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Series Introduction

Over the past 50 years, digital signal processing has evolved as a major
engineering discipline. The fields of signal processing have grown from the
origin of fast Fourier transform and digital filter design to statistical spectral
analysis and array processing, and image, audio, and multimedia processing,
and shaped developments in high-performance VLSI signal processor
design. Indeed, there are few fields that enjoy so many applications—signal
processing is everywhere in our lives.

When one uses a cellular phone, the voice is compressed, coded, and
modulated using signal processing techniques. As a cruise missile winds
along hillsides searching for the target, the signal processor is busy proces-
sing the images taken along the way. When we are watching a movie in
HDTYV, millions of audio and video data are being sent to our homes and
received with unbelievable fidelity. When scientists compare DNA samples,
fast pattern recognition techniques are being used. On and on, one can see
the impact of signal processing in almost every engineering and scientific
discipline.

Because of the immense importance of signal processing and the fast-
growing demands of business and industry, this series on signal processing
serves to report up-to-date developments and advances in the field. The
topics of interest include but are not limited to the following:

Signal theory and analysis

Statistical signal processing

Speech and audio processing

Image and video processing

Multimedia signal processing and technology
Signal processing for communications

Signal processing architectures and VLSI design

Terxrer Copyrightn 2001 by Marcel Dekker,Inc.All Rights Reserved.



I hope this series will provide the interested audience with high-quality,
state-of-the-art signal processing literature through research monographs,
edited books, and rigorously written textbooks by experts in their fields.

K. J. Ray Liu

MARCEL
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Preface

The main idea behind this book, and the incentive for writing it, is that
strong connections exist between adaptive filtering and signal analysis, to
the extent that it is not realistic—at least from an engineering point of
view—to separate them. In order to understand adaptive filters well enough
to design them properly and apply them successfully, a certain amount of
knowledge of the analysis of the signals involved is indispensable.
Conversely, several major analysis techniques become really efficient and
useful in products only when they are designed and implemented in an
adaptive fashion. This book is dedicated to the intricate relationships
between these two areas. Moreover, this approach can lead to new ideas
and new techniques in either field.

The areas of adaptive filters and signal analysis use concepts from several
different theories, among which are estimation, information, and circuit
theories, in connection with sophisticated mathematical tools. As a conse-
quence, they present a problem to the application-oriented reader. However,
if these concepts and tools are introduced with adequate justification and
illustration, and if their physical and practical meaning is emphasized, they
become easier to understand, retain, and exploit. The work has therefore
been made as complete and self-contained as possible, presuming a back-
ground in discrete time signal processing and stochastic processes.

The book is organized to provide a smooth evolution from a basic knowl-
edge of signal representations and properties to simple gradient algorithms,
to more elaborate adaptive techniques, to spectral analysis methods, and
finally to implementation aspects and applications. The characteristics of
determinist, random, and natural signals are given in Chapter 2, and funda-
mental results for analysis are derived. Chapter 3 concentrates on the cor-
relation matrix and spectrum and their relationships; it is intended to
familiarize the reader with concepts and properties that have to be fully
understood for an in-depth knowledge of necessary adaptive techniques in

Terxrer Copyrightn 2001 by Marcel Dekker,Inc.All Rights Reserved.



engineering. The gradient or least mean squares (LMS) adaptive filters are
treated in Chapter 4. The theoretical aspects, engineering design options,
finite word-length effects, and implementation structures are covered in
turn. Chapter 5 is entirely devoted to linear prediction theory and techni-
ques, which are crucial in deriving and understanding fast algorithms opera-
tions. Fast least squares (FLS) algorithms of the transversal type are derived
and studied in Chapter 6, with emphasis on design aspects and performance.
Several complementary algorithms of the same family are presented in
Chapter 7 to cope with various practical situations and signal types.

Time and order recursions that lead to FLS lattice algorithms are pre-
sented in Chapter 8, which ends with an introduction to the unified geo-
metric approach for deriving all sorts of FLS algorithms. In other areas of
signal processing, such as multirate filtering, it is known that rotations
provide efficiency and robustness. The same applies to adaptive filtering,
and rotation based algorithms are presented in Chapter 9. The relationships
with the normalized lattice algorithms are pointed out. The major spectral
analysis and estimation techniques are described in Chapter 10, and the
connections with adaptive methods are emphasized. Chapter 11 discusses
circuits and architecture issues, and some illustrative applications, taken
from different technical fields, are briefly presented, to show the significance
and versatility of adaptive techniques. Finally, Chapter 12 is devoted to the
field of communications, which is a major application area.

At the end of several chapters, FORTRAN listings of computer subrou-
tines are given to help the reader start practicing and evaluating the major
techniques.

The book has been written with engineering in mind, so it should be most
useful to practicing engineers and professional readers. However, it can also
be used as a textbook and is suitable for use in a graduate course. It is worth
pointing out that researchers should also be interested, as a number of new
results and ideas have been included that may deserve further work.

I am indebted to many friends and colleagues from industry and research
for contributions in various forms and I wish to thank them all for their
help. For his direct contributions, special thanks are due to J. M. T.
Romano, Professor at the University of Campinas in Brazil.

Maurice G. Bellanger

MARCEL
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1

Adaptive Filtering and Signal
Analysis

Digital techniques are characterized by flexibility and accuracy, two proper-
ties which are best exploited in the rapidly growing technical field of adap-
tive signal processing.

Among the processing operations, linear filtering is probably the most
common and important. It is made adaptive if its parameters, the coeffi-
cients, are varied according to a specified criterion as new information
becomes available. That updating has to follow the evolution of the system
environment as fast and accurately as possible, and, in general, it is asso-
ciated with real-time operation. Applications can be found in any technical
field as soon as data series and particularly time series are available; they are
remarkably well developed in communications and control.

Adaptive filtering techniques have been successfully used for many years.
As users gain more experience from applications and as signal processing
theory matures, these techniques become more and more refined and sophis-
ticated. But to make the best use of the improved potential of these techni-
ques, users must reach an in-depth understanding of how they really work,
rather than simply applying algorithms. Moreover, the number of algo-
rithms suitable for adaptive filtering has grown enormously. It is not unu-
sual to find more than a dozen algorithms to complete a given task. Finding
the best algorithm is a crucial engineering problem. The key to properly
using adaptive techniques is an intimate knowledge of signal makeup. That
is why signal analysis is so tightly connected to adaptive processing. In
reality, the class of the most performant algorithms rests on a real-time
analysis of the signals to be processed.

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.
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Conversely, adaptive techniques can be efficient instruments for perform-
ing signal analysis. For example, an adaptive filter can be designed as an
intelligent spectrum analyzer.

So, for all these reasons, it appears that learning adaptive filtering goes
with learning signal analysis, and both topics are jointly treated in this book.

First, the signal analysis problem is stated in very general terms.

1.1. SIGNAL ANALYSIS

By definition a signal carries information from a source to a receiver. In the
real world, several signals, wanted or not, are transmitted and processed
together, and the signal analysis problem may be stated as follows.

Let us consider a set of N sources which produce N variables
Xg, X1, ..., Xy_1 and a set of N corresponding receivers which give N vari-
ables yg, y1, ..., ¥n_1, as shown in Figure 1.1. The transmission medium is
assumed to be linear, and every receiver variable is a linear combination of
the source variables:

yizzm,jxj, 0<i<N-1 (1.1)
The parameters m;; are the transmission coefficients of the medium.

’/-'"’_'- Mgy ——_.

X F——— my " Yo

Moy
Xy w7 my %y

My-1 0
-1 1

XN-1 » < * YN-1

T ey —7

SOURCES RECEIVERS

FIG. 1.1 A transmission system of order N.
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Now the problem is how to retrieve the source variables, assumed to
carry the useful information looked for, from the receiver variables. It
might also be necessary to find the transmission coefficients. Stated as
such, the problem might look overly ambitious. It can be solved, at least
in part, with some additional assumptions.

For clarity, conciseness, and thus simplicity, let us write equation (1.1) in
matrix form:

Y =MX (1.2)
with
X0 Yo
X1 V1
X = . , Y= .
XN-1 YN-1
Mo moy - My N—1
mo my - mp N1
M = .
Mmy_10 - My_1 N—1

Now assume that the x; are random centered uncorrelated variables and
consider the N x N matrix

YY' = MXX'M' (1.3)

where M' denotes the transpose of the matrix M. Taking its mathematical
expectation and noting that the transmission coefficients are deterministic
variables, we get

E[YY'] = ME[XX'|M' (1.4)

Since the variables x;,(0 < i < N — 1) are assumed to be uncorrelated, the
N x N source matrix is diagonal:

P, 0 .- 0
[ 0 P, - 0 .
E[XX' = : - : = diag[Py,, Py, ..., Py, ]
0 0 P

MARCEL
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is the power of the source with index i. Thus, a decomposition of the receiver
covariance matrix has been achieved:

E[YY'] = M diag[P,,, Py, ..., Py 1M’ (1.5)

Finally, it appears possible to get the source powers and the transmission
matrix from the diagonalization of the covariance matrix of the receiver
variables. In practice, the mathematical expectation can be reached, under
suitable assumptions, by repeated measurements, for example. It is worth
noticing that if the transmission medium has no losses, the power of the
sources is transferred to the receiver variables in totality, which corresponds
to the relation MM' = I; the transmission matrix is unitary in that case.

In practice, useful signals are always corrupted by unwanted externally
generated signals, which are classified as noise. So, besides useful signal
sources, noise sources have to be included in any real transmission system.
Consequently, the number of sources can always be adjusted to equal the
number of receivers. Indeed, for the analysis to be meaningful, the number
of receivers must exceed the number of useful sources.

The technique presented above is used in various fields for source detec-
tion and location (for example, radio communications or acoustics); the set
of receivers is an array of antennas. However, the same approach can be
applied as well to analyze a signal sequence when the data y(n) are linear
combinations of a set of basic components. The problem is then to retrieve
these components. It is particularly simple when y(#) is periodic with period
N, because then the signal is just a sum of sinusoids with frequencies that are
multiples of 1/N, and the matrix M in decomposition (1.5) is the discrete
Fourier transform (DFT) matrix, the diagonal terms being the power spec-
trum. For an arbitrary set of data, the decomposition corresponds to the
representation of the signal as sinusoids with arbitrary frequencies in noise;
it is a harmonic retrieval operation or a principal component analysis pro-
cedure.

Rather than directly searching for the principal components of a signal to
analyze it, extract its information, condense it, or clear it from spurious
noise, we can approximate it by the output of a model, which is made as
simple as possible and whose parameters are attributed to the signal. But to
apply that approach, we need some characterization of the signal.

1.2. CHARACTERIZATION AND MODELING

A straightforward way to characterize a signal is by waveform parameters.
A concise representation is obtained when the data are simple functions of
the index n. For example, a sinusoid is expressed by

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



x(n) = Ssin(nw + @) (1.6)

where S is the sinusoid amplitude, w is the angular frequency, and ¢ is the
phase. The same signal can also be represented and generated by the recur-
rence relation

x(n) = cosw)x(n — 1) — x(n — 2) (1.7)
for n = 0, and the initial conditions

x(—=1) = Ssin(—w + @)

x(=2) = Ssin(—2w + ¢)

x(n)=0 forn<-=2

Recurrence relations play a key role in signal modeling as well as in adaptive
filtering. The correspondence between time domain sequences and recur-
rence relations is established by the z-transform, defined by

o0

X =Y x(mz" (1.8)

n=—00

Waveform parameters are appropriate for synthetic signals, but for prac-
tical signal analysis the correlation function r(p), in general, contains the
relevant characteristics, as pointed out in the previous section:

r(p) = E[x(n)x(n — p)] (1.9)

In the analysis process, the correlation function is first estimated and then
used to derive the signal parameters of interest, the spectrum, or the recur-
rence coefficients.

The recurrence relation is a convenient representation or modeling of a
wide class of signals, which are those obtained through linear digital filtering
of a random sequence. For example, the expression

N
x(n) = e(n) = Y _ ax(n — i) (1.10)
i=1

where e(n) is a random sequence or noise input, defines a model called
autoregressive (AR). The corresponding filter is of the infinite impulse
response (IIR) type. If the filter is of the finite impulse response (FIR)
type, the model is called moving average (MA), and a general filter FIR/
IIR is associated to an ARMA model.
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The coefficients «; in (1.10) are the FIR, or transversal, linear prediction
coefficients of the signal x(n); they are actually the coefficients of the inverse
FIR filter defined by

N
em) =Y ax(n—i), ay=1 (1.11)
i=0

The sequence e(n) is called the prediction error signal. The coefficients are
designed to minimize the prediction error power, which, expressed as a
matrix form equation is

E[e*(n)] = A'E[XX "4 (1.12)

So, for a given signal whose correlation function is known or can be
estimated, the linear prediction (or AR modeling) problem can be stated as
follows: find the coefficient vector A which minimizes the quantity
A'E[XX']A subject to the constraint a; = 1. In that process, the power
of a white noise added to the useful input signal is magnified by the factor
A'A.

To provide a link between the direct analysis of the previous section and
AR modeling, and to point out their major differences and similarities, we
note that the harmonic retrieval, or principal component analysis, corre-
sponds to the following problem: find the vector 4 which minimizes the
value A'E[XX']A4 subject to the constraint 4’4 = 1. The frequencies of the
sinusoids in the signal are then derived from the zeros of the filter with
coefficient vector A. For deterministic signals without noise, direct analysis
and AR modeling lead to the same solution; they stay close to each other for
high signal-to-noise ratios.

The linear prediction filter plays a key role in adaptive filtering because it
is directly involved in the derivation and implementation of least squares
(LS) algorithms, which in fact are based on real-time signal analysis by AR
modeling.

1.3. ADAPTIVE FILTERING

The principle of an adaptive filter is shown in Figure 1.2. The output of a
programmable, variable-coefficient digital filter is subtracted from a refer-
ence signal y(n) to produce an error sequence e(n), which is used in com-
bination with elements of the input sequence x(n), to update the filter
coefficients, following a criterion which is to be minimized. The adaptive
filters can be classified according to the options taken in the following
areas:

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



MARCEL

x(n) PROGRAMMABLE y(n)

input signal DIGITAL FILTER

4

ADAPTIVE ALGORITHM
FOR
COEFTICIENT TIPDATING

reference

e(n)

FIG. 1.2 Principle of an adaptive filter.

The optimization criterion

The algorithm for coefficient updating

The programmable filter structure

The type of signals processed—mono- or multidimensional.

The optimization criterion is in general taken in the LS family in order to
work with linear operations. However, in some cases, where simplicity of
implementation and robustness are of major concern, the least absolute
value (LAV) criterion can also be attractive; moreover, it is not restricted
to minimum phase optimization.

The algorithms are highly dependent on the optimization criterion, and it
is often the algorithm that governs the choice of the optimization criterion,
rather than the other way round. In broad terms, the least mean squares
(LMS) criterion is associated with the gradient algorithm, the LAV criterion
corresponds to a sign algorithm, and the exact LS criterion is associated
with a family of recursive algorithms, the most efficient of which are the fast
least squares (FLS) algorithms.

The programmable filter can be a FIR or IIR type, and, in principle,
it can have any structure: direct form, cascade form, lattice, ladder, or
wave filter. Finite word-length effects and computational complexity vary
with the structure, as with fixed coefficient filters. But the peculiar point
with adaptive filters is that the structure reacts on the algorithm com-
plexity. It turns out that the direct-form FIR, or transversal, structure is
the simplest to study and implement, and therefore it is the most
popular.

Multidimensional signals can use the same algorithms and structures as
their monodimensional counterparts. However, computational complexity
constraints and hardware limitations generally reduce the options to the
simplest approaches.
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The study of adaptive filtering begins with the derivation of the normal
equations, which correspond to the LS criterion combined with the FIR
direct form for the programmable filter.

1.4. NORMAL EQUATIONS

In the following, we assume that real-time series, resulting, for example,
from the sampling with period T =1 of a continuous-time real signal, are
processed.

Let H(n) be the vector of the N coefficients /4;(n) of the programmable
filter at time n, and let X (n) be the vector of the N most recent input signal

samples:
ho(n) x(n)
) h)‘:(n) . X(n) = e - D (1.13)
hN,.l(n) x(n+ l —N)

The error signal &(n) is
e(n) = y(n) — H'(n)X (n) (1.14)

The optimization procedure consists of minimizing, at each time index, a
cost function J(n), which, for the sake of generality, is taken as a weighted
sum of squared error signal values, beginning after time zero:

Ty =Y W' ly(p) — H'(mX ()]’ (1.15)

p=1

The weighting factor, W, is generally taken close to 1(0 < W < 1).

Now, the problem is to find the coefficient vector H(n) which minimizes
J(n). The solution is obtained by setting to zero the derivatives of J(n) with
respect to the entries /;(n) of the coefficient vector H(n), which leads to

Y W) — H' ()X (p)X(p) = 0 (1.16)
p=I
In concise form, (1.16) is
H(n) = Ry (n)r,(n) (1.17)
with

Ry(m) =) W' X(p)X'(p) (1.18)
p=1
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r() =) WX (p)y(p) (1.19)
p=1

If the signals are stationary, let R, be the N x N input signal autocorrela-
tion matrix and let r,, be the vector of cross-correlations between input and
reference signals:

Ry = EIX()X' ()], 1y = EIX(p)y(p)] (1.20)
Now
1 — W™ Wn
[RN(n)] _7WRxxv [ }r(n)] = W \\ (121)

So Ry(n) is an estimate of the input signal autocorrelation matrix, and r),.(n)
is an estimate of the cross-correlation between input and reference signals.
The optimal coefficient vector H,, is reached when n goes to infinity:

Hop = R (1.22)

Equations (1.22) and (1.17) are the normal (or Yule-Walker) equations for
stationary and evolutive signals, respectively. In adaptive filters, they can be
implemented recursively.

1.5. RECURSIVE ALGORITHMS

The basic goal of recursive algorithms is to derive the coefficient vector
H(n+1) from H(n). Both coefficient vectors satisfy (1.17). In these equa-
tions, autocorrelation matrices and cross-correlation vectors satisfy the
recursive relations

Ry(n+1)= WRy(n)+X(n+ DX'(n+1) (1.23)
Fo(n+1) = Wry (n) + X(n+ Dy(n+ 1) (1.24)
Now,
H(n+1) = Ry' (n+ D[Wry(n) + X(n + Dy(n + 1)]
But

Wry(n) = [Ry(n+ 1) — X(n+ DX"'(n + 1)]H(n)
and

Hn+1)=Hn) + Ry'(n+ DX+ Dy(n+ 1) — X'(n + 1)H(n)]
(1.25)
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which is the recursive relation for the coefficient updating. In that expres-
sion, the sequence

en+1)=ymn+1)—X'(n+ 1)H(n) (1.26)

is called the a priori error signal because it is computed by using the coeffi-
cient vector of the previous time index. In contrast, (1.14) defines the a
posteriori error signal e(n), which leads to an alternative type of recurrence
equation

Hn+1)=H®n) + W 'Ry X0+ De(n + 1) (1.27)

For large values of the filter order N, the matrix manipulations in (1.25)
or (1.27) lead to an often unacceptable hardware complexity. We obtain a
drastic simplification by setting

Ry'(n+ 1) ~ 8l

where Iy is the (N x N) unity matrix and § is a positive constant called the
adaptation step size. The coefficients are then updated by

H(n+1) = H(n) + 8X(n+ e(n + 1) (1.28)

which leads to just doubling the computations with respect to the fixed-
coefficient filter. The optimization process no longer follows the exact LS
criterion, but LMS criterion. The product X(n + 1)e(n + 1) is proportional
to the gradient of the square of the error signal with opposite sign, because
differentiating equation (1.26) leads to

3t (n+1)

_ . i< N_
o) 2x(n+1—de(n+1), 0<i<N-1 (1.29)

hence the name gradient algorithm.

The value of the step size § has to be chosen small enough to ensure
convergence; it controls the algorithm speed of adaptation and the residual
error power after convergence. It is a trade-off based on the system engi-
neering specifications.

The gradient algorithm is useful and efficient in many applications; it is
flexible, can be adjusted to all filter structures, and is robust against imple-
mentation imperfections. However, it has some limitations in performance
and weaknesses which might not be tolerated in various applications. For
example, its initial convergence is slow, its performance depends on the
input signal statistics, and its residual error power may be large. If one is
prepared to accept an increase in computational complexity by a factor
usually smaller than an order of magnitude (typically 4 or 5), then the
exact recursive LS algorithm can be implemented. The matrix manipulations
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can be avoided in the coefficient updating recursion by introducing the
vector

G(n) = Ry (m)X(n) (1.30)

called the adaptation gain, which can be updated with the help of linear
prediction filters. The corresponding algorithms are called FLS
algorithms.

Up to now, time recursions have been considered, based on the cost
function J(n) defined by equation (1.15) for a set of N coefficients. It is
also possible to work out order recursions which lead to the derivation of
the coefficients of a filter of order N + 1 from the set of coefficients of a
filter of order N. These order recursions rely on the introduction of a
different set of filter parameters, called the partial correlation
(PARCOR) coefficients, which correspond to the lattice structure for the
programmable filter. Now, time and order recursions can be combined in
various ways to produce a family of LS lattice adaptive filters. That
approach has attractive advantages from the theoretical point of view—
for example, signal orthogonalization, spectral whitening, and easy control
of the minimum phase property—and also from the implementation point
of view, because it is robust to word-length limitations and leads to flexible
and modular realizations.

The recursive techniques can easily be extended to complex and multi-
dimensional signals. Overall, the adaptive filtering techniques provide a wide
range of means for fast and accurate processing and analysis of signals.

1.6. IMPLEMENTATION AND APPLICATIONS

The circuitry designed for general digital signal processing can also be used
for adaptive filtering and signal analysis implementation. However, a few
specificities are worth point out. First, several arithmetic operations, such as
divisions and square roots, become more frequent. Second, the processing
speed, expressed in millions of instructions per second (MIPS) or in millions
of arithmetic operations per second (MOPS), depending on whether the
emphasis is on programming or number crunching, is often higher than
average in the field of signal processing. Therefore specific efficient archi-
tectures for real-time operation can be worth developing. They can be spe-
cial multibus arrangements to facilitate pipelining in an integrated processor
or powerful, modular, locally interconnected systolic arrays.

Most applications of adaptive techniques fall into one of two broad
classes: system identification and system correction.
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System under Analysis

Y

Plant

reference
signal

/ ) v ¥{n)
x(n) ADAPTIVE FILTER y(n) ( _)

input signal o(n)

/ ertor

FIG. 1.3 Adaptive filter for system identification.

The block diagram of the configuration for system identification is shown
in Figure 1.3. The input signal x(n) is fed to the system under analysis, which
produces the reference signal y(n). The adaptive filter parameters and spe-
cifications have to be chosen to lead to a sufficiently good model for the
system under analysis. That kind of application occurs frequently in auto-
matic control.

System correction is shown in Figure 1.4. The system output is the adap-
tive filter input. An external reference signal is needed. If the reference signal
y(n) is also the system input signal u(n), then the adaptive filter is an inverse
filter; a typical example of such a situation can be found in communications,
with channel equalization for data transmission. In both application classes,
the signals involved can be real or complex valued, mono- or multidimen-
sional. Although the important case of linear prediction for signal analysis
can fit into either of the aforementioned categories, it is often considered as
an inverse filtering problem, with the following choice of signals:

y(n) =0, u(n) = e(n).

uin} Swystem to be x(n} Adaptive

correcled Filter

L

FIG. 1.4 Adaptive filter for system correction.
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Another field of applications corresponds to the restoration of signals
which have been degraded by addition of noise and convolution by a known
or estimated filter. Adaptive procedures can achieve restoration by decon-
volution.

The processing parameters vary with the class of application as well as
with the technical fields. The computational complexity and the cost effi-
ciency often have a major impact on final decisions, and they can lead to
different options in control, communications, radar, underwater acoustics,
biomedical systems, broadcasting, or the different areas of applied physics.

1.7. FURTHER READING

The basic results, which are most necessary to read this book, in signal
processing, mathematics, and statistics are recalled in the text as close as
possible to the place where they are used for the first time, so the book is, to
a large extent, self-sufficient. However, the background assumed is a work-
ing knowledge of discrete-time signals and systems and, more specifically,
random processes, discrete Fourier transform (DFT), and digital filter prin-
ciples and structures. Some of these topics are treated in [1]. Textbooks
which provide thorough treatment of the above-mentioned topics are [2—
4]. A theoretical veiw of signal analysis is given in [5], and spectral estima-
tion techniques are described in [6]. Books on adaptive algorithms include
[7-9]. Various applications of adaptive digital filters in the field of commu-
nications are presented in [10-11].
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2

Signals and Noise

Signals carry information from sources to receivers, and they take many
different forms. In this chapter a classification is presented for the signals
most commonly used in many technical fields.

A first distinction is between useful, or wanted, signals and spurious, or
unwanted, signals, which are often called noise. In practice, noise sources
are always present, so any actual signal contains noise, and a significant part
of the processing operations is intended to remove it. However, useful sig-
nals and noise have many features in common and can, to some extent,
follow the same classification.

Only data sequences or time series are considered here, and the leading
thread for the classification proposed is the set of recurrence relations, which
can be established between consecutive data and which are the basis of
several major analysis methods [1-3]. In the various categories, signals
can be characterized by waveform functions, autocorrelation, and spectrum.

An elementary, but fundamental, signal is introduced first—the damped
sinusoid.

2.1. THE DAMPED SINUSOID

Let us consider the following complex sequence, which is called the damped
complex sinusoid, or damped cisoid:
e(05+./'wo)"7

n =0 .1

y("):{o, n<0
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where o and w, are real scalars.
The z-transform of that sequence is, by definition

0
Y(2) = X;y(n)z‘" 2.2)
=
Hence
Y(z) = ; (2.3)
| — pletjon) 1
The two real corresponding sequences are shown in Figure 2.1(a). They are
y(n) = yr(n) +jy,(n) 24
with
yr(n) = e cosnwy, y;(n) = sinnwy,, n =0 (2.5)

The z-transforms are

1 — (e®coswy)z""

Y =
#() 1 — (2e® coswy)z™! + 2z 2

2.6)

1 — (¢” sin wy)z !
1 — (2e® coswy)z™! + 2%z 2

Yi(z) = (2.7)

In the complex plane, these functions have a pair of conjugate poles,
which are shown in Figure 2.1(b) for « < 0 and |«| small. From (2.6) and
(2.7) and also by direct inspection, it appears that the corresponding signals
satisfy the recursion

yr(1) — 2e% cos wyr(n — 1) + 3% yr(n —2) = 0 (2.8)
with initial values

yr(=1) = € cos(=ay), yr(=2) = ¢ cos(—2aw) 2.9)
and

yi(=1) = e sin(—wp), yi(=2) = € sin(—2wy) (2.10)

More generally, the one-sided z-transform, as defined by (2.2), of equa-
tion (2.8) is

bryr(—=1) + ba[yg(=2) + yr(=1)z "]
1 + b1271 + b2272

Yr(z) = — 2.11)

with b, = —2¢%cosw and b, = ¢**.
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FIG. 2.1 (a) Waveform of a damped sinusoid. (b) Poles of the z-transform of the
damped sinusoid.
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The above-mentioned initial values are then obtained by identifying
(2.11) and (2.6), and (2.11) and (2.7), respectively.

The energy spectra of the sequences yr(n) and y);(n) are obtained from
the z-transforms by replacing z by ¢/ [4]. For example, the function | Y;(w)|
is shown in Figure 2.2; it is the frequency response of a purely recursive
second-order filter section.

As n grows to infinity the signal y(n) vanishes; it is nonstationary.
Damped sinusoids can be used in signal analysis to approximate the spec-
trum of a finite data sequence.

2.2. PERIODIC SIGNALS

Periodic signals form an important category, and the simplest of them is the
single sinusoid, defined by

x(n) = Ssin(nwy + ¢) (2.12)

where S is the amplitude, w, is the radial frequency, and ¢ is the phase.
For n > 0, the results of the previous section can be applied with o = 0.
So the recursion

00 w, RSl

FIG. 2.2 Spectrum of the damped sinusoid.
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x(n) —2coswpx(n — 1) +x(n—2)=0 (2.13)
with initial conditions

x(—1) = Ssin(—wy + ¢), x(=2) = Ssin(—2wy + ¢) (2.14)
is satisfied. The z-transform is

sin ¢ — sin(—wy + @)z
1 —(2coswy)z™! +2z72

Xz =S8 (2.15)

Now the poles are exactly on the unit circle, and we must consider the
power spectrum. It cannot be directly derived from the z-transform. The
sinusoid is generated for n > 0 by the purely recursive second-order filter
section in Figure 2.3 with the above-mentioned initial conditions, the circuit
input being zero. For a filter to cancel a sinusoid, it is necessary and suffi-
cient to implement the inverse filter—that is, a filter which has a pair of zeros
on the unit circle at the frequency of the sinusoid; such filters appear in
linear prediction.

The autocorrelation function (ACF) of the sinusoid, which is a real sig-
nal, is defined by

o) = lim. %N;j *)x(n - p) (2.16)
Hence,
e(n}=0 @ o x(n}
2-1
2¢coswg —D&d—
2-1

FIG. 2.3 Second-order filter section to generate a sinusoid.
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S2 o182 2n—p
’(p)_jCOSpwo_,\}gnooﬁjnZ;COﬂ( w0+<ﬂ) (2.17)
and for any wy,
52
r(p) = 5 €08 pay (2.18)

The power spectrum of the signal is the Fourier transform of the ACF;
for the sinusoid it is a line with magnitude S?/2 at frequency w.

Now, let us proceed to periodic signals. A periodic signal with period N
consists of a sum of complex sinusoids, or cisoids, whose frequencies are
integer multiples of 1/N and whose complex amplitudes S, are given by the
discrete Fourier transform (DFT) of the signal data:

So 1 1 1 x(0)
S 111 114 U et x(1)
S P . . (2.19)
: N : . : :
2
Sy 1wt D (v =)

with W = e 7/N),
Following equation (2.3), with « = 0, we express the z-transform of the
periodic signal by

N-I
Sk
X2 = Z} | — oJ@r/Nk 1 (2.20)
k=0

and its poles are uniformly distributed on the unit circle as shown in Figure
2.4 for N even. Therefore, the signal x(n) satisfies the recursion

N
> ax(n—i)=0 (2.21)
i=0

where the g; are the coefficients of the polynomial P(z):

N N .
P(z) = Zaiz_l = l_[(l — /TN 1y (2.22)
i=0 k=1

So ay = 1, and if all the cisoids are present in the periodic signal, then ay =
1 and ¢; =0 for 1 <i< N —1. The N complex amplitudes, or the real
amplitudes and phases, are defined by the N initial conditions. If some of
the N possible cisoids are missing, then the coefficients take on values
according to the factors in the product (2.22).

The ACF of the periodic signal x(n) is calculated from the following
expression, valid for complex data:
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FIG. 2.4 Poles of a signal with period N.
1 Nl
r(p) = v nZ(; x(n)x(n — p) (2.23)

where x(n) is the complex conjugate of x(n). According to the inverse DFT,
x(n) can be expressed from its frequency components by

N=1
(1) = Z Sy e/ Nk (2.24)
k=0

Now, combining (2.24) and (2.23) gives

N-1
rp) =Y ISpe/ T (2.25)
k=0
and, for x(n) a real signal and for the configuration of poles shown in Figure
2.4 with N even,

N/2-1
rp)=Si+Svp+2 ), |Sk|2cos<2_”kp) (2.26)
le=1 N
The corresponding spectrum is made of lines at frequencies which are
integer multiples of 1/N.
The same analysis as above can be carried out for a signal composed of a
sum of sinusoids with arbitrary frequencies, which just implies that the
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period N may grow to infinity. In that case, the roots of the polynomial
P(z) take on arbitrary positions on the unit circle. Such a signal is said to be
deterministic because it is completely determined by the recurrence relation-
ship (2.21) and the set of initial conditions; in other words, a signal value at
time n can be exactly calculated from the N preceding values; there is no
innovation in the process; hence, it is also said to be predictable.

The importance of P(z) is worth emphasizing, because it directly deter-
mines the signal recurrence relation. Several methods of analysis primarily
aim at finding out that polynomial for a start.

The above deterministic or predictable signals have discrete power spec-
tra. To obtain continuous spectra, one must introduce random signals. They
bring innovation in the processes.

2.3. RANDOM SIGNALS

A random real signal x(#) is defined by a probability law for its amplitude at
each time n. The law can be expressed as a probability density p(x, n) defined
by

Prob[x < x(n) < x+ Ax]
0 Ax

p(x,n) = Ali’m (2.27)
It is used to calculate, by ensemble averages, the statistics of the signal or
process [5].

The signal is second order if it possesses a first-order moment m;(n) called
the mean value or expectation of x(#), denoted E[x(n)] and defined by

00

my(n) = E[x(n)] = / xp(x, n) dx (2.28)

—00

and a second-order moment, called the covariance:
Elxtx(n)] = moGnom) = [ [ xpeap(om m dd, - (229)
—00 J —00

where p(x;, x5; , 11, 1) 1s the joint probability density of the pair of random
variables [x(n), x(n,)].

The signal is stationary if its statistical properties are independent of the
time index n—that is, if the probability density is independent of time #:

p(x, n) = p(x) (2.30)

The stationarity can be limited to the moments of first and second order.
Then the signal is wide-sense stationary, and it is characterized by the fol-
lowing equations:
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E[x(n)] = /00 xp(x)dx = m (2.31)

—00

Elx(n)x(n — p)] = r(p) (2.32)

The function r(p) is the (ACF) of the signal.

The statistical parameters are, in general, difficult to estimate or measure
directly, because of the ensemble averages involved. A reasonably accurate
measurement of an ensemble average requires that many process realiza-
tions be available or that the experiment be repeated many times, which is
often impractical. On the contrary, time averages are much easier to come
by, for time series. Therefore the ergodicity property is of great practical
importance; it states that, for a stationary signal, ensemble and time
averages are equivalent:

m; = E[x(n)] = A}i_l)r})owl_i_ln:NNx(n) (2.33)
1 N
Hp) = Elx(mx(n = p)] = lim > 2 x(n)x(n — p) (2.34a)
For complex signals, the ACF is
1 N
Hp) = E[x(mx(n —p)] = lim 55— _XN: x(n)x(n — p) (2.34b)

The factor x(n — p) is replaced by its complex conjugate x(n — p); note that
r(0) is the signal power and is always a real number.

In the literature, the factor x(n + p) is generally taken to define r(p);
however, we use x(n — p) throughout this book because it comes naturally
in adaptive filtering.

In some circumstances, moments of order & > 2 might be needed. They
are defined by

mk:/ X*p(x) dx (2.35)

and they can be calculated efficiently through the introduction of a function
F(u), called the characteristic function of the random variable x and defined
by

F(u) = f ~ e p(x) dx (2.36)

Using definition (2.35), we obtain the series expansion
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00 - Nk
F(u) = Z%mk (2.37)
k=0 '

Since F(u) is the inverse Fourier transform of the probability density p(x), it
can be easy to calculate and can provide the high-order moments of the
signal.

The moment of order 4 is used in the definition of the kurtosis K., or
coefficient of flatness of a probability distribution

_Ex'(m)]
K, = m (2.38)

For example, a binary symmetric distribution (+1 with equal probability)
leads to K, = 1. For the Gaussian distribution of the next section, K, = 3,
and for the exponential distribution

1
p(x) = me”'“/ﬂ (2.39)

K. =09.

An important concept is that of statistical independence of random vari-
ables. Two random variables, x; and x,, are independent if and only if their
joint density p(x;, x,) is the product of the individual probability densities:

p(x1, x3) = p(x))p(x7) (2.40)

which implies the same relationship for the characteristic functions:

F(uy, up) = / / eI p () dxydxy (2.41)
and
F(uy, up) = F(up)F(uy) (2.42)

The correlation concept is related to linear dependency. Two noncorre-
lated variables, such that E[x;x,] = 0, have no linear dependency. But, in
general, that does not mean statistical independency, since higher-order
dependency can exist.

Among the probability laws, the Gaussian law has special importance in
signal processing.
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2.4. GAUSSIAN SIGNALS

A random variable x is said to be normally distributed or Gaussian if its
probability law has a density p(x) which follows the normal or Gaussian
law:

1 2,0 2

—(x—m)~ /207
X) = —F——=¢ 2.43
p(x) x o ( )

The parameter m is the mean of the variable x; the variance o2 is the
second-order moment of the centered random variable (x — m); o, is also
called the standard deviation.

The characteristic function of the centered Gaussian variable is

—O‘ZL{Z/z
Fu)=e¢" (2.44)
Now, using the series expansion (2.37), the moments are

Mojr1 =0

2 4 :
my, =oy, my=230y, My = 1 oy

(2.45)

The normal law can be generalized to multidimensional random vari-
ables. The characteristic function of a k-dimensional Gaussian variable
x(x1, X9, ..., X;) 1S

1 /\’ k
Fluy,u, ... uy) = eXP(-gZ V@/W/) (2.46)
1

=1 j=

with r; = E[x;x;].

If the variables are not correlated, then they are independent, because r;;
=0 for i #j and F(uy, u,, ..., u;) is the product of the characteristic func-
tions. So noncorrelation means independence for Gaussian variables.

A random signal x(n) is said to be Gaussian if, for any set of k time
values n;(1 <i < k), the k-dimensional random variable x = [x(n), x(n,),
..., x(n)] is Gaussian. According to (2.46), the probability law of that
variable is completely defined by the ACF r(p) of x(n). The power spectral
density S(f) is obtained as the Fourier transform of the ACF:

S(f) = i r(p)e™ (2.47)

p=—00

or, since r(p) is an even function,
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S(f) = r(0) + 2 i r(p) cos(2mpf) (2.48)
p=I

If the data in the sequence x(n) are independent, then r(p) reduces to r(0) and
the spectrum S(f) is flat; the signal is then said to be white.

An important aspect of the Gaussian probability laws is that they pre-
serve their character under any linear operation, such as convolution, filter-
ing, differentiation, or integration.

Therefore, if a Gaussian signal is fed to a linear system, the output is also
Gaussian. Moreover, there is a natural trend toward Gaussian probability
densities, because of the so-called central limit theorem, which states that the
random variable

| &
X = ﬁ; X; (2.49)

where the x; are N independent identically distributed (i.i.d.) second-order
random variables, becomes Gaussian when N grows to infinity.

The Gaussian approximation can reasonably be made as soon as N
exceeds a few units, and the importance of Gaussian densities becomes
apparent because in nature many signal sources and, particularly, noise
sources at the micro- or macroscopic levels add up to make the sequence
to be processed. So Gaussian noise is present in virtually every signal pro-
cessing application.

2.5. SYNTHETIC, MOVING AVERAGE, AND
AUTOREGRESSIVE SIGNALS

In simulation, evaluation, transmission, test, and measurement, the data
sequences used are often not natural but synthetic signals. They appear
also in some analysis techniques, namely analysis by synthesis techniques.

Deterministic signals can be generated in a straightforward manner as
isolated or recurring pulses or as sums of sinusoids. A diagram to produce a
single sinusoid is shown in Figure 2.3. Note that the sinusoids in a sum must
have different phases; otherwise an impulse shape waveform is obtained.

Flat spectrum signals are characterized by the fact that their energy is
uniformly distributed over the entire frequency band. Therefore an
approach to produce a deterministic white-noise-like waveform is to gener-
ate a set of sinusoids uniformly distributed in frequency with the same
amplitude but different phases.

Random signals can be obtained from sequences of statistically indepen-
dent real numbers generated by standard computer subroutines through a
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rounding process. The magnitudes of these numbers are uniformly distrib-
uted in the interval (0, 1), and the sequences obtained have a flat spectrum.

Several probability densities can be derived from the uniform distribu-
tion. Let the Gaussian, Rayleigh, and uniform densities be p(x), p(y), and
p(2), respectively. The Rayleigh density is

2
Y y
== - 2.50
() - eXp[ 202} (2.50)
and the second-order moment of the corresponding random variable is 202,
the mean is o+/7/2, and the variance is (2 — 71’/2)02. It is a density associated
with the peak values of a narrowband Gaussian signal. The changes of

variables

p(2)dz = dz = p(y) dy
leads to

dz y y2

o= [‘ 27
Hence,

2
_ _r
z= exp|: 202]

and a Rayleigh sequence y(n) is obtained from a uniform sequence z(n) in
the magnitude interval (0, 1) by the following operation:

y(n) = oy/21n[l/z(n)] (2.51)

Now, independent Rayleigh and uniform sequences can be used to derive a
Gaussian sequence x(n):

x(n) = y(n) cos[2mz(n)] (2.52)
In the derivation, a companion variable is introduced:
x'(n) = y(n) sin 2mz(n) (2.53)

Now, let us consider the joint probability p(x, x") and apply the relation
between rectangular and polar coordinates:

p(x, x")dxdx" = p(x, x")y dy dz = p(y)p(z) dy dz (2.54)
Then

’ 1 1 —(x*1+x?) 207
Ple,X) = 5 op() = 5z T = pp() (2.55)
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and finally

) = (2.56)

o2 '
The two variables x(n) and x'(n) have the same distribution and, considered
jointly, they make a complex Gaussian noise of power 262, The above
derivation shows that this complex noise can be represented in terms of
its modulus, which has a Rayleigh distribution, and its phase, which has a
uniform distribution.

Correlated random signals can be obtained by filtering a white sequence
with either uniform or Gaussian amplitude probability density, as shown in
Figure 2.5. The filter H(z) can take on different structures, corresponding to
different models for the output signal [6].

The simplest type is the finite impulse response (FIR) filter, correspond-
ing to the so-called moving average (MA) model and defined by

N
H(z)=) hz (2.57)
i=0
and, in the time domain,
N
x(n) = he(n — i) (2.58)
i=0

where the /4; are the filter impulse response.
The output signal ACF is obtained by direct application of definition
(2.34), considering that

E[*(n)] = 02, E[e(n)e(n—i)] =0 fori#0

The result is

N-p
2
Hp) = | % ;0 hihiyp, 1Pl < N (2.59)
0, pl > N
e{n) x(n)
— H(z) e
white sequence correlated sequence

FIG. 2.5 Generation of a correlated random signal.
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Several remarks are necessary. First, the ACF has a finite length in
accordance with the filter impulse response. Second, the output signal

power o2 is related to the input signal power by

N
ox=r0)=0; Y ki (2.60)
i=0

Equation (2.60) is frequently used in subsequent sections. The power
spectrum can be computed from the ACF r(p) by using equation (2.48),
but another approach is to use H(z), since it is available, via the equation

N

E J2xif
hie

i=0

An infinite impulse response (IIR) filter corresponds to an autoregressive
(AR) model. The equations are

2

S(f) =0 (2.61)

1
H(z) = v (2.62)
=X az!
i=1
and, in the time domain,
N
x(n) = e(n) + Z a;x(n — i) (2.63)

i=1

The ACF can be derived from the corresponding filter impulse response
coefficients A;:

o0
Hz)=) Iz (2.64)
i=0
and, accordingly, it is an infinite sequence:
fp) =00 Y hihiy, (2.65)
i=0

The power spectrum is

02

S(f) = > : 3 (2.66)
'1 - a1

i=1

An example is shown in Figure 2.6 for the filter transfer function:
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FIG. 2.6 Spectrum of an AR signal.

1
T (140.80z71 +0.64z2)(1 — 1.23z 1 + 0.64z2)

H(2)

Since the spectrum of a real signal is symmetric about the zero frequency,
only the band [0, f;,,], where f; is the sampling frequency, is represented.

For MA signals, the direct relation (2.59) has been derived between the
ACF and filter coefficients. A direct relation can also be obtained here by
multiplying both sides of the recursion definition (2.63) by x(n — p) and
taking the expectation, which leads to

N
H0)=o0; + Y a(i) (2.67)

i=1

N
p) =Y arp—i, p=>1 (2.68)
i=1

For p > N, the sequence r(p) is generated recursively from the N preceding
terms. For 0 < p < N — 1, the above equations establish a linear depen-
dence between the two sets of filter coefficients and the first ACF values.

They can be expressed in matrix form to derive the coefficients from the
ACEF terms:
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r© (1) - r(N) 1 0.
r(:l) r(zl) - (N :— 1) —:al _ () 2.69)
r(N) (N _ n - r(b) —;zN O

Equation (2.69) is a normal equation, called the order N forward linear
prediction equation, studied in a later chapter.

To complete the AR signal analysis, note that the generating filter
impulse response is

N
hy=r(p) = > ar(p+1) (2.70)
i=1

L

This equation is a direct consequence of definition relations (2.63) and
(2.64), if we notice that

h, = E[x(n)e(n — p)] (2.71)

Since r(p) = r(—p), equation (2.68) shows that the impulse response 7, is
zero for negative p, which reflects the filter causality.

It is also possible to relate the AC function of an AR signal to the poles of
the generating filter.

For complex poles, the filter z-transfer function can be expressed in
factorized form:

HE) =75 ! (2.72)

[1(1 = Piz))(1 = Piz™")
i1

Using the equality

o0

> rp)”

p=—00

S(f) = 0ol HH(E "] oey = (2.73)

|z|I=1

the series development of the product H(z)H(z ') leads to the AC function
of the AR signal. The rational function decomposition of H(z)H(z™") yields,
after simplification,

N/q

Hp) =Y ol Pil" cos[n Arg(p)) + ] (2.74)

i=1

where the real parameters «; and g; are the parameters of the decomposition
and hence are related to the poles P;.
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It is worth pointing out that the same expression is obtained for the
generating filter of the type FIR/IIR, but then the parameters «; and §;
are no longer related to the poles: they are independent.

A limitation of AR spectra is that they do not take on zero values,
whereas MA spectra do. So it may be useful to combine both [7].

2.6. ARMA SIGNALS
An ARMA signal is obtained through a filter with a rational z-transfer

function:
N 1
> biz”
H(z) = ———— (2.75)
1Y az"!
i=1
In the time domain,
N N
x(n) =Y be(n—i)+ Y ax(n—i) (2.76)
i=0 i=1

The denominator and numerator polynomials of H(z) can always be
assumed to have the same order; if necessary, zero coefficients can be added.
The power spectral density is

2
N

—j2nif
Z b,‘e
i=0

S(f)=oa; (2.77)

2
1= g2l

i=1

A direct relation between the ACF and the coefficients is obtained by
multiplying both sides of the time recursion (2.76) by x(n — p) and taking the
expectation:

N N
Hp) =Y _ar(p— i)+ Y _ biE(e(n — )x(n — p)] (2.78)
i=1 i=0

Now the relationships between ACF and filter coefficients become non-
linear, due to the second term in (2.78). However, that nonlinear term
vanishes for p > N because x(n — p) is related to the input signal value
with the same index and the preceding values only, not future ones.
Hence, a matrix equation can again be derived involving the AR coefficients
of the ARMA signal:
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r(N) rN=-1) - r0) 1 2
r(N +1) r(N) ) —a

o

: : ) : S L (2.79)
FON) QN —1) - r(N) || —ay 0

For p > N, the sequence r(p) is again generated recursively from the N
preceding terms.

