n – 1) x(n – 1)
h(0) newest � x(n) x(n) x(n)

time n + 2:

y(n + 2) = h(N – 1)x(n –(N – 3)) + h(N –2)x(n –(N – 4))

+ . . . + h(2)x(n) + h(1)x(n + 1) + h(0)x(n + 2) (4.55)

Note that for each time n, n + 1, . . . the last multiply operation is between h(0)
and the newest sample, which is h(0)x(k) at time k.

Example 4.1 FIR Lowpass Filter Simulation with 11 Coefficients
Using TMS320C3x Code

Figure 4.4 shows a listing of the program LP11SIM.ASM which implements a
lowpass FIR filter with the 11 coefficients calculated in Exercise 4.3. A more
practical FIR filter, with sharper characteristics, requires more coefficients;
however, this example is instructive, since it incorporates these same coeffi-
cients. Furthermore, other types of filters with different sets of coefficients can
be readily implemented with the same program. The program FIR4.ASM in
Example 2.3 provides much background for this example. Assemble and run the
program LP11SIM.ASM and verify the following.

1. INB and OUTB are the starting addresses of the input and output buffers,
respectively. The input represents an impulse with a value of 10,000 at n = 0,
and zero otherwise. A circular buffer XN_BUFF is created starting at the ad-
dress XN, aligned on a 16-word boundary, and initialized to zero.

2. The data page is initialized to page 128. The special register BK is loaded
with 11, the actual size of the circular buffer. AR1 is loaded with the bottom ad-
dress of that buffer, where the first input sample value is to be stored. AR2 and
AR3 are loaded with the starting addresses of the input and output buffers, re-
spectively.

3. The filter’s routine starts at the label or address LOOP and ends with the
instruction STI R7,*AR3++, and is executed 11 times (repeated 10 times).
The instruction DBNZD AR4,LOOP decrements the loop counter AR4 and
specifies a branch with delay based on the “not zero” condition on AR4. Hence,
the three subsequent instructions are executed before branching occurs.

4. The first input sample value of 10,000 is stored into the bottom memory
location of the circular buffer, at 809c3a. The starting addresses of the buffers
are listed at the end of the executable file LP11SIM.DSK. From the symbol
reference table, INB, OUTB, and XN_BUFF start at 809c0f, 809c1a, and
809c30, respectively; and the length b (in hex) of the circular buffer is speci-
fied from the output section.

5. For each time n = 0, 1, . . . , 10, the filter routine is executed. Within this
filter routine, the discrete convolution equation (4.53), for each specific time n,

108 Finite Impulse Response Filters

109

;LP11SIM.ASM - FIR LOWPASS FILTER WITH 11 COEFF FOR SIMULATION

.start “.text”,0x809900 ;where text begins

.start “.data”,0x809C00 ;where data begins

.data ;data section

IN_ADDR .word INB ;starting address for input

OUT_ADDR .word OUTB ;starting address for output

XB_ADDR .word XN+LENGTH-1 ;bottom address of circ buffer

HN_ADDR .word COEFF ;starting addr of coefficients

COEFF .float 0 ;H10

.float 0.0468, 0.1009, 0.1514, 0.1872, 0.2

.float 0.1872, 0.1514, 0.1009, 0.0468

H0 .float 0 ;H0

LENGTH .set H0-COEFF+1 ;# of coefficients

INB .float 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

OUTB .float 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

.brstart “XN_BUFF”,16 ;align samples buffer

XN .sect “XN_BUFF” ;section for input samples

.loop LENGTH ;buffer size for samples

.float 0.0 ;initialize samples to zero

.endloop ;end of loop

.entry BEGIN ;start of code

.text

BEGIN LDP @0x809800 ;init to data page 128

LDI LENGTH,BK ;size of circular buffer

LDI @XB_ADDR,AR1 ;last sample address ->AR1

LDI @IN_ADDR,AR2 ;input address —>AR2

LDI @OUT_ADDR,AR3 ;output address —>AR3

FILT LDI LENGTH-1,AR4 ;length in AR4

LOOP LDF *AR2++,R3 ;input new sample

STF R3,*AR1++% ;store newest sample

LDI @HN_ADDR,AR0 ;AR0 points to H(N-1)

LDF 0,R0 ;init R0

LDF 0,R2 ;init R2

RPTS LENGTH-1 ;repeat LENGTH-1 times

MPYF3 *AR0++,*AR1++%,R0 ;R0 = HN*XN

|| ADDF3 R0,R2,R2 ;accumulation in R2

DBNZD AR4,LOOP ;delayed branch until AR4<0

ADDF R0,R2 ;last mult result accumulated

FIX R2,R7 ;convert float R2 to integer R7

STI R7,*AR3++ ;store into output buffer

WAIT BR WAIT ;wait

.end ;end

FIGURE 4.4 FIR lowpass filter program for simulation (LP11SIM.ASM).

is achieved with the multiply (MPYF3) and accumulate (ADDF3) instructions,
which are executed 11 times. For n = 0, the resulting output y(0) is contained in
R2. For a specific n, the parallel instruction ADDF3 is executed 11 times,
whereas the ADDF R0,R2 instruction is executed only once to accumulate the
last product. The output value is then converted from floating-point to integer
format, then stored into the output buffer.

6. Within the debugger, the command memd OUTB (or memd 0x809c1a)
displays the 11 output values starting at the address OUTB which is at 809c1a.
While debugger commands are not case-sensitive, the address OUTB is. The
command

save LP11SIM.DAT,OUTB,11,L

saves on disk the 11 output values in decimal (ASCII Long). Verify that they
represent the impulse response 0, 468, 1009, . . . , 468, 0, which are the coeffi-
cients scaled by 10,000. Figure 4.5 shows a plot of the output frequency re-
sponse using a utility package from Hyperception [36], with a sampling rate of
10 kHz.

The next example illustrates an FIR bandpass filter with 45 coefficients
modifying slightly the program LP11SIM.ASM.

110 Finite Impulse Response Filters

FIGURE 4.5 Frequency response of simulated FIR lowpass filter.

Example 4.2 FIR Bandpass Filter Simulation with 45 Coefficients
Using TMS320C3x Code

This example makes use of the previous program example to implement a 45-
coefficient FIR bandpass filter designed so that the center frequency is at Fs/10.
The coefficients, included in the file BP45.COF and listed in Figure 4.6, were
calculated with a filter design package [36] using a Kaiser window. To imple-
ment this filter, make the following changes to LP11SIM.ASM to create
BP45SIM.ASM (on the accompanying disk).

1. Include the coefficient file BP45.COF in Figure 4.6 with an assembler
directive. Note that the order or length (LENGTH) is already defined within the
file BP45.COF.

2. Increase the length of the input values to 45 and initialize the output
buffer also of length 45 to zero.

3. Align the circular buffer on a 64-word boundary.
Assemble and run this new program BP45SIM.ASM. Verify that the result-

ing 45 output values are –19, –27, –1, 31, 25, . . . , –19, which are the impulse
response coefficients scaled by 10,000. The starting address of the output buffer
is OUTB or 809c5e, as can be found at the end of the executable file
BP45SIM.DSK. The output frequency response is plotted in Figure 4.7 using a
sampling rate of 10 kHz. Does the circular buffer start at 809cc0 and is it of
length 2d (45 decimal)?

In Appendix B, a slighly different version of this program is implemented to
illustrate the debugger Code Explorer, an abridged version of the debugger
Code Composer. It uses 64 sample points instead of 45. Within the debugger en-

4.7 Programming Examples Using TMS320C3x and C Code 111

FIGURE 4.6 Coefficient file for FIR bandpass filter (BP45.COF).

;BP45.COF - FIR BANDPASS COEFFICIENTS (Fc = Fs/10)

.data ;data section

COEFF .float -1.839E-3 ;H44

.float -2.657E-3,-1.437E-7, 3.154E-3, 2.595E-3,-4.159E-3,-1.540E-2

.float -2.507E-2,-2.547E-2,-1.179E-2, 1.392E-2, 4.206E-2, 5.888E-2

.float 5.307E-2, 2.225E-2,-2.410E-2,-6.754E-2,-8.831E-2,-7.475E-2

.float -2.956E-2, 3.030E-2, 8.050E-2, 1.000E-1, 8.050E-2, 3.030E-2

.float -2.956E-2,-7.475E-2,-8.831E-2,-6.754E-2,-2.410E-2, 2.225E-2

.float 5.307E-2, 5.888E-2, 4.206E-2, 1.392E-2,-1.179E-2,-2.547E-2

.float -2.507E-2,-1.540E-2,-4.159E-3, 2.595E-3, 3.154E-3,-1.437E-7

.float -2.657E-3 ;H1

H0 .float -1.839E-3 ;H0

LENGTH .set H0-COEFF+1 ;# of coefficients

vironment, the output sequence can be plotted in both the time and the frequen-
cy domains.

Example 4.3 Generic FIR Filter Specified at Run-Time,
Using TMS320C3x Code

Figure 4.8 shows a listing of a generic FIR filter program FIRNC.ASM which
is quite similar to the two previous filter programs. The AIC communication
routines are contained in the file AICCOM31.ASM and are invoked for a real-
time implementation. Include the coefficient file BP45.COF (change
FIR.COF to BP45.COF). Assemble and run this program, and verify that it
implements a bandpass filter centered at f = Fs/10. Note the following.

1. The sampling rate, specified in AICSEC, is 10 kHz with the A and B reg-
isters set at 162Ch and 3872h, respectively, as discussed in Chapter 3.

2. Input a sinusoidal signal with a frequency of 1 kHz and an amplitude of
less than 3 V, and observe the output signal of the same frequency. As the input
signal frequency is slightly increased or decreased, the amplitude of the output
signal decreases. Hence, the output signal has a maximum amplitude at Fs/10.

Shareware utilities such as Goldwave can be used as a virtual instrument
with a PC and a sound card. While the C31 on the DSK is running, “two copies”
of Goldwave can be accessed and run simultaneously as a function generator to
provide a sinusoidal (or random noise) signal and as an oscilloscope (or spec-

112 Finite Impulse Response Filters

FIGURE 4.7 Frequency response of simulated FIR bandpass filter.

4.7 Programming Examples Using TMS320C3x and C Code 113

;FIRNC.ASM - GENERIC FIR FILTER. INCLUDE COEFFICIENTS FILE

.start “.text”,0x809900 ;starting address of text

.start “.data”,0x809C00 ;starting address of data

.include “AICCOM31.ASM” ;AIC communication routines

.include “FIR.COF” ;coefficients file

.data ;data section

XB_ADDR .word XN+LENGTH-1 ;last (bottom) sample address

HN_ADDR .word COEFF ;starting addr of coefficients

AICSEC .word 162ch,1h,3872h,67h ;AIC configuration data

.brstart “XN_BUFF”,64 ;align samples buffer

XN .sect “XN_BUFF” ;buffer section for samples

.loop LENGTH ;loop LENGTH times

.float 0 ;init samples buffer to zero

.endloop ;end of loop

.text ;text section

.entry BEGIN ;start of code

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET ;init AIC

LDI LENGTH,BK ;BK=size of circular buffer

LDI @XB_ADDR,AR1 ;AR1=last sample address

FILT LDI LENGTH-1,AR4 ;AR4=length-1 as loop counter

LOOP CALL AICIO_P ;AICIO routine,IN->R6 OUT->R7

FLOAT R6,R3 ;input new sample ->R3

STF R3,*AR1++% ;store newest sample

LDI @HN_ADDR,AR0 ;AR0 points to H(N-1)

LDF 0,R0 ;init R0

LDF 0,R2 ;init R2

RPTS LENGTH-1 ;repeat LENGTH-1 times

MPYF3 *AR0++,*AR1++%,R0 ;R0 = HN*XN

|| ADDF3 R0,R2,R2 ;accumulation in R2

DBNZD AR4,LOOP ;delayed branch until AR4<0

ADDF R0,R2 ;last accumulation

FIX R2,R7 ;convert float R2 to integer R7

NOP ;added due to delayed branch

BR FILT ;branch to filter routine

.end ;end

FIGURE 4.8 Generic FIR filter program (FIRNC.ASM).

trum analyzer), using Windows 95 to test this filter. The output of the sound
card, with Goldwave running as a function generator, becomes the input to the
DSK, while the DSK output becomes the input to the sound card, with Gold-
wave running as an oscilloscope or spectrum analyzer.

Coefficients Included with Batch File

Several types of filters can be readily implemented by including different sets of
coefficients using a batch file. Create the following batch file FIR.BAT with
the following commands:

copy %1 FIR.COF

DSK3A FIRNC.ASM

DSK3LOAD FIRNC.DSK

Use the original program FIRNC.ASM with the assembler directive .in-
clude “FIR.COF.” Type:

FIR BP45.COF

This invokes the batch file FIR.BAT, copies the coefficient file
BP45.COF as FIR.COF, so that FIRNC.ASM now includes the coefficient
file BP45.COF. Then, FIRNC.ASM is assembled and the resulting executable
file FIRNC.DSK is downloaded and run with the boot loader. Verify again that
an FIR bandpass filter is implemented, centered at 1 kHz.

Several other coefficients files are included on the accompanying disk:

1. LP11.COF represents a lowpass with cutoff frequency at Fs/10, with 11
coefficients.

2. BP45.COF, BP33.COF, BP23.COF represent bandpass with a center
frequency at Fs/10, and with 45, 33, and 23 coefficients, respectively.

3. BP41.COF represents a bandpass with 41 coefficients centered at Fs/4.

4. LP55.COF, HP55.COF, BP55.COF, and BS55.COF represent a low-
pass, a highpass, a bandpass, and a bandstop, respectively; each with 55
coefficients with cutoff or center frequencies at Fs/4.

5. PASS2B.COF, PASS3B.COF, and PASS4B.COF represent bandpass
with 2, 3, or 4 bands, respectively; each with 55 coefficients.

6. STOP3B.COF represents a bandstop with 55 coefficients and three stop
bands.

7. COMB14.COF represents a comb filter with 14 coefficients.

114 Finite Impulse Response Filters

Chapter 8 describes a program FIRALL.ASM that contains eight sets of 55
coefficients. Run the batch file FIRALL.BAT on disk. This executes a C pro-
gram that prompts the user to select and run a desired filter (lowpass, highpass,
etc.). Edit the file FIRALL.ASM and observe that the eight sets of coefficients
are the same as the coefficients in the files listed in steps 4–6.

Example 4.4 FIR Filter Incorporating Pseudorandom Noise as
Input, Using TMS320C3x Code

Figure 4.9 shows an FIR filter program FIRPRN.ASM, which incorporates the
pseudorandom noise generator in Example 3.5, using interrupt (see PRNOI-
SEI.ASM). Each output noise sample, scaled by PLUS or MINUS as ±4,096, is
loaded in R7 within the noise generator routine. This noise sample is converted
from floating-point to integer with the instruction FLOAT R7,R3 within the
filter routine section, then stored in the memory address specified by AR1. AR1
was initially loaded with XB_ADDR, the bottom address of the circular buffer

4.7 Programming Examples Using TMS320C3x and C Code 115

;FIRPRN.ASM - FIR FILTER WITH INPUT NOISE GENERATOR USING INTERRUPT

.start “intsect”,0x809FC5 ;starting address for interrupt

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “AICCOM31.ASM” ;include AIC comm routines

.include “PASS2B.COF” ;include coefficients file

.sect “intsect” ;section for interrupt vector

BR ISR ;XINT0 interrupt vector

.data ;data section

AICSEC .word 162Ch,1h,4892h,67h ;Fs = 8 KHz

SEED .word 7E521603H ;initial seed value

PLUS .word 1000h ;positive noise level

MINUS .word 0FFFFF1000H ;negative noise level

XB_ADDR .word XN+LENGTH-1 ;last (bottom) sample address

HN_ADDR .word COEFF ;starting addr of coefficients

.brstart “XN_BUFF”,64 ;align samples buffer

XN .sect “XN_BUFF” ;buffer section for samples

.loop LENGTH ;buffer size of samples

.float 0 ;initialize samples to zero

.endloop ;end of loop

(continued on next page)

FIGURE 4.9 FIR program incorporating input pseudorandom noise (FIRPRN.ASM).

116 Finite Impulse Response Filters

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET_I ;init AIC

LDI @SEED,R0 ;R0=initial seed value

LDI 0,R7 ;init R7 (output) tO 0

LDI @XB_ADDR,AR1 ;last sample address => AR1

LDI LENGTH,BK ;BK= length

WAIT IDLE ;wait for interrupt

BR WAIT ;branch to WAIT til interrupt

;INTERRUPT SERVICE ROUTINE FOR NOISE GENERATION

ISR LDI 0,R4 ;init R4=0

LDI R0,R2 ;put seed in R2

LSH -17,R2 ;move bit 17 TO LSB =>R2

ADDI R2,R4 ;add bit (17) =>R4

LSH -11,R2 ;move bit 28 to LSB =>R2

ADDI R2,R4 ;add bits (28+17) =>R4

LSH -2,R2 ;move bit 30 to LSB =>R2

ADDI R2,R4 ;add bits (30+28+17) =>R4

LSH -1,R2 ;move bit 31 to LSB =>R2

ADDI R2,R4 ;add bits (31+30+28+17)=>R4

AND 1,R4 ;mask LSB of R4

LDIZ @MINUS,R7 ;if R4 = 0, R7 = @MINUS

LDINZ @PLUS,R7 ;if R4 = 1, R7 = @PLUS

LSH 1,R0 ;shift seed left by 1

OR R4,R0 ;put R4 into LSB of R0

;MAIN SECTION FOR FILTER

FLOAT R7,R3 ;input noise sample

STF R3,*AR1++% ;store newest sample

LDI @HN_ADDR,AR0 ;AR0 points to H(N-1)

LDF 0,R1 ;init R1

LDF 0,R3 ;init R3

RPTS LENGTH-1 ;repeat LENGTH-1 times

MPYF3 *AR0++,*AR1++%,R1 ;R1 = HN*XN

|| ADDF3 R1,R3,R3 ;accumulation in R3

ADDF3 R1,R3,R3 ;last accumulation

FIX R3,R7 ;convert float R3 integer R7

CALL AICIO_I ;call AICIO for output

RETI ;return from interrupt

.end ;end

FIGURE 4.9 (continued)

reserved for the input samples. As a result, a random noise sequence internally
generated becomes the input to the filter routine.

Run this program with no input connected to the DSK and verify the output
frequency response of an FIR filter with two passbands as shown in Figure 4.10.
The previous example lists a number of files that contain coefficients for differ-
ent types of FIR filters. Use (include) the file BS55.COF, which contains the
coefficients representing a bandstop FIR filter centered at Fs/4, and verify the
frequency response shown in Figure 4.11 (obtained with an HP signal analyzer).

Example 4.5 Mixed-Mode FIR Filter With Main C Program Calling
Filter Function in TMS320C3x Code

A mixed-coded implementation provides the best compromise between a C pro-
gram, which is more portable and maintainable, and an equivalent assembly
program, which executes faster. A C program can provide the capability for
communication between the PC host and the C31, for graphical output on the
PC monitor screen, etc. [26]. The C program FIRMC.C listed in Figure 4.12
calls the TMS320C3x FIR filter function FIRMCF.ASM listed in Figure 4.13.
The filter function contains the time-critical section of the overall implementa-
tion and can be considered as a “black box” called from C. Examples 2.5 and
2.6, with mixed-coded programs, provide much background for this example.
Note the following within the main C program FIRMC.C.

1. Since it is difficult to align a circular buffer in a data section defined in C,
the buffer for the samples is chosen to be 2N, twice the actual size of the coeffi-
cients. This is done to ensure that any adjacent data are not accidentally over-
written.

2. The coefficient file bp45coef.h is “included” within the main C pro-
gram, and shown in Figure 4.14. It represents a 45-coefficient FIR bandpass fil-
ter centered at Fs/10, the same set of coefficients used previously. Note that the
filter’s length N = 45 and is defined within the coefficient file.

3. The AIC is initialized and the input/output rate is set using interrupt. The
C program FIRMC.C calls the TMS320C3x coded filter function filt, pass-
ing to this function the addresses of the coefficients and the data samples, the
input and output addresses, and the filter’s length N.

4. Since the function is a C-identifier, it is referenced with an underscore
(_filt) within the program FIRMCF.ASM. This assembly function is derived
from the generic TMS320C3x FIR program discussed previously.

Note the following within the assembly filter function.
a. The frame pointer FP set in auxiliary register AR3 is used for passing the

addresses of the arguments from the main C program to the assembly function.
The old frame pointer is at the first location on the stack.

b. The auxiliary registers AR4, AR5, and AR6 are dedicated, and because
they are used, they must be saved using the PUSH instruction and later restored

4.7 Programming Examples Using TMS320C3x and C Code 117

FIGURE 4.10 Frequency response of an FIR filter with two passbands.

FIGURE 4.11 Frequency response of a 55-coefficient FIR bandstop filter.

using the POP instruction. The frame pointer also must be saved and restored.
The stack pointer is loaded into the frame pointer FP.

c. The frame pointer, starting with an offset of –2, is used to point at the
starting addresses of the coefficients and the input samples, the input and output
addresses, and to specify the filter’s length. These arguments are specified in
the main C program.

Download and run FIRMC.OUT (on disk) directly into the DSK. Verify a
bandpass filter centered at Fs/10 = 1 kHz.

If the programs are changed, the TMS320 floating-point tools described in
Chapter 1 need to be used. Assemble the function FIRMCF.ASM to create the
object file FIRMCF.OBJ. Compile/assemble the C program FIRMC.C to cre-
ate the object file FIRMC.OBJ. This object file is then linked with the assem-
bly function FIRMCF.OBJ and the file VECS_DSK.OBJ, which contains the
interrupt definition. These files need to be assembled first with the TMS320
floating-point tools in order to create the object files. Invoke the linker com-
mand file FIRMC.CMD (on disk) to create the executable COFF file
FIRMC.OUT.

4.7 Programming Examples Using TMS320C3x and C Code 119

/*FIRMC.C - FIR WITH MIXED-CODE. CALLS FUNCTION IN FIRMCF.ASM */

#include “aiccomc.c” /*include AIC com routines */

#include “bp45coef.h” /*include coefficients file*/

float DLY[2*N]; /*delay samples */

int AICSEC[4] = {0x162C,0x1,0x3872,0x67}; /*AIC data, Fs=10 kHz*/

int data_in, data_out;

extern void filt(float *, float *, int *, int *, int);

void c_int05()

{

PBASE[0x48] = data_out << 2;

data_in = PBASE[0x4C] << 16 >> 18;

}

main ()

{

int *IO_INPUT, *IO_OUTPUT;

IO_INPUT = &data_in;

IO_OUTPUT = &data_out;

AICSET_I();

for (;;)

filt((float *)H, (float *)DLY, (int *)IO_INPUT, (int *)IO_OUTPUT, N);

}

FIGURE 4.12 C program calling TMS320C3x-coded FIR filter function (FIRMC.C).

120 Finite Impulse Response Filters

*FIRMCF.ASM - FIR FUNCTION IN ASSEMBLY CALLED FROM FIRMC.C

FP .set AR3 ;frame pointer in AR3

.global _filt ;global ref/def filter routine

_filt PUSH FP ;save frame pointer FP

LDI SP,FP ;load stack pointer into FP

PUSH AR4 ;save AR4

PUSH AR5 ;save AR5

PUSH AR6 ;save AR6

LDI *-FP(2),AR0 ;address of HN pointer->AR0

LDI *-FP(3),AR1 ;address of XN pointer->AR1

LDI *-FP(4),AR5 ;addr of IO_INPUT pointer->AR5

LDI *-FP(5),AR6 ;addr of IO_OUTPUT pointer->AR6

LDI *-FP(6),AR2 ;filter length ->AR2

LDI AR2,BK ;size of circular buffer->BK

SUBI 1,AR2 ;decrement AR2

ADDI AR2,AR1 ;AR1=XN ADDR+LENGTH-1(BOTTOM)

LDI AR2,AR4 ;AR4 is loop counter

LOOP IDLE ;wait for interrupt

FLOAT *AR5,R3 ;input new sample

STF R3,*AR1++% ;store newest sample

LDI *-FP(2),AR0 ;AR0 points to coeff H(N-1)

LDF 0,R0 ;init R0

LDF 0,R2 ;init R2

RPTS AR2 ;repeat LENGTH-1 times

MPYF *AR0++,*AR1++%,R0 ;R0 = HN*XN

|| ADDF R0,R2 ;R2 = accumulator

DBNZD AR4,LOOP ;delayed branch until AR4<0

ADDF R0,R2 ;last value accumulated

FIX R2,R0 ;float in R2 to integer in R0

STI R0,*AR6 ;output R0 to IO_OUTPUT

POP AR6 ;restore contents of AR6

POP AR5 ;restore contents of AR5

POP AR4 ;restore contents of AR4

POP FP ;restore frame pointer

RETS ;return to C program

FIGURE 4.13 FIR filter function in TMS320C3x code called from C (FIRMCF.ASM).

Example 4.6 FIR Filter With Data Move Using C Code

The previous program examples illustrate the usefulness of a circular buffer in
moving the auxiliary registers or pointers in a manner that allows for the imple-
mentation of the discrete convolution equation (4.24), updating the data sam-
ples as illustrated in Table 4.1. This example illustrates a different method to im-
plement the same convolution equation by moving the data in lieu of the
pointers in order to update the data samples. Such procedure is quite common in
fixed-point processors which do not have a circular buffer feature in hardware
[33]. Figure 4.15 shows a listing of the program FIRDMOVE.C that incorpo-
rates this data-move procedure. Note the following:

1. The coefficient file bp45coef.h represents the same FIR bandpass fil-
ter centered at Fs/10 as in the previous example, and is included for this imple-
mentation. To implement a different filter, generate a different coefficient file
and “include” it in the C program. The filter’s length N is specified within the
coefficient file. No additional changes are necessary in the C program.

2. The idle instruction with the asm assembly command is to wait for an
interrupt. When an interrupt occurs, execution proceeds to the interrupt func-
tion c_int05. The convolution equation is achieved with the instruction

acc+ = h[i] * dly[i];

3. To update the delay samples, a data move type of instruction is used, or

dly[i] = dly[i – 1];

Download and run the executable file FIRDMOVE.OUT (on the accompany-
ing disk). Verify a bandpass filter centered at Fs /10, or 1 kHz.

4.7 Programming Examples Using TMS320C3x and C Code 121

/*BP45COEF.H-HEADER FILE COEFF FOR BANDPASS FILTER USED BY FILT*/

#define N 45 /*length of impulse response*/

const float H[N] = {/* filter coefficients*/

-1.839E-03,-2.657E-03,-4.312E-10, 3.154E-03, 2.595E-03,-4.159E-03,

-1.540E-02,-2.507E-02,-2.547E-02,-1.179E-02, 1.392E-02, 4.206E-02,

5.888E-02, 5.307E-02, 2.225E-02,-2.410E-02,-6.754E-02,-8.831E-02,

-7.475E-02,-2.956E-02, 3.030E-02, 8.050E-02, 1.000E-01, 8.050E-02,

3.030E-02,-2.956E-02,-7.475E-02,-8.831E-02,-6.754E-02,-2.410E-02,

2.225E-02, 5.307E-02, 5.888E-02, 4.206E-02, 1.392E-02,-1.179E-02,

-2.547E-02,-2.507E-02,-1.540E-02,-4.159E-03, 2.595E-03, 3.154E-03,

-4.312E-10,-2.657E-03,-1.839E-03};

FIGURE 4.14 Coefficient file for FIR bandpass filter (BP45COEF.H).

122 Finite Impulse Response Filters

/*FIRDMOVE.C - FIR FILTER MOVING THE DATA AND NOT POINTERS*/

#include “aiccomc.c” /*include AIC com routines */

#include “bp45coef.h” /*include coefficient file */

float DLY[N]; /*delay samples */

int data_in, data_out;

int AICSEC[4]={0x162c,0x1,0x3872,0x67}; /*AIC config data*/

void filt(float *h,float *dly,int *IO_input,int *IO_output,int n)

{

int i, t;

float acc;

for (t = 0; t < n; t++)

{

asm(“ idle”); /*wait for interrupt */

acc = 0.0;

dly[0] = *IO_input; /*newest input sample*/

for (i = 0; i < n; i++)

acc += h[i] * dly[i];

for (i = n-1; i > 0; i—)

dly[i] = dly[i-1]; /*update samples */

*IO_output = acc;

}

}

void c_int05()

{

data_in = UPDATE_SAMPLE(data_out);

}

main ()

{

int *IO_INPUT, *IO_OUTPUT;

IO_INPUT = &data_in;

IO_OUTPUT = &data_out;

AICSET_I();

for(;;)

filt((float *)H,(float *)DLY,(int *)IO_INPUT,(int *)IO_OUTPUT,N);

}

FIGURE 4.15 FIR filter program with data move using C code (FIRDMOVE.C).

Example 4.7 FIR Filter Using C Code

The program FIRC.C listed in Figure 4.16 implements an FIR filter using C
code. The same coefficient file bp45coef.h that represents a bandpass filter
centered at Fs/10 is included as in the previous example. Note the following.

1. The idle instruction within the asm assembly command is used to wait
for an interrupt. When an interrupt occurs, execution proceeds to the interrupt
function c_int05.

2. Within the processing loop, operations such as n – m are defined as n_m
before the two loops i and j in order to increase the execution speed. The two
loops i and j achieve the effects of a circular buffer to implement the convolu-
tion equation in (4.24), as illustrated in Table 4.2.

3. From the interrupt function c_int05, the UPDATE_SAMPLE function
in AICCOMC.C (included) is called. Because this C function UPDATE_SAM-
PLE is called from another C function (c_int05), the C compiler creates a
number of PUSH/PUSHF and POP/POPF, which slow down the execution
time of the filter. To increase the execution speed, the following commands
from UPDATE_SAMPLE can be incorporated directly:

PBASE[0x48] = data_out << 2;

data_in = PBASE[0x4C] << 16 >> 18;

The executable file FIRC.OUT (on disk) can be downloaded directly into
the DSK and run. Verify that this program implements an FIR filter centered at
Fs/10, and yields the same results as in the previous example. A different filter
coefficient can be included to implement a different filter. However, if any
changes are made in the source program, it needs to be recompiled/assembled
and linked. Chapter 1 illustrates the use of the TMS320 floating-point tools. Al-
though this program executes slower than the previous mixed-code implementa-
tion, it is more portable.

4.7 Programming Examples Using TMS320C3x and C Code 123

TABLE 4.2 Convolution for FIR filter example

Time n = 0 Time n = 1 Time n = 2

h(0)x(44) h(0)x(43) h(0)x(42)
h(1)x(43) h(1)x(42) h(1)x(41)
h(2)x(42) h(2)x(41) h(2)x(40)

loop i . . .
. . .
. . .

h(44)x(0) h(43)x(0) h(42)x(0)
loop j — h(44)x(44) h(43)x(44)

h(44)x(43)

124 Finite Impulse Response Filters

/*FIRC.C - REAL-TIME FIR FILTER. CALLS AICCOMC.C */

#include “aiccomc.c” /*include AIC com routines */

#include “bp45coef.h” /*include coefficients file*/

float DLY[N]; /*delay samples */

int data_in, data_out;

int AICSEC[4] = {0x162c,0x1,0x3872,0x67}; /*AIC data Fs =8 kHz*/

void filt(float *h,float *dly,int *IO_input,int *IO_output,int n)

{

int i, j, m, N1, N1_m, n_m, index = 0;

float acc = 0;

N1 = n-1;

dly[0] = *IO_input;

for (m = 0; m < n; m++)

{

asm(“ idle”); /*wait for interrupt */

N1_m = N1-m;

n_m = n-m;

for (i = 0; i < n_m; i++) /*addr below new sample to 0*/

acc += h[i] * dly[N1_m-i];

for (j = m; j > 0; j—) /*from n to latest sample */

acc += h[n-j] * dly[N1_m+j]; /*latest sample last */

*IO_output = acc; /*output result */

acc = 0.0; /*clear accumulator */

dly[N1_m] = *IO_input; /*get new sample */

}

}

void c_int05()

{

data_in = UPDATE_SAMPLE(data_out);

}

main ()

{

int *IO_INPUT, *IO_OUTPUT;

IO_INPUT = &data_in;

IO_OUTPUT = &data_out;

AICSET_I();

for(;;)

filt((float *)H,(float *)DLY,(int *)IO_INPUT,(int *)IO_OUTPUT,N);

}

FIGURE 4.16 FIR filter program using C code (FIRC.C).

Example 4.8 FIR Filter With Samples Shifted, Using C Code

This example implements the same FIR bandpass filter as in the previous exam-
ple, using a different method. It uses an array size of 2N – 1 for the sample de-
lays. Figure 4.17 shows a listing of the program FIRERIC.C that includes the
same coefficient file bp45coef.h as in the previous example. A brief de-
scription follows.

1. Initially, the memory locations for the samples are shown in Table 4.3 (a).
The last (bottom) memory location is reserved for the newest sample x(n + 1)
represented by dly[44]. This newest sample is acquired with the instruction
dly[i+k] = *IO_input. This instruction is within a loop to acquire the
newest sample for each subsequent time n.

2. The convolution operation is performed to obtain an output sample at
time n + 1, or

y(n + 1) = h(0)dly[0] + h(1)dly[1] + . . . + h(44)dly[44]

where dly[0] represents the oldest sample x(n – 43) and dly[44] represents
the newest sample x(n + 1) as shown in Table 4.3 (a).

3. A new sample x(n + 2) is then acquired and placed at the “bottom” mem-
ory location of the samples buffer following x(n + 1). This newest sample is rep-
resented by dly[45]. The convolution operation is performed to obtain an
output sample at time n + 2, or

y(n + 2) = h(0)dly[1] + h(1)dly[2] + . . . + h(44)dly[45]

since the sample delays are updated.

4.7 Programming Examples Using TMS320C3x and C Code 125

TABLE 4.3 Assignment of delay samples: (a) initially; (b) after n = 45; (c) with
process repeated

(a) (b) (c)

dly[0] � x(n – 43) dly[0] � x(n – 43) dly[0] � x(n + 2)
dly[1] � x(n – 42) dly[1] � x(n – 42) dly[1] � x(n + 3)
dly[2] � x(n – 41) dly[2] � x(n – 41) dly[2] � x(n + 4)

. . .

. . .

. . .
dly[42] � x(n – 1) dly[42] � x(n – 1) dly[42] � x(n + 44)
dly[43] � x(n) dly[43] � x(n) dly[43] � x(n + 45)
dly[44] � newest sample dly[44] � x(n + 1) dly[44] � x(n + 1)

dly[45] � x(n + 2)
dly[46] � x(n + 3)
dly[47] � x(n + 4)

.

.

.
dly[86] � x(n + 43)
dly[87] � x(n + 44)
dly[88] � x(n + 45)

126 Finite Impulse Response Filters

/*FIRERIC.C - FIR FILTER WITH SAMPLES SHIFTED */

#include “aiccomc.c” /*include AIC com routines */

#include “bp45coef.h” /*include coefficient file */

#define N 45 /*length of impulse response*/

float DLY[N*2-1]; /*init for 2*N-1 samples */

int data_in, data_out;

int AICSEC[4]={0x162C,0x1,0x3872,0x67}; /*AIC config data*/

void filt(float *h,float *dly,int *IO_input,int *IO_output,int n)

{

float acc=0.0; /*init accumulator */

int i,j,k=n-1; /*index variables */

for (i = 0; i<N*2-1; i++) DLY[i] = 0.0; /*init samples*/

for (i=0;i<n;i++)

{

asm (“ idle”); /*wait for interrupt */

dly[i+k] =*IO_input; /*get new sample */

for (j=0;j<n;j++)

acc += h[j]*dly[i+j]; /*perform convolution */

*IO_output=acc; /*output new value */

acc=0.0; /*reset accumulator */

}

for (i=0;i<k;i++) /*shift values from */

dly[i]=dly[i+n]; /*lower half to upper half */

}

void c_int05()

{

data_in = UPDATE_SAMPLE(data_out);

}

main()

{

int *IO_INPUT, *IO_OUTPUT;

IO_INPUT = &data_in;

IO_OUTPUT = &data_out;

AICSET_I();

for(;;)

filt((float *)H,(float *)DLY,(int*)IO_INPUT,(int *)IO_OUTPUT,N);

}

FIGURE 4.17 FIR filter program with samples shifted (FIRERIC.C).

4. For each time n, a new sample is acquired and placed at the “bottom” of
the memory buffer. After 45 samples, the memory locations for the samples
buffer are as shown in Table 4.3 (b), with the upper-half of the table values as in
(a). Note that the size of the buffer is 2N – 1 = 89.

5. The code within the last loop in the program shifts the samples in the
lower-half memory locations to the upper-half locations as shown in Table 4.3
(c). This is equivalent to the way the samples were displayed initially, except
that now the older samples are not zero. This shift is necessary for a real-time
implementation where this process is continually repeated.

Run this program and verify similar results (somewhat degraded) as in the
previous implementations.

Example 4.9 FIR Filter Design Using Filter Development Package

A noncommercial filter development package (FDP) is on the accompanying
disk. The program FIRPROG.BAS, written in BASIC, calculates the coeffi-
cients of an FIR filter. It allows for the design of lowpass, highpass, bandpass,
and bandstop FIR filters using the rectangular, Hanning, Hamming, Blackman,
and Kaiser window functions. The resulting coefficients are generated in a for-
mat that contains the .float assembler directive preceding each coefficient
value. The filter’s length is also calculated and set within the coefficient file.
This file needs to be only slightly modified and incorporated into one of the
previous programs.

1. Run BASIC, and load/run the program FIRPROG.BAS. Figure 4.18 (a)
and (b) show a display of available window functions and the frequency-selec-
tive filters that can be designed. Select the Kaiser window option, and a band-
pass filter. A separate module for the Kaiser window is called from FIR-
PROG.BAS.

2. Enter the specifications shown in Figure 4.18 (c): 6 db for a passband rip-
ple, 30 db for a stopband attenuation, etc. Then, choose f and c31 as in Figure
4.18 (d) to save the 53 resulting coefficients into a file with a format that in-
cludes the .float assembler directive. Save it as KBP53.COF.

3. Repeat the above procedure for a rectangular window. Enter 900 and
1100 Hz for the lower and upper cutoff frequencies, and 5.2 msec for the dura-
tion of the impulse response, since the number of coefficients N is

N = (D × Fs) + 1

This will yield a design with 53 coefficients. Save the resulting coefficient file
as RBP53.COF.

4. Add a .data assembler directive in each of the two files with the coeffi-
cients for the Kaiser and the rectangular windows.

5. Use the FIR filter program FIRPRN.ASM, with internally generated
pseudorandom noise as input to the filter and a sampling frequency of 10 kHz.

4.7 Programming Examples Using TMS320C3x and C Code 127

(a)

(b)

(c)

FIGURE 4.18 FIR filter design with filter development package FDP (on disk): (a) choice
of windows; (b) type of filter; (c) example of filter specifications; (d) menu for coefficients
format.

(d)

Verify the results in Figure 4.19, which shows a plot of the frequency re-
sponses of the 53-coefficient FIR bandpass filters centered at Fs /10, using both
the rectangular and the Kaiser window functions. The rectangular window pro-
vides a high selectivity with a sharp transition between the passbands and the
stopbands. However, note how the peak of the first sidelobe is relatively high
with the rectangular window, compared to the peak of the mainlobe.

4.8 EXPERIMENT 4: FIR FILTER IMPLEMENTATION

1. Test different filter characteristics with the program FIRPRN.ASM. Test
the coefficient files LP55.COF and HP55.COF, which represent a lowpass
and a highpass filter, respectively, with cutoff frequencies at Fs/4.

2. The frequency response of a comb filter is shown in Figure 4.20. The co-
efficient file comb14.cof on the accompanying disk contains 14 coefficients:
1, 0, 0, . . . , –1. The first and the last coefficients are not zero. An FIR comb fil-
ter contains multiple notches or stop bands that can be useful to eliminate un-
wanted harmonics. In such case, the harmonics would be notched out. Verify the

4.8 Experiment 4: FIR Filter Implementation 129

FIGURE 4.19 Frequency responses of 53-coefficient FIR filters using the rectangular and
the Kaiser windows.

Kaiser

Rectangular

result with the program FIRPRN.ASM. Discuss the transfer function of such
comb filter in terms of the poles and zeros in the z-plane. Reduce the number of
coefficients to 10 (delete four zeros) and verify that the number of notched fre-
quencies or stop bands are reduced.

3. Design a 37-coefficient FIR bandpass filter using an available filter de-
sign package such as MATLAB from The Math Works [35], Hypersignal from
Hyperception [36], Digifilter from DSPlus (illustrated in Appendix B), or the
design package FDP on the accompanying disk (as illustrated in the previous
example). Choose a Kaiser window, a sampling frequency of 8 kHz, and a cen-
ter frequency of 2 kHz. Implement this filter in real-time using either:

a) A TMS320C3x coded program such as FIRNC.ASM, which requires an
input source, or the program FIRPRN.ASM, which incorporates a
pseudorandom noise source (within the program)as input to the filter rou-
tine.

b) A C coded program such as FIRC.C or the C program FIRMC.C, which
calls the assembly filter function FIRMCF.ASM. This assumes that you

130 Finite Impulse Response Filters

FIGURE 4.20 Frequency response of an FIR comb filter.

have access to the TMS320 floating-point tools described in Chapter 1 for
compiling/assembling and linking.

4. Develop a complete FIR program BP37I.ASM that incorporates the 37-
coefficients obtained in the previous question. Make it interrupt-driven to
achieve a sampling rate of 8 kHz. The two programs FIRNC.ASM and FIR-
PRN.ASM can be helpful.

a) Initialize the AIC before the filter routine with AICSET_I in lieu of
AICSET

b) Use an IDLE instruction at the beginning of the filter’s loop (address
LOOP)

c) Your interrupt service routine may be similar to the following:

ISR CALL AICIO_I ;AIC I/O routines with interrupt

RETI ;return from interrupt

5. Design and implement a multiband FIR filter with 3 passbands and 65
coefficients, using a sampling frequency of 10 kHz. Each passband should be
centered at a frequency of 750, 1750, and 2750 Hz, respectively. Test your re-
sults with one of the filter programs such as FIRPRN.ASM. Note that with a
buffer size of 65, a circular buffer should be aligned on a 128-word boundary.
Appendix B contains an example of an FIR filter design with two passbands.
Figure 4.10 shows the frequency response of a 55-coefficient FIR filter with
two passbands using the coefficient file PASS2B.COF in FIRPRN.ASM, with
a sampling frequency of 8 kHz.

REFERENCES

1. A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

2. B. Gold and C. M. Rader, Digital Signal Processing of Signals, McGraw-Hill, New York,
1969.

3. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Pren-
tice-Hall, Englewood Cliffs, NJ, 1975.

4. T. W. Parks and J. H. McClellan, “Chebychev Approximation For Nonrecursive Digital
Filter with Linear Phase,” IEEE Trans. Circuit Theory, CT-19, 189–194 (1972).

5. J. H. McClellan and T. W. Parks, “A Unified Approach to the Design of Optimum Linear
Phase Digital Filters,” IEEE Trans. Circuit Theory, CT-20, 697–701 (1973).

6. J. F. Kaiser, “Nonrecursive Digital Filter Design Using the I0-Sinh Window Function,” in
Proceedings of the IEEE International Symposium on Circuits and Systems, 1974.

References 131

7. J. F. Kaiser, “Some Practical Considerations in the Realization of Linear Digital Filters,
in Proceedings of the Third Allerton Conference on Circuit System Theory, October
1965, pp. 621–633.

8. L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic, Norwell, MA,
1996.

9. F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” Proc. IEEE, 66, 51–83 (1978).

10. T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.

11. S. D. Stearns and R. A. David, Signal Processing in Fortran and C, Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.

12. B. Porat, A Course in Digital Signal Processing, Wiley, New York, 1997.

13. N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Reston, Reston, VA,
1983.

14. A. Antoniou, Digital Filters: Analysis, Design, and Applications, McGraw-Hill, New
York, 1993.

15. E. C. Ifeachor and B. W. Jervis, Digital Signal Processing A Practical Approach, Addi-
son-Wesley, 1993.

16. J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1996.

17. D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System Ap-
proach, Wiley, New York, 1988.

18. R. G. Lyons, Understanding Digital Signal Processing, Addison-Wesley, 1997.

19. P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing With Computer Appli-
cations, Wiley, New York, 1994.

20. S. J. Orfanidis, Introduction to Signal Processing, Prentice-Hall, Englewood Cliffs, NJ,
1996.

21. A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press,
New York, 1991.

22. R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Pro-
cessing, Addison-Wesley, Reading, MA, 1988.

23. C. S. Williams, Designing Digital Filters, Prentice-Hall, Englewood Cliffs, NJ, 1986.

24. R. W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, NJ, 1983.

25. S. K. Mitra and J. F. Kaiser eds., Handbook for Digital Signal Processing, Wiley, New
York, 1993.

26. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

27. R. Chassaing, B. Bitler, and D. W. Horning, “Real-time digital filters in C,” in Proceed-
ings of the 1991 ASEE Annual Conference, June 1991.

28. R. Chassaing and P. Martin, “Digital Filtering with the floating-point TMS320C30 digi-
tal signal processor,” in Proceedings of the 21st Annual Pittsburgh Conference on Mod-
eling and Simulation, May 1990.

29. S. K. Mitra, Digital Signal Processing A Computer-Based Approach, McGraw-Hill, New
York, 1998.

30. R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison-Wesley, Reading,
MA, 1987.

132 Finite Impulse Response Filters

31. E. P. Cunningham, Digital Filtering: An Introduction, Houghton Mifflin, MA, 1992.

32. N.J. Loy, An Engineer’s Guide to FIR Digital Filters, Prentice Hall, Englewood Cliffs,
NJ, 1988.

33. R. Chassaing and D.W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

34. A. H. Nuttall, “Some Windows with Very Good Sidelobe Behavior,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, ASSP-29, No. 1, February 1981.

35. MATLAB, The Math Works Inc., MA, 1997.

36. Hypersignal-Plus DSP Software, Hyperception, Inc., Dallas, TX, 1991.

37. TMS320C3x General-Purpose Applications User’s Guide, Texas Instruments, Inc., Dal-
las, TX, 1998.

References 133

� Infinite impulse response filter structures: direct form I, direct form II,
cascade, and parallel

� Bilinear transformation for filter design

� Sinusoidal waveform generation using difference equation

� Filter design and utility packages

� Programming examples using TMS320C3x and C code

The finite impulse response (FIR) filter discussed in the previous chapter has
no analog counterpart. In this chapter, we discuss the infinite impulse response
(IIR) filter that makes use of the vast knowledge already acquired with analog
filters. The design procedure involves the conversion of an analog filter to an
equivalent discrete filter using the bilinear transformation (BLT) technique. As
such, the BLT procedure converts a transfer function of an analog filter in the s-
domain into an equivalent discrete-time transfer function in the z-domain.

5.1 INTRODUCTION

Consider a general input-output equation of the form,

y(n) = �
N

k = 0

akx(n – k) – �
M

j = 1

bj y(n – j) (5.1)

= a0x(n) + a1x(n – 1) + a2x(n – 2) + . . . + aNx(n – N)

– b1 y(n – 1) – b2 y(n – 2) – . . . – bM y(n – M) (5.2)

This recursive type of equation represents an infinite impulse response (IIR) fil-
ter. The output depends on the inputs as well as past outputs (with feedback).
The output y(n), at time n, depends not only on the current input x(n), at time n,

135

5
Infinite Impulse Response Filters

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

and on past inputs x(n – 1), x(n – 2), . . . , x(n – N), but also on past outputs
y(n – 1), y(n – 2), . . . , y(n – M).

If we assume all initial conditions to be zero in (5.2), the z-transform of (5.2)
becomes

Y(z) = a0X(z) + a1z–1X(z) + a2z–2X(z) + . . . + aNz–NX(z)

– b1z–1Y(z) – b2z–2Y(z) – . . . – bMz–MY(z) (5.3)

Let N = M in (5.3); then the transfer function H(z) is

H(z) = = = (5.4)

where N(z) and D(z) represent the numerator and denominator polynomial, re-
spectively. Multiplying and dividing by zN, H(z) becomes

H(z) = = C
N

�
i=1

(5.5)

which is a transfer function with N zeros and N poles. If all the coefficients bj in
(5.5) are zero, then this transfer function reduces to the transfer function with N
poles at the origin in the z-plane representing the FIR filter discussed in Chapter
4. For a system to be stable, all the poles must reside inside the unit circle, as
discussed in Chapter 4. Hence, for an IIR filter to be stable, the magnitude of
each of its poles must be less than 1, or

a) if |pi| < 1, then h(n) � 0, as n � �, yielding a stable system

b) if |pi| > 1, then h(n) � �, as n � �, yielding an unstable system

If |pi| = 1, then the system is marginally stable, yielding an oscillatory response.
Furthermore, multiple-order poles on the unit circle yields an unstable system.
Note again that with all the coefficients bj = 0, the system reduces to a nonre-
cursive and stable FIR filter.

5.2 IIR FILTER STRUCTURES

There are several structures that can represent an IIR filter, as will be discussed
now.

Direct Form I Structure

With the direct form I structure shown in Figure 5.1, the filter in (5.2) can be re-
alized. There is an implied summer (not shown) in Figure 5.1. For an Nth-order

z – zi
�
z – pi

a0zN + a1zN–1 + a2zN–2 + . . . + aN
����

zN + b1zN–1 + b2 zN–2 + . . . + bN

N(z)
�
D(z)

a0 + a1z–1 + a2z–2 + . . . + aNz–N

����
1 + b1z–1 + b2z–2 + . . . + bNz–N

Y(z)
�
X(z)

136 Infinite Impulse Response Filters

filter, this structure has 2N delay elements, represented by z–1. For example, a
second-order filter with N = 2 will have four delay elements.

Direct Form II Structure

The direct form II structure shown in Figure 5.2 is one of the most commonly
used structures. It requires half as many delay elements as the direct form I. For
example, a second-order filter requires two delay elements z–1, as opposed to
four with the direct form I. To show that (5.2) can be realized with the direct
form II, let a delay variable U(z) be defined as

U(z) = (5.6)

where D(z) is the denominator polynomial of the transfer function in (5.4).
From (5.4) and (5.6), Y(z) becomes

Y(z) = = N(z)U(z)

= U(z){a0 + a1z–1 + a2z–2 + . . . + aNz–N} (5.7)

where N(z) is the numerator polynomial of the transfer function in (5.4). From
(5.6)

N(z)X(z)
�

D(z)

X(z)
�
D(z)

5.2 IIR Filter Structures 137

FIGURE 5.1 Direct form I IIR filter structure.

X(z) = U(z)D(z) = U(z){1 + b1z–1 + b2z–2 + . . . + bNz–N} (5.8)

Taking the inverse z-transform of (5.8)

x(n) = u(n) + b1u(n – 1) + b2u(n – 2) + . . . + bNu(n – N) (5.9)

Solving for u(n) in (5.9)

u(n) = x(n) – b1u(n – 1) – b2u(n – 2) – . . . – bNu(n – N) (5.10)

Taking the inverse z-transform of (5.7) yields

y(n) = a0u(n) + a1u(n – 1) + a2u(n – 2) + . . . + aNu(n – N) (5.11)

The direct form II structure can be represented by (5.10) and (5.11). The delay
variable u(n) at the middle top of Figure 5.2 satisfies (5.10), and the output y(n)
in Figure 5.2 satisfies (5.11).

Equations (5.10) and (5.11) are used to program an IIR filter. Initially,
u(n – 1), u(n – 2), . . . are set to zero. At time n, a new sample x(n) is acquired,
and (5.10) is used to solve for u(n). The filter’s output at time n then becomes

y(n) = a0u(n) + 0

138 Infinite Impulse Response Filters

FIGURE 5.2 Direct form II IIR filter structure.

At time n + 1, a newer sample x(n + 1) is acquired and the delay variables in
(5.10) are updated, or

u(n + 1) = x(n + 1) – b1u(n) – 0

where u(n – 1) is updated to u(n). From (5.11), the output at time n + 1 is

y(n + 1) = a0u(n + 1) + a1u(n) + 0

and so on, for time n + 2, n + 3, . . . , when, for each specific time, a new input
sample is acquired and the delay variables and then the output are calculated us-
ing (5.10), and (5.11), respectively.

Direct Form II Transpose

The direct form II transpose structure is a modified version of the direct form II
and requires the same number of delay elements. The following steps yield a
transpose structure from a direct form II version:

1. Reverse the directions of all the branches.

2. Reverse the roles of the input and output (input ↔ output).

3. Redraw the structure such that the input node is on the left and the output
node is on the right (as is typically done).

The direct form II transpose structure is shown in Figure 5.3. To verify this,
let u0(n) and u1(n) be as shown in Figure 5.3. Then, from the transpose structure,

u0(n) = a2x(n) – b2y(n) (5.12)

u1(n) = a1x(n) – b1y(n) + u0(n – 1) (5.13)

y(n) = a0x(n) + u1(n – 1) (5.14)

5.2 IIR Filter Structures 139

FIGURE 5.3 Direct form II transpose IIR filter structure.

Equation (5.13) becomes, using (5.12) to find u0(n – 1)

u1(n) = a1x(n) – b1 y(n) + [a2x(n – 1) – b2 y(n – 1)] (5.15)

Equation (5.14) becomes, using (5.15) to solve for u1(n – 1)

y(n) = a0x(n) + [a1x(n – 1) – b1 y(n – 1) + a2x(n – 2) – b2 y(n – 2)] (5.16)

which is the same general input-output equation (5.2) for a second-order sys-
tem. This transposed structure implements first the zeros and then the poles,
whereas the direct form II structure implements the poles first.

Cascade Structure

The transfer function in (5.5) can be factored as

H(z) = C H1(z)H2(z) . . . Hr(z) (5.17)

in terms of first- or second-order transfer functions. The cascade (or series)
structure is shown in Figure 5.4. An overall transfer function can be represented
with cascaded transfer functions. For each section, the direct form II structure
or its transpose version can be used. Figure 5.5 shows a fourth-order IIR struc-
ture in terms of two direct form II second-order sections in cascade. The trans-
fer function H(z), in terms of cascaded second-order transfer functions, can be
written as

H(z) =
N/2

�
i=1

(5.18)

where the constant C in (5.17) is incorporated into the coefficients, and each
section is represented by i. For example, N = 4 for a fourth-order transfer func-
tion, and (5.18) becomes

H(z) = (5.19)

as can be verified in Figure 5.5. From a mathematical standpoint, the proper or-
dering of the numerator and denominator factors does not affect the output re-

(a01 + a11z–1 + a21z–2)(a02 + a12z–1 + a22z–2)
�����

(1 + b11z–1 + b21z–2)(1 + b12z–1 + b22z–2)

a0i + a1i z–1 + a2i z–2

��
1 + b1i z–1 + b2i z–2

140 Infinite Impulse Response Filters

FIGURE 5.4 Cascade form IIR filter structure.

sult. However, from a practical standpoint, proper ordering of each second-or-
der section can minimize quantization noise [1–5]. Note that the output of the
first section, y1(n), becomes the input to the second section. With an intermedi-
ate output result stored in one of the 40-bit wide extended precision registers, a
premature truncation of the intermediate output becomes negligible. A pro-
gramming example will illustrate the implementation of a sixth-order IIR filter
cascaded into three second-order direct form II sections.

Parallel Form Structure

The transfer function in (5.5) can be represented as

H(z) = C + H1(z) + H2(z) + . . . + Hr(z) (5.20)

which can be obtained using a partial fraction expansion (PFE) on (5.5). This
parallel form structure is shown in Figure 5.6. Each of the transfer functions
H1(z), H2(z), . . . can be either first- or second-order functions. As with the cas-
cade structure, the parallel form can be efficiently represented in terms of sec-
ond-order direct form II structure sections. H(z) can be expressed as

H(z) = C + �
N/2

i=1

(5.21)

For example, for a fourth-order transfer function, H(z) in (5.21) becomes

H(z) = C + + (5.22)

This fourth-order parallel structure is represented in terms of two direct form II
sections as shown in Figure 5.7. From Figure 5.7, the output y(n) can be ex-
pressed in terms of the output of each section, or

a02 + a12z–1 + a22z–2

���
1 + b12z–1 + b22z–2

a0i + a11z–1 + a21z–2

���
1 + b11z–1 + b21z–2

a0i + a1i z–1 + a2i z–2

��
1 + b1i z–1 + b2i z–2

5.2 IIR Filter Structures 141

FIGURE 5.5 Fourth-order IIR filter with two direct form II sections in cascade.

142 Infinite Impulse Response Filters

FIGURE 5.7 Fourth-order IIR filter with two direct form II sections in parallel.

FIGURE 5.6 Parallel form IIR filter structure.

y(n) = Cx(n) + �
N/2

i = 1

yi(n) (5.23)

There are other structures, such as the lattice structure, which is useful for ap-
plications in speech and adaptive filtering. Although such structure is not as
computationally efficient as the direct form II or cascade structures, requir-
ing more multiplication operations, it is less sensitive to quantization effects
[6–8].

5.3 BILINEAR TRANSFORMATION

The bilinear transformation (BLT) is the most commonly used technique for
transforming an analog filter into a discrete filter. It provides a one-to-one map-
ping from the analog s-plane to the digital z-plane, using

s = K (5.24)

The constant K in (5.24) is commonly chosen as K = 2/T where T represents a
sampling variable. Other values for K can be selected, since it has no conse-
quence in the design procedure. We will choose T = 2, or K = 1 for conve-
nience, to illustrate the bilinear transformation procedure. Solving for z in
(5.24)

z = (5.25)

This transformation allows the following.

1. The left region in the s-plane, corresponding to � < 0, maps inside the
unit circle in the z-plane.

2. The right region in the s-plane, corresponding to � > 0, maps outside the
unit circle in the z-plane.

3. The imaginary j� axis in the s-plane maps on the unit circle in the
z-plane.

Let �A and �D represent the analog and digital frequencies, respectively. With
s = j�A and z = e j�DT, (5.24) becomes

j�A = = (5.26)
e j�DT /2{e j�DT /2 – e – j�DT /2}
���
e j�DT /2{e j�DT /2 + e – j�DT /2}

e j�DT – 1
�
e j�DT + 1

1 + s
�
1 – s

z – 1
�
z + 1

5.3 Bilinear Transformation 143

Using Euler’s expressions for sine and cosine in terms of complex exponential
functions, �A from (5.26) becomes

�A = tan (5.27)

which relates the analog frequency �A to the digital frequency �D. This relation-
ship is plotted in Figure 5.8 for positive values of �A. The region corresponding
to �A between 0 and 1 is mapped into the region corresponding to �D between 0
and �s/4 in a fairly linear fashion, where �s is the sampling frequency in radi-
ans. However, the entire region of �A > 1 is quite nonlinear, mapping into the re-
gion corresponding to �D between �s/4 and �s/2. This compression within this
region is referred to as frequency warping. As a result, prewarping is done to
compensate for this frequency warping. The frequencies �A and �D are such
that

H(s)|s = j�A = H(z)|z = e j�DT (5.28)

Bilinear Transformation Design Procedure

The bilinear transformation design procedure makes use of a known analog
transfer function for the design of a discrete-time filter. It can be applied us-
ing well-documented analog filter functions (Butterworth, Chebychev, etc.).
Several types of filter design are available with the packages described in
Appendix B. Chebyshev Type I and II provide equiripple responses in the
passbands and stopbands, respectively. For a given specification, these filters
have lower-order than the Butterworth-type filters, which have monotonic re-
sponses in both passbands and stopbands. An Elliptic design has equiripple in
both bands, and achieve a lower-order than a Chebyshev-type design; howev-

�DT
�

2

144 Infinite Impulse Response Filters

FIGURE 5.8 Relationship between analog and digital frequencies.

er, it is more difficult to design, with a highly nonlinear-phase response in the
passbands. Although a Butterworth design requires a higher-order, it has a lin-
ear phase in the passbands.

Take the following steps in order to use the BLT technique and find H(z).
1. Obtain a known analog transfer function H(s).
2. Prewarp the desired digital frequency �D in order to obtain the analog fre-

quency �A in (5.27).
3. Scale the frequency of the selected analog transfer function H(s), using

H(s)|s=s/�A (5.29)

4. Obtain H(z) using the BLT equation (5.24), or

H(z) = H(s/�A)|s=(z–1)/(z+1) (5.30)

In the case of bandpass and bandstop filters with lower and upper cutoff fre-
quencies �D1 and �D2, the two analog frequencies �A1 and �A2 need to be
solved. The following exercises illustrate the BLT procedure.

Exercise 5.1 First-Order IIR Lowpass Filter

Given a first-order lowpass analog transfer function H(s), a corresponding dis-
crete-time filter with transfer function H(z) can be obtained. Let the bandwidth
or cutoff frequency BW = 1 r/s and the sampling frequency Fs = 10 Hz.

1. Choose an appropriate transfer function

H(s) =

which represents a lowpass filter with a bandwidth of 1 r/s.
2. Prewarp �D using

�A = tan = tan (1/20) � 1/20

where �D = B = 1 r/s, and T = 1/10.
3. Scale H(s) to obtain

H(s/�A) =

4. Obtain the desired transfer function H(z), or

1
�
20s + 1

�DT
�

2

1
�
s + 1

5.3 Bilinear Transformation 145

H(z) = H(s/�A)|s = (z – 1)/(z + 1) =

Exercise 5.2 First-Order IIR Highpass Filter

Given a highpass transfer function H(s) = s/(s + 1), obtain a corresponding
transfer function H(z). Let the bandwidth or cutoff frequency be 1 r/s and the
sampling frequency be 5 Hz. From the previous procedure, H(z) is found to be

H(z) =

Exercise 5.3 Second-Order IIR Bandstop Filter

Given a second-order analog transfer function H(s) for a bandstop filter, a cor-
responding discrete-time transfer function H(z) can be obtained. Let the lower
and upper cutoff frequencies be 950 and 1050 Hz, respectively, with a sampling
frequency Fs of 5 kHz.

The selected transfer function for a bandstop filter is

H(s) =

where B and �r are the bandwidth and center frequencies, respectively. The ana-
log frequencies are

�A1 = tan = tan = 0.6796

�A2 = tan = tan = 0.7756

The bandwidth B = �A2 – �A1 = 0.096, and �r
2 = (�A1)(�A2) = 0.5271. The trans-

fer function H(s) becomes

H(s) =

and the corresponding transfer function H(z) can be obtained with s = (z – 1)/
(z + 1), or

H(z) =
{(z – 1)/(z + 1)}2 + 0.5271

�����
{(z – 1)/(z + 1)}2 + 0.096(z – 1)/(z + 1) + 0.5271

s2 + 0.5271
���
s2 + 0.096s + 0.5271

2� × 1050
��
2 × 5000

�D2T
�

2

2� × 950
�
2 × 5000

�D1T
�

2

s2 + �r
2

��
s2 + sB + �r

2

10(z – 1)
�
11z – 9

z + 1
�
21z – 19

146 Infinite Impulse Response Filters

which can be reduced to

H(z) = (5.31)

As shown later, H(z) can be verified using the program BLT.BAS (on the ac-
companying disk), or MATLAB, which calculates H(z) from H(s) using the
BLT technique, as we will illustrate. This can be quite useful in applying this
procedure for higher-order filters.

Exercise 5.4 Fourth-Order IIR Bandpass Filter

A fourth-order IIR bandpass filter can be obtained using the BLT procedure.
Let the upper and lower cutoff frequencies be 1 kHz and 1.5 kHz, respectively,
and the sampling frequency be 10 kHz.

1. The transfer function H(s) of a fourth-order Butterworth bandpass filter
can be obtained from the transfer function of a second-order Butterworth low-
pass filter, or

H(s) = HLP(s)|s=(s2+�r
2)/sB

where HLP(s) is the transfer function of a second-order Butterworth lowpass fil-
ter. H(s) then becomes

H(s) = �s=(s2+�r
2)/sB

= (5.32)

2. The analog frequencies �A1 and �A2 are

�A1 = tan = tan = 0.3249

�A2 = tan = tan = 0.5095

3. The center frequency �r and the bandwidth B can now be found, or

�r
2 = (�A1)(�A2) = 0.1655

B = �A2 – �A1 = 0.1846

2� × 1500
��
2 × 10,000

�D2T
�

2

2� × 1000
��
2 × 10,000

�D1T
�

2

s2B2

�����
s4 + �2� Bs3 + (2�r

2 + B2)s2 + �2� B�r
2s + �r

4

1
��
s2 + �2� s + 1

0.9408 – 0.5827z–1 + 0.9408z–2

����
1 – 0.5827z–1 + 0.8817z–2

5.3 Bilinear Transformation 147

4. The analog transfer function H(s) in (5.32) reduces to

H(s) = (5.33)

5. The corresponding H(z) becomes

H(z) = (5.34)

which is in the form of (5.4). This can be verified using the program BLT.BAS
(on disk) as illustrated next.

Utility Program BLT.BAS to Find H(z) from H(s)

The utility program BLT.BAS (on the accompanying disk), written in BASIC,
converts an analog transfer function H(s) into an equivalent transfer function
H(z) using the bilinear equation s = (z – 1)/(z + 1). To verify the results in (5.31)
found in Exercise 5.3 for the second-order bandstop filter, run GWBASIC, then
load and run BLT.BAS. The prompts and the associated data for the a and b co-
efficients associated with H(s) are shown in Figure 5.9 (a) and the a and b coef-
ficients associated with the transfer function H(z) are shown in Figure 5.9 (b),
which verifies (5.31).