The relationship between the first (N + 1) ACF terms and the filter coef-
ficients can be established through the filter impulse response, whose coeffi-
cients /; satisfy, by definition,

x(n) = i hie(n — i) (2.80)
i=0

Now replacing x(n — i) in (2.76) gives
N

N 00
X(m)y=Y be(n—i)+ Y a;y he(n—i—))
i=0 =0

i=1

and
N 00 N
X(n) = "bie(n—i)+ Y e(n—k) Y aihy_; (2.81)
i=0 k=1 i=1

Clearly, the impulse response coefficients can be computed recursively:

h():b(), h]‘ZO fork <0

N 2.82
he=be+ )y ah, k=1 5
i=1
In matrix form, for the N + 1 first terms we have
1 0 0 o 0 ho 0 0 e 0
—day 1 0 e 0 h] ho 0 e 0
—a  —a 1 - 0 h Iy hy -+ 0
—ay —ay_; —ay_p - 1 hy  hy_y hyoy -+ hy
by 0 0 0
b, by 0 0
—| b b by - 0 (2.83)
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Coming back to the ACF and (2.78), we have
N N
Y " biEle(n—x(n—p) =07 Y _ bih,
i=0 i=0

and, after simple manipulations,

N N—p
(p) =Y ar(p—i)+0. ) byiphy (2.84)
i=1 j=0
Now, introducing the variable
N—p
d(p) =Y biph (2.85)
J=0
we obtain the matrix equation
r(0) r(0) d(0)
r(1) r(=1) d(1)
R A N N A (2.86)
r(N) r(=N) d(N)
where
1 0 0
—day 1 0
of = )
—dy —dy_q 1
0 —a —ay
0 —a) 0
o =10
0 —dy - ’
O 0 -.- 0

For real signals, the first (N 4+ 1) ACF terms are obtained from the equation

#0) d(0)
1 d(1

r(: ) =ol[d + A ( ) (2.87)

r(N) d(N)

In summary, the procedure to calculate the ACF of an ARMA signal
from the generating filter coefficients is as follows:
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1. Compute the first (N + 1) terms of the filter impulse response through
recursion (2.82).

2. Compute the auxiliary variables d(p) for 0 < p < N.

Compute the first (N 4+ 1) ACF terms from matrix equation (2.87).

4. Use recursion (2.68) to derive r(p) when p > N + 1.

(98]

Obviously, finding the ACF is not a simple task, particularly for large
filter orders N. Conversely, the filter coefficients and input noise power
can be retrieved from the ACF. First the AR coefficients a; and the scalar
bochre2 can be obtained from matrix equation (2.79). Next, from the time
domain definition (2.76), the following auxiliary signal can be introduced:

N N
u(n) = x(n) — Z aix(n — i) = e(n) + Z bie(n — i) (2.88)
i=1 i=1

where by = 1 is assumed.
The ACEF r,(p) of the auxiliary signal u(n) is derived from the ACF of x(n)
by the equation

ru(p) = Elu(n)u(n — p)]
N N N N
=r(p) = Y ar(p+i) =Y ar(p =i+ Y aap(p+j—i)
i=1 i=1 i=1 j=1
or, more concisely by

N

rp) =Y cr(p—i) (2.89)

i=—N

where

N
ci=c_y cg=1 —i—Zaf
=1
. (2.90)
Cl' = _al' + Z ajaj,,-

j=itl

But r,(p) can also be expressed in terms of MA coefficients, because of the
second equation in (2.88). The corresponding expressions, already given in
the previous section, are

N—p
2
r(p) = | % l;) bibiyp, Il <N
0, pl > N
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From these N + 1 equations, the input noise power o2 and the MA
coefficients b;(1 < i < N; by =1) can be derived from iterative Newton—
Raphson algorithms. It can be verified that bybyo> equals the value we
previously found when solving matrix equation (2.79) for AR coefficients.

The spectral density S(f) can be computed with the help of the auxiliary
signal u(n) by considering the filtering operation

N
xX(n) = u(n) + > apx(n — i) (2.91)

i=1

which, in the spectral domain, corresponds to

N
r,(0) +2 3 r,(p) cos(2mpf)
S(f) = ”:N1 (2.92)

2
‘1 -3 ae >
i=1

This expression is useful in spectral analysis.

Until now, only real signals have been considered in this section. Similar
results can be obtained with complex signals by making appropriate com-
plex conjugations in equations. An important difference is that the ACF is
no longer symmetrical, which can complicate some procedures. For exam-
ple, the matrix equation (2.86) to obtain the first (N + 1) ACF terms
becomes

Ar+ A'F=c2d (2.93)

where r is the correlation vector, 7 the vector with complex conjugate entries,
and d the auxiliary variable vector. The conjugate expression of (2.86) is

A+ o' =02d (2.94)
The above equations, after some algebraic manipulations, lead to

[ of — (L) L fr=0[d — o' () \d] (2.95)

Now two matrix inversions are needed to get the correlation vector. Note
that .7~! is readily obtained from (2.83) by calculating the first N + 1
values of the impulse response of the AR filter through the recursion (2.82).

Next, more general signals of the types often encountered in control
systems are introduced.
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2.7. MARKOV SIGNALS

Markov signals are produced by state variable systems whose evolution
from time n to time n + 1 is governed by a constant transition matrix [8].
The state of a system of order N at time 7 is defined by a set of NV internal
variables represented by a vector X(n) called the state vector. The block
diagram of a typical system is shown in Figure 2.7, and the equations are

X(n+1)=A4X(n) + Bw(n)

y (2.96)
y(n) = C' X(n) + v(n)
The matrix A4 is the N x N transition matrix, B is the control vector, and
C is the observation vector [9]. The input sequence is w(n); v(n) can be a
measurement noise contaminating the output y(n).
The state of the system at time # is obtained from the initial state at time
zero by the equation

X(n) = A"X(0) + Z A" Bw(i— 1) (2.97)

i=1

Consequently, the behavior of such a system depends on successive
powers of the transition matrix A.

The z-transfer function of the system H(z), obtained by taking the z-
transform of the state equations, is

H(z)=C'(ZIy — A)"'B (2.98)

with Iy the N x N unity matrix.

The poles of the transfer function are the values of z for which the
determinant of the matrix (ZIy — A) is zero. That is also the definition of
the eigenvalues of 4.

X(n) X(n-1) v(n)

w(n) yi{n)
L — B Z_' ' C

FIG. 2.7 State variable system.
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The system is stable if and only if the poles are inside the unit circle in the
complex plane or, equivalently, if and only if the absolute values of the
eigenvalues are less than unity, which can be seen directly from equation
(2.97).

Let us assume that w(n) is centered white noise with power o>. The state
variables are also centered, and their covariance matrix can be calculated.
Multiplying state equation (2.96) on the right by its transpose yields

X(n+ DX'(n+1) = AX(n)X'(n)A + Bw*(n)B'
+ AX(n)w(n)B' + Bw(n)X'(n)A'

The expected values of the last two terms of this expression are zero,
because x(n) depends only on the past input values. Hence, the covariance
matrix R..(n+ 1) is

R (n+1)= E[X(n+ 1)X'(n+ 1)] = AR, (n)A' + 62 BB’ (2.99)

It can be computed recursively once the covariance of the initial condi-
tions R,,(0) is known. If the elements of the w(n) sequence are Gaussian
random variables, the state variables themselves are Gaussian, since they are
linear combinations of past input values.

The Markovian representation applies to ARMA signals. Several sets of
state variables can be envisaged. For example, in linear prediction, a repre-
sentation corresponding to the following state equations is used:

x(n) = C'X(n) + e(n)

N A (2.100)
X(n)=AX(n—1)4+ Be(n — 1)
with
0 1 0 - 0 ;
0 0 1 - 0 7l
) ) . ) hy
0 0 0o .1 i
N
Ldy dy-1 dy—2 - a4
M1 Xo(n)
0 . X1(n)
C=|.|. X(n= l-
L0 Xy-1(n)

The elements of vector B are the filter impulse response coefficients of
equation (2.80), and those of the state vector, X;(n) are the i-step linear
predictions of x(n), defined, for the ARMA signal and as shown later, by
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i N—i N
x;(n) = Zakfc(n —k)+ Za,»Jrjx(n —i—))+ Zbi+j€(n —i—})
j= j=

k=1
(2.101)

It can be verified that the characteristic polynomial of the matrix A,
whose roots are the eigenvalues, is the denominator of the filter transfer
function H(z) in (2.75).

Having presented methods for generating signals, we now turn to analysis
techniques. First we introduce some important definitions and concepts [10].

2.8. LINEAR PREDICTION AND INTERPOLATION

The operation which produces a sequence e(n) from a data sequence x(n),
assumed centered and wide-sense stationary, by the convolution

[o¢]
e(n) = x(n) = Y _ a;x(n — i) (2.102)
i=1
is called one-step linear prediction error filtering, if the coefficients are cal-
culated to minimize the variance of the output e(n). The minimization is
equivalent, through derivation, to making e(n) orthogonal to all previous
data, because it leads to:

Ele(m)x(n—10]=0, i>1 (2.103)
Since e(n) is a linear combination of past data, the following equations are
also valid:

Ele(n)e(n—1i)] =0, i>1 (2.104)

and the sequence e(n), called the prediction error or the innovation, is a
white noise. Therefore the one-step prediction error filter is also called the
whitening filter. The data x(n) can be obtained from the innovations by the
inverse filter, assumed realizable, which is called the model or innovation
filter. The operations are shown in Figure 2.8.

The prediction error variance E, = E[é*(n)] can be calculated from the
data power spectrum density S(e’“) by the conventional expressions for
digital filtering:

1 " jwy 2 jw
E, =—/ |A(e’)|*S(e’”) dw (2.105)
2 J_;
or, in terms of z-transforms,
1

_ b e dz
E”_j2nf2=1 AR A)S() (2.106)
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o) éln) x(n)

FIG. 2.8 Linear prediction filter and inverse filter.

where A(z) is the transfer function of the prediction error filter. The predic-
tion filter coefficients depend only on the input signal, and the error power
can be expressed as a function of S(e’”) only. To derive that expression, we
must first show that the prediction error filter is minimum phase; in other
words, all its zeros are inside or on the unit circle in the complex z-plane.

Let us assume that a zero of A(z), say z, is outside the unit circle, which
means |zy| > 1, and consider the filter 4'(z) given by

1

A'(z) = A@ 2-flzoz (2.107)
—Zy Z— ZO
As Figure 2.9 shows,
——1 —1
— — 1
z 2y z ZE) _ — (2108)
Z720 | | 2T |Zol
and the corresponding error variance is
1
E, =—E, <E, (2.109)

T
=0}

which contradicts the definition of the prediction filter. Consequently, the
prediction filter A(z) is minimum phase.

In (2.106) for E,, we can remove the filter transfer function with the help
of logarithms, taking into account that the innnovation sequence has a
constant power spectrum density; thus,

d d d.

2mm@=/ mA@i+/ mA@hi+/ nsSx)E  (2.110)
Izl=1 z Iz|=1 z |z|=1 z

Now, since A(z) is minimum phase, In A(z) is analytic for |z] = 1 and the

unit circle can be replaced in the above integral with a circle whose radius is

arbitrarily large, and since
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FIG. 2.9 Reflection of external zero in the unit circle.

lim A(z) = ay =1

the first integral vanishes on the right side of (2.110). The second integral
also vanishes because it can be shown, by a change of variables from z ™! to z
that it is equal to the first one.

Finally, the prediction error power is expressed in terms of the signal
power spectrum density by

| ;
E, = exp{Z/ In S(e’®) da)} (2.111)

This very important result is known as the Kolmogoroff-Szegé formula.
A useful signal parameter is the prediction gain G, defined as the signal-
to-prediction-error ratio:

1 [ ; 1 [" ;
G = —/ S(e’)dw/ exp —/ In S(e’®) dw (2.112)
2 J_, 2 J_,
Clearly, for a white noise G = 1.
At this stage, it is interesting to compare linear prediction and interpola-

tion. Interpolation is the filtering operation which produces from the data
x(n) the sequence

ei(n) = i hix(n—j), hy=1 (2.113)

j=—o0
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with coefficients calculated to minimize the output power. Hence, ¢;(n) is
orthogonal to past and future data:

Ele(mx(n — k)] = E;8(k) (2.114)
where §(k) is the Dirac distribution and
E; = E[ej(n)] (2.115)

Clearly, the interpolation error ¢;(n) is not necessarily a white noise. Taking
the z-transform of both sides of the orthogonal relationship (2.114) leads to

H(z)S(z) = E; (2.116)
Also

1

! _12_77 Iz|=1

H(z)H(z"HS(2) % (2.117)

Combining equations (2.116) and (2.117) gives

1 [ do
Ei=1/-- A 2.118
=1/ pr /_ . S(e™) (2.118)
Now, it is known from linear prediction that
S(e’?) = Lz (2.119)
|4(e/)]
and
1 T . 2 o0 2
e _ Jo — -
E, Ea/zn/;ﬁVl(e dw E/;a (2.120)

Since ay =1, we can conclude that E; < E,; the interpolation error
power is less than or equal to the prediction error power, which is a not
unexpected result.

Linear prediction is useful for classifying signals and, particular, distin-
guishing between deterministic and random processes.

2.9. PREDICTABLE SIGNALS

A signal x(n) is predictable if and only if its prediction error power is null:

1 (" . .
E, =5 |A(e’)>S(e’”) dw = 0 (2.121)

-7

or, in the time domain,
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x(n) = i a;x(n — i) (2.122)
i=

which means that the present value x(n) of the signal can be expressed in
terms of its past values. The only signals which satisfy the above equations
are those whose spectrum consists of lines:

N
Sy = IS8 — ) (2.123)
i=1

The scalars |S;|* are the powers of individual lines. The integer N can be
arbitrarily large. The minimum degree prediction filter is

N
A, =[] -ez7 (2.124)
i=1
However all the filters 4(z) with
AR =1-> az" (2.125)
i=1

and such that 4(e/) =0 for | < i < N satisfy the definition and are pre-
diction filters.

Conversely, since A(z) is a power series, A(e’”) cannot equal zero for
every w in an interval, and equations (2.121) and (2.122) can hold only if
S(e’”) = 0 everywhere except at a countable set of points. It follows that S
(e’”) must be a sum of impulses as in (2.123), and A(z) has corresponding
zeros on the unit circle.

Finally, a signal x(n) is predictable if and only if its spectrum consists of
lines.

The line spectrum signals are an extreme case of the more general class of
bandlimited signals. A signal x(n) is said to be bandlimited if S(e’) = 0 in
one or more frequency intervals. Then a filter H(w) exists such that

H(w)S(e™)=0 (2.126)

and, in the time domain,

i hix(n—10) =0

iI=—00

With proper scaling, we have

x(n) = — i hix(n — 1) — i h_ix(n + i) (2.127)
i=1 i=1
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Thus the present value can be expressed in terms of past and future
values. Again the representation is not unique, because the function H(w)
is arbitrary, subject only to condition (2.126). It can be shown that a band-
limited signal can be approximated arbitrarily closely by a sum involving
only its past values. Equality is obtained if S(e’”) consists of lines only.

The above sections are mainly intended to serve as a gradual preparation
for the introduction of one of the most important results in signal analysis,
the fundamental decomposition.

2.10. THE FUNDAMENTAL (WOLD) DECOMPOSITION

Any signal is the sum of two orthogonal components, an AR signal and a
predictable signal. More specifically:

Decomposition Theorem

An arbitrary unpredictable signal x(n) can be written as a sum of two
orthogonal signals:

x(n) = x,(n) + x,(n) (2.128)
where x,(n) is predictable and x,(n) is such that its spectrum S,(E /) can be
factored as

S.(e’*) = |H(e'))?, H(z) = ih,z*" (2.129)
i=0

and H(z) is a function analytic for |z| > 1.

The component x,.(n) is sometimes said to be regular. Following the
development in [10], the proof of the theorem begins with the computation
of the prediction error sequence

e(n) = x(n) — i a;x(n — i) (2.130)
i=1

As previously mentioned, the prediction coefficients are computed so as
to make e(n) orthogonal to all past data values, and the error sequence is a
white noise with variance E,.

Conversely, the least squares estimate of x(n) in terms of the sequence e
(n) and its past is the sum

x,(n) = i hie(n — i) (2.131)
i=0

and the corresponding error signal
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X[,(I’l) = x(n) - X,(l’l)

is orthogonal to e(n — i) for i = 0. In other words, e(n) is orthogonal to
X,(n+ k) for k = 0.

Now, e(n) is also orthogonal to x.(n — k) for k > 1, because x,.(n — k)
depends linearly on e(n — k) and its past and e(n) is white noise. Hence,

Ele(n)[x(n — k) — x.(n — k)]] = 0 = Ele(n)x,(n — k)], k >1
and

Ele(n)x,(n — k)] =0, allk (2.132)
Expression (2.131) yields

Elx,(n)x,(n—k) =0, allk (2.133)

The signals x,(n) and x,(n) are orthogonal, and their powers add up to give
the input signal power:

E[*(n)] = E[x;(n)] + E[x;(n)] (2.134)
Now (2.131) also yields
E[x}(n)] = E, ih? < E[(n)] (2.135)
=0
Therefore,
H(z) = i hiz™!
par

converges for |z| > 1 and defines a linear causal system which produces x,(n)
when fed with e(n).
In these conditions, the power spectrum of x.(n) is

S,(e’”) = E,|H(e™)] (2.136)

The filtering operations which have produced x,.(n) from x(n) are shown
in Figure 2.10. If instead of x(n) the component in a signal sequence
x(n) — x,(n) = x,(n) is fed to the system, the error e,(n), instead of e(n), is
obtained. The sequence

ey(n) = e(n) — |:xr(n) — i aix,(n— i)i| (2.137)
i=1

is a linear combination of e(n) and its past, via equation (2.131). But, by
definition,
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1=0

FIG. 2.10 Extraction of the regular component in a signal.

ep(n) = x,(n) = Y aix,(n — i) (2.138)
i=1

which, using equations (2.132) and (2.133), yields

Eley(m)] = El [e(n) - (xr(n) -y - i))}
i=1
X |:x1,(n) - i aix,(n — i)] }
i=1

=0

Therefore x,(n) is a predictable signal and the whitening filter A4(z) is a
prediction error filter, although not necessarily the minimum degree filter,
which is given by (2.124). On the contrary, A(z) is the unique prediction
error filter of x(n).

Finally, the spectrum S(e’”) of the unpredictable signal x(n) is a sum

S(e’) = S,(e”) + S,(e’) (2.139)

where S.(e’) is the continuous spectrum of the regular signal x,(n), and
S,(e’”) is the line spectrum of the deterministic component, the two com-
ponents being uncorrelated.

2.11. HARMONIC DECOMPOSITION

The fundamental decomposition is used in signal analysis as a reference for
selecting a strategy [11]. As an illustration let us consider the case, frequently
occurring in practice, where the signal to be analyzed is given as a set of 2
N + 1 autocorrelation coefficients r(p) with —N < p < N, available from a
measuring procedure. To perform the analysis, we have two extreme
hypotheses. The first one consists of assuming that the signal has no deter-
ministic component; then a set of N prediction coefficients can be calculated
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as indicated in the section dealing with AR signals by (2.69), and the power
spectrum is obtained from (2.66).

But another hypothesis is that the signal is essentially deterministic and
consists of N sinusoids in noise. The associated ACF for real data is

N
r(p) =2 ISkl* cos(pay) + 02 8(p) (2.140)
k=1

where w, are the radial frequencies of the sinusoids and S are the ampli-
tudes. In matrix form,

r(0) — o; 1 1 1

r(1) COS W CoOSwy; -+  COSwy

r(2) —2| cos2w; cos2w, --- coslwy

r(N) cosNw; cosNw, -+ cosNawy
1112
S
1% (2.141)
IS’

The analysis of the signal consists of finding out the sinusoid frequencies
and amplitudes and the noise power o-. To perform that task, we use the
signal sequence x(n). According to the above hypothesis, it can be expressed
by

x(n) = x,(n) + e(n) (2.142)

with
N
X,(n) = Za,—xp(n —1)
i=1
Now, the data signal satisfies the recursion

x(n) =

N
=

N
aix(n — i)+ e(n) = > ae(n — i) (2.143)

1 i=1

which is just a special kind of ARMA signal, with by =1 and b; = —g; in

time domain relation (2.76). Therefore results derived in Section 2.6 can be

applied.
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The impulse response can be computed recursively, and relations (2.82)
yield & = 8(k). The auxiliary variable in (2.85) is d(p) = —a,(1 < p < N).
Rewriting the equations giving the autocorrelation values (2.84) leads to

N
rp) =Y ar(p—i+o;(—a), 1<p<N (2.144)
i=1
or, in matrix form for real data,
(0) (1) e r(N) 1 1
r(1) r(0) <o (N =1) —a | —a
. . . . . =0, ) (2.145)
r(N) r(N—-1) --- r(0) —ay —ay

This is an eigenvalue equation. The signal autocorrelation matrix is sym-
metric, and therefore all eigenvalues are greater than or equal to zero. For N
sinusoids without noise, the (N + 1) x (N + 1) autocorrelation matrix has
one eigenvalue equal to zero; adding to the signal a white noise component
of power af results in adding crf to all eigenvalues of the autocorrelation
matrix. Thus, the noise power o2 is the smallest eigenvalue of the signal, and
the recursion coefficients are the entries of the associated eigenvector. As
shown in the next chapter, the roots of the filter

N
AR =1-> az" (2.146)
i=1

called the minimum eigenvalue filter, are located on the unit circle in the
complex plane and give the frequencies of the sinusoids. The analysis is then
completed by solving the linear system (2.141) for the individual sinusoid
powers. The complete procedure, called the Pisarenko method, is presented
in more detail in a subsequent chapter [12].

So, it is very important to notice that a signal given by a limited set of
correlation coefficients can always be viewed as a set of sinusoids in noise.
That explains why the study of sinusoids in noise is so important for signal
analysis and, more generally, for processing.

In practice, the selection of an analysis strategy is guided by a priori
information on the signal and its generation process.

2.12. MULTIDIMENSIONAL SIGNALS

Most of the algorithms and analysis techniques presented in this book are
for monodimensional real or complex sequences, which make up the bulk of
the applications. However, the extension to multidimensional signals can be
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quite straightforward and useful in some important cases—for example,
those involving multiple sources and receivers, as in geophysics, underwater
acoustics, and multiple-antenna transmission systems [13].

A multidimensional signal is defined as a vector of N sequences

xy(n)

X(n) = xz,(n)

()

For example, the source and receiver vectors in Figure 1.1 are multidimen-
sional signals. The N sequences are assumed to be dependent; otherwise they
could be treated as N different scalar signals. They are characterized by the
joint density function between them.

A second-order stationary multidimensional random signal is character-
ized by a mean vector M, and a covariance matrix R,.:

Elx(n)]
Elxa(m)]

X

Elxn(n)]

The diagonal terms of R, are the variances of the signal elements. If the
elements in the vector are each Gaussian, then they are jointly Gaussian and
have a joint density:

1
— m)?[det R]

p(X) 12 expl— (X — M) R (X — M,)] (2.148)

For the special case N = 2,

2
Ry =[ Tu o P U’*‘f"z} (2.149)

POy, Oy, Oy,

with p the correlation coefficient defined by

p= E[(x) — m)(xy — my)] (2.150)
0,0y,

If the signal elements are independent, R, is a diagonal matrix and

Pl (e —my)*
p(X)_gU?mexp[— = } (2.151)

1

Furthermore, if all the variances are equal, then
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R, =0"ly (2.152)

This situation is frequently encountered in roundoff noise analysis in imple-
mentations.

For complex data, the Gaussian joint density (2.148) takes a slightly
different form:

1

v qer g SRl = MR (X = M) (2.153)

p(X) =
Multidimensional signals appear naturally in state variable systems, as
shown in Section 2.7.

2.13. NONSTATIONARY SIGNALS

A signal is nonstationary if its statistical character changes with time. The
fundamental decomposition can be extended to such a signal, and the reg-
ular component is

o0
x(n) =" hi(n)e(n — i) (2.154)
i=0
where e(n) is a stationary white noise. The generating filter impulse response
coefficients are time dependent. An instantaneous spectrum can be defined
as

2

S(f.n) =0, (2.155)

Z hi(n)e 7>
=0

So, nonstationary signals can be generated or modeled by the techniques
developed for stationary signals, but with additional means to make the
system coefficients time varying [14]. For example, the ARMA signal is

N N
xX(n) =Y bme(n— i)+ Y an)x(n— i) (2.156)
i=0 i=1

The coefficients can be generated in various ways. For example, they can
be produced as weighted sums of K given time functions f;(n):

K
an) =y _ ayfi(n) (2.157)
k=1

These time functions may be periodic functions or polynomials; a simple
case is the one-degree polynomial, which corresponds to a drift of the coef-
ficients. The signal depends on (2N + 1)K time-independent parameters.

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



The set of coefficients can also be a multidimensional signal. A realistic
example in that class is shown in Figure 2.11. The N time-varying filter
coefficients a;(n) are obtained as the outputs of N fixed-coefficient filters
fed by independent white noises with same variances. A typical choice for
the coefficient filter transfer function is the first-order low-pass function

1
Hi(2)=ﬁ, l«y<l (2.158)

whose time constant is
T=—" (2.159)

For y close to unity, the time constant is large and the filter coefficients are
subject to slow variations.

The analysis of nonstationary signals is complicated because the ergodi-
city assumption can no longer be used and statistical parameters cannot be
computed through time averages. Natural signals are nonstationary.
However, they are often slowly time varying and can then be assumed
stationary for short periods of time.

2.14. NATURAL SIGNALS

To illustrate the preceding developments, we give several signals from dif-
ferent application fields in this section.

Speech is probably the most commonly processed natural signal through
digital communication networks. The waveform for the word “FATHER”
is shown in Figure 2.12. The sampling rate is 8 kHz, and the duration is

e](n) eN(n)
H] ........... HN
[ 2in) [ an)
e(n) X(I’T)
———— N coefficient filter rncemie

FIG. 2.11 Generation of a nonstationary signal.
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FIG. 2.12 Speech waveform for the word “father.”

about 0.5 s. Clearly, it is nonstationary. Speech consists of phonemes and
can be considered as stationary on durations ranging from 10 to 25 ms.

It can be modeled as the output of a time-varying purely recursive filter
(AR model) fed by either a string of periodic pulses for voiced sections or a
string of random pulses for unvoiced sections [15].

The output of the demodulator of a frequency-modulated continuous
wave (FMCW) radar is shown in Figure 2.13. It is basically a distorted
sinusoid corrupted by noise and echoes. The main component frequency
is representative of the distance to be measured.

An image can be represented as a one-dimensional signal through scan-
ning. In Figure 2.14, three lines of a black-and-white contrasted picture are
shown; a line has 256 samples. The similarities between consecutive lines can
be observed, and the amplitude varies quickly within every line. The picture
represents a house.

2.15. SUMMARY

Any stationary signal can be decomposed into periodic and random com-
ponents. The characteristics of both classes can be studied by considering

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



MARCEL

> Amplilude

+1

-1 v »

0 100 200 Sample number

FIG. 2.13 FMCW radar signal.

as main parameters, the ACF, the spectrum, and the generating model.
Periodic signals have been analyzed first. Then random signals have been
defined, with attention being focused on wide-sense stationary signals;
they have second-order statistics which are independent of time.
Synthetic random signals can be generated by a filter fed with white
noise. The Gaussian amplitude distribution is especially important
because of its nice statistical properties, but also because it is a model
adequate for many real situations. The generating filter structures corre-
spond to various output signal classes: MA, AR, and ARMA. The con-
cept of linear prediction is related to a generating filter model, and the
class of predictable signals has been defined. A proof of the fundamental
Wold decomposition has been presented, and, as an application, it has
been shown that a signal specified by a limited set of correlation coeffi-
cients can be viewed as a set of sinusoids in noise. That is the harmonic
decomposition.

In practice, signals are nonstationary, and, in general, short-term statio-
narity or slow variations have to be assumed. Several natural signal exam-
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FIG. 2.14 Image signal: three lines of a black-and-white picture.

ples, namely speech, radar, and image samples, have been selected to illus-
trate the theory.

EXERCISES
1. Calculate the z-transform Yx(z) of the damped cosinusoid

0, n<0
yr(n) = e 01n cosg n>=0
2 ’ =

and show the poles in the complex plane.
Give the signal energy spectrum and verify the energy relationship

> 1 1
5=k =ag [ v e
Give the coefficients, initial conditions, and diagram of the second-
order section which generates y(n).
2. Find the ACF of the signal

x(n) = cosnn+ ! sinn
B 32 4

Determine the recurrence equation satisfied by x(n) and give the initial
conditions.
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3. [Evaluate the mean and variance associated with the uniform probability
density function on the interval [x;, x;]. Comment on the results.
4. Consider the signal

|0 n<0
XD =0 08x(n— 1) +e(m), n>1

assuming e(n) is a stationary zero mean random sequence with power
af = 0.5. The initial condition is deterministic with value x(0) = 1.
Calculate the mean sequence m, = E[x(n)]. Give the recursion, for
the variance sequence. What is the stationary solution. Calculate the
ACF of the stationary signal.
5. Find the first three terms of the ACF of the AR signal.

x(n) = 1.27x(n — 1) — 0.81x(n — 2) + e(n)

where e(n) is a unit power centered white noise.
6. An ARMA signal is defined by the recursion

x(n) = e(n) + 0.5¢e(n — 1) + 0.9e(n — 2) + x(n — 1) — 0.5x(n — 2)

where e(n) is a unit variance centered white noise. Calculate the gener-
ating filter z-transfer function and its impulse response. Derive the

signal ACF.
7. A two-dimensional signal is defined by
xl(”) — 0 , n < 0
X(n) o Xz(l’l) 0
o 0.63 0.36 0.01
[0.09 0.86]X(”_ D+ [0.06}6(’4)’ n=1

where e(n) is a unit power centered white noise. Find the covariance
propagation equation and calculate the stationary solution.

8. A measurement has supplied the signal autocorrelation values
r(0) = 5.75, r(1) = 4.03, r(2) = 0.46. Calculate the two coefficients of
the second-order linear predictor and the prediction error power.
Give the corresponding signal power spectrum.

9. Find the eigenvalues of the matrix

1.00 0.70 0.08
R;=1{(0.70 1.00 0.70
0.08 0.70 1.00

and the coefficients of the minimum eigenvalue filter. Locate the zeros
of that filter and give the harmonic spectrum. Compare with the pre-
diction spectrum obtained in the previous exercise.
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3

Correlation Function and Matrix

The operation and performance of adaptive filters are tightly related to the
statistical parameters of the signals involved. Among these parameters, the
correlation functions take a significant place. In fact, they are crucial
because of their own value for signal analysis but also because their terms
are used to form correlation matrices. These matrices are exploited directly
in some analysis techniques. However, in the efficient algorithms for adap-
tive filtering considered here, they do not, in general, really show up, but
they are implied and actually govern the efficiency of the processing.
Therefore an in-depth knowledge of their properties is necessary.
Unfortunately it is not easy to figure out their characteristics and establish
relations with more accessible and familiar signal features, such as the spec-
trum.

This chapter presents correlation functions and matrices, discusses their
most useful properties, and, through examples and applications, makes the
reader accustomed to them and ready to exploit them. To begin with, the
correlation functions, which have already been introduced, are presented in
more detail.

3.1. CROSS-CORRELATION AND
AUTOCORRELATION

Assume that two sets of N real data, x(n) and y(n), have to be compared,
and consider the scalar ¢ which minimizes the cost function

brrreer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



N

J(N) =Y [y(n) — ax(m)]’ 3.1)
n=1
Setting to zero the derivative of J(N) with respect to a yields
N
> x(n)y(n)
a="" (3.2)
> X (n)
n=1
The minimum of the cost function is
N
Tain(N) = [1 = (V)] Yy (n) (3.3)
n=1
with
N
> x(n)y(n)
k(N) = —=! (3.4)
N N
> 20, | 3 )

The quantity k(N), cross-correlation coefficient, is a measure of the degree
of similarity between the two sets of N data. To point out the practical
significance of that coefficient, we mention that it is the basic parameter
of an important class of prediction filters and adaptive systems—the least
squares (LS) lattice structures in which it is computed in real time recur-

sively.

From equations (3.2) and (3.4), the correlation coefficient k(N) is
bounded by

k(N)] <1 (3.5)

and it is independent of the signal energies; it is said to be normalized.

If instead of x(n) we consider a delayed version of the signal in the above
derivation, a cross-correlation function can be obtained. The general,
unnormalized form of the cross-correlation function between two real
sequences x(n) and y(n) is defined by

r(p) = E[y(m)x(n — p)] (3.6)

For stationary and ergodic signals we have

N

ra(p) = lim >

n=—

y()x(n — p) (3.7)
N
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Several properties result from the above definitions. For example:
ry(=p) = E{x(n + p)yl(n + p) — pl} = r,(p) (3.8)

If two random zero mean signals are independent, their cross-correlation
functions are zero. In any case, when p approaches infinity the cross-corre-
lation approaches zero. The magnitudes of r,.(p) are not, in general, max-
imum at the origin, but they are bounded. The inequality

[y(n) —x(n—p)I* =0 (3.9)
yields the bound

12 (P)] < 5[re(0) 4 1,,(0)] (3.10)
If the signals involved are the input and output of a filter

y(m) =" hix(n — i) (3.11)

i=0

and

ra(p) = ELy(mx(n — p)l = > hiry(p — i) (3.12)

i=0

the following relationships, in which the convolution operator is denoted x*,
can be derived:

ryx(P) = rx(p) * h(p)
Foy(P) = ry(p) * h(—p) (3.13)
1y () = ryx(p) * h(p) * h(—p)

When y(n) = x(n), the autocorrelation function (ACF) is obtained; it is

denoted r,.(p) or, more simply, r(p), if there is no ambiguity. The following
properties hold:

r(p) = r(=p), Ir(p)l < r(0) (3.14)
For x(n) a zero mean white noise with power o2,
r(p) = 038(p) (3.15)

and for a sine wave with amplitude S and radial frequency wy,

Sz
r(p) = —-cos pay (3.16)

The ACEF is periodic with the same period. Note that from (3.15) and (3.16)
a simple and efficient noise-elimination technique can be worked out to
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retrieve periodic components, by just dropping the terms r(p) for small p in
the noisy signal ACF.

The Fourier transform of the ACF is the signal spectrum. For the cross-
correlation r,.(p) it is the cross spectrum S,,.(f).

Considering the Fourier transform X(f) and Y(f) of the sequences x(n)
and y(n), equation (3.7) yields

Sy(f) = Y(NHX(S) (3.17)

where X(f) is the complex conjugate of X(f).
The frequency domain correspondence for the set of relationships (3.13)
is found by introduction of the filter transfer function:

Y(f) _ Y(NHX(S)

HD=%0 = wonr G149
Now
Six() = S (NH(S)

Sy (f) = S (NHNIP

The spectra and cross spectra can be used to compute ACF and cross-
correlation function, through Fourier series development, although it is
often the other way round in practice.

Most of the above definitions and properties can be extended to complex
signals. In that case the cross-correlation function (3.6) becomes

ryx(p) = E[y(n)x(n — p)] (3.20)

In the preceding chapter the relations between correlation functions and
model coefficients have been established for MA, AR, and ARMA station-
ary signals. In practice, the correlation coefficients must be estimated from
available data.

3.2. ESTIMATION OF CORRELATION FUNCTIONS

The signal data may be available as a finite-length sequence or as an infinite
sequence, as for stationary signals. In any case, due to the limitations in
processing means, the estimations have to be restricted to a finite time
window. Therefore a finite set of N, data is assumed to be used in estima-
tions.

A first method to estimate the ACF r(p) is to calculate r;(p) by
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No

) =5 > ) —p) (3.21)

0 n=p+1
The estimator is biased because

No—p
Elr ()] = =—1(p) (322)
0
However, the bias approaches zero as N, approaches infinity, and r;(p) is
asymptotically unbiased.
An unbiased estimator is

.
rnp) =——" x(n)x(n — p) (3.23)
NO _pn:Xp—:H
In order to limit the range of the estimations, which are exploited sub-
sequently, we introduce a normalized form, given for the unbiased estimator
by

Ny

> x(m)x(n—p)

n=p+1

Ny Ny 172
|: > Xm) Y Xz(”—P):|

n=p+1 n=p+1

ria(p) = (3.24)

The variance is

var{r,o(p)} = Elrn(®] — EX[no(p)] (3.25)
and it is not easily evaluated in the general case because of the nonlinear
functions involved. However, a linearization method, based on the first
derivatives of Taylor expansions, can be applied [1]. For uncorrelated
pairs in equation (3.24), we obtain

1= 2P

var(rp(p) ~ L (3:26)

No—p
Elx(n)x(n — p)]

") = B — p

(3.27)

is the theoretical normalized ACF.

Thus, the variance also approaches zero as the number of samples
approaches infinity, and r,,(p) is a consistent estimate.

The calculation of the estimator according to (3.24) is a demanding
operation for large N,. In a number of applications, like radiocommunica-
tions, the correlation calculation may be the first processing operation, and

brrreer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



it has to be carried out on high-speed data. Therefore it is useful to have less
costly methods available. Such methods exist for Gaussian random signals,
and they can be applied as well to many other signals.

The following property is valid for a zero mean Gaussian signal x(n):

1) = 31y pry(0) (3.28)
where
y(n) = sign{x(m}, ¥ = 1

Hence the ACF estimate is

No

>~ x(n — p)sign{x(n)} (3.29)

n=p+1

r(p)=c
: No—p

where
T r
¢ =370 =35 2 x|

In normalized form, we have

No
N 2 1x(n — p)sign{x(n)}
) =5, (3.292)

> x(n)]

n=1

A multiplication-free estimate is obtained [2], which is sometimes called
the hybrid sign correlation or relay correlation. For uncorrelated pairs and p
small with respect to N, the variance is approximately [3]

var ) ~ 5 E = 21, (p)Aresinlr, (p)] + 5 73p) = 2y 1 = 13 )}
(3.30)

This estimator is also consistent.

The simplification process can be carried one step further, through the
polarity coincidence technique, which relies on the following property of
zero mean Gaussian signals:

1(p) = r(O)sin[ 3 Efsign{x(x(n — D] (3.31)

The property reflects the fact that a Gaussian function is determined by its
zero crossings, except for a constant factor. Hence we have the simple
estimate
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No
rua(p) = sin (;TN Z sign{x(n)x(n — p)}) (3.32)

n =p+1

which is called the sign or polarity coincidence correlator. Its variance can
be approximated for N, large by [4]

2
var{r,(p)} %NL% [1— ()] [ GTArcsin r(p)> } (3.33)

In a Gaussian context, a more precise estimator is based on the mean of
the absolute differences. Consider the sequence

z,(n) = x(n) — x(n — p) (3.34)

Its variance is

EI20)] = [1(0>—r@>]—21(0)[ E’;ﬂ (3.39)
and,

rp) . 1E[zn)

)1yt (3.36)

Using the Gaussian assumption and equation (3.28), an estimator is
obtained as

No 2
| > 1x(n) = x(n — p)|
n=p

rnS(p) =1 _E Ny
2 (Ix(m)] + |x(n = p)I)
n=p

(3.37)

The variances of the three normalized estimators r,,, r,3, and r,, are
shown in Figure 3.1 versus the theoretical autocorrelation (AC) r(p).
Clearly the lower computational cost of the hybrid sign and polarity coin-
cidence correlators is paid for by a lower accuracy. As concerns the estima-
tor r,s, it has the smallest variance and is closer to the theory [6].

The performance evaluation of the estimators has been carried out under
the assumption of uncorrelated sample pairs, which is no longer valid when
the estimate is extracted on the basis of a single realization of a correlated
process, i.e., a single data record. The evaluation can be carried out by
considering the correlation between pairs of samples; it shows a degradation
in performance [5].

For example, if the sequence x() is a bandlimited noise with bandwidth
B, the following bound can be derived for a large number of data N, [7]:
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FIG. 3.1 Standard deviation of estimators versus theoretical autocorrelation for
large number of data N.

r*(0)

BN —p) (3.38)

var{r(p)} <

The worst case occurs when the bandwidth B is half the sampling fre-
quency; then x(n) is a white noise, and the data are independent, which leads
to

2r%(0)
No—p

var{r,(p)} < (3.39)

This bound is compatible with estimation (3.26). Anyway the estimator for
correlated data is still consistent for fixed p.

Furthermore, the Gaussian hypothesis is also needed for the hybrid sign
and polarity coincidence estimators. So, these estimators have to be used
with care in practice. An example of performance comparison is presented in
Figure 3.2 for a speech sentence of 1.25 s corresponding to Ny = 10,000
samples.

In spite of noticeable differences between conventional and polarity coin-
cidence estimators for small AC values, the general shape of the function is
the same for both.
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FIG. 3.2 Correlation function estimation for a speech sentence.

Concerning correlated data, an important aspect of simplified correlators
applied to real-life data is that they may attenuate or even cancel small
useful components. Therefore, if small critical components in the signal
have to be kept, the correlation operation accuracy in equipment must be
determined to ensure that they are kept. Otherwise, reduced word lengths,
such as 8 bits or 4 bits or even less, can be employed.

The first estimator introduced, r;(p), is just a weighted version of r,(p);
hence its variance is

No—p
Ny

2
var{r|(p)} = var{NO _prz(p)} = ( ) var{r,(p)} (3.40)

Ny

The estimator r;(p) is biased, but it has a smaller variance than r,(p). It is
widely used in practice.

The above estimation techniques can be expanded to complex signals,
using definition (3.20). For example, the hybrid complex estimator, the
counterpart of r3(p) in (3.29), is defined by

T _
"30(]7) = Eryx(?(o)ryxc(p) (341)
with
1S
ryxc(p) = N Z e*j(ﬂl*l)ﬂ/z Z X(l/l)
m=1 1,

where the summation domain itself is defined by
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(m—1)/2 < Arelx(n—p)] < m>
The sign function has been replaced by a phase discretization operator that
uses the signs of the real components. This computationally efficient esti-
mator is accurate for the complex Gaussian stationary processes [8].

So far, stationarity has been assumed. However, when the signal is just
short-term stationary, the estimation has to be carried out on a compatible
short-time window. An updated estimation is obtained every time if the
window slides on the time axis; it is a sliding window technique, in which
the oldest datum is discarded as a new datum enters the summation.

An alternative, more convenient, and widely used approach is recursive
estimation.

1 <n<Ny—p
I, =

3.3. RECURSIVE ESTIMATION

The time window estimation, according to (3.21) or (3.23), is a finite impulse
response (FIR) filtering, which can be approximated by an infinite impulse
response (IIR) filtering method. The simplest IIR filter is the first-order low-
pass section, defined by

y(m)=x(n)+by(n—1), 0<b<l (3.42)

Before investigating the properties of the recursive estimator, let us con-
sider the simple case where the input sequence x(#) is the sum of a constant
m and a zeor mean white noise e(n) with powerof . Furthermore, if y(n) =0
for n < 0, then

bn-H n

y(n) = mﬁ+;b e(n — i) (3.43)
Taking the expectation gives
1 _ b}’l+1

Therefore, an estimation of the input mean m is provided by the product
(1 = b)y(n), that is by the first-order section with z-transfer function:

1-b
H(z)=—— 3.45
() =17 (3.45)
The noise power o7 at the output of such a filter is
1—
os =0 =0 (3.46)
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Consequently, the input noise is all the more attenuated than b is close to
unity. Taking b =1-3, 0 < § « 1 yields

8
of ~ 055 (3.47)

The diagram of the recursive estimator is shown in Figure 3.3. The corre-
sponding recursive equation is

Mmn)=(1—-8Mm— 1)+ 5x(n) (3.48)
According to equation (3.44) the estimation is biased and the duration

needed to reach a good estimation is inversely proportional to 8. In digital
filter theory, a time constant t can be defined by

VT —p (3.49)
which for b close to 1, leads to
1 1

In order to relate recursive and window estimations, we define an equiva-
lence. The FIR estimator

No—1

1
n)=— x(n—1i) (3.51)
Y =5 ;
which is unbiased, yields the output noise power
2
/ UE
(09)” = N (3.52)
Comparing with (3.47), we get
2t~ N, (3.53)
+
x{n} L M({n)
2 -1

FIG. 3.3 Recursive estimator.
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The recursive estimator can be considered equivalent to a window esti-
mator whose width is twice the time constant.

For example, consider the recursive estimation of the power of a white
Gaussian signal x(n), the true value being oﬁ. The input to the recursive
estimator, x(n), can be viewed as the sum of the constant m = o~ and a zero
mean white noise, with variance

o2 = e[x*(n)] — ot = 20% (3.54)
The standard deviation of the output, AP, is
AP =o2\/8 (3.55)

and the relative error on the estimated power is /6.
Recursive estimation techniques can be applied to the ACF and to cross-
correlation coefficients; a typical example is the lattice adaptive filter.
Once the ACF has been estimated, it can be used for analysis or any
further processing.

3.4. THE AUTOCORRELATION MATRIX

Often in signal analysis or adaptive filtering, the ACF appears under the
form of a square matrix, called the autocorrelation matrix.
The N x N AC matrix R, of the real sequence x(7) is defined by

r(0) r(1) e r(N=1)
I BEUBR ORI s
KN —1) rN=2) - #0)

It is a symmetric matrix and R., = R,,. For complex data the definition is
slightly different:

r(0) r(1) oo r(N=1)
r(—1) r(0)... <o (N —=2)
=V =D] "=(N=2)] - "r(0)
Since r(—p) is the complex conjugate of r(p), the matrix is Hermitian; that is,
Ri. =R, (3.58)

ek

where denotes transposition and complex conjugation.
To illustrate how naturally the AC matrix appears, let us consider an FIR
filtering operating with N coefficients:
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N—1
ym) =" hx(n—i) (3.59)
i=0

In vector notation (3.58) is

y(n) = H'X(n) = X'(n)H
The output power is

E[y*(n)] = E[H'X(m)X'()H] = H'R.H (3.60)
The inequality

H'R.H >0 (3.61)

is valid for any coefficient vector H and characterizes positive semidefinite
or nonnegative definite matrices [9]. A matrix is positive definite if

H'R, H >0 (3.62)

The matrix R, is also symmetrical about the secondary diagonal; hence
it is said to be doubly symmetric or persymmetric. Define by Jy the N x N
co-identity matrix, which acts as a reversing operator on vectors and shares
a number of properties with the identity matrix I:

10 - 00 00 -+ 01
01 -~ 00 00 10

Iy=1: : oo Iv= Do (3.63)
00 - 1 0 1 00
00 - 01 10 00

The double symmetry property is expressed by
RxxJN == JNRxx (364)

Autocorrelation matrices have an additional property with respect to
doubly symmetric matrices, namely their diagonal entries are identical;
they are said to have a Toeplitz form or, in short, to be Toeplitz. This
property is crucial and leads to drastic simplifications in some operations
and particularly the inverse calculation, needed in the normal equations
introduced in Section 1.4, for example. Examples of AC matrices can be
given for MA and AR signals. If x(n) is an MA signal, generated by filtering
a white noise with power (73 by an FIR filter having P < N/2 coefficients,
then R, is a band matrix. For P = 2,

x(n) = hoe(n) + hye(n — 1) (3.65)
Using the results of Section 2.5 yields
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[ hg+h hoh 0 e 0 0
hohy B4R hohy - 0 0
,| 0 hohy B +h - 0 0
Ryar = o ) : ) . ) (3.66)
0 0 0 ceo B4R hohy
L0 0 0 ceohohy W+ R]
Similarly, for a first-order AR process, we have
x(n) = ax(n — 1) + e(n)
The matrix takes the form
1 a a* '~
. 1 a s dV?
Rap=—5| & a 1, - a7 (3.67)
l—a . SRR .
NN N3 N |

The inverse of the AR signal AC matrix is a band matrix because the inverse
of the filter used to generate the AR sequence is an FIR filter. In fact, except
for edge effects, it is an MA matrix.

Adjusting the first entry gives for the first-order case

1 —a 0 0
! —a 14+d —a 0
_ 2
Ra=—| 0 —a lda e 0 (3.68)
N : : 1+d —a
0 0 0 —a 1

This is an important result, which is extended and exploited in subsequent
sections.

Since AC matrices often appear in linear systems, it is useful, before
further exploring their properties, to briefly review linear systems.

3.5. SOLVING LINEAR EQUATION SYSTEMS

Let us consider a set of N, linecar equations represented by the matrix
equation

MH=Y (3.69)

The column vector Y has N, elements. The unknown column vector H has
N elements, and the matrix M has Ny rows and N columns. Depending on
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the respective values of Ny and N, three cases can be distinguished. First,
when N, = N, the system is exactly determined and the solution is

H=M"'Y (3.70)

Second, when Ny > N, the system is overdetermined because there are more
equations than unknowns. A typical example is the filtering of a set of N,
data x(n) by an FIR filter whose N coefficients must be calculated so as to
make the output set equal to the given vector Y:

x(0) 0 . 0
x(1) x(0) e 0 T 1(0)
: : : hy »(1)
XN—-1) x(N-=2) - x(0) S :
: : : hy_1 Y(No — 1)
| X(Ng—1) x(Ny—2) --- x(Ny—N) |

(3.71)
A solution in the LS sense is found by minimizing the scalar J:
J=(Y - MH)(Y — MH)

Through derivation with respect to the entries of the vector H, the solution
is found to be

H=MM"'MY (3.72)

Third, when N, < N, the system is underdetermined and there are more
unknowns than equations. The solution is then

H=MMM)"'Yy (3.73)

The solution of an exactly determined system must be found in all cases.
The matrix (M'M) is symmetrical, and standard algorithms exist to solve
equation systems based on such matrices, which are assumed positive defi-
nite. The Cholesky method uses a triangular factorization of the matrix and
needs about N°/3 multiplications; the subroutine is given in Annex 3.1.

Iterative techniques can also be used to solve equation (3.69). The matrix
M can be decomposed as

M=D+FE

where D is a diagonal matrix and E is a matrix with zeros on the main
diagonal. Now

H=D"'Y-D'EH

and an iterative procedure is as follows:
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Hy=D"Y

H, =D"'Y - D 'EH,
! 0 (3.74)

H,.,=D"'Y - D'EH,
The decrement after n iterations is
H,., —H,=—(D'Ey"'p~'y

The procedure may be stopped when the norm of the vector H,, | — H, falls
below a specified value.

3.6. EIGENVALUE DECOMPOSITION

The eigenvalue decomposition of an AC matrix leads to the extraction of the
basic components of the corresponding signal [10—13]—hence its signifi-

cance.

The cigenvalues A; and eigenvectors V; of the N x N matrix R are defined
by

RV, =1V, 0<i<N-1 (3.75)

If the matrix R now denotes the AC matrix R, it is symmetric for real
signals and Hermitian for complex signals because

AVIV, = (VIRV) = ViV, (3.76)
The eigenvalues are the real solutions of the characteristic equation
det(R—AIy) =0 (3.77)

The identity matrix Iy has +1 as single eigenvalue with multiplicity N, and
the co-identity matrix Jy has +1.

The relations between the zeros and coefficients of polynomials yield the
following important results:

N—1
detR=[]x (3.78)
i=0

N—1
Nr(0) = Nog = > A, (3.79)
i=0

That is, if the determinant of the matrix is nonzero, each eigenvalue is
nonzero and the sum of the eigenvalues is equal to N times the signal
power. Furthermore, since the AC matrix is nonnegative definite, all the
eigenvalues are nonnegative:
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2, =0, 0<i<N-—1 (3.80)

Once the eigenvalues have been found, the eigenvectors are obtained by
solving equations (3.68). The eigenvectors associated with different eigen-
values of a symmetric matrix are orthogonal because of the equality

t_lt
ViV, ==V
Aj

)‘f t
RIG:ZViI/j (3.81)
When all the eigenvalues are distinct, the eigenvectors make an orthonormal
base and the matrix can be diagonalized as

R=M'AM (3.82)

with M the N x N orthonormal modal matrix made of the N eigenvectors,
and A the diagonal matrix of the eigenvalues; when they have a unit norm,
the eigenvectors are denoted by U; and:

M =[Uy, Uy,...Uyl; M =M""

. (3.83)
A= dlag()\,o, )\,1, ey )"N—l)

For example, take a periodic signal x(n) with period N. The AC function is
also periodic with the same period and is symmetrical. The AC matrix is a
circulant matrix, in which each row is derived from the preceding one by
shifting. Now, if |S(k)|*> denotes the signal power spectrum and Ty the
discrete Fourier transform (DFT) matrix of order N:

1 1 1

1 w ‘e w1 .
Ty=|. : ) . w=e 2N (3.84)

i w/\}_1 w(N_i)(Nil)
it can be directly verified that
RTy = Tydiag(|S(k)[>) (3.85)

Due to the periodicity assumed for the AC function, the same is also true for
the discrete cosine Fourier transform matrix, which is real and defined by

T.y = %[TN + T}Q] (3.86)
Thus
RT,y = T ydiag(IS(k)[*) (3.87)

and the N column vectors of T,y are the N orthogonal eigenvectors of the
matrix R. Then
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1 .
R = Teydiag(ISK)) Ty (3.88)

So, it appears that the eigenvalues of the AC matrix of a periodic signal are
the power spectrum; and the eigenvector matrix is the discrete cosine
Fourier transform matrix.

However, the diagonalization of an AC matrix is not always unique. Let
us assume that the N cisoids in the signal x(7) have frequencies w; which are
no longer multiples of 27/N:

N
xX(n) =) S’ (3.89)
i=1
The ACF is
N .
Hp) = ISP (3.90)
i=1
and the AC matrix can be expressed as
R = M*diag(|S," )M (3.91)
with
1 e.iwl L. e./(N—l)wl
1 el ... ej(N—l)wz
M =
1 olon ... Ny

But the column vectors in M™ are neither orthogonal nor eigenvectors of R,
as can be verified. If there are K cisoids with K < N, M becomes a K x N
rectangular matrix and factorization (3.91) is still valid. But then the signal
space dimension is restricted to the number of cisoids K, and N — K eigen-
values are zero.

The white noise is a particularly simple case because R = 021y and all the
eigenvalues are equal. If that noise is added to the useful signal, the matrix
021y is added to the AC matrix and all the eigenvalues are increased by 2.

Example
Consider the sinusoid in white noise

x(n) = V2 sin(nw) + e(n) (3.92)
The AC function is
r(p) = cos(pw) + o28(p) (3.93)
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The eigenvalues of the 3 x 3 AC matrix are

r©0) (1) r?2) A =02+ 1—cos2w
R=|r(1) r0) r(1)|, xry=o0+2+cos2w
(2 ) 0| a=d

and the unit norm eigenvectors are

| 1 | cosw
U=—4| 0|, Ubh=—F—— 1 , (3.94)
V2| (1 +2cos?w)'’? oS o
1 1
Us :m —2cosw

The variations of the eigenvalues with frequency are shown in Figure 3.4.

Once a set of NV orthogonal eigenvectors has been obtained, any signal
vector X'(n) can be expressed as a linear combination of these vectors, which,
when scaled to have a unit norm, are denoted by U;:

N—1
X(n) =Y a(mU; (3.95)

i=0

Eigenvalues

FIG. 3.4 Variation of eigenvalues with frequency.
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The coefficients ¢;(n) are the projection of X (n) on the vectors U;. Another
expression of the AC matrix can then be obtained, assuming real signals:

N—1
R=EXmX'(n)] =) Elai(m)]U,;Uf (3.96)
i=0

The definition of the eigenvalues yields
Ela; (n)] = A, (3.97)

Equation (3.97) provides an important interpretation of the eigenvalues:
they can be considered as the powers of the projections of the signal vectors
on the eigenvectors. The subspace spanned by the eigenvectors correspond-
ing to nonzero eigenvalues is called the signal subspace.

The eigenvalue or spectral decomposition is derived from (3.96):

N-1
R=> 1UUf (3.98)
i=0

which is just a more explicit form of diagonalization (3.82). It is a funda-
mental result which shows the actual constitution of the signal and is
exploited in subsequent sections. For signals in noise, expression (3.98)
can serve to separate signal subspace and noise subspace.

Among the eigenparameters the minimum and maximum eigenvalues
have special properties.

3.7. EIGENFILTERS

The maximization of the signal-to-noise ratio (SNR) through FIR filtering
leads to an eigenvalue problem [14].

The output power of an FIR filter is given in terms of the input AC
matrix and filter coefficients by equation (3.60):

E[y*(n)] = H'RH

If a white noise with power o7 is added to the input signal, the output SNR
is

H'RH

SNR=-——"%
H'Ho;

(3.99)
It is maximized by the coefficient vector H, which maximizes H'RH, subject
to the constraint H'H = 1. Using a Lagrange multiplier, one has to max-
imize H'RH + (1 — H'H) with respect to H, and the solution is RH = AH.
Therefore the optimum filter is the signal AC matrix eigenvector associated
with the largest eigenvalue, and is called the maximum eigenfilter. Similarly,
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the minimum eigenfilter gives the smallest output signal power. These filters
are characterized by their zeros in the complex plane.

The investigation of the eigenfilter properties begins with the case of
distinct maximum or minimum eigenvalues; then it will be shown that the
filter zeros are on the unit circle.

Let us assume that the smallest eigenvalue A, is zero. The correspond-
ing eigenvector Uy, is orthogonal to the other eigenvectors, which span the
signal space. According to the harmonic decomposition of Section 3.11, the
matrix R is the AC matrix of a set of N — 1 cisoids, and the signal space is
also spanned by N — 1 vectors V;:

I
ejwr
Vi= : ., 1<i<N-1

oI N=D

Therefore Uy, is orthogonal to all the vectors V;, and the N — 1 zeros of the
corresponding filter are ¢/*(1 < i < N — 1), and they are on the unit circle
in the complex plane.

Now, if Ay, is not zero, the above development applies to the matrix
(R — Aminly), which has the same eigenvectors as R, as can be readily ver-
ified.

For the maximum eigenvector U,,,, corresponding to A, it is sufficient
to consider the matrix (Ap./y — R), which has all the characteristics of an
AC matrix. Thus the maximum eigenfilter also has its zeros on the unit circle
in the z-plane as soon as A, is distinct.

The above properties can be checked for the example in the preceding
section, which shows, in particular, that the zeros for Uy, are e™/*.

Next, if the minimum (or maximum) eigenvalue is multiple, for example
N — K, it means that the dimension of the signal space is K and that of the
noise space is N — K. The minimum eigenfilters, which are orthogonal to the
signal space, have K zeros on the unit circle, but the remaining N — 1 — K
zeros may or may not be on the unit circle.

We give an example for two simple cases of sinusoidal signals in noise.

The AC matrix of a single cisoid, with power S, in noise is

S*+o; SPel? L §PINTDe
S2o7I Sz+02 SZej(N—Z)w

R= o (3.100)
§2p I N=-Do 2, /(N-2o S2 + 03

The eigenvalues are
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M =NS*+02, M=o, 2<i<N

and the maximum eigenfilter is

1.
1 e_./w
Unax :ﬁ : (3.101)
e /W-Do
The corresponding filter z-transfer function is
1 2N —eNe
- —J(N-De
HM(Z)—\/N p—T e (3.102)

and the N — 1 roots
;= QJerN) i N ]

are spread on the unit circle, except at the frequency w. Hy,(z) is the con-
ventional matched filter for a sine wave in noise.

Because the minimum eigenvalue is multiple, the unnormalized eigenvec-
tor Viin 18

N -1
_ Z UZ_EJ(I* Jw
i=2

Viin = ) (3.103)

Un

where N — 1 arbitrary scalars v; are introduced.
Obviously there are N — 1 linearly independent minimum eigenvectors
which span the noise subspace. The associated filter z-transfer function is

N
H,(2) = (z — ') Z oz 2 e T2 (3.104)
i=2

One zero is at the cisoid frequency on the unit circle; the others may or may
not be on that circle.

The case of two cisoids, with powers S7 and S3 in noise leads to more
complicated calculations. The correlation matrix

S? 4 S2 402 Sl 4 Skl D SRS NDer | g2 NN
R— S%e_i"" + S%e_/“’2 S% + S% +U§ S%e/(N_z)“" + S%ei(N—Z)wz
S2eIN=Dor | G2, iN-Dor 2 ~i(N-Dn | G2, ~iN-Der . 24+ 82 402

has eigenvalues [15]

MARCEL
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N

NZ
ﬂﬂ+Sﬂ+J40§—$f+NW$ﬁ%w—wﬁ

)\'1=0'62+

N N?
M=é+—M+ﬁHJTwﬂwﬁ+Mﬁﬁﬁm—w)

2
r=o02, 3<i<N (3.105)
F(w) is the familiar function
sin(Nw/2)
Flw)=——F—""—"= 3.106
©) = N sinw/2) (3.106)
These results, when applied to a sinusoid amplitude A4, x(n) = 4 sin(nw),
yield
A? sin(Nw)
Mo=o0r+ N+ 3.107
12 =0+ 4 ( sin @ ) ( )

The extent to which A; and A, reflect the powers of the two cisoids
depends on their respective frequencies, through the function F(w), which
corresponds to a length-N rectangular time wnidow. For N large and fre-
quencies far apart enough,

F(w; —wy)~0, A =NS?+02, i =NS;+0° (3.108)

and the largest eigenvalues represent the cisoid powers.
The z-transfer function of the minimum eigenfilters is

H,(z) = (z — /") (z — e/*)P(2) (3.109)

with P(z) a polynomial of degree less than N — 2. Two zeros are on the unit
circle at the cisoid frequencies; the other zeros may or may not be on that
circle.

To conclude: for a given signal the maximum eigenfilter indicates where
the power is in the frequency domain, and the zeros of the minimum eigen-
value filter give the exact frequencies associated with the harmonic decom-
position of that signal.

Together, the maximum and minimum eigenfilters constitute a powerful
tool for signal analysis. However, in practice, the appeal of that technique is
somewhat moderated by the computation load needed to extract the eigen-
parameters, which becomes enormous for large matrix dimensions. Savings
can be obtained by careful exploitation of the properties of AC matrices
[16]. For example, the persymmetry relation (3.64) yields, for any eigenvec-
tor V;

1>
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Now, if A; is a distinct eigenvalue, the vectors V; and Jy V; are colinear,
which means that V; is also an eigenvector of the co-identity matrix Jy,
whose eigenvalues are 1. Hence the relation

IV =%V, (3.110)

holds.

The corresponding property of the AC matrix can be stated as follows:
the eigenvectors associated with distinct eigenvalues are either symmetric or
skew symmetric; that is, they verify (3.110).

Iterative techniques help manage the computation load. Before present-
ing such techniques, we give additional properties of extremal eigenvalues.

3.8. PROPERTIES OF EXTREMAL EIGENVALUES

In the design process of an adaptive filter it is sometimes enough to have
simple evaluations of the extremal eigenvalues A, and A;,. A loose bound
for the maximum eigenvalue of an AC matrix, derived from (3.79), is

Amax < No? (3.111)

with o2 the signal power and N x N the matrix dimension. A tighter bound,
valid for any square matrix R with entries r;;, is known from matrix theory
to be

ij>

N—-1
Amax < Max E |7 (3.112)
i =
i=0
or
N—1
)‘max < max |ri/’|
i z : !
Jj=0

To prove the inequality, single out the entry with largest magnitude in the
eigenvector V.« and bound the elements of the vector RV ..
In matrix theory, A,y is called the spectral radius. It serves as a matrix
norm as well as the right side of (3.112).
The Rayleigh quotient of R is defined by
V'RV

R,(V) = A

7 VA0 (3.113)

As shown in the preceding section,
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hmax = max R(V) (3.114)

The diagonalization of R yields

R = M~ 'diag\,)M (3.115)
It is readily verified that
1
R'= Mldiag<k—)M (3.116)
i

Therefore A} is the maximum eigenvalue of R™!. The condition number of
R is defined by

cond(R) = || R|| IR (3.117)
If the matrix norm || R|| is Ay, then
A
cond(R) = ™= (3.118)
)‘min

The condition number is a matrix parameter which impacts the accuracy
of the operations, particularly inversion [9]. It is crucial in solving linear
systems, and it is directly related to some stability conditions in LS adaptive
filters.

In adaptive filters, sequences of AC matrices with increasing dimensions
are sometimes encountered, and it is useful to know how the extremal
eigenvalues vary with matrix dimensions for a given signal. Let us denote
by Upnaxy the maximum unit-norm eigenvector of the N x N AC matrix
Ry. The maximum eigenvalue is

)‘max,N = Urtnax,NRN Umax,N (3119)

Now, because of the structure of the (N + 1) x (N 4+ 1) AC matrix, the
following equation is valid:

)‘max,N = [Uttnax,Nv 0]

r(0) r(1) o f(N=1): r(N)
r(1) r(0) o H(N=2):r(N—-1)
. . . . . l]max,N
X : : Ry : S N (3.120)
r(N—=1) r(N=-2) - r©0) (1) 0
r(N) ...... r(N_l) ....... r(l) ..... o ’ (0)

At the dimension N + 1, Ay y41 1 defined as the maximum of the
product Ujy, Ry41Uyyy for any unit-norm vector Uy,;. The vector
obtained by appending a zero to Uy, y 1s such a vector, and the following
inequality is proven:
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)“max,N < )‘max,N-H (3.121)
Also, considering the minimization procedure, we have
)‘min,N = )‘min,N+1 (3122)

When N approaches infinity, A, and A,;, approach the maximum and the
minimum, respectively, of the signal power spectrum, as shown in the next
section.

3.9. SIGNAL SPECTRUM AND EIGENVALUES

According to relation (3.79), the eigenvalue extraction can be viewed as an
energy decomposition of the signal. In order to make comparisons with the
spectrum, we choose the following definition for the Fourier transform Y (f)
of the signal x(n):

Y= 1 5 —j2nfn
Y(f) = lim Ve ZN: x(n)e™ (3.123)
The spectrum is the square of the modulus of Y(f):
S() = YNHY() =1Y(NHIP (3.124)

When the summations in the above definition of S(f) are rearranged, the
correlation function r(p) shows up, and the following expression is obtained:

S(f) = i r(p)e (3.125)

p=—00

Equation (3.125) is appropriate for random signals with statistics that are
known or that can be measured or estimated.

Conversely, the spectrum S(f) is a periodic function whose period is the
reciprocal of the sampling frequency, and the correlation coefficients are the
coefficients of the Fourier series expansion of S(f):

1/2 ) )
r(p) = f S(f)e>™ df (3.126)
—1/2

In practice, signals are time limited, and often a finite-duration record of N,
data representing a single realization of the process is available. Then it is
sufficient to compute the spectrum at frequencies which are integer multiples
of 1/N,, since intermediate values can be interpolated, and the DFT with
appropriate scaling factor

brrreer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



No—1

Y(k) = > x(me NN (3.127)
n=0

1
VN
is employed to complete that task. The operation is equivalent to making the
signal periodic with period Ny; the corresponding AC function is also per-
iodic, with the same period, and the eigenvalues of the AC matrix are
1Y()P.0 < k < Ny— 1.

Now, the N eigenvalues A; of the N x N AC matrix Ry and their asso-
ciated eigenvectors V; are related by

The right side is the power of the output of the ecigenfilter; it can be
expressed in terms of the frequency response by

1/2
VireVi= [ HOPSdr (3.129)
-1/
The left side of (3.115) can be treated similarly, which leads to
i < A <
RYEyP RV SU) < hi < —1/223');1/2S(f) (3.130)

It is also interesting to relate the eigenvalues of the order N AC matrix to
the DFT of a set of V data, which is easily obtained and familiar to practi-
tioners. If we denote the set of N data by the vector Xy, the DFT, expressed
by the matrix Ty (3.84), yields the vector Yy:

1
YN :ﬁTNXN

The energy conservation relation is verified by taking the Euclidean norm of
the complex vector Yy:

IYyIP = YN Yy = XnXy

Or, explicitly, we can write

N—1 N—1
SIY@P =D Ixm)l
k=0 n=0
The covariance matrix of the DFT output is
1
The entries of the main diagonal are

|-
E[Y (O] = ViRvVi (3.132)
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with

Vi=|l, eJZH/N’ o ej(2ﬂ/N)(N*1)]

From the properties of the eigenvalues, the following inequalities are
derived:

Amax = max  E[|Y(K)*]

0<f<N-1

2
Amin = Ogrgg_]E[lY(k)l ] (3.133)
These relations state that the DFT is a filtering operation and the output
signal power is bounded by the extreme eigenvalues.

When the data vector length N approaches infinity, the DFT provides the
exact spectrum, and, due to relations (3.130) and (3.133), the extreme eigen-
values A, and A, approach the extreme values of the signal spectrum
[17].

3.10. ITERATIVE DETERMINATION OF EXTREMAL
EIGENPARAMETERS

The eigenvalues and eigenvectors of an AC matrix can be computed by
classical algebraic methods [9]. However, the computation load can be enor-
mous, and it is useful to have simple and efficient methods to derive the
extremal eigenparameters, particularly if real-time operation is envisaged.

A first, gradient-type approach is the unit-norm constrained algorithm
[18]. It is based on minimization or maximization of the output power of a
filter with coefficient vector H(n), as shown in Figure 3.5, using the eigen-
filter properties presented in Section 3.7. The output of the unit-norm filter
is

_ _H'mX@m)
e(n) = o H] (3.134)
The gradient of e(n) with respect to H(n) is the vector
-1 C ey H
V) = st Y~ O o (G139

Now, the power of the sequence e(k) is minimized if the coefficient vector at
time n + 1 is taken as

H(n+ 1) = H(n) — de(n)Ve(n) (3.136)
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x(n} x(n-1) x(n+1-N)

ho(n) \f h](n) hN"I(n)

(P e (1)
| l e(n)

Unit-norm constrained algorithm

FIG. 3.5 Unit-norm constrained adaptive filter.

where §, the adaptation step size, is a positive constant. After normalization,
the unit-norm filter coefficient vector is

Hn+1) 1 B de(n) B H(n)
HG+ DI THG+ D] [H(”) THM] (X(") ) ||H(n)||>]

(3.137)
with
IHm)|| = [H'(n)H(n)]'>

In the implementation, the expression contained in the brackets is com-
puted first and the resulting coefficient vector is then normalized to unit
norm. In that way there is no roundoff error propagation. The gradient-type
approach leads to the eigenequation, as can be verified by rewriting equation
(3.136):

= Hmn) 5 = H@n
Hn+1)=H(n) — ||H( )” |: (mX'(n )||H(n)|| e“(n) ||H(n)||i| (3.138)
Taking the expectation of both sides, after convergence, yields
H(0) H (o)
THGo ~ Qb [H(c0)] (3.139)

The output signal power is the minimum eigenvalue, and H(oo) is the
corresponding eigenvector. Changing the sign in equation (3.136) leads to
the maximum eigenvalue instead.

The step size § controls the adaptation process. Its impact is analyzed
indepth in the next chapter.

e Copyright n 2001 by Marcel Dekker, Inc. All Rights Reserved.



MARCEL

Faster convergence can be obtained by minimizing the conventional cost
function

Ty =Y W'rep)., 0K W <1 (3.140)
p=1

using a recursive LS algorithm [19]. The improvement in speed and accuracy
is paid for by a significant increase in computation load. Furthermore,
because of approximations made in the derivation, an initial guess for the
coefficient vector sufficiently close to the exact solution is needed to achieve
convergence. In contrast, a method based on the conjugate gradient techni-
que converges for any initial guess in approximately M steps, where M is the
number of independent eigenvalues of the AC matrix [20].

The method assumes that the AC matrix R is known, and it begins with
an initial guess of the minimum eigenvector H;,(0) and with an initial
direction vector. The minimum eigenvalue is computed as
Ul i(0)RU,,i(0), and then successive approximations U, (k) are developed
to minimize the cost function U'RU in successive directions, which are R-
conjugates, until the desired minimum eigenvalue is found.

The FORTRAN subroutine is given in Annex 3.2.

3.11. ESTIMATION OF THE AC MATRIX

The AC matrix can be formed with the estimated values of the AC function.
The bias and variance of the estimators impact the eigenparameters. The
bias can be viewed as a modification of the signal. For example, windowing
effects, as in (3.21), smear the signal spectrum and increase the dimension of
the signal subspace, giving rise to spurious eigenvalues [21]. The effects of
the estimator variance can be investigated by considering small random
perturbations on the elements of the AC matrix. In adaptive filters using
the AC matrix, explicitly or implicitly as in fast least squares (FLS) algo-
rithms, random perturbations come from roundoff errors and can affect,
more or less independently, all the matrix entries.

Let us assume that the matrix R has all its eigenvalues distinct and is
affected by a small perturbation matrix AR. The eigenvalues and vectors are
explicit functions of the matrix elements, and their alteration can be devel-
oped in series; considering only the first term in the series, the eigenvalue
equation with unit-norm vectors is

(3.141)
Neglecting the second-order terms and premultiplying by U} yields
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AM; = U'ARU; (3.142)

Due to the summing operation in the right side, the perturbation of the
eigenvalue is very small, if the error matrix elements are i.i.d. random vari-
ables.

In order to investigate the eigenvector deviation, we introduce the nor-
malized error matrix AFE, associated with the diagonalization (3.82) of the
matrix R:

AE = AV MARM'A™V? (3.143)

We can write (3.141), without the second-order terms and taking (3.142)
into account,

After some algebraic manipulations, we get
N—1
N/ _
AU; = AE(k, )Uy 3.145
Z g AEK. DU (3.145)
k#1

where the AE(k, i) are the elements of the normalized error matrix.

Clearly, the deviation of the unit-norm eigenvectors U; depends on the
spread of the eigenvalues, and large deviations can be expected to affect
eigenvectors corresponding to close eigenvalues [22].

Overall, the bias of the AC function estimator affects the AC matrix
eigenvalues, and the variance of errors on the AC matrix elements affects
the eigenvector directions.

In recursive algorithms, the following estimation appears:

Ry(n) = Z WP X (n) X" (n) (3.146)
=1

where W is a weighting factor (0 < W < 1) and X (n) is the vector of the N
most recent data. In explicit form, assuming X(0) = 0, we can write

f WD) Z W)X —1) - Z W' ix(i)x(i — N + 1)

i=1 i=2 i=N

n n

Ry(n) = 1; Wi x(i — 1)x(i) ; Wi — 1)

n ] . : : n .
Z W””x(i)x(i—N-i— 1) Z W”ﬂ.\’z([—N-{- 1)
=N =N

(3.147)
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The matrix is symmetric. For large » it is almost doubly symmetric. Its
expectation is

1
ERyM] =1—
(1 — W")r(0) A=wHr1) - A=wyVIyn-1
5 (1= w" R 1) (1 — W 'r0) :
(1 _ Wn_N;_l)V(N o 1) . . . (1 o Wn_N+l)V(0)
(3.148)
For large n
1
E[Ry(n)] ~ R (3.149)

In these conditions, the eigenvectors of Ry(n) are those of R, and the eigen-
values are multiplied by (1 — W)~ !

Example

. (T
x(n) = s1n(nz), n>0
x(n) =0, n<0
The eigenvalues of the 8 x 8 AC matrix can be found from (3.105) in which

1 b4
S]ZSZZE, (,()1—(,()2:5

so that the term in the square root vanishes. Expression (3.107) can be used
as well, with 4 = 1:

M=A=2 A3=--=i=0
The eigenvalues of the matrix R'(n)

R
R'(n) = & W =0.95

23 Wrixd(i)
i=1

are shown in Figure 3.6 for the first values of n. They approach the theore-
tical values as n increases.
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FIG. 3.6 Eigenvalues of the matrix R'(n).

3.12. EIGEN (KL) TRANSFORM AND
APPROXIMATIONS

The projections of a signal vector X on the eigenvectors of the AC matrix
form a vector

[a] = M'X (3.150)

where M is the N x N orthonormal modal matrix defined in Section 3.6.
The transform is unitary (M'M = Iy) and called the Karhunen-Loéve (KL)
transform. It is optimal for the class of all signals having the same second-
order statistics [23]. Optimality means the efficiency of a transform in
achieving data compression: the KL transform provides the optimum sets
of data to represent signal vectors within a specified mean square error. For
example, if M out of the N eigenvalues are zero or negligible, the N element
data vectors can be represented by N — M numbers only.

To prove that property we assume that the elements of the vector X are N
centered random variables and look for the unitary transform 7 which best
compresses the N elements of X into M(M < N) elements out of the N
elements y; of the vector Y given by

Y=TX

The mean square error is

brrreer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



N

MSE= Y E()})
i=M+1

If the new vectors of T are designated by V%, then

N
MSE = Y VRLEXX'Vr;
i=M+1

The minimization of the above expression under the contraint of unit norm
vectors, using Lagrange multipliers, leads to:

E[XXI]VT,' Z)\.l‘VTi, M+1 < l < N

The minimum is obtained if the scalars X; are the N — M smallest eigenva-
lues of the matrix E[XX'] and V'; the corresponding unit norm eigenvectors.
The minimum mean square error is

N

(MSE)min = Z A

i=M+1
and, in fact, referring to Section 3.6, it is the amount of signal energy which
is lost in the compression process.

However, compared with other unitary transforms like the DFT, the KL
transform suffers from several drawbacks in practice. First, it has to be
adjusted when the signal second-order statistics change. Second, as seen in
the preceding sections, it requires a computation load proportional to N>.
Therefore it is helpful to find approximations which are sufficiently close for
some signal classes and amenable to easy calculation through fast algo-
rithms. Such approximations can be found for the first-ordr AR signal.

Because of the dual diagonalization relation

R'=MA"'"M (3.151)

the KL transform coefficients can be found from the inverse AC matrix as
well. For the first-order unity-variance AR signal, the AC matrix is given by
(3.67). The inverse (3.68) is a tridiagonal matrix, and the elements of the KL
transform for N even are [24]

N
My, = ¢, sin [w <k - T+> + ng] (3.152)

where ¢, are normalization constants and w, are the positive roots of

PN
(1—-a")sinw (3.153)

tan(Nw) = —
(Ve cosw — 2a + a*cosw

The eigenvalues of R are
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(1 =2acosw; +a*)'"*’

1<i<N (3.154)

i

Now, the elements of the KL transform of a data vector are

N
N+1
0 =3 ¢,x(m)sin [w <k - ;) + nﬂ (3.155)
n=I1

Due to the nonharmonicity of sine terms, a fast algorithm is unavailable in
calculating the above expressions, and N* computations are required.
However, if R™! is replaced by

1+ -—a 0 0
| —a 1+a2 —a 0
R,:l o —a 1+d 0 (3.156)
—da . .
N . . t. —a
0 0 0 —a 1+d

where R’ differs by just the first and last entries in the main diagonal, the
elements of the modal matrix become

[ 2 . ( knm
m,gn = N——|—1 S <N——|—l> (3 1 57)

and the eigenvalues are

a i .
)\[:1—21+azcos(N+1>, i=1,...,N (3.158)

The elements of the corresponding transform of a data vector are

, 2 & . nkm
o = ,/N—H;x(n)sm<N+ 1) (3.159)

This defines the discrete sine transform (DST), which can be implemented
via a fast Fourier transform (FFT) algorithm.

Finally, for an order 1 AR signal, the DST is an efficient approximation
of the KL tranform.

Another approximation is the discrete cosine transform (DCT), defined

as

2 N
o) = \/W_ Z x(n)
n=1
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1
o _—Zx(n)c )k” l<k<N-1 (3.160)

It can be extended to two dimensions and is widely used in image processing
[25].

3.13. SUMMARY

Estimating the ACF is often a preliminary step in signal analysis. After
definition and basic properties have been introduced, efficient estimation
techniques have been compared.

The AC matrix is behind adaptive filtering operations, and it is essential
to be familiar with its major characteristics, which have been presented and
illustrated by several simple examples. The eigenvalue decomposition has a
profound meaning, because it leads to distinguishing between the signal or
source space and the noise space, and to extracting the basic components.
The filtering aspects help to understand and assess the main properties of
eigenvalues and vectors. The extremal eigenparameters are especially crucial
not only for the theory but also because they control adaptive filter perfor-
mance and because they can provide superresolution analysis techniques.

Perturbations of the matrix elements, caused by bias and variance in the
estimation process, affect the processing performance and particularly the
operation of FLS algorithms. It has been shown that the bias can affect the
eigenvalues and the variance causes deviations of eigenvectors. The KL
transform is an illustrative application of the theoretical results.

EXERCISES
1. Use the estimators r;(p) and r,(p) to calculate the ACF of the sequence

x(n):sin(n%), 0<n<lI5

How are the deviations from theoretical values affected by the signal
frequency?
2. For the symmetric matrix

1.1 —-0.6 02
R=|-06 10 —-04
02 —-04 0.6

calculate R* and R® and the first element I of the main diagonal of
R*. Compare the ratio 1(4) /1(3) with the largest eigenvalue A ,y.
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Show that the following approximation is valid for a symmetric
matrix R and N sufficiently large:

R N+1 R N
()‘max> ()‘max>

This expression can be used for the numerical calculation of the extre-
mal eigenvalues.
3. For the AC matrix

1.0 0.7 0.0
R=1]07 10 07
00 07 1.0

calculate its eigenvalues and eigenvectors and check the properties
given in Section 3.6. Verify the spectral decomposition (3.98).

4. Find the frequency and amplitude of the sinusoid contained in the
signal with AC matrix

1.00 0.65 0.10
R=1]0.65 1.00 0.65
0.10 0.65 1.00

What is the noise power? Check the results with the curves in Figure
3.4.
5. Find the spectral decomposition of the matrix

1.0 0.7 0.0 -0.7
0.7 1.0 0.7 0.0
0.0 0.7 1.0 0.7
-07 00 07 1.0

R =

What is the dimension of the signal space? Calculate the projections of
the vectors

X'(n) = [cos(n%), cos[(n — 1)%], cos[(n - 2)%],
x cos[(n — 3)%]], n=0,1273

on the eigenvectors.
6. Consider the order 2 AR signal
x(n) =0.9x(n — 1) — 0.5x(n — 2) + e(n)

with E[e*(n)] = 05 = 1. Calculate its ACF and give its 3 x 3 AC matrix
R;. Find the minimum eigenvalue and eigenvector. Give the corre-

brrreer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



sponding harmonic decomposition of the signal and compare with the
spectrum.
Calculate the 4 x 4 matrix R, and its inverse R;'. Comment on the
results.
7. Give expressions to calculate the DST (3.159) and the DCT by a
standard DFT. Estimate the computational complexity for N = 2”.

ANNEX 3.1 FORTRAN SUBROUTINE TO SOLVE A LINEAR
SYSTEM WITH SYMMETRICAL MATRIX

SUBROUTINE CHOL(N,A,X,B)

SOLVES THE SYSTEM [A]X=B

: SYMMETRIC COVARIANCE MATRIX (N*N)
: SYSTEM ORDER (N > 2)

: SOLUTION VECTOR

: RIGHT SIDE VECTOR

cNoNoNoNoNe!
WX =z

DIMENSION A(20,20),X(1),B(1)
A(2,1)=A(2,1)/A(1,1)
A(2,2)=A(2,2)-A(2,1)*A(1,1)*A(2,1)
D040I=3,N
A(I,1)=A(I,1)/A(1,1)
D020J=2,I-1
S=A(I,J)
DO10K=1,J-1
10 S=S-A(I,K)*A(K,K)*A(J,K)
20 A(I,J)=s/A(J,J)
S=A(I,I)
DO30K=1,I-1
30 S=S-A(I,K)*A(K,K)*A(I,K)
40 A(I,I)=sS
X(1)=B(1l)
D060I=2,N
S=B(I)
D050J=1,1I-1
50 S=S-A(I,J)*X(J)
60 X(I)=s
X(N)=X(N)/A(N,N)
DO80K=1,N-1
I=N-K
S=X(I)/A(I,I)
DO70J=I+1,N
70 S=S-A(J,I)*X(J)
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80

X(I)=s
RETURN
END

ANNEX 3.2 FORTRAN SUBROUTINE TO COMPUTE

QOO0

X 2w

SML

THE EIGENVECTOR CORRESPONDING
TO THE MINIMUM EIGENVALUE BY THE
CONJUGATE GRADIENT METHOD [20]
(Courtesy of Tapan K. Sarkar, Department of
Electrical Engineering, Syracuse University,
Syracuse, N.Y. 13244-1240)

SUBROUTINE GMEVCG(N, X, A, B, U, SML, W, M)

THIS SUBROUTINE IS USED FOR ITERATIVELY FINDING THE
EIGENVECTOR CORRESPONDING TO THE MINIMUM EIGENVALUE
OF A GENERALIZED EIGENSYSTEM AX = UBX.

- INPUT REAL SYMMETRIC MATRIX OF ORDER N, WHOSE
MINIMUM EIGENVALUE AND THE CORRESPONDING
EIGENVECTOR ARE TO BE COMPUTED.

- INPUT REAL POSITIVE DEFINITE MATRIX OF ORDERN.

— INPUT ORDER OF THE MATRIXA.

- OUTPUT EIGENVECTOR OF LENGTH N CORRESPONDING TO
THE MINIMUM EIGENVALUE AND ALSO PUT INPUT
INITIAL GUESS IN IT.

- OUTPUT MINIMUM EIGENVALUE.

- INPUT UPPER BOUND OF THE MINIMUM EIGENVALUE .

- INPUT ARBITRARY VECTOR OF LENGTH N.

- OUTPUT NUMBER OF ITERATIONS.

LOGICAL AAEZ, BBEZ
REAL A(N,N), B(N,N), X(N), P(5), R(5), W(N), AP(5),
BP(5), AX(5), BX(5)
NU =0
M=0
Ul=0.0
DO 20 I=1,N

BX(I) =0.0

DO 10 J=1,N

BX(I) =BX(I) +B(I,J)*X(J)
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10 CONTINUE
20 CONTINUE
XBX=0.0
DO 30 I=1,N
XBX = XBX + BX(I)*X(I)
30 CONTINUE
XBX = SQRT (XBX)
DO 40 I=1,N
X(I) =X(I)/XBX
40 CONTINUE
DO 60 I=1,N
AX(I)=0.0
DO 50 J=1,N
AX(I) =AX(I) +A(I,J)*X(J)
50 CONTINUE
60 CONTINUE
U=0.0
DO 70 I=1,N
U=U+AX(I)*X(I)
70 CONTINUE

DO 80 I=1,N
R(I) =U*BX(I) - AX(I)
P(I) =R(I)

80 CONTINUE
2 DO 100 I=1,N
AP(I) =0.0
DO 90 J=1,N
AP(I) =AP(I) +A(I,J)*P(J)
90 CONTINUE
100 CONTINUE
DO 120 I=1,N
BP(I) =0.0
DO 110 J=1,N
BP(I) =BP(I)+B(I,J)*P(J)
110 CONTINUE
120 CONTINUE

PA=0.0
PB=0.0
PC=0.0
PD=0.0

DO 130 I=1,N

PA=PA+AP(I)*X(I)
PB=PB +AP(I)*P(I)
PC=PC+BP(I)*X(I)
PD=PD+BP(I)*P(I)

MARCEL
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130 CONTINUE
AA = PB*PC - PA*PD
BB = PB - U*PD
CC =PA - U*PC
AAEZ = ABS(AA) .LE. 1.0E-75
BBEZ = ABS(BB) .LE. 1.0E-75
IF (AAEZ .AND. BBEZ) GO TO 12
IF(AAEZ) GOTO 11
DD = -BB + SQRT (BB*BB-4.0*AA*CC)
T =DD/(2.0*AA)

GO TO 15
11 T =-CC/BB

GO TO 15
12 T=0.0

15 DO 140 I=1,N
X(I) =X(I)+T*P(I)
140 CONTINUE
DO 160 I=1,N
BX(I)=0.0
DO 150 J=1,N
BX(I) =BX(I)+B(I,J)*X(J)
150 CONTINUE
160 CONTINUE
XBX=0.0
DO 170 I=1,N
XBX = XBX + BX(I)*X(I)
170 CONTINUE
XBX = SQRT (XBX)
DO 180 I=1,N
X(I) =X(I)/XBX
180 CONTINUE
DO 200 I=1,N
AX(I) =0.0
DO 190 J=1,N
AX(I) =AX(I) +A(I,J)*X(J)
190 CONTINUE
200 CONTINUE
U=0.0
DO 210 I=1,N
U=U+AX(I)*X(I)
210 CONTINUE
AT = ABS (U1 - U)
AJ=ABS(U)*1.0E-03
AK =AI - AJ
IF(AK .LT. 0.0) GOTO 3

MARCEL
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DO 220 I=1,N
R(I) =U*BX(I) - AX(I)
220 CONTINUE
ON=0.0
DO 230 I=1,N
ON = QN+ R(I)*AP(I)
230 CONTINUE
Q= -ON/PB
DO 240 I=1,N
P(I)=R(I)+Q*P(I)
240 CONTINUE

M=M+1

Ul=uU
C WRITE (3, 9998) M
9998 FORMAT (/1X, 3HM =, I3)
C WRITE (3,9997)
9997 FORMAT (/2H, U/)
C WRITE (3, 9996) U
9996 FORMAT (1X, E14.06)
C WRITE (3, 9995)
9995 FORMAT (/5HX(I)/)
C WRITE (3, 9994) X
9994 FORMAT (1X, F11.6)

GO TO 2

3 CONTINUE
IF (U .LT. SML) RETURN
NU = NU + 1
CX=0.0
DO 250 I=1,N
CX=CX+W(I)*BX(I)
250 CONTINUE
CX = CX/XBX
DO 260 I=1,N
W(I) =W(I) - CX*X(I)
X(I)=W(I)
260 CONTINUE
IF(NU .GT. N) GO TO 4
GO TO 1
4  WRITE (3, 9999)
9999 FORMAT (28H NO EIGENVALUE LESS THAN SML)
STOP
END

MARCEL
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i |
Gradient Adaptive Filters

The adaptive filters based on gradient techniques make a class which is
highly appreciated in engineering for its simplicity, flexibility, and robust-
ness. Moreover, they are easy to design, and their performance is well char-
acterized. By far, it is the most widely used class in all technical fields,
particularly in communications and control [1, 2].

Gradient techniques can be applied to any structure and provide simple
equations. However, because of the looped structure, the exact analysis of
the filters obtained may be extremely difficult, and it is generally carried out
under restrictive hypotheses not verified in practice [3, 4]. However, simpli-
fied approximate investigations provide sufficient results in the vast majority
of applications.

The emphasis is on engineering aspects in this chapter. Our purpose is to
present the results and information necessary to design an adaptive filter and
build it successfully, taking into account the variety of options which make
the approach flexible.

4.1. THE GRADIENT—LMS ALGORITHM

The diagram of the gradient adaptive filter is shown in Figure 4.1. The error
sequence e(n) is obtained by subtracting from the reference signal y(n) the
filtered sequence y(n). The coefficients C;(n), 0 < i < N — 1, are updated by
the equation

de(n+1)

ci(n+1)=cin)—3 3c:(n)

e(n+1) 4.1)
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FIG. 4.1 Principle of a gradient adaptive filter.

The products [de(n + 1)/dc;(n)]e(n + 1) are the elements of the vector Vi,
which is the gradient of the function %ez(n + 1). The scalar § is the adaptation
step. In the mean, the operation corresponds to minimizing the error power,
hence the denomination least means squares (LMS) for the algorithm.

The adaptive filter can have any structure. However, the most straight-
forward and most widely used is the transversal or FIR structure, for which
the error gradient is just the input data vector.

The equations of the gradient adaptive transversal filter are

en+1)=ymn+1)— HmXn+1) 4.2)
and
Hn+1)=Hm)+5X(n+ e(n+1) 4.3)

where H'(n) is the transpose of the coefficient vector and X(n + 1) is the
vector of the N most recent input data.

The implementation is shown in Figure 4.2. It closely follows the imple-
mentation of the fixed FIR filter, a multiplier accumulator circuit being
added to produce the time-varying coefficients. Clearly, 2N + 1 multiplica-
tions are needed, as well as 2N additions and 2N active memories.

Once the number of coefficients N has been chosen, the only filter para-
meter to be adjusted is the adaptation step §.

In view of the looped configuration, our first consideration is stability.