Run BLT.BAS again to verify (5.34) using the data in (5.33).

0.02008 – 0.04016z–2 + 0.02008z–4

������
1 – 2.5495z–1 + 3.2021z–2 – 2.0359z–3 + 0.64137z–4

0.03407s2

�����
s4 + 0.26106s3 + 0.36517s2 + 0.04322s + 0.0274

148 Infinite Impulse Response Filters

FIGURE 5.9 Use of BLT.BAS program for bilinear transformation: (a) coefficients in s-
plane; (b) coefficients in z-plane.

(b)

(a)

Utility Program AMPLIT.CPP to Find Magnitude and Phase

The utility program AMPLIT.CPP (on the accompanying disk), written in
C++, can be used to plot the magnitude and phase responses of a filter for a giv-
en transfer function H(z) with a maximum order of 10. Compile (using Bor-
land’s C++ compiler) and run this program. Enter the coefficients of the transfer
function associated with the second-order IIR bandstop filter in Exercise 5.3 as
shown in Figure 5.10 (a). Figures 5.10 (b) and (c) show the magnitude and

5.4 Programming Examples Using TMS320C3x and C Code 149

FIGURE 5.10 Use of AMPLIT.CPP program for plotting magnitude and phase: (a) coeffi-
cients in z-plane; (b) normalized magnitude; (c) normalized phase. (Continued on next page.)

(a)

(b)

phase of the second-order bandstop filter. From the plot of the magnitude
response of H(z), the normalized center frequency is shown at � = f /FN =
1000/2500 = 0.4.

Run this program again to plot the magnitude response associated with the
fourth-order IIR bandpass filter in Exercise 5.4. Verify the plot shown in Figure
5.11. The normalized center frequency is shown at � = 1250/5000 = 0.25.

A utility program MAGPHSE.BAS (on the accompanying disk), written in
BASIC, can be used to tabulate the magnitude and phase responses.

5.4 PROGRAMMING EXAMPLES USING TMS320C3x AND C CODE

Several examples using both TMS320C3x and C code discuss the implementa-
tion of IIR filters. As a special case of an IIR filter with poles on the unit circle,
a sinusoidal generation program, using the difference equation introduced in
Chapter 4, is illustrated. A sixth-order IIR filter program using cascaded direct
form II structures also is implemented. These programs are in both
TMS320C3x and C code. Note again that the C programs can be tested/run,
since the executable files are on disk, without the TMS320 floating-point as-
sembly language tools.

Sine Generation

Using the results from Section 4.1 and Exercise 4.2 with the z-transform of a si-
nusoid, let the transfer function

150 Infinite Impulse Response Filters

(c)

FIGURE 5.10 (continued)

H(z) = = = (5.35)

where A = 2 cos �T, B = –1, and C = sin �T. Then

Y(z){1 – Az–1 – Bz–2} = Cz–1X(z) (5.36)

Taking the inverse z-transform of (5.36), and assuming zero initial conditions

y(n) = Ay(n – 1) + By(n – 2) + Cx(n – 1) (5.37)

which is a second-order recursive difference equation representing a digital os-
cillator. The sampling frequency or output rate of the generated sinusoidal se-
quence is Fs = 1/T, and � = 2�f, where f is the desired frequency of oscillation.
For a given sampling frequency, we can calculate the coefficients A and C, with
B = –1, to generate a sine function of frequency f.

If we apply an impulse at time n = 1, then x(n – 1) = x(0) = 1 for n = 1, and
zero otherwise. With initial conditions y(–1) = y(–2) = 0 in (5.37)

Cz–1

��
1 – Az–1 – Bz–2

Cz
��
z2 – Az – B

Y(z)
�
X(z)

5.4 Programming Examples Using TMS320C3x and C Code 151

FIGURE 5.11 Plot of magnitude response of fourth-order IIR bandpass filter using AM-
PLIT.CPP.

n = 0: y(0) = Ay(–1) + By(–2) + Cx(–1) = 0

n = 1: y(1) = Ay(0) + By(–1) + Cx(0) = C

n = 2: y(2) = Ay(1) + By(0) + 0 = AC

· ·
· ·
· · (5.38)

For n � 2, the difference equation in (5.37) reduces to

y(n) = Ay(n – 1) + By(n – 2)

with y(1) = C and y(0) = 0.

Cosine Generation

From Section 4.1, for a cosine function cos n�T, we can let the transfer function
be

H(z) = = = = (5.39)

where A = 2 cos �T, and B = –1. From (5.39)

y(z){1 – Az–1 – Bz–2} = X(z){1 – (A/2)z–1} (5.40)

Taking the inverse z-transform of (5.40), and assuming zero initial conditions

y(n) = Ay(n – 1) + By(n – 2) + x(n) – (A/2)x(n – 2) (5.41)

which represents a second-order difference equation that can be programmed to
generate a cosine function. Note that the poles of this transfer function are the
same as the poles associated with the transfer function for sin �T. Hence, they
are also on the unit circle.

Example 5.1 Sine Generation by Recursive Equation Using
TMS320C3x Code

Figure 5.12 shows the program SINEA.ASM, which implements (5.37) repre-
senting a digital oscillator. The coefficients A and C are calculated and set in the
program for a desired oscillation frequency of 1 kHz and a sampling or output
rate of 10 kHz. The coefficient B = –1. For a different oscillation or sampling
frequency, the coefficients A and C need to be recalculated and set. In the next
example with a C code implementation, the coefficients A and C are calculated

1 – (A/2)z–1

��
1 – Az–1 – Bz–2

z2 – (A/2)z
��
z2 – Az – B

z2 – z cos �T
��
z2 – 2z cos �T + 1

Y(z)
�
X(z)

152 Infinite Impulse Response Filters

within the program for a specified sampling frequency and oscillation frequen-
cy. The output is scaled to obtain an appropriate output amplitude.

Although the output values y(0), y(1), and y(2) for n = 0, 1, and 2 are calcu-
lated, they are not sent for output. This is acceptable in a real-time environment,
with output values starting at n � 3. However, in a simulation environment,

5.4 Programming Examples Using TMS320C3x and C Code 153

;SINEA.ASM - SINE GENERATION WITH y(n)=A*y(n-1)+B*y(n-2)+C*x(n-1)

.start “.data”,0x809900 ;starting addr of data section

.start “.text”,0x809C00 ;starting addr of text section

.include “AICCOM31.ASM” ;include AIC comm routines

.data ;assemble into data section

AICSEC .word 162Ch,1h,3872h,67h ;Fs = 10 kHz

A .float 1.618034 ;A=2(coswT), f=1 kHz, Fs=10 kHz

B .float -1.0 ;B = -1

Y1 .float 0.587785 ;y(1) = C = sin(wT) = .587785

Y0 .float 0.0 ;y(0)=0

SCALER .float 1000 ;scaling factor

.entry BEGIN ;start of code

.text ;assemble into text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET ;initialize AIC

LDF @Y0,R1 ;R1=y(0)=0, out for sim

LDF @Y1,R1 ;R1=y(1), out for sim

LDF @A,R3 ;R3=A

MPYF3 R3,R1,R1 ;R1=A*y(1), out for sim

LDF @Y1,R0 ;R0=y(2)

LDF @B,R4 ;R4=B

;y(n) for n >= 3. Output value start at n>=3

LOOP LDF R1,R2 ;R2=A*Y1

MPYF3 R3,R1,R1 ;R1=A(A*Y1)

MPYF3 R4,R0,R0 ;R0=B*Y2

ADDF R0,R1 ;R1=output

LDF R1,R5 ;save R1 for next n

MPYF @SCALER,R5 ;scale output amplitude

FIX R5,R7 ;R7=integer(R5)

CALL AICIO_P ;call AIC I/O routine

LDF R2,R0 ;R0=A*Y1, for next n

BR LOOP ;continue for each n

.end ;end

FIGURE 5.12 Sine generation program with recursive difference equation, using
TMS320C3x code (SINEA.ASM).

these three values contained in R1, before the looped section of code, need to be
output for n = 0, 1, and 2. Run this program and verify an output sinusoid with a
frequency of 1 kHz. The program SINESW.ASM (on disk) extends this example
to yield an FM signal.

Example 5.2 Cosine Generation by Recursive Equation Using
TMS320C3x Code

We can program (5.41) to generate a cosine function in a similar fashion to the
previous example for the sine generation. Assume an impulse such that x(0) = 1,
and y(–1) = y(–2) = 0. Then

n = 0: y(0) = Ay(–1) + By(–2) + x(0) – (A/2)x(–1) = 1.0

n = 1: y(1) = Ay(0) + By(–1) + x(1) – (A/2)x(0) = A – A/2

n = 2: y(2) = Ay(1) + By(0) + 0 = A(A – A/2) + B

· ·
· ·
· ·

Copy the previous program SINEA.ASM as COSINEA.ASM and edit it with
the two following changes to generate a cosine function:

1. Set Y1 = 0.809017 since y(1) = A – (A/2), and Y0 = x(0) = 1.0

2. Add the instruction ADDF @B,R1 after the first multiplication MPYF3
instruction before the loop section of code.

Run this program and verify a cosine function of frequency 1 kHz. Note that as
with the sine generation function, for simulation, the first three output samples
y(0), y(1), and y(2) contained in R1 for each n, need to be output. In this real-
time implementation, the output samples are obtained for n � 3.

Example 5.3 Sine Generation by Recursive Equation
Using C Code

Figure 5.13 shows the program SINEC.C, which implements (5.37) represent-
ing a digital oscillator. Note the following from the program.

1. The sampling frequency (sample_freq) is defined or set at 10 kHz,
and the desired oscillation frequency (sine_freq) is set at 3 kHz. To generate
a different frequency (up to FN), only sine_freq needs to be changed.

2. From the main function, the coefficients A and C are calculated as fol-
lows:

A = 2 cos �T = 2 cos � �2� × 3000
��

10,000

154 Infinite Impulse Response Filters

5.4 Programming Examples Using TMS320C3x and C Code 155

/*SINEC.C - REAL-TIME SINE GENERATION BY RECURSIVE EQUATION*/

#include “aiccomc.c” /*AIC comm routines */

#include “math.h” /*math library function */

#define sample_freq 10000 /*sample frequency */

#define sine_freq 3000 /*desired frequency */

#define pi 3.14159 /*constant pi */

int AICSEC[4] = {0x162C,0x1,0x3872,0x67}; /*AIC config data*/

void sinewave(float A, float B, float C)

{

float y[3] = {0.0,0.0,0.0}; /*y[n] array */

float x[3] = {0.0,0.0,1.0}; /*x[n] array */

int n = 2, result; /*declare variables */

while(1)

{

TWAIT;

y[n] = A*y[n-1] + B*y[n-2] + C*x[n-1]; /*determine y[n]*/

result = (int)(y[n]*1000); /*out y[n] scaled by 1000 */

PBASE[0x48] = result << 2; /*output to AIC */

y[n-2] = y[n-1]; /*shift y’s back in array */

y[n-1] = y[n];

x[n-2] = x[n-1]; /*shift x’s back in array */

x[n-1] = x[n];

x[n] = 0.0; /*set future x’s to 0 */

}

}

main()

{

float Fs, Fosc, w, T, A, B, C; /*declare variables */

AICSET(); /*initialize AIC */

Fs = sample_freq; /*get sampling frequency */

Fosc = sine_freq; /*get oscillator frequency*/

T = 1/Fs; /*determine sample period */

w = 2*pi*Fosc; /*determine angular freq */

A = 2 * cos((w * T)); /*determine coefficient A */

B = -1.0; /*coeff B is constant */

C = sin((w * T)); /*determine coefficient B */

sinewave(A, B, C); /*call sinewave function */

}

FIGURE 5.13 Sine generation program with recursive difference equation, using C code
(SINEC.C).

C = sin �T = sin � �
3. Instead of starting at n = 0 and assume an impulse at n = 1 with x(0) = 1,

the function sinewave implements the digital oscillator equation starting at n
= 2. As such, x(0) = x(1) = 0, and x(2) = 1, as set in the x array, which produces
the same result as in (5.38).

Run this program and verify a sinusoidal waveform of frequency 3 kHz. A
different frequency such as 2 kHz can be readily generated by changing/setting
sine_freq to 2000. Verify this new result if you have the floating-point as-
sembly language tools. An AM signal can be implemented based on the program
SINEC.C. See Experiment 5 in Section 5.5.

Example 5.4 Sixth-Order IIR Bandpass Filter Using
TMS320C3x Code

This example implements a sixth-order IIR bandpass filter, centered at 1250
Hz, with a sampling frequency of 10 kHz, using a Butterworth design. The coef-
ficients were obtained with a filter design package from Hyperception, Inc., re-
ferred to in Chapter 1. The IIR filter structure consists of three second-order di-
rect form II stages or sections in cascade. For each stage, there are three a and
two b coefficients. Figure 5.14 shows the program IIR6BP.ASM, which im-
plements this filter.

The IIR function implements equations (5.10) and (5.11) obtained for the di-
rect form II structure, with N = 2 for each section or stage in cascade, or

u(n) = x(n) – b1u(n – 1) – b2u(n – 2)

which represents the delay variable introduced in Section 5.2. The output is

y(n) = a0u(n) + a1u(n – 1) + a2u(n – 2)

where each stage output becomes the input to the subsequent stage. Run this
program and verify the frequency response of the sixth-order IIR filter plotted
in Figure 5.15. The frequency response of a fourth-order IIR filter is also plot-
ted to illustrate the sharper characteristics of an IIR filter design with a higher
order. This plot is obtained with a Hewlett Packard (HP) signal analyzer. Note
the following.

1. For each of the three stages, the coefficients are ordered as b1, b2, a1, a2,
and a0, which correspond to b[i][0], b[i][1], a[i][1], a[i][2], and a[i][0] in the
program.

2. The block of code between the repeat block instruction RPTB LOOP and

2� × 3000
��

10,000

156 Infinite Impulse Response Filters

*IIR6BP.ASM - SIXTH-ORDER IIR BANDPASS, Fc = 1250 Hz

.start “.text”, 0x809900 ;starting address of text

.start “.data”, 0x809C00 ;starting address of data

.include “AICCOM31.ASM” ;include AIC comm routines

.entry BEGIN ;start of code

.text ;assemble into text

BEGIN LDP @COEFF_ADDR ;init to data page 128

CALL AICSET ;initialize AIC

IIR LDI @COEFF_ADDR,AR0 ;AR0 points to coefficients address

LDI @DLY_ADDR,AR1 ;AR1 points to addr of delay samples

CALL AICIO_P ;call AIC for polling

FLOAT R6,R3 ;stage input

MPYF3 *AR0++,*AR1++,R0 ;b[i][0]*dly[i][0]

LDI STAGES-1, RC ;initialize stage counter

RPTB LOOP ;repeat LOOP RC times

MPYF3 *AR0++,*AR1—,R1 ;b[i][1]*dly[i][1]

|| SUBF3 R0,R3,R3 ;input-b[i][0]*dly[i][0]

MPYF3 *AR0++,*AR1++,R0 ;a[i][1]*dly[i][0]

|| SUBF3 R1,R3,R2 ;dly=input-b[i][0]*dly[i][0]-b[i][1]*dly[i][1]

MPYF3 *AR0++,*AR1—,R1 ;a[i][2]*dly[i][1]

ADDF3 R0,R1,R3 ;a[i][2]*dly[i][1]+a[i][1]*dly[i][0]

LDF *AR1,R4 ;dly[i][2]

|| STF R2,*AR1++ ;dly[i][0] = dly

MPYF3 R2,*AR0++,R2 ;dly*a[i][0]

|| STF R4,*AR1++ ;dly[i][1] = dly[i][0]

LOOP MPYF3 *AR0++,*AR1++,R0 ;b[i+1][0]*dly[i+1][0]

|| ADDF3 R2,R3,R3 ;stage output=input of next stage

FIX R3,R7 ;convert output to integer

BR IIR

.data ;b[i][0] b[i][1] a[i][1] a[i][2] a[i][0]

COEFF .float -1.4435E+0, 9.4880E-1, 0.0000E+0, -5.3324E-2, 5.3324E-2

.float -1.3427E+0, 8.9515E-1, 0.0000E+0, -5.3324E-2, 5.3324E-2

.float -1.3082E+0, 9.4378E-1, 0.0000E+0, -5.3324E-2, 5.3324E-2

DLY .float 0, 0, 0, 0, 0, 0 ;init delay var for each stage

STAGES .set 3 ;number of stages

COEFF_ADDR .word COEFF ;address of COEFF

DLY_ADDR .word DLY ;address of DELAY

AICSEC .word 162ch,1h,3872h,67h ;AIC config data, Fs = 10 kHz

.end ;end

FIGURE 5.14 IIR filter program for sixth-order bandpass filter (IIR6BP.ASM).

5.4 Programming Examples Using TMS320C3x and C Code 157

the instruction specified by the address LOOP (which includes the parallel in-
struction ADDF3 R2,R3,R3) is executed three times (once for each stage).

3. After each output sample, execution branches back to the function IIR.
Each input sample is acquired through R3.

4. AR0 points to the starting address of a table containing three sets of coef-
ficients; a set for each stage, ordered as b1, b2, a1, a2, a0. AR1 points to the start-
ing address of another table containing the delay variables for each stage, and
ordered as u(n – 1), u(n – 2), Note that these delay variables, two for each
stage, are initialized to zero.

5. Consider the following multiply operations:
a) The first one calculates

R0 = b1u(n – 1)

Then, AR0 and AR1 are postincremented to point at b2 and u(n – 2), re-
spectively.

b) The second one calculates

R1 = b2u(n – 2)

158 Infinite Impulse Response Filters

FIGURE 5.15 Plot of frequency responses of fourth- and sixth-order IIR bandpass filters.

4th order

6th order

and the subtract instruction in parallel calculates

R3 = x(n) – b1u(n – 1)

AR0 is then incremented to point at a1 while AR1 is decremented to
point “back” at u(n – 1).

c) The third one calculates

R0 = a1u(n – 1)

The SUBF3 instruction in parallel calculates

R2 = x(n) – b1u(n – 1) – b2u(n – 2)

d) The fourth one calculates

R1 = a2u(n – 2)

and the subsequent ADDF3 instruction yields

R3 = a1u(n – 1) + a2u(n – 2)

The LDF and STF instructions in parallel update the delay variable
u(n – 1) to u(n).

e) The fifth one calculates

R2 = a0u(n)

and the STF instruction in parallel updates u(n – 2) to u(n – 1).

f) The sixth and last one calculates

R0 = b1u(n – 1)

for the subsequent stage, and the instruction ADDF3 R2,R3,R3 in
parallel yields the stage output as

R3 = a0u(n) + R3 (obtained from step d)

This effectively implements the equation

y(n) = a0u(n) + a1u(n – 1) + a2u(n – 2)

5.4 Programming Examples Using TMS320C3x and C Code 159

After an output sample is obtained at the last stage, AR0 and AR1 are reinitial-
ized to point at the beginning addresses of the coefficients and delay samples,
respectively, as in step 4.

Example 5.5 Sixth-Order IIR Bandpass Filter Using C Code

The program IIR6BPC.C shown in Figure 5.16 implements the same sixth-or-
der IIR bandpass filter discussed in the previous example, using three cascaded
direct form II second-order sections. The a and b coefficients for each stage are
contained in the coefficient file IIR6COEF.H shown in Figure 5.17, which is
“included” in the program IIR6BPC.C. The three sets of a and b coefficients
(a set for each stage) are ordered as a0, a1, a2, b1, b2. Note the following from
the IIR function:

1. It is interrupt-driven, with a sampling frequency set to 10 kHz.

2. The For loop is executed three times, once for each stage, represented
with the variable i.

3. yn calculates the stage output by implementing (5.11) in reverse order, or

y(n) = a2u(n – 2) + a1u(n – 1) + a0u(n)

Then, the delay variables are updated so that u(n – 2) becomes u(n – 1),
and u(n – 1) becomes u(n). The stage output then becomes the input to the
subsequent stage.

The overall filter’s output is the output at the third stage. Run this program and
verify identical results as in the previous implementation using TMS320C3x
code.

5.5 EXPERIMENT 5: IIR FILTER DESIGN AND IMPLEMENTATION

1. Implement the cosine generation Example 5.2.
2. Three sets of coefficients associated with a fourth, a sixth, and an eighth-

order IIR filter were obtained using the DigiFilter package described in Appen-
dix B. The center and sampling frequencies for each filter are 1250 and 10,000
Hz, respectively. The filter design uses cascaded direct form II sections.

Test these coefficients using an IIR filter program such as IIR6BP.ASM,
which implements a sixth-order IIR filter with three stages or sections in cas-
cade and needs to be slightly modified for each of the three filters. Set the num-
ber of stages and initialize appropriately the delay variables through DLY. The
ordering of the a and b coefficients in the program correspond to the a and b co-
efficients associated with the transfer function H(z) in (5.4). Many authors re-

160 Infinite Impulse Response Filters

/*IIR6BPC.C -REAL-TIME 6th-ORDER IIR BANDPASS FILTER*/

#include “aiccomc.c” /*include AIC comm routines*/

#include “iir6coef.h” /*coefficients file */

float dly[stages][2] = {0}; /*delay samples */

int AICSEC[4] = {0x162C,0x1,0x3872,0x67}; /*AIC data*/

int data_in, data_out;

float IIR(int *IO_in, int *IO_out, int n, int len)

{

int i, loop = 0;

float un, yn, input;

while (loop < len)

{

asm(“ IDLE “);

++loop;

input = *IO_in;

for (i = 0; i < n; i++)

{

un = input - b[i][0] * dly[i][0] - b[i][1] * dly[i][1];

yn = a[i][2]*dly[i][1] + a[i][1]*dly[i][0] + a[i][0]*un;

dly[i][1] = dly[i][0];

dly[i][0] = un;

input = yn;

}

*IO_out = yn;

}

}

void c_int05()

{

PBASE[0x48] = data_out << 2;

data_in = PBASE[0x4C] << 16 >> 18;

}

main()

{

#define length 345

int *IO_OUTPUT, *IO_INPUT;

IO_INPUT = &data_in;

IO_OUTPUT = &data_out;

AICSET_I();

for (;;)

IIR((int *)IO_INPUT, (int *)IO_OUTPUT, stages, length);

}

FIGURE 5.16 IIR filter program for sixth-order bandpass filter with coefficient file includ-
ed (IIR6BPC.C).

verse the a and b notation in (5.1). Verify that the eighth-order IIR filter is more
selective (sharper).

a) Fourth-order Elliptic
First stage Second stage

a0 0.078371 0.143733
a1 –0.148948 0.010366
a2 0.078371 0.143733
b1 –1.549070 –1.228110
b2 0.968755 0.960698

b) Sixth-order Butterworth
First stage Second stage Third stage

a0 0.137056 0.122159 0.122254
a1 0.0 0.0 0.0
a2 –0.137056 –0.122159 –0.122254
b1 –1.490630 –1.152990 –1.256790
b2 0.886387 0.856946 0.755492

c) Eighth-order Butterworth
First stage Second stage Third stage Fourth stage

a0 0.123118 0.130612 0.127179 –0.143859
a1 0.0 0.0 0.0 –0.0
a2 –0.123118 –0.130612 –0.127179 –0.143859
b1 –1.18334 –1.33850 –1.15014 –1.52176
b2 0.754301 0.777976 0.884409 –0.910547

162 Infinite Impulse Response Filters

/*IIR6COEF.H-COEFF FILE FOR SIXTH-ORDER IIR BANDPASS FILTER*/

#define stages 3 /*number of 2nd-order stages*/

float a[stages][3]= { /*numerator coefficients */

{5.3324E-02, 0.0000E+00, -5.3324E-02}, /*a10, a11, a12 */

{5.3324E-02, 0.0000E+00, -5.3324E-02}, /*a20, a21, a22 */

{5.3324E-02, 0.0000E+00, -5.3324E-02} }; /*a30, a31, a32 */

float b[stages][2]= { /*denominator coefficients */

{-1.4435E+00, 9.4879E-01}, /*b11, b12 */

{-1.3427E+00, 8.9514E-01}, /*b21, b22 */

{-1.3082E+00, 9.4377E-01} }; /*b31, b32 */

FIGURE 5.17 Coefficient file for sixth-order IIR filter program (IIR6COEF.H).

3. The program SINECMOD.C (on disk) extends the sine generator pro-
gram SINEC.C to implement an AM signal. Verify that the resulting spectrum
contains the sum and difference of the carrier and modulation frequencies. Ex-
amine the effects of the modulation index on the carrier and the sidebands.

REFERENCES

1. L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic, Norwell, MA,
1996.

2. L. B. Jackson, “Roundoff Noise Analysis for Fixed-Point Digital Filters Realized in Cas-
cade or Parallel Form,” IEEE Trans. on Audio and Electroacoustics, Au-18, 107–122,
June (1970).

3. L. B. Jackson, “An Analysis of Limit Cycles due to Multiplicative Rounding in Recur-
sive Digital Filters,” in Proceedings of the 7th Allerton Conference on Circuit and System
Theory, 1969, 69–78.

4. L. B. Lawrence and K. V. Mirna, “A New and Interesting Class of Limit Cycles in Recur-
sive Digital Filters,” in Proceedings of the IEEE International Symposium on Circuit and
Systems, April 1977, 191–194.

5. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

6. A. H. Gray and J. D. Markel, “Digital Lattice and Ladder Filter Synthesis,” in IEEE
Trans. on Acoustics, Speech, and Signal Processing, ASSP-21, 491–500, (1973).

7. A. H. Gray and J. D. Markel, “A Normalized Digital Filter Structure,” in IEEE Trans. on
Acoustics, Speech, and Signal Processing, ASSP-23, 268–277 (1975).

8. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

9. A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

10. E. C. Ifeachor and B. W. Jervis, Digital Signal Processing A Practical Approach, Addi-
son-Wesley, 1993.

11. N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Reston, Reston, VA,
1983.

12. D. W. Horning and R. Chassaing, “IIR Filter Scaling for Real-Time Digital Signal Pro-
cessing”, in IEEE Trans. on Education, Feb. 1991.

13. P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing With Computer Appli-
cations, Wiley, New York, 1994.

14. L. C. Ludemen, Fundamentals of Digital Signal Processing, Harper & Row, New York,
1986.

15. M. G. Bellanger, Digital Filters and Signal Analysis, Prentice-Hall, Englewood Cliffs,
NJ, 1986.

16. F. J. Taylor, Principles of Signals and Systems, McGraw-Hill, New York, 1994.

17. F. J. Taylor, Digital Filter Design Handbook, Marcel Dekker, New York, 1983.

18. W. D. Stanley, G. R. Dougherty, and R. Dougherty, Digital Signal Processing, Reston,
Reston, VA, 1984.

References 163

19. S. D. Stearns and R. A. David, Signal Processing in Fortran and C, Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.

20. R. Kuc, Introduction to Digital Signal Processing, McGraw-Hill, New York, 1988.

21. H. Baher, Analog and Digital Signal Processing, Wiley, New York, 1990.

22. R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison-Wesley, Reading,
MA, 1987.

23. J. R. Johnson, Introduction to Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1989.

24. S. Haykin, Modern Filters, Macmillan, New York, 1989.

25. T. Young, Linear Systems and Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

26. A. Ambardar, Analog and Digital Signal Processing, PWS, MA, 1995.

27. E. P. Cunningham, Digital Filtering: An Introduction, Houghton Mifflin, MA, 1992.

28. A.W.M. van den Enden and N.A.M. Verhoeckx, Discrete-Time Signal Processing, Pren-
tice-Hall International (UK) Ltd, Hertfordshire, 1989.

29. M. Bellanger, Digital Processing of Signals Theory and Practice, Wiley, New York,
1989.

164 Infinite Impulse Response Filters

� The fast Fourier transform using radix-2 and radix-4

� Decimation or decomposition in frequency and in time

� Programming examples

The fast Fourier transform (FFT) is an efficient algorithm that is used for con-
verting a time-domain signal into an equivalent frequency-domain signal, based
on the discrete Fourier transform (DFT). A real-time programming example is
included with a main C program that calls an FFT assembly function.

6.1 INTRODUCTION

The discrete Fourier transform converts a time-domain sequence into an equiva-
lent frequency-domain sequence. The inverse discrete Fourier transform per-
forms the reverse operation and converts a frequency-domain sequence into an
equivalent time-domain sequence. The fast Fourier transform (FFT) is a very ef-
ficient algorithm technique based on the discrete Fourier transform, but with
fewer computations required. The FFT is one of the most commonly used oper-
ations in digital signal processing to provide a frequency spectrum analysis
[1–6]. Two different procedures are introduced to compute an FFT: the decima-
tion-in-frequency and the decimation-in-time. Several variants of the FFT have
been used, such as the Winograd transform [7,8], the discrete cosine transform
(DCT) [9], and the discrete Hartley transform [10–12]. Programs based on the
DCT, FHT, and the FFT are available in [9].

6.2 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX-2

The FFT reduces considerably the computational requirements of the discrete
Fourier transform (DFT). The DFT of a discrete-time signal x(nT) is

165

6
Fast Fourier Transform

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

X(k) = �
N – 1

n = 0

x(n) Wnk k = 0, 1, . . . , N – 1 (6.1)

where the sampling period T is implied in x(n) and N is the frame length. The
constants W are referred to as twiddle constants or factors, which represent the
phase, or

W = e– j2�/N (6.2)

and is a function of the length N. Equation (6.1) can be written for k = 0, 1, . . . ,
N – 1, as

X(k) = x(0) + x(1)Wk + x(2)W2k + . . . + x(N – 1)W (N–1)k (6.3)

This represents a matrix of N × N terms, since X(k) needs to be calculated for N
values of k. Since (6.3) is an equation in terms of a complex exponential, for
each specific k there are approximately N complex additions and N complex
multiplications. Hence, the computational requirements of the DFT can be very
intensive, especially for large values of N.

The FFT algorithm takes advantage of the periodicity and symmetry of the
twiddle constants to reduce the computational requirements of the FFT. From
the periodicity of W

Wk+N = Wk (6.4)

and, from the symmetry of W

Wk+N/2 = –Wk (6.5)

Figure 6.1 illustrates the properties of the twiddle constants W for N = 8. For ex-
ample, let k = 2, and note that from (6.4), W10 = W2, and from (6.5), W6 = –W2.

166 Fast Fourier Transform

FIGURE 6.1 Periodicity and symmetry of twiddle constant W.

For a radix-2 (base 2), the FFT decomposes an N-point DFT into two (N/2)-
point or smaller DFT’s. Each (N/2)-point DFT is further decomposed into two
(N/4)-point DFT’s, and so on. The last decomposition consists of (N/2) two-
point DFT’s. The smallest transform is determined by the radix of the FFT. For a
radix-2 FFT, N must be a power or base of two, and the smallest transform or
the last decomposition is the two-point DFT. For a radix-4, the last decomposi-
tion is a four-point DFT.

6.3 DECIMATION-IN-FREQUENCY FFT ALGORITHM
WITH RADIX-2

Let a time-domain input sequence x(n) be separated into two halves:

a) x(0), x(1), . . . , x� – 1� (6.6)

and

b) � �, x� + 1�, . . . , x(N – 1) (6.7)

Taking the DFT of each set of the sequence in (6.6) and (6.7),

X(k) = �
(N/2) – 1

n = 0

x(n)Wnk + �
N – 1

n = N/2

x(n)Wnk (6.8)

Let n = n + N/2 in the second summation of (6.8), X(k) becomes

X(k) = �
(N/2) – 1

n = 0

x(n)Wnk + WkN/2 �
(N/2) – 1

n = 0

x�n + �Wnk (6.9)

where WkN/2 is taken out of the second summation because it is not a function of
n. Using,

WkN/2 = e–jk� = (e–j�)k = (cos � – jsin �)k = (–1)k

in (6.9), X(k) becomes

X(k) = �
(N/2) – 1

n = 0
�x(n) + (–1)kx�n + ��Wnk (6.10)

Because (–1)k = 1 for even k and –1 for odd k, (6.10) can be separated for even
and odd k, or

N
�
2

N
�
2

N
�
2

N
�
2

N
�
2

6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 167

for even k: X(k) = �
(N/2) – 1

n = 0
�x(n) + x�n + ��Wnk (6.11)

for odd k: X(k) = �
(N/2) – 1

n = 0
�x(n) – x�n + ��Wnk (6.12)

Substituting k = 2k for even k, and k = 2k + 1 for odd k, (6.11) and (6.12) can be
written as, for k = 0, 1, . . . , (N/2) – 1,

X(2k) = �
(N/2) – 1

n = 0
�x(n) + x�n + ��W2nk (6.13)

x(2K + 1) = �
(N/2) – 1

n = 0
�x(n) – x�n + ��WnW2nk (6.14)

Because the twiddle constant W is a function of the length N, it can be repre-
sented as WN. Then, WN

2 can be written as WN /2. Let

a(n) = x(n) + x(n + N/2) (6.15)

b(n) = x(n) – x(n + N/2) (6.16)

Equations (6.13) and (6.14) can be more clearly written as two (N/2)-point
DFT’s, or

X(2k) = �
(N/2) – 1

n = 0

a(n)WN/2
nk (6.17)

X(2k + 1) = �
(N/2) – 1

n = 0

b(n)WN
nWN/2

nk (6.18)

Figure 6.2 shows the decomposition of an N-point DFT into two (N/2)-point
DFT’s, for N = 8. As a result of the decomposition process, the X’s in Figure 6.2
are even in the upper half and they are odd in the lower half. The decomposition
process can now be repeated such that each of the (N/2)-point DFT’s is further
decomposed into two (N/4)-point DFT’s, as shown in Figure 6.3, again using
N = 8 to illustrate.

The upper section of the output sequence in Figure 6.2 yields the sequence
X(0) and X(4) in Figure 6.3, ordered as even. X(2) and X(6) from Figure 6.3 rep-
resent the odd values. Similarly, the lower section of the output sequence in Fig-
ure 6.2 yields X(1) and X(5), ordered as the even values, and X(3) and X(7) as
the odd values. This scrambling is due to the decomposition process. The final

N
�
2

N
�
2

N
�
2

N
�
2

168 Fast Fourier Transform

order of the output sequence X(0), X(4), . . . in Figure 6.3 is shown to be scram-
bled. The output needs to be resequenced or reordered. A special instruction us-
ing indirect addressing with bit-reversal, introduced in Chapter 2 in conjunction
with circular buffering, is available on the TMS320C3x to reorder such a se-
quence. The output sequence X(k) represents the DFT of the time sequence x(n).

This is the last decomposition, since we have now a set of (N/2) two-point
DFT’s, the lowest decomposition for a radix-2. For the two-point DFT, X(k) in
(6.1) can be written as

6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 169

FIGURE 6.2 Decomposition of N-point DFT into two (N/2)-point DFT’s, for N = 8.

FIGURE 6.3 Decomposition of two (N/2)-point DFT’s into four (N/4)-point DFT’s, for
N = 8.

X(k) = �
1

n = 0

x(n)Wnk k = 0, 1 (6.19)

or

X(0) = x(0)W0 + x(1)W0 = x(0) + x(1) (6.20)

X(1) = x(0)W0 + x(1)W1 = x(0) – x(1) (6.21)

since W1 = e–j2�/2 = –1. Equations (6.20) and (6.21) can be represented by the
flow graph in Figure 6.4, usually referred to as a butterfly. The final flow graph
of an eight-point FFT algorithm is shown in Figure 6.5. This algorithm is re-
ferred as decimation-in-frequency (DIF) because the output sequence X(k) is
decomposed (decimated) into smaller subsequences, and this process continues
through M stages or iterations, where N = 2M. The output X(k) is complex with
both real and imaginary components, and the FFT algorithm can accomodate
either complex or real input values.

The FFT is not an approximation of the DFT. It yields the same result as the
DFT with less computations required. This reduction becomes more and more
important with higher-order FFT.

There are other FFT structures that have been used to illustrate the FFT. An
alternative flow graph to the one shown in Figure 6.5 can be obtained with or-
dered output and scrambled input.

An eight-point FFT is illustrated through an exercise as well as through a
programming example. We will see that flow graphs for higher-order FFT (larg-
er N) can readily be obtained.

Exercise 6.1 Eight-Point FFT Using Decimation-in-Frequency

Let the input x(n) represent a rectangular waveform, or x(0) = x(1) = x(2) = x(3)
= 1, and x(4) = x(5) = x(6) = x(7) = 0. The eight-point FFT flow graph in Figure
6.5 can be used to find the output sequence X(k), k = 0, 1, . . . , 7. With N = 8,
four twiddle constants need to be calculated, or

170 Fast Fourier Transform

FIGURE 6.4 Two-point FFT butterfly.

W0 = 1

W1 = e–j2�/8 = cos(�/4) – jsin(�/4) = 0.707 – j0.707

W2 = e–j4�/8 = –j

W3 = e–j6�/8 = –0.707 – j0.707

The intermediate output sequence can be found after each stage.

1. At stage 1:

x(0) + x(4) = 1 � x�(0)

x(1) + x(5) = 1 � x�(1)

x(2) + x(6) = 1 � x�(2)

x(3) + x(7) = 1 � x�(3)

[x(0) – x(4)]W0 = 1 � x�(4)

[x(1) – x(5)]W1 = 0.707 – j0.707 � x�(5)

[x(2) – x(6)]W2 = –j � x�(6)

[x(3) – x(7)]W3 = –0.707 – j0.707 � x�(7)

where x�(0), x�(1), . . . , x�(7) represent the intermediate output sequence after
the first iteration that becomes the input to the second stage.

2. At stage 2:

6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 171

FIGURE 6.5 Eight-point FFT flow graph using decimation-in-frequency.

x�(0) + x�(2) = 2 � x��(0)

x�(1) + x�(3) = 2 � x��(1)

[x�(0) – x�(2)]W0 = 0 � x��(2)

[x�(1) – x�(3)]W2 = 0 � x��(3)

x�(4) + x�(6) = 1 – j � x��(4)

x�(5) + x�(7) = (0.707 – j0.707) + (–0.707 – j0.707) = –j1.41 � x��(5)

[x�(4) – x�(6)]W0 = 1 + j � x��(6)

[x�(5) – x�(7)]W2 = –j1.41 � x��(7)

The resulting intermediate, second-stage output sequence x��(0), x��(1), . . . ,
x��(7) becomes the input sequence to the third stage.

3. At stage 3:

X(0) = x��(0) + x��(1) = 4

X(4) = x��(0) – x��(1) = 0

X(2) = x��(2) + x��(3) = 0

X(6) = x��(2) – x��(3) = 0

X(1) = x��(4) + x��(5) = (1 – j) + (–j1.41) = 1 – j2.41

X(5) = x��(4) – x��(5) = 1 + j0.41

X(3) = x��(6) + x��(7) = (1 + j) + (–j1.41) = 1 – j0.41

X(7) = x��(6) – x��(7) = 1 + j2.41

We now use the notation of X’s to represent the final output sequence. The val-
ues X(0), X(1), . . . , X(7) form the scrambled output sequence. These results can
be verified with an FFT function available with the MATLAB software package
described in Appendix B. We will show soon how to reorder the output se-
quence and plot the output magnitude.

Exercise 6.2 Sixteen-Point FFT

Given x(0) = x(1) = . . . = x(7) = 1, and x(8) = x(9) = . . . = x(15) = 0, which rep-
resents a rectangular input sequence. The output sequence can be found using
the 16-point flow graph shown in Figure 6.6. The intermediate output results af-
ter each stage are found in a similar manner to the previous example. Eight
twiddle constants W0, W1, . . . , W7 need to be calculated for N = 16.

Verify the scrambled output sequence X’s as shown in Figure 6.6. Reorder
this output sequence and take its magnitude. Verify the plot in Figure 6.7, which

172 Fast Fourier Transform

173

F
IG

U
R

E
 6

.6
16

-p
oi

nt
 F

F
T

 f
lo

w
 g

ra
ph

 u
si

ng
 d

ec
im

at
io

n-
in

-f
re

qu
en

cy
.

represents a sinc function. The output X(8) represents the magnitude at the
Nyquist frequency. These results can be verified with an FFT function available
with MATLAB, described in Appendix B.

6.4 DECIMATION-IN-TIME FFT ALGORITHM WITH RADIX-2

Whereas the decimation-in-frequency (DIF) process decomposes an output se-
quence into smaller subsequences, the decimation-in-time (DIT) is another
process that decomposes the input sequence into smaller subsequences. Let
the input sequence be decomposed into an even sequence and an odd se-
quence, or

x(0), x(2), x(4), . . . , x(2n)

and

x(1), x(3), x(5), . . . , x(2n + 1)

We can apply (6.1) to these two sequences to obtain

X(k) = �
(N/2) – 1

n = 0

x(2n)W2nk + �
(N/2) – 1

n = 0

x(2n + 1)W (2n+1)k (6.22)

Using WN
2 = WN/2 in (6.22)

X(k) = �
(N/2) – 1

n = 0

x(2n)WN/2
nk + WN

k �
(N/2) – 1

n = 0

x(2n + 1)WN/2
nk (6.23)

174 Fast Fourier Transform

FIGURE 6.7 Output magnitude for 16-point FFT.

which represents two (N/2)-point DFT’s. Let

C(k) = �
(N/2) – 1

n = 0

x(2n)WN/2
nk 6.24)

D(k) = �
(N/2) – 1

n = 0

X(2n + 1)WN/2
nk (6.25)

Then X(k) in (6.23) can be written as

X(k) = C(k) + WN
k D(k) (6.26)

Equation (6.26) needs to be interpreted for k > (N/2) – 1. Using the symmetry
property (6.5) of the twiddle constant, Wk+N/2 = –Wk,

X(k + N/2) = C(k) – WkD(k) k = 0, 1, . . . , (N/2) – 1 (6.27)

For example, for N = 8, (6.26) and (6.27) become

X(k) = C(k) + WkD(k) k = 0, 1, 2, 3 (6.28)

X(k + 4) = C(k) – WkD(k) k = 0, 1, 2, 3 (6.29)

Figure 6.8 shows the decomposition of an eight-point DFT into two four-point
DFT’s with the decimation-in-time procedure. This decomposition or decima-
tion process is repeated so that each four-point DFT is further decomposed into

6.4 Decimation-in-Time FFT Algorithm with Radix-2 175

FIGURE 6.8 Decomposition of eight-point DFT into two four-point DFT’s using DIT.

two two-point DFT’s, as shown in Figure 6.9. Since the last decomposition is
(N/2) two-point DFTs, this is as far as this process goes.

Figure 6.10 shows the final flow graph for an eight-point FFT using a deci-
mation-in-time process. The input sequence is shown to be scrambled in Figure
6.10, in the same manner as the output sequence X(k) was scrambled during the
decimation-in-frequency process. With the input sequence x(n) scrambled, the
resulting output sequence X(k) becomes properly ordered. Identical results are
obtained with an FFT using either the decimation-in-frequency (DIF) or the
decimation-in-time (DIT) process.

An alternative DIT flow graph to the one shown in Figure 6.10, with ordered
input and scrambled output, also can be obtained.

The following exercise shows that the same results are obtained for an eight-
point FFT with the DIT process as in Exercise 6.1 with the DIF process.

Exercise 6.3 Eight-Point FFT Using Decimation-in-Time

Given the input sequence x(n) representing a rectangular waveform as in Exer-
cise 6.1, the output sequence X(k), using the DIT flow graph in Figure 6.10, is
the same as in Exercise 6.1. The twiddle constants are the same as in Exercise
6.1. Note that the twiddle constant W is multiplied with the second term only
(not with the first).

1. At stage 1:

x(0) + W0x(4) = 1 + 0 = 1 � x�(0)

x(0) – W0x(4) = 1 – 0 = 1 � x�(4)

176 Fast Fourier Transform

FIGURE 6.9 Decomposition of two four-point DFT’s into four two-point DFT’s using DIT.

x(2) + W0x(6) = 1 + 0 = 1 � x�(2)

x(2) – W0x(6) = 1 – 0 = 1 � x�(6)

x(1) + W0x(5) = 1 + 0 = 1 � x�(1)

x(1) – W0x(5) = 1 – 0 = 1 � x�(5)

x(3) + W0x(7) = 1 + 0 = 1 � x�(3)

x(3) – W0x(7) = 1 – 0 = 1 � x�(7)
where the sequence x�s represents the intermediate output after the first itera-
tion and becomes the input to the subsequent stage.

2. At stage 2:

x�(0) + W0x�(2) = 1 + 1 = 2 � x��(0)

x�(4) + W 2x�(6) = 1 + (–j) = 1 – j � x��(4)

x�(0) – W0x�(2) = 1 – 1 = 0 � x��(2)

x�(4) – W2x�(6) = 1 – (–j) = 1 + j � x��(6)

x�(1) + W0x�(3) = 1 + 1 = 2 � x��(1)

x�(5) + W2x�(7) = 1 + (–j)(1) = 1 – j � x��(5)

x�(1) – W0x�(3) = 1 – 1 = 0 � x��(3)

x�(5) – W2x�(7) = 1 – (–j)(1) = 1 + j � x��(7)

where the intermediate second-stage output sequence x��s becomes the input se-
quence to the final stage.

FIGURE 6.10 Eight-point FFT flow graph using decimation-in-time.

6.4 Decimation-in-Time FFT Algorithm with Radix-2 177

3. At stage 3:

X(0) = x��(0) + W0x��(1) = 4

X(1) = x��(4) + W1x��(5) = 1 – j2.414

X(2) = x��(2) + W2x��(3) = 0

X(3) = x��(6) + W3x��(7) = 1 – j0.414

X(4) = x��(0) – W0x��(1) = 0

X(5) = x��(4) – W1x��(5) = 1 + j0.414

X(6) = x��(2) – W2x��(3) = 0

X(7) = x��(6) – W3x��(7) = 1 + j2.414

which is the same output sequence as found in Example 6.1.

6.5 BIT REVERSAL FOR UNSCRAMBLING

A bit-reversal procedure allows a scrambled sequence to be reordered. To illus-
trate this bit-swapping process, let N = 8, represented by three bits. The first and
third bits are swapped. For example, (100)b is replaced by (001)b. As such,
(100)b specifying the address of X(4) is replaced by or swapped with (001)b
specifying the address of X(1). Similarly, (110)b is replaced/swapped with
(011)b, or the addresses of X(6) and X(3) are swapped. In this fashion, the out-
put sequence in Figure 6.5 with the DIF, or the input sequence in Figure 6.10
with the DIT, can be reordered.

This bit-reversal procedure can be applied for larger values of N. For exam-
ple, for N = 64, represented by six bits, the first and sixth bits, the second and
fifth bits, and the third and fourth bits are swapped.

Bit Reversal with Indirect Addressing

Swapping memory locations is not necessary if the bit-reversed addressing
mode available on the TMS320C3x is used. Let N = 8 to illustrate this indirect
addressing mode with reversed carry. Given a set of data x(0), x(1), x(2), . . . ,
x(7) that we wish to resequence or scramble, to obtain x(0), x(4), x(2), x(6), x(1),
x(5), x(3), x(7) as we would do in an FFT using the decimation-in-time (DIT)
flow graph in figure 6.10.

1. Set the index register IR0 to one-half the length of the FFT, or IR0 = N/2
= 4, assuming a set of real-input sequence. For a complex input sequence, IR0
is set to N to accomodate for the real and imaginary components.

178 Fast Fourier Transform

2. Let an auxiliary register such as AR1 contain a base address such as zero
or (0000)b for illustration purpose.

3. The instruction

NOP *AR1++(IR0)B

is an indirect mode of addressing instruction for bit reversal, introduced in
Chapter 2. On execution, the address 0 is selected, then AR1 is incremented to
point at memory address 4, which is the base address of zero offset by IR0.

4. On the second execution of this instruction, memory address 4 is select-
ed, then AR1 is incremented to point at the address 2. We arrive at this address
by adding the current address to N/2, or (0100)b + (0100)b = (0010)b
with reversed carry. That is, the carry is to the right, or in the reversed direction,
so that the binary addition of 1 and 1 is 0, with a carry of 1 to the right. This is
caused by the B in the instruction.

5. On the third execution, memory address 2 is selected, then AR1 is incre-
mented to point to memory address 6, and after the fourth execution, AR1
points to memory address 1, because (0110)b + (0100)b = (0001)b
with reversed carry, and so on.

We have used this indirect mode of addressing with reversed carry on the in-
put sequence. We can use a similar procedure on the output sequence, which
can be performed by loading the auxiliary register AR1 with the last or highest
address, then postdecrementing, or

NOP *AR1––(IR0)B

This procedure can be used for higher-order FFT length. For a complex FFT,
the real components of the input sequence can be arranged in even-numbered
addresses and the imaginary components in odd-numbered addresses. The in-
dex (offset) register IR0 = N (instead of N/2). The programming FFT exam-
ples included later incorporate the bit reversal procedure for swapping ad-
dresses.

6.6 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX-4

A radix-4 (base 4) algorithm can increase the execution speed of the FFT. FFT
programs on higher radices and split radices have been developed. We will use a
decimation-in-frequency (DIF) decomposition process to introduce the devel-
opment of the radix-4 FFT. The last or lowest decomposition of a radix-4 algo-
rithm consists of four inputs and four outputs. The order or length of the FFT is
4M, where M is the number of stages. For a 16-point FFT, there are only two
stages or iterations as compared with four stages with the radix-2 algorithm.

6.6 Development of the FFT Algorithm with Radix-4 179

The DFT in (6.1) is decomposed into four summations, instead of two, as fol-
lows:

X(k) = �
(N/4) – 1

n = 0

x(n)Wnk + �
(N/2) – 1

n = N/4

x(n)Wnk + �
(3N/4) – 1

n = N/2

x(n)Wnk + �
N – 1

n = 3N/4

x(n)Wnk

(6.30)

Let n = n + N/4, n = n + N/2, n = n + 3N/4 in the second, third, and fourth sum-
mations, respectively. Then (6.30) can be written as

X(k) = �
(N/4) – 1

n = 0

x(n)Wnk + WkN/4 �
(N/4) – 1

n = 0

x(n + N/4)Wnk

+ WkN/2 �
(N/4) – 1

n = 0

x(n + N/2)Wnk + W3kN/4 �
(N/4) – 1

n = 0

x(n + 3N/4)Wnk (6.31)

which represents four (N/4)-point DFT’s. Using

WkN/4 = (e–j2�/N)kN/4 = e–jk�/2 = (–j)k

WkN/2 = e–jk� = (–1)k

W3kN/4 = (j)k

(6.31) becomes

X(k) = �
(N/4) – 1

n = 0

[x(n) + (–j)kx(n + N/4) + (–1)kx(n + N/2) + (j)kx(n + 3N/4)]Wnk

(6.32)

Let WN
4 = WN /4. Equation (6.32) can be written as,

X(4k) = �
(N/4) – 1

n = 0

[x(n) + x(n + N/4) + x(n + N/2) + x(n + 3N/4)]W nk
N/4 (6.33)

X(4k + 1) = �
(N/4) – 1

n = 0

[x(n) – jx(n + N/4) – x(n + N/2) + jx(n + 3N/4)]WN
nW nk

N/4 (6.34)

X(4k + 2) = �
(N/4) – 1

n = 0

[x(n) – x(n + N/4) + x(n + N/2) – x(n + 3N/4)]WN
2nW nk

N/4 (6.35)

X(4k + 3) = �
(N/4) – 1

n = 0

[x(n) + jx(n + N/4) – x(n + N/2) – jx(n + 3N/4)]WN
3nW nk

N/4 (6.36)

for k = 0, 1, . . . , (N/4) – 1. Equations (6.33) through (6.36) represent a decom-
position process yielding four four-point DFT’s. The flow graph for a 16-point

180 Fast Fourier Transform

radix-4 decimation-in-frequency FFT is shown in Figure 6.11. Note the four-
point butterfly in the flow graph. The ±j and –1 are not shown in Figure 6.11.
The results shown in the flow graph are for the following exercise.

Exercise 6.4 16-Point FFT With Radix-4

Given the input sequence x(n) as in Exercise 6.2, representing a rectangular se-
quence x(0) = x(1) = . . . = x(7) = 1, and x(8) = x(9) = . . . = x(15) = 0. We will
find the output sequence for a 16-point FFT with radix-4 using the flow graph
in Figure 6.11. The twiddle constants are shown in Table 6.1.

The intermediate output sequence after stage 1 is shown in Figure 6.11. For
example, after stage 1:

[x(0) + x(4) + x(8) + x(12)]W0 = 1 + 1 + 0 + 0 = 2 � x�(0)

[x(1) + x(5) + x(9) + x(13)]W0 = 1 + 1 + 0 + 0 = 2 � x�(1)
· ·
· ·
· ·

[x(0) – jx(4) – x(8) + jx(12)]W0 = 1 – j – 0 – 0 = 1 – j � x�(4)
· ·
· ·
· ·

[x(3) – x(7) + x(11) – x(15)]W6 = 0 � x�(11)

[x(0) + jx(4) – x(8) – jx(12)]W0 = 1 + j – 0 – 0 = 1 + j � x�(12)
· ·
· ·
· ·
[x(3) + jx(7) – x(11) – jx(15)]W9 = [1 + j – 0 – 0](–W1)

= –1.307 – j0.541 � x�(15)

For example, after stage 2:

6.6 Development of the FFT Algorithm with Radix-4 181

TABLE 6.1 Twiddle constants for 16-point FFT with
radix-4

m Wm
N Wm

N/4

0 1 1
1 0.9238 – j0.3826 –j
2 0.707 – j0.707 –1
3 0.3826 – j0.9238 +j
4 0 –j 1
5 –0.3826 – j0.9238 –j
6 –0.707 – j0.707 –1
7 –0.9238 – j0.3826 +j

X(3) = (1 + j) + (1.307 – j0.541) + (–j1.414) + (–1.307 – j0.541) = 1 – j1.496

and

X(15) = (1 + j)(1) + (1.307 – j0.541)(–j) + (–j1.414)(1)

+ (–1.307 – j0.541)(–j) = 1 + j5.028

The output sequence X(0), X(1), . . . , X(15) is identical to the output sequence
obtained with the 16-point FFT with the radix-2 in Figure 6.6. These results also
can be verified with MATLAB, described in Appendix B.

The output sequence is scrambled and needs to be resequenced or reordered.
This can be done using a digit reversal procedure, in a similar fashion as a bit
reversal in a radix-2 algorithm. The radix-4 (base 4) uses the digits 0, 1, 2, 3.
For example, the addresses of X(8) and X(2) need to be swapped because (8)10

in base 10 or decimal is equal to (20)4 in base 4. Digits 0 and 1 are reversed to
yield (02)4 in base 4, which is also (02)10 in decimal.

Although mixed or higher radices can provide further reduction in computa-
tion, programming considerations become more complex. As a result, the radix-
2 is still the most widely used, followed by the radix-4.

182 Fast Fourier Transform

FIGURE 6.11 16-point radix-4 FFT flow graph using decimation-in-frequency.

6.7 INVERSE FAST FOURIER TRANSFORM

The inverse discrete Fourier transform (IDFT) converts a frequency-domain se-
quence X(k) into an equivalent sequence x(n) in the time domain. It is defined as

x(n) = �
N–1

k=0

X(k)W–nk n = 0, 1, . . . , N – 1 (6.37)

Comparing (6.37) with the DFT equation definition in (6.1), we see that the
FFT algorithm (forward) described previously can be used to find the IFFT (re-
verse), with the two following changes:

1. add a scaling factor of 1/N

2. replace Wnk by its complex conjugate W–nk

With the changes, the same FFT flow graphs can be used for the inverse fast
Fourier transform (IFFT).

The support tools included with the DSK package contain FFT program-
ming applications. We will also develop programming examples to illustrate the
FFT.

A variant of the FFT, such as the fast Hartley transform (FHT) can be ob-
tained readily from the FFT. Conversely, the FFT can be obtained from the FHT
[10,11]. A development of the fast Hartley transform (FHT) with flow graphs
and exercises for 8 and 16 points FHT’s can be found in [12].

Exercise 6.5 Eight-Point IFFT

Let the output sequence X(0) = 4, X(1) = 1 –j2.41, . . . , X(7) = 1 + j2.41 ob-
tained in Exercise 6.1 become the input to an 8-point IFFT flow graph. Make
the two changes (scaling and complex conjugate of W) to obtain an 8-point
IFFT (reverse) flow graph from an 8-point FFT (forward) flow graph. The re-
sulting flow graph becomes an IFFT flow graph similar to Figure 6.5. Verify
that the resulting output sequence is x(0) = 1, x(1) = 1, . . . , x(7) = 0, which rep-
resents the rectangular input sequence in Exercise 6.1.

6.8 PROGRAMMING EXAMPLES USING C AND TMS320C3x CODE

We will illustrate the FFT with the following three programming examples us-
ing C and TMS320C3x code:

1. A main program that calls an FFT function, both in C code. The resulting
output sequence is verified using a simulation procedure

1
�
N

6.8 Programming Examples Using C and TMS320C3x Code 183

2. A main program in C that calls a real-valued input FFT function in
TMS320C3x code, using a simulation procedure

3. A main program in C that calls the same real-valued input FFT function,
for a real-time implementation.

Example 6.1 Eight-Point Complex FFT Using C Code

With this programming example, the results are stored in memory, and can be
verified. It illustrates a complex FFT with N = 8, using a decimation-in-fre-
quency procedure with radix-2. Figure 6.12 shows the main program FFT8C.C
in C code that calls a generic FFT function FFT.C, also in C code. The input
sequence, specified in the main program, represents a rectangular sequence,
x(0) = . . . = x(3) = 1000 + j0 and x(4)= . . . = x(7) = 0 + j0. The main program
passes to the FFT function the address of the input data and the FFT length. The
header file COMPLEX.H contains the complex structure definition.

The generic FFT function FFT.C is listed in Figure 6.13. The header file
TWIDDLE.H included in the FFT function contains the twiddle constants W
that allows for an FFT up to 512 points. Different values for W, depending on N,
are selected with the variable step in the FFT function. The program TWID-
GEN.C (on disk) generates the twiddle constants for a complex FFT. It is to be
compiled with Turbo C++ or Borland C++. The resulting file TWIDDLE.H con-

184 Fast Fourier Transform

/*FFT8C.C - 8-POINT COMPLEX FFT PROGRAM. CALLS FFT.C */

#include “complex.h” /*complex structure definition */

extern void FFT(); /*FFT function */

volatile int *out_addr=(volatile int *)0x809802; /*out addr*/

main()

{

COMPLEX y[8]={1000,0,1000,0,1000,0,1000,0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}; /*rectangular input*/

int i, n = 8;

FFT(y,n); /*calls generic FFT function*/

for (i = 0; i<n; i++)

{

*out_addr++ = (y[i]).real; /*real output component */

*out_addr++ = (y[i]).imag; /*imaginary output component*/

}

}

FIGURE 6.12 Eight-point FFT program in C that calls a generic FFT function (FFT8C.C).

6.8 Programming Examples Using C and TMS320C3x Code 185

/*FFT.C - FFT RADIX-2 USING DIF. FOR UP TO 512 POINTS */

#include “complex.h” /*complex structure definition */

#include “twiddle.h” /*header file with twiddle constants*/

void FFT(COMPLEX *Y, int N) /*input sample array, # of points */

{

COMPLEX temp1,temp2; /*temporary storage variables */

int i,j,k; /*loop counter variables */

int upper_leg, lower_leg; /*index of upper/lower butterfly leg */

int leg_diff; /*difference between upper/lower leg */

int num_stages=0; /*number of FFT stages, or iterations */

int index, step; /*index and step between twiddle factor*/

i=1; /* log(base 2) of # of points = # of stages */

do

{

num_stages+=1;

i=i*2;

} while (i!=N);

leg_diff=N/2; /*starting difference between upper & lower legs*/

step=512/N; /*step between values in twiddle.h */

for (i=0;i<num_stages;i++) /*for N-point FFT */

{

index=0;

for (j=0;j<leg_diff;j++)

{

for (upper_leg=j;upper_leg<N;upper_leg+=(2*leg_diff))

{

lower_leg=upper_leg+leg_diff;

temp1.real=(Y[upper_leg]).real + (Y[lower_leg]).real;

temp1.imag=(Y[upper_leg]).imag + (Y[lower_leg]).imag;

temp2.real=(Y[upper_leg]).real - (Y[lower_leg]).real;

temp2.imag=(Y[upper_leg]).imag - (Y[lower_leg]).imag;

(Y[lower_leg]).real=temp2.real*(w[index]).real-temp2.imag*(w[index]).imag;

(Y[lower_leg]).imag=temp2.real*(w[index]).imag+temp2.imag*(w[index]).real;

(Y[upper_leg]).real=temp1.real;

(Y[upper_leg]).imag=temp1.imag;

}

index+=step;

FIGURE 6.13 Generic FFT function in C called from a C program (FFT.C).

(continued on next page)

tains 256 sets of complex constant values for W, allowing for an FFT of up to N
= 512.

From the FFT function, consider the following, with N = 8 (see also the 8-
point FFT flow graph in Figure 6.5).

1. The loop counter variable i = 0 represents the first stage or iteration. The
value leg_diff = 4 specifies the difference between the upper and the lower
butterfly legs. For example, at stage 1 (first iteration), the operations y(0) + y(4)
and y(0) – y(4) are performed, where y(0) and y(4) are designated by
upper_leg and lower_leg, respectively. This is an in-place FFT, in which
case the memory locations that store the input data samples are again used to
store the intermediate and, subsequently, the final output data.

186 Fast Fourier Transform

}

leg_diff=leg_diff/2;

step*=2;

}

j=0;

for (i=1;i<(N-1);i++) /*bit reversal for resequencing data*/

{

k=N/2;

while (k<=j)

{

j=j-k;

k=k/2;

}

j=j+k;

if (i<j)

{

temp1.real=(Y[j]).real;

temp1.imag=(Y[j]).imag;

(Y[j]).real=(Y[i]).real;

(Y[j]).imag=(Y[i]).imag;

(Y[i]).real=temp1.real;

(Y[i]).imag=temp1.imag;

}

}

return;

}

FIGURE 6-13 (continued)

For example, temp1 = y(0) + y(4) � y(0) and temp2 = y(0) – y(4) � y(4).
The calculation of y(4) after the first stage involves complex operations with the
complex twiddle constant W, of the form (A + jB)(C + jD) = (AC – BD) +j(BC +
AD), where j = �–�1�, and the constant W can be represented by C + jD, with a
real and an imaginary component. These calculations are performed with the
counter variable j = 0. When j = 1, upper_leg and lower_leg specify y(1)
and y(5), respectively. Then, temp1 = y(1) + y(5) � y(1) and temp2 = y(1) –
y(5). When j = 2, y(2) + y(6) � y(2). With j = 3, temp1 = y(3) + y(7) � y(3).

The calculations of y(5), y(6), and y(7) after the first stage contain complex
operations with the constant W. The variable index in W[index] represents
the W’s.

2. The loop counter i = 1 represents the second stage, and leg_diff = 2.
With j = 0, upper_leg and lower_leg specify y(0) and y(2), respectively.
The intermediate output results y(0) and y(2) are calculated in a similar manner
as in step 1. Then, upper_leg and lower_leg specify y(4) and y(6), re-
spectively. With j = 1 they specify y(1) and y(3), then y(5) and y(7). The inter-
mediate results after stage 2 are then obtained.

3. The loop counter variable i = 2 represents the third and final stage, and
leg_diff = 1. The variable upper_leg and lower_leg specify y(0) and
y(1), respectively. Then, they specify y(2) and y(3), then y(4) and y(5), and final-
ly y(6) and y(7). For each set of values in upper_leg and lower_leg, simi-
lar calculations are performed to obtain the final output from stage 3.

4. The last section in the FFT function performs the bit-reversal procedure
and produces a proper sequencing of the output data.

If you have the floating-point tools, compile each program, then link them
with the linker command file FFT8C.CMD (on the accompanying disk) to cre-
ate the executable file FFT8C.OUT (also on the disk). Download and run
FFT8C.OUT on the DSK. The output sequence of 16 values, representing real
and imaginary components, start at the memory address 809802. Display
these results in decimal with the debugger command

memd 0x809802

Verify that this is the same output sequence, scaled by 1000 as that obtained
in Exercise 6.1 for the 8-point FFT.

Example 6.2 Eight-Point FFT with Real-Valued Input, Using Mixed
C and TMS320C3x Code

This example illustrates a real-valued input FFT, as opposed to the more gener-
al complex FFT. The input must be real. The resulting output is still complex. In
this case, computational requirements can be reduced. The real-valued input
FFT can be executed in about half the time as the more general complex FFT.

6.8 Programming Examples Using C and TMS320C3x Code 187

Figure 6.14 shows a listing of the C program FFT8MC.C that calls a real-val-
ued FFT function FFT_RL.ASM in TMS320C3x code (on the accompanying
disk). This example tests the FFT function using an eight-point FFT. In the next
example, we will illustrate the same FFT function with a higher order for a real-
time implementation.

The input sequence is real and represents a rectangular waveform with x(0) =
x(1) = x(2) = x(3) = 1000 and x(4) = x(5) = x(6) = x(7) = 0.