4.2. STABILITY CONDITION AND SPECIFICATIONS

The error sequence calculated by equation (4.2) is called “‘a priori,” because
it employs the coefficients before updating. The “‘a posteriori” error is
defined as
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FIG. 4.2 Gradient adaptive transversal filter.

em+D)=yn+1)—Hn+HXn+1) (4.4

and it can be computed after (4.2) and (4.3) have been completed. Now,
from (4.2) and (4.3), (4.4) can be written as

em+ 1) =en+ D[ —X'(n+ DX+ 1)) 4.5)

The system can be considered stable if the expectation of the a posteriori
error magnitude is smaller than that of the a priori error, which is logical
since more information is incorporated in g(n + 1). If the error e(n + 1) is
assumed to be independent of the N most recent input data, which is
approximately true after convergence, the stability condition is

11— SE[X'(n+ DX(n+ 1] <1 (4.6)

which yields

0<d< 4.7)

2
X
where the input signal power aﬁ is generally known or easy to estimate.

The stability condition (4.7) is simple and easy to use. However, in prac-
tice, to account for the hypotheses made in the derivation, it is wise to take
some margin. For example, a detailed analysis for Gaussian signals shows
that stability is guaranteed if [5, 6]

1 2
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So, a margin factor of a few units is recommended when using condition
(4.7). Once the stability is achieved, the final determination of the step § in
the allowed range is based on performance, compared to specifications.

The two main specifications for gradient adaptive filtering are the system
gain and the time constant. The system gain G% can be defined as the
reference to error signal power ratio:

2
6 = E7) “9)
Ele*(n)]
For example, in adaptive prediction, Gy is the prediction gain. The specifi-
cation is given as a lower bound for the gain, and the adaptation step and
the computation accuracy must be chosen accordingly.

The speed of adaptation is controlled by a time constant specification t,,
generally imposed on the error sequence. The filter time constant 7 can be
taken as an effective initial time constant obtained by fitting the sequence
E[¢*(n)] to an exponential for n = 0 and n = 1, which yields

(E[¢*(0)] — E[e*(c0)]e™ /™ = E[e*(1)] — Ele*(c0)] (4.10)

Since 7 is related to the adaptation step 8, as shown in the following
sections, imposing an upper limit t, puts a constraint on §. Indeed the
gain and speed specifications must be compatible and lead to a nonempty
range of values for §; otherwise another type of algorithm, like least squares,
must be relied upon.

First, the relation between adaptation step and residual error is investi-
gated.

4.3. RESIDUAL ERROR
The gradient adaptive filter equations (4.2) and (4.3) yield
Hn+1)=[Iy—8X(n+ DX'(n+ DIH@n) + X (n+ Dy(n + 1) (4.11)

When the time index n approaches infinity, the coefficients reach their
steady-state values and the average of H(n + 1) becomes equal to the aver-
age of H(n). Hence, assuming independence between coefficient variations
and input data vectors, we get

E[H(co)l = R™'r,, = H, (4.12)

pt
Using the notation of Section 1.4, we write

R = E[X(n)X'(n)], rye = E[X(n+ 1Dy(n + 1)] (4.13)
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Therefore the gradient algorithm provides the optimal coefficient set H,,
after convergence and in the mean. The vector r,, is the cross-correlation
between the reference and input signals. ’

The minimum output error power E.;, can also be expressed as a func-
tion of the signals and their cross-correlation.

For the set of coefficients H(n), the mean square output error E(n) is

E(n) = E[(y(n) — H'()X(n))’] (4.14)
Now, setting the coefficients to their optimal values gives

Enin = E[y* ()] = Hop RHopy (4.15)
or

Enin = E[ (0] = Hopr . (4.16)
or

Enin = E[y* ()] = 1R 71 (4.17)

In these equations the filter order N appears as the dimension of the AC
matrix R and of the cross-correlation vector r,.

For fixed coefficients H(n) the mean square error (MSE) E(n) can be
rewritten as a deviation from the minimum:

E(n) = Enin + [Hopt — H(m)' R[Hop — H(m)] (4.18)
The input data AC matrix R can be diagonalized as
R = M'diagh)M, M'M =1y (4.19)

where, as shown in the preceding chapter, A;,(0 < i < N — 1) are the eigen-
values and M the modal unitary matrix.
Letting

[a(n)] = M[H,p — H(n)] (4.20)

be the coefficient difference vector in the transformed space, we obtain the
concise form of (4.18)

E(n) = Enin + [e(n)]'diag(d)[e(m)] (4.21)

Completing the products, we have
N-1
E(n) = Enin + Y_ 10 (n) (4.22)
i=0

If A denotes the column vector of the eigenvalues A;, and [az(n)] denotes the
column vector with elements o2 (17), then

brrreer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



E(n) = Epin + A'[o*(n)] (4.23)

The analysis of the gradient algorithm is carried out by following the
evolution of the vector [w(n)] according to the recursion

[a(n + 1)] = [a(n)] — SMX (1 + 1)e(n + 1) (4.24)
The corresponding covariance matrix is

[ + D]le(nn + D] = [em)][e(m)]’ — 28M X (n + De(n + Dle(n))'
+ 8%+ DMX(n+ DX'(n+ DM’ (*.25)

The definition of e(n + 1) yields
e(n+1)=yn+1)— HopuX(n+ 1)+ X'(n + M '[a(n)] (4.26)

Equations (4.25) and (4.26) determine the evolution of the system. In order
to get useful results, we make simplifying hypotheses, particularly about
2

e“(n) [7].

It is assumed that the following variables are independent:

The error sequence when the filter coefficients are optimal
The data vector X(n + 1)
The coefficient deviations H(n) — Hop,

Thus
E{[y(n+1)— Hf)th(n + DX (n+ DM [a(m)]} =0 (4.27)

Although not rigorously verified, the above assumptions are reasonable
approximations, because the coefficient deviations and optimum output
error are noiselike sequences and the objective of the filter is to make
them uncorrelated with the N most recent input data. Anyway, the most
convincing argument in favor is that the results derived are in good agree-
ment with experiments.

Now, taking the expectation of both sides of (4.25), yields
E{[a(n + Dlle(n + DI} = [Iy — 28 diag(h)]E{[a(m)][e(m)]'} 4.28)
+ 8E[¢*(n + 1)] diag(n,) '

For varying coefficients, under the above independence hypotheses, expres-
sion (4.23) becomes

E[e*(n + 1)] = Ei, + A E[o?(n)] (4.29)

Considering the main diagonals of the matrices, and using vector nota-
tion and expression (4.29) for the error power, we derive the equation

E[o*(n+ 1)] = [Iy — 2 diag(;) + 8 AANIE[e*(n)] + 8° Epin A (4.30)
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A sufficient condition for convergence is that the sum of the absolute
values of the elements of any row in the matrix multiplying the vector
E[o*(n)] be less than unity:

n—1
0<1—25x,-+52x,»<24,><1, 0<1li<N-1 (4.31)
j=0

from which we obtain the stability condition
2 2

24 ’
J=

0

which is the condition already found in Section 4.2, through a different

approach.
Once the stability conditions are fulfilled, recursion (4.28) yields, as
n— oo,
)
E{[a(00)][e(0)]'} = 5 E(00)ly (4.32)

Due to the definition of the vector [«(n)], equation (4.32) also applies to the
coefficient deviations themselves. Thus the coefficient deviations, after con-
vergence, are statistically independent and have the same power.

Now, combining (4.32) and (4.29) yields the residual error Ey:

Emin

EO0) = Ex =15 2)No?

(4.33)

Finally, the gradient algorithm produces an excess output MSE related to
the adaptation step. Indeed, when § approaches the stability limit, the out-
put error power approaches infinity. The ratio of the steady-state MSE to
the minimum attainable MSE is called the final misadjustment M,g;:

E 1
Madj = R = — )
Enin 1 —(3/2)Noy;

(4.34)

In practical realizations, due to the margin generally taken for the adap-
tation step size, the approximation

5
Eg~ Emin<l + 2No§> (4.35)

is often valid, and the excess output MSE is approximately proportional to
the step size. In fact, it can be viewed as a gradient noise, due to the
approximation of the true cost function gradient by an instantaneous value.
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4.4. LEARNING CURVE AND TIME CONSTANT

The adaptive filter starts from an initial state, which often corresponds to
zero coefficients. From there, its evolution is controlled by the input and
reference signals, and it is possible to define learning curves by parameter
averaging.

The evolution of the coefficient difference vector in the transformed space
is given by quation (4.24). Substituting equation (4.26) into this equation
and taking the expectation yields, under the hypotheses of Section 4.3,

Ela(n + 1)] = [Iy — & diag(A)]E[a(n)] (4.36)
Substituting into equation (4.29) and iterating from the time origin leads to
E(n) — Enin = A" diag(1 — 81,)* E[o*(0)] (4.37)

The same results can also be derived from equation (4.30) after some sim-
plification, assuming the step size & is small.

Clearly, the evolution of the coefficients and the output MSE depends on
the input signal matrix eigenvalues, which provide as many different modes.
In the long run, it is the smallest eigenvalue which controls the convergence.

The filter time constant t, obtained from an exponential fitting to the
output rms error is obtained by applying definition (4.10) and neglecting the
residual error:

E(0)e ¥ = A’ diag(1 — 81,)E[e?(0)] (4.38)
We can also obtain it approximately by applying (4.29) at the time origin:
2
AZE[az(O)][l — T_} = A" diag(1 — 281,)E[e?(0)] (4.39)
Hence

. T 1Ed0)
T, = SN’_ZI"— (4.40)
> AiE{e; (0))
i=0

If the eigenvalues are not too dispersed, we have

N 1
To ~ Vo1 = g (441)
8> Mo
i=0

The filter time constant is proportional to the inverse of the adaptation
step size and of the input signal power. Therefore, an estimation of the
signal power is needed to adjust the adaptation speed. Moreover, if the
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signal is nonstationary, the power estimation must be carried out in real
time to reach a high level of performance.

A limit on the adaptation speed is imposed by the stability condition
4.7).

From equation (4.30), it appears that the rows of the square matrix are
quadratic functions of the adaptation step and all take their minimum norm

for
1 1
8, = T e (4.42)
> A *
i=0

which corresponds to the fastest convergence. Therefore the smallest time
constant is

Te,min — N (443)

In these conditions, if the eigenvalues are approximately equal to the
signal power, which occurs for noiselike signals in certain modeling applica-
tions, the learning curve, taken as the output MSE function, is obtained
from (4.36) by

2n
E(n) — Egr = (E(0) — ER)<1 - ]1[) (4.44)

For zero initial values of the coefficients, E(0) is just the reference signal
power.

Overall, the three expressions (4.7), (4.33), and (4.41) give the basic infor-
mation to choose the adaptation step § and evaluate a transversal gradient
adaptive filter. They are sufficient in many practical cases.

Example
Consider the second-order adaptive FIR prediction filter in Figure 4.3, with
equations

en+1)=x(n+1) — a;(n)x(n) — a,(n)x(n — 1)

aj(n+1)| _ | ai(n) x(n)

[az(n+l):| = |:a2(n) +4 n—1) en+1) (4.45)

The input signal is a sinusoid in noise:
. (N7
x(n) = sin(57) + bo) (4.46)

The noise b(n) has power ag = 5 x 107°. The input signal power is 62 = 0.5.
The step size § is 0.05. Starting from zero-valued coefficients, the evolution
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e{n)

FIG. 4.3 Second-order prediction filter.

of the output error, the two coefficients, and the corresponding zeros in the
complex plane are shown in Figure 4.4. Clearly the output error time con-
stant is in reasonably good agreement with estimation (4.41).

In the filter design process, the next step is the estimation of the coeffi-
cient and internal data word lengths needed to meet the adaptive filter
specifications.

4.5. WORD-LENGTH LIMITATIONS

Word-length limitations introduce roundoff error sources, which degrade
the filter performance. The roundoff process generally takes place at the
output of the multipliers, as represented by the quantizers Q in Figure 4.5.

In roundoff noise analysis a number of simplifying hypotheses are gen-
erally made concerning the source statistics. The errors are identically dis-
tributed and independent; with rounding, the distribution law is uniform in
the interval [—¢/2, ¢/2], where ¢ is the quantization step size, the power is
¢*/12, and the spectrum is flat.

Concerning the adaptive transversal filter, there are two different cate-
gories of roundoff errors, corresponding to internal data and coefficients [8].

The quantization processes at each of the N filter multiplication outputs
amount to adding N noise sources at the filter output. Therefore, the output
MSE is augmented by Ng3/12, assuming ¢, is the quantization step.

The quantization with step ¢g; of the multiplication result in the coeffi-
cient updating section is not so easily analyzed. Recursion (4.28) is modified
as follows, taking into account the hypotheses on the roundoff noise sources
and their independence of the other variables:

Effa(n + Dla(n + D]} = [Iy — 28 diag(h)] E{[a(m)][ex(m)]'}
: (4.47)
+ S2E[(n + D)]diag(h,) + %IN
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FIG. 4.4 The second-order adaptive FIR prediction filter: (a) output error
sequence; (b) coefficient versus time; (c) zeros in the complex plane.
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FIG. 4.5 Adaptive FIR filter with word-length limitations.

An additional gradient noise is introduced.
When n — oo, equation (4.29) yields, as before,

¢ N

122 (4.48)

8 2
ERT <1 - §N0x> Emm +
Hence, the total residual error, taking into account the quantization of the
filter coefficients with step ¢; and the quantization of internal data with step
q>, as shown in Figure 4.5, is

1 qu
Epr=———— | Epin + — N 4.49
BT =1 —(8/2)No? [ min * o572 12} (4.49)
or, assuming a small excess output MSE,
8 N g B
Epr =~ E 1 No —— 4.
RT mm< +2 )+2812+N12 ( 50)

This expression shows that the effects of the two kinds of quantizations are

different. Because of the factor the coefficient quantization and the corre-

sponding word length can be very sensitive. In fact, there is an optimum &,

for the adaptation step size which minimizes the total residual error; accord-

ing to (4.50) it is obtained through derivation as
2

%EminNU,% - g%ﬁzl

opt

(4.51)
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and

1 1 q1
Sopp =~ 1L 4.52
ot VEminO'x\/g 2 ( )

The curve of the residual error versus the adaptation step size is shown in
Figure 4.6. For § decreasing from the stability limit, the minimum is reached
for 8,p; if 8 is decreased further, the curve indicates that the total error
should grow, which indeed has no physical meaning. The hypotheses
which led to (4.50) are no longer valid, and a different phenomenon occurs,
namely blocking.

According to the coefficient evolution equation (4.3), the coefficient /,(n)
is frozen if

18x(n — i)e(n)] < % (4.53)

Let us assume that the elements of the vector X (n)e(n) are uncorrelated
with each other and distribute uniformly in the interval [¢,/2, ¢;/2]. Then

2
SE{Em)X ()X (n)) = % Iy (4.54)

1

ERY

Emint Nag?/12
1-872 N 0;2

E 2% 12 '

)

0 8 opt 2INE, K2

FIG. 4.6 Residual error against adaptation step size.
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If the coefficients are close to their optimal values and if the input signal can
be approximated by a white noise, then equations (4.54) and (4.51) are
equivalent. A blocking radius p can then be defined for the coefficients by

p* = E([H(n) — Hyp]' (H(n) — H)opl) (4.55)
Now, considering that
H(n) — Hope = R Ele(n) X (n)] (4.56)
we have, from (4.54) and the identity X'X = trace(XX"),
2 L =S -2
r’==(%) ;Ai (4.57)

The blocking radius is a function of the spread of the input AC matrix
eigenvalues. Blocking can occur for adaptation step sizes well over &y,
given by (4.52), if there are small eigenvalues.

In adaptive filter implementations, the adaptation step size is often
imposed by system specifications (e.g., the time constant), and the coefficient
quantization step size ¢; is chosen small enough to avoid the blocking zone
with some margin.

Quantization steps ¢, and ¢, are generally derived from expression (4.50).
Considering the crucial advantage of digital processing, which is that opera-
tions can be carried out with arbitrary accuracy, the major contribution in
the total residual error should be the theoretical minimal error E.;,. In a
balanced realization, the degradations from different origins should be simi-
lar. Hence, a reasonable design choice is

1 Néo?| Ngqi 7
N Epin—— | ==>=N-= 4.58
2|: w9 :| 2512 12 (4.58)
If b, is the number of bits of the coefficients and /,,,, is the largest coefficient
magnitude, then, assuming fixed-point binary representation, we have

1 = a2 (4.59)
Under these conditions
2 i
22})(. === max . (460)
3 ) Emino-x

with the assumption that E,;, is the dominant term in (4.50), that is,
2 ~ 2
GSEmin ~ O'y

By introducing the time constant specification t,, one has approximately
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(o}
b Togs(r) -+ 108:(G) + 1o (s 2 @61)

This expression gives an estimation of the coefficient word length necessary
to meet the specifications of a gradient adaptive filter. However there is one
variable which is not readily available, &,,,; a simple bound can be derived,
if we assume a large system gain and refer to the eigenfilters of Section 3.7:

oy = E[y ()] ~ H' (mRH(n) > Ay H'(n)H(n) (4.62)
Now
U}zf = )‘minhrznax

and

o 2 0'2
(hmax X) < (4.63)
o2

v )‘min

Therefore, the last term on the right side of (4.61) is bounded by zero for
input signals whose spectrum is approximately flat, but it can take positive
values for narrowband signals.

Estimate (4.61) can produce large values for b,; that word length is
necessary in the coefficient updating accumulator but not in the filter multi-
plications.

In practice, additional quantizers can be introduced just before the multi-
plications by /;(n) in Figure 4.5 in order to avoid multiplications with high
precision factors. The effects of the additional roundoff noise sources intro-
duced that way can be investigated as above.

Often, nonstationary signals are handled, and estimate (4.61) is for sta-
tionary signals. In this case, a first approach is to incorporate the signal
dynamic range in the last term of (4.61).

To complete the filter design, the number of bits b; of the internal data
can be determined by setting

> = max{|x(n)], | y(n)|}2' " (4.64)

with the assumption that o2 > O'J%, which is true in linear prediction and
often valid in system modeling, and taking the value 4 as the peak factor of
the signal x(n) as in the Gaussian case. Thus

g, = 40X217b"
Now, (4.58) yields
22 _ 24f 1

3ELind
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By introducing the specifications we obtain

Ox

bi~2+ log2( > + logy(Gs) +3log,(z.) (4.65)

oy

This completes the implementation parameter estimation for the stan-
dard gradient algorithm. However, some modifications can be made to
this algorithm, which are either useful or even mandatory.

4.6. LEAKAGE FACTOR

When the input signal vanishes, the driving term in recursion (4.3) becomes
zero and the coefficients are locked up. In such conditions, it might be
preferable to have them return to zero. This is achieved by the introduction
of a leakage factor y in the updating equation:

Hn+1)={0—-y)Hn) +5X(n+ De(n+1) (4.66)
The coefficient recursion is
Hn+ 1) =[1—y)ly—86X(n+ DX'(n+ DH(n) +sy(n+ DX (n+ 1)
(4.67)

After convergence,
y —l
H, = E[H(c0)] = [R + EIN] Fax (4.68)

The leakage factor y introduces a bias on the filter coefficients, which can be
expressed in terms of the optimal values as

_1
H, = [R + glN] RH,y, (4.69)

The same effect is obtained when a white noise is added to the input
signal x(n); a constant equal to the noise power is added to the elements
of the main diagonal of the input AC matrix.

To evaluate the impact of the leakage factor, we rewrite the coefficient
vector H, as

. A;
H, = Mtdlag<)v +ly/8> MH,, (4.70)
1

The significance of the bias depends on the relative values of A, and %.
Another aspect is that the cost function actually minimized in the whole
process is

J(n) = E{[ (1) — X ()H(n — )P + %H[(n —1)H@ - 1)} 4.71)
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The last term represents a constraint which is imposed on the coefficient
magnitudes [9].
The LS solution is given by (4.68), and the coefficient bias is

y -1
H— Hyy = [(R 4 EIN) R— IN}HOpt 4.72)

Hence the filter output MSE becomes
Er = Enin +[H — Hopt][R[H - Hopt] (473)

The leakage factor is particularly useful for handling nonstationary signals.
With such signals, the leakage value can be chosen to reduce the output
error power.

If the coefficients are computed by minimizing the above cost function
taken on a limited set of data, the coefficient variance can be estimated by

E{[H — Hy|[H — Hy|'} = ER[R n %IN]_]R[R n g]_l (4.74)

and the coefficient MSE Hygg is
Hyisg = [H — Hop|'[H — Hop] + trace(E{[H — Hol[H — Ho') (475

When y increases from zero, Hygsg decreases from Egtrace(R™'), then
reaches a minimum and increases, because in (4.75) the variance decreases
faster than the bias increases at the beginning, as can be seen directly for
dimension N = 1 [9]. A minimal output MSE corresponds to the minimum
of HMSE'

A similar behavior can be observed when the gradient algorithm is
applied to nonstationary signals. An illustration is provided by applying a
speech signal to an order 8 linear predictor. The prediction gain measured is
shown in Figure 4.7 versus the leakage factor for several adaptation step
sizes §. The maximum of the prediction gain is clearly visible. It is also a
justification for the values sometimes retained for speech prediction, which
are § =2"%and y =27,

The leakage factor, which can nicely complement the conventional gra-
dient algorithm, is recommended for the sign algorithm because it bounds
the coefficients and thus prevents divergence.

4.7. THE LMAV AND SIGN ALGORITHMS

Instead of the LS, the least absolute value (LAYV) criterion can be used to
compare variables, vectors, or functions. It has two specific advantages: it
does not necessarily lead to minimum phase solutions; it is robust to outliers
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FIG. 4.7 Prediction gain vs. leakage factor for a speech sentence.

in a data set. Similarly, the least mean absolute value (LMAYV) can replace
the LMS in adaptive filters [10].
The gradient of the function |e(n + 1)| is the vector whose elements are
den+1) 9

o 8—hi|y(n +1) = X'(n+ 1)H(n)| (4.76)

= —x(n+1—1i)signe(n+ 1)

where sign e is +1 if e is positive and —1 otherwise. The LMAYV algorithm
for the transversal adaptive filter is

Hn+1)=HMm) +5X(n+ l)sign e(n + 1) 4.77)

where A, a positive constant, is the adaptation step.
The convergence can be studied by considering the evolution of the coef-
ficient vector toward the optimum H,. Equation (4.77) can be rewritten as

Hn+1)— Hyp = H(n) — Hop + AX(n + 1)sign e(n + 1)
Taking the norm squared of both sides yields

[H(n + 1) - Hopt]t[H(n + 1) - Hopt] = [H(n) - Hopt][[H(n) - Hopt]

+2A sign e(n + DX'(n+ D[H(n) — Hopl + AX'(n+ DX+ 1)
(4.78)

or, with further decomposition,

IH(n+ 1) = Hopll> =I1H(1) — Hope|I* + A% | X (2 + D> — 2Ale(n + 1)]

+2A sign e(n+ D[ y(n+ 1) — X'(n + 1)Hyp]

Hence we have the inequality
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IH(n+ 1) — Hopll> < |H() — Holl> + A% X (1 + DI* = 2Ale(n + 1)|
+2A1y(n+1) — X'(n+ 1)Hypy
Taking the expectation of both sides gives
E{H(n + 1) — Hop I’} < I1H(n) — Hopl?
+ A’Noy — 2AE{le(n+ )|} + 2AE
(4.79)

where the minimal error E,;, is
Enin = E[ly(n+ 1) = X'(n + 1) Hyp|] (4.80)
If the system starts with zero coefficients, then

E{(|H(n + 1) = HopllI’} < I[Hopll®
n+1
+(n+ 1(A’Nog + 2AEy,) — 28 ) E{le(p)}
p=I

Since the left side is nonnegative, the accumulated error is bounded by

n+1

1 A | Hope
E{;w(pn} < SNoL+ Enin +5 10

2A(n+1)

o (4.81)

This is the basic equation of LMAYV adaptive filters. It has the following
implications:

Convergence is obtained for any positive step size A.
After convergence the residual error Ey is bounded by

A
Ex < Epin +§Na§ (4.82)

It is difficult to define a time constant as in Section 4.1. However, an adap-
tation time 74 can be defined as the number of iterations needed for the last
term in (4.81) to become smaller than E,,;,. Then we have

L Hopll?
A 2Eni

7 (4.83)

The performance of the LMAYV adaptive filters can be assessed from the
above expressions. A comparison with the results given in Sections 4.3 and
4.4 for the standard LMS algorithm clearly shows the price paid for the
simplification in the coefficient updating circuitry. The main observation is
that, if a small excess output MSE is required, the adaptation time can
become very large.
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Another way of simplifying gradient adaptive filters is to use the follow-
ing coefficient updating technique:

Hn+1)=H(@m)+ Ae(n+ l)sign X(n+ 1) (4.84)
This algorithm can be viewed as belonging to the LMS family, but with a

normalized step size. Since

sign x = -+ (4.85)
|x|

and |x| can be coarsely approximated by the efficient value o, equation
(4.84) corresponds to a gradient filter with adaptation step size

s=2 (4.86)

Ox

The performance can be assessed by replacing § in the relevant equations.
Pursuing further in that direction, we obtain the sign algorithm

Hmn+ 1) = H(n) + A sign e(n + 1)sign X(n+ 1) (4.87)

The detailed analysis is rather complicated. However, a coarse but generally
sufficient approach consists of assuming a standard gradient algorithm with
step size

(4.88)

where o, and o, are the efficient values of the input signal and output error,
respectively.

In the learning phase, starting with zero-valued coefficients, it can be
assumed that o, ~ o, and the initial time constant tg of the sign algorithm
can be roughly estimated by

L9 (4.89)

Tg N —— )
STA ot
After convergence it is reasonable to assume of = E.;,. If the adaptation
step is small, the residual error Egg in the sign algorithm can be estimated by

NA o,
Egs ~ Emin<1 + T\/ﬁ) (4.90)

A condition for the above estimation to be valid is obtained by combin-
ing (4.7) and (4.88), which yields

A<<z
N
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If the step size is not small enough, the convergence will stop when the error
becomes so small that the stability limit is reached, approximately

~ 20

A~
No,

In that situation, the residual error can be estimated by

A
vV Egs ”\*ENUx 4.91)

which can be compared with (4.82) when E,;, is neglected.
It is worth pointing out that, for stability reasons, a leakage term is
generally introduced in the sign algorithm coefficient, giving

Hn+1)=(—y)HMn) + A sign e(n+ 1)sign X(n+ 1) (4.92)

Under these conditions, the coefficients are bounded by
A
h(n)] < —, 0<i<N-1 (4.93)
14

Overall, it can be stated that the sign algorithm is slower than the stan-
dard gradient algorithm and leads to larger excess output MSE [11-12].
However, it is very simple; moreover it is robust because of the built-in
normalization of its adaptation step, and it can handle nonstationary sig-
nals. It is one of the most widely used adaptive filter algorithms.

4.8. NORMALIZED ALGORITHMS FOR
NONSTATIONARY SIGNALS

When handling nonstationary signals, adaptive filters are expected to trace
as closely as possible the evolution of the signal parameters. However, due
to the time constant there is a delay which leads to a tracking error.
Therefore the excess output MSE has two components: the gradient mis-
adjustment error, and the tracking error.

The efficiency of adaptive filters depends on the signal characteristics.
Clearly, the most favorable situation is that of slow variations, as mentioned
in Section 2.13. The detailed analysis of adaptive filter performance is based
on nonstationary signal modeling techniques. Nonstationarity can affect the
reference signal as well as the filter input signal. In this section a highly
simplified example is considered to illustrate the filter behavior.

When only the reference signal is assumed to be nonstationary, the devel-
opments of the previous sections can, with adequate modifications, be kept.
The nonstationarity of the reference is reflected in the coefficient updating
equation (4.3) by the fact that the optimal vector is time dependent:
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H(n+ 1) — Hyp(n+ 1) = H(n) — Hyp(n) + Se(n+ DX (n + 1) (4.94)

If it can be assumed that the optimal coefficients are generated by a first-
order model whose inputs are zero mean i.i.d. random variables e, ;(n),
with variance U,%S, as in Section 2.13, then

Hopt(n + 1) = (1 - V|Hopt(”) + [enS,O(n + 1)’ cees enS,(Nfl)(n + l)][ (495)

Furthermore, if the variations are slow, which implies y ~ 1, the net effect of
the nonstationarity is the introduction of the extra term o,g/y in recursion
(4.28). As already seen for the coefficient roundoff, the residual error Egz,s
is

) N

ERTnS<1 - §N0«3> = Enin + 5035 (4.96)
or, for small adaptation step size,
) N

ERtus X Enin (1 ) NU.%) + %C’gs (4.97)

In this simplified expression for the residual output error power with a
nonstationary reference signal, the contributions of the gradient misadjust-
ment and the tracking error are well characterized. Clearly, there is an
optimum for the adaptation step size, 8,5, Which is

Ons

Sopt = o VE (4.98)
which corresponds to balanced contributions.

The above model is indeed sketchy, but it provides hints for the filter
behavior in more complicated circumstances [13]. For example, an order 12
FIR adaptive predictor is applied to three different speech signals: (a) a male
voice, (b) a female voice, and (¢) unconnected words. The prediction gain is
shown in Figure 4.8(a) for various adaptation step sizes. The existence of an
optimal step size is clearly visible in each case.

The performance of adaptive filters can be significantly improved if the
most crucial signal parameters can be estimated in real time. For the gra-
dient algorithms the most important parameter is the input signal power,
which determines the step size. If the signal power can be estimated, then the
normalized LMS algorithm

H(n+1)=H®n) + %X(n + De(n+1) (4.99)

X

can be implemented. The most straightforward estimation o2 is Py,(n) given
by
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FIG. 4.8 Prediction gain vs. adaptation step size for three speech signals: (a) LMS
with fixed step; (b) normalized LMS; (c) sign algorithm.
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No—1

P.a(n) = Py + Nio PR (4.100)
i=0

where P, is a positive constant which prevents division by zero. The para-
meter N, the observation time window, is the duration over which the
signal can be assumed to be stationary.

For the prediction filter example mentioned above, the results corre-
sponding to Py = 0.5 and Ny = 100 (the long-term speech power is unity)
are given in Figure 4.8(b). The improvements brought by normalization are
clearly visible for all three sentences. The results obtained with the sign
algorithm (4.87) are shown in Figure 4.8(c) for comparison purposes. The
prediction gain is reduced, particularly for sentences b and c, but the robust-
ness is worth pointing out: there is no steep divergence for too large §, but a
gradual performance degradation instead.

In practice, equation (4.100) is costly to implement, and the recursive
estimate of Section 3.3 is preferred:

Po(i+1) = (1 = p)Po(n) +yx’(n+ 1) (4.101)

Estimates (4.100) and (4.101) are additive. For faster reaction to rapid
changes, exponential estimations can be worked out. An efficient and simple
method to implement corresponds to a variable adaptation step size A(n)
given by

A(n) = Pi(n) =271 (4.102)

where /(n) is an integer variable, itself updated through an additive process
(e.g., a sign algorithm [14]).

The step responses of P,;(n), P,(n) and the exponential estimate are
sketched in Figure 4.9. Better performance can be expected with the expo-
nential technique for rapidly changing signals.

Adaptation step size normalization can also be achieved indirectly by
reusing the data at each iteration.

The a posteriori error e(n + 1) in equation (4.4) is calculated with the
updated coefficients. It can itself be used to update the coefficients a second
time, leading to a new error &|(n + 1). After K such iterations, the a poster-
iori error gx(n+ 1) is

ex(n+ 1) =[1—8X'"(n+ DX+ DX e(n + 1) (4.103)

For § sufficiently small and K large, eg(n + 1) ~ 0, which would have been
obtained with a step size A satisfying
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FIG. 4.9 Step responses of signal power estimations.

1 —AX'm+DX(n+1)=0
that is

1

A= Y+ DX+ 1) (4.104)

The equivalent step size corresponds to the fastest convergence defined in
Section 4.4 by equation (4.42). So, the data reusing method can lead to fast
convergence, while preserving the stability, in the presence of nonstationary
signals.

The performance of normalized LMS algorithms can be studied as in the
above sections, with the additional complication brought by the variable
step size. For example, considering the so-called projection LMS algorithm

8

Hn+1)= H(n)+X,(n+ DX D)

X(n+ De(n+1) (4.105)

one can show that a bias is introduced on the coefficients, which becomes
independent of the step size for small values, while the variance remains
proportional to § [15].

A coarse approach to performance evaluation consists of keeping the
results obtained for fixed step algorithms and considering the extreme para-
meter values.
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4.9. DELAYED LMS ALGORITHMS

In the implementation, it can be advantageous to update the coefficients
with some delay, say d sampling periods. For example, with integrated
signal processors a delay d = 1 can ease programming. In these conditions
it is interesting to investigate the effects of the updating delay on the adap-
tive filter performance [16].

The delayed LMS algorithm corresponds to the equation

Hn+1)=Hm+8X(n+1—den+1—4d) (4.106)
The developments of Section 4.3 can be carried out again based on the

above equation. For the sake of brevity and conciseness, a simplified ana-
lysis is performed here, starting from equation (4.24), rewritten as

[a(n+ D] =[am)] —MX(n+1—d)e(n+1—d) (4.107)

Substituting (4.26) in this equation and taking the expectation yields, under
the hypotheses of Section 4.3,

Effa(n + D]} = E{[a(m)]} — 6 diag(2;) E[a(n — d)]} (4.108)
The system is stable if the roots of the characteristic equation

P 4 sh =0 (4.109)
are inside the unit circle in the complex plane. Clearly, for d = 0, the con-
dition is

0<d< (4.110)

max
which is a stability condition sometimes used for the conventional LMS

algorithms, less stringent than (4.7).
When d = 1, the stability condition is

1
0<é<

(4.111)
max

which implies that delay makes the stability condition more stringent. If § is

small enough (8 < }—‘Amax), the roots of the second-order characteristic equa-

tion are real:

r =~ 1 —_ 5)\.,(1 -+ 5)\.,'), r A 8}\.,(1 -+ (S)\.l) (4112)

The corresponding digital filter can be viewed as a cascade of two first-
order sections, whose time constants can be calculated; its step response is
approximately proportional to 1 — (1 4+ 8A;)r{, where the factor 1+ 82,
reflects the effect of the root r,. However, neglecting the root r,, we can
state that, for small adaptation step sizes, the adaptation speed of the
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delayed algorithm is similar to that of the conventional gradient algorithm.
In the context of this simplified analysis, the time constant t; for each mode

is roughly
TN 1 (4.113)
AT '
Now, for d > 2, the characteristic equation (4.109) has a root on the unit
circle if
eldthe _ pide 4 55 =0 (4.114)

The imaginary part of the equation is

sin(d + 1w — sindw =0 (4.115)
whose solutions are

w=0; Qd+Dowo=Q2k+Dr (—d <k <d)
As concerns the real part, it provides the equality

2k+1

S = 2(—1) sin——mt L
=2 sin g T

(4.116)

At this stage, the root locus technique can be employed. If §A; is increased
from zero, the first value which corresponds to a root of the equation is
obtained for k = 0 and k£ = —1, and

w=1/22d + 1)

The stability is guaranteed if §A; remains smaller than the limit above. Hence
the stability condition

2 b4
0<é< sin 4.117
Amax  2Q2d+1) ( )
For large d, the condition simplifies to
T
0<3$§ — 4.118
SO S 2d+ 1 (4.118)

Turning to the excess output MSE, a first estimation can be obtained by
considering only the largest root of the characteristic equation and assuming
that the delayed LMS is equivalent to the conventional LMS with a slightly
larger adaptation step. For d = 1, referring to equation (4.112), we can take
the multiplying factor to be 1+ 8iy,.. The most adverse situation for
delayed LMS algorithms is the presence of nonstationary signals, because
the tracking error can grow substantially.
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4.10. THE MOMENTUM ALGORITHM

The momentum algorithm is an alternative approach to improve on the
performance of the gradient algorithm, while sacrificing little in computa-
tional complexity.

The starting point is the recursive equation for the output error energy in
the least squares approach. In Chapter 6, it will be shown that the following
equation holds:

En+1)=WEm) +e(n+ l)e(n+1) (4.119)

where W is the weighting factor (0 < W < 1). Assuming that the coefficient
vector is updated proportionally to the gradient of the error energy E(n + 1)
and approximating the ““a posteriori” error &(n 4+ 1) by the “a priori” error
e(n+ 1), the momentum algorithm is obtained:

em+1)=ymn+ 1)+ H@nXn+1)

(4.120)
Hn+1)=Hn) +aHn) — Hn—1)]+8e(n+ DHDX(n+1)

The scalar « is called the momentum factor, by analogy with the use of the
term in mechanics. An obvious condition for stability is |o| < 1. In fact, the
stability of the momentum algorithm can be investigated in a way similar to
that of the gradient algorithm. The evolution of the coefficients is governed
by the equation

Hun+ D) =[Iy(l+a)—86Xm+ DX'(n+ D]H@®)

4.121)
+8y(n4+ DX(n+1) —aHn — 1)

Replacing X (n + 1)X'(n + 1) by IyNo2, to take a conservative approach, the
second-order characteristic equation of the system has its roots inside the
unit circle if

l+a—8No2| <1l+a, a<l (4.122)
which leads to the stability conditions
2(1
0<s< 20Dy (4.123)

2
Noz

The performance of the algorithm can be evaluated by following a pro-
cedure similar to that of the standard gradient algorithm, but with increased
complexity. However, considering that the momentum term introduces a
first-order difference equation with factor «, a coarse assessment of the
algorithm’s behavior is obtained by replacing § by §/(1 — «) in the expres-
sions obtained for the gradient algorithm. For example, this accounts for the
gain in convergence time observed in simulations [17].
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4.11. VARIABLE STEP SIZE ADAPTIVE FILTERING

The performance of gradient adaptive filters is a compromise between speed
of convergence and accuracy. A large step size makes the adaptation fast,
while a small value can make the residual error close to the minimum.
Therefore, a variable step size can offer a potential for improvement, and
a possible approach is to apply the gradient algorithm to the step size itself

[18].

Assuming a time-varying step size, the filter output error can be expressed
by

em+1)=y(mn+1)—[Hmn—1)+8me(n)X(n)]'X(n+1) (4.124)

The step size §(n) can be updated with the help of the derivative of Fn+1)
with respect to §. At time (n + 1), the following operations have to be carried
out:

em+D)=yn+1)—H®mWXn+1)
8(n+ 1) = 8(n) + pe(n + Ne(m)X'(n)X (n + 1) (4.125)
H(n+ 1) = H(n)+ 8(n + De(n + DX (n + 1)

The above equations define a variable-step-size gradient algorithm, and the
parameter p is a real positive scalar that controls the step size variations. To
figure out the evolution of the step size, its updating equation can be rewrit-
ten as

8(n+1) = [1 — pe (X' ()X (n + DF]8(n) (4.126)
+ply(n+1) — H'(n — DX+ Dle(m)X' ()X (n + 1) )
Clearly, the step size 8(n2) decreases as the filter converges, and its mean value
stabilizes at a limit which is determined by the correlation of the input signal
and the correlation of the residual error.

4.12. CONSTRAINED LMS ALGORITHMS

The adaptive filters considered so far use a reference signal to compute the
output error, which serves to update the coefficients. It might happen that
this reference signal is zero, as in linear prediction. In such a situation, at
least one constraint must be imposed on the coefficients, to prevent the
trivial solution of all the coefficients being null. In linear prediction, it is
the first coefficient which is a one. Another example has been given in
Section 3.10 with the iterative calculation of the coefficients of an eigenfilter.
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The case of a set of K independent linear constraints can be dealt with by
forming a reference signal from the input signal and the constraints, as
shown in Figure 4.10. The system is defined by the equations

t
e(lz +1)=HmXn+1) 4.127)
C'Hn)=F
The matrix C is formed by the K constraint vectors, F being a K-element
vector which is part of the constraint system. Now, a reference signal y,(n)
can be formed from the input signal with the help of the coefficient vector
WQ defined by

wQ = C[C'C]"'F (4.128)

The matrix WS is orthogonal to the constraint vector and it has the rank
N — K. The adaptive filter Ha(z) has N — K coefficients, which are updated
according to the LMS algorithm [19].

The constraints may also come as an addition to an adaptive filter with a
reference signal. Then the coefficients must be updated in a space which is
orthogonal to the constraint space. The algorithm is as follows

en+1)=yn+1)—H'Xn+1) (4.129)
Hn+1)=P[Hn)+de(n+ DX+ 1]+ m
with
P=1Iy—C[C'CI'C"  m=cC[C'C'F
The derivation of the equations (4.128) and (4.129) is obtained through the

Lagrange multiplier technique, which is detailed in Chapter 7, in the context
of least squares adaptive filtering.

Y%(n) ein)
X(n) wQ =)
WS Ha

FIG. 410 Constrained adaptive filter.
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4.13. THE BLOCK LMS ALGORITHM

In some applications, it can be convenient to perform the coefficient adap-
tation less often than each sampling period. In block adaptive filtering, the
data sequences are arranged into blocks of length L and adaptation is
carried out only once per block.

Let X7 (m) denote the N x L-element input signal matrix associated with
block m and [ y(m)] and [e(m)] represent the L-element vectors of reference
signal and output error respectively. Then, the block LMS algorithm is
defined by the set of equations

e(m+ D] =[m+ D] — Xy, (m+ DH(m)
4.130
H(m+1):H(m)+8%XNL(m+1)[e(m+1)] ( )

The evolution of the N-element coefficient vector H(m) is determined by
substituting the error equation into the updating equation, to yield

Hn 1) = [y 57 X+ DX (m 4+ DJHGn)
s (4.131)

The important point here is that the data are averaged. For L sufficiently
large, the following approximation is valid:

Xyr(m+ DXy (m+ 1)~ LR, (4.132)

Thus the stability condition for the step size § is

0<é<

(4.133)

)“max

If the input signal is close to a white noise, the adaptation time constant,
expressed in terms of the data period, is

t=1L (4.134)

802
where o7 is the input signal power, as usual. As concerns the residual error
power, it is not necessary to go through all the equations to assess the
impact of the block processing. The averaging operation carried out on
the driving term in the equation which gives the evolution of the coefficients
(4.131) produces a reduction of the error variance by the averaging factor L.
Thus, the residual error power can be expressed by
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(4.135)

Compared to the standard LMS algorithm, it appears that the block algo-
rithm is slower but has a smoother operation. Also, it cannot track changes
in the data sequence which are limited to a single block.

It must be pointed out that some advantages in implementation can be
gained from the block processing of the data.

4.14. FIR FILTERS IN CASCADE FORM

In certain applications it is important to track the roots of the adaptive filter
z-transfer function—for instance, for stability control if the inverse system is
to be realized. It is then convenient to design the filter as a cascade of L
second-order sections H;(z), 1 < [/ < L, such that

Hy2)=1+hyz"" 4+ hyz"
For real coefficients, if the roots z; are complex, then
hy = 2Re(z).  hy = |z’ (4.136)
The roots are inside the unit circle if
oyl <1, Jhyl<l4+hy, 1 <I<L (4.137)
The filter transfer function is
L
HE) = [ +hyz"" +hyz?)
=1

The error gradient vector is no longer the input data vector, and it must be
calculated.
The filter output sequence can be obtained from the inverse z-transform

1 L
$(n) = — f A+ bz + hyz )X () dz (4.138)
27'[] r =1

where I is a suitable integration contour. Hence

de(n+1)  y(n+1)
o oy

1 T -1 )

= —— & 1+h h X(2)d.

27 rZZ l;[( +hyz" 4 hyz )X (2) dz
I#i
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or, more concisely,

de(n + 1) L H(z)
—_— = z'z

a/’lk,' _2_7'[] r 1 + h]izil + hzl‘Z

— X(2)dz (4.139)

Therefore, to form the gradient term gy;(n) = de(n)/dhy;, it is sufficient to
apply the filter output y(n) to a purely recursive second-order section, whose
transfer function is just the reciprocal of the section with index i. The
recursive section has the same coefficients, but with the opposite sign. The
corresponding diagram is given in Figure 4.11.

The coefficients are updated as follows:

Ti(n+ 1) = hy(n) + Se(n+ Dgran+1), k=1,2,1 <i <L (4.140)

The filter obtained in this way is more complicated than the transversal FIR
filter, but it offers a simple method of finding and tracking the roots, which,
due to the presence of the recursive part, should be inside the unit circle in
the z-plane to ensure stability [20].

However, there are some implementation problems, because the indivi-
dual sections have to be characterized for the filter to work properly. That
can be achieved by imposing different initial conditions or by separating the
zero trajectories in the z-plane.

i

i

g”[nj g_ﬂ(nl

x(n}

FIG. 4.11 Adaptive FIR filter in cascade form.
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4.15. IIR GRADIENT ADAPTIVE FILTERS

In general, IIR filters achieve given minimum phase functions with fewer
coefficients than their FIR counterparts. Moreover, in some applications, it
is precisely an IIR function that is looked for. Therefore, IIR adaptive filters
are an important class, particularly useful in modeling or identifying systems
[21].

The output of an IIR filter is

L K
F) =Y ax(n—1D+Y_ b in—k) (4.141)
=0 k=1

The elements of the error gradient vector are calculated from the derivatives
of the filter output:

~ K ~
—k
ay(n):x(n—l)—i—ZbkM, 0</i<L (4.142)
Cll =1 861[
and
W) - )
o = k)+;b, g | SK<K (4.143)

2

To show the method of realization, let us consider the z-transfer function

L
> az
H(z) == _N@ (4.144)
S D@
1— Z ka
k=1
The filter output can be written
F(n) = % /F VH(2)X(2) dz
Consequently
8.}N)(n) 1 / n—1_—1 X(Z)
=— d 4.145
oa, 2w ). ° D (4.145)
8.}7(’1) 1 / n—1_—k 1
- — " 4.14
oby 2 1_z 75 B (2)X(2)dz (4.1406)

The gradient is thus calculated by applying x(n) and j(n) to the circuits

corresponding to the transfer function D%Z).
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To simplify the implementation, the second terms in (4.142) and (4.143)
can be dropped, which leads to the following set of equations for the adap-
tive filter (in vector notation):

e(n+1) = y(n—+ 1) — [A'(n), B’(n)][X(g(:)l)} (4.147)
ERTIRFA R

The approach is called the output error technique. The block diagram is
shown in Figure 4.12(a). The filter is called a parallel IIR gradient adaptive
filter.