188 Fast Fourier Transform

/*FFT8MC.C - 8-POINT REAL-VALUED FFT. CALLS FFT_RL.ASM IN C3X CODE*/

#include “math.h”

#define N 8 /*FFT length */

#define M 3 /*# of stages */

float data[N] = {1,1,1,1,0,0,0,0}; /*real-valued input samples*/

float real1, img1;

extern void fft_rl(int, int, float *); /*generic FFT function*/

volatile int *IO_OUT = (volatile int *) 0x809802; /*starting out addr*/

main()

{

int loop;

fft_rl(N, M, (float *)data);

*IO_OUT++ = (int)(data[0]*1000); /* XR(0) */

for (loop = 1; loop < N/2; loop++)

{

real1 = data[loop];

img1 = data[N-loop];

*IO_OUT++ = (int)(real1*1000); /*XR(1)-XR(3) */

*IO_OUT++ = (int)(img1*1000); /*XI(1)-XI(3) */

}

*IO_OUT++ = (int)(data[N/2]*1000); /* XR(4) */

for (loop = N/2+1; loop < N; loop++)

{

real1 = data[N-loop];

img1 = data[loop];

*IO_OUT++ = (int)(real1*1000); /*XR(5)-XR(7) */

IO_OUT++ = (int)(img1(-1000)); /*XI(5)-XI(7) */

}

}

FIGURE 6.14 Eight-point FFT program in C that calls a generic real-valued input FFT
function (FFT8MC.C).

Figure 6.15 shows a listing of the twiddle constants TWID8.ASM for an 8-
point real-valued input FFT. Only sine values are shown. When a cosine value is
needed, the FFT_RL.ASM function steps through the sine values in
TWID8.ASM to obtain the equivalent cosine value. Figure 6.16 shows a C pro-
gram SINEGEN.C that generated the twiddle constants in Figure 6.15, defin-
ing N to be 8 and opening/creating an output file twid8.asm to contain the
twiddle constants.

The function FFT_RL.ASM is listed in [9] and is based on the Fortran ver-
sion in [13]. The bit reversal, performed by the FFT function FFT_RL.ASM, is
done on the input sequence. To ensure that the data is properly aligned, a few in-
structions have been added within the bit-reversal routine in the function
FFT_RL.ASM. The changes were made based on a design tip in [14]. Other-
wise, the circular buffer used with the bit-reversal procedure would need to be
aligned within the main C program [15]. See also reference [16] for an updated
version of the real-valued input FFT.

With a real input sequence x(n), the output sequence X(k) = XR(k) + jXI(k) is
such that:

XR(k) = XR(N – k) k = 1, 2, . . . , N/2 – 1

XI(k) = –XI(N – k) k = 1, 2, . . . , N/2 – 1

XI(0) = XI(N/2) = 0 (6.38)

These conditions are met in Example 6.1, because the imaginary components of
the input sequence are zero. Based on the FFT function FFT_RL.ASM, the
memory arrangement of the output sequence follows [9]:

XR(0)

XR(1)
·
·
·
XR(N/2) = XR(4)

6.8 Programming Examples Using C and TMS320C3x Code 189

;TWID8.ASM - TWIDDLE CONSTANTS FOR REAL-VALUED FFT

.global _sine

.data

_sine .float 0.000000

.float 0.707107

.float 1.000000

.float 0.707107

FIGURE 6.15 Twiddle constants for eight-point real-valued input FFT (TWID8.ASM).

XI(N/2 – 1) = XR(3)

XI(N/2 – 2) = XR(2)
·
·
·
XI(1) (6.39)

Using (6.38), the output sequence in (6.39) is shown in memory in the follow-
ing order:

XR(0), XR(1), XI(1), XR(2), XI(2), XR(3), XI(3), XR(4),
XR(5), XI(5), XR(6), XI(6), XR(7), XI(7)

Note that XI(0) = XI(4) = 0 from (6.38).
Download and run the executable file FFT8MC.OUT into the DSK. The out-

put sequence consists of 14 values (with XI(0) = XI(4) = 0) in memory locations

190 Fast Fourier Transform

FIGURE 6.16. Twiddle constant generator program for real-valued input FFT
(SINEGEN.C).

/*SINEGEN.C - GENERATES SINE VALUES FOR REAL-VALUED INPUT FFT*/

#include <math.h>

#include <stdio.h>

#define N 8

#define pi 3.141592654

main()

{

FILE *stream;

int n;

float result;

stream = fopen(“twid8.asm”, “w+”);

fprintf(stream, “\n%s”, “ .global _sine”);

fprintf(stream, “\n%s”, “ .data”);

fprintf(stream, “\n%s%7f”, “_sine .float “, 0.0000000);

for (n = 1; n < N/2; n++)

{

result = sin(n*2*pi/N);

fprintf(stream, “\n%s%7f”, “ .float “, result);

}

fclose(stream);

}

809802–80980f. Display these values in decimal with the memd debugger
command, and verify the same results (scaled by 1000) as in Exercise 6.1.

Example 6.3 Real-Time 128-point FFT Using Mixed Code

This example is a real-time implementation version of the previous example,
making use of the on-board AIC. Figure 6.17 shows a listing of the main pro-
gram FFT128C.C that calls the same real-valued input FFT function
FFT_RL.ASM as in the previous example. It performs a 128-point FFT on a
real input.

The interrupt rate is set for 10 kHz with the AIC data configuration. A
scheme with two buffers allows for a pointer to be switched from one buffer to
another, and is more efficient than switching the data from one buffer to anoth-
er buffer.

To generate the twiddle constants for a 128-point real-valued input FFT,
make the following two changes in the program SINEGEN.C listed in Figure
6.16: change N to 128, and choose an appropriate filename such as
twid128.asm to contain the resulting twiddle constants. A total of N/2 points
(one-half of a sine sequence) or twiddle factors need to be generated for an N-
point real-valued input FFT. These twiddle constants are in a format to optimize
the execution speed (at a slight cost of memory size). Compile SINEGEN.C
(with Turbo C++, for example) and execute it to obtain the 64 twiddle constants
stored in the file twid128.asm. This file needs to be assembled before link-
ing to create the executable COFF file FFT128C.OUT (on the accompanying
disk). The linker command file is similar to the one in the previous example.

Download and run FFT128C.OUT on the DSK. Input to the DSK a 3-kHz
sinusoidal signal. The resulting output is displayed in Figure 6.18, obtained
from an HP signal analyzer, plotted in the time domain. A similar plot can be
obtained from an oscilloscope. Figure 6.18 shows a spike or delta function at
the frequency of the input sinusoid. A second delta function represents the fold-
ed frequency.

The distance between the two negative spikes corresponds to the sampling
frequency of 10 kHz. The negative spike is produced by the main program with
the last statement:

IO_buffer[0] = –2048

This negative spike is used as a reference or range, and is repeated after every
frame. The sampling period T = 1/Fs = 0.1 ms is the distance between each out-
put sample point. Since there are 128 points (N = 128), the distance between the
start of each frame, which is the distance between the negative spikes, is 128 ×
0.1 ms = 12.8 ms, as can be verified in Figure 6.18. Note that the middle-point
between the two spikes corresponds to 5 kHz.

6.8 Programming Examples Using C and TMS320C3x Code 191

/*FFT128C.C - REAL-VALUED FFT WITH 128 POINTS. CALLS FFT_RL.ASM */

#include “math.h” /*standard library func */

#include “aiccomc.c” /*AIC comm routines */

#define N 128 /*size of FFT */

#define M 7 /*number of stages */

volatile int index = 0; /*input_output index */

float *IO_buffer, *data, *temp; /*—> array buffers */

int AICSEC[4] = {0x162C,0x1,0x3872,0x67}; /*AIC config data */

extern void fft_rl(int, int, float *); /*fft function protype */

void c_int05() /*interrupt handler func */

{

PBASE[0x48] = ((int)(IO_buffer[index])) << 2; /*output data*/

IO_buffer[index] = (float)(PBASE[0x4C] << 16 >> 18); /*input data */

if (++index >= N) index = 0; /*increment index, reset = N*/

}

main()

{

int loop; /* declare variable */

float real, img; /* declare variables */

AICSET_I(); /*config AIC for interrupt */

IO_buffer = (float *) calloc(N, sizeof(float)); /*input_out buffer */

data = (float *) calloc(N, sizeof(float)); /* fft data buffer */

while (1) /* create endless loop */

{

fft_rl(N, M, (float *)data); /*call FFT function */

data[0] = sqrt(data[0]*data[0])/N; /*magnitude of X(0) */

for (loop = 1; loop < N/2; loop++) /*calculate X(1)..X(N/2-1) */

{

real = data[loop]; /*real part */

img = data[N-loop]; /*imaginary part */

data[loop] = sqrt(real*real+img*img)/N; /*find magnitude */

}

data[N/2] = sqrt(data[N/2]*data[N/2])/N; /*magnitude of X(N/2) */

for (loop = N/2+1; loop < N; loop++) /*X(N/2+1).. X(N-1) */

data[loop] = data[N-loop]; /*use symmetry */

while (index); /*wait till IO_buffer empty */

temp = data; /*temp => data buffer */

data = IO_buffer; /*IO_buffer—>data buffer */

IO_buffer = temp; /*data buffer->new IO_buffer*/

IO_buffer[0] = -2048; /*sync pulse,negative spike */

}

}

FIGURE 6.17 128-point FFT main program that calls real-valued input FFT function
(FFT128C.C).

6.9 EXPERIMENT 6: FFT IMPLEMENTATION

The following require the TMS320 floating-point assembly language tools that
include a C compiler, an assembler, and a linker. Furthermore, the C program
SINEGEN.C that generates twiddle constants needs to be compiled using Tur-
bo C++ or Borland C++.

1. Implement a 16-point complex FFT. Modify the main C program
FFT8C.C in Example 6.1 using 16 sets of input samples with COMPLEX
y[16] and n = 16, in the program. No changes are required in the generic FFT
function FFT.C or in the header file TWIDDLE.H that contains the twiddle
constants. With a rectangular input sequence as in Example 6.2, verify that the
resulting output sequence is the same as in Example 6.2.

2. Implement a 16-point real-valued input FFT with a main program similar
to the program FFT8MC.C in Example 6.2 that calls the generic FFT assembly
function FFT_RL.ASM. No changes are necessary in the FFT function. Use
Example 6.2 or MATLAB, described in Appendix B, to verify your results.

3. Implement a 64-point real-time version of Example 6.3. Use the same
scheme as in Example 6.3 to test your results.

6.9 Experiment 6: FFT Implementation 193

FIGURE 6.18 Plot of 128-point real-valued input FFT.

REFERENCES

1. J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Math. of Computation, 19, 297–301 (1965).

2. J. W. Cooley, “How the FFT Gained Acceptance,” IEEE Signal Processing Magazine,
pp.10–13, Jan. 1992.

3. J. W. Cooley, “The Structure of FFT and Convolution Algorithms, from a Tutorial,” in
IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, April
1990.

4. C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms: Theory and Imple-
mentation, Wiley, New York, 1988.

5. G. D. Bergland, “A guided tour of the fast Fourier transform,” IEEE Spectrum, 6, 41–51
(1969).

6. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.

7. S. Winograd, “On Computing the Discrete Fourier Transform,” Math. of Computation,
32, 175–199 (1978).

8. H. F. Silverman, “An Introduction to Programming the Winograd Fourier Transform Al-
gorithm (WFTA),” IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-25,
152–165, April (1977).

9. P. E. Papamichalis ed., Digital Signal Processing Applications with the TMS320 Fami-
ly—Theory, Algorithms, and Implementations, Vol.3, Texas Instruments, Inc., Dallas, TX,
1990.

10. R. N. Bracewell, “Assessing the Hartley Transform,” IEEE Trans. on Acoustics, Speech,
and Signal Processing, ASSP-38, 2174–2176 (1990).

11. R. N. Bracewell, The Hartley Transform, Oxford University Press, New York, 1986.

12. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

13. H. V. Sorensen, D. L. Jones, M. T. Heidman, and C. S. Burrus, “Real-Valued Fast Fourier
Transform Algorithms,” IEEE Trans. on Acoustics, Speech, and Signal Processing,
ASSP-35, 849–863 (1987).

14. Details on Signal Processing, Texas Instruments, Inc., Dallas, TX, Fall 1990.

15. Details on Signal Processing, Texas Instruments, Inc., Dallas, TX, Winter 1992.

16. TMS320C3x General-Purpose Applications User’s Guide, Texas Instruments, Inc., Dal-
las, TX, 1998.

17. P. M. Embree and B. Kimble, C Language Algorithms for Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1990.

18. S. Kay and R. Sudhaker, “A Zero Crossing Spectrum Analyzer,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, ASSP-34, 96–104 February (1986).

19. P. Kraniauskas, “A plain Man’s Guide to the FFT,” IEEE Signal Processing Magazine,
April 1994.

20. J. R. Deller, Jr., “Tom, Dick, and Mary Discover the DFT,” IEEE Signal Processing Mag-
azine, April 1994.

194 Fast Fourier Transform

� Adaptive structures

� The least mean square (LMS) algorithm

� Programming examples using C and TMS320C3x code

Adaptive filters are best used in cases where signal conditions or system para-
meters are slowly changing and the filter is to be adjusted to compensate for this
change. The least mean square (LMS) criterion is a search algorithm that can be
used to provide the strategy for adjusting the filter coefficients. Programming
examples are included to give a basic intuitive understanding of adaptive filters.

7.1 INTRODUCTION

In conventional FIR and IIR digital filters, it is assumed that the process para-
meters to determine the filter characteristics are known. They may vary with
time, but the nature of the variation is assumed to be known. In many practical
problems, there may be a large uncertainty in some parameters because of inad-
equate prior test data about the process. Some parameters might be expected to
change with time, but the exact nature of the change is not predictable. In such
cases, it is highly desirable to design the filter to be self-learning, so that it can
adapt itself to the situation at hand.

The coefficients of an adaptive filter are adjusted to compensate for changes
in input signal, output signal, or system parameters. Instead of being rigid, an
adaptive system can learn the signal characteristics and track slow changes. An
adaptive filter can be very useful when there is uncertainty about the character-
istics of a signal or when these characteristics change.

Figure 7.1 shows a basic adaptive filter structure in which the adaptive fil-
ter’s output y is compared with a desired signal d to yield an error signal e,
which is fed back to the adaptive filter. The coefficients of the adaptive filter are

195

7
Adaptive Filters

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

adjusted, or optimized, using a least mean square (LMS) algorithm based on the
error signal.

We will discuss here only the LMS searching algorithm with a linear com-
biner (FIR filter), although there are several strategies for performing adaptive
filtering.

The output of the adaptive filter in Figure 7.1 is

y(n) = �
N – 1

k = 0

wk(n)x(n – k) (7.1)

where wk(n) represent N weights or coefficients for a specific time n. The con-
volution equation (7.1) was implemented in Chapter 4 in conjunction with FIR
filtering. It is common practice to use the terminology of weights w for the co-
efficients associated with topics in adaptive filtering and neural networks.

A performance measure is needed to determine how good the filter is. This
measure is based on the error signal,

e(n) = d(n) – y(n) (7.2)

which is the difference between the desired signal d(n) and the adaptive filter’s
output y(n). The weights or coefficients wk(n) are adjusted such that a mean
squared error function is minimized. This mean squared error function is
E[e2(n)], where E represents the expected value. Since there are k weights or co-
efficients, a gradient of the mean squared error function is required. An esti-
mate can be found instead using the gradient of e2(n), yielding

wk(n + 1) = wk(n) + 2�e(n)x(n – k) k = 0, 1, . . . , N – 1 (7.3)

which represents the LMS algorithm [1–3]. Equation (7.3) provides a simple
but powerful and efficient means of updating the weights, or coefficients, with-
out the need for averaging or differentiating, and will be used for implementing
adaptive filters.

196 Adaptive Filters

FIGURE 7.1 Basic adaptive filter structure.

The input to the adaptive filter is x(n), and the rate of convergence and accu-
racy of the adaptation process (adaptive step size) is �.

For each specific time n, each coefficient, or weight, wk(n) is updated or re-
placed by a new coefficient, based on (7.3), unless the error signal e(n) is zero.
After the filter’s output y(n), the error signal e(n) and each of the coefficients
wk(n) are updated for a specific time n, a new sample is acquired (from an
ADC) and the adaptation process is repeated for a different time. Note that from
(7.3), the weights are not updated when e(n) becomes zero.

The linear adaptive combiner is one of the most useful adaptive filter struc-
tures and is an adjustable FIR filter. Whereas the coefficients of the frequency-
selective FIR filter discussed in Chapter 4 are fixed, the coefficients, or
weights, of the adaptive FIR filter can be adjusted based on a changing environ-
ment such as an input signal. Adaptive IIR filters (not discussed here) also can
be used. A major problem with an adaptive IIR filter is that its poles may be up-
dated during the adaptation process to values outside the unit circle, making the
filter unstable.

The programming examples developed later will make use of equations
(7.1)–(7.3). In (7.3), we will simply use the variable � in lieu of 2�.

7.2 ADAPTIVE STRUCTURES

A number of adaptive structures have been used for different applications in
adaptive filtering.

1. For noise cancellation. Figure 7.2 shows the adaptive structure in Figure
7.1 modified for a noise cancellation application. The desired signal d is cor-
rupted by uncorrelated additive noise n. The input to the adaptive filter is a
noise n� that is correlated with the noise n. The noise n� could come from the
same source as n but modified by the environment. The adaptive filter’s output y
is adapted to the noise n. When this happens, the error signal approaches the de-
sired signal d. The overall output is this error signal and not the adaptive filter’s
output y. This structure will be further illustrated with programming examples
using both C and TMS320C3x code.

7.2 Adaptive Structures 197

FIGURE 7.2 Adaptive filter structure for noise cancellation.

2. For system identification. Figure 7.3 shows an adaptive filter structure
that can be used for system identification or modeling. The same input is to an
unknown system in parallel with an adaptive filter. The error signal e is the dif-
ference between the response of the unknown system d and the response of the
adaptive filter y. This error signal is fed back to the adaptive filter and is used to
update the adaptive filter’s coefficients, until the overall output y = d. When this
happens, the adaptation process is finished, and e approaches zero. In this
scheme, the adaptive filter models the unkown system.

3. Additional structures have been implemented such as:

a) Notch with two weights, which can be used to notch or cancel/reduce a si-
nusoidal noise signal. This structure has only two weights or coefficients,
and is illustrated later with a programming example.

b) Adaptive predictor, which can provide an estimate of an input. This struc-
ture is illustrated later with three programming examples.

c) Adaptive channel equalization, used in a modem to reduce channel distor-
tion resulting from the high speed of data transmission over telephone
channels.

The LMS is well suited for a number of applications, including adaptive
echo and noise cancellation, equalization, and prediction.

Other variants of the LMS algorithm have been employed, such as the sign-
error LMS, the sign-data LMS, and the sign-sign LMS.

1. For the sign-error LMS algorithm, (7.3) becomes

wk(n + 1) = wk(n) + �sgn[e(n)]x(n – k) (7.4)

where sgn is the signum function,

1 if u � 0
sgn(u) = � (7.5)

–1 if u < 0

198 Adaptive Filters

FIGURE 7.3 Adaptive filter structure for system identification.

2. For the sign-data LMS algorithm, (7.3) becomes

wk(n + 1) = wk(n) + �e(n)sgn[x(n – k)] (7.6)

3. For the sign-sign LMS algorithm, (7.3) becomes

wk(n + 1) = wk(n) + �sgn[e(n)]sgn[x(n – k)] (7.7)

which reduces to

wk(n) + � if sgn[e(n)] = sgn[x(n – k)]
wk(n + 1) = � (7.8)

wk(n) – � otherwise

which is more concise from a mathematical viewpoint, because no multiplica-
tion operation is required for this algorithm.

The implementation of these variants does not exploit the pipeline features
of the TMS320C3x processor. The execution speed on the TMS320C3x for
these variants can be expected to be slower than for the basic LMS algorithm,
due to additional decision-type instructions required for testing conditions in-
volving the sign of the error signal or the data sample.

The LMS algorithm has been quite useful in adaptive equalizers, telephone
cancellers, and so forth. Other methods such as the recursive least squares
(RLS) algorithm [4], can offer faster convergence than the basic LMS but at the
expense of more computations. The RLS is based on starting with the optimal
solution and then using each input sample to update the impulse response in or-
der to maintain that optimality. The right step size and direction are defined over
each time sample.

Adaptive algorithms for restoring signal properties can also be found in [4].
Such algorithms become useful when an appropriate reference signal is not
available. The filter is adapted in such a way as to restore some property of the
signal lost before reaching the adaptive filter. Instead of the desired waveform
as a template, as in the LMS or RLS algorithms, this property is used for the
adaptation of the filter. When the desired signal is available, the conventional
approach such as the LMS can be used; otherwise a priori knowledge about the
signal is used.

7.3 PROGRAMMING EXAMPLES USING C AND
TMS320C3x CODE

The following programming examples illustrate adaptive filtering using the
least mean square (LMS) algorithm. It is instructive to read the first example

7.2 Adaptive Structures 199

even if you have only a limited knowledge of C, since it illustrates the steps in
the adaptive process.

Example 7.1 Adaptive Filter Using C Code Compiled With
Borland C/C++

This example applies the LMS algorithm using a C-coded program compiled
with Borland C/C++. It illustrates the following steps for the adaptation process
using the adaptive structure in Figure 7.1:

1. Obtain a new sample for each, the desired signal d and the reference input
to the adaptive filter x, which represents a noise signal.

2. Calculate the adaptive FIR filter’s output y, applying (7.1) as in Chapter 4
with an FIR filter. In the structure of Figure 7.1, the overall output is the
same as the adaptive filter’s output y.

3. Calculate the error signal applying (7.2).

4. Update/replace each coefficient or weight applying (7.3).

5. Update the input data samples for the next time n, with a data move
scheme used in Chapter 4 with the program FIRDMOVE.C. Such scheme
moves the data instead of a pointer.

6. Repeat the entire adaptive process for the next output sample point.

Figure 7.4 shows a listing of the program ADAPTC.C, which implements the
LMS algorithm for the adaptive filter structure in Figure 7.1. A desired signal is
chosen as 2cos(2n�f /Fs), and a reference noise input to the adaptive filter is
chosen as sin(2n�f /Fs), where f is 1 kHz, and Fs = 8 kHz. The adaptation rate,
filter order, number of samples are 0.01, 22, and 40, respectively.

The overall output is the adaptive filter’s output y, which adapts or converges
to the desired cosine signal d.

The source file was compiled with Borland’s C/C++ compiler. Execute this
program. Figure 7.5 shows a plot of the adaptive filter’s output (y_out) con-
verging to the desired cosine signal. Change the adaptation or convergence rate
� to 0.02 and verify a faster rate of adaptation.

Interactive Adaptation

A version of the program ADAPTC.C in Figure 7.4, with graphics and interac-
tive capabilities to plot the adaptation process for different values of � is on the
accompanying disk as ADAPTIVE.C, to be compiled with Turbo or Borland
C/C++. It uses a desired cosine signal with an amplitude of 1 and a filter order
of 31. Execute this program, enter a � value of 0.01, and verify the results in
Figure 7.6. Note that the output converges to the desired cosine signal. Press F2
to execute this program again with a different beta value.

200 Adaptive Filters

//ADAPTC.C - ADAPTATION USING LMS WITHOUT THE TI COMPILER

#include <stdio.h>

#include <math.h>

#define beta 0.01 //convergence rate

#define N 21 //order of filter

#define NS 40 //number of samples

#define Fs 8000 //sampling frequency

#define pi 3.1415926

#define DESIRED 2*cos(2*pi*T*1000/Fs) //desired signal

#define NOISE sin(2*pi*T*1000/Fs) //noise signal

main()

{

long I, T;

double D, Y, E;

double W[N+1] = {0.0};

double X[N+1] = {0.0};

FILE *desired, *Y_out, *error;

desired = fopen (“DESIRED”, “w++”); //file for desired samples

Y_out = fopen (“Y_OUT”, “w++”); //file for output samples

error = fopen (“ERROR”, “w++”); //file for error samples

for (T = 0; T < NS; T++) //start adaptive algorithm

{

X[0] = NOISE; //new noise sample

D = DESIRED; //desired signal

Y = 0; //filter’output set to zero

for (I = 0; I <= N; I++)

Y += (W[I] * X[I]); //calculate filter output

E = D - Y; //calculate error signal

for (I = N; I >= 0; I—)

{

W[I] = W[I] + (beta*E*X[I]); //update filter coefficients

if (I != 0)

X[I] = X[I-1]; //update data sample

}

fprintf (desired, “\n%10g %10f”, (float) T/Fs, D);

fprintf (Y_out, “\n%10g %10f”, (float) T/Fs, Y);

fprintf (error, “\n%10g %10f”, (float) T/Fs, E);

}

fclose (desired);

fclose (Y_out);

fclose (error);

}

FIGURE 7.4 Adaptive filter program compiled with Borland C/C++ (ADAPTC.C).

FIGURE 7.5 Plot of adaptive filter’s output converging to desired cosine signal.

FIGURE 7.6 Plot of adaptive filter’s output converging to desired cosine signal using inter-
active capability with program ADAPTIVE.C.

Example 7.2 Adaptive Filter for Noise Cancellation
Using C Code

This example illustrates the adaptive filter structure shown in Figure 7.2 for the
cancellation of an additive noise. Figure 7.7 shows a listing of the program
ADAPTDMV.C based on the previous program in Example 7.1. Consider the
following from the program:

1. The desired signal specified by DESIRED is a sine function with a fre-
quency of 1 kHz. The desired signal is corrupted/added with a noise signal
specified by ADDNOISE. This additive noise is a sine with a frequency of 312
Hz. The addition of these two signals is achieved in the program with DPLUSN
for each sample period.

2. The reference input to the adaptive FIR filter is a cosine function with a
frequency of 312 Hz specified by REFNOISE. The adaptation step or rate of
convergence is set to 1.5 × 10–8, the number of coefficients to 30, and the num-
ber of output samples to 128.

3. The output of the adaptive FIR filter y is calculated using the convolution
equation (7.1), and converges to the additive noise signal with a frequency of
312 Hz. When this happens, the “error” signal e, calculated from (7.2), ap-
proaches the desired signal d with a frequency of 1 kHz. This error signal is the
overall output of the adaptive filter structure, and is the difference between the
adaptive filter’s output y and the primary input consisting of the desired signal
with additive noise.

In the previous example, the overall output was the adaptive filter’s output.
In that case, the filter’s output converged to the desired signal. For the structure
in this example, the overall output is the error signal and not the adaptive filter’s
output.

This program was compiled with the TMS320 assembly language floating-
point tools, and the executable COFF file is on the accompanying disk. Down-
load and run it on the DSK.

The output can be saved into the file fname with the debugger command

save fname,0x809d00,128,L

which saves the 128 output samples stored in memory starting at the address
809d00 into the file fname, in ASCII Long format. Note that the desired sig-
nal with additive noise samples in DPLUSN are stored in memory starting at the
address 809d80, and can be saved also into a different file with the debugger
save command.

Figure 7.8 shows a plot of the output converging to the 1-kHz desired sine
signal, with a convergence rate of � = 1.5 × 10–8. The upper plot in Figure 7.9
shows the FFT of the 1-kHz desired sine signal and the 312-Hz additive noise
signal. The lower plot in Figure 7.9 shows the overall output which illustrates
the reduction of the 312-Hz noise signal.

7.3 Programming Examples Using C and TMS320C3x Code 203

204 Adaptive Filters

/*ADAPTDMV.C - ADAPTIVE FILTER FOR NOISE CANCELLATION */

#include “math.h”

#define beta 1.5E-8 /*rate of convergence */

#define N 30 /*# of coefficients */

#define NS 128 /*# of output sample points*/

#define Fs 8000 /*sampling frequency */

#define pi 3.1415926

#define DESIRED 1000*sin(2*pi*T*1000/Fs) /*desired signal */

#define ADDNOISE 1000*sin(2*pi*T*312/Fs) /*additive noise */

#define REFNOISE 1000*cos(2*pi*T*312/Fs) /*reference noise*/

main()

{

int I,T;

float Y, E, DPLUSN;

float W[N+1];

float Delay[N+1];

volatile int *IO_OUTPUT= (volatile int*) 0x809d00;

volatile int *IO_INPUT = (volatile int*) 0x809d80;

for (T = 0; T < N; T++)

{

W[T] = 0.0;

Delay[T] = 0.0;

}

for (T=0; T < NS; T++) /*# of output samples */

{

Delay[0] = REFNOISE; /*adaptive filter’s input*/

DPLUSN = DESIRED + ADDNOISE; /*desired + noise, d+n */

Y = 0;

for (I = 0; I < N; I++)

Y += (W[I] * Delay[I]); /*adaptive filter output */

E = DPLUSN - Y; /*error signal */

for (I = N; I > 0; I—)

{

W[I] = W[I] + (beta*E*Delay[I]); /*update weights */

if (I != 0)

Delay[I] = Delay[I-1]; /*update samples */

}

*IO_OUTPUT++ = E; /*overall output E */

IO_INPUT++ = DPLUSN; / store d + n */

}

}

FIGURE 7.7 Adaptive filter program for sinusoidal noise cancellation using data move
(ADAPTDMV.C).

7.3 Programming Examples Using C and TMS320C3x Code 205

FIGURE 7.8 Plot of overall output of adaptive filter structure converging to 1-kHz desired
signal.

FIGURE 7.9 Output frequency response of adaptive filter structure showing reduction of
312-Hz additive sinusoidal noise.

Examine the effects of different values for the adaptation rate � and for the
number of weights or coefficients.

Example 7.3 Adaptive Predictor Using C Code

This example implements the adaptive predictor structure shown in Figure 7.10,
with the program ADAPTSH.C shown in Figure 7.11. The input to the adaptive
structure is a 1-kHz sine defined in the program. The input to the adaptive filter
with 30 coefficients is the delayed input, and the adaptive filter’s output is the
overall output of the predictor structure.

206 Adaptive Filters

FIGURE 7.10 Adaptive predictor structure.

/*ADAPTSH.C - ADAPTIVE FILTER WITH SHIFTED INPUT */

#include “math.h”

#define beta 0.005 /*rate of convergence */

#define N 30 /*# of coefficients */

#define NS 128 /*# of output samples */

#define pi 3.1415926

#define shift 90 /*desired amount of shift*/

#define Fs 8000 /*sampling frequency */

#define inp 1000*sin(2*pi*T*1000/Fs) /*input signal*/

main()

{

FIGURE 7.11 Adaptive predictor program with arccosine and arcsine for delay
(ADAPTSH.C).

(continued on next page)

7.3 Programming Examples Using C and TMS320C3x Code 207

int I, T;

double xin, x, ys, D, E, Y1;

double W[N+1];

double Delay[N+1];

volatile int *IO_OUTPUT = (volatile int*) 0x809d00;

ys = 0;

for (T = 0; T < N; T++)

{

W[T] = 0.0;

Delay[T] = 0.0;

}

for (T=0; T < NS; T++) /*# of output samples */

{

xin = inp/1000; /*input between 1 and -1 */

if (ys >= xin) /*is signal rising or falling */

x = acos(xin); /*signal is falling */

else /*otherwise */

x=asin(xin)-(pi/2); /*signal is rising */

x = x - (shift); /*shift */

Delay[0]=cos(x); /*shifted output=filter’s input*/

D = inp; /*input data */

Y1 = 0; /*init output */

ys = xin; /*store input value */

for (I=0; I <N; I++) /*for N coefficients */

Y1+=W[I]*Delay[I]; /*adaptive filter output */

E = D - Y1; /*error signal */

for (I=N; I>0; I—)

{

W[I]=W[I]+(beta*E*Delay[I]); /*update weights */

if (I != 0)

Delay[I] = Delay[I-1]; /*update delays */

}

*IO_OUTPUT++ = Y1; /*overall output */

}

}

FIGURE 7.11 (continued)

A shifting technique is employed within the program to obtain a delay of
90°. An optimal choice of the delay parameter is discussed in [5]. Note that an-
other separate input is not needed. This shifting technique uses an arccosine or
arcsine function depending on whether the signal is rising or falling.

The program SHIFT.C (on disk) illustrates a 90° phase shift. A different
amount of delay can be verified with the program SHIFT.C. The program
ADAPTSH.C incorporates the shifting section of code.

Verify Figure 7.12, which shows the output of the adaptive predictor (lower
graph) converging to the desired 1-kHz input signal (upper graph). When this
happens, the error signal converges to zero. Note that 128 output sample points
can be collected starting at memory address 809d00.

The following example illustrates this phase shift technique using a table
lookup procedure, and Example 7.5 implements the adaptive predictor with
TMS320C3x code.