The analysis of the performance of such a filter is not simple, because of
the vector Y (n) of the most recent filter output data in the system equations.
To begin with, the stability can only be ensured if the error sequence e(n) is

£

x(n) V(n_) y(n)

N(2) + - —
/ 4 J
K
2 b,z

i=1 eln)

ta)

X{n) y(n)

— N2 —-@— Dz)

/ e(r) /

{b}

FIG. 4.12 Simplified gradient IIR adaptive filters: (a) Parallel type (output error);
(b) series-parallel type (equation error).
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filtered by a z-transfer function C(z), such that the function C(z)/D(z) be
strictly positive real, which means

Re[gg} >0, |7=1 (4.149)
An obvious choice is C(z) = D(z).

An alternative approach to get realizable IIR filters is based on the
observation that, after convergence, the error signal is generally small and
the filter output y(n) is close to the reference y(n). Thus, in the system
equations, the filter output vector can be replaced by the reference vector:

en+1) = y(n + 1) — [A'(n), B’(n)][X(}’;(:)l)} (4.150)
An+1) A(n) X(n+1)
[B(H 1)} - [B(n)] +5[ o i|e(n+ 1) 4.151)

This is the equation error technique. The filter is said to be of the series-
parallel type; its diagram is shown in Figure 4.12(b). Now, only FIR filter
sections are used, and there is no fundamental stability problem anymore.
The performance analysis can be carried out as in the above sections. The
stability bound for the adaptation step size is

0<8<—so s (4.152)
Loy + Koj;

Overall the performance of the series-parallel IIR gradient adaptive filter
can be derived from that of the FIR filter by changing No> into Lo> + Kcrf, .

In order to compare the performance of the parallel type and series-
parallel approaches, let us consider the expectation of the recursive coeffi-
cient vector after convergence, B, for the parallel case. Equations (4.147)
and (4.148) yield

By, = E[Y)Y' )] 'E{Y)[y(n+ 1) — A' W)X (n + 1]} (4.153)

The parallel-series type yields a similar equation, but with E[Y (1) Y'(n)]""; if
the output error is approximated by a white noise with power o2, then

E[Y()Y'(n)] = 0’1y + E[Y(n)Y'(n)] (4.154)

and a bias is introduced on the recursive coefficients. The above equation
clearly illustrates the stability hazards associated with using Y (n), because
the matrix can become singular. Therefore, the residual error is larger with
the parallel-series approach, while the adaptation speed is not significantly
modified, particularly for small step sizes, because the initial error sequences
are about the same for both types.
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Finally, several structures are available, and IIR gradient adaptive filters
can be an attractive alternative to FIR filters in relevant applications.

4.16. NONLINEAR FILTERING

The digital filters considered up to now have been linear filters, which means
that the output is a linear function of the input data. We can have a non-
linear scalar function of the input data vector:

y(n) = f1X ()] (4.155)
The Taylor series expansion of the function f(X) about the vector zero is
© 1 [T& 57"
=2 5 [; X, 5} S0 (4.156)

with differential operator notation. When limited to second order, the
expansion is

y(n) = yo + H' X (n) + trace(M X (n) X' (n)) (4.157)

where y, is a constant, H is the vector of the linear coefficients, and M is the
square matrix of the quadratic coefficients, the filter length N being the
number of elements of the data vector X(n). This nonlinear filter is called
the second-order Volterra filter (SVF) [22].

The quadratic coefficient matrix M is symmetric because the data matrix
X(n)X'(n) is symmetric. Also, if the input and reference signals are assumed
to have zero mean, y(n) must also have zero mean, which implies

E[y(n)] = yy + trace(MR) (4.158)
Therefore (4.157) can be rewritten as
$(n) = H'X(n) + trace(M[X (n)X"'(n) — R]) (4.159)

When this structure is used in an adaptive filter configuration, the coeffi-
cients must be calculated to minimize the output MSE, E{( y(n) — j(n))*}.

For Gaussian signals, the optimum coefficients are
Hyy = R E[y(n)X (n

opt l [y( ) ( )] l (4160)
My = 3 R E[y(m)X(m) X' (m)]R”

It is worth pointing out that the linear operator of the optimum SVF, in
these conditions, is exactly the optimum linear filter. Thus, the nonlinear
filter can be constructed by adding a quadratic section in parallel to the
linear filter, as shown in Figure 4.13.
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FIG. 4.13 Second-order nonlinear filter for Gaussian signals.
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The minimum output MSE is

Enin = E[V*(0)] — E[y(m) X (m)]' R E[ y(n)X (n)]

y e , 4.161)
— Ltrace(R™ E[y(m X (n) X" (IR ELy(m) X (m) X' (n)])

The gradient techniques can be implemented by calculating the deriva-
tives of the output error with respect to the coefficients. The gradient adap-
tive SVF equations are

em+1)=yn+1)— HmXn+1)
— trace(M(n)[X(n+ )X'(n+ 1) — R))

Hn+1)=Hn) +8§,X(n+ De(n+1)

Mm+1)=Mmn)+8,Xn+ DX (n+ De(n+1)

(4.162)

where §, and §,, are the adaptation steps.

The zeroth-order term trace(M(n)R) is not constant in the adaptive
implementation. It can be replaced by an estimate of the mean value of
the quadratic section output, for example, using the recursive estimator of
Section 3.3.

The stability bounds for the adaptation steps can be obtained as in
Section 4.2 by considering the a posteriori error &(n + 1):

em+ ) =emn+ D[ —-8,X'(n+HXn+1)
—§,,trace(X(n + DX'(n+ DX+ DX'(n+ 1) — R])]
(4.163)

Assuming that the linear operator acts independently, we adopt condition
(4.7) for §;,. Now, the stability condition for §,, is

|1 — §,,(trace E[X(n + DX'(n+ DX (n+ DX'(n+ 1)] — trace R*)| < 1
The following approximation can be made:
trace E[X(n + DX'(n + DX(n 4+ DX'(n + 1)] ~ (No2)* > trace R’
(4.164)

Hence, we have the stability condition

0<3, < (4.165)

(Nopy?

The total output error is the sum of the minimum error E;, given by
(4.140) and the excess MSEs of the linear and quadratic sections. Using
developments as in Section 4.3, one can show the excess MSE of the quad-
ratic section E,, can be approximated by
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8
Ey ~ ? Ein[(No?)? + 2 trace R%] (4.166)

In practice, the quadratic section in general serves as a complement to the
linear section. Indeed the improvement must be worth the price paid in
additional computational complexity [23].

4.17. STRENGTHS AND WEAKNESSES OF
GRADIENT FILTERS

The strong points of the gradient adaptive filters, illustrated throughout this
chapter, are their ease of design, their simplicity of realization, their flex-
ibility, and their robustness against signal characteristic evolution and com-
putation errors.

The stability conditions have been derived, the residual error has been
estimated, and the learning curves have been studied. Simple expressions
have been given for the stability bound, the residual error, and the time
constant in terms of the adaptation step size. Word-length limitation effects
have been investigated, and estimates have been derived for the coeffficient
and internal data word lengths as a function of the specifications. Useful
variations from the classical LMS algorithm have been discussed. In short,
all the knowledge necessary for a smart and successful engineering applica-
tion has been provided.

Although gradient adaptive filters are attractive, their performance is
severely limited in some applications. Their main weakness is their depen-
dence on signal statistics, which can lead to low speed or large residual
errors. They give their best results with flat spectrum signals, but if the
signals have a fine structure they can be inefficient and unable, for example,
to perform simple analysis tasks. For these cases LS adaptive filters offer an
attractive solution.

EXERCISES

1. A sinusoidal signal x(n) = sin(n/2) is applied to a second-order linear
predictor as in Figure 4.3. Calculate the theoretical ACF of the signal
and the prediction coefficients. Verify that the zeros of the FIR pre-
diction filter are on the unit circle at the right frequency.

Using the LMS algorithm (4.3) with § = 0.1, show the evolution of
the coefficients from time » = 0 to n = 10. How is that evolution mod-
ified if the MLAYV algorithm (4.77) and the sign algorithm (4.87) are
used instead.

2. A second-order adaptive FIR filter has the above x(n) as input and
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y(n) = x(n) + x(n — 1) + 0.5x(n — 2)

as reference signal. Calculate the coefficients, starting from zero initial
values, from time n = 0 to n = 10. Calculate the theoretical residual
error and the time constant and compare with the experimental results.

3.  Adaptive line enhancer. Consider an adaptive third-order FIR predic-
tor. The input signal is

x(n) = sin(nwy) + b(n)

where b(n) is a white noise with power o,% . Calculate the optimal coef-
ficients a; o, 1 < i < 3. Give the noise power in the sequence

3
s(1) =Y @ opx(n — i)
i=1

as well as the signal power. Calculate the SNR enhancement.

The predictor is now assumed to be adaptive with step § = 0.1. Give
the SNR enhancement.

4. In atransmission system, an echo path is modeled as an FIR filter, and
an adaptive echo canceler with 500 coefficients is used to remove the
echo. At unity input signal power, the theoretical system gain, the echo
attenuation, is 53 dB, and the time constant specification is 800 sam-
pling periods. Calculate the range of the adaptation step size & if the
actual system gain specification is 50 dB.

Assuming the echo path to be passive, estimate the coefficient and
internal data word lengths, considering that the power of the signals
can vary in a 40-dB range.

5. An adaptive notch filter is used to remove a sinusoid from an input
signal. The filter transfer function is

l+az '+ 22
14+09az"!' +0.81z72

Give the block diagram of the adaptive filter. Calculate the error gra-
dient. Simplify the error gradient and give the coefficient updating
equation. The signal x(n) = sin(nm/4) is fed to the filter from time
zero on. For an initial coefficient value of zero what are the trajec-
tories, in the z-plane, of the zeros and poles of the notch filter. Verify
experimentally with § = 0.1.

6. An order 4 FIR predictor is realized as a cascade of two second-order
sections. Show that only one section is needed to compute the error
gradient and give the block diagram. What happens for any input
signal if the filter is made adaptive and the initial coefficient values
are zero. Now the predictor transfer function is

H(z) =
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Hz) =0 —az" +az (0 + bz + bz7?)

and the coefficients @ and b are updated. Give the trajectories, in the z-
plane, of the predictor zeros.

Calculate the maximum predicting gain for the signal x2p + 1) =1,
x(2p) = 0.
Give the block diagram of the gradient second-order Volterra adaptive
filter according to equations (4.162). Evaluate the computational com-
plexity in terms of numer of multiplications and additions per sam-
pling period and point out the cost of the quadratic section.
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5

Linear Prediction Error Filters

Linear prediction error filters are included in adaptive filters based on FLS
algorithms, and they represent a significant part of the processing. They
crucially influence the operation and performance of the complete system.
Therefore it is important to have a good knowledge of the theory behind
these filters, of the relations between their coefficients and the signal para-
meters, and of their implementation structures. Moreover, they are needed
as such in some application areas like signal compression or analysis [1].

5.1. DEFINITION AND PROPERTIES

Linear prediction error filters form a class of digital filters characterized by
constraints on the coefficients, specific design methods, and some particular
implementation structures.

In general terms, a linear prediction error filter is defined by its transfer
function H(z), such that

N
Hz)=1-) az" (5.1)

i=1

where the coefficients are computed so as to minimize a function of the
output e(n) according to a given criterion. If the output power is minimized,
then the definition agrees wth that given in Section 2.8 for linear prediction.

When the number of coefficients N is a finite integer, the filter is a FIR
type. Otherwise the filter is IR type, and its transfer function often takes the
form of a rational fraction:
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L

1— Z a,—zfi

H(z)=—"— (5.2)
1— Z b['Z_[
i=1

For simplicity, the same number of coefficients N =L = M is often
assumed in the numerator and denominator of H(z), implying that some
may take on zero values.

The block diagram of the filter associated with equation (5.2) is shown in
Figure 5.1, where the recursive and the nonrecursive sections are repre-
sented.

As seen in Section 2.5, linear prediction corresponds to the modeling of
the signal as the output of a generating filter fed by a white noise, and the
linear prediction error filter transfer function in the inverse of the generating
filter transfer function. Therefore, the linear prediction error filter associated
with H(z) in (5.2) is sometimes designated by extension as an ARMA (L, M)
predictor, which means that the AR section of the signal model has L
coefficients and the MA section has M coefficients.

For a stationary signal, the linear prediction coefficients can be calculated
by LS techniques. A direct application of the general method presented in
Section 1.4 yields the set of N equations:

P N
871,13[801)] =) - ;air(j— D=0, 1<j<N
which can be completed by the power relation (4.16)

N
Euy = E[&(m)] = r(0) = > a;r(i)
i=1

#(n) e{n)

+

4

L N -1
of a0 + T v

FIG. 5.1 IIR linear prediction error filter.
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In concise form, the linear prediction matrix equation is

][5

where Ay is the N-element prediction coefficient vector and E,y is the
prediction error power. The (N + 1) x (N + 1) signal AC matrix, Ry, is
related to Ry by

r©0) () - r(N)

1
Ryq1 = r(. : . Ry = E[X(n)X'(n)] (5.4)

l’(].v) RN

The linear prediction equation is also the AR modeling equation (2.63)
given in Section 2.5.

The above coefficient design method is valid for any stationary signal. An
alternative and illustrative approach can be derived, which is useful when
the signal is made of determinist, or predictable, components in noise.

Let us assume that the input signal is

x(n) = s(n) + b(n) (5.5)

where s(n) is a useful signal with power spectral density S(w) and b(n) a zero
mean white noise with power aﬁ. The independence relation between the
sequences s(n) and b(n) leads to

Euy = B =5 f " H@PS©) do -+ (1 + 4 4y) (5:6)

The factor |H(w)|* is a function of the prediction coefficients which can be
calculated to minimize E,y by setting to zero the derivatives of (5.6) with
respect to the coefficients. The two terms on the right side of (5.6) can be
characterized as the residual prediction error and the amplified noise,
respectively. Indeed their relative values reflect the predictor performance
and the degradation caused by the noise added to the useful signal.

If E,;y =0, then there is no noise, a;f =0, and the useful signal is pre-
dictable; in other words, it is the sum of at most /N cisoids. In that case, the
zeros of the prediction error filter are on the unit circle, at the signal fre-
quencies, like those of the minimal eigenvalue filter. These filters are identi-
dal, up to a constant factor, because the prediction equation

Ry [ _LN} =0 (5.7)

is also an eigenvalue equation, corresponding to Ay, = O.

brrrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



A characteristic property of linear prediction error filters is that they are
minimum phase, as shown in Section 2.8; all of their zeros are within or on
the unit circle in the complex plane.

As an illustration, first- and second-ordr FIR predictors are studied next.

5.2. FIRST- AND SECOND-ORDER FIR PREDICTORS
The transfer function of the first-order FIR predictor is
HEZ)=1-az" (5.8)

Indeed its potential is very limited. It can be applied to a constant signal in
white noise with power a;%:

x(n) =1+ b(n)

The prediction error power is

El(m)] = [HD* + 0p(1 + @) = (1 — a)’ + 03(1 + &) (5.9)
Setting to zero the derivative of E[ez(n)] with respect to the coefficient a
yields

a=—1 (5.10)

14 o7 '

The zero of the filter is on the real axis in the z-plane when o7 = 0 and
moves away from the unit circle toward the origin when the noise power is
increased.

The ratio of residual prediction error to amplified noise power is maximal
for o7 = +/2, which corresponds to a SNR ratio of —1.5 dB. Its maximum
value is about 0.2, which means that the residual prediction error power is
much smaller than the amplified noise power.

The transfer function of the second-order FIR predictor is

Hz) =1—az ' —ayz? (5.11)
It can be applied to a sinusoid in noise:

x(n) = /2 sin(nwy) + b(n)
The prediction error power is

E[e*(n)] = |H(@)I” + 03(1 + ai + a)

Hence,
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2
) sin’ wy + % .
a; = 2COS w, .
: Usin® wg + 022 + 02) (>-12)

and

1 + 07 + 2 cos?
ay = —1|1— g%+ 2COS (5.13)
(1+07)” — cos®

When the noise power vanishes, the filter zeros reach the unit circle in the
complex plane and take on the values ¢¥®. They are complex if
at +4a, < 0, which is always verified as soon as |coswy| < “/5 that is,
7T <o < 3 . Otherwise the zeros are complex when the n01se power is
small enough The noise power limit o7; is the solution of the following
third-degree equation in the variable x = 1 + O’b.

> 3 cos’ g 3 4cos® wy + cos’ wy

3 —xzcosza)0+

X +Xx

=0 (5.14)

8cos’ w, — 4 8cos’ wy — 4

This equation has only one positive and real solution for the relevant values
of the frequency w,. So, oﬁL can be calculated; a simple approximation is [2]

o7, ~ 1.33wy (o, in radians) (5.15)

The trajectory of the zeros in the complex plane when the additive noise
power varies is shown in Figure 5.2. When the noise power increases from
zero, the filter zeros move from the unit circle on a circle centered at +1 and
with radius approximately w,; beyond o,fL they move on the real axis toward
the origin.

The above results are useful for the detection of sinusoids in noise.

5.3. FORWARD AND BACKWARD PREDICTION
EQUATIONS

The linear prediction error is also called the process innovation to illustrate
the fact that new information has become available. However, when a limited
fixed number of data is handled, as in FIR or transversal filters, the oldest
data sample is discarded every time a new sample is acquired. Therefore, to
fully analyze the system evolution, one must characterize the loss of the
oldest data sample, which is achieved by backward linear prediction.

The forward linear prediction error e,(n) is

N
e,(n) = x(n) — Z a;x(n —1i)

i=1
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FIG. 5.2 Location of the zeros of a second-order FIR predictor applied to a sinu-
soid in noise with varying power.

or, in vector notation,

e, (n) =x(n) — AyX(n—1) (5.16)
The backward linear prediction error e,(n) is defined by

e,(n) = x(n — N) — ByX(n) (5.17)

where By is the vector of the backward coefficients. The two filters are
shown in Figure 5.3.

The minimization of E[ej(n)] with respect to the coefficients yields the
backward linear prediction matrix equation

RNH[‘fN} - [ ESN} (5.18)

Premultiplication by the co-identity matrix Jy, | gives

—B E,
JN+1RN+1|: lNi| =|: SN]

which, considering relation (3.57) in Chapter 3, yields

RN+1|:_J]}/BN:| = [E(’;N] (5.19)
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FIG. 5.3 Forward and backward linear prediction error filters.

Hence
Ay =JIyBy, En=En=Ey (5.20)

For a stationary input signal, forward and backward prediction error
powers are equal and the coefficients are the same, but in reverse order.
Therefore, in theory, linear prediction analysis can be performed by the
forward and backward approaches. However, it is in the transition phases
that a difference appears, as seen in the next chapter. When the AC matrix is
estimated, the best performance is achieved by combining both approaches,
which gives the forward-backward linear prediction (FBLP) technique pre-
sented in Section 9.6.

Since the forward linear prediction error filter is minimum phase, the
backward filter is maximum phase, due to (5.20).

An important property of backward linear prediction is that it provides a
set of uncorrelated signals. The errors e;(n) for successive orders 0 < i < N
are not correlated. To show this useful result, let us express the vector of
backward prediction errors in terms of the corresponding coefficients by
repeatedly applying equation (5.17):

epo(n) 1 —B
Ebl(l/l) 0 1 —Bz
e | = x| 0 0 1 —By- (5.21)

epn—1) (1) 0 0 o .- 1
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In more concise form, (5.21) is
lep(m]' = X' (m)M

To check for the correlation, let us compute the backward error covariance
matrix:

E{le,()les(n)]'} = MpRyMp (5.22)

By definition it is a symmetrical matrix. The product RyMjy is a lower
triangular matrix, because of equation (5.18). The main diagonal consists
of the successive prediction error powers E;(0 < i < N — 1). But M}y is also
a lower triangular matrix. Therefore, the product must have the same struc-
ture; since it must be symmetrical, it can only be a diagonal matrix. Hence

E{ley(m)]lep(m)]'} = diag(E;) (5.23)

and the backward prediction error sequences are uncorrelated. It can be
verified that the same reasoning cannot be applied to forward errors.

The AC matrix Ry, used in the above prediction equations contains Ry,
as shown in decomposition (5.4), and order iterative relations can be derived
for linear prediction coefficients.

5.4. ORDER ITERATIVE RELATIONS
To simplify the equations, let

r(1)

2
= r(:) =y (5.24)
)

Now, the following equation is considered, in view of deriving relations
between order N and order N — 1 linear prediction equations:

1
Ry : r?v —Ay-1 | _ E]B71 (5.25)
(hY'E o) 0 N
where
N-1
Ky =r(N) = a;n_r(N — i) (5.26)

i=1

For backward linear prediction, using (5.20), we have
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r(0) ;(r?v)’ —By. | _| O (5.27)

Multiplying both sides by the factor ky = Ky/Ey_; yields

_BN—l k?VEN—] ]
Ry, o= o (5.28)
] Ky

Subtracting (5.28) from (5.25) leads to the order N linear prediction equa-
tion, which for the coefficients implies the recursion

Ayn_ By_
AN:[ 7) '}—kN[ jll} (5.29)
and
Ey=Ey (1 —ky) (5.30)

for the prediction error power. The last row of recursion (5.29) gives the
important relation

ann :kN (531)

Finally the order N linear prediction matrix equation (5.3) can be solved
recursively by the procedure consisting of equations (5.28), (5.31), (5.29),
and (5.30) and called the Levinson—Durbin algorithm. It is given in Figure
5.4, and the corresponding FORTRAN subroutine to solve a linear system
is given in Annex 5.1. Solving a system of N linear equations when the
matrix to be inverted is Toeplitz requires N divisions and N(N + 1) multi-
plications, instead of the N{ multiplications mentioned in Section 3.4 for the
triangular factorization.

An alternative approach to compute the scalars k; is to use the cross-
correlation variables /4y defined by

th = E[x(n)e,y(n — j)] (5.32)

where e,y(n) is the output of the forward prediction error filter having N
coefficients [3]. As mentioned in Section 2.5, the sequence /;y is the impulse
response of the generating filter when x(#) is an order N AR signal. From
the definition (5.16) for e,y(n), the variables h;y are expressed by

N
iy = r(j) = > awr(i +j)

i=1
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FIG. 54 The Levinson—Durbin algorithm for solving the linear prediction
equation.

or, in vector notation,

hiy = r(j) — (rn) Ay (5.33)
where

) =[G+ 1D (i +2).....r( + N)]

Clearly, the above definition leads to

hoy = Ey (5.34)
and
heww-n _ hemw-y
ko = ¢ - (5.35)
N En_y hov—1y
A recursion can be derived from the prediction coefficient recursion (5.29) as
follows:
By = iy 1) + k()| B! (5.36)
JN — "H(N=1) NN —1 .
Developing the second term on the right gives
By_
(”jN)t|: ’ 11} = —hej-mw-n (5.37)
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Thus

hiy = hiov-1) = knhej-mw-1) (5.38)
which yields, as a particular case if we take relation (5.35) into account,
hon = hooy—1y(1 — ky) = Ey (5.39)

Now a complete algorithm is available to compute the coefficients k;. It is
based entirely on the variables /; and consists of equations (5.35) and (5.38).
The FORTRAN subroutine is given in Annex 5.2. The initial conditions are
given by definition (5.33):

hio = 1(j) (5.40)

According to the /;y definition (5.32) and the basic decorrelation property
of linear prediction, the following equations hold:

hy =0, —i<j< —1 (5.41)

If N coefficients k; have to be computed, the indexes of the variables /;
involved are in the range (—N, N — 1), as can be seen from equations (5.35)
and (5.38). The multiplication count is about N(N — 1).

An additional property of the above algorithm is that the variables 4;; are
bounded, which is useful for fixed-point implementation. Considering the
definition (5.32), the cross-correlation inequality (3.10) of Chapter 3 yields

hiv| = |E[x(me(n — )]l < 3(r(0) + Ey)
Since Ey < r(0) for all N,
| < r(0) (5.42)

The variables 4y are bounded in magnitude by the signal power.

The number of operations needed in the two methods presented above to
compute the k; coefficients is close to N>. However, it is possible to improve
that count by a factor 2, using second-order recursions.

5.5. THE SPLIT LEVINSON ALGORITHM
The minimization of the quantity

E{[x(n) — PxX(n = DI + [x(n = 1 = N) = Py X(n = DF)
with respect to the elements of the vector Py yields

2R Py =1y + 1y

or
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Py =4(Ay + By) (5.43)

which reflects the fact that the coefficients P, are the symmetrical part of the
prediction coefficients.
The associated matrix equation is

1 r0) () r(N+1) 1 Epy
Rysa| —2Py | = % Ry " —2Py | = 0
1 N+ () r0) 1 E,y
(5.44)
with
K
E,n =Ex+ Ky = EN<1 + g“) = Ex(1+kyy1) (5.45)
N

This equation can be exploited to compute the reflection coefficients recur-
sively, with the help of the matrix equations

1 Eyv-1y
—2Py_; | _ 0
Ry.» | =1 B (5.46)
.0 | | K
and
T o0 ] [ K’
1 E
_ | Erav-p
Ryeal op 1= "o (5.47)
L1 ] LEw-y
with

K =r(N+1)+r(1) = 2[r(N), ..., r(2Q)]Py_;

and finally
K//
1 Epn-2)
RN+2 _2PN—2 = O (548)
1 Epn-2)
0 K’
with

K" =r(1)+r(N) =2[r(?2), ..., (N — D]Py_,

By recursion, the order two recursion is obtained as
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0

| ! 0 1
_ Jo
—opy | = 2’1’N4 + 211) _Eent ope | (5.49)
1 . - 1N—l Eyn-2) 1

Thus, the coefficients Py can be computed from Py_; and Py_,, with the
help of the error power variables E,y_;) and E,y_,). The reflection coeffi-
cient ky itself can also be computed recursively, combining recursion (5.30)
for prediction error powers with equation (5.45), which leads to

D (1 k(1 ko) (5.50)
p(N-2)
The initialization is
Pu Z%Zkl’ 21712:21722:% (5.51)
The error power is computed directly, according to its definition
N
E,y =1(0) =2 r(i)piy + r(N + 1) (5.52)

i=1
The main advantage of this method is the gain in operation count by a
factor close to two, with respect to the classical Levinson algorithm, because
of the symmetry of the coefficients (p;v = p(v11-yn). The resulting algo-
rithm consists of equations (5.49), (5.50), and (5.52) and it is called the
split Levinson algorithm.

It is worth pointing out that the antisymmetric part of the prediction
coefficients can be processed in a similar manner.

The order recursions can be associated with a particular structure, the
lattice prediction filter.

5.6. THE LATTICE LINEAR PREDICTION FILTER

The coefficients k; establish direct relations between forward and backward
prediction errors for consecutive orders. From the definition of the order N
forward prediction error e,y(n), we have

ean(n) = x(n) — AyX(n — 1) (5.53)
and the coefficient recursion (5.29), we derive
ean(n) = e,y_1)(n) — ky[—By_1, 11X (n — 1) (5.54)

The order N backward prediction error ey (n) is
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epn(n) = x(n — N) — By X (n) (5.55)
For order N — 1,

N—1

epyn—n(n) =x(n+1-N)— Z bin—nXx(n+1—1i)=[-By_;, 11X (n)
- (5.56)
Therefore, the prediction errors can be rewritten as
en(n) = ea(Nfl)(n) - kNeb(N—l)(n -1) (5.57)
and
epn(n) = eyy_1y(n — 1) — kye,n_n(n) (5.58)

The corresponding structure is shown in Figure 5.5; it is called a lattice filter
section, and a complete FIR filter of order N is realized by cascading N such
sections. Indeed, to start, e;o(n) = x(n). Now the lattice coefficients k; can be
further characterized. Consider the cross-correlation

Eleqv(mepy(n — D] = r(N + 1) — Byry — AxJyr'y + AyRyBy — (5.59)
Because of the backward prediction equation

RyBy =y = Jyr' (5.60)
the sum of the last two terms in the above cross-correlation is zero. Hence

Eleav(megy(n — 1] = KN + 1) = Byry = Ky

and
ky = Ele,n-1y(mepn—1y(n — 1)] (5.61)
Eyn_
ean-1 (1) ean(n)
! @
KN
ebN‘I (n] - - ebN(n}
— 2 )

FIG. 5.5 Lattice linear prediction filter section.
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The lattice coefficients represent a normalized cross-correlation of for-
ward and backward prediction errors. They are often called the PARCOR
coefficients [4]. Due to wave propagation analogy, they are also called the
reflection coefficients.

The lattice coefficient ky is related to the N zeros z; of the order N FIR
prediction error filter, whose transfer function is

N N
Hy(@) =1-Y ayz"' =[]0 -2z (5.62)
i=1 i=1
Since ky = ayy, we have
N
ky = (DY = (5.63)
i=1

From the filter linear phase property, we know that |z;| < 1, which yields
eyl <1 (5.64)

Conversely, using (5.29), it can be shown iteratively that, if the lattice coef-
ficient absolute values are bounded by unity, then the prediction error filter
has all its roots inside the unit circle and, thus, it is minimum phase.
Therefore, it is very easy to check for the minimum phase property of a
lattice FIR filter. Just check that the magnitude of the lattice coefficients
does not exceed unity.

The correspondence between PARCOR and the transversal filter coeffi-
cients is provided by recursion (5.29). In order to get the set of
ay(1 < i < N) from the set of k;(1 < i < N), we need to iterate the recur-
sion N times with increasing indexes. To get the k; from the a;y, we must
proceed in the reverse order and calculate the intermediate coefficients
ai(N—1>i > 1;j < i) by the following expression:

1
Aji—1) = 1_—1{2[% + kia(i—j)i]a ki = a; (5.65)
i
The procedure is stopped if k; = 1, which means that the signal consists of i

sinusoids without additive noise.
Two additional relations are worth pointing out:

N N

1= a; =[]0 =k (5.66)
i=1 i=1
N

H0) =0y =Y ki (5.67)
i=1
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A set of interesting properties of the transversal filter coefficients can be
deduced from the magnitude limitation of the PARCOR coefficients [5]. For
example,

N! N-1

< m <2 (5.68)

lain|

which can be useful for coefficient scaling in fixed-point implementation and

leads to
N
> lawl <2V -1 (5.69)
i=1
and
2n)!
1AVl = AyAy < %— 1 (5.70)
(n!)
This bound is reached for the two theoretical extreme cases where k; = —1

and k; = (—1)"'(1 <i < N).
The results we have obtained in linear prediction now allow us to com-
plete our discussion on AC matrices and, particularly, their inverses.

5.7. THE INVERSE AC MATRIX

When computing the inverse of a matrix, first compute the determinant. The
linear prediction matrix equation is

-1
Lo]_[r0) (3 Ey
EAREEANE
The first row yields
det Ry
=————F 5.72
det RN+1 N ( )

which, using the Levinson recursions, leads to

N-1
det Ry = [r(O)]" [ J(1 =&)Y (5.73)
i=1
To exploit further equation (5.59), let us denote by V/; the column vectors of
the inverse matrix Ry
Considering the forward and backward linear prediction equations, we
can write the vectors V| and Vy, as
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1 1 1 | =By
V= Ve = — 5.74
1 EN |:_AN] N+1 EN |: 1 ] ( )

Thus, the prediction coefficients show up directly in the inverse AC matrix,
which can be completely expressed in terms of these coefficients.
Let us consider the 2(N + 1) x (N + 1) rectangular matrix M 4 defined by

1 —a|y —dyny —AaynN 0 0 0
0 1 —aiN ot TAN-npN  —AanN 0 0
My =
0 0 0 s 1 —aiy - —dAdyn 0
N+1 N+1 (5.75)

The prediction equation (5.3) and relations (2.64) and (2.72) for AR signals
yield the equality

M Ryyi1yM 4 = Exlyy, (5.76)

where Ry is the AC matrix of the order N AR signal. Pre- and post-
multiplying by M, and M/; respectively, gives
(M M) Ry 1) (M My) = (M4 MEy (5.77)

The expression of the matrix RX;IH is obtained by partitioning M 4 into two
square (N + 1) x (N + 1) matrices M 4, and M 4»,

M;l = [Minv Mﬁz] (5.78)
and taking into account the special properties of the triangular matrices
involved

_ 1
Ry = E_N(MillMAl — M M) (5.79)

This expression shows that the inverse AC matrix is doubly symmetric. If
the signal is AR with order less than N, then RJ_VLI is Toeplitz in the center,
but edge effects appear in the upper left and lower right corners. A simple
example is given in Section 3.4.

Decomposition (5.67) can be extended to matrices which are not doubly
symmetric. In that case, the matrices Mz, and Mg, of the backward predic-
tion coefficients are involved, and the equation becomes

_ 1
Ry} :E—N(MffllMBl — MpMp) (5.79a)
a
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An alternative decomposition of Rp]H can be derived from the cross-
correlation properties of data and error sequences.
Since the error signal ey(n) is not correlated with the input data

x(n—1),...,x(n— N), the sequences ey_;(n — i), 0 < i < N, are not corre-
lated. In vector form they are written
en(n) 1 - —Ay . x(n)
€N71(7_ 1) _ O 1 o ._ANfl x(n:— 1) (5.80)
eo(n'—N) 0 0 1 x(n;N)

The covariance matrix is the diagonal matrix of the prediction errors. After
algebraic manipulations we have

o1 0 e 07 .
—aiy 1 0 E(,)v E?l 8
RELA: —a)N —dy(N-1) - 0 N1
0 0 P
| —any  —aw-nw-n - 1
1 —ay —daN tee —dnn
0 1 —dyN-1) 0 TaAyN-1)N-1)
x| . . . ) (5.81)
0 0 1

This is the triangular Cholesky decomposition of the inverse AC matrix.
It can also be obtained by considering the backward prediction errors,
which are also uncorrelated, as shown in Section 5.3.

The important point in this section is that the inverse AC matrix is
completely represented by the forward prediction error power and the pre-
diction coefficients. Therefore, LS algorithms which implement Ry' need
not manipulate that matrix, but need only calculate the forward prediction
error power and the forward and backward prediction coefficients. This is
the essence of FLS algorithms.

5.8. THE NOTCH FILTER AND ITS APPROXIMATION

The ideal predictor is the filter which cancels the predictable components in
the signal without amplifying the unpredictable ones. That favorable situa-
tion occurs with sinusoids in white noise, and the ideal filter is the notch
filter with frequency response
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M
Hy(@)=1-) 80— ) (5.82)
i=1

where §(x) is the Dirac distribution and the w;, 1 < i < M, are the frequen-
cies of the sinusoids. Clearly, such a filter completely cancels the sinusoids
and does not amplify the input white noise.

An arbitrarily close realization Hy(w) of the ideal filter is achieved by

H(l ezl
Hy(z) = —2= (5.83)

]_[(l — (1 —g)es®iz™h)
i=1

where the positive scalar ¢ is made arbitrarily small [6]. The frequency
response of a second-order notch filter is shown in Figure 5.6, with the
location of poles and zeros in the z-plane.

The notch filter cannot be realized by an FIR predictor. However, it can
be approximated by developing in series the factors in the denominator of
Hy(z), which yields

=l Z(P 7y (5.84)

This approach is used to figure out the location in the z-plane of the zeros
and poles of linear prediction filters.

YE

FIG. 5.6 The notch filter response, zeros and poles.
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5.9. ZEROS OF FIR PREDICTION ERROR FILTERS
The first-order notch filter Hy;(z) is adequate to handle zero frequency
signals:

Hyi() = (5.85)

— (1 —g)z7!
A simple Tchebycheff FIR approximation is
-z “I\N
Hz)y=—F—[1—-(b
O =gt~ ¢
where b is a positive real constant. Now, a realizable filter is obtained for
b =1 — ¢, because

HZ =1 -z +bz" 4. 4 V17N (5.86)

Now constant b can be calculated to minimize the prediction error power.
For a zero frequency signal s(n) of unit power, a white input noise with
power g}, the output power of the filter with transfer function H(z) given by

(5.74) is
14!

E[é*(n)] = 207 ey (5.87)
The minimum is reached by setting to zero the derivative with respect to b;
thus

- | 1/2(N—1)
b= 5.88
2N — 1+ (2N — 2)b} (5.88)
For b reasonably close to unity the following approximation is valid:
T 1/2(N—-1)
b~ = 3} (5.89)

According to (5.86) the zeros of the filter which approximates the pre-
diction error filter are located at +1 and bejzﬂi/N, 1 <i < N-1, in the
complex plane. And the circle radius » does not depend on the noise power.
For large N, b comes close to unity, and estimate (5.89) is all the better.
Figure 5.7(a) shows true and estimated zeros for a 12-order prediction error
filter.

A refinement in the above procedure is to replace 1 —z~' by 1 —az™' in
H(z) and optimize the scalar a because, in the prediction of noisy signals, the
filter zeros are close to but not on the unit circle, as pointed out earlier,
particularly in Section 5.2.

1
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FIG.5.7 Zeros of a 12-order predictor applied to (a) a zero frequency signal and (b)
a 5 frequency sinusoid.

The above approach can be extended to estimate the prediction error
filter zeros when the input signal consists of M real sinusoids of equal
amplitude and uniformly distributed on the frequency axis. The approxi-
mating transfer function is

| —zM N N
If N =k 2M, for integer k, the output error power is
1+b2N—2M
2 2
the minimization procedure leads to
M 1/2(N=2M)
b~ [2]\’—3/\/[] (592

Equation (5.89) corresponds to the above expression when M = % Note
that the zero circle radius b depends on the number N — 2M, which can be
viewed as the number of free or uncommitted zeros in the filter; the mission
of these zeros is to bring down the amplification of the input noise power. If
the noise is not flat, they are no longer on a circle within the unit circle.

The validity of the above derivation might look rather restricted, since
the sinusoidal frequencies have to be uniformly distributed and the filter
order N must be a multiple of the number of sinusoids M. Expression (5.92)
remains a reasonably good approximation of the zero modulus as soon as
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N > 2M. For example, the true and estimated zeros of an order 12 linear
prediction error filter, applied to the sinusoid with frequency 5, are shown
in Figure 5.7(b).

When the sinusoidal frequencies are arbitrarily distributed on the fre-
quency, the output noise power is increased with respect to the uniform
case and the zeros in excess of 2M come closer to the unit circle center.
Therefore expression (5.92) may be regarded as an estimation of the upper
bound of the distance of the zeros in excess of 2M to the center of the unit
circle. That result is useful for the retrieval of sinusoids in noise [7].

The foregoing results provide useful additional information about the
magnitude of the PARCOR coefficients.

When the PARCOR coefficients k; are calculated iteratively, their mag-
nitudes grow, monotonically or not, up to a maximum value which, because
of equation (5.53), corresponds to the prediction filter order best fitted to the
signal model. Beyond, the k; decrease in magnitude, due to the presence of
the zeros in excess.

If the signal consists of M real sinusoids, then

hkyl = bV M N > 2M (5.93)

Substituting (5.80) into (5.81) gives

M 12
~|———m = .
k, <2N — 3M> N = 2M (5.94)

Equation (5.94) is a decreasing law which can be extended to any signal and
considered as an upper bound estimate for the lattice coefficient magnitudes
for predictor orders exceeding the signal model order. In Figure 5.8 true
lattice coefficients are compared with estimates for sinusoids at freqeuncies 5
and 5.

The magnitude of the maximum PARCOR coefficient is related to the
input SNR. The relation is simple for M sinusoids uniformly distributed on
the frequency axis, because the order 2M prediction error filter is

H(z)=1-pMM (5.95)
The optimum value of b is derived from the prediction error power as
before, so

SNR
M _ _
b = k| = T SNR (5.96)

The approach taken to locate the predictor zeros can also be applied to
the poles of an IIR filter.
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FIG. 5.8 Lattice coefficients vs. predictor order for sinusoids.

5.10. POLES OF IIR PREDICTION ERROR FILTERS

The transfer function of a purely recursive IIR filter of order N is

1
N

1— Z [Z_i

i=1

H(z) = (5.97)

Considering a zero frequency signal in noise, to begin with, we can obtain a
Tchebycheff approximation of the prediction error filter 1 —az™' by the
expression

1 —az"! 1

—a D T T T aV N (598)

H(z) = 7

where 0 <« a < 1. Now the prediction error power is

E[e(m)] = HD) + o} (i h?)
i=0

where the /; is the filter impulse response. A simple approximation is
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2 2, 2
Ele“(m] ~ [H(D)|” + o}, 1 — 2N+

(5.99)

The parameter a is obtained by setting to zero the derivative of the predic-
tion error power. However, a simple expression is not easily obtained.

Two different situations must be considered separately, according to the
noise power o;. For small noise power

A 1-—a ' 1 af| 144 | 1 1
a\1—ad" 1) 7 "N+ 13| 1=2VD | T N+1(1—a)

and

ax1—o (5.100)

On the other hand, for large noise power, simple approximations are

0 1—a \? 0 1+ d°

which yield

1

N—— 5.101
g (5.101)

In any case, for a zero frequency signal the poles of the IIR filter are
uniformly distributed in the complex plane on a circle whose radius depends
on the SNR. We can rewrite H(z) as

1 2w
HO) =73 S TN
[T — ae/™z=1)

n=1

(5.102)

There is no pole at the signal frequency and, in some sense, the IIR predictor
operates by default.

The prediction gain is limited. Since |a| < 1 for stability reasons, we
derive a simple bound E.;, for the prediction power from (5.99) and
(5.98), neglecting the input noise:

1

min

The above derivations can be extended to signals made of sinusoids in noise.
The results show, as above, that the purely recursive IIR predictors are not
as efficient as their FIR counterparts.
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5.11. GRADIENT ADAPTIVE PREDICTORS

The gradient techniques described in the previous chapter can be applied to
prediction filters. A second-order FIR filter is taken as an example in
Section 4.4. The reference signal is the input signal itself, which simplifies
some expressions, such as coefficient and internal data word-length estima-
tions (4.61) and (4.65) in Chapter 4, which in linear prediction become

bc ~ 10g2(1—e) + 10g2(Gp) + 1OgZ(amax) (5104)
and
b ~ 2+ Llog,(z,) 4 10g5(G,) (5.105)

where Gﬁ is the prediction gain, defined, according to equation (4.9) in
Chapter 4, as the input signal-to-prediction-error power ratio. The maxi-
mum magnitude of the coefficients, d,,,,, is bounded by 2V~! according to
inequality (5.68).

The purely recursive IR prediction error filter in Figure 5.9 is a good
illustration of adaptive IIR filters. Its equations are

en+1)=x(n+1)— B (n)En)

(5.106)
B(n+ 1) = B(n) + de(n + 1)E(n)

with
B'n)=[b/(n),...,bxm)], E'(n)=le(n),...,en+1—N)]

_+_ ™
x(n) ;i— eln)
-
b](n) Z
O d=1

-1
b2(ﬂ) Z

_J[_

FIG. 5.9 Purely recursive IIR prediction filter.
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The coefficient updating equation can be rewritten as
B(n+1)=[Iy — SE(n)E'(n)]B(n) + éx(n + 1)E(n) (5.107)

The steady-state position is reached when the error e(n + 1) is no longer
correlated with the elements of the error vctor; the filter tends to decorrelate
the error sequence. The steady-state coefficient vector B, is

By, = (E[E()E'(n)]) "' E[x(n + DE(n)] (5.108)
and the error covariance matrix should be close to a diagonal matrix:
E[E(n)E'(n)] ~ o1y (5.109)
The output power is
E[e*(n+ 1)] = E[x*(n + 1)] — B. E[E(n)E'(n)] By, (5.110)
which yields the prediction gain
o2
Gy =—3~1+B B, (5.111)
08

Therefore the coefficients should take as large values as possible.

Note that, in practice, a local instability phenomenon can occur with
recursive gradient predictors [8]. As indicated in the previous section, the
additive input noise keeps the poles inside the unit circle. If that noise is
small enough, in a gradient scheme with given step J, the poles jump over the
unit circle. The filter becomes unstable, which can be interpreted as the
addition to the filter input of a spurious sinusoidal component, exponen-
tially growing in magnitude and at the frequency of the pole. The adaptation
process takes that component into account, reacts exponentially as well, and
the pole is pushed back in the unit circle, which eliminates the above spur-
ious component. Hence the local instability, which can be prevented by the
introduction of a leakage factor as in Section 4.6, which yields the coefficient
updating equation

B(n+1)=(1 — y)B(n) + de(n + 1)E(n) (5.112)

The bound on the adaptation step size § can be determined, as in Section
4.2, by considering the a posteriori error

e(n+1)=e(n+ D[l —SE' (n)E(n)] (5.113)
which leads to the bound

2
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MARCEL

Since the output error power is at most equal to the input signal power,
the bound is the same as for the FIR structure. The initial time constant is
also about the same, if the step size is small enough, due to the following
approximation, which is valid for small coefficient magnitudes:

S 1—sz—‘ (5.115)

1+sz‘1 i=
i=1

As an illustration, the trajectories of the six poles of a purely recursive
IIR prediction error filter applied to a sinusoid with frequency 23” are
shown in Figure 5.10. After the initial phase, there are no poles at fre-
quencies +Z~.

The lattice structure presented in Section 5.6 can also be implemented
in a gradient adaptive prediction error filter, as shown in Figure 5.11 for
the FIR case. Several criteria can be used to update the coefficient k;. A
simple one is the minimization of the sum of forward and backward
prediction error powers at each stage. The derivation of equations
(5.57) and (5.58) with respect to the coefficients leads to the updating
relations (1 <i < N)

+J

——

(L.

+1

!

FIG. 5.10 Pole trajectories of a gradient adaptive IIR predictor applied to a sinu-
soid at frequency 23%.
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- eb2(n) eb3(n}

2_1

FIG. 5.11 FIR lattice prediction error filter.

1)
kin+1) = k(n) + E[eai(n + Depi—1y(n) + epi(n + Dey_ry(n + 1)]
(5.116)

which, from (5.57) and (5.58), can be rewritten as

e%(i—l)(”) + 33(;'—1)(” + 1):|

ki(n +1) = ki(n) + 5[€a(i1)(n + Deyi—1)(n) — ki(n) 5

(5.117)

Clearly, the steady-state solution k;,, agrees with the PARCOR coefficient
definition (5.61).

The performance of the lattice gradient algorithm can be assessed
through the methods developed in Chapter 4, and comparisons can be
made with the transversal FIR structure, including computation accuracies
[9, 10]. However, the lattice filter is made of sections which have to be
analyzed in turn.

The coefficient updating for the first lattice section, according to Figure
5.11, is

2 2
kl(n+1):k1(n)+8|:x(n+l)x(n)—kl(n)w} (5.118)

For comparison, the updating equation of the coefficient of the first-order
FIR filter can be written as

a(n+ 1) = a(n) + §[x(n + 1)x(n) — a(n)xz(n)] (5.119)

The only difference resides in the better power estimation performed by the
last term on the right side of (5.118), and it can be assumed that the first
lattice section performs like a first-order FIR prediction error filter, which
leads to the residual error
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Eir=( —k%)af,(l +ga§> (5.120)

To assess the complete lattice prediction error filter, we now consider the
subsequent sections. However, the adaptation step sizes are adjusted in these
sections to reflect the decrease in signal powers. To make the time constant
homogeneous, the adaptation step sizes in different sections are made inver-
sely proportional to the input signal powers.