Example 7.4 Adaptive Predictor With Table Lookup for Delay,
Using C Code

This example implements the same adaptive predictor of Figure 7.10 with the
program ADAPTTB.C listed in Figure 7.13. This program uses a table lookup
procedure with the arccosine and arcsine values set in the file scdat (on the
accompanying disk) included in the program. The arccosine and arcsine values
are selected depending on whether the signal is falling or rising. A delay of 270°
is set in the program. This alternate implementation is faster (but not as clean).

208 Adaptive Filters

FIGURE 7.12 Output of adaptive predictor converging to desired 1-kHz input signal.

/*ADAPTTB.C - ADAPTIVE FILTER USING ASIN, ACOS TABLE*/

#define beta 0.005 /*rate of adaptation */

#define N 30 /*order of filter */

#define NS 128 /*number of samples */

#define Fs 8000 /*sampling frequency */

#define pi 3.1415926

#define inp 1000*sin(2*pi*T*1000/Fs) /*input */

#include “scdat” /*table for asin, acos */

#include “math.h”

main()

{

int I, J, T, Y;

double E, yo, xin, out_data;

double W[N+1];

double Delay[N+1];

volatile int *IO_OUTPUT = (volatile int*) 0x809d00;

yo=0;

for (T=0; T < N; T++)

{

W[T] = 0.0;

Delay[T] = 0.0;

}

for (T=0; T < NS; T++) /*# of output samples */

{

xin = inp/1000; /*scale for range between 1 and -1*/

Y = ((xin)+1)*100; /*step up array between 0 and 200 */

if (yo > xin) /*is signal falling or rising */

Delay[0] = yc[Y]; /*signal is falling, acos domain */

else /*otherwise */

Delay[0] = ys[Y]; /*signal is rising, asin domain */

out_data = 0; /*init filter output to zero */

yo = xin; /*store input */

for (I=0; I<=N; I++)

out_data +=(W[I]*Delay[I]); /*filter output */

E = xin - out_data; /*error signal */

for (J=N; J > 0; J—)

{

W[J]=W[J]+(beta*E*Delay[J]); /*update coefficients */

if (J != 0)

Delay[J] = Delay[J-1]; /*update data samples */

}

*IO_OUTPUT++ = out_data*1000; /* output signal */

}

}

FIGURE 7.13 Adaptive predictor program with table lookup for delay (ADAPTTB.C).

Figure 7.14 shows the output of the adaptive predictor (lower graph) con-
verging to the desired 1-kHz input signal (upper graph), yielding the same re-
sults as in Figure 7.12.

Example 7.5 Adaptive Notch Filter With Two Weights, Using
TMS320C3x Code

The adaptive notch structure shown in Figure 7.15 illustrates the cancellation of
a sinusoidal interference, using only two weights or coefficients. This structure
is discussed in References 1 and 3. The primary input consists of a desired sig-
nal d with additive sinusoidal interference noise n. The reference input to the
adaptive FIR filter consists of x1(n), and x2(n) as x1(n) delayed by 90°. The out-
put of the two-coefficient adaptive FIR filter is y(n) = y1(n) + y2(n) = w1(n)x1(n)

210 Adaptive Filters

FIGURE 7.14 Output of adaptive predictor (with table lookup procedure) converging to de-
sired 1-kHz input signal.

FIGURE 7.15 Adaptive notch structure with two weights.

+ w2(n)x2(n). The error signal e(n) is the difference between the primary input
signal and the adaptive filter’s output, or e(n) = (d + n) – y(n).

Figure 7.16 shows a listing of the program NOTCH2W.ASM, which imple-
ments the two-weight adaptive notch filter structure. Consider the following.

7.3 Programming Examples Using C and TMS320C3x Code 211

;NOTCH2W.ASM - ADAPTIVE NOTCH FILTER WITH TWO WEIGHTS

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “dplusna” ;data file d+n (1000+312 Hz)

.include “cos312a” ;input data x1(n)

.include “sin312a” ;input data x2(n)

DPN_ADDR .word DPLUSN ;d+n sine 100 + 312 Hz

COS_ADDR .word COS312 ;start address of x1(n)

SIN_ADDR .word SIN312 ;start address of x2(n)

OUT_ADDR .word 0x809802 ;output address

SC_ADDR .word SC ;address for sine+cosine samples

WN_ADDR .word COEFF ;address of coefficient w(N-1)

ERF_ADDR .word ERR_FUNC ;address of error function

ERR_FUNC .float 0 ;init error function to zero

BETA .float 0.75E-7 ;rate of adaptation

LENGTH .set 2 ;length of filter N = 2

NSAMPLE .set 128 ;number of output samples

COEFF .float 0, 0 ;two weights or coefficients

.brstart “SC_BUFF”,8 ;align samples buffer

SC .sect “SC_BUFF” ;circular buffer for sine/cosine

.loop LENGTH ;actual length of 2

.float 0 ;init to zero

.endloop ;end of loop

.entry BEGIN ;start of code

.text ;assemble into text section

BEGIN LDP WN_ADDR ;init to data page 128

LDI @DPN_ADDR,AR3 ;sin1000 + sin312 addr -> AR3

LDI @COS_ADDR,AR2 ;address of cos312 data

LDI @SIN_ADDR,AR5 ;address of sin312 data

LDI @OUT_ADDR,AR4 ;output address -> AR4

LDI @ERF_ADDR,AR6 ;error function address -> AR6

LDI LENGTH,BK ;FIR filter length -> BK

FIGURE 7.16 Program listing for adaptive notch filter with two weights (NOTCH2W.ASM).

(continued on next page)

212 Adaptive Filters

LDI @WN_ADDR,AR0 ;w(N-1) address -> AR0

LDI @SC_ADDR,AR1 ;sine+cosine sample addr->AR1

LDI NSAMPLE,R5 ;R5=loop counter for # of samples

LOOP LDF *AR2++,R3 ;input cosine312 sample-> R3

STF R3,*AR1++% ;store cos sample in SC buffer

LDF *AR5++,R3 ;input sine312 sample-> R3

STF R3,*AR1++% ;store sine sample in SC buffer

LDF *AR3++,R4 ;input d+n=sin1000 + sin312->R4

LDI @WN_ADDR,AR0 ;w(N-1) address -> AR0

CALL FILT ;call FIR subroutine FILT

SUBF3 R0,R4,R0 ;error = DPN - Y -> R0

FIX R0,R1 ;convert R0 to integer -> R1

STI R1,*AR4++ ;store error as output

MPYF @BETA,R0 ;R0=error function=beta*error

STF R0,*AR6 ;store error function

LDI @WN_ADDR,AR0 ;w(N-1) address -> AR0

CALL ADAPT ;call adaptation routine

SUBI 1,R5 ;decrement loop counter

BNZ LOOP ;repeat for next sample

WAIT BR WAIT ;wait

;FIR FILTER SUBROUTINE

FILT MPYF3 *AR0++,*AR1++%,R0 ;w1(n)*x1(n) = y1(n) -> R0

LDF 0,R2 ;R2 = 0

MPYF3 *AR0++,*AR1++%,R0 ;w2(n)*x2(n) = y2(n) -> R0

|| ADDF3 R0,R2,R2 ;R2 = y1(n)

ADDF3 R0,R2,R0 ;y1(n)+y2(n) = y(n) -> R0

RETSU ;return from subroutine

;ADAPTATION SUBROUTINE

ADAPT MPYF3 *AR6,*AR1++%,R0 ;error function*x1(n)-> R0

LDF *AR0,R3 ;w1(n) -> R3

MPYF3 *AR6,*AR1++%,R0 ;error function*x2(n)-> R0

|| ADDF3 R3,R0,R2 ;w1(n)+error function*x1(n)->R2

LDF *+AR0,R3 ;w2(n) -> R3

|| STF R2,*AR0++ ;w1(n+1)=w1(n)+error function*x1(n)

ADDF3 R3,R0,R2 ;w2(n)+error function*x2(n)->R2

STF R2,*AR0 ;w2(n+1)=w2(n)+error function*x2(n)

RETSU ;return from subroutine

FIGURE 7.16 (continued)

1. The desired signal d is chosen to be a sine function with a frequency of 1
kHz and the interference or noise n is a sine function with a frequency of 312
Hz. The data points for these signals were generated with the program ADAPT-
DMV.C discussed in Example 7.2. The addition of these two signals represents
d + n, and the resulting data points are contained in the file dplusna, which is
included in the program NOTCH2W.ASM.

2. The first input to the adaptive filter x1(n) is chosen as a 312-Hz cosine
function, and the second input x2(n) as a 312-Hz sine function. The data points
for these two functions are contained in the files cos312a and sin312a, re-
spectively, which are included in the program NOTCH2W.ASM.

3. The error function, defined as �e(n), as well as the two weights, are ini-
tialized to zero.

4. A circular buffer SC_BUFF of length two is created for the cosine and
sine samples. A total of 128 output samples are obtained starting at the ad-
dress 809802. An input cosine sample is first acquired as x1(n), with the in-
struction LDF *AR2++,R3, and stored in the circular buffer; then an input
sine sample is acquired as x2(n), with the instruction LDF *AR5++,R3, and
stored in the subsequent memory location in the circular buffer. Then the pri-
mary input sample, which represents d + n is acquired, with the instruction
LDF *AR3++,R4. This sample in DPLUSN is used for the calculation of the
error signal.

5. The filter and adaptation routines are separated in the program in order to
make it easier to follow the program flow. For faster execution, these routines
can be included where they are called. This would eliminate the CALL and
RETS instructions.

6. The LMS algorithm is implemented with equations (7.1)–(7.3) by calcu-
lating first the adaptive filter’s output y(n), followed by the error signal e(n), and
then the two coefficients w1(n) and w2(n).

The filter subroutine finds y(n) = w1(n)x1(n) + w2(n)x2(n), where the coeffi-
cients or weights w1(n) and w2(n) represent the weights at time n. Chapter 4
contains many examples for implementing FIR filters using TMS320C3x code.
In this case, there are only two coefficients and two input samples. The first in-
put sample to the adaptive FIR filter is the cosine sample x1(n) from the file
cos312a, and the second input sample is the sine sample x2(n) from the file
sin312a.

7. The adaptive filter’s output sample for each time n is contained in R0.
The error signal, for the same specific time n, is calculated with the instruction
SUBF3 R0,R4,R0, where R4 contains the sample d + n. The first sample of
the error signal is not meaningful, because the adaptive filter’s output is zero for
the first time n. The two weights, initialized to zero, are not yet updated.

8. The error function, which is the product of e(n) in R0, and �, is stored in
memory specified by AR6.

7.3 Programming Examples Using C and TMS320C3x Code 213

9. Within the adaptation routine, the first multiply instruction yields R0,
which contains the value �e(n)x1(n) for a specific time n. The second multiply
instruction yields R0, which contains the value �e(n)x2(n). This multiply in-
struction is in parallel with an ADDF3 instruction in order to update the first
weight w1(n).

10. The parallel addition instruction

|| ADDF3 R3,R0,R2

adds R3, which contains the first weight w1(n), and R0, which contains
�e(n)x1(n) from the first multiply instruction.

11. The instruction
LDF *+AR0,R3

loads the second weight w2(n) into R3. Note that AR0 is preincremented with-
out modification to the memory address of the second weight.

12. The instruction

|| STF R2,*AR0++

stores the updated weight R2 = w1(n + 1) in the memory address specified by
AR0. Then, AR0 is postincremented to point at the address of the second
weight. The second ADDF3 instruction is similar to the first one and updates the
second weight w2(n + 1).

For each time n, the preceding steps are repeated. New cosine and sine sam-
ples are acquired, as well as (d + n) samples. For example, the adaptive filter’s
output y(n) is calculated with the newly acquired cosine and sine samples and
the previously updated weights. The error signal is then calculated and stored as
output.

The 128 output samples can be retrieved from memory and saved into a file
n2w with the debugger command

save n2w,0x809802,128,l

The adaptive filter’s output y(n) converges to the additive 312-Hz interfer-
ence noise n. The “error” signal e(n), which is the overall output of this adaptive
filter structure, becomes the desired 1-kHz sine signal d. Figure 7.17 shows a
plot of the output error signal converging to the desired 1-kHz sine signal d. Re-
duce slightly the adaptation rate � to 0.5 × 10–7 and verify that the output adapts
slower to the 1-kHz desired signal. However, if � is much too small, such as � =
1.0 × 10–10, the adaptation process will not be seen, with only 128 output sam-
ples and the same number of coefficients.

214 Adaptive Filters

Example 7.6 Adaptive Predictor Using TMS320C3x Code

This example implements the adaptive predictor structure shown in Figure 7.10,
using TMS320C3x code. The primary input is a desired sine signal. This signal
is delayed and becomes the input to the adaptive FIR filter as a cosine signal
with the same frequency as the desired signal and one-half its amplitude. The
output of the adaptive filter y(n) is adapted to the desired signal d(n).

Figure 7.18 shows a listing of the program ADAPTP.ASM for the adaptive
predictor. The desired signal is a 312-Hz sine signal contained in the file
sin312a. The input to the 50-coefficient adaptive FIR filter is a 312-Hz co-
sine signal contained in the file hcos312a. It represents the desired signal de-
layed with one-half the amplitude. The program ADAPTC.C in Example 7.1
was used to create the two files with the sine and cosine data points. The FIR
filter program BP45SIMP.ASM in Appendix B can be instructive for this ex-
ample. Consider the following.

1. The 50 coefficients or weights of the FIR filter are initialized to zero. The
circular buffer XN_BUFF, aligned on a 64-word boundary, is created for the co-
sine samples. The cosine samples are placed in the circular memory buffer in a
similar fashion as was done in Chapter 4 in conjunction with FIR filters. For ex-
ample, note that the first cosine sample is stored into the last or bottom memory
location in the circular buffer.

2. A total of 128 output samples are obtained starting at memory address

7.3 Programming Examples Using C and TMS320C3x Code 215

FIGURE 7.17 Output of adaptive notch filter converging to desired 1-kHz sine signal.

216 Adaptive Filters

;ADAPTP.ASM - ADAPTIVE PREDICTOR

.start “.text”,0x809900 ;starting address for text

.start “.data”,0x809C00 ;starting address for data

.include “sin312a” ;data for sine of 312 Hz

.include “hcos312a” ;data for 1/2 cosine 312 Hz

.data ;data section

D_ADDR .word SIN312 ;desired signal address

HC_ADDR .word HCOS312 ;addr of input to adapt filter

OUT_ADDR .word 0x809802 ;output address

XB_ADDR .word XN+LENGTH-1 ;bottom addr of circular buffer

WN_ADDR .word COEFF ;coefficient address

ERF_ADDR .word ERR_FUNC ;address of error function

ERR_FUNC .float 0 ;init ERR FUNC to zero

BETA .float 1.0E-8 ;rate of adaptation

LENGTH .set 50 ;FIR filter length

NSAMPLE .set 128 ;number of output samples

COEFF .float 0,0

.float 0,0

.brstart “XN_BUFF”,64 ;align samples buffer

XN .sect “XN_BUFF” ;circ buffer for filter samples

.loop LENGTH ;buffer size for samples

.float 0 ;init samples to zero

.endloop ;end of loop

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP XB_ADDR ;init to data page 128

LDI @D_ADDR,AR2 ;desired signal addr -> AR2

LDI @HC_ADDR,AR3 ;1/2 cosine address -> AR3

LDI @OUT_ADDR,AR5 ;output address -> AR4

LDI @ERF_ADDR,AR6 ;error function addr -> AR6

LDI LENGTH,BK ;FIR filter length -> BK

LDI @WN_ADDR,AR0 ;coeff w(N-1) address -> AR0

LDI @XB_ADDR,AR1 ;bottom of circ buffer-> AR1

LDI NSAMPLE,R5 ;R5=loop counter for # samples

LOOP LDF *AR3++,R3 ;input to adapt filter-> R3

STF R3,*AR1++(1)% ;store @ bottom of circ buffer

LDF *AR2++,R4 ;input desired sample -> R4

LDI @WN_ADDR,AR0 ;w(N-1) address-> AR0

CALL FILT ;call FIR routine

FIGURE 7.18 Program listing for adaptive predictor (ADAPTP.ASM).

(continued on next page)

809802. The FIR filter routine FILT and the adaptation routine ADAPT are in
separate sections to make it easier to follow the program flow. For faster execu-
tion, these routines can be placed where they are called, eliminating the call and
return from subroutine intructions.

3. Before the adaptation routine is called to update the weights or coeffi-
cients, the repeat counter register RC is initialized with LENGTH – 2, or RC =
48. As a result, the repeat block of code is executed 49 times (repeated 48
times), including the STF R2,*AR0++ instruction in parallel.

Figure 7.19 shows the overall output y(n) converging to the desired 312-Hz

7.3 Programming Examples Using C and TMS320C3x Code 217

FIGURE 7.18 (continued)

FIX R0,R1 ;convert Y to integer -> R1

STI R1,*AR5++ ;store to output memory buffer

SUBF3 R0,R4,R0 ;error = D-Y -> R0

MPYF @BETA,R0 ;R0=ERR FUNC=beta*error

STF R0,*AR6 ;store error function

LDI LENGTH-2,RC ;reset repeat counter

LDI @WN_ADDR,AR0 ;w(N-1) address -> AR0

CALL ADAPT ;call adaptation routine

SUBI 1,R5 ;decrement loop counter

BNZ LOOP ;repeat for next sample

WAIT BR WAIT ;wait

;FIR FILTER SUBROUTINE

FILT LDF 0,R2 ;R2 = 0

RPTS LENGTH-1 ;repeat LENGTH-1 times

MPYF3 *AR0++,*AR1++%,R0 ;w(N-1-i)*x(n-(N-1-i))

|| ADDF3 R0,R2,R2 ;accumulate

ADDF3 R0,R2,R0 ;add last product y(n)->R0

RETSU ;return from subroutine

;ADAPTATION SUBROUTINE

ADAPT MPYF3 *AR6,*AR1++%,R0 ;ERR FUNC*x(n-(N-1))-> R0

LDF *AR0,R3 ;w(N-1) -> R3

RPTB LOOP_END ;repeat LENGTH-2 times

MPYF3 *AR6,*AR1++%,R0 ;ERR FUNC*x(n-(N-1-i))->R0

|| ADDF3 R3,R0,R2 ;w(N-1-i)+ERR FUNC*x(n-(N-1-i))

LOOP_END LDF *+AR0(1),R3 ;load subsequent H(k) -> R3

|| STF R2,*AR0++ ;store/update coefficient

ADDF3 R3,R0,R2 ;w(n+1)=w(n)+ERR FUNC*x(n)

STF R2,*AR0 ;store/update last coefficient

RETSU ;return from subroutine

sine input signal. Reduce the adaptation rate to 10–10 and verify a slower rate of
adaptation to the 312-Hz sine signal.

Example 7.7 Real-Time Adaptive Filter for Noise Cancellation,
Using TMS320C3x Code

This example illustrates the basic adaptive filter structure in Figure 7.2 as an
adaptive notch filter. The two previous examples are very useful for this imple-
mentation. Two inputs are required in this application, available on the AIC on
board the DSK. While the primary input (PRI IN) is through an RCA jack, a
second input to the AIC is available on the DSK board from pin 3 of the 32-pin
connector JP3.

The secondary or auxiliary input (AUX IN) should be first tested with the
loop program (LOOP.ASM) discussed in Chapter 3. Four values are set in AIC-
SEC to configure the AIC in the loop program. Replace 0x63 (or 0x67) with
0x73 to enable the AIC auxiliary input and bypass the input filter on the AIC,
as described in the AIC secondary communication protocol in Chapter 3. With
an input sinusoidal signal from pin 3 of the connector JP3, the output (from the
RCA jack) is the delayed input.

Figure 7.20 shows the program listing ADAPTER.ASM for this example.
The AIC configuration data set in AICSEC specifies a sampling rate of

15,782 Hz or � 16 kHz, as can be verified using similar calculations made in
the exercises in Chapter 3 to calculate a desired sampling frequency. However,

218 Adaptive Filters

FIGURE 7.19 Output of adaptive predictor (lower plot) converging to desired 312-Hz sine
signal.

7.3 Programming Examples Using C and TMS320C3x Code 219

;ADAPTER.ASM-ADAPTIVE STRUCTURE FOR NOISE CANCELLATION. OUTPUT AT e(n)

.start “.text”,0x809900 ;where text begins

.start “.data”,0x809C00 ;where data begins

.include “AICCOM31.ASM” ;AIC communications routines

.data ;assemble into data section

AICSEC .word 162Ch,1h,244Ah,73h ;For AIC,Fs = 16K/2 = 8 kHz

NOISE_ADDR .word NOISE+LENGTH-1 ;last address of noise samples

WN_ADDR .word COEFF ;address of coefficients w(N-1)

ERF_ADDR .word ERR_FUNC ;address of error function

ERR_FUNC .float 0 ;initialize error function

BETA .float 2.5E-12 ;rate of adaptation constant

LENGTH .set 50 ;set filter length

COEFF: ;buffer for coefficients

.loop LENGTH ;loop length times

.float 0 ;init coefficients to zero

.endloop ;end of loop

.brstart “XN_BUFF”,128 ;align buffer for noise samples

NOISE .sect “XN_BUFF” ;section for input noise samples

.loop LENGTH ;loop length times

.float 0 ;initialize noise samples

.endloop ;end of loop

.entry BEGIN ;start of code

.text ;assemble into text section

BEGIN LDP WN_ADDR ;init to data page 128

CALL AICSET ;initialize AIC

LDI @ERF_ADDR,AR6 ;error function address ->AR6

LDI LENGTH,BK ;filter length ->BK

LDI @WN_ADDR,AR0 ;coefficient address w(N-1) ->AR0

LDI @NOISE_ADDR,AR1 ;last noise sample address ->AR1

LOOP CALL IOAUX ;get noise sample from AUX IN

FLOAT R6,R3 ;transfer noise sample into R3

STF R3,*AR1++% ;store noise sample-> circ buffer

LDI @WN_ADDR,AR0 ;w(N-1) coefficients address->AR0

FILT LDF 0,R2 ;R2 = 0

RPTS LENGTH-1 ;next 2 instr (LENGTH-1) times

MPYF3 *AR0++,*AR1++%,R0 ;w(N-1-i)*x(n-(N-1-i))

|| ADDF3 R0,R2,R2 ;accumulate

ADDF3 R0,R2,R0 ;add last product=y(n) -> R0

CALL IOPRI ;signal+noise d+n from pri input

FIGURE 7.20 Real-time adaptive filter program for noise cancellation (ADAPTER.ASM).

(continued on next page)

in this implementation, the actual sampling rate is one-half that or � 8 kHz
since both inputs on the AIC are accessed. Note that the AIC input bandpass fil-
ter is not inserted.

Initially, the 50 coefficients of the adaptive FIR filter are set to zero. A circu-
lar buffer XN_BUFF for the noise samples, aligned on a 128-word boundary, is
initialized with zero.

The AIC communication routines in AICCOM31.ASM, included in the
ADAPTER.ASM program, are set so that the extended precision registers R6
and R7 are used for input and output, respectively. These routines were tested in
Chapters 3–5.

Within the block of code starting with the label LOOP, the auxiliary and
the primary inputs on the AIC are accessed through the routines IOAUX and
IOPRI, respectively. When the routine IOAUX is called, an output is obtained
through R7, then a new noise sample is obtained through R6. The FIR filter cal-
culates the output at time n. Then the subroutine IOPRI is called, and an output
is obtained again through R7 and a new sample (d + n) is acquired from the AIC
primary input. For each time n, both routines IOPRI and IOAUX are called to
acquire a new sample (d + n) from the AIC primary input and a new sample n
from the AIC reference or auxiliary input, respectively.

The FIR filter code section, starting with FILT, is incorporated directly into
the program for faster execution. See also the adaptive notch filter program with

220 Adaptive Filters

FLOAT R6,R4 ;R4= d+n in floating-point

SUBF3 R0,R4,R0 ;error e => R0 = (d+n)-y

FIX R0,R7 ;R7=R0 in integer

MPYF @BETA,R0 ;R0=ERR FUNC=beta*e

STF R0,*AR6 ;store error function

LDI LENGTH-2,RC ;set repeat counter register RC

LDI @WN_ADDR,AR0 ;w(N-1) coefficients address->AR0

CALL ADAPT ;call ADAPT subroutine

BR LOOP ;repeat with next sample

;ADAPTATION ROUTINE

ADAPT MPYF3 *AR6,*AR1++%,R0 ;error function*x(n-(N-1))->R0

LDF *AR0,R3 ;w(N-1) -> R3

RPTB LOOP_END ;repeat length-2 times

MPYF3 *AR6,*AR1++%,R0 ;error function*x(n-(N-1-i))->R0

|| ADDF3 R3,R0,R2 ;w(N-1-i)+error func*x(n-(N-1-i))

LOOP_END LDF *+AR0(1),R3 ;load subsequent w(k) -> R3

|| STF R2,*AR0++ ;store/update coefficient

ADDF3 R3,R0,R2 ;w(n+1)=w(n)+error function*x(n)

STF R2,*AR0 ;store/update coefficient

RETS ;return from subroutine

FIGURE 7.20 (continued)

two weights NOTCH2W.ASM and the adaptive predictor program ADAPTP.ASM,
discussed in the two previous examples. The adaptation routine, starting with the
label ADAPT, is kept separately to make the program easier to follow.

The “error” signal e is the overall output that is the difference between the
AIC primary input (d + n) and the adaptive filter’s output y. As y adapts to n, the
“error” signal converges to d.

Test this program:
1. The AIC primary input consists of a desired 1-kHz sinusoidal signal

added to another sinusoidal noise signal with a frequency such as 700 Hz.
2. The reference or auxiliary input also consists of the 700-Hz sinusoidal

noise. Use a T-connector to input the noise signal to the auxiliary AIC input, as
well as to a summer circuit at the same time. Use a passive summer circuit or an
OP AMP to add the 1-kHz and the 700-Hz sinusoidal signals.

3. Run the adaptive filter program. Change the frequency of the 700-Hz
noise to 600 or 800 Hz.

4. Observe the output from an oscilloscope. Initially the output shows the
added sinusoids (1 kHz and 700 Hz), then converges within a few seconds to the
1-kHz desired signal.

5. Change the rate of adaptation, reassemble and run the program again. A
much larger � value (by 1000) will not show the adaptation process. The output
would immediately display the 1-kHz desired signal. It is more interesting to
test this implementation with a smaller value of � (by a factor of 10). Verify a
slower rate of adaptation.

This example is extended to adapt continuously using the program
ADAPTERC.ASM (on disk). Input a 1-kHz sinusoidal signal s from the AIC
primary input (adaptive FIR filter input). Input a desired noise signal n from the
AIC auxiliary input. A summer circuit is not needed since
(s + n) is performed within the program. Verify that the adaptation process
takes place every 4 seconds. The resulting output converges to the desired ran-
dom noise signal, and the 1-kHz sinusoidal signal is cancelled out.

7.4 EXPERIMENT 7: ADAPTIVE FILTERING IMPLEMENTATION

1. Implement the C-coded simulation Examples 7.1–7.4
2. Implement the TMS320C3x-coded simulation Examples 7.5 and 7.6.
3. Implement the real-time adaptive filter Example 7.7.
4. Implement a simulation version of Example 7.7. Choose a 1-kHz desired

sine input signal and a 312-Hz additive and reference sine noise signal. Collect
128 output samples. Illustrate the convergence of the output “error” signal e(n)
to the 1-kHz desired signal. The necessary files required for this experiment
have been utilized in the adaptive filtering examples. For example, the file
dplusna contains the data points of a 1-kHz sine signal added with a 312-Hz
sine signal.

7.4. Adaptive Filtering Implementation 221

5. Implement Example 7.7 using a bandlimited random noise signal as the
additive and reference signal. Note that the pseudorandom noise generator pro-
gram PRNOISE.ASM in Chapter 3, as input to an FIR lowpass filter program,
produces a bandlimited random noise signal. This scheme would require two
DSK boards, one to provide the bandlimited random noise and the other to im-
plement the adaptive filter structure.

6. Implement a real-time version of the adaptive predictor Example 7.4 in C.
Use the table lookup procedure to obtain the delayed input to the adaptive filter.
Care should be exercised to set the input to the adaptive filter to a zero DC lev-
el. A shifted signal could also be produced with a phase-shifter circuit.

REFERENCES

1. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

2. B. Widrow and M. E. Hoff, Jr., “Adaptive Switching Circuits,” in IRE WESCON, pp.
96–104, 1960.

3. B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zei-
dler, E. Dong, Jr., and R. C. Goodlin, “Adaptive Noise Cancelling: Principles and Appli-
cations,” in Proceedings of the IEEE, 63, 1692–1716 (1975).

4. J. R. Treichler, C. R. Johnson, Jr., and M. G. Larimore, Theory and Design of Adaptive
Filters, Wiley, New York, 1987.

5. J. R. Zeidler, “Performance Analysis of LMS Adaptive Prediction Filters,” Proc. IEEE,
78, 1781–1806 (1990).

6. S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ, 1986.

7. S. T. Alexander, Adaptive Signal Processing Theory and Applications, Springer-Verlag,
New York, 1986.

8. C. F. Cowan and P. F. Grant eds., Adaptive Filters, Prentice-Hall, Englewood Cliffs, NJ,
1985.

9. M. L. Honig and D. G. Messerschmitt, Adaptive Filters: Structures, Algorithms and Ap-
plications, Kluwer Academic, Norwell, MA, 1984.

10. V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability and Performance,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

11. S. Kuo, G. Ranganathan, P. Gupta, and C. Chen, “Design and Implementation of Adap-
tive Filters,” IEEE 1988 International Conference on Circuits and Systems, June 1988.

12. S. M. Kuo and D. R. Morgan, Active Noise Control Systems, Wiley, 1996.

13. P. Papamichalis ed., Digital Signal Processing Applications with the TMS320 Family—
Theory, Algorithms, and Implementations, Vol. 3, Texas Instruments Inc., Dallas, TX,
1990.

14. M. G. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, New
York, 1987.

15. R. Chassaing and B. Bitler, “Adaptive Filtering with C and the TMS320C30 Digital Sig-
nal Processor,” in Proceedings of the 1992 ASEE Annual Conference, June 1992.

16. R. Chassaing, D. W. Horning, and P. Martin, “Adaptive Filtering with the TMS320C25,”
in Proceedings of the 1989 ASEE Annual Conference, June 1989.

222 Adaptive Filters

This Chapter can be used as a source of experiments, projects, and applications.
A wide range of projects have been implemented based on both the floating-
point TMS320C30 digital signal processor [1–6], briefly described at the end of
this chapter, and the fixed-point TMS320C25 [7]. They range in topics from
communications and controls, to neural networks, and can be used as a source
of ideas to implement other projects. The proceedings from the TMS320 Educa-
tors Conferences, published by Texas Instruments, Inc., contain a number of
TMS320-based articles and can be a good source of project ideas [3–5]. Appli-
cations described in References 8 and 9 and the previous chapters on filtering
and the fast Fourier transform as well as Appendices B–D also can be useful.

8.1 BANKS OF FIR FILTERS

This project implements eight different filters, with eight sets of FIR filter coef-
ficients incorporated into one program. Each set contains 55 coefficients, de-
signed with a sampling frequency of Fs = 10 kHz. They represent the following
filters:

1. Lowpass with a cutoff frequency of Fs/4

2. Highpass with a cutoff frequency of Fs/4

3. Bandpass with a center frequency of Fs/4

4. Bandstop with a center frequency of Fs/4

5. 2-Passbands with center frequencies at 1 and 3 kHz

6. 3-Passbands with center frequencies at 1, 2, and 3 kHz

7. 4-Passbands with center frequencies at 0.5, 1.5, 2.5, and 3.5 kHz

8. 3-Stopbands with center frequencies at 1, 2, and 3 kHz

These FIR filter coefficients were introduced in Chapter 4. Figure 8.1 shows a

223

8
DSP Applications and Projects

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

224 DSP Applications and Projects

;FIR8SETP - PARTIAL PROGRAM WITHOUT EIGHT SETS OF COEFFICIENTS

.start “.text”,0x809900 ;starting address of text

.start “.data”,0x809C00 ;starting address of data

.include “AICCOM31.ASM” ;AIC comm routine

.data ;data section

LENGTH .set 55 ;# of filter taps

FN .set 3 ;set desired filter number

AICSEC .word 162Ch,1h,3872h,63h ;Fs= 10 kHz

STORE .word COEFF ;starting addr of coeff

COEFF .word COEFF1 ;address of 1st set of LP coeff

.word COEFF2 ;address of 2nd set of HP coeff

.word COEFF3 ;address of 3rd set of BP coeff

.word COEFF4 ;address of 4th set of BS coeff

.word COEFF5 ;address of 2-passbands coeff

.word COEFF6 ;address of 3-passbands coeff

.word COEFF7 ;address of 4-passbands coeff

.word COEFF8 ;address of 3-stopbands coeff

.entry BEGIN ;start of code

.text ;text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET ;init AIC

LDI @XN_ADDR,AR1 ;last sample address ->AR1

LDI @STORE,AR2 ;start addr of coeff table->AR2

LDI LENGTH,BK ;BK = size of circular buffer

LDI FN,IR0 ;IR0 = selected filter number

SUBI 1,IR0 ;correct OFFSET+1 to OFFSET

LOOP CALL AICIO_P ;AIC I/O routine IN->R6,OUT->R7

FLOAT R6,R3 ;input new sample -> R3

LDI *+AR2(IR0),AR0 ;selected coefficient set->AR0

CALL FILT ;go to subroutine FILT

FIX R2,R7 ;R7=integer(R2)

BR LOOP ;loop continuously

FILT STF R3,*AR1++% ;newest sample to model delay

LDF 0,R0 ;init R0=0

LDF 0,R2 ;init R2=0

RPTS LENGTH-1 ;multiply LENGTH times

MPYF3 *AR0++,*AR1++%,R0 ;H(N)*X(N)

|| ADDF3 R0,R2,R2 ;in parallel with accum -> R2

(continued on next page)

FIGURE 8.1 Partial program (without coefficients) for implementing eight filters
(FIR8SETP).

listing of the program FIR8SETP, which is a partial program that does not in-
clude the eight sets of coefficients. The complete program FIR8SETS.ASM is
on the accompanying disk, with the eight sets of coefficients incorporated di-
rectly in the program. Consider the program in Figure 8.1.