In such conditions, the first section is crucial for global performance and
accuracy requirements. For example, the first section is the major contribu-
tor to the filter excess output noise power, and E; can be taken as the total
lattice filter residual error.

Thus, transversal and lattice filters have the same excess output noise
power if the following equality holds:

N

1) 1)
o [ 10 =k Nox = (1 = kor 500
i=1

Therefore, the lattice gradient filter is attractive, under the above hypoth-
eses, if

N

— <N (5.121)
[z

that is, when the system gain is small and when the first section is very
efficient, which can be true in linear prediction of speech, for example.
Combinations of lattice and transversal adaptive filters can be envisaged,
and the above results suggest cascading a lattice section and a transversal
filter [11].

As for computational accuracy, the coefficient magnitudes of lattice fil-
ters are bounded by unity. Therefore, the coefficient word length for the
lattice prediction error filter can be estimated by

be ~ logy(t,) + logy(G)) (5.122)

which can be appreciably smaller than estimate (5.104) for the transversal
counterpart.

Naturally, simplified adaptive approaches, like LAV and sign algorithms,
can also be used in linear prediction with any structure.
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5.12. ADAPTIVE LINEAR PREDICTION OF
SINUSOIDS

The AC matrix of order N of a real sinusoid with unit power is given by the
following expression, as mentioned ecarlier, for example in Section 3.7.

1 Cos w ... cos(N — 1w
cosw 1., ... cos(N —2w
Ry = . ST . (5.123)
cos(N — Do cos(N =2 ... 1
For w = nk/N (h integer), the vector
1 , .
Ulw) = ——[1,e7°, ..., e 7W-Dey
(@) JN[ ]
is a unitary eigenvector, as is U(—w), and the corresponding eigenvalues are
N
A=Ay = > (5.124)
If a white noise with power o7 is added, the eigenvalues become
N
Ai=A2=?+o£; rv=0r 3<i<N) (5.125)
and the eigenvectors remain unchanged.
As shown in Section 3.7, the matrix Ry is diagonalized as
Ry=M""'AM (5.1206)

where the columns of M~ are the two eigenvectors U(w) and U(—w),
completed by a set of orthogonal eigenvectors

Now, according to the linear prediction matrix equation (5.3), the vector
of the transversal prediction coefficients of order N is

Ay = Ry'[cos w, cos 2w, ..., cos N’ (5.127)

As shown in Section 3.6, the correlation vector can be expressed in terms of
the eigenvectors

I )
cos 2w N ) )

. =§[€ TU(w) + ¢’ U(—w)] (5.128)
cos Nw

Substituting (5.128) into (5.127) and using (5.126) with the orthogonality
property
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1
Ay=—— [cos w, cos2w, ..., cos Nw| (5.129)
N/2+a

If @ is not an integer multiple of /N, the above results are not strictly
applicable. However, for 7/N <w <7 — /N, the eigenvalues remain
close to each other as indicated by equation (3.105), and the above expres-
sion can be retained as a reasonably close approximation of the prediction
coefficients. In fact, the results given in this section are an alternative and a
complement to those of Section 5.9.

If, instead of a single sinusoid, a set of M sinusoids is considered, and if
they all have unit power and are separated in frequency by more than /N,
then the eigenvalues are approximately given by:

MANR240r, 1 <i<2M
2/ b (5.130)
rAi=o0p, 2M+1<i<N
and the linear prediction coefficient vector can be approximated by
COos w;
cos 2w;
4 5.131
N N/2 N/2+ o2 Z ( )
cos N w;

An adaptive FIR predictor provides this vector, on average and in its steady
state. As concerns the learning curve, as indicated in Section (4.4), the time
constant associated with the eigenvalue A; is

T, = 1/8M, (5.132)

For a single sinusoid in white noise, the two modes which form the coeffi-
cients have the same time constant:

1
R 5.133
NERESN2 o) (5.133)

which is also the time constant of the coefficients themselves and, hence, of
the prediction error.

It is worth pointing out that, according to the above results, the time
constant for a sinusoid without noise is N /2 times smaller than that of a
white noise with the same power. However, when the frequency of the
sinusoid approaches the limits of the frequency domain, i.e., 0 or &, one
of the two eigenvalues approaches zero and the corresponding time constant
grows to infinity. The same applies to the case of a signal consisting of M
sinusoids. More generally, the above properties stem from the fact that the
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coefficients of the adaptive filter move in the signal subspace, as is clearly
shown by updating equation (4.3) for the gradient algorithm.

For the sake of completeness, similar results will now be derived for
complex sinusoids, for which a different approach will be used.

Let us consider the case of a single cisoid in noise:

x(n) = e’ + b(n) (5.134)
with b(n) a white noise with power o7. The AC matrix is given by

Ry =oily + V| Vi (5.135)
where

Vi=11,e", e eﬂN*l)‘”]

The inverse matrix can be calculated with the help of the matrix inversion
lemma, presented in detail in Section 6.2 below,

Iy Iyv-[1 - 1o
R,_Vlzlg—]\z'Vl[QVfV1+l} Vi=
Oy Op O O
and, in concise form
_ 1 04
Ry == |1y — 5.136
N o} |: N o7 + N ( )

The linear prediction coefficients are obtained through the minimization of
the cost function

J = E[lx(n+ 1) — (A)' X ()] (5.137)
which, as shown in Section 1.4, yields

A = Ry E[%(n + )X (n)] (5.138)

Since it is readily verified that

E[x(n+ DX ()] = Vie (5.139)
the final expression is

= m[ww, e . e Ny (5.140)

The same procedure can be applied to a signal made of two sinusoids in
noise:

x1(n) = e + e/ 4 b(n) (5.141)

with the AC matrix

brrrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



Ry =oily + V\Vi+ V) V} (5.142)

The matrix inversion lemma can be invoked again to obtain

R =Ry — RV IVARY'V, + 117 VARY (5.143)
and, since
E[%(n+ DX, (n)] = Vie 7™ + Vye 7 (5.144)

the prediction coefficient vector is
Ay = RT'[Vie7™ 4 Vye 7] (5.145)

This is a complicated expression. In the special case when V, = V], ie.,
when w, = —w; = w, and w is a multiple of 7/N, it is readily verified that
expression (5.129) is obtained.

The approach can be extended to signals made of M sinusoids in noise, to
yield an exact solution for the prediction coefficient vector.

5.13. LINEAR PREDICTION AND HARMONIC
DECOMPOSITION

Two different representations of a signal given by the first N 4+ 1 terms
[7(0), (1), ..., r(N)] of its ACF have been obtained. The harmonic decom-
position presented in Section 2.11 corresponds to the modeling by a set of
sinusoids and is also called composite sinusoidal modeling (CSM); it yields
the following expression for the signal spectrum S(w) according to relation
(2.127) of Chapter 2:
N/2
S@) =Y _1Si’[8(0 — @) + 8w + wp)] (5.146)
k=1
Linear prediction provides a representation of the signal spectrum by
2
a@

S(w) = -
‘1 Y a7
i=1

. (5.147)

Relations between these two approaches can be established by considering
the decomposition of the z-transfer function of the prediction error filter
into two parts with symmetric and antisymmetric coefficients, which is the
line spectrum pair (LSP) representation [12].

The order recursion (5.29) is expressed in terms of z-polynomials by

1 —AyGE) =1 Ay 1(2) —kyz M1 = Ay (7] (5.148)
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where
N .
=A@ =1-> anz" (5.149)
i=1

Let us consider now the order N 4+ 1 and denote by Py(z) the polynomial
obtained when ky, = 1:

Py(z) =1— Ay —z V[ — 4y(z7h) (5.150)
Let Qy(z) be the polynomial obtained when ky,; = —1:
On(2) =1—Ay@) +z VI — 4y (5.151)

Clearly, this is a decomposition of the polynomial (5.114):
1 — Ay(z) = [Py(2) + On(2)] (5.152)

and %PN(Z) and %Q ~(2) are polynomials with antisymmetric and symmetric
coefficients, respectively.

Since ky,; = %£1, due to the results in Section 5.6 and equation (5.63),
Py(z) and Qy(z) have all their zeros on the unit circle. Furthermore, if N is
even, it is readily verified that Py(1) = 0 = Qn(—1). Therefore, the follow-
ing factorization is obtained:

N/2
Py()=(1—zH]](1 = 2cos@)z"" +z7)
i=1

N/2

On(@) =1 +zH]]( = 2cos(@)z"" +27%)
i=1

(5.153)

The two sets of parameters 6; and w;,(1 < i < N) are called the LSP para-
meters.

If zy = e/ is a zero of the polynomial 1 — A(z) on the unit circle, it is
also a zero of Py(z) and Qy(z). Now if this zero moves inside the unit circle,
the corresponding zeros of Py(z) and Qy(z) move on the unit circle in
opposite directions from w,. A necessary and sufficient condition for the
polynomial 1 — A(z) to be minimum phase is that the zeros of Py(z) and
Qy(z) be simple and alternate on the unit circle [13].

The above approach provides a realization structure for the prediction
error filter in Figure 5.12. The z-transfer functions F(z) and G(z) are the
linear phase factors in (5.153). This structure is amenable to implementation
as a cascade of second-order sections, and the overall minimum phase prop-
erty is checked by observing the alternation of the z~' coefficients. It can be
used for predictors with poles and zeros [14].
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x(n)-x(n-1} F(Z)

x(n)+x{n-1) G(Z)

FIG. 5.12 Line pair spectrum predictor.

Equations (5.153) show that the LSP parameters 6, and w; are obtained
by harmonic decomposition of the sequences x(n)— x(n—1) and
x(n) + x(n — 1). This is an interesting link beween harmonic decomposition,
or CSM, and linear prediction.

So far, the linear prediction problem has been solved using the ACF
function of the signal. However, it is also possible, and in some situations
necessary, to find the prediction coefficients directly from the signal samples.

5.14. ITERATIVE DETERMINATION OF THE
RECURRENCE COEFFICIENTS OF A
PREDICTABLE SIGNAL

A predictable signal of order p, by definition satisfies the recurrence relation
p

xX(n) =Y apx(n—i) (5.154)
i=1

Considering this equation for p different values of the index n leads to a
system of p equations and p unknowns, which can be solved for the p
prediction coefficients. In matrix form,

xp)  xp—=1 - x(D) | @ x(p+1)
xp+1)  xp)  X(2) || @ x(p +2)

(5.155)

Wp—1) x2p-2 - ] |a *Cp)

An efficient solution is provided by an iterative technique consisting of pth-
order recursions. The approach is as follows. Assume that the system has
been solved at order N < p. A set of N prediction coefficients has been
found satisfying
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x(p) x(p—1)
x(p+1) x(p)

xp+N-1) x(p+N-2)
In a more concise form,

RNAN :JXN([?"FN)

where J is the coidentity matrix

0 ... 1
J = |: f:|§XN(P+N)=

... 0

xXp+1-=N) || an x(p+1)
X(P+2_N) arn _ x(p+2)
() aw]  Lxp+m
(5.156)
(5.157)
x(p+ N)
xp+N-1)
(p+1)

and Ry designates the N x N matrix of the input data involved in the

system of equations (5.156).

Referring to the forward linear prediction matrix equation, one can write

(Y
1 0
RN+1 _AN = :

where
N
ey =x(p) — Zawx(l’ — )
i=1

and, in concise form,

(5.158)

(5.159)

ex = x(p) — AyXy(p — 1) = x(p) — Xi(p + N)J(RY ) Xy(p — 1)

The same procedure can be applied to the backward linear prediction, and a
coefficient vector By can be computed by

byn x(p — N)
by_1n x(p+1-N)
Ry . = )
bin x(p—1)

=JXy(p -1

(5.160)

From the definition of Ry, the following equation is obtained:
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Ry [ _fN} - (5.161)
Y

The presence of ey in the right-hand side comes from the equation

X(p) = Xi(p + N)By = x(p) = Xiy(p + N)RY JXn(p — 1)
Now, since

(RW' =JR7YJ,  JI=1Iy (5.162)
it is clear that

ey = X(p) = Xx(p + N)By = x(p) — Xy(p — DAy

At this stage, the prediction coefficient vectors Ay, ; and By, can be
readily obtained, starting from the equation

en
1 0
Rypp| —Ay | =| (5.163)
0 0
€uN
where
ean =xX(p+N+1)—Xy(p+N)Ay (5.164)

As concerns backward prediction, the equation is

hN
0 0
1 0
eN
where
ey =x(p— N —1)— Xn(p — 1By (5.165)
In fact, two different decompositions of Ry,, are exploited, namely
Ron — |: Ryi1 JXNn(p — 1):|
N+2 — t
Xyiip+N+1) x(p)

_ *(p) Xiyap = 1)
JXN+]([)+N+1) RN+1
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In order to get the equations for linear prediction at order N + 1, it is
necessary to get rid of the last element in the right-hand side of equation
(5.163) and the first element in the right-hand side of equation (5.164). This
can be accomplished, assuming ey # 0, by the substitution leading to the
matrix equation

B €aN€hN 7]
ey ———
1 0 N
Ryoo| | —Ay | =S¥ | By | | = 0 (5.166)
eN
0 1
-~ 0 -
and, for backward prediction
0
0 1
Ryoo| | =By | =S| —ay | | = (5.167)
en 0
1 1 €aNCehN
ey ———
ey

Through direct identification of the factors in the equations for forward
and backward linear prediction at order N + 1, the recurrence relations for
the coefficient vectors are obtained. For forward linear prediction, one gets

_ | An | Cav | =By
AN+1—|: 0 :|+8N|: : ] (5.168)

and, for backward linear prediction,

0 en| 1
Bu., — EON. 5.169
N+1 [BN]+€N |:_AN:| ( )
The variable ey can itself be computed recursively by
eyt =eN—M=eN(1—M> (5.170)
en eN

Finally, the algorithm is given in Figure 5.13. The computational complex-
ity, at order N is 4(N + 1) multiplications and one division. The total opera-
tion count for order p is 2(p + 1)(p + 2) multiplications and p divisions.
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Available at order N : Ay, By, en
New data x(p+ N+ 1), x(p — N—1)

e = X(P+ N+ 1), =Xy(p + N)Ay
ey = X(p — N —1) = Xy(p — 1)By

e e
w15 %)

An €an [ —Bn
A = -
wo= o]+

0 epN 1
B, = =
N |:BN:| * en |:_AN:|

FIG. 5.13 Algorithm for the computation of the linear prediction coefficients.

The algorithm obtained is useful in some spectral analysis techniques. Its
counterpart in finite fields is used in error correction, for example, for the
decoding of Reed—Solomon codes.

5.15. CONCLUSION

Linear prediction error filters have been studied. Properties and coefficient
design techniques have been presented. The analysis of first- and second-
order filters yields simple results which are useful in signal analysis, parti-
cularly for the detection of sinusoidal components in a spectrum. Backward
linear prediction provides a set of uncorrelated sequences. Combined with
forward prediction, it leads to order iterative relations which correspond to
a particular structure, the lattice filter. The lattice or PARCOR coefficients
enjoy a number of interesting properties, and they can be calculated from
the signal ACF by efficient algorithms.

The inverse AC matrix, which is involved in LS algorithms, can be
expressed in terms of forward and backward prediction coefficients and
prediction error power. To manipulate prediction filters and fast algorithms,
it is important that we be able to locate the zeros in the unit circle; the
analysis based on the notch filter and carried out for sinusoids in noise
provides an insight useful for more general signals.

The gradient adaptive techniques apply to linear prediction filters with a
number of simplifications, and the lattice structure is an appealing alterna-
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tive to the transversal structure. An additional realization option is offered
by the LSP approach, which provides an interesting link between linear
prediction and harmonic decomposition.

EXERCISES

1. Calculate the impulse responses h;(1 <j < 3;0 < i < 6) corre-
sponding to the following z-transfer functions:

Hi(z)=(+z"4052%?
Hy(z) =1(1+z7" 405271 + 227" +2:7%)
Hy(z) =11 +27" 42272

Calculate the functions
Em=Yh. 0<n<61<j<3
i=0

and draw the curves E;(n) versus n.
Explain the differences between minimum phase, linear phase, and
maximum phase.
2. Calculate the first four terms of the ACF of the signal

x(n) = V2sin (n %)

Using the normal equations, calculate the coefficients of the predictor
of order N = 3. Locate the zeros of the prediction error filter in the
complex z-plane. Perform the same calculations when a white noise
with power a7 = 0.1 is added to the signal and compare with the above
results.

3. Consider the signal

x(n) = sin(nw,;) + sin(nw,)

Differentiating (5.6) with respect to the coefficients and setting these
derivatives to zero, calculate the coefficients of the predictor of order
N = 2. Show the equivalence with solving linear prediction equations.
Locate the zeros of the prediction error filter in the complex z-plane
and comment on the results.

4. Calculate the coefficients a; and a, of the notch filter with transfer
function

1+ alzf1 + 02272

H(z) = ,
@) 14+ (1 —&)ayz! + (1 — &) ’az2

e=0.1
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which cancels the signal x(n) = sin(0.7n).

Locate the poles and zeros in the complex plane. Give the frequen-
cies which satisfy |H(e’?)| = 1 and calculate H(1) and H(—1). Draw
the function |H(w)|.

Express the white noise amplification factor of the filter as a func-
tion of the parameter e.

5. Use the Levinson—Durbin algorithm to compute the PARCOR coeffi-
cients associated with the correlation sequence

r(0)=1, rn)=a09" 0<a <1

Give the diagram of the lattice filter with three sections. Comment on
the case o = 1.

6. Calculate the inverse of the 3 x 3 AC matrix R;. Express the prediction
coefficients a; and a, and the prediction error E,. Compute R3' using
relation (5.67) and compare with the direct calculation result.

7. Consider the ARMA signal

x(n) = e(n) —0.5¢(n — 1) — 09x(n — 1)

where e(n) is a unit power white noise. Express the coefficients of the
FIR predictor of infinite order.

Using the results of Section 2.6 on ARMA signals, calculate the AC
function r(n) for 0 < n < 3. Give the coefficients of the prediction
filters of orders 1, 2, and 3 and compare with the first coefficients of
the infinite predictor. Locate the zeros in the complex plane.

8. The continuous signal x(n) =1 is applied from time zero on to the
adaptive IIR prediction error filter, whose equations are

en+1)=x(n+ 1) — b(n)e(n)
b(n+ 1) = b(n) + Se(n + 1)e(n)

For § =0.2 and zero initial conditions, calculate the coefficient
sequence h(n), 1 < n < 20. How does the corresponding pole move
in the complex z-plane?

A noise with power o7 is added to the input signal. Calculate the
optimum value of the first-order IIR predictor. Give a lower bound for
o7 which prevents the pole from crossing the unit circle. When there is
no noise, what value of the leakage factor has the same effect.

9. Give the LSP decomposition of the prediction filter

l—AyG@) =1 —=1.6z"409z)1—z"+27?)

Locate the zeros of the polynomials obtained. Give the diagram of the
adaptive realization, implemented as a cascade of second-order filter
sections.
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10. Use the algorithm of Figure 5.13 to show that the linear prediction
coefficients of the length 2p = 12 sequence

1.707; 1; —0.293; 0; 0.293; —1; —1.707; 0; 1.707; 1; —0.293; 0

are given by

1—Ay@) =0 +27)(1 —1.414z7" +272)

Give the general expression of the input sequence x(n).

ANNEX 5.1 LEVINSON ALGORITHM

Q0N

@]

10

20

30

40

50

60

SUBROUTINE LEV(N,Q,X,B)

SOLVES THE SYSTEM : [R]X=B WITH [R] TOEPLITZ MATRIX
N =SYSTEMORDER ( 2<N<17)

Q =N+1 ELEMENT AUTOCORRELATION VECTOR :

r(0, ...... ,N)

X = SOLUTION VECTOR

B =RIGHT SIDE VECTOR

DIMENSION Q(1),X(1),B(1),A(16),Y(16)
A(1)=-9(2)/0(1)

X(1)=B(1)/Q(1)

RE=Q(1)+A(1)*Q(2)

DO60I=2,N

T=Q(I+1)

D010J=1,I-1

T=T+Q(I-J+1)*A(J)

A(I)=-T/RE
D020J=1,I-1
Y(J)=A(J)

D030J=1,I-1
A(J)=Y(J)+A(I)*Y(I-J)
S=B(I)

D040J=1,I-1
S=S-Q(I-J+1)*X(J)
X(I)=S/RE
D0O50J=1,1I-1
X(J)=X(J)+X(I)*Y(I-J)
RE=RE+A(I)*T
CONTINUE

RETURN

END
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ANNEX 5.2 LEROUX-GUEGUEN ALGORITHM

oNeHO OO NS!

SUBROUTINE LGPC(N,R,RK)

LEROUX-GUEGUEN Algorithm for computing the PARCOR
coeff. fromAC-function.

N =Number of coefficients

R=Correlation coefficients (INPUT)

RK=Reflexion coefficients (OUTPUT)

DIMENSION R(20),RK(20),RE(20),RH(20)
RK(1)=R(2)/R(1)
RE(1)=R(2)
RE(2)=R(1)-RK(1)*R(2)
DO10I=2,N
X=R(I+1)
RH(1)=X
Il1=I-1
D020J=1,I1
RH(J+1)=RE (J)-RK(J)*X
X=X-RK(J) *RE (J)

20 RE(J)=RH(J)
RK(I)=X/RE (I
RE(I+1) RE(I) -RK(I)*X
RE(I)=RH(I)

10 CONTINUE
RETURN
END
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6

Fast Least Squares Transversal
Adaptive Filters

Least squares techniques require the inversion of the input signal AC
matrix. In adaptive filtering, which implies real-time operations, recursive
methods provide means to update the inverse AC matrix whenever new
information becomes available. However, the inverse AC matrix is comple-
tely determined by the prediction coefficients and error power. The same
applies to the real-time estimation of the inverse AC matrix, which is deter-
mined by FBLP coefficients and prediction error power estimations. In these
conditions, all the information necessary for recursive LS techniques is
contained in these parameters, which can be calculated and updated. Fast
transversal algorithms perform that function efficiently for FIR filters in
direct form.

The first-order LS adaptive filter is an interesting case, not only because it
provides a gradual introduction to the recursive mechanisms, the initial
conditions, and the algorithm performance, but also because it is implemen-
ted in several approaches and applications.

6.1. THE FIRST-ORDER LS ADAPTIVE FILTER

The first-order filter, whose diagram is shown in Figure 6.1, has a single
coefficient Ay(n) which is computed to minimize at time n a cost function,
which is the error energy

n

Ei(n) =) [y(p) — hy(mx(p) (6.1)

=1
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FIG. 6.1 Adaptive filter with a single coefficient.

The solution, obtained by setting to zero the derivative of E;(n) with respect

to hy(n) is
2 ypxp) -
i) =" = (©2
Y
p=1
In order to derive a recursive procedure, let us consider
ho(n+1) = rii (n+ Dlry(m) + y(n + Dx(a + 1)] (6.3)
From expression (6.2), we have
[+ 1) = X + Dlig(n) = r,.(n) (6.4)

Hence
ho(n+ 1) = hy(n) + r;\! (n+ Dx(n+ D[y(m+ 1) — ho(n)x(n + 1)] (6.5)

The filter coefficient is updated using the new data and the a priori error,
defined previously by

e+ 1) = y(n+ 1) — hy(m)x(n + 1) (6.6)

Recall that this error is named “‘a priori” because it uses the preceding
coefficient value.
The scalar r(n + 1) is the input signal energy estimate; it is updated by

P+ 1) = ro(n) + X (n 4+ 1) (6.7)

Together expressions (6.5) and (6.7) make a recursive procedure for the first-
order LS adaptive filter. However, in practice, the recursive approach can-
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not be exactly equivalent to the theoretical LS algorithm, because of the
initial conditions.

At time n = 1, a coefficient initial value /,(0) is needed by equation (6.5).
If it is taken as zero, relation (6.5) yields

o1y = 2 68)

x(1)
which is the solution. However, in the second equation (6.7) it is not possible
to take r,(0) = 0 because there is a division in (6.5) and r (1) has to be
greater than zero. Thus, the algorithm is started with a positive value,
r+(0) = g, and the actual coefficient updating equation is

x(n+1)
n+1

ro+ 2 ¥ (p)
p=1

ho(n+ 1) = h(n) + [y(n+1) = hy(m)x(n+ D], n >0

(6.9)
This equation still is a LS equation, but the criterion is different from (6.1).
Instead, it can be verified that it is

n

E{(n) =) [3(p) — ho()x(p)’ + rohig(n) (6.10)

p=1

The consequence is the introduction of a time constant, which can be eval-
uated by considering the simplified case y(n) = x(n) = 1. With these signals,
the coefficient evolution equation is

1

— L >
ho(n+ 1) = hy(n) + PR 1)[1 ho(n)], n =0
or
(1= S > .
ho(n+1) (1 r0+n+l)h0(n)+r0+n+1’ nz=0 (6.11)
which, assuming /y(0) = 0, leads to
n 1
— S 12
fro() ro+n 1 +n/r (6.12)

The evolution of the coefficient is shown in Figure 6.2 for different values
of the initial constant r,. Note that negative values can also be taken for r.

Definition (4.10) in Chapter 4 yields the coefficient time constant t, = ry.
Clearly, the initial constant r, should be kept as small as possible; the lower
limit is determined by the computational accuracy in the realization.
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FIG. 6.2 Evolution of the coefficient of a first-order LS adaptive filter.

Adaptive filters, in general, are designed with the capability of handling
nonstationary signals, which is achieved through the introduction of a lim-
ited memory. An efficient approach consists of introducing a memory-limit-
ing or -forgetting factor W(0 < W < 1), which corresponds to an
exponential weighting operation in the cost function:

n

Eyi(n) =Y W[ y(p) — hom)x(p))’ (6.13)
p=1
Taking into account the initial constant r,, we obtain the actual cost func-
tion
n
Ejyi(n) =Y W'[3(p) — hy(m)x(p)}’ + W"rohig(n) (6.14)
p=1

The updating equation for the coefficient becomes
x(n+1)

n+1
I Y ) (6.15)
I):

x[yn+1) =hy(mx(n+ 1], n =0

In the simplified case x(n) = y(n) = 1, if we assume /y(0) = 0, we get
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1

ho(n + 1) — hy(n) + ro W 4 (1 — Wty /(1 — W)

(1 =ho(m], n=0

(6.16)

Now the coefficient time constant is 7.,y & Wr,. But for n sufficiently large,
the updating equation approaches

hon+1) = Who(n)+1—-W (6.17)
which corresponds to the long-term time constant
1
1-w

The curves 1 — hy(n) versus time are shown in Figure 6.3 for ry = 1 and
W =0.95 and W = 1. Clearly, the weighting factor W can accelerate the
convergence of /iy(n) toward its limit.

For the LMS algorithm with step size § under the same conditions, one
gets

o) =1 — (1 — 8)" (6.18)

T

The corresponding curve in Figure 6.3 illustrates the advantage of LS tech-
niques in the initial phase.

In the recursive procedure, only the input signal power estimate is
affected by the weighting operation, and equation (6.7) becomes

rxx(n + ]) = Wrxx(”) +X2(I’l + ])

In transversal filters with several coefficients, the above scalar operations
become matrix operations and a recursive procedure can be worked out to
avoid matrix inversion.

6.2. RECURSIVE EQUATIONS FOR THE ORDER N

FILTER
The adaptive filter of order N is defined in matrix equations by
em+D)=yn+1)—HmMXn+1) (6.19)

where the vectors H(n) and X(n) have N elements. The cost function, which
is the error energy

n

Ex(n) =Y W"[3(p) — H' W)X (p)) (6.20)

=1

leads, as shown in Section 1.4, to the least squares solution
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FIG. 6.3 Evolution of the coefficient error for two weighting factor values.

H(n) = Ry (m)r,(n) (6.21)
with
Ry(n) =Y W' PX()X'(p).  ru(n) =Y W' y(p)X(p) (6.22)
p=1 p=1

As shown in Section 1.5, two recurrence relations can be derived from (6.21)
and (6.22). Equation (1.25) is repeated here for convenience

Hn+1)=H®n) + Ry'(n+ DX+ D[ y(n+ 1) — X'(n+ 1)H(n)]
(6.23)

The matrix RI_VI (n + 1) in that expression can be updated recursively with the
help of a matrix identity called the matrix inversion lemma [1]. Given
matrices 4, B, C, and D satisfying the equation

A= B+ CDC'

the inverse of matrix A4 is
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A= ' - B lcic'B'c+ D C'B! (6.24)

The matrix A~! can appear in various forms, which can be derived from the
identity

(B—UDV) ' =[Iy— B 'UDV]'B!
where B is assumed nonsingular, through the generic power series expansion
(Iy — B'UDV)Y'B' =[Iy+ B 'UDV + (B~ 'UDV)* +--1B™!  (6.25)

The convergence of the series is obtained if the eigenvalues of (B~ UDV) are
less than unity. Expression (6.25) is a generalized matrix inversion lemma
[2]. Consider, for example, regrouping and summing all terms but the first in
(6.25) to obtain

(B—UDV) ' =Iy+ B 'Ully - DVB'U'DVB™! (6.26)

which is another form of (6.24).
This lemma can be applied to the calculation of Ry!(n + 1) in such a way
that no matrix inversion is needed, just division by a scalar. Since

Ry(n+1)= WRy(m)+X(n+ DX'(n+1) (6.27)
let us choose

B=WRym), C=Xmn+1), D=1
then, lemma (6.24) yields

_ 1| RN X+ DX'(n+ DRy (n)
Ry (n4+1)=— | Ry'(n) = =2 N 6.28
y(m+1) W[ v (n) Wt X+ DR, (X (n £ 1) (6.28)
It is convenient to define the adaptation gain G(n) by
G(n) = Ry (n)X (n) (6.29)
which, using (6.28) and after adequate simplifications, leads to
1 -
G 1) = R X 1 6.30
Now, expression (6.28) and recursion (6.23) can be rewritten as
Ry'(n+1)= %[R;l (n) — G(n+ DX'(n + DRy ()] (6.31)

and

Hn+1) = Hn) + G+ D[y + 1) — X'(n + D H(#n)] (6.32)
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Relations (6.30)—-(6.32) provide a recursive procedure to perform the filter
coefficient updating without matrix inversion. Clearly, a nonzero initial
value Ry'(0) is necessary for the procedure to start; that point is discussed
in a later section.

The number of arithmetic operations represented by the above procedure
is proportional to N2, because of the matrix multiplications involved.
Matrix manipulations can be completely avoided, and the computational
complexity made proportional to N only by considering that Ry(n) is a real-
time estimate of the input signal AC matrix and that, as shown in Chapter 5,
its inverse can be represented by prediction parameters.

Before introducing the corresponding fast algorithms, several useful rela-
tions between LS variables are derived.

6.3. RELATIONSHIPS BETWEEN LS VARIABLES

In deriving the recursive least squares (RLS) procedure, the matrix inversion
is avoided by the introduction of an appropriate scalar. Let

w

D = Y T DRI X+ D) (6.33)
It is readily verified, using (6.28), that

e+ =1—-X'n+ DRy (n+ DX +1)
The scalar 6(n), defined by

0(n) = X'(n)Ry' (n) X (n) (6.34)

has a special interpretation in signal processing. First, it is clear from
6(n+1)= X'(n+ DIWRy(n) + X(n+ DX'(n+ D' X(n + 1)

that, assuming the existence of the inverse matrix
On+1) < X'(n+ DX+ DX'(n+ D' X(n+1)

Since
X+ DX'n+ DIX(n+1) = X(n+ DX+ 1) (6.35)

where || X|| the Euclidean norm of the vector X, the inverse matrix
[X(n+ 1D)X'(n+ 1)]”! by definition satisfies

X+ DX+ D] "X+ 1) =X+ D' Xn+1) (6.36)
and the variable 6(n) is bounded by

0<6mn <1
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Now, from Section 2.12, it appears that the term in the exponent of the
joint density of N zero mean Gaussian variables, has a form similar to 6(n),
which can be interpreted as its sample estimate—hence the name of like-
lihood variable given to 6(n) in estimation theory [3]. Thus, 6(n) is a measure
of the likelihood that the N most recent input data samples come from a
Gaussian process with AC matrix Ry(n) determined from all the available
past observations. A small value of 6(n) indicates that the recent input data
are likely samples of a Gaussian signal, and a value close to unity indicates
that the observations are unexpected; in the latter case, X(n + 1) is out of the
current estimated signal space, which can be due to the time-varying nature
of the signal statistics. As a consequence, 6(n) can be used to detect changes
in the signal statistics. If the adaptation gain G(n) is available, as in the fast
algorithms presented below, 6(n) can be readily calculated by

0(n) = X' (n)G(n) (6.37)

From the definitions, ¢(r) and 6(n) have similar properties. Those rele-
vant to LS techniques are presented next.
Postmultiplying both sides of recurrence relation (6.27) by Ry'(n) yields

Ry(n+ DRy (n) = Wiy + X(n + DX'(n + DRy (n) (6.38)
Using the identity
det[Iy + ViV =14 Viv, (6.39)

where V| and V, are N-element vectors, and the definition of ¢(n), one gets

N det Ry(n)

o+ D =W R+ 1)

(6.40)
Because of the definition of Ry(n) and its positiveness and recurrence rela-
tion (6.27), the variable ¢(n) is bounded by

0<opn <1 (6.41)

which, through a different approach, confirms (6.36). This is a crucial prop-
erty, which can be used to check that the LS conditions are satisfied in
realizations of fast algorithms.

Now, we show that the variable ¢(n) has a straightforward physical
meaning. The RLS procedure applied to forward linear prediction is
based on a cost function, which is the prediction error energy

n

E () =Y W"[x(p) — A'(mX(p — DI’ (6.42)

p=1

The coefficient vector is
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A(n) = Ry (n — D)i%(n) (6.43)
with

M) =Y W' Px(p)X(p — 1) (6.44)
p=1

The index n — 1 in (6.43) is typical of forward linear prediction, and the RLS
coefficient updating equation is

An+1) = A(n) + G(n)e,(n + 1) (6.45)
where
e,m+1)=x(n+1)— A'(n)X1n) (6.46)

is the a priori forward prediction error.
The updated coefficients A(n 4 1) are used to calculate the a posteriori
prediction error

g,n+1)=x(n+1)—A'(n+ DX(1n) (6.47)
or
e,(n+1)=e,(n+ D[l = G'(n)X(n)] (6.48)
From definition (6.33) we have
_&n+1)
p(n) = et 1) (6.49)

and ¢(n) is the ratio of the forward prediction errors at the next time. This
result can lead to another direct proof of inequality (6.41).

A similar result can also be obtained for backward linear prediction. The
cost function used for the RLS procedure is the backward prediction error

energy
Ey(n) =Y W"[x(p — N) — B(m)X(p)]’ (6.50)
p=1
The backward coefficient vector is
B(n) = Ry (n)r(n) (6.51)
with
Ry =Y W' x(p — N)X(p) (6.52)
p=I

The coefficient updating equation is now
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B(n+1) = B(n) + G(n+ ey(n+ 1) (6.53)

with

es(n+1)=x(n+1—N)—BmXn+1) (6.54)
The backward a posteriori prediction error is

e+ 1) =x(n+1-N)—B'n+DXn+1) (6.55)
Substituting (6.53) into (6.55) gives

pn+1) = % (6.56)

which shows that ¢(n) is the ratio of the backward prediction errors at the
same time index.

In fact, this is a general result, which applies to any adaptive filter, and
the following equation is obtained in a similar manner:

en+1)
e(n+1)

pn+1)= (6.57)

It is worth pointing out that this result can lead to another proof of inequal-
ity (6.41). Let us consider the error energy (6.20) at time n + 1:

Ex(n+1)=W Z W' y(p) — H'(n+ DX Q)P + 2(n + 1) (6.58)
=1

and the variable
Ex(n+1) =W W [yp)— HmXP) +*(n+1) (6.59)
p=1

By definition of the optimal set of coefficients, the two following inequalities

hold
Ef(n+1) = Ex(n+1) (6.60)
and
Ex(n+ 1) —&*n+1) = Ex(n+ 1) —f(n+ 1) (6.61)

As a consequence,
Fm+1) = &m+1) (6.62)

The above results can be illustrated with the help of simple signals. For
example, with N =2 and x(n) a sinusoidal signal, the direct application of
the definition of ¢(n) yields, for large n
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o) ~2 =21 — W) =2W — 1 (6.63)

This result can be generalized to any N, if the frequency w in x(n) = sin nw
satisfies the conditions: 7/N < w < 7 —nw/N.
Now, for x(n) a white noise and W close to one,

E[p(n)] ~ 1 — N(1 — W) (6.64)

The forward prediction error energy can be computed recursively.
Substituting equation (6.43) into the expression of E, (n + 1) yields

n+1

E,(mn+1) = Z W= 2(p) — A'(n + Dry(n+ 1) (6.65)
p=1

The recurrence relations for A(n + 1) and ri(n + 1), in connection with the

definitions for the adaptation gain and the prediction coefficients, yield after
simplification

E,n+1)=WE,(n)+e,(n+ e, (n+1) (6.66)
Similarly, the backward prediction error energy can be calculated by
E,(n+1)= WEy(n) +ep(n+ Dey(n+1) (6.67)

These are fundamental recursive computations which are used in the fast
algorithms.

6.4. FAST ALGORITHM BASED ON A PRIORI
ERRORS

In the RLS procedure, the adaptation gain G(n) used to update the coeffi-
cients is itself updated with the help of the inverse input signal AC matrix. In
fast algorithms, prediction parameters are used instead [4].

Let us consider the (N + 1) x (N 4+ 1) AC matrix Ry, (n + 1); as pointed
out in Chapter 5, it can be partitioned in two different manners, exploited in
forward and backward prediction equations:

[ n+l—p 2 a t
Rysi(n+1) = ,,; W) v+ D (6.68)
ry(n+1) Ry(n)
and
[ Ry(n+1) R+ 1)
RN+1(n + 1) = [r}ll\f(n + 1)]t ”i] Wn+1—px2(p . N) (669)
- p=1
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The objective is to find G(n + 1) satisfying
Ryn+1)Gn+1)=Xn+1) (6.70)

and it will be reached in two consecutive steps. In the first step, the adapta-
tion gain at order N + 1, a vector with N + 1 elements, will be calculated
from forward linear prediction parameters. Then, it will be used to derive
the desired gain G(n + 1) with the help of backward linear prediction para-

meters.
Since Ry(n) is present in (6.68), let us calculate
0 4 DI'G
Ryji(n+ 1)[ G(n)} = [[rN(” j{,(n))] (”)} 6.71)

From definitions (6.29) for the adaptation gain and (6.43) for the optimal
forward prediction coefficients, we have

Y+ DI'Gn) = A'(n + 1) X(n) (6.72)

Introducing the a posteriori prediction error, we get
0 | _ | &+ 1)

where X(n) is the vector of the N + 1 most recent input data. Similarly,
partitioning (6.69) leads to

Gu+1)] [ Xa+)
RN“(”“)[ 0 }_[[r?\,(n—l—l)]’G(nle)} 6749

From definitions (6.70) and (6.51), we have

A+ DG+ 1) = B'(n+ DX(n + 1) (6.75)
and
Ry(n+ 1)[G(”OJr 1)] — X, (n+1)— [s,,(n0+ 1)} (6.76)

Now, the adapttion gain at dimension N + 1, denoted G,(n + 1) with the
above notation, is defined by

Ryi(n+ DG i(n+ 1) = X;(n+ 1) (6.77)

Then, equation (6.73) can be rewritten as

Ryai(n + 1)[G1(n 1) — [G(()n)ﬂ - [8“(”0+ 1)} (6.78)

Equation (6.76) becomes
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Ryi(n+ l)[Gl(n 1) — [G(”(;L l)ﬂ - [8a(n0+ 1)} (6.79)

Now, linear prediction matrix equations will be used to compute G;(n + 1)
from G(n), and then G(n + 1) from G,(n + 1). The forward linear prediction
matrix equation, combining (6.43) and (6.65), is

1 | Em+1)
Identifying factors in (6.80) and (6.78) yields
[0 ], at+D] 1
Gi(n+1) = [G(n)] +Ea(n+1)[—A(n+1)] (6.81)
The backward linear prediction matrix equation is
[—B(n+1)] _ 0
Ry (n+ 1)_ | i| = |:E,,(n + 1)] (6.82)

Identifying factors in (6.82) and (6.79) yields
[ G(n + 1)] e+ |:—B(n+ 1)}

G 1) — = 6.83

(n+1) o FATES) 1 (6.83)
The scalar factor on the right side need not be calculated; it is already
available. Let us partition the adaptation gain vector

M+ 1):|

Giln+1) = |:m(n+ 1)

(6.84)

with M(n + 1) having N elements; the scalar m(n + 1) is given by the last line
of (6.83):

ep(n+1)

)=—"——= .
m(n+ 1) E+ D) (6.89)
The N-element adaptation gain is updated by
Gmn+1)=Mmn+1)+mmn+1)Bn+1) (6.86)

But the updated adaptation gain is needed to get B(n 4+ 1). Substituting
(6.53) into (6.86) provides an expression of the gain as a function of avail-
able quantities:
1
G 1) = M 1 1)B 6.87
(D) = e e M D mek DBOT (687)
Note that, instead, (6.86) can be substituted into the coefficient updating
equation, allowing the computation of B(n + 1) first:
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1
B+ 1) = e Ty B0+ MO+ Deytn+ 1) (6.88)

In these equations, a new scalar is showing up. Since one must always be
careful with dividers, it is interesting to investigate its physical interpretation
and appreciate its magnitude range. Combining (6.85) and the energy updat-
ing equation (6.67) yields

ep(n+ Dey(n+1)  WE(n)

l—mmn+ Dey(n+1)=1- (6.89)
Thus, the divider 1 — m(n + 1)e,(n + 1) is the ratio of two consecutive values
of the backward prediction error energy, and its theoretical range is

O0<l—mn+Deyn+1) <1 (6.90)

Clearly, as time goes on, its value approaches unity, more so than when
the prediction error is small. Incidentally, equation (6.89) is an alternative to
(6.67) to update the backward prediction error energy. Overall a fast algo-
rithm is available and the sequence of operations is given in Figure 6.4. The
corresponding FORTRAN subroutine is given in Annex 6.1.

It is sometimes called the fast Kalman algorithm [4]. The LS initialization
is obtained by taking A(n) = B(n) = G(n) = 0 and E,(0) = E,, a small posi-
tive constant, as discussed in a later section.

The adaptation gain updating requires 8N + 4 multiplications and two
divisions in the form of inverse calculations; in the filtering, 2N multiplica-
tions are involved. Approximately 6N memories are needed to store the
coefficients and variables. The progress with respect to RLS algorithms is
impressive; however, it is still possible to improve these figures.

The above algorithm is mainly based on the a priori errors; for example,
the backward a posteriori prediction error is not calculated. If all the pre-
diction errors are exploited, a better balanced and more efficient algorithm
is derived [5, 6].

6.5. ALGORITHM BASED ON ALL PREDICTION

ERRORS
Let us define an alternative adaptation gain vector with N elements, G'(n),
by
Ry(m)G'n+1)=X(n+1) (6.91)

Because of the term R(n) in G'(n + 1), it is also called the a priori adaptation
gain, in contrast with the a posteriori gain G(n + 1).
Similarly at order N + 1
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ALGORITHH FLS1

AYAILABLE AT TIME 0.

COEFFICIENTS OF ADAPTIVE FILTER - Hin}
N FORWARD PREQICTOR . Aln}

N HACKWARD PREDICTOR  Bin)
DATA VECTOR - Xim)

ADAPTATION GAIN = G{n)

FORWARD PREDICTION ERROR ENERGY : Ejin}

NEW DATA AT Tt n:

input Signal . x{n+1} ; Reference - y(n+l}
ADAPT IH_UPDAT!

e i+ 1) =x(ne 1) = AL x(n
Alneth = AN » G(n) ey(ne )
£ 1) = xdne 1) - Al 1) X(0)
Ea{ne 1) = WELN » ea{ne 1) g (ne 1)
0 Elne 1) Mine1)

Gine 1) = O .

6] Eglne D {-Ane )| | minel) |
eyin+ 1) = x(n+1-N) - 8L X(n+ 1)

Gins 1) ® =mmmmmmmemaee { Min+1) +min+1) Bln) }
1-min+1]) eplnet)

Bin+ 1) = Bin) + Glne 1) gyfn+ 13

ADAPTIVE FILTER -

elns 1) = y(ne 1) -HYNY Xns 1)
HID® 1) = KUY + GRe 1] elne 1)

FIG. 6.4 Computational organization of the fast algorithm based on a priori

CITOIS.

Ry (m)Gi(n+1) = Xi(n+ 1)

Exploiting, as in the previous section, the two different partitionings, (6.68)
and (6.69), of the AC matrix estimation Ry, (n), one gets

RN+1(”)|:G (n0+ 1)] =Xi(n+1)— |:eh(no+ 1
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and

R gl | = X100 0= [ | (6.949)
Now, substituting definition (6.92) into (6.93) yields
RNH(n)[G{(n +1)— [G ot ”H - [eb(n°+ 1)] (6.95)

Identifying with the backward prediction matrix equation (6.82) gives a first
expression for the order N + 1 adaptation gain:

, @+ | es(n+1)[ =B
Gi(n+1) = [ 0 } “E0) [ 0 (6.96)
Similarly (6.94) and (6.92) lead to
RN+1(7’1)|:G1/(7Z +1)— [G,(zn) H = [e“(”(;r D (6.97)

Identifying with the forward prediction matrix equation (6.80) provides
another expression for the gain:

The procedure for calculating G'(n + 1) consists of calculating G{(n + 1)
from the forward prediction parameters by (6.98) and then using (6.96).

Once the alternative gain G'(n) is updated, it can be used in the filter
coefficient recursion, provided it is adequately modified. It is necessary to
replace Ry'(n+ 1) by Ry'(n) in equation (6.23). At time n+ 1 the optimal
coefficient definition (6.21) is

[WRy(n) + X(n+ DX'(n+ DIH(n 4+ 1) = Wry,(n) + y(n+ DX(n + 1)
which, after some manipulation, leads to
Hn+1)=H®n) + W 'Ry WX+ Dyn+1)— X' (n+ DH(n + 1)]
(6.99)
The a posteriori error
e+ 1) =ymn+1)—X'(n+1)Hn+1) (6.100)

has to be calculated from available data; this is achieved with the help of the
variable ¢(n) defined by (6.33), which is the ratio of a posteriori to a priori
errors. From (6.33) we have
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t / — W —
W+X(n+l)G(n+1)_(p(n+1)_a(n+l) (6.101)

The variable a(n + 1) is actually calculated in the algorithm.
Substituting H(n + 1) from (6.99) into (6.100) yields the kind of relation-
ship already obtained for prediction:

em+ D) =9pn+ De(n+1) (6.102)
Now the coefficient updating equation is

e(n+1)

H(u+ 1) = HOo + o

G'(n+1) (6.103)

Note that, from the above derivations, the two adaptation gains are related
by the scalar a(n + 1) and an alternative definition of G'(n + 1) is

G'n+1)=[W+ X'+ DRy (WX + DIGn + 1)

(6.104)
=an+ 1)Gn+1)

The variable a(n + 1) can be calculated from its definition (6.101). However,
a recursive procedure, similar to the one worked out for the adaptation gain,
can be obtained. The variable corresponding to the order N + 1 is o;(n + 1),
defined by

a(n+1)=W+X{(n+1)G{(n+1) (6.105)
The two different expressions for G{(n + 1), (6.96) and (6.98), yield

2 2
+1 +1
etl (n ) Ot(l’l 1) eb (n )

alnt D=+ Tp = £,

(6.106)
which provides the recursion for a(n + 1) and ¢(n + 1).

Since ¢(n + 1) is available, it can be used to derive the a posteriori pre-
diction errors ¢,(n + 1) and g,(n + 1), with only one multiplication instead
of the N multiplications and additions required by the definitions.

The backward a priori prediction error can be obtained directly. If the
N + 1 dimension vector gain is partitioned,

/ _ M/(l/l + 1)
Gi(n+1)= [m’(n—i—l)] (6.107)
the last line of matrix equation (6.96) is
1
m'n+ 1) = 2D (6.108)

Ey(n)
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which provides e,(n 4 1) through just a single multiplication. However, due
to roundoff problems discussed in a later section, this simplification is not
recommended. The overall algorithm is given in Figure 6.5.

The LS initialization corresponds to

A(0) = B(0) = G'(0)=0, E,0)=E, E0)=w"E, (6.109)

ALGORITHM FL 52

AYAIWABLE AT TIME g,
COEFFICIENTS OF ADAPTIVE FILTER : H(n)
- " FORWARD PREDICTOR : A(n)
BACKWARD PREDICTOR : B(n)
DATA VECTOR - Xin)
ADAPTATION GAIN :G(n)
PREDICTION ERROR ENERGIES : (0} , Ep(n)

PREDICTION ERROR RATIO :o¢(n)
WEIGHTING FACTOR W

NEW DATA AT TIME N
Input signai :x(n+1} ; Reference y(n+1)

ADAPTATION GAIN LUPDATING:
epintl) =x(n+!) - Al x(n
Alnt1) = Aln) + 6ln) e fnet) 7odn)
Epint 1} = (Eyln} + e, int () ey (nt 1) /ix(n) } W
0 ealnﬂl | Min+1)
Y I B =
6(n) E5(n)  |-Aln) min+1)
ep(n+1) = x(n+1-N) - BYn) K(n+1)

Gln+1) = Min+1) + min+1)B(n)
oy (n+1) =exln) + eyln+ 1] ezin+1) 7 E(n)

o (n+1) =0 {n+1) - min+1) ey (n+1)
Ep(nt1)={Epntrepin+1) ep(n+1]) /oxdn+ 1)) W
Bln+t) = Bln) + Gln+1) epfn+ 1) Zox(ne 1)

ADAPTIVE FILTER:
eln+t) = yin+ - HYR X(n+ 1)
Hin+1) = H{n) + Gin+1) eln* 1} 7ex{n+1)

FIG. 6.5 Computational organization of the fast algorithm based on all prediction
errors.
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where E; is a small positive constant. Definition (6.101) also yields
a(0) = W.

The adaptation gain updating section requires 6N + 9 multiplications
and three divisions in the form of inverse calculations. The filtering sec-
tion has 2N + | multiplications. Approximately 6N + 7 memories are
needed. Overall this second algorithm can bring an appreciable improve-
ment in computational complexity over the first one, particularly for
large order N.

6.6. STABILITY CONDITIONS FOR LS RECURSIVE
ALGORITHMS

For a nonzero set of signal samples, the LS calculations provide a unique set
of prediction coefficients. Recursive algorithms correspond to exact calcula-
tions at any time, and, therefore, their stability is guaranteed in theory for
any weighting factor W. Since fast algorithms are mathematically equivalent
to RLS, they enjoy the same property. Their stability is even guaranteed for
a zero signal sequence, provided the initial prediction error energies are
greater than zero. This is a very important and attractive theoretical prop-
erty, which, unfortunately, is lost in realizations because of finite precision
effects in implementations [7-10].

Fast algorithms draw their efficiency from a representation of LS para-
meters, the inverse input signal AC matrix, and cross-correlation estima-
tions, which is reduced to a minimal number of variables. With the finite
accuracy of arithmetic operations, that representation can only be approx-
imate. So, the inverse AC matrix estimation Ry'(n) appears in FLS algo-
rithms through its product by the data vector X (n), which is the adaptation
gain G(n). Since the data vector is by definition an exact quantity, the round-
off errors generated in the gain calculation procedure correspond to devia-
tions of the actual inverse AC matrix estimation from its theoretical infinite
accuracy value.

In Section 3.11, we showed that random errors on the AC matrix ele-
ments do not significantly affect the eigenvalues, but they alter the eigen-
vector directions. Conversely, a bias in estimating the ACF causes variations
of eigenvalues.

When the data vector X (n) is multiplied by the theoretical matrix Ry'(n),
the resulting vector has a limited range because X (n) belongs to the signal
space of the matrix.

However, if an approximation of Ry'(r) is used, the data vector can have
a significant projection outside of the matrix signal space; in that case, the
norm of the resulting vector is no longer controlled, which can make vari-

MARCEL
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ables exceed the limits of their magnitude range. Also, the eigenvalues can
become negative because of long-term roundoff error accumulation.

Several variables have a limited range in FLS algorithms. A major step in
the sequence of operations is the computation of a posteriori errors, from
coefficients which have been updated with the adaptation gain and a priori
errors. Therefore the accuracy of the representation of Ry (n)X(n) by G(n)
can be directly controlled by the ratio ¢(n) of a posteriori to a priori pre-
diction errors. In realizations the variable ¢(n), introduced in Section 6.3,
corresponds to

o(n) = 1 — X' (R} (m)] ™' X (n) (6.110)

where R (n) is the matrix used instead of the theoretical Ry(n). The variable
¢(n) can exceed unity if eigenvalues of Rj’Y(n) become negative; ¢(n) can
become negative if the scalar X'(n)[R% ()]~ X (n) exceeds unity.

Roundoff error accumulation, if present, takes place in the long run. The
first precaution in implementing fast algorithms is to make sure that the
scalar X t(n)[R?\,(n)]le (n) does not exceed unity.

To begin with, let us assume that the input signal is a white zero mean
Gaussian noise with power o2. As seen in Section 3.11, for sufficiently large
n one has

7 1

Ry(n) = = WIN (6.111)

Near the time origin, the actual matrix R%(n) is assumed to differ from
Ry(n) only by addition of random errors, which introduces a decoupling
between R%(n) and X(n). Hence the following approximation can be justi-
fied:

;W X'(n)X(n) (6.112)

X WIRL ()] X () ~

The variable X'(n)X(n) is Gaussian with mean Nq% and variance 2N, ai. Ifa
peak factor of 4 is assumed, a condition for keeping the prediction error
ratio above zero is

(1 — W)N +4v2N) < 1 (6.113)

This inequality shows that a lower bound is imposed on W. For example,
if N =10, then W > 0.95.

Now, for a more general input signal, the extreme situation occurs when
the data vector X(n) has the direction of the eigenvector associated with the
smallest eigenvalue A7, (n) of R (n). Under the hypotheses of zero mean
random error addition, neglecting long-term accumulation processes if any,
the following approximation can be made:
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)\’q

min

~ )‘min
() ~ T (6.114)

where A, is the smallest eigenvalue of the input signal AC matrix. If we
further approximate X'(n)X(n) by Nai, the condition on ¢(n) becomes:

2
(1 — Yo

<1 (6.115)

min

This condition may appear extremely restrictive, since the ratio o2/Amin
can take on large values. For example, if x(n) is a determinist signal with
additive noise and the predictor order N is large enough, o2/An, is the
SNR. Inequalities (6.13) and (6.115) have been derived under restrictive
hypotheses on the effects of roundoff errors, and they must be used with
care. Nevertheless, they show that the weighting factor ' cannot be chosen
arbitrarily small.

6.7. INITIAL VALUES OF THE PREDICTION ERROR
ENERGIES

The recursive implementations of the weighted LS algorithms require the
initialization of the state variables. If the signal is not known before time
n = 0, it is reasonable to asume that it is zero and the prediction coefficients
are zero. However, the forward prediction error energy must be set to a
positive value, say E,. For the algorithm to start on the right track, the
initial conditions must correspond to a LS situation.

A positive forward prediction error energy, when the prediction coeffi-
cients are zero, can be interpreted as corresponding to a signal whose pre-
vious samples are all zero except for one. Moreover, if the gain G(0) is also
zero, then the input sequence is

x(=N) = (W NE)'?

(6.116)
x(n)=0, n<0,n#—-N

The corresponding value for the backward prediction error energy is
Ey(0) = x*(=N) = W~V E)—hence the initialization (6.109).
In these conditions the initial value of the AC matrix estimation is

1 0 0
o w ... 0

Ry(O)=|. . : E, (6.117)
0 0 .. wev

and the matrix actually used to estimate the input AC matrix is Ry(n), given
by
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Riy(n) = Ry(n) + W"Ry(0) (6.118)

The smallest eigenvalue of the expectation of Ry (n), denoted A%, (n), is
obtained, using (6.22), by

1 _ Wl‘l
1—-w
The first term on the right side is growing with # while the second is decay-
ing. The transient phase and the steady state are put in the same situation as

concerns stability if a lower bound is set on E,. Equation (6.119) can be
rewritten as

Mnin (1) = Amin + W"Ey (6.119)

* )"min )‘min
Amin(17) = T—w ' w" <Eo . W) (6.120)
Now, Amin(n) is at least equal to Ay, /1 — W if Ej itself is greater or equal to
that quantity. From condition (6.115), we obtain

E, > No? (5.121)

This condition has been derived under extremely restrictive hypotheses; it is,
in general, overly pessimistic, and smaller values of the initial prediction
error energy can work in practice. The representation of the matrix Ry(n)
in the system can stay accurate during a period of time longer than the
transient phase as soon as the machine word length is sufficiently large.
For example, extensive experiments carried out with a 16-bit microprocessor
and fixed-point arithmetic have shown that a lower bound for E; is about
0.0162 [11]. If the word length is smaller, then E, must be larger. As an
illustration, a unit power AR signal is fed to a predictor with order N =4,
and the quadratic deviation of the coefficients from their ideal values is
given in Figure 6.6 for several values of E,. The weighting factor is W =
0.99 and a word length of 12 bits in fixed-point arithmetic is simulated.
Satisfactory operation of the algorithm is obtained for £, > 0.1.

Finally, the above derivations show that the initial error energies cannot
be taken arbitrarily small.

6.8. BOUNDING PREDICTION ERROR ENERGIES

The robustness of LS algorithms to roundoff errors can be improved by
adding a noise sequence to the input signal. The smallest eigenvalue of the
input AC matrix is increased by the additive noise power with that method,
which can help satisfy inequality (6.115). However, as mentioned in Chapter
5, a bias is introduced on the prediction coefficients, and it is more desirable
to use an approach bearing only on the algorithm operations.
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FIG. 6.6 Coefficient deviations for several initial error energy values.

When one considers condition (6.115), one can observe that, for W and
N fixed, the only factor which can be manipulated is A.;,, the minimal
eigenvalue of the N x N input signal AC matrix. That factor is not available
in the algorithm. However, it can be related to the prediction error energies,
which are available.

From a different point of view, if the input signal is predictable, as seen in
Section 2.9, the steady-state prediction error is zero for an order N suffi-
ciently large. Consequently, the variables E,(n) and Ej,(n) can become arbi-
trarily small, and the rounding process eventually sets them to zero, which is
unacceptable since they are used as divisors. Therefore a lower bound has to
be imposed on error energies when the FLS algorithm is implemented in
finite precision hardware. A simple method is to introduce a positive con-
stant C in the updating equation

Em+1)=WE,n) +e,mn+ De,(n+1)+C (6.122)

If o2 denotes the prediction error power associated with a stationary input
signal, the expectation of E,(n) in the steady state is
o2+ C
1-Ww

E[E,(n)] = (6.123)
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The same value would have been obtained with the weighting factor W'
satisfying

2 2
oo+C o,

1-w 1-Ww
and a first global assessment of the effect of introducing the constant C is
that it increases the weighting factor from W to W', which helps satisfy
condition (6.115).

As concerns the selection of a value for C, it can be related to the initial
error energy E, and a reasonable choice can be:

C=(1-W)E, (6.125)

(6.124)

In fact both E; and C depend on the performance objectives and the infor-
mation available on the input signal characteristics.

A side effect of introducing the constant C is that it produces a leakage in
the updating of the backward prediction coefficient vector, which can con-
tribute to counter roundoff error accumulation.

Adding a small constant C to E,(n + 1) leads to the adaptation gain

’f(n+1)%Gl(n+1)—2‘é((2j_ll))[_l4(;+l)] (6.126)
The last element is
m*(n+1) ~ m@n + 1)+£8?‘:2l((’;_’_;11))a,\,(n+ 1HC (6.127)
and the backward prediction updating equation in these conditions takes the
form
Bn+ 1)~ (1 —y,)B0n) + G(n+ 1)e,(n+ 1) (6.128)
with
E[yy) ~ C(1 — W)E[ay(n + D]/ E(E,(n + 1)] (6.129)

However, it must be pointed out that, with the constant C, the algorithm
is no longer in conformity with the LS theory and the theoretical stability is
not guaranteed for any signals. The detailed analysis further reveals that the
constant C increases the prediction error ratio ¢(n). Due to the range limita-
tions for ¢(#) that can lead to the algorithm divergence for some signals. For
example, with sinusoids as input signals, it can be seen, using the results
given in Section 3.7 of Chapter 3, that ¢(n) can take on values very close to
unity for sinusoids with close frequencies. In those cases the value of the
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constant C has to be very small and, consequently, a large machine word
length is needed.
The roundoff error accumulation process is investigated next.

6.9. ROUNDOFF ERROR ACCUMULATION AND ITS
CONTROL

Roundoff errors are generated by the quantization operations which gen-
erally take place after the multiplications and divisions. They are thought to
come from independent sources, their spectrum is assumed flat, and their
variance is q2 /12, where ¢ is the quantization step size related to the internal
word length of the machine used. The particularity of the FLS algorithms,
presented in the previous sections, is that accumulation can take place [6-9].
Basically, the algorithm given in Figure 6.4, for example, consists of three
overlapping recursions. The adaptation gain updating recursion makes the
connection between forward and backward prediction coefficient recursions,
and these recursions can produce roundoff noise accumulation [12].

Let us assume, for example, that an error vector AB(n) is added to the
backward prediction coefficient vector B(n) at time n. Then if we neglect the
scalar term in (6.87) and consider the algorithm in Figure 6.4, the deviation
at time n+ 1 is

AB(n + 1) = [Iy[1 + m(n + Dey(n + 1)] = G(n + DX '(n + 1)]AB(n)
— AB(n)AB' (mym(n+ DX (n+ 1) (6.130)

If AB(n) is a random vector with zero mean, which is the case for a rounding
operation, the mean of AB(n+ 1) is not zero because of the matrix
AB(n)AB'(n) in (6.130) and because m(n + 1) is related to the input signal,
the expectation of the product m(n + 1)X(n + 1) is, in general, not zero. The
factor of AB(n) is close to a unity matrix—it can even have eigenvalues
greater than 1—thus the introduction of error vectors AB(n) at each time n
produces a drift in the coefficients. The effect is a shift of the coefficients from
their optimal values, which degrades performance. However, if the minimum
eigenvalue A, of the (N + 1) x (N 4 1) input AC matrix is close to the
signal power o2, the prediction error power, also close to o2 because of (5.6),
is an almost flat function of the coefficients and the drift can continue to the
point where the resulting deviation of the eigenvalues and eigenvectors of the
represented matrix R%(n) makes ¢(n) exceed its limits (6.41). Then, the algo-
rithm is out of the LS situation and generally becomes unstable.

It is important to note that long-term roundoff error accumulation
affects the backward prediction coefficients but, except for the case
N =1, has much less effect on the forward coefficients. This is mainly
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due to the shift in the elements of the gain vector, which is performed by
equation (6.81).

An efficient technique to counter roundoff error accumulation consists of
finding a representative control variable and using it to prevent the coeffi-
cient drift [13].

Since we have observed that roundoff error accumulation occurs in the
backward prediction section of the algorithms, it seems desirable to find an
alternative way to compute the backward linear prediction error e,(n + 1).

Combining equations (6.85) and (6.56) yields

ep(n+ 1) = m(n + V)Ey(n + 1)/o(n + 1) (6.131)

Now, considering the forward linear prediction matrix equation and
computing the first row, the equivalent of equation (5.72) is obtained:

det Ry (n)

S A | 6.132
det Rysy(n+ 1) an+1) (6.132)

The same procedure can be applied to backward linear prediction, to
yield

 detRy(n+1)

=2 - F 1 .1
det Ry, (n+1) b+ 1) (6.133)

Combining the two above expressions with (6.40) we get

en+1)=WYE,(m+ 1)/E,(n+ 1) (6.134)
and finally
ey(n+ 1) =mmn+ D)W NE,n+1) (6.135)

Thus, the backward linear prediction error can be computed from variables
updated in the forward prediction section of the algorithm, and the variable

Em+D=eyn+1)—mn+DWVE,mn+1) (6.136)

can be considered representative of the roundoff error accumulation in
algorithm FLSI. It can be minimized by a recursive least squares procedure
applied to the backward linear prediction coefficient vector and using adap-
tation gain G(n + 1). In fact, to control the roundoff error accumulation, it
is sufficient to update the backward prediction coefficient vector as follows:

B(n+ 1) = B(n) + G(n + Dey(n+ 1) + £n + 1)] (6.137)
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As concerns algorithm FLS2, a similar procedure can be employed, based
on the variable m’(n + 1) defined by equation (6.108). The correction vari-
able is

En+1)=[x(n+1—N)—m'(n+ DEyn+1)]—BmXn+1) (6.138)

and the roundoff error control can be implemented with no additional
multiplication if, in Figure 6.5, the backward coefficient updating recursion
is replaced by

G'(n+ Diep(n+1) +ep(n+1) —m'(n+ DEy(n)]

B(n+1)=B(n) + a1

(6.139)

The FORTRAN program of the corresponding algorithm, including round-
off error accumulation control in the simplest version, is given in Annex 6.2.

It must be pointed out that there is no formal proof that the approaches
presented in this section avoid all possible roundoff error accumulation;
and, in fact, more sophisticated correction techniques can be devised.
However, the above techniques are simple and have been shown to perform
satisfactorily under a number of circumstances.

An alternative way of escaping roundoff error accumulation is to avoid
using backward prediction coefficients altogether.

6.10. A SIMPLIFIED ALGORITHM

When the input signal is stationary, the steady-state backward prediction
coefficients are equal to the forward coefficients, as shown in Chapter 5, and
the following equalities hold:

B(n) =JyA(n), E,(n)= Eyn) (6.140)

This suggests replacing backward coefficients by forward coefficients in FLS
algorithms. However, the property of theoretical stability of the LS principle
is lost. Therefore it is necessary to have means to detect out-of-range values
of LS variables. The variable a(n) = W /@(n) can be used in combination
with the gain vector G'(n). The simplified algorithm obtained is given in
Figure 6.7. It requires 7N + 5 multiplications and two divisions (inverse
calculations). The stability in the initial phase, starting from the idle state,
can be critical. Therefore, the magnitude of «(n) is monitored, and if it falls
below W the system is reinitialized.

In some cases, particularly with AR input signals when the prediction
order exceeds the model order, the simplified algorithm turns out to provide
faster convergence than the standard FLS algorithms with the same para-
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ALGORITHM S.FL S.

AYAILABIF AT TIME 0
COEFFICIENTS OF ADAPTIVE FILTER - H(n)
" FORWARD PREDICTOR : Aln)
DATA VECTOR - X(n)
ADAPTATION GAIN .6(n}
PREDICTION ERROR ENERGY E,(n)

PREDICTION ERROR RATIO .ex(n)
WEIGHTING FACTOR W

TA AT o,
Input signal - x{n+1) ; Reference yin+1!)

ADAPTATION GAIN UPDATING
e,(n+1) = x(n+1) - Al(n) x(n)

A(n+1) = Aln) + G(n) e (n+1) /ox(n)
Egln+1) = (Egln) + ep(n+t) e,ln+ 1) 70d(n) } W
0] eym1){ ] Min+1 JI
Gylowt)=| |+ =---ee- =
Gin)  Eqln) -A[n)J m(n+lJJ

G{at1) = Min+1) + min+1}J,; Aln)
ocne1) = W+ XHn+1) Glne1)
ADAPTIVE FILTER

e(n+1) = y(n+1) - H(n) X(n+ 1)
H(n+1) = H{n) + Gin+1) e(n+1} /x(n+1)

FIG. 6.7 Computational organization of a simplified LS-type algorithm.

meters because the backward coefficients start with a value which is not zero
but may be close to the final one.

6.11. PERFORMANCE OF LS ADAPTIVE FILTERS

The main specifications for adaptive filters concern, as in Section 4.2, the
time constant and the system gain. Before investigating the initial transient
phase, let us consider the filter operation after the first data have become
available.
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The set of output errors from time 1 to n constitute the vector

Ce)] Ty [x1) 0 0 ... 0
e(2) y(2) x(2) x(1) o .. 0
e(3) ¥(3) x(3) x(2) x(1) - 0
| [y | |xwn xv-n X
ey | L | L xn xn—1) X+ 1= N |
ho(n)
I
x lfn) (6.141)
hy—1(n)

Recall that the coefficients at time » are calculated to minimize the sum of
the squares of the output errors. Clearly, for n = 1 the solution is

v

ho(1) =) hi(1)=0, 2<i<N-1 (6.142)
Forn=2,
y(1)
hy(2) = 0
LG RPN (6.143)
2= ) ho(2) ——= )

h(2)=0, 3<i<N-1

The output of the adaptive LS filter is zero from time 1 to N, and the
coefficients correspond to an exact solution of the minimization problem. In
fact, the system of equations becomes overdetermined, and the LS proce-
dure starts only at time N + 1.

In order to get simple expressions for the transient phase, we first analyze
the system identification, shown in Figure 6.8. The reference signal is

y(n) = X'(n)Hopl + b(n) (6.144)

where h(n) is a zero mean white observation noise with power E,;,, uncor-
related with the input x(n). H,y is the vector of coefficients which the
adaptive filter has to find.

The coefficient vector of the LS adaptive filter at time 7 is
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FIG. 6.8 Adaptive system identification.

H(n) = Ry'(m) Y W' P[X()X'(p)Hop, + X (p)D(p)] (6.145)
p=1
or, in concise form,
H(n) = Hyp + Ry'(n) Z WX (p)b(p) (6.146)
p=1

Denoting by AH(n) the coefficient deviation

AH(n) = H(n) — H, (6.147)

pt

and assuming that, for a given sequence x(p), b(p) is the only random vari-
able, we obtain the covariance matrix

n

E[AH(m)AH'(n)] = EmmRrv‘(n)[Z W2<”"’>X<p)Xf(p>} Ry'(m)  (6.148)
p=1

For W =1,

E[AH(M)AH'(n)] = EpinRy' (1) (6.149)
At the output of the adaptive filter the error signal at time 7 is

e(n) =y(n) — X'MHmn —1) = b(n) — X'(M)AH(n — 1) (6.150)

The variance is

Texren Copyrightn 2001 by Marcel Dekker,Inc.All Rights Reserved.



E[*(0)] = Epin + X' (W E[AH(n — )AH'(n — 1)]X(n) (6.151)
and, for W =1,
E[¢* ()] = Eninl1 + X' (M RY' (n — DX ()] (6.152)

Now, the mean residual error power E(n) is obtained by averaging over
all input signal sequences. If the signal x(n) is a realization of a stationary
process with AC matrix R, ., for large n one has

Ry(n) ~ nR,, (6.153)
Using the matrix equality

X'(n)Ry (n) X (n) = trace[Ry' (n) X (n) X' (n)] (6.154)
and (6.153), we have

N
Er(n) = Emm(l + m) (6.155)
If the first datum received is x(1), then, since the LS process starts at time
N + 1, the mean residual error power at time 7 is:

ER(n)zEmin(l+L), n>=N+1 (6.156)
n—N

Thus, at time n = 2N, the mean residual error power is twice, or 3 dB above,
the minimal value. This result can be compared with that obained for the
LMS algorithm, which, for an input signal close to being a white noise and a
step size corresponding to the fastest start, is

2n
)~ Ey = (E0) = Enl (1= ) (6,157

which was derived by applying results obtained in Section 4.4

The corresponding curves in Figure 6.9 show the advantage of the theo-
retical LS approach over the gradient technique when the system starts from
the idle state [14].

Now, when a weighting factor is used, the error variance has to be com-
puted from (6.148). If the matrix Ry(n) is approximated by its expectation
as in (6.153), one has

1—w"
RN(n) ~ 1 — W Rxx
n 1— WZn (6158)
Z WZ(H—[’)X(p)XZ(p) ~ WRXX

p=1

which, using identity (6.154) again, gives
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0 N

FIG. 6.9 Learning curves for LS and LMS algorithms.

1—-Wwi14+Ww"
ER(n)%Emin[l—i-Nl_l_Wl_ W”] (6.159)
For n — oo,
1-Ww
Ep(0) = Emin[l + N1 T W] (6.160)

This expression can be compared to the corresponding relation (4.35) in
Chapter 4 for the gradient algorithm. The weighting factor introduces an
excess MSE proportional to 1 — W.

The coefficient learning curve is derived from recursion (6.23), which

yields
AH(n+1)=[Iy — Ry (n+ DX(n+ DX'(n + 1)]AH(n) (6.161)
+ Ry (n+ DX+ Db(n+ 1) '

Assuming that AH(n) is independent of the input signal, which is true for
large n, and using approximation (6.158), one gets

1-w
E[AH(n+ 1) = <1 — W)E[AH(n)] (6.162)
Therefore, the learning curve of the filter of order N is similar to that of

the first-order filter analyzed in Section 6.1, and for large » the time constant
is T=1/(1 — W). It is that long-term time constant which has to be con-
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sidered when a nonstationary reference signal is applied to the LS adaptive
filter. In fact, 1/(1 — W) can be viewed as the observation time window of
the filter, and, as in Section 4.8, its value is chosen to be compatible with the
time period over which the signals can be considered as stationary; it is a
trade-off between lag error and excess MSE.

6.12. SELECTING FLS PARAMETER VALUES

The performance of adaptive filters based on FLS algorithms differs from
that of the theoretical LS filters because of the impact of the additional
parameters they require. The value of the initial forward prediction error
power E, affects the learning curve of the filter.

The matrix Ry (n), introduced in Section 6.7, can be expressed by

M) = [Ty + W' Ry(O)RY' (] Ry(n) (6.163)

As soon as n is large enough, we can use (6.25), to obtain its inverse:

[Rvm] ™" ~ Ry' (lly — W Ry(0) Ry ()] (6.164)
In these conditions, the deviation A A(n) of the prediction coefficients due to
Ey is

AA(n) = W"Ry (n)Ry(0)A(n) (6.165)
and the corresponding excess MSE is

AE(n) =[AAM)] R AAn) (6.1606)
Approximating Ry(n) by its expectation and the initial matrix Ry(0) by
Eyly gives

AE(n) ~ W"ENI — W)* A (n)Ry, A(n) (6.167)

for W close to 1,
In[AE(n)] ~ 2In[Ey(1 — W)] + ln[Al(n)R;xlA(n)] —2n(l1 = W) (6.168)

For example, the curves || AA(n)||* as a function of n are given in Figure
6.10 for N =2, x(n) = sin(n%), W = 0.95, and three different values of the
parameter E.

The impact of the initial parameter £, on the filter performance is clearly
apparent from expression (6.168) and the above example. Smaller values of
E, can be taken if the constant C of Section 6.8 is introduced.

The constant C in (6.122) increases the filter long-term time constant
according to (6.124).

The ratio (1 — W')/(1 — W) is shown in Figure 6.11 as a function of the
prediction error o-. It appears that the starting value o2/(o2 + C) should be
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FIG. 6.10 Coecfficient deviations for several prediction error energy values with
sinusoidal input.

1-w

1-W 6.2

[ S e

s mm mm E o Er o oW we w ow e owm o

05¢---ccma--

bt e e - -

e -———

0

-
SO
N

FIG. 6.11 Weighting factor vs. prediction error power with constant C.
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made as close to unity as possible. So, C should be smaller than the input
signal power o2, which in turn, through (6.115), means that W approaches

unity.

If C is significantly smaller than o2, the algorithm can react quickly to
large changes in input signal characteristics, and slowly to small changes. In
other words, it has an adjustable time window.

Another effect of C is to modify the excess misadjustment error power,
according to equation (6.160), in which W' replaces W.

Nonstationary signals deserve particular attention. The range of values
for C depends on E; and thus on the signal power. Thus, if the input signal
is nonstationary, it can be interesting to use, instead of C, a function of the
signal power. For example, the following equation can replace (6.122):

E 1+ 1) = Ey(n) + e,(n + De(n+ 1) + WNIC, + Cox’(n+ 1)]

(6.169)

where C; and C, are positive real constants, chosen in accordance with the
characteristics of the input signal.

For example, an adequate choice for a speech sentence of unity long-term
power has been found to be C; = 1.5 and C, = 0.5. The prediction gain
obtained is shown in Figure 6.12 for several weighting factor values. As a
comparison, the corresponding curve for the normalized LMS algorithm is

also shown.

An additional parameter, the coefficient leakage factor, can be useful in

FLS algorithms.

PREDHCTION GAIN
|

db
— FLS
is o -
+ -\\\.\
e

T S / T

[ ., M8
. WEIGHTING FACTOR

5 16 32 o4 128 256 512 1024,

(-w) T or 5~

FIG. 6.12 Prediction gain vs. weighting factor or step size for a speech sentence.
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From the sequence of operations given in Figures 6.4 and 6.5, it appears
that, if the signal x(n) becomes zero, the prediction errors and adaptation
gain decay to zero while the coefficients keep a fixed value. The system may
be in the initial state considered in the previous sections, when the signal
reappears, if a leakage factor is introduced in coefficient updating equations.

Furthermore, such a parameter offers the advantages already mentioned
in Section 4.6—namely, it makes the filter more robust to roundoff errors
and implementation constraints.

However, the corresponding arithmetic operations have to be introduced
with care in FLS algorithms. They have to be performed outside the gain
updating loop to preserve the ratio of a posteriori to a priori prediction
errors. For example, in Figure 6.4 the two leakage operations

An+ 1) =1 —p)A(n+1),
0<y<kl (6.170)
Bin+1)=(—y)Bn+1),

can be placed at the end of the list of equations for the adaptation gain
updating. Recall that the leakage factor introduces a bias given by expres-
sion (4.69) on the filter coefficients. Note also that, with the leakage factor,
the algorithm is no longer complying with the LS theory and theoretical
stability cannot be guaranteed for any signals.

6.13. WORD-LENGTH LIMITATIONS AND
IMPLEMENTATION

The implementation of transversal FLS adaptive filters can follow the
schemes used for gradient filters presented in Chapter 4. The operations
in Figure 6.4, for example, correspond roughly to a set of five gradient filters
adequately interconnected. However, an important point with FLS is the
need for two divisions per iteration, generally implemented as inverse cal-
culations.

The divider E,(n) is bounded by

2
min{Eo,&} < En) < li’XW (6.171)

and the constant C controls the magnitude range of its inverse. Recall that
the other dividers are in the interval [0, 1].

Overall, the estimations of word lengths for FLS filters can be derived
using an approach similar to that which is used for LMS filters in Section
4.5. For example, let us consider the prediction coefficients.
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In two extreme situations, the FLS algorithm is equivalent to an LMS
algorithm with adaptation step sizes:

1 1
Smax = ———>» Omin=——— 6.172
e )‘min(n) e )‘-max(n) ( )
Now, taking Ap..(n) & Ag./(1 — W) and recalling that A, < Nai, we
obtain an estimation of the prediction coefficient word length b, from equa-
tion (4.61) in Chapter 4:

bc ~ 10g2 (1 ivW> + logZ(Gp) + 1ng(amax) (6173)
where G, is the prediction gain and ay,, is the magnitude of the largest
prediction coefficient, as in Section 4.5. Thus, it can be stated that FLS
algorithms require larger word lengths than LMS algorithms, and the dif-
ference is about log, N.

The implementation is guided by the basic constraint on updating opera-
tions, which have to be performed in a sample period. As shown in previous
sections, there are different ways of organizing the computations, and that
flexibility can be exploited to satisfy given realization conditions. In soft-
ware, one can be interested in saving on the number of instructions or on the
internal data memory capacity. In hardware, it may be important, particu-
larly in high-speed applications using multiprocessor realizations, to rear-
range the sequence of operations to introduce delays between internal filter
sections and reach some level of pipelining [15]. For example, the algorithm
based on a priori errors can be implemented by the following sequence at
time n + 1:

e,(n+1)— ep(n) > E,(n) > G,(n) > B(n) > G(n) > An+1) —»> g,(n+1)

The corresponding diagram is shown in Figure 6.13 for a prediction coeffi-
cient adaptation section. With a single multiplier, the minimum multiply
speed is five multiplications per sample period.

6.14. COMPARISON OF FLS AND LMS
APPROACHES—SUMMARY

A geometrical illustration of the LS and gradient calculations is given in
Figure 6.14. It shows how the inverse input signal AC matrix R, rotates the
cost function gradient vector Grad J and adjusts its magnitude to reach the
optimum coefficient values.
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FIG. 6.14 Geometrical illustration of LS and gradient calculations.

Texren Copyrightn 2001 by Marcel Dekker,Inc.All Rights Reserved.



In FLS algorithms, real-time estimations of signal statistics are computed
and the maximum convergence speed and accuracy can be expected.
However, several parameters have to be introduced in realizations, which
limit the performance; they are the weighting factor, initial prediction error
energies, stabilization constant, and coefficient leakage factor. But if the
values of these parameters are properly chosen, the performance can stay
reasonably close to the theoretical optimum.

In summary, the advantages of FLS adaptive filters are as follows:

Independence of the spread of the eigenvalues of the input signal AC matrix
Fast start from idle state
High steady-state accuracy

FLS adaptive filters can upgrade the adaptive filter overall performance in
various existing applications. However, and perhaps more importantly, they
can open up new areas. Consider, for example, spectral analysis, and let us
assume that two sinusoids in noise have to be resolved with an order N = 4
adaptive predictor. The results obtained with the LMS algorithm are shown
in Figure 6.15. Clearly, the prediction coefficient values cannot be used
because they indicate the presence of a single sinusoid. Now, the same
curves for the FLS algorithm, given in Figure 6.16, allow the correct detec-
tion after a few hundred iterations. That simple example shows that FLS
algorithms can open new possibilities for adaptive filters in real-time spectral
analysis.

+J +0.6

e
/
]
{
Ji
!

0.3

| 1

-J 0.
ZEROS 0.6 COEFFICIENTS

FIG. 6.15 LMS adaptive prediction of two sinusoids with frequencies 0.1 and 0.15.
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FIG. 6.16 FLS adaptive prediction of two sinusoids.

EXERCISES

1. Verify, through matrix manipulations, the matrix inversion lemma
(6.24). Use this lemma to find the inverse M~ of the matrix

M =8Iy + XX'

where X is an N-element nonzero vector. Give the limit of M~' when
8 — 0. Compare with (6.35).

2. Calculate the matrix R,(5) for the signal x(n) = sin(n%) and W =0.9.
Compare the results with the signal AC matrix. Calculate the likeli-
hood variable 6(5). Give bounds for 6(n) as n — oc.

3. Use the recurrence relationships for the backward prediction coeffi-
cient vector and the correlation vector to demonstrate the backward
prediction error energy updating equation (6.67).

4. The signal

. (T
x(n) = s1n<n E)’ n=0
x(n) =0, n<0

is fed to an order N =4 FLS adaptive predictor. Assuming initial
conditions 4(0) = B(0) = G(0) = 0, calculate the variables of the algo-
rithm in Figure 6.4 for time n =1 to 5 when W =1 and for initial
error energies £y, =0 and £y, = 1. Compare the coefficient values to
optimal values. Comment on the results.
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5. Inan FLS adaptive filter, the input signal x(n) is set to zero at time N,
and after. Analyze the evolution of the vectors A(n), B(n), G(n) and the
scalars E,(n) and «a(n) for n = N,.

6. Modify the algorithm of Figure 6.4 to introduce the scalar «a(n) with
the minimum number of multiplications. Give the computational orga-
nization, and count the multiplications, additions, and memories.

7. Study the hardware realization of the algorithm given in Figure 6.5.
Find a reordering of the equations which leads to the introduction of
sample period delays on the data paths interconnecting separate filter
sections. Give the diagram of the coefficient adaptation section.
Assuming a single multiplier per coefficient, what is the minimum
multiply speed per sample period.

ANNEX 6.1 FLS ALGORITHM BASED ON A PRIORI
ERRORS

SUBROUTINE FLS1(N,X,VX,A,B,EA,G,W,IND)

COMPUTE THE ADAPTATION GAIN (FAST LEAST SQUARES)
N =FILTER ORDER

X = INPUT SIGNAL : x(n+1)

VX =N-ELEMENT DATA VECTOR : X (n)

A = FORWARD PREDICTION COEFFICIENTS

B = BACKWARD PREDICTION COEFFICIENTS

EA = PREDICTION ERROR ENERGY

G =ADAPTATION GAIN

W =WEIGHTING FACTOR

IND = TIME INDEX

OO OO N NO NN O NN Ne!

DIMENSION VX (15),A(15),B(15),G(15),G1(16)
IF(IND.GT.1)GOTO30

a N

INITIALIZATION

DO20I=1,15
A(I)=0.
B(I)=0.
G(I)=0.
VX(I)=0.

20 CONTINUE
EA=1.

30 CONTINUE

@]

C ADAPTATION GAIN CALCULATION

MARCEL
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EAV=X
EPSA=X
D040I=1,N

40 EAV=EAV-A(I)*VX(I)
DO50I=1,N
A(I)=A(I)+G(I)*EAV
EPSA=EPSA-A(I)*VX(I)

50 CONTINUE
EA=W*EA+EAV*EPSA
G1(1)=EPSA/EA
DO60I=1,N

60 GLl(I+1)=G(I)-A(I)*G1l(1)
EAB=VX (N)
DO70I=2,N
J=N+1-I

70 VX (J+1)=VX(J)
VX (1)=X
DO80I=1,N

80 EAB=EAB-B(I)*VX(I)
GG=1.0-EAB*G1(N+1)
DO90I=1,N
G(I)=G1l(I)+G1(N+1)*B(I)

90 G(I)=G(I)/GG
DO100I=1,N

100 B(I)=B(I)+G(I)*EAB
RETURN
END

ANNEX 6.2 FLS ALGORITHM BASED ON ALL THE
PREDICTION ERRORS AND WITH
ROUNDOFF ERROR CONTROL
(SIMPLEST VERSION)

SUBROUTINE FLS2(N,X,VX,A,B,EA,EB,GP,ALF,W,IND)

COMPUTES THE ADAPTATION GAIN (FAST LEAST SQUARES)
N =FILTER ORDER

X = INPUT SIGNAL : x(n+1)

VX =N-ELEMENT DATA VECTOR : X(n)

A = FORWARD PREDICTION COEFFICIENTS

B =BACKWARD PREDICTION COEFFICIENTS

EA =PREDICTION ERROR ENERGY - EB

GP =''APRIORI’'’ ADAPTATION GAIN

oo NOH NS NN NS!

MARCEL
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ALF = PREDICTION ERROR RATIO
W =WEIGHTING FACTOR
IND = TIME INDEX

[ONONONS!

DIMENSION VX (15),A(15),B(15),G(15),G1(16),GP(15)
IF(IND.GT.1)GOTO30

QN

INITIALIZATION

DO20I=1,15
A(I)=0.
B(I)=0.
GP(I)=0.
VX(I)=0.

20 CONTINUE
EA=1.
EB=1./W**N
ALF=W

30 CONTINUE

a N

ADAPTATION GAIN CALCULATION

EAV=X
D0O40I=1,N

40 EAV=EAV-A(I)*VX(I)
EPSA=EAV/ALF
G1(1)=EAV/EA
EA=(EA+EAV*EPSA) *W
DO50I=1,N

50 G1(I+1)=GP(I)-A(I)*G1l(1l)
DO60I=1,N

60 A(I)=A(I)+GP(I)*EPSA
EAB1=G1l(N+1)*EB
EAB=VX(N)-B(1)*X
DO65I=2,N

EAB=EAB-B(I)*VX(I-1)

65 CONTINUE
DO70I=1,N

70 GP(I)=G1(I)+B(I)*GL(N+1)
ALF1=ALF+G1l(1)*EAV
ALF=ALF1-G1(N+1)*EAB
EPSB=(EAB+EAB-EAB1) /ALF
EB=(EB+EAB*EPSB) *W
DO80I=1,N

MARCEL
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80 B(I)=B(I)+GP(I)*EPSB
DO90I=2,N
J=N+1-T
90 VX (J+1)=VX(J)
VX (1)=X
RETURN
END
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7
Other Adaptive Filter Algorithms

The derivation of FLS algorithms for transversal adaptive filters with N
coefficients exploits the shifting property of the vector X(n) of the N most
recent input data, which is transferred to AC matrix estimations. Therefore,
fast algorithms can be worked out whenever the shifting property exists. It
means that variations of the basic algorithms can cope with different situa-
tions such as nonzero initial state variables and special observation time
windows, and also that extensions to complex and multidimensional signals
can be obtained.

A large family of algorithms can be constituted and, in this chapter, a
selection is presented of those which may be of particular interest in differ-
ent technical application fields.

If a set of N data X(1) is already available at time n = 1, then when the
filter is ready to start it may be advantageous to use that information in the
algorithm rather than discard it. The so-called covariance algorithm is
obtained [1].

7.1. COVARIANCE ALGORITHMS

The essential link in the derivation of the fast algorithms given in the pre-
vious chapter is provided by the (N + 1) x (N + 1) matrix Ry, (n+ 1),
which relates the adaptation gains G(n+ 1) and G(n) at two consecutive
instants. Here, a slightly different definition of that matrix has to be
taken, because the first (N + 1)-element data vector which is available is
X1(2):
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(X121 = [x(2), X'(1)]
Thus

Rysi(m) =Y WX, (p)Xi{(p) (7.1)
p=2

The LS procedure for the prediction filters, because of the definitions, can
only start at time » = 2, and the correlation vectors are

M) =" W' x(p)X(p— 1)
p=2

n (7.2)
) =" W"x(p — N)X(p)
p=2
The matrix Ry, ;(n+ 1) can be partitioned in two ways:
S W) | [+ 1Y
Rynlmt D =142 i, (7-3)
vin+1) 1 Ry(n)
and
[ Ry(n+1) — W"X(1)X'(1) Rn+1)
RN+1(I’Z + 1) N TP b ........... [ ........... n+ln+1_2 ........ (7.4)
[ry(n+1)] EZW "x"(p—N)

Now the procedure given in Section 6.4 can be applied again. However,
several modifications have to be made because of the initial term
WX (1)X'(1) in (7.4).

The (N + 1)-element adaptation gain vector G;(n+ 1) can be calculated
by equation (6.73) in Chapter 6, which yields M(n+ 1) and m(n + 1).
Equation (7.4) leads to

[Ry(n+ 1) — W'X(D)X' (DM@ + 1) +m@n+ D+ 1) = X(n+ 1)
(7.5)

Similarly the backward prediction matrix equation (6.74) in Chapter 6 com-
bined with partitioning (7.4) leads to

[Ry(n+ 1) = W"X(HX' (DB + 1) = i(n+1) (7.6)
Now the definition of G(n + 1) yields
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Gn+1)=Ry'(n+ DX+ 1) =[Iy — W'Ry' (n+ DX(DHX'(1)]
X [Mm+1)+mn+ 1)Bmn+ 1)]
The difference with equation (6.86) of Chapter 6 is the initial term, which
decays to zero as time elapses. The covariance algorithm, therefore, requires

the same computations as the regular FLS algorithm with, in addition, the
recursive computation of an initial transient variable. Let us consider the

(1.7)

vector

D(n+1) = W"Ry' (n+ DX (1) (7.8)
A recursion is readily obtained by

Ry(n+1)D(n+ 1) = W"X(1) (7.9)

which at time n corresponds to
Ry(n)D(n) = W 'x(1)

Taking into account relationship (6.47) in Chapter 6 between Ry(n) and
Ry(n+ 1), one gets

D(n+ 1) =[Iy — Ry'(n+ DX (n + 1)X'(n + 1)]D(n) (7.10)
which with (7.7) and some algebraic manipulations yields
Dn+1)= = X (DF(n +11)X’(n Y [Iy — F(n 4+ D)X'(n+ 1)]D(n)
(7.11)
where
F(n) = M(n) + m(n)B(n) (7.12)

The adaptation gain is obtained by rewriting (7.7) as
Gn+1)=[Iy—Dn+ DX (DF(n+1) (7.13)

Finally, the covariance version of the fast algorithm in Section 6.4 is
obtained by incorporating equations (7.11) and (7.13) in the sequence of
operations. The additional cost in computational complexity amounts to 4NV
multiplications and one division.