The starting address of each of the eight sets of coefficients is specified with
COEFF1, COEFF2, . . . , COEFF8. These eight addresses are contained
in a table. The auxiliary register AR0 specifies the starting address of the select-
ed set of coefficients. That address is loaded into AR0 with the instruction LDI
*+AR2(IR0),AR0. This loads the starting address of the coefficient table off-
set by the index register IR0. A value of FN = 3 sets the auxiliary register IR0
to 2 (subtracted by 1) causing the address specified by COEFF3 to be loaded
into AR0. This is the starting address of the third set of coefficients in the table,
which represents a bandpass filter.

A value of FN = 1 would load the first address COEFF1, which is the start-
ing address of the first set of coefficients, which represents a lowpass filter.

Verify both the bandpass filter with FN = 3 and the lowpass filter with
FN = 1.

Interactive Implementation

The program FIR8SETS.ASM (on the accompanying disk) contains the eight
sets of filter coefficients and can be made interactive with a C program. The

8.1 Banks of FIR Filters 225

ADDF R0,R2 ;last accum -> R2

RETS ;return from subroutine

.data ;coefficients section

;LOWPASS COEFFICIENTS - COEFF1

COEFF1 .float 3.6353E-003,-1.1901E-003,-4.5219E-003, 2.6882E-003

.

.

;3-STOPBANDS COEFFICIENTS - COEFF8

COEFF8 .float 3.6964e-002,-1.0804e-001, 1.7129e-001,-1.1816e-001

.

.

XN_ADDR .word XN+LENGTH-1 ;last (newest) input sample

.brstart “XN_BUFF”,64 ;align samples buffer

XN .sect “XN_BUFF” ;section for input samples

.loop LENGTH ;loop length times

.float 0 ;init input samples

.endloop ;end of loop

.end ;end

FIGURE 8.1 (continued)

program FIRALL.ASM (on the accompanying disk) is created by making the
following changes in FIR8SETS.ASM:

1. The assembler directive FN .set 3 is replaced with FN .word
809800h.

2. The instruction LDI FN,IR0 is replaced with the two instructions LDI
@FN,AR4 and LDI *AR4,IR0

The program FIRALL.CPP shown in Figure 8.2 is compiled and linked us-
ing Borland C/C++. This is done in a similar fashion to the programs PC-
COM.CPP and LOOPCOM.CPP, discussed in Chapter 3 in conjunction with the
PC host communicating with the TMS320C31 on the DSK. Execute the pro-
gram FIRALL.EXE (on disk) and enter the selected filter number as shown in
the menu from Figure 8.3. The value entered is passed to the assembly-coded

226 DSP Applications and Projects

FIGURE 8.2 PC host program that interacts with DSK program with 8 sets of coefficients
(FIRALL.CPP).

//FIRALL.CPP - PROGRAM WHICH INTERACTS WITH FIRALL.ASM

#include “dsklib.h”

void main()

{

char *msg; //pointer to any error message if it occurs

MSGS err; //enumerated message for looking up messages

unsigned long hostdata = 0;

clrscr();

Detect_Windows();

Init_Communication(10000);

HALT_CPU(); // Put C31 into spin0 mode

clrscr();

printf(“\n\n”);

printf(“\n Filters with 55 coefficients”);

printf(“\n\n\n 1)..........LOWPASS”);

printf(“\n 2)..........HIGHPASS”);

printf(“\n 3)..........BANDPASS”);

printf(“\n 4)..........BANDSTOP”);

printf(“\n 5)..........2-PASSBANDS”);

printf(“\n 6)..........3-PASSBANDS”);

printf(“\n 7)..........4-PASSBANDS”);

(continued on next page)

program FIRALL.ASM through memory location 809800 (reserved memory
location for the boot loader), from step 1. Then the selected filter number, now
in FN, is loaded into the index register IR0 from step 2.

Verify that the selected filter is implemented.
If you simply change a set of 55 coefficients with a different set of 55 coeffi-

cients, you can use these two interactive programs to implement different fil-
ters. Reassemble only the FIRALL.ASM program. The C program FIRALL.
CPP need not be recompiled, since it downloads and runs FIRALL.DSK. You
will need to recompile/relink FIRALL.CPP if you add more sets of coeffi-
cients and wish to have the appropriate prompts from the C program.

8.2 Multirate Filter 227

printf(“\n 8)..........3-STOPBANDS”);

printf(“\n\n\n Select filter number (1-8) : “);

scanf (“%d”, &hostdata);

putmem(0x809800L, 1, &hostdata);

if((err=Load_File(“firall.dsk”,LOAD))==NO_ERR) //load task

{

RUN_CPU();

}

else

{

msg = Error_Strg(err);

printf(“\r\n%s”,msg); //print error message if it occurs

exit(0);

}

}

FIGURE 8.2 (continued)

FIGURE 8.3 User selection menu for one of eight types of FIR filters.

Extend this project by making use of the external hardware interrupt circuit,
shown in Figure 8.7 and described in Section 8.4, to control the amplitude of a
generated sinusoid. Construct the external hardware circuitry and assemble/run
the program FIR8EXT.ASM (on disk). An FIR filter with two passbands is im-
plemented since the filter number FN is initialized to 5 in the program. Press
the switch in Figure 8.7. This causes an external interrupt to occur, the filter
number FN is incremented to 6, and the corresponding filter with three pass-
bands is implemented.

Verify that each time the switch is pressed, the subsequent filter is imple-
mented. After the eighth filter with the three stopbands is implemented, FN is
reset to 1 on pressing the switch.

Using this scheme, one can “step through” a sequence of options or events;
in this example, the implementation of a series of FIR filters.

8.2 MULTIRATE FILTER

With multirate processing, a filter can be realized with fewer coefficients than
an equivalent single-rate approach. Possible applications include a graphic
equalizer, a controlled noise source, and background noise synthesis.

You can test this project now by first reading the implementation section.

Introduction

Multirate processing uses more than one sampling frequency to perform a de-
sired processing operation. The two basic operations are decimation, which is a
sampling-rate reduction, and interpolation, which is a sampling-rate increase
[10–17]. Multirate decimators can reduce the computational requirements of
the filter. A sampling-rate increase by a factor of K can be achieved with inter-
polation by padding or adding K – 1 zeros between pairs of consecutive input
samples xi and xi+1. A noninteger sampling-rate increase or decrease can be ob-
tained by cascading the interpolation process with the decimation process. For
example, if a net sampling-rate increase of 1.5 is desired, we would interpolate
by a factor of three, padding two zeros between each input sample, and then
decimate with the interpolated input samples shifted by two before each calcu-
lation. Decimating or interpolating over several stages generally results in better
efficiency.

Design Considerations

A binary random signal is fed into a bank of filters that can be used to shape an
output spectrum. The functional block diagram of the multirate filter is shown
in Figure 8.4. The frequency range is divided into 10 octave bands, with each
band being -octave controllable. The control of each octave band is achieved1

�
3

228 DSP Applications and Projects

229

F
IG

U
R

E
 8

.4
F

un
ct

io
na

l b
lo

ck
 d

ia
gr

am
 o

f
m

ul
ti

ra
te

 f
il

te
r

w
it

h
10

 b
an

ds
.

with three filters. The coefficients of these filters are combined to yield a com-
posite filter with one set of coefficients for each octave. Only three unique sets
of coefficients (low, middle, and high) are required , because the center frequen-
cy and the bandwidth are proportional to the sampling frequency. Each of the

-octave filters has a bandwidth of approximately 23% of its center frequency,
a stopband rejection of greater than 45 dB, with an amplitude that can be con-
trolled individually. This control provides the capability of shaping an output
pseudorandom noise spectrum. Forty-one coefficients are used for the highest

-octave filter to achieve these requirements.
In order to meet the filter specifications in each region with a constant sam-

pling rate, the number of filter coefficients must be doubled from one octave
filter to the next-lower one. As a result, the lowest-octave filter would require 41
× 29 coefficients. With 10 filters ranging from 41 coefficients to 41 × 29 coeffi-
cients, the computational requirements would be considerable. To overcome
these computational requirements, the multirate approach shown in Figure 8.4
is implemented.

The noise generator is a software-based implementation of a maximal length
sequence technique used for generating pseudorandom numbers, and was intro-
duced in Chapter 3. The output of the noise generator provides uncorrelated
noise input to each of the 10 sets of FIR bandpass filters shown in Figure 8.4. In
Chapter 3, we developed two program versions of the pseudorandom noise gen-
erator, and we also used the generated noise sequence as input to an FIR filter in
Chapter 4.

Because each -octave filter can be scaled individually, a total of 30 levels
can be controlled. The output of each octave bandpass filter, except the last one,
becomes the input to an interpolation lowpass filter, using a 2:1 interpolation
factor. The ripple in the output spectrum is minimized by having each adjacent

-octave filter with crossover frequencies at the 3-dB points.
The center frequency and bandwidth of each filter are determined by the

sampling rate. The sampling rate of the output is chosen to be 16,384 Hz. The
highest-octave filter is processed at 16,384 samples per second, and each suc-
cessively lower-octave band is processed at half the rate of the next-higher band.

Only three separate sets of 41 coefficients are used for the lower, middle, and
higher -octave bands. For each octave band, the coefficients are combined as
follows:

Hij = (Hl j)(L3i–2) + (Hmj)(L3i–1) + (Hhj)(L3i)

where i = 1, 2, . . . , 10 bands and j = 0, 1, . . . , 40 coefficients. L1, L2, . . . , L30

represent the level of each -octave band filter, and Hl j, Hmj, and Hhj represent
the jth coefficient of the lower, middle, and higher �

1

3
�-octave band FIR filter. For

example, for the first band, with i = 1

H0 = (Hl 0)(L1) + (Hm0)(L2) + (Hh0)(L3)

1
�
3

1
�
3

1
�
3

1
�
3

1
�
3

1
�
3

230 DSP Applications and Projects

H1 = (Hl 1)(L1) + (Hm1)(L2) + (Hh1)(L3)
·
·
·
H40 = (Hl 40)(L1) + (Hm40)(L2) + (Hh40)(L3)

and for band 10, with i = 10

H0 = (Hl 0)(L28) + (Hm0)(L29) + (Hh0)(L30)
·
·
·
H40 = (Hl 40)(L28) + (Hm40)(L29) + (Hh40)(L30)

For an efficient design, lower-octave bands are processed at a lower sam-
pling rate, then interpolated up by a factor of two to a higher sampling rate, to
be summed with the next-higher octave band filter output, as shown in Figure
8.4. Each interpolation filter is a 21-coefficient FIR lowpass filter, with a cutoff
frequency of approximately one-fourth of the sampling rate. For each input, the
interpolation filter provides two outputs, or

y1 = x0 I0 + 0I1 + x1 I2 + 0I3 + . . . + x10 I20

y2 = 0I0 + x0I1 + 0I2 + x1 I3 + . . . + x9I19

where y1 and y2 are the first and second interpolated outputs, respectively, xn

are the filter inputs, and In are the interpolation filter coefficients. The inter-
polator is processed in two sections to provide the data-rate increase by a fac-
tor of two.

For the multirate filter, the approximate number of multiplication operations
(with accumulation) per second is

MAC = (41 + 21)(32 + 64 + 128 + 256 + 512 + 1,024 + 2,048 + 4,096 + 8,192)

+ (41)(16,384) � 1.68 × 106

Note that no interpolation is required for the last stage.
To find the approximate equivalent number of multiplications for the single-

rate filter to yield the same impulse response duration, let

NsTs = NmTm

where Ns and Nm are, respectively, the number of single-rate and multirate coef-
ficients, and Ts and Tm are, respectively, the single-rate and multirate sampling
periods. Then

Ns = Nm

Fs
�
Fm

8.2 Multirate Filter 231

where Fs and Fm are, respectively, the single-rate and multirate sampling fre-
quencies. For example, for band 1,

Ns = (41)(16,384/32) = 20,992

using Fs as the sampling rate of the highest band, and Fm = 32 for the first band.
For band 2

Ns = (41)(16,384/64) = 10,496

For band 3, Ns = 5,248; for band 10, Ns = 41. The total number of coefficients
for the single-rate filter would then be

Ns = 20,992 + 10,496 + . . . + 41 = 41,943

The approximate number of multiplications (with accumulation) per second for
an equivalent single-rate filter is then

MAC = NsFs = 687 × 106

which would considerably increase the processing time and data storage re-
quirements.

A brief description of the main processing follows, for the first time through.

Band 1
1. Run the bandpass filter and obtain one output sample.
2. Run the lowpass interpolation filter twice and obtain two outputs. The in-

terpolator provides two sample outputs for each input sample.
3. Store in buffer B2’s first two memory locations. Three buffers are utilized

in this scheme: buffers B1 and B2, each of size 512, and buffer B3 of size 256.

Band 2
1. Run bandpass filter two times and sum with the two previous outputs

stored in buffer B2, from band 1.
2. Store summed values in the same memory locations of B2 again.
3. Pass sample in B2’s first memory location to interpolation filter twice and

obtain two outputs.
4. Store these two outputs in buffer B3.
5. Pass sample in B2’s second memory location to interpolation filter twice

and obtain two outputs.
6. Store these two outputs in B3’s third and fourth memory locations.

Band 3
1. Run bandpass filter four times and sum with the previous four outputs

stored in B3 from band 2.

232 DSP Applications and Projects

2. Store summed values in B3’s first four memory locations.
3. Pass sample in B3’s first memory location to interpolation filter twice and

obtain two outputs.
4. Store these two outputs in buffer B2’s first two memory locations.
5. Pass sample in B3’s second memory location to interpolation filter twice

and obtain two outputs.
6. Store these two outputs in buffer B2’s third and fourth memory locations.
7. Repeat steps 3 and 4 for the other two samples in B3’s third and fourth

memory locations. Store each of these samples, obtain two outputs, and store
each set of two outputs in B2’s fifth through eighth memory locations.

·
·
·

Band 10
1. Run bandpass filter 512 times and sum with the previous 512 outputs

stored in B2, from band 9.
2. Store summed values in B2’s memory locations 1 through 512.

No interpolation is required for band 10. After all the bands are processed,
wait for the output buffer B1 to be empty. Then switch the buffers B1 and B2—
the last working buffer with the last output buffer. The main processing is then
repeated again.

A time of approximately 5.3 ms was measured for the main processing loop
using the following scheme.

a) Output to an oscilloscope a positive value set at the beginning of the main
processing loop.

b) At the end of the main processing loop, negate the value set in the previ-
ous step. Output this negative level to the oscilloscope.

c) The processing time is the duration of the positive level set in step a) and
can be measured with the oscilloscope.

The highest sampling rate (in kilosamples per second) is the ratio of the
number of samples and the processing time, and is approximately

Fs(max) = = 96.6 ksps

Implementation

Test the multirate filter with the program MR7DSK.ASM, which is on the ac-
companying disk. This program is a 7-band version of the 10-band multirate fil-
ter. Only 2K words of internal memory are available on the TMS320C31 with
no external memory available on the DSK board. To implement the 10-band
version, over 3K words of memory for code and data are required. The 10-band

512
�
5.3 ms

8.2 Multirate Filter 233

version MR10SRAM.ASM (on the accompanying disk) is implemented using the
daughter board with the external memory described in Appendix C.

All the levels or scale values are initialized to zero in MR7DSK.ASM. These
levels, L1–L21 are specified in the program by SCALE_1L, SCALE_1M,
SCALE_1U, . . . , SCALE_7M, SCALE_7U, which represent the lower,
middle, and upper �

1

3
�-octave scales for the 7 bands.

Set SCALE_7M (L20) to 1 in order to turn ON the middle �
1

3
�-octave filter of

band 7. The sampling frequency is set for approximately 8 kHz in AICSEC,
with the values of A and B as 126Ch and 4892h, respectively (calculated in
Chapter 3).

Figure 8.5 shows the frequency response of the middle �
1

3
�-octave filter of

band 7, with a center frequency of one-quarter the sampling frequency, or 2
kHz.

Turn on the middle �
1

3
�-octave filter of band 6 by setting SCALE_6M to 1, and

reinitialize band 7 to zero. Verify a bandpass filter with a center frequency of 1
kHz, which is one-quarter of the effective sampling rate of 4 kHz for band 6.
The middle �

1

3
�-octave of band 5 has a center frequency of 512 Hz, which is one-

quarter the effective sampling rate of 2 kHz. Turn on all three �
1

3
�-octave filters of

band 4 (all other bands set to zero) and verify a wider bandwidth bandpass filter
with a center frequency of approximately 256 Hz. Note that the middle �

1

3
�-octave

band 1 filter, with SCALE_1M set to 1 and all others to 0, yields a bandpass fil-
ter centered at 32 Hz.

234 DSP Applications and Projects

FIGURE 8.5 Frequency response of middle -octave of band 7 filter using 7 bands.1
�
3

Divide the AIC master clock by 16 in the AIC communication program
AICCOM31.ASM by changing the instruction LDI 1,R0 to LDI 16,R0.
This was illustrated in Chapter 1. Reassemble the program MR7DSK.ASM, not
AICCOM31.ASM. The overall sampling rate of the seventh band is approxi-
mately 512 Hz, which is one-sixteenth of the originally set sampling rate. Verify
that band 1 now yields a bandpass filter centered at 2 Hz. The frequency re-
sponse of this band 1 filter centered at 2 Hz is as selective or sharp as the filter’s
response shown in Figure 8.5.

Note that it is possible to obtain bandpass filters centered at frequencies be-
tween 1 Hz and one-quarter the sampling rate set for the highest band, by turn-
ing ON the appropriate band.

8.3 PASS/FAIL ALARM GENERATOR

An alarm generator can be achieved by generating different tones. Chapter 5 il-
lustrates the generation of a sinusoidal waveform or tone based on the recursive
difference equation. Figure 8.6 shows the program ALARMGEN.ASM, which
implements this alarm generator.

8.3 Pass/Fail Alarm Generator 235

;ALARMGEN.ASM - PASS/FAIL ALARM GENERATOR

.start “intsect”,0x809fC5 ;starting addr for interrupt

.start “.text”,0x809900 ;starting addr for text

.start “.data”,0x809C00 ;starting addr for data

.include “AICCOM31.ASM” ;AIC comm routines

.sect “intsect” ;section for interrupt vector

BR ISR ;XINT0 interrupt vector

.data ;assemble into data section

AICSEC .word 162Ch,1H,3872h,67H ;AIC data

TIME_P .set 3000 ;length of pass signal

TIME_R .set 2 ;# of repetitions of fail signal

TIME_F .set 3000 ;length of fail signal

SEED .word 7E521603H ;initial seed value

A1 .float +1.618034 ;A coefficient for 1-kHz

A2 .float +0.618034 ;A coefficient for 2-kHz

A4 .float -1.618034 ;A coefficient for 4-kHz

Y1 .float +0.5877853 ;C coefficient for 1-kHz

Y2 .float +0.9510565 ;C coefficient for 2-kHz

(continued on next page)

FIGURE 8.6 Program for pass/fail alarm generator (ALARMGEN.ASM).

236 DSP Applications and Projects

Y4 .float +0.5877853 ;C coefficient for 4-kHz

B .float -1.0 ;B coefficient

Y0 .float 0.0 ;initial condition

SCALER .float 1000 ;output scaling factor

.entry BEGIN ;start of code

.text ;assemble into text section

BEGIN LDP AICSEC ;init to data page 128

CALL AICSET_I ;initialize AIC

LDI @SEED,R0 ;R0 = initial seed value

PUSH R0 ;save R0 into stack

LOOP_N POP R0 ;restore R0 from stack

LDI R0,R4 ;load seed into R4

LSH -31,R4 ;move bit 31 to LSB =>R4

LDI R0,R2 ;R2 = R0 = SEED

LSH -30,R2 ;move bit 30 to LSB =>R2

ADDI R2,R4 ;add bits (31+30) =>R4

LDI R0,R2 ;R2 = R0 = SEED

LSH -28,R2 ;move bit 28 to LSB =>R2

ADDI R2,R4 ;add bits (31+30+28) =>R4

LDI R0,R2 ;R2 = R0 = SEED

LSH -17,R2 ;move bit 17 to LSB =>R2

ADDI R2,R4 ;add bits(31+30+28+17)=>R4

AND 1,R4 ;mask LSB of R4

LSH 1,R0 ;shift SEED left by 1

OR R4,R0 ;put R4 intoLSB of R0

PUSH R0 ;save R0 into STACK

LDI R4,R4 ;store integer R4

BNZ LOOP_P ;to PASS loop if # 0

BZ LOOP_F ;to FAIL loop if 0

;SEQUENCE FOR PASS SIGNAL => 4 kHz (if a 1)

LOOP_P PUSH R4 ;store R4 into stack

LDI TIME_P,R6 ;length of PASS signal

PUSH R6 ;save R6 into stack

LDF @Y0,R1 ;initially R1 = Y(0) = 0

LDF @Y4,R1 ;initially R1 = Y(1)

LDF @A4,R3 ;R3=A

MPYF3 R3,R1,R1 ;R1=AxY(1)

LDF @Y4,R0 ;R0=Y2 (previously Y1) due to delay

LDF @B,R4 ;R4=B

(continued on next page)

FIGURE 8.6 (continued)

8.3 Pass/Fail Alarm Generator 237

BR WAIT ;go wait for interrupt

;SEQUENCE FOR 2-kHz FAIL SIGNAL (if a 0)

LOOP_F PUSH R4 ;save R4 into stack

LDI TIME_R,R6 ;# of repetitions of FAIL signal

PUSH R6 ;save R6 into stack

LOOP_F2 LDI TIME_F,R6 ;length of FAIL signal

LDF @Y0,R1 ;initially R1 = Y(0) = 0

LDF @Y2,R1 ;initially R1 = Y(1)

LDF @A2,R3 ;R3=A

MPYF3 R3,R1,R1 ;R1=A x Y(1)

LDF @Y2,R0 ;R0=Y2 (previously Y1) due to delay

LDF @B,R4 ;R4=B

BR WAIT ;go wait for interrupt

;SEQUENCE FOR 1-kHz FAIL SIGNAL (if a 0, after 2-kHz signal)

LOOP_F1 LDI TIME_F,R6 ;length FAIL signal

LDF @Y0,R1 ;initially R1 = Y(0) = 0

LDF @Y1,R1 ;initially R1 = Y(1)

LDF @A1,R3 ;R3=A

MPYF3 R3,R1,R1 ;R1=A x Y(1)

LDF @Y1,R0 ;R0=Y2 (previously Y1) due to delay

LDF @B,R4 ;R4=B

;Y(n) FOR n >= 3

WAIT IDLE ;wait for interrupt

BR WAIT ;branch to wait

;INTERRUPT VECTOR

ISR LDF R1,R2 ;R2 = A x Y1

MPYF3 R3,R1,R1 ;R1 = A(A x Y1)

MPYF3 R4,R0,R0 ;R0 = B x Y2

ADDF R0,R1 ;R1 = output

;OUTPUT ROUTINE

PUSH R6 ;save R6

LDF R1,R7 ;store R1 into R7

MPYF @SCALER,R7 ;scale output

FIX R7,R7 ;convert R7 into integer

CALL AICIO_I ;AIC I/O routine,output R7

LDF R2,R0 ;R0 = A x Y1 for next n

POP R6 ;restore R6

SUBI 1,R6 ;decrement time counter

BZ CONT ;continue TIME_() = 0

(continued on next page)

FIGURE 8.6 (continued)

The pseudorandom noise generator program PRNOISE.ASM, or
PRNOISEI.ASM in Chapter 3, produces a 1 or 0 (before scaling), and deter-
mines the frequency of the sinusoid to be generated. The scheme is to associ-
ate a 1 with an acceptable device and a 0 with a defective one. When the noise
generator output is a 1, a 4-kHz sinusoid is generated, and when the noise
generator output is a 0, a 2-kHz sinusoid followed by a 1-kHz sinusoid are
generated.

The coefficients A and C (B = –1) in the recursive difference equation are
calculated for a sampling frequency of 10 kHz and are set in the program.

The random noise generator produces the following sequence: 1, 1, 1, 1, 0, 1,
0, This causes the alarm program to generate the following sequence of
tones with the frequencies: 4 kHz, 4 kHz, 4 kHz, 4 kHz (due to the first four
values of 1’s), followed by 2 kHz, 1kHz, 2 kHz, 1 kHz (due to the fifth value of
0), followed by 4 kHz (due to the sixth value of 1), followed by 2 kHz, 1kHz,
2kHz, 1kHz (due to the seventh value of 0), and so on. Four “fail” signals are
generated for each noise sample of zero, because TIME_R = 4 in the program
represents the number of times the fail signal is generated. A value of TIME_R
= 1 causes the generation of the 2-kHz fail signal, not the 1-kHz signal, when a
noise sample of zero is produced.

238 DSP Applications and Projects

FIGURE 8.6 (continued)

RETI ;return from interrupt

CONT POP R6 ;restore integer value from stack

POP R6 ;restore next stack value to R6

POP R4 ;restore next stack value to R4

BNZ LOOP_N ;branch for next sample

PUSH R4 ;restore R4 into stack

SUBI 1,R6 ;decrement repetition counter

LDI R6,R1 ;load R6 into R1

PUSH R6 ;save R6 into stack

AND 1,R1 ;logical AND of 1 & R1

BNZ LOOP_F1 ;go to 1k Hz FAIL loop

POP R6 ;restore R6 stack

BNZD LOOP_F2 ;branch to 2 kHz FAIL signal

PUSH R6 ;save R6 into stack

NOP ;no operation

NOP ;no operation

POP R6 ;restore R6 from stack

POP R4 ;restore R4 from stack

BZ LOOP_N ;get next sample

.end ;end

The amplitude of the 4-kHz “pass” signal is smaller (less pronounced) than
the amplitude of the 2-kHz and 1-kHz “fail” signals.

Larger values for TIME_F and TIME_P would increase the duration of the
generated tones, making it easier to hear the different pitches.

Run this program and verify these results.

8.4 EXTERNAL INTERRUPT FOR CONTROL

This project uses a hardware or external interrupt to control the amplitude of a
sinewave. The sinewave generator using 4 points was introduced in Chapter 3 in
the Experiment section. It is extended so that the amplitude of the generated
sinewave is controlled using external interrupt.

The TMS320C31 supports a non-maskable external RESET signal, internal
interrupts and four external maskable interrupts. The external interrupts are
level-triggered using the status register for triggering. For a CPU interrupt to
occur, the global interrupt enable GIE bit in the status register must be set and
the interrupt flag IF register must also be set for interrupt enabled.

Figure 8.7 shows the external interrupt circuit. It includes a switch and a
one-shot multivibrator chip. The two 32-pin connectors JP2 and JP6 along the
edge of the DSK board provide the interrupt pin INT3, VCC, and ground.

Figure 8.8 shows a listing of the program EISINE.C which implements the
amplitude control through hardware or external interrupt. Three interrupt func-
tions are utilized. The serial port interrupt 05 generates the sinewave using a
table look-up with 4 points. The serial port interrupt is used to determine the
amount of time that has passed since an external interrupt occured, and turns the
external interrupt back on after a desired delay count is reached.

The hardware external interrupt 04 increments the amplitude of the
sinewave. Each time the switch is pressed, an external interrupt occurs, and the
amplitude of the sinewave is incremented by 10%, through 10 levels. Then, the
amplitude becomes zero.

Interrupt 10 specifies timer 1 interrupt. It provides deglitching, instead of
using logic to prevent additional interrupts from occurring within a desired in-
terval. Otherwise, several interrupts would occur. Switch bounce is accom-
plished by turning off the external interrupt for a period of time after it is first
detected.

The period value of 0x30D4 = 12,500 corresponds to a rate of

rate = 12.5 MHz/(2 × period) = 500 Hz

for a sample period of 2 ms. A delay count is incremented every 2 ms. When
this delay count reaches 500, the external interrupt is turned back on. As a re-
sult, only one external interrupt can be acknowledged during an interval of (500
× 2 ms) = 1 s.

8.4 External Interrupt for Control 239

240

F
IG

U
R

E
 8

.7
E

xt
er

na
l i

nt
er

ru
pt

 c
ir

cu
it

.

8.4 External Interrupt for Control 241

/*EISINE.C - SINE WITH 4 POINTS USING EXTERNAL INTERRUPT */

#include “aiccomc.c” /*AIC comm routines */

int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC data */

int data_out, loop = 0; /*declare global variables */

int sin_table[4] = {0,1000,0,-1000}; /*values for sinewave*/

int ampt_ctrl = 10;

int delay_cnt = 0;

void c_int10()

{

if (delay_cnt < 500)

delay_cnt++;

else if (delay_cnt == 500)

{

asm(“ AND 0FFFFFFF7h,IF”); /*set INT3 = 0 */

asm(“ OR 00000008h,IE”); /*set EINT3 = 1*/

}

else asm(“ OR 00000008h,IE”);

}

void c_int04()

{

asm(“ AND 0FFFFFFF7h,IE”); /*set EINT3 = 0*/

delay_cnt = 0;

if (ampt_ctrl < 10)

ampt_ctrl++;

else ampt_ctrl = 0;

}

void c_int05()

{

int out;

out = sin_table[loop] * ampt_ctrl * 0.1;

PBASE[0x48] = out << 2; /*output value from sine table*/

if (loop < 3) ++loop; /*increment loop counter < 3 */

else loop = 0; /*reset loop counter */

}

main()

{

FIGURE 8.8 External interrupt program for amplitude control of sinewave (EISINE.C).

(continued on next page)

Another version of this program is on disk as SINE4INT.ASM with only
two interrupt functions: the hardware and the serial interrupts. It uses the sam-
ple rate of the serial port to achieve the desired delay for deglitching as was ac-
complished with interrupt 10.

8.5 MISCELLANEOUS APPLICATIONS AND PROJECTS

This section briefly discusses a number of projects that have been implemented
by a number of students and described in [1–6]. These projects are based on the
TMS320C30 EVM and can be extended for the DSK.

1. Acoustic Direction Tracker

This project discusses an acoustic signal tracker capable of tracking an audio
source radiating a signal. It uses two microphones to capture the signal. From
the delay associated with the signal reaching one of the microphones before the
other, a relative angle where the source is located can be determined. The direc-
tion of the signal is displayed on the PC monitor and continuously updated.

A radiated signal at a distance from its source can be considered to have a
plane wavefront, as shown in Figure 8.9. This allows the use of equally spaced
sensors in a line to ascertain the angle at which the signal is radiating. While
many microphones can be used as acoustical sensors, only two are used in this
project. Since one microphone is closer to the source than the other, the signal
received by the more-distant microphone is delayed in time. This time-shift cor-
responds to the angle where the source is located and the relative distance be-
tween the microphones and the source.

The angle c = arcsin(a/b), where the distance a is the product of the speed of
sound and the time delay (phase/frequency). A simulation of the source-micro-
phone relationship is obtained as shown in Figure 8.10 with the program
SIM2.C (on the accompanying disk). The lower-left window in Figure 8.10 in-
dicates the relative position of the source and the two microphones, represented,
respectively, by the circle on the lower-left side and the small vertical line on the
middle-right side. Press ALT-X to increase the distance between the two micro-
phones.

242 DSP Applications and Projects

PBASE[0x38] = 0x000030D4; /*set timer 1 period */

PBASE[0x30] = 0x000003C1; /*set timer 1 control register*/

asm(“ OR 00000208h,IE”); /*enable EINT3 & ETINT1*/

AICSET_I(); /*configure AIC */

for (;;); /*wait for interrupt */

}

FIGURE 8.8 (continued)

From Figure 8.10, one of the signals (gray) leads the other signal (blue). This
indicates that the source is closer to the bottom microphone. Use the up-arrow
key (from the keypad) to place the source position in line or in the middle of the
two microphones. This represents that the two signals are now in phase. Use the
up-arrow key to place the source above the microphones and verify that the sig-
nal that was leading before is now lagging.

Figure 8.11 shows a block diagram of the acoustic signal tracker. Two 128-
point arrays of data are obtained, cross-correlating the first signal with the sec-
ond one and then the second signal with the first one. The resulting cross-corre-
lated data is decomposed into two halves, each transformed using the 128-point
real-valued FFT function described in Chapter 6. The resulting phase is the
phase difference of the two signals. Since two inputs are required, the input/out-
put system described in Appendix D may be useful for this project.

This project was implemented with the TMS320C30-based EVM [3]. An ex-
ternal AIC board, connected through a second serial port available on the EVM
provides the required second input [1]. The alternate use of the primary and
auxiliary inputs on the same AIC was found to be inefficient. The acoustic
tracker algorithms were verified with MATLAB, described in Appendix B, be-
fore a real-time implementation. This project was tested by positioning a speak-
er a few feet from the two microphones separated by one foot. The speaker re-
ceived a 712-Hz signal from a function generator. The results are displayed on
the PC monitor: a plot representing the track of the source-speaker over time as
the speaker is slowly shifted from one side of the microphones to the other side.
The PC monitor also displays a plot of both the cross-correlation and the magni-
tude of the cross-correlation of the two microphone signals.

8.5 Miscellaneous Applications and Projects 243

FIGURE 8.9 Signal reception with two microphones.

244

F
IG

U
R

E
 8

.1
0

P
lo

t o
f

tw
o

si
m

ul
at

ed
 s

ig
na

ls
 r

ec
ei

ve
d

by
 th

e
m

ic
ro

ph
on

es
.

245

F
IG

U
R

E
 8

.1
1

B
lo

ck
 d

ia
gr

am
 o

f
ac

ou
st

ic
 s

ig
na

l t
ra

ck
er

.

2. Harmonic Analyzer

In a power system, the supplied voltage and the resulting load currents can be
quite distorted. This is referred to as harmonic distortion. A large source of har-
monic distortion is an AC-to-DC converter (rectifier) used in power supplies,
etc. Another source of harmonic distortion is the switching-mode power supply
used in microprocessor-based electronic equiment. While this type of power
supply is more efficient and less expensive than the bulky power supplies, it is
highly nonlinear and can be a major source of harmonic distortion and noise
[18]. Other nonlinear sources of harmonics include arc furnaces, magnetic-satu-
ration transformers, and fluorescent lights. As the use of nonlinear load be-
comes more widespread on the power-distribution system, the consequences of
the resulting voltage and current distortions are becoming more significant.
Harmonic distortion can result in overheating conductors, derating of trans-
formers, generators, and motors, and noise and resonance problems in electrical
distribution and communication systems. The need for real-time on-site data ac-
quisition and analysis can be used by the electric utility industry to enable accu-
rate measurements of harmonic distortion [3]. The harmonic analyzer could be
installed between the electric utility and the customer or within the customer’s
facility to determine which equipment is producing the harmonic problems.

Figure 8.12 shows a block diagram of the major system components of the
harmonic analyzer. Potentially dangerous voltages must be isolated from the
digital electronic by a clamp-on current transformer (CT) and a potential trans-

246 DSP Applications and Projects

FIGURE 8.12 Block diagram of harmonic analyzer.

former (PT). The input voltage is the input to the AIC on board the EVM and
the input current is a second input to an external AIC board [3]. The signal pro-
cessing flow is illustrated in Figure 8.13. Results of the voltage and current
waveforms are displayed on the PC monitor. A 100-watt incandescent light bulb
as a linear load shows that minimal (if any) harmonics are generated. In con-
trast, the current waveform of a 15-watt fluorescent light bulb is not sinusoidal,
and harmonics are generated, as displayed from the frequency plot of the cur-
rent. A 512-point FFT was performed using the real-valued FFT function de-
scribed in Chapter 6.

This project requires two inputs and can be extended for the DSK. The I/O
board described in Appendix D provides for two inputs.

Possible enhancements to this project include seven in lieu of two channels,
which would allow for the measurement of both voltage and current on three
phases, and the neutral.

8.5 Miscellaneous Applications and Projects 247

FIGURE 8.13 Signal processing flow of harmonic analyzer.

3. Speech Processing for Identification

Biometrics is a technology used for the verification or recognition of an individ-
ual, and employs methods for automated identification [2,19]. These methods
include techniques for identifying an individual using physiological or behav-
ioral characteristics. Physiological characteristics make use of the individual’s
hand, face, eye, and fingerprint. Behavioral characteristics such as voice and
signature may vary from time to time, but are in general less costly to imple-
ment. This project focuses on speech as a means of verification in which an in-
dividual’s identification is either accepted or rejected.

Speech information is primarily conveyed by the short time spectrum, the
spectral information contained within a small time period. A direct approach is
to uniformly chop a word into segments, with the idea that a subset of the words
is enough to be recognized using match filter techniques. Recognition requires
the comparison of stored characteristics with the characteristics presented.

This project is tested by having an individual speak a word, which is digi-
tized, processed, and compared with a previously stored pattern. A PC host pro-
gram executes a cross-correlation algorithm and a TMS320-based EVM pro-
gram implements a 512-point real-valued FFT algorithm. A Hanning window
function with 50% overlap allows the frequency data to be continuous between
segments. Figure 8.14 displays on the PC monitor the speech data for identifica-
tion. The upper plot (RECORD1) represents the spoken word GOD and the mid-
dle plot (RECORD2) represents the stored template of the word GOD. The lower
plot (COMPARE) compares or cross-correlates the two previous sets of data.
Cross-correlation is achieved by multiplying each element in the first segment
of RECORD1 data by each element of the three segments of RECORD2. This
process is repeated for the other two segments of RECORD1 to provide three ar-
rays of (3 × 512) points and indicate like-frequency components between the
data of RECORD1 and RECORD2. Figure 8.14 designates a match. The level of
a match can be adjusted so that if the correlation result reaches a predetermined
level, a match is specified.

4. FFT-Based Security System

The scheme in this project is to simulate and detect the presence of an intruder
in each of four monitored zones. A sensor circuit, designed and built with in-
frared modules, provides a composite waveform signal that contains frequency
information related to the status of a security system. The FFT of this signal de-
termines which zones are detecting the presence of an intruder. The sensor cir-
cuit includes infrared detection modules, frequency division counters, logic
gates, and a summing amplifier [3]. The infrared detection modules consist of
an infrared diode and transistor pair contained in a single package. The mod-
ule’s transistor detects the infrared wave emitted by the diode if the transmission
path between the diode–transistor pair is unobstructed. If an instruder is present,

248 DSP Applications and Projects

the transmission path is blocked and the infrared wave is not detected. The com-
parator’s output level is a high or a low, based on the transistor’s collector-to-
ground voltage compared to a known reference voltage, which corresponds to
the presence or the absence of an intruder.

The frequency-division counters divide down a 4-MHz oscillator into four
distinct square waves with the following frequencies: 1, 2, 2.5, and 4 kHz. Each
frequency represents one of four zones that the security system monitors. The
summing amplifier mixes and amplifies the frequencies at its input into one
composite signal, which becomes the AIC input. If no intruder is detected, all
four zone frequencies are passed to the summing amplifier. If an intruder is de-
tected, the zone frequency associated with the detector sensing the intruder is
eliminated from the composite signal, or prevented from reaching the output of
the detector circuit.

The real-valued FFT function performs a 128-point FFT on the composite
signal from the infrared circuit. From the resulting magnitude response, a PC
host program determines the frequencies present. For example, if the transmis-
sion paths of the 1-kHz and the 4-kHz sensors are blocked, an Alert message
flashes on the PC monitor in the stations associated with these two frequencies.

8.5 Miscellaneous Applications and Projects 249

FIGURE 8.14 Speech data for identification.

Projects Implemented With the TMS320C30 EVM Described
in Reference 1

The following 11 application projects were implemented with the TMS320C30-
based EVM and are described in Reference 1.

1. Parametric Equalizer. A parametric equalizer is basically an audio-fre-
quency shaper similar to the more popular graphic equalizer. The equalizer im-
plemented consists of 16 different sets of filters, each with two passbands that
are used to increase or decrease the amplitude of a selected range of frequen-
cies. Each band is controlled independently of the other, with amplitude gain or
attenuation and adjustable center frequency and bandwidth. The first project
with the eight sets of FIR filters, described in this chapter, evolved from the
Parametric Equalizer project.

2. Adaptive Notch Filter Using TMS320C30 Code. Three types of filters are
implemented to illustrate the reduction of a 60-Hz artifact in an electrocardio-
gram (ECG) signal: a 60-Hz notch filter and two adaptive filters, one with two
weights, as discussed in Chapter 7. Sinusoidal 60-Hz interference is a frequent
problem in electrocardiographic (ECG) monitoring, creating baseline artifacts
that can obscure the true ECG waveform and hinder diagnostic interpretation of
the ECG. The ECG is a representation of the electrical impulses that are associ-
ated with cardiac muscle contraction and relaxation. Figure 8.15 is a display of
an ECG monitor initially showing the 60-Hz sinusoidal noise before adaptation,
and the reduction of this noise in the latter part of the waveform after adapta-
tion. The negative spikes represent a 2-Hz ECG signal.

3. Adaptive Filter for Noise Cancellation Using C Code. This project is a
real-time implementation of the adaptive predictor structure described in Chap-
ter 7. To obtain the delay, a table-lookup scheme is used. The input consists of a
2-kHz desired signal with added random noise and the output is shown to con-
verge to the 2-kHz input signal.

4. Swept Frequency Response. The digital oscillator discussed in Chapter 5
is extended in this project to include a frequency-sweep feature in C code. The
project is tested by using the output-swept frequency from the EVM as input to
a second-order bandpass R-L-C analog filter and the analog filter’s output as in-
put to the EVM. The PC monitor displays the frequency response of the second-
order analog filter.

5. Multirate Filter. This project implements on the EVM the multirate filter
described in Section 8.2.

6. Introduction to Image Processing: Video Line Rate Analysis. This project
analyzes a video signal at the horizontal (line) rate using C code. Interactive al-
gorithms commonly used in image processing for filtering, averaging, and edge
enhancement are utilized for this analysis. The source of the video signal is a
charge coupled device (CCD) camera as input to a module designed and built
for this project. This module includes flip-flops, logic gates, an ADC, and a 9.8-
MHz clock [1,6]. Figure 8.16 (a) shows a display on the PC monitor screen of

250 DSP Applications and Projects

one horizontal video line signal, with a 500-kHz sixth-order IIR lowpass filter
on in Figure 8.16 (b), and with edge enhancement algorithm on in Figure 8.16
(c). Note that the function key F4 turns on a 3-MHz lowpass filter, passing
higher-frequency components.

7. PID Controller. This project implements a digital speed-control system
for a servomotor using a well-known proportional, integral, and derivative
(PID) control algorithm in C code. The system includes a DC motor used as a
servomotor and a tachgenerator to translate speed into voltage. The structure of
the PID controller, the block diagram, and the driver circuit of the control sys-
tem are described in References 1 and 4. The user is prompted to enter the pro-
portional, integral, and derivative gain constants. When the desired speed is ob-
tained, the output of the tachgenerator remains constant until the system is
disturbed. If friction is applied, the algorithm increases an output control volt-
age, so that the desired speed is maintained. Figure 8.17 shows the effects of
PID gain constants on the motor speed, with proportional, integral, and deriva-
tive gain constants of 10, 0.01, and 50, respectively.

8. Wireguided Submersible. A wireguided submersible system is controlled
via a wire, enabling the submersible to be steered in the water. The control sends
signals of different frequencies to the submersible. The submersible is maneu-
vered based on the specific frequency of the received signal. This project, im-
plemented in C, transforms a received signal from a function generator using a
512-point real-valued FFT. The PC monitor screen displays the simulated sub-
mersible course, with dots on the screen “moving” to the right or to the left de-
pending on whether the received signal is 1 or 2 kHz, respectively. Another indi-
cator that represents the depth moves up or down depending on whether the
received signal is 3 or 4 kHz, respectively. Outside a frequency range set in the
program, the dots “move” in a straight line [1,4].

This project can be extended in many ways. A microphone can be used as the
input control. The submersible can filter out any noise received with a control
signal. Multiple frequencies can be sent down the wire to the submersible,
which would then aknowledge the received control signal and specify the re-

8.5 Miscellaneous Applications and Projects 251

FIGURE 8.15 Adaptive filtering of 60-Hz noise displayed on ECG monitor.

(a)

(b)

(c)

FIGURE 8.16 PC display of one horizontal video line signal (a) with no image processing
algorithm on; (b) with 500-kHz lowpass filter on; (c) with edge enhancement algorithm on.

IR
E

 u
ni

ts
IR

E
 u

ni
ts

IR
E

 u
ni

ts

sponse or the course being followed. Also the duration of the control signal can
specify the course to be taken.

9. Frequency Shift Using Modulation. In this project, a 1-kHz input is used
to generate a 1.001, 2, 3, or 4 kHz modulated signal, implemented in C code
[1,4]. The modulated frequency signal is y(n) = xcos(2�nf/Fs), where x is the 1-
kHz input signal used as a carrier frequency signal and f is the desired shifted
frequency. The modulated signal y(n) becomes the input to an IIR filter selected
among four sixth-order IIR bandpass filters, centered at 1, 2, 3, and 4 kHz, re-
spectively.

10. Four-Channel Multiplexer For Fast Data Acquisition. A four-channel
multiplexer module is designed and built for this project, implemented in C
code [1,4]. It includes an 8-bit flash ADC, a FIFO, a MUX, and a 2-MHz crystal
oscillator. An input sinusoid is acquired through one of the four channels select-
ed with the function keys F1 through F4. A 128-point real-valued FFT on the
input signal is displayed in real-time on the PC monitor screen. A 20-MHz os-
cillator was also used, but it produced a noisier signal.

11. Neural Network for Signal Recognition. The FFT of a signal becomes
the input to a neural network, which is trained to recognize this input signal us-
ing a back-propagation learning rule [1,4,20,21], implemented in C code. Many
different rules are available for training a neural network, and the back-propaga-
tion is one of the most widely used for a wide range of applications. Given a set

8.5 Miscellaneous Applications and Projects 253

FIGURE 8.17 Effects of PID gain constants on motor speed.

of inputs, the network is trained to give a desired response. If the network gives
the wrong answer, then the network is corrected by adjusting its parameters
(weights) so that the error is reduced. During this correction process, one starts
with the output nodes and propagation is backward to the input nodes.

Reference [7] describes 27 projects associated with the fixed-point proces-
sor, and can provide a good source of ideas for projects.

REFERENCES

1. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

2. R. Chassaing et al., “Student Projects on Digital Signal Processing with the
TMS320C30,” in Proceedings of the 1995 ASEE Annual Conference, June 1995.

3. R. Chassaing et al., “Digital Signal Processing with C and the TMS320C30: Senior Pro-
jects,” in Proceedings of the Third Annual TMS320 Educators Conference, Texas Instru-
ments, Inc., Dallas, TX, 1993.

4. R. Chassaing et al., “Student Projects on Applications in Digital Signal Processing with
C and the TMS320C30,” in Proceedings of the Second Annual TMS320 Educators Con-
ference, Texas Instruments Inc., Dallas, TX, 1992.

5. R. Chassaing, “TMS320 in a Digital Signal Processing Lab,” in Proceedings of the
TMS320 Educators Conference, Texas Instruments Inc., Dallas, TX, 1991.

6. B. Bitler and R. Chassaing, “Video Line Rate Processing with the TMS320C30,” in Pro-
ceedings of the 1992 International Conference on Signal Processing Applications and
Technology (ICSPAT), 1992.

7. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
1990.

8. P. Papamichalis ed., Digital Signal Processing Applications with the TMS320 Family—
Theory, Algorithms, and Implementations, Vols. 2 & 3, Texas Instruments, Inc., Dallas,
TX, 1989 and 1990.

9. K. S. Lin ed., Digital Signal Processing Applications with the TMS320 Family—Theory,
Algorithms, and Implementations, Vol. 1, Texas Instruments Inc., Dallas, TX, 1987.

10. R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1983.

11. R. W. Schafer and L. R. Rabiner, “A digital signal processing approach to interpolation,”
Proceedings of the IEEE, 61, 692–702 (1973).

12. R. E. Crochiere and L. R. Rabiner, “Optimum FIR Digital Filter Implementations for
Decimation, Interpolation and Narrow-Band Filtering,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, ASSP-23, 444–456 (1975).

13. R. E. Crochiere and L. R. Rabiner, “Further Considerations in the Design of Decimators
and Interpolators,” IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-24,
296–311 (1976).

14. M. G. Bellanger, J. L. Daguet, and G. P. Lepagnol, “Interpolation, Extrapolation, and Re-
duction of Computation Speed in Digital Filters,” IEEE Trans. on Acoustics, Speech, and
Signal Processing, ASSP-22, 231–235 (1974).

254 DSP Applications and Projects

15. R. Chassaing, P. Martin, and R. Thayer, “Multirate Filtering Using the TMS320C30
Floating-Point Digital Signal Processor,” in Proceedings of the 1991 ASEE annual Con-
ference, June 1991.

16. R. Chassaing, “Digital Broadband Noise Synthesis by Multirate Filtering Using the
TMS320C25,” in Proceedings of the 1988 ASEE Annual Conference, Vol. 1, June 1988.

17. R. Chassaing, W. A. Peterson, and D. W. Horning, “A TMS320C25-Based Multirate Fil-
ter,” IEEE Micro, October 1990, pp. 54–62.

18. A. Freund ed., “Nonlinear Loads Mean Trouble,” EC & M, March 1988.

19. B. Miller, “Biometric Identification,” IEEE Spectrum, Feb. 1994.

20. B. Widrow and R. Winter, “Neural Nets for Adaptive Filtering and Adaptive Pattern
Recognition,” Computer Magazine, Computer Society of the IEEE, March 1988, pp.
25–39.

21. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cam-
bridge, MA, 1986.

References 255

A homemade wire-wrapped board was designed and built based on the stereo
audio codec CS4216 (or CS4218), interfaced to the DSK [1,2]. The CS4216 and
CS4218 are functions- and pin-compatible. Figure D.1 shows a diagram of the
stereo audio codec CS4218, which provides 16-bit input and output (I/O) alter-
native with a maximum sampling rate of 50 kHz per channel, and includes two
sets of ADCs and DACs. Both ADCs and DACs use delta-sigma modulation
with 64x oversampling [3,4]. Antialiasing input and smoothing output digital
filters are contained in the codec chip.

An evaluation board, based on the CS4216/CS4218, as shown in Figure D.2,
has also been tested and is available from Crystal Semiconductor Corp. [5].
Support programs (on the accompanying disk) can test both the homemade and
the evaluation board.

Figure D.3 shows a schematic diagram of the homemade board, which inter-
faces to the DSK and contains jacks for line as well as microphone inputs. Fig-
ure D.3 (a) is the main interface circuit and Figure D.3 (b) and (c) show the in-
put and output circuits, respectively. A header connector on the homemade
board connects to JP1 on the DSK board through a ribbon-cable connector. The
jumper connectors on JP1 must be removed to disconnect the AIC on the DSK
board.

The signal pins SSYNC, SCLK, SDIN, and SDOUT on the codec are used
for serial communications and interface with FSX0, FSR0, CLKR0, and DR0
pins on the TMS320C31. The interface includes the codec reset signal that is
supplied from XF0 on the TMS320C31. The TCLK0 on the TMS320C31 is
used as the codec master clock which controls the ADC and DAC conversion
rates. The signal pins on the left of the schematic in Figure D.3 (a) are con-
nected to amplification-control circuits for line-level I/O, microphone input,
and speaker output. LIN1 and RIN1 pins can be connected to either a ½-gain

291

D
Input and Output with 16-Bit
Stereo Audio Codec

PETER MARTIN

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

(regular or line input) or to a 16-gain (microphone input) amplifier using
jumpers. The REBUF signal is used for biasing the amplifiers and allow input
signals with no DC offset. The LOUT and ROUT signal pins are connected to
a coupling circuit (line or regular output) and amplifier to drive a speaker. The
SMODE1-3 signal pins allow 32-bit serial port transfers, and MF2-8 allow for
the maximum sampling rate and configure the codec-control serial port for de-
fault control settings.

The processor’s TCLK0 signal is used as the codec master clock, which con-
trols the A/D and D/A conversion rates. With the timer set to pulse mode, differ-
ent sampling rates can be achieved by setting the appropriate value in the period
register. Since

Fs = CLKIN/256

the sampling frequency is

Fs = (MCLK/4)/(PR·256) = (50 MHz/4)/(PR·256) = 48.828 kHz/PR

where MCLK is the processor’s master clock, and PR is the period register val-

292 Input and Output with 16-Bit Stereo Audio Codec

FIGURE D.1 Diagram of the 16-bit CS4218 stereo audio codec.

293

F
IG

U
R

E
 D

.2
D

ia
gr

am
 o

f
th

e
C

S
42

16
 E

va
lu

at
io

n
B

oa
rd

.

294 Input and Output with 16-Bit Stereo Audio Codec

FIGURE D.3 Schematic Diagram of the homemade board using the CS4216 stereo audio
codec. (a) interface schematic; (b) input circuits; (c) output circuits.

(a)
(continued on next page)

Input and Output with 16-Bit Stereo Audio Codec 295

(b)
(continued on next page)

FIGURE D.3 (continued)

296 Input and Output with 16-Bit Stereo Audio Codec

FIGURE D.3 (continued)

(c)

ue. For example, the sampling rate is 48,828 Hz by setting the period register
with a value of 1. Several sampling frequencies can be programmed as follows:

Period register Sampling frequency, kHz

1 48.828
2 24.414
3 16.276
4 12.207
5 9.766
6 8.138
. .
. .
. .

These rates are illustrated with a programming example of an FIR filter cen-
tered at a frequency of Fs/10. The following examples can be used to test the
Crystal codec.

Example D.1 Loop Programs for Input and Output With the Crystal
16-Bit Stereo Audio Codec Using TMS320C3x Code

Figure D.4 shows a listing of the program LOOPL_CS.ASM that includes the
communication routines contained in CSCOM.ASM (on disk). Assemble
LOOPL_CS.ASM (not CSCOM.ASM) and verify that an input signal into the

Input and Output with 16-Bit Stereo Audio Codec 297

FIGURE D.4 Loop program to test the left channel of the Crystal codec (LOOPL_CS.
ASM).

;LOOPL_CS.ASM - LOOP PROGRAM USING LEFT CHANNEL OF CS4216/CS4218

.start “.text”,0x809900 ;where text begins

.start “.data”,0x809C00 ;where data begins

.include “CSCOM.ASM” ;CS codec comm routines

.text ;assemble into text section

.entry BEGIN ;start of code

BEGIN LDP SETSP ;init data page

LDI 1,R0 ;Fs = 48.8 KHz

STI R0,@SRATE ;Fs in address of CSCOM.ASM

CALL COMSET ;init codec CS/TMS320C31 interface

LDI 0,R7 ;init output in R7 to zero

LOOP CALL IO_L_P ;left I/O routine,input=>R6,out=>R7

LDI R6,R7 ;output R7 = new input sample

BR LOOP ;loop continuously

.end ;end

left channel of the Crystal-based board yields from the left output channel a de-
layed output of the same frequency as the input signal.

A similar program LOOPR_CS.ASM tests the right channel of the Crystal
codec, and the program LOOPB_CS.ASM (on the accompanying disk) tests
both channels.

Example D.2 FIR Filter With the Crystal Stereo Audio Codec
Using TMS320C3x Code

The 45-coefficient FIR bandpass filter illustrated in Chapter 4 is implemented
in this example with the Crystal codec with the program BP45CS.ASM (on
disk). Access the right I/O channel. Assemble and run this program and verify a
bandpass filter centered at Fs/10. Substitute different values for the period reg-
ister. For example the instruction LDI 2,R0 in the source program sets a sam-
pling rate of 24.414 kHz.

REFERENCES

1. CS4218 16-Bit Stereo Audio Codec, Crystal Semiconductor Corp., Austin, TX, Septem-
ber 1996.

2. CS4216 Stereo Audio Codec, Crystal Semiconductor Corp., Austin, TX, October 1993.

3. J. C. Candy and G. C. Temes eds., Oversampling Delta-Sigma Data Converters—Theory,
Design and Simulation, IEEE Press, New York, 1992.

4. P. M. Aziz, H. V. Sorensen, and J. Van Der Spiegel, “An Overview of Sigma Delta Con-
verters,” IEEE Signal Processing Magazine, January 1996.

5. CDB 4216 Evaluation Board, Crystal Semiconductor Corp., Austin, TX, June 1993.

298 Input and Output with 16-Bit Stereo Audio Codec

The TMS320C3x contains a rich set of instructions as well as a number of use-
ful registers used for I/O, interrupt, etc. [1]

A.1 TMS320C3x INSTRUCTION SET

Tables A.1–A.5 show a summary of the TMS320C3x instruction set. They con-
tain load and store instructions, two- and three-operand instructions, as well as
program control and parallel instructions.

A.2 TMS320C3x REGISTERS

The TMS320C31 contains a number of registers that are very useful during pro-
gram development.

257

A
TMS320C3x Instruction Set
and Registers

TABLE A.1 Load and store instructions (reprinted by permission of Texas
Instruments, Inc.)

Instruction Description Instruction Description

LDE Load floating-point exponent POP Pop integer from stack
LDF Load floating-point value POPF Pop floating-point value

from stack
LDFcond Load floating-point value PUSH Push integer on stack

conditionally
LDI Load integer PUSHF Push floating-point value on
stack
LDIcond Load integer conditionally STF Store floating-point value
LDM Load floating-point mantissa STI Store integer
LDP Load data page pointer

Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK
Rulph Chassaing

Copyright © 1999 John Wiley & Sons, Inc.
Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

258 TMS320C3X Instruction Set and Registers

TABLE A.2 Two-Operand instructions (reprinted by permission of Texas
Instruments, Inc.)

Instruction Description Instruction Description

ABSF Absolute value of a NORM Normalize floating-point
floating-point number value

ABSI Absolute value of an integer NOT Bitwise-logical
complement

ADDC† Add integers with carry OR† Bitwise-logical OR
ADDF† Add floating-point values RND Round floating-point

value
ADDI† Add integers ROL Rotate left
AND† Bitwise-logical AND ROLC Rotate left through carry
ANDN† Bitwise-logical AND with ROR Rotate right

complement
ASH† Arithmetic shift RORC Rotate right through

carry
CMPF† Compare floating-point SUBB† Subtract integers with

values borrow
CMPI† Compare integers SUBC Subtract integers

conditionally
FIX Convert floating-point value SUBF† Subtract floating-point

to integer values
FLOAT Convert integer to SUBI† Subtract integer

floating-point value
LSH† Logical shift SUBRB Subtract reverse integer

with borrow
MPYF† Multiply floating-point values SUBRF Subtract reverse

floating-point value
MPYI† Multiply integers SUBRI Subtract reverse integer
NEGB Negate integer with borrow TSTB† Test bit fields
NEGF Negate floating-point value XOR† Bitwise-exclusive OR
NEGI Negate integer

† 2- and 3-operand versions

TABLE A.3 Three-Operand instructions (reprinted by permission of Texas
Instruments, Inc.)

Instruction Description Instruction Description

ADDC3 Add with carry MPYF3 Multiply floating-point
values

ADDF3 Add floating-point values MPYI3 Multiply integers
ADDI3 Add integers OR3 Bitwise-logical OR
AND3 Bitwise-logical AND SUBB3 Subtract integers with

borrow
ANDN3 Bitwise-logical AND with SUBF3 Subtract floating-point

complement values
ASH3 Arithmetic shift SUBI3 Subtract integers
CMPF3 Compare floating-point values TSTB3 Test bit fields
CMPI3 Compare integers XOR3 Bitwise-exclusive OR
LSH3 Logical shift

1. The status register (ST) format, shown in Figure A.1, provides informa-
tion about the state of the CPU. The condition flags of the ST register are
set based on resulting operations.

2. The interrupt enable (IE) register format is shown in Figure A.2. A 1
(or a 0) enables (or disables) an interrupt.

3. The memory-mapped interrupt locations are shown in Figure A.3. For ex-
ample, XINT0 is mapped to the memory address 0x809C05.

4. The addresses of the peripheral bus mapped registers are shown in Figure
A.4. Note the addresses of the timer registers used for interrupt and the
serial port registers for communicating with the on-board AIC. The timer
global control register format and the serial port global control register
format are shown in Figures A.5 and A.6, respectively. The mode of the
timer is specified by the timer global control register, and the sampling
frequency is determined by the timer period register. The timer counter
register is for incrementing the count from zero to the period register val-
ue.

5. The interrupt flag (IF) register format is shown in Figure A.7. An inter-
rupt is set with a 1 or cleared with a 0 in a flag register bit.

6. The I/O flag register format is shown in Figure A.8. It controls the func-
tion of the external pins XF0 and XF1 for I/O. This register is set to 0 on
reset.

A.2 TMS320C3x Instrumentation Set 259

TABLE A.4 Program control instructions (reprinted by permission of Texas
Instruments, Inc.)

Instruction Description Instruction Description

Bcond Branch conditionally IDLE Idle until interrupt
(standard)

BcondD Branch conditionally NOP No operation
(delayed)

BR Branch unconditionally RETIcond Return from interrupt
(standard) conditionally

BRD Branch unconditionally RETScond Return from subroutine
(delayed) conditionally

CALL Call subroutine RPTB Repeat block of
instructions

CALLcond Call subroutine RPTS Repeat single instruction
conditionally

DBcond Decrement and branch SWI Software interrupt
conditionally (standard)

DBcondD Decrement and branch TRAPcond Trap conditionally
conditionally (delayed)

IACK Interrupt acknowledge

TABLE A.5 Parallel instructions (reprinted by permission of Texas
Instruments, Inc.)

Mnemonic Description

ABSF Absolute value of a floating-point number and store floating-point
|| STF value

ABSI Absolute value of an integer and store integer
|| STI

ADDF3 Add floating-point values and store floating-point value
|| STF

ADDI3 Add integers and store integer
|| STI

AND3 Bitwise-logical AND and store integer
|| STI

ASH3 Arithmetic shift and store integer
|| STI

FIX Convert floating-point to integer and store integer
|| STI

FLOAT Convert integer to floating-point value and store floating-point value
|| STF

LDF Load floating-point value and store floating-point value
|| STF

LDI Load integer and store integer
|| STI

LSH3 Logical shift and store integer
|| STI

MPYF3 Multiply floating-point values and store floating-point value
|| STF

MPYI3 Multiply integer and store integer
|| STI

NEGF Negate floating-point value and store floating-point value
|| STF

NEGI Negate integer and store integer
|| STI

NOT Complement value and store integer
|| STI

OR3 Bitwise-logical OR value and store integer
|| STI

STF Store floating-point values
|| STF

STI Store integers
|| STI

SUBF3 Subtract floating-point value and store floating-point value
|| STF

SUBI3 Subtract integer and store integer
|| STI

XOR3 Bitwise-exclusive OR values and store integer
|| STI

LDF Load floating-point value
|| LDF

LDI Load integer
|| LDI

MPYF3 Multiply and add floating-point value
|| ADDF3

MPYF3 Multiply and subtract floating-point value
|| SUBF3

MPYI3 Multiply and add integer
|| ADDI3

MPYI3 Multiply and subtract integer
|| SUBI3

FIGURE A.1 Status (ST) register format (reprinted by permission of Texas Instruments,
Inc.).

FIGURE A.2 Interrupt enable (IE) register format (reprinted by permission of Texas Instru-
ments, Inc.).

FIGURE A.3 Memory-mapped interrupt locations (reprinted by permission of Texas Instru-
ments, Inc.).

FIGURE A.4 Peripheral bus memory-mapped registers (reprinted by permission of Texas
Instruments, Inc.).

FIGURE A.5 Timer global control register format (reprinted by permission of Texas Instru-
ments, Inc.).

262 TMS320C3X Instruction Set and Registers

REFERENCE

1. TMS320C3x User’s Guide, Texas Instruments, Inc., Dallas, TX, 1997.

Reference 263

FIGURE A.7 Interrupt flag (IF) register format (reprinted by permission of Texas Instru-
ments, Inc.).

FIGURE A.8 I/O flag (IOF) register format (reprinted by permission of Texas Instruments,
Inc.).

FIGURE A.6 Serial port global control register format (reprinted by permission of Texas In-
struments, Inc.).