Some care has to be exercised in the initialization. If the prediction coef-
ficients are zero, 4(1) = B(1) = 0, since the initial data vector is nonzero, an
initially constrained LS procedure has to be used, which, as mentioned in
Section 6.7, corresponds to the following cost function for the filter [1]:

n

Jo(n) =Y W' (p) — X' ()HM) + EgH'(n)W (n)H (n) (7.14)
p=1
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where
W(n) = diag(W", w"=!, ..., wti=)

and E|, is the initial prediction error energy.
In these conditions, the actual AC matrix estimate is

V) =Y WX ()X () + Eg W (n) (7.15)
=1

The value Ry'(1) is needed because
D(1) = Ry (DX (1) = G(1)
It can be calculated with the help of the matrix inversion lemma. Finally,

1
E, + X(HW - (HX(1)

D(1) =G(1) = wl()Xx(1) (7.16)
and for the prediction error energy E (1) = WE,.

The weighting factor W introduces an exponential time observation win-
dow on the signal. Instead, it can be advantageous in some applications—
for example, when the signal statistics can change abruptly—to use a con-
stant time-limited window. The FLS algorithms can cope with that situa-
tion.

7.2. A SLIDING WINDOW ALGORITHM

The sliding window algorithms are characterized by the fact that the cost
function Jgw(n) to be minimized bears on the N, most recent output error
samples:

n

Jswim =Y [yp) — X' @)H®F (7.17)

p=n+1—N,
where N, is a fixed number representing the length of the observation time
window, which slides on the time axis. In general, no weighting factor is
used in that case, W = 1. Clearly, the AC matrix and cross-correlation
vector estimations are

Rym= > XMX' ). ram= Y ypXp) (7.18)

p=n+1-N, p=n+1-N,

Again the matrix Ry, ;(n + 1) can be partitioned as
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n+1
Ryyi(n+1) = Ej[Xg?Uﬁmmr@—m
p=n+2-N,
T R+ e+ ) (7.19)
= | r=ro S
M+1) f Ry
and
n X
Ryp(n+ 1) = zj[X@?QJuﬁmm@—Nn
p=n+2—N,
Ry(n+1) r(n+1) (7.20)
sy Y Po-w
p=n+2—N,

However, the recurrence relations become more complicated. For the AC
matrix estimate, one has

Ry(n+1)=Ry(m)+ X(n+ DX'(n+1) = X(n+1— Np)X'(n+1— Ny)
(7.21)
For the cross-correlation vector,
F(n+1) =71, (n) +ym+ DX+ 1) —y(n+1— No)X(n+1— Noy)
(7.22)
The coefficient updating equation is obtained, as before, from
Ry(n+1DHn+1) =r,(n+1)
by substituting (7.22) and then, replacing Ry(n) by its equivalent given by
(7.21):
Hn+1)=H®n) + Ry (n+ DX+ D[ y(n+ 1) — X'(n+ 1)H(n)]
—Ry'(n+1)=(n+1-Ny)
x[y(n+1—Ny)— X' (n+1— Ny)H(n)]

(7.23)
backward variables are showing up: the backward innovation error is
egn+1)=y(n+1—Ny) — X'(n+1— Ny)H(n) (7.24)

and the backward adaptation gain is

Gon+1) = Ry'(n+ DX(n+1— Ny) (7.25)
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In concise form, equation (7.23) is rewritten as
Hn+1)=Hn)+Gn+ De(n+ 1) — Gy(n+ Dey(n+ 1)

These variables have to be computed and updated in the sliding window

algorithms.

Partitioning (7.19) yields

0 _ x(n+1—N0) _ 80(1(”"'1)

Ryi(n+ 1)[G0(n)] = [ X(n— Ny) 0 (7.26)
with

o+ D) =x(n+1—=Ny) —A'(n+ 1DX(n— Ny) (7.27)
where the forward prediction coefficient vector is

n+1
An+ D =Ry'(m) > xpX@p-1 (7.28)
p=n+2—N,

Similarly, the second partitioning (7.20) yields

Ryii(n+ 1)[Go(n0+ 1)} =X\ (n+1—-N,y) — |:80b(n0+ 1)] (7.29)
with

epn+1)=x(n+1—-Ny—N)—Bn+DXn+1—Ny) (7.30)
and

B(n+1)=Ry'(n+ Di(n+1) (7.31)

Now, combining the above equations with matrix prediction equations,
as in Section 6.4, leads to

[T o goa(n+1) 1 | My(n+1)
Goi(n+ 1) = [G(n)} - an(n—{— ) |:—A(n+ 1)} = |:m(())(n+ 1)] (7.32)

and
Go(n+ 1) = My(n + 1) +%Bm+ 1
e ) (1.33)
M+ =g )

Clearly, the updating technique is the same for both adaptation gains G
(n) and Gy(n). The adequate prediction errors have to be employed.

The method used to derive the coefficient recursion (7.23) applies to
linear prediction as well; hence
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A +1) = A@m) + Ry (X (W[x(n + 1) = X' () A(0)]

g t (7.34)
— Ry (m)X(n — No)[x(n+ 1 — No) — X'(n — No)A(n)]

or, in more concise form,

A(n+1) = A(n) + G(n)e,(n + 1) — Go(n)eg,(n + 1)

Now, the prediction error energy E,(n + 1), which appears in the matrix
prediction equations, is

n+1
En+)= Y xX(p)—A@n+Drin+1) (7.35)
p=n+2—N,

Substituting (7.34) and the recursion for r§,(n + 1) into the above expression,
as in Section 6.3, leads to

Em+1)=E,n+e,mn+ e,(n+1)—ep,(n+ Deg,(n+ 1) (7.36)

The variables needed to perform the calculations in (7.32), and in the same
equation for G;(n+ 1), are available and the results can be used to get the
updated gains.

The backward prediction coefficient vector is updated by

B(n+1)=B(n)+ Gn+ Dey(n+ 1) — Go(n + Deyy(n + 1) (7.37)
which leads to the set of equations:
G(n + D[l —m(n+ ey(n+ 1)]
=Mm+1)+mn+ 1)B(n) — Gy(n+ eg,(n+ ymn + 1)
Go(n + D[1 + my(n + Degp(n + 1)]
= Myn+ 1)+ my(n+ 1)B(n) + G(n + Dey(n + V)my(n + 1)
(7.38)
Finally, letting

TTamynt Degi+ 1)’ T T mn+ Deyn+ 1) (7.39)

we obtain the adaptation gains

Gn+1) = [M(n + 1) + kB(n) — kegy(n + ))Mo(n -+ 1)]

1
1 —key(n+1)
1

(7.40)
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The algorithm is then completed by the backward coefficient updating equa-
tion (7.37).

The initial conditions are those of the algorithm in Section 6.4, the extra
operations being carried out only when the time index n exceeds the window
length N.

Overall the sliding window algorithm based on a priori errors has a
computational organization which closely follows that of the exponential
window algorithm, but it performs the operation twice to update and use its
two adaptation gains. The sequence of operations is given in Figure 7.1 and
the FORTRAN subroutine is given in Annex 7.1.

More efficient sliding window algorithms, but with a less regular struc-
ture, can be worked out by decomposing in two different steps the sequence
of operations for each new input signal sample [2].

As concerns the performance, the analysis of Section 6.11 can be repro-
duced for the sliding window. In system identification, the mean value of the
residual error power can be estimated with the help of equation (6.152),
which leads to

N
ER(I’Z) = Emin(l +—>, n > NO (741)
No
It is interesting to compare with the exponential window and consider equa-
tion (6.160). The window length N, and the forgetting factor W are related
by

1+ W Ny —1
+ W= o

N:— =
Tl w No+1

(7.42)

To study the convergence, let us assume that, at time #n,, the system to be
identified undergoes an abrupt change in its coefficients, from vector H; to
vector H,. Then the definition of H(n) yields

H(n)=RN1<n)< X+ > y(p)X(p)) (7.43)

p=n—N, p=ng+1
For the exponential window, in these conditions one gets

E[H(n) — Hy)] = W"™[H, — H,] (7.44)
and for the sliding window

Ny — (n—np)

E[H(n) — H,] = No

[H] — Hz], ny < n < Ny +N0 (745)

In the latter case, the difference vanishes after N, samples, as shown in
Figure 7.2. It is the main advantage of the approach [3].

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



ALGORITHH FLSSW.

AYAILARME AT TIME 0
COEFFACIENTS OF ADAPTIVE FILTER : H(n)
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DAT A VECTOR - X{n)
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FIG. 7.1 Fast least squares sliding window algorithm.
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FIG. 7.2 Step responses of exponential and sliding window algorithms.

The sliding window algorithm is subject to roundoff errrors accumula-
tion, and the control procedure of Section 6.9 can be applied.

7.3. ALGORITHMS WITH VARIABLE WEIGHTING
FACTORS

The tracking capability of weighted least squares adaptive filters is related to
the weighting factor value, which defines the observation time window of the
algorithm. In the presence of evolving signals, it may be advantageous, in
some circumstances, to continuously adjust the weighting factor, using a
priori information on specific parameters or measurement results.

In the derivation of fast algorithms, the varying weighting factor W (n)
raises a problem, and it is necessary to introduce the weighting operation on
the input signal and the reference signal rather than on the output error
sequence, as previously [4]. Accordingly, the data are weighted as follows at
time n:

n—p
yn), Win—Dyn—=1),..., []_[ Wn— i)]y(p), e
i=1
and the cost function is
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n n—p n—p 2
J(n) = ZH Win— z')}y(m - H’(n)[]’[ Win— i)} D(p)X(p)}
1 i=1

p=1 i=
(7.46)
where D(p) is the diagonal matrix
1 0 . 0
o wp-1) - 0
D(p) = " : (7.47)
N-1
0 0 T wep-9i
i=1
After factorization, the cost function can be rewritten as
n [n—p
J(n) = Z[ W3 (n — i)][y@) — X'(p)D(p)H(m)]’ (7.48)
p=1Li=l

The coefficient vector that minimizes the cost function is obtained through
derivation and it is given by the conventional equation

H(n) = Ry (n)r,(n) (7.49)
but the AC matrix, now, is
Ry(m) = Zl[_j W3 — i)} DX X (G)D) (7.50)
and the cro:s_—cor;elation vector is
ryx(n) = il['ﬁj W2 (n— i)]y(p)D(p)X(p) (7.51)
ped 2

The recurrence relations become

Ry(n+ 1) = W (m)Ry(n) + D(n + DX(n + DX'(n+ 1)D(n + 1)

(7.52)
P+ 1) = WA)r, () + y(n + DD + DX (n + 1)
and, for the coefficient vector
Hn+1)=Hmn+ Gn+ le(n+1) (7.53)
The adaptation gain is expressed by
Gn+1)=Ry'(n+ DHDm+ DX(n + 1) (7.54)

and the output error is
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e+ 1) = y(n+ 1) — X'(n+ )D(n + 1)H(n) (7.55)

The same approach, when applied to forward linear prediction, leads to the
cost function

n n—p 2
E,(n) = Z[[]‘[ W3n — z')}c(p) —X'(p— 1D - HW(p - 1>A<n>}

p=1 i=1
(7.56)
and the prediction coefficient vector is
A(n) = [W*(n — DRy(n — D] 'ri(n) (7.57)

In fact, the delay on the input data vector introduces additional weighting
terms in the equations, and the correlation vector is given by

n [n—p
r(n) = Z[ W2(n — i)i| x(p)W(p — DD — HX(p — 1) (7.58)
p=1Li=1

Exploiting the recurrence relationships for Ry(n) and r§(n) leads to the
following recursion for the prediction coefficient vector:

An+ 1) = A(n) + W n)G(n)e,(n + 1) (7.59)
where e, (n + 1) is the forward a priori prediction error
e,(n+1) = x(n+ 1) — X' (n)D(n) W (n) A(n) (7.60)

Now, the adaptation gain can be updated using a partition of the AC matrix
Ry(n+ 1) as follows:

R 0 n [n+l—p W2 : ] x(p)
N1+ )_Z l—[ (nt1-1) [W(P—I)D(P—I)X(P_l)]

p=1 i=1

[x(p). X'(p = DD(p — HW(p — 1)

(7.61)
and, in a more concise form,
_ | R+ 1) ry(m+1)
Ryp(n+1)= [r?/(n +1) WAmRy() (7.62)

Let us consider the product

0 B x(n) g,(n+1)
RN+1(n+l)[W_l(n)G(n)]_[W(n)D(n)X(n)]_[ 0 } (7.63)

where the a posteriori forward prediction error is
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e,(n+1)=x(n+1)— X' (0)DR)Wn)A(n + 1) (7.64)

The adaptation gain with N + 1 elements is computed by

0 g/(n+1) 1
Giln+1) = [ Wl(n)G(n)} CE)) [ A+ 1)} (7.65)

Then, the updated adaptation gain G(n + 1) is derived from G;(n + 1) using
backward linear prediction equations. The cost function is

n n—p N 2
Ey(n) = Z[]‘[ w3 (n — i)} [x(p - N) []‘[ Wi(p - i)} - Xf(p)D(p)B(n)}
i=1

p=1Li=1

(7.66)
and the backward linear prediction coefficient recursion is
B(n+1)=Bn)+Gn+ Dey(n+1) (7.67)

with

5

N
e(n+1)=x(n+1- N)|: Wn+1-— i):| — B'(n)D(n+ DX (n+1)
1

(7.68)

As in Section 6.4, the backward linear prediction parameters can be used to
compute G(n + 1), which leads to the determination of G(n + 1).

Finally, an algorithm with a variable weighting factor is obtained and it
has the same computational organization as the algorithm in Figure 6.4,
provided that the equations to compute the variables e,(n + 1), A(n + 1),
g,n+1), Gi(n+1), and e,(n+ 1) are modified as above. Of course,
W(n+ 1) is a new datum at time 7.

The approach can be applied to other fast least squares algorithms, to
accommodate variable weighting factors. The crucial option is the weighting
of the signals insead of the output error sequence. Another area where the
same option is needed is forward—backward linear prediction.

7.4. FORWARD-BACKWARD LINEAR PREDICTION

In some applications, and particularly in spectral analysis, it is advanta-
geous to define linear prediction from a cost function which is the sum of
forward and backward prediction error energies [5].

Accordingly, the cost function is the energy of the forward—backward
linear prediction error signal, expressed by
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E(n) = i[w"*f’x(p) — B'm)Jw" ' Dx(p — D
oy (7.69)

F WU x(p — N) — B )W DX (p)]

where J is the coidentity matrix (3.63) and D is the diagonal weighting

matrix
1 0 - 0
0o w ... 0
D=|. . : (7.70)
o o0 ... whl

The objective is to compute a coefficient vector which is used for backward

linear prediction and, also, with elements in reversed order, for forward

linear prediction, which explains the presence of the coidentity matrix J.
The vector of prediction coefficients is expressed by

D(n) = [Ry(n) + W2JIRx(n — D) I I (n) + 3 (n)] (7.71)

where

Ry(n) = 3 WP DX()X' (p)D
p=1

i) = WP x(p)WDX(p — 1) (1.72)
p=1

rh(n) = Z w2 x(p — NYWVDX(p)
p=I

Due to the particular weighting, the recurrence equations for the variables
are

Ry(n) = W?Ry(n — 1) + DX(0)X'(n)D
ra(n) = W% mn — 1) + x(n)WDX(n — 1) (7.73)
r}fv(n) = Wzr}[’\/ n— 1)+ x(n — NyW DX (n)

The same procedure as in the preceding section leads to the recurrence
equation

B(n+1)= Bn)+ WG i(n)e,(n+ 1) + W2Gy(n+ Dey(n+ 1) (7.74)
where the forward adaptation gain is

G1(n) = [Ry(n) + W>JRy(n — DJ]'IWDX (n) (7.75)
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the forward a posteriori prediction error is

e n+1)=x(n+1)— WX'(n)DJB(n + 1) (7.76)
the backward adaptation gain is
G>(n+1) = [Ry(n) + W JRy(n — DJ]'DX(n + 1) (7.77)

and the a posteriori backward prediction error is
e+ 1) =x(n+1—-N)yWY —X'(n+ 1)DB(n+ 1) (7.78)

Since forward prediction and backward prediction are combined, the rela-
tionships between a priori and a posteriori errors take a matrix form

[sa(n + 1)] :[ 1+ W' X' (n)DJG, (n) W X (1) DJIG,(n + 1) }

ep(n+1) W2 X'(n+ 1)DGy(n) 1+ W X' (n+ 1)DGy(n + 1)
e (n+1)
[eb(n N 1)} (7.79)

As concerns the error energy, it is computed by
E(m) =) WXL (p) + WP (p — N = B'm)lJri(n) + iy ()]
p=1

(7.80)
or, in a more concise recursive form,
E(n+1)=W?E®m) +e,(n+ De,(n+ 1)+ ey(n+ Dey(n+ 1) (7.80)

Now, in order to obtain a fast algorithm, it is necessary to introduce an
intermediate adaptation gain U(n) defined by

[Ry(n — 1)+ JRy(n — 1)J]U(n) = DX (n) (7.81)
Exploiting the recursion for Ry(n — 1), one gets
[Ry(n— 1)+ WJRy(n — 2)J + JDX(n — 1)X'(n — 1)DJ]U(n) = DX (n)
(7.82)

Using (7.75) and (7.77), the intermediate adaptation gain U(n) is expressed
in a simple form

Un) = Go(n) — W 'G(n — DX"(n — 1)DJU(n) (7.83)
and more concisely
U(n) = Ga(n) — Gy(n — e, (n) (7.84)

with
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X'(n — 1)DJG,(n)
W+ X'(n — 1)DJG{(n — 1)

e,(n) = (7.85)

The intermediate gain can be used to update G(n). From definitions
(7.75) and (7.81), one gets

Gi(n) = W JU®m) — W U)X (n)DG,(n) (7.86)

or, as above

Gi(n) = W' JU(n) — U(n)e,(n) (7.87)
with
) = X' (n)DJU(n) (7.89)

W24+ X'(n)DU(n)

The updating of the backward linear prediction adaptation gain exploits the
two decompositions of the matrix Ry, (n) as defined by (7.73). After some
algebraic manipulations, one gets

[ Rym) + WPIRy(n = 1)J e (n) + Jréy(n)
[Ryvan) &+ T Risa (] = [ T+ I R+ W Ry - N)}
(7.89)

Then it is sufficient to proceed, as in Chapter 6, to compute the intermediate
adaptation gain with N 4+ 1 elements, denoted U;(n + 1), from the forward
adaptation gain by

s =[O 0D B a0 Ty,

Similarly, with the backward adaptation gain, an alternative expression is
obtained

G,(n+ 1)] N ep(n+1) [—B(n):| _ |:M(n +1)

Ul(n+1):|: 0 5o ' m(n+1):| (7.91)

And, finally, the backward adaptation gain is given by

ep(n+1)

Gy(n+1)= M(n+ 1)+ mn+ 1)B(n), mn+1) = ~Em

(7.92)

This equation completes the algorithm. The list of operations is given in
Figure 7.3 and the FORTRAN program is given in Annex 7.2. Applications
of the FBLP algorithm can be found in real time signal analysis.
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ALGORITHM FL.S.F.A.

AVAIABIE AVTIME N ;

COEFRCENTS CF FORWARD-BACKWARD FREDICTCR | Bt
DATAWECTOR | Xint

FORWARD ADAPTATION GAIN - G1{m

BACKWARD ADAFPTATION GAIN @ G2{n)
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1
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1+ Xty Un)
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1= %M I Gitn)

Sin-1} = Ein) - egin-1] egini) + enins 1) eg(n-1)

2in+1) = Binl -~ Gin) g5in-11+ G2in-1) gnin-1;

FIG. 7.3 Fast least squares forward—backward linear prediction algorithm.

7.5. LINEAR PHASE ADAPTIVE FILTERING

In some applications, like identification and equalization, the symmetry of
the filter coefficients is sometimes required. The results of the above section
can be applied directly in that case [5].

Let us first consider linear prediction with linear phase. The cost
function is

MARCEL
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n t 2 t 2
E(n):qu(p)—B‘z(”)JX(p— 1)] +|:x(p— 1 —N)—B‘fz(”)X(p— 1)] )
p=1

(7.93)

and the coefficients of the corresponding linear prediction filter make a
vector B,(n) satisfying the equation

By(n)

[Ry(n+ 1)+ JRy(n — 1) J] = Jry(n) + riy(n — 1) (7.94)
For simplification purposes, the weighting factor W has been omitted in the
above expressions, which are very close to (7.69) and (7.71) for forward—
backward linear prediction. In fact, the difference is a mere delay in the
backward terms. Therefore, the intermediate adaptation gain can be used.
The linear phase coefficient vector B,(n) can be updated recursively by

Bg(n2+ D_ Bez(n) 4 Ry — 1) 4+ JRy(n — 1) JT™! (7.95)

(JX(m)ea(n + 1) + X (n)egp(n 4 1)]

where the error signals are defined by

e n+1)=x(n+1)— X'(n)w (7.96)
and
SOb(n—i—l):x(n—N)—X’(n—i-l)M (7.97)

2

The linear phase constraint, which is the symmetry of the coefficients, is
imposed if the error signals are equal:

ean+1) = eqp(n+ 1) = 3e(n+ 1) = 3 [x(n + 1) + x(n — N) — X"(n) By(n + 1]
(7.98)

Hence the coefficient updating equation
By(n+ 1) = B,(n) + [U(n) + JU(n)]e(n + 1) (7.99)

where U(n) is the intermediate adaptation gain defined by (7.81). The “a
posteriori” error &(m+ 1) can be computed from the “‘a priori” error
e(n+ 1). Starting from the definitions of the errors, after some algebraic
manipulations, the following proportionality expression is obtained:

e(n+ 1) = e(n + D[1 + X' W)DW[U(n) + JU®)]] (7.100)

As concerns the linear phase adaptive filter, it can be handled in very
much the same way. The cost function is
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n t t 2
T = Z[y(p) — H, w}

p=l

(7.101)

and the coefficient vector H,(n) satisfies

S XX () + X(px () 24 Zy(p) UX(G)+ X (1.102)
p=1

Hence, the recursion
Hy(n+ 1) = Hy(n) + [Un + 1)+ JUG + Dlsy(n + 1) (7.103)

follows, and the error proportionality relationship is

e(n+ ) =gmn+ D1 +X'n+DDW[Un+1)+JUmn+ D]l (7.104)
The ““a priori” error is computed according to its definition by

es(n+ 1) =yn+1)—X'(n+ 1)Hy(n) (7.105)

Finally, a complete algorithm for least squares linear phase adaptive filter-
ing consists of the equations in Figure 7.3 to update the intermediate gain
and the three filter section equations (7.105), (7.104), and (7.103).

The above algorithm is elegant but computationally complex. A simpler
approach is obtained directly from the general adaptive filter algorithm, and
is presented in a later section, after the case of adaptive filtering with linear
constraints has been dealt with.

7.6. CONSTRAINED ADAPTIVE FILTERING

Constrained adaptive filtering can be found in several signal processing
techniques like minimum variance spectral analysis and antenna array pro-
cessing. In fact, many particular situations in adaptive filtering can be
viewed as a general case with specific constraints. Therefore it is important
to be able to include constraints in adaptive algorithms [6].

The constraints are assumed to be linear, and they are introduced by the
linear system

where C is the N x K constraint matrix and F is a K-element response
vector. The set of filter coefficients that minimizes the cost function

Jm) =Y W' y(p) — H'mX ()’ (7.107)

p=1
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subject to the constraint (7.83), is obtained through the Lagrange multiplier
method.
Let us introduce an alternative cost function

J'(n) = Z W[ y(p) — H'(n)X (p)]* + o' C'H(n) (7.108)
p=1

where « is a k-element vector, the so-called Lagrange multiplier vector. The

derivative of the cost function with respect to the coefficient vector is
aJ'(n)
0H(n)

—2Ry(n)H(n) + 2ry(n) + Ca (7.109)

and it is zero for

H(n) = Ry (0)[r,n(n) + 1 Cal (7.110)
Now, this coefficient vector must satisfy the constraint (7.106), which
implies

C'[RY ()[ryx(n) +1 Call = F (7.111)
and

Lo = [C'RY' (m)C'[F — C'RY (n)r,.(n)] (7.112)

Substituting (7.112) into (7.110) leads to the constrained least squares solu-
tion
H(n) = Ry (0)r,(n) + Ry () CLC'RY () CT™'[F = C'Ry' (m)r,(m)]
(7.113)

Now, in a recursive approach, the factors which make H(n) have to be
updated. First let us define the N x k matrix I'(n) by

I'(n) = Ry'(n)C (7.114)
and show how it can be recursively updated. The basic recursion for the AC
matrix yields the following equation, after some manipulation:

Ry'(n+1)= %[R{Vl () — G + DX'(n + DRy ()] (7.115)

Right-multiplying both sides by the constraint matrix C leads to the follow-
ing equation for the updating of the matrix I'(n):

1

P(n+ 1) = 20 + G+ DX+ DI ()] (7.116)
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The second factor to be updated in H(n) as defined by (7.113) is [C'T(n)] ",
and the matrix inversion lemma can be invoked. The first step in the pro-
cedure consists of multiplying both sides of (7.116) by C’ to obtain

C'T(n+1) = % [C'T(n) + C'G(n + D)X () (n)] (7.117)

Clearly, the second term in the right-hand side of the above equation is the
scalar product of two vectors. Therefore, the inversion formula is obtained
with the help of (6.24) as

[C'T(n+ D] = W{C'Tm)]™" + Lt + DX'(n + DT ()[C'T(n)] ™"}
(7.118)
where L(n + 1) is the k-element vector defined by
Lin+ 1) =[CTM] 'C'Gn+ /{1 + X'(n + DI W)[C'T ()] ' C'G(n + 1)}
(7.119)

or in a more concise form, using (7.118),
1
L(n+1) :W[c’r(nJr DI7'C'Gn + 1) (7.120)

Once G(n + 1) is available, the set of equations (7.119), (7.118), (7.116)
constitute an algorithm to recursively compute the coefficient vector
H(n+ 1) through equation (7.113). The adaptation gain G(n+ 1) itself
can be obtained with the help of one of the algorithms presented in
Chapter 6.

7.7. A ROBUST CONSTRAINED ALGORITHM

In the algorithm derived in the previous section, the constraint vector F does
not explicitly show up. In fact, it is only present in the initialization phase
which consists of the two equations

r'0) = Ry'(0)C (7.121)
and
H(0) = T(O)[C'T(0)]'F (7.122)

Due to the unavoidable roundoff errors, the coefficient vector will deviate
from the constraints as time elapses, and a correction procedure is manda-
tory for long or continuous data sequences. In fact, it is necessary to derive a
recursion for the coefficient vector, which is based on the output error
signal. The coefficient vector can be rewritten as
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H(n) = Ry (0)ry(n) + TICT@)] ™' [F — C'RY (n)ry(m)] (7.123)

Now, substituting (7.116) and (7.118) into the above equation at time n + 1,
using expression (7.120) and the regular updating equation for the uncon-
strained coefficient vector, the following recursion is obtained for the con-
strained coefficient vector

Hn+1)=Hmn)+Gn+ e(n+1)— WI'(n+ 1)L(n+ le(n+ 1)

(7.124)
with
en+1)=ymn+1)— HmXn+1) (7.125)
In simplified form, the equation becomes
Hmn+1)=Hm+ P+ 1)Gn+ e(n+1) (7.126)
with the projection operator
P(n+1)=1Iy —Tn+ DCTm+ 1]’ (7.127)

Robustness to roundoff errors is introduced through an additional term
in the recursion, proportional to the deviation from the constraint expressed

as F — C'H(n). Then the recursion becomes
Hn+1)=Hm+ Pn+ )G+ De(n+ 1) (7.128)
+ D+ DICT( + DIT'F = C'H(w)] '

and it is readily verified that the coefficient vector satisfies the constraint for

an}égl.ne factorization can take place, which leads to an alternative expres-
sion

Hn+1)=Pn+DHMN)+ G+ De(n+ 1]+ Mmn+1) (7.129)
where

M@+ 1)=Tn+ DC'TH+ D]'F (7.130)

At this stage, it is worth pointing out that a similar expression exists for the
constrained LMS algorithm as mentioned in Section 4.12. The equations are
recalled for convenience:

Hn+1)=P[Hn)+8X(n+ De(n+ ]+ M (7.131)
with

M = C(C'C)'F, P=1Iy—C(C'O) ! (7.132)
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However, in the LMS algorithm, the quantities M and P are fixed, while
they are related to the signal autocorrelation in the FLS algorithm.

In order to finalize the robust algorithm, it is convenient to introduce the
matrix Q(n), with N x k elements, as

Q(m) = T(IC'T ()] (7.132)
and compute the updated coefficient vector in two steps as follows:

H'(n+1)=H@n)+ Gn+ De(n+1) (7.133)
and then

Hn+1)=H'(n+1)+ 0+ D[F —C'H'(n+1)] (7.134)

In the robust algorithm, Q(n) has to be computed recursively and it must be
free of roundoff error accumulation. The procedure is a direct combination
of (7.116) and (7.118). Let us define the vectors

Un+1)=CGn+1) (7.135)
and
Vin+1)=X'mn+1)0®0n) (7.136)

Now, the recursion is

Un+ D)V (n+1)
1=V'(n+ 1DHUMn+ 1)]
(7.137)

According to the definition (7.132) of the matrix Q(n), in the absence of
roundoff error accumulation, the following equality holds:

C'On+1) =1, (7.138)

Therefore, if Q'(n+ 1) denotes a matrix with roundoff errrors, a correcting
term can be introduced in the same manner as above, and the correct matrix
is obtained as

On+1)=0Q0'(n+ 1)+ C(C'C)"'[I, — C'Q'(n+ 1] (7.139)

Finally, the robust constrained FLS algorithm is given in Figure 7.4. The
number of multiplies, including error correction, amounts to
Nk? + 5Nk + k* + k +2N. Additionally, k divisions are needed. Some
gain in computation is achieved if the term C(C'C)~" in (7.139) is precom-
puted.

It is worth pointing out that the case of linear phase filters can be seen as
an adaptive constrained filtering problem. The constraint matrix for an odd
number of coefficients is taken as

On+1)=[0(n) — Gn+ HV'(n+ 1)][1k +
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» New data at time {74 1): x{n+1) and d(n+1)
» Compute the adaptation gain: g{n+1)
{for examnple, using a FLS algorithm)
& Updale the NxX matrix Q{n+1):
a{n+ D= C'glr+ 1)
v’(n + l) =x'{n+1)Q(n}
. a3 p'{n+1)
! )= - i Wi +————"—
Ot [otn)-sto s+ ] 1+ 2 LD
-
Qi+ =@+ ny+coc]fr, - '@+

« Update the filter coclficients:
eln+i}=d{n+ -k (n)xln+1)
B (n+ )= A{n) + glrr+ e+ 1)
b+ )= i (n+ 1)+ Qn+ 1] f —C'#'{n+ 1)

FIG. 7.4 The robust CFLS algorithm.

Iiv-y2
c=1| 0---0 (7.140)
S v-1)2

and for N even it is

I
c=|.Y
A
while the response vector in (7.106) is
0
F=|":
0
The constrained algorithms provide an alternative to those presented in
Section 7.5.

MARCEL
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7.8. THE CASE OF COMPLEX SIGNALS

Complex signals take the form of sequences of complex numbers and are
encountered in many applications, particularly in communications and
radar. Adaptive filtering techniques can be applied to complex signals in a
straightforward manner, the main peculiarity being that the cost functions
used in the optimization process must remain real and therefore moduli are
involved.

For reasons of compatibility with the subsequent study of the multidi-
mensional case, the cost function is taken as

Tex(n) =" W' y(p) — HmX(p)I’ (7.141)
p=1

or

n

Jex(n) =Y W' Pe(p)é(p)

p=1

where e(n) denotes the complex conjugate of e(n), and the weighting factor
W is assume real.

Based on the cost function, FLS algorithms can be derived through the
procedures presented in Chapter 6 [7].

The minimization of the cost function leads to

H(n) = Ry (0)ry(n) (7.142)

where

Ry(m) =Y W' "X(p)X'(p)

=1

n (7.143)
Fup(n) = Z W Ty(p)X (p)
p=I

Note that [Ry(n)]' = Ry(n), which is the definition of a Hermitian matrix.
The connecting matrix Ry, (n + 1) can be partitioned as

R =S ] P o) 2 -1
vl D=3 [P CR TR

ntl (7.144)
Z] WP X)) [+ DY
p:

rv(n+1) Ry(n)
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and

n+1 B X(p) B B
n+1 t
Rypi(n+1) ;W ”[x@_N)}[X@),x@—N)]

Ry(n+1) hn+1) (7.145)

[fb ( 1 t (A n+1-p _ 2
v+ 1)] Zl W x(p = N
p:

Following the definitions (7.42) and (7.43), the forward prediction coeffi-
cient vector is updated by

A+ 1) = Ry (mry(n + 1) = () + Ry (X ()[%(n + 1) — X' (n)A(n)]

(7.146)
or
A(n+1) = A(n) + Gm)e,(n + 1) (7.147)
where the adaptation gain has the conventional definition and
e,(n+1) = x(n+1)— A'(n)X(n)
Now, using the partitioning (7.44) as before, one gets
Ryay(n + 1)[0?’1)} — X1+ 1)— [8”(”0+ 1)} (7.148)

which, taking into account the prediction matrix equations, leads to the
same equations as for real signals:

_| 0 ], &+l 1 _[M@n+1)
Giin+1) = [G(n)] TEn+ 1)[—A(n+1)] - [m(n+ )
The prediction error energy E,(n+ 1) can be updated by the following

recursion, which is obtained through the method given in Section 6.3, for
Ry (n) Hermitian:

E,(n+ 1) = WE,(n) + e,(n + D&, (n + 1) (7.149)

The end of the procedure uses the partitioning of Ry, ;(n+ 1) given in
equation (7.45) to express the order N + 1 adaptation gain in terms of back-
ward prediction variables. It can be verified that the conjugate of the back-
ward prediction error

e(n+1)=x(n+1—-N)—BmXn+1)

appears in the updated gain
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1
GO+ 1) = e MO+ 1)+ B+ 1) (7.150)

The backward prediction coefficients are updated by
Bn+1)=Bn)+Gn+ ey(n+1) (7.151)

Finally the FLS algorithm for complex signals based on a priori errors is
similar to the one given in Figure 6.4 for real data.

There is an identity between the complex signals and the two-dimensional
signals which are considered in the next section. Algorithms for complex
signals are directly obtained from those given for 2-D signals by adding
complex conjugation to transposition.

The prediction error ratio

1 _
p(n) = EEZ—L; =1—X'(m)Ry (m)X(n) (7.152)

is a real number, due to the Hermitian property of the AC matrix estimation
Ry (n). Tt is still limited to the interval [0, 1] and can be used as a reliable
checking variable.

7.9. MULTIDIMENSIONAL INPUT SIGNALS

The input and reference signals in adaptive filters can be vectors. To begin
with, the case of an input signal consisting of K elements x;(n)(1 < i < k)
and a scalar reference is considered. It is illustrated in Figure 7.5. The
programmable filter, whose output y(n) is a scalar like the reference y(n),
consists of a set of k different filters with coefficient vectors
H;(n)(1 < i < k). These coefficients can be calculated to minimize a cost
function in real time, through FLS algorithms.

Let x(n) denote the k-element input vector

X' () = [x1(n), x,(n), ..., x, ()]

Assuming that each filter coefficient vector H,(n) has N elements, let X(n)
denote the following input vector with KN elements:

X'm) =[x, x'(n=1), ..., x'(n+ 1= N)]
and let H(n) denote the KN clement coefficient vector
K> K K |
H'(n) =), - iy (0,5 ho(), - hia()E iy (), - iy ()
The output error signal e(n) is

e(n) = y(n) — H'() X (n) (7.153)
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FIG. 7.5 Adaptive filter with multidimensional input and scalar reference.

The minimization of the cost function J(n) associated with an exponential
time window,

J(n) = Z WP e (p)
p=1

leads to the set of equations

aJ(n) N ]
=23 W y(p) — H' X (p)lxi(p —j) = 0 (7.154)
ohy;(n) =
with 1 < i < K, 0 <j < N — 1. Hence the optimum coefficient vector at
time n is
H(n) = Rgy(n)rgn () (7.155)
with

Ryy(n) =Y W' X (p)X'(p)
=1

ren(m) =Y W' y(p)X(p)
=1
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The matrix Rgy(n) is a cross-correlation matrix estimation. The updating
recursion for the coefficient vector takes the form

H(n+1)=H®n) + Rxn(n+ DX+ De(n + 1) (7.156)
and the adaptation gain
G(n) = Rgh(n)X(n) (7.157)

is a KN-element vector, which can be updated through a procedure similar
to that of Section 6.4.
The connecting matrix Rgyi(n + 1) is defined by

n+1
Rgyi(n+1) = ,; W”“_p[X();(‘li) 1)}[)(’(19), X'(p—1)] (7.158)
and can be partitioned as
ntl n+1—, t a t
Remtn+ = | 5" T @) Wi+ 1) (7.159)
rgn(n+ 1) Rgn(n)

where rgy(n + 1) is the KN x K cross-correlation matrix

n+1
v+ 1) =Y WX (p = Dx'(p) (7.160)
p=1
From the alternative definition
n+1 | X(p)
Rxni(n+1) = W”+_1’|: :|X’ xX'(p—N 7.161
xvi(n+1) ; o) X @K 0= N (7.161)
a second partitioning is obtained:
Rey(n+1) rin(n+ 1)
— n+1
R+ D=1k 4 1y W 4 1= N 1= )
p:
(7.162)
where iy (n+ 1) is the KN x K matrix
n+1
v+ 1) =Y WX (p)x'(p — N) (7.163)
p=1

The fast algorithms use the prediction equations. The forward prediction
error takes the form of a K-element vector
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exn+1) = x(n+1)— Ax(n)X(n) (7.164)

where the prediction coefficients form a KN x K matrix, which is computed
to minimize the prediction error energy, defined by

E,(n) = zn: W" P eku(p)exa(p) = trace[Exy(n)] (7.165)
p=1

with the quadratic error energy matrix defined by

n

Ega(n) =Y W' Pexy(p)eka(p) (7.166)

p=1

The minimization process yields

Ag(n+1) = Ren(n)ren(n + 1) (7.167)
The forward prediction coefficients, updated by
A+ 1) = Ag(n) + Gr(n)e,(n+ 1) (7.168)

are used to derive the a posteriori prediction error eg,(n+ 1), also a K-
element vector, by

exan+ 1) = x(n+1)— Ax(n+ )X (n) (7.169)
The quadratic error energy matrix can also be expressed by

n+1
Exn+1) = 3 W™ x(0)x'(p) — Aie(n + Dry(n + 1) (7.170)
p=1

which, by the same approach as in Section 6.3, yields the updating recursion
Eg(n+1) = WEg,(n) + exy(n + Degy(n+ 1) (7.171)

The a priori adaptation gain Gg(n) can be updated by reproducing the
developments given in Section 6.4 and using the two partitioning equations
(7.159) and (7.162) for Rgy;(n+ 1). The fast algorithm based on a priori
errors is given in Figure 7.6.

If the predictor order N is sufficient, the prediction error elements, in the
steady-state phase, approach white noise signals and the matrix E,(n)
approaches a diagonal matrix. Its initial value can be taken as a diagonal
matrix

Ex,(0) = Eylg (7.172)

where E| is a positive scalar; all other initial values can be zero.
A stabilization constant, as in Section 6.8, can be introduced by modify-
ing recursion (7.171) as follows:
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ALGORITHM FL.S 1-K

AYAILABLE AT TIME n:
COEFFICIENTS OF ADAPTIVE FILTER : H(n)
FORWARD PREDICTION MATRIX - Aytn)
BACKWARC PREDICTION MATRIX - By(n}

DATA VECTOR :X(n)
ADAPTATION GAIN : Gy{n)

GUADRATIC ERROR MATRIX :Ey,ln)
WEIGHTING FACTOR W

NEW DATA AT TIME n:
Input signal :%{n+1} ; Reference:y(n+1}

ADAPTATION GAIN UPDATING :
ealnt1) = 2n+1) - A tin) Xtn)
Agin+13 = Ac(n) + Gy (n) ey tinel)
exaln*!) = tlo+1) - Agtne 1) X(n)
Exgnt1) = W Ea(n) ¢ yp(nt 1) € tne 1)
03 :K MK(H+|}
Gy p{n+1) = + Egq | (n*1)egalntl) =

Gyln)| {-Agln+1) myn+t)

egp(n+ 13 =1(n+1-N) - By M) X(ne 1)

1
GK (n+l)= --(MK[nH 1+ BK(nlmK(m B

P eKbt(nH ] mK[n+ (B

BK(H* 1} = BK(N) + GK(I'“ 1 eKbt[nH )

eln+1) = yin+1} - H(n) X(ne 1)
H(n+1) = H(n) + Gln+1)e{n+1)

FIG. 7.6 FLS algorithm for multidimensional input signals.
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Ex,(n+1) = WEg,(n) + ex,(n+ Dek,(n + 1) + Clg (7.173)

where C is a positive scalar.

The matrix inversion in Figure 7.6 is carried out, with the help of the
matrix inversion lemma (6.26) of Chapter 6 by updating the inverse quad-
ratic error matrix:

Eln 1) — - [ £ (n) — EEaex(n+ Deje (0 + 1>EKJ(n)}

W+ i (n+ DEg (meg,(n + 1)
(7.174)

The computational complexity of that expression amounts to 3K* +2K
multiplications and one division or inverse calculation.

Note that if N = 1, which means that there is no convolution on the input
data, then Ex/ (n) is just the inverse cross-correlation matrix Ry (n), and it is
updated directly from the input signal data as in conventional RLS techni-
ques.

For the operations related to the filter order N, the algorithm presented
in Figure 7.2 requires 7K°N + KN multiplications for the adaptation gain
and 2KN multiplications for the filter section. The FORTRAN program is
given in Annex 7.3.

The ratio ¢(n) of a posteriori to a priori prediction errors is still a scalar,
because

eax(n + 1) = e (n + D1 — Gr(n) X ()] (7.175)

Therefore it can still serve to check the correct operation of the multidimen-
sional algorithms. Moreover, it allows us to extend to multidimensional
input signals the algorithms based on all prediction errors.

7.10. M-D ALGORITHM BASED ON ALL PREDICTION
ERRORS

An alternative adaptation gain vector, which leads to exploiting a priori and
a posteriori prediction errors is defined by

Gx(n+1O)W
o(n+1)

The updating procedure uses the ratio of a posteriori to a priori prediction
errors, under the form of the scalar a(n) defined by

Gr(n+1)= Rgy(mX(n+1) = (7.176)

a(n) = W+ X')Rk(n — DX (n) = (7177)
@(n)
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The computational organization of the corresponding algorithm is shown in
Figure 7.7. Indeed, it follows closely the sequence of operations already
given in Figure 6.5, but scalars and vectors have been replaced by vectors
and matrices when appropriate.

ALGORITHM FLS2-K

AYAIABLE AT TIMER,
COEFFICIENTS OF ADAPTIVE FILTER  H(n)
FOCRWARD PREDICTION MATRIX AK(FI]

BACKWARD PREDICTIONMATRix  Bpdn)

DATA VECTOR . X(n)
ADAPTATION GAIN - G £n)

QUADRATIC ERROR MATRICES  Epn{n}Eep(n)

PREDICTION ERROR RATIO . ¢c{n}
WEIGHTING FACTOR W

NEW DATA AT TIME n-
input signal - % (n+!) ; Reference:y(n+1}

ADAPTATION GAIN UPDATING .
exalnr )= ln+l) -AHn)K(n
An+1)=Ap(n) + G'K(n)eKatan i exln)
Eya(n* 1) =( Egg(nvegyint eyt 1)rex(n)) W
0 I Mgln+1)
Gy (1)< + Egg |(n+1leg,(ntl)=
Ggln)| |-Ain) myln+1)
egp(n* 1) = %(n+1-N) - B Hn)X(n+ 1)
Gilne 1) = Myln+1)+ B (nimy(n+1)
ocq(n+1) =ox(n) + eptne g, (Mleyglnet)
o (ntl) =gt (n+1) - eKbtln+ Dmyn+1)
Eiepln+1) = { Egpln) + ep(n+ DeypHne 1 o 1)) W
By(n+1) = By(n) + Gy{nleky(n+1)/ oxin+1)

eln+1) = y(n+1) - HH{n) X(n+1)
H{n+1} = H(n) + Gy (n+ Deln+1) 7 oxln+1)

FIG. 7.7 Algorithm based on all prediction errors for M-D input signals.
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The operations related to the filter order N correspond to 6K*N multi-
plications for the gain and 2KN multiplications for the filter section.

In the above procedure, the backward a priori prediction error vector
exp(n+ 1) can also be calculated directly by

exp(n+ 1) = Egp(mymg(n+ 1) (7.178)

Again that provides means to control the roundoff error accumulation,

through updating the backward prediction coefficients, as in (6.139) of

Chapter 6 by

By(n+1) = Bg(n) + Gg(n+ 1)
X [egp(n+1) +egp(n+ 1) — Egp(mmg(n + D]/a(n +1)

(7.179)

Up to now, the reference signal has been assumed to be a scalar sequence.

The adaptation gain calculations which have been carried out only depend

on the input signals, and they are valid for multidimensional reference

signals as well. The case of K-dimensional (K-D) input and L-dimensional

(L-D) reference signals is depicted in Figure 7.8. The only modifications

with respect to the previous algorithms concern the filter section. The L-

element reference vector Y (n) is used to derive the output error vector ey (n)
from the input and the KN x L coefficient matrix H;(n) as follows:

er(n+1) =Y, (n+1)— Hi(mXn+ 1) (7.180)

X(n) ___ﬁ} Y v, (o)

[:'> H(r)

i; EL(H)

[ E—— NK —_— I

} J:—]
L Yo = HLn) X(n) NK
v L |

FIG. 7.8 Adaptive filter with M-D input and reference signals.
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The coefficient matrix is updated by

Gr(n+ ey (n+1)
a(n+1)

Hy(n+1)=H(n)+ (7.181)

The associated complexity amounts to 2NKL + L multiplications.

The developments given in Chapter 6 and the preceding sections have
illustrated the flexibility of the procedures used to derive fast algorithms.
Another example is provided by filters of nonuniform length [8].

7.11. FILTERS OF NONUNIFORM LENGTH

In practice it is desirable to tailor algorithms to meet the specific needs of
applications. The input sequences may be fed to filters with different lengths,
and adjusting the fast algorithms accordingly can provide substantial sav-
ings.

Assume that the K filters in Figure 7.5 have lengths N;(1 < i < K). The
data vector X(n) can be rearranged as follows:

X'(n) =[Xi(n), X3(n), ..., Xg(n)] (7.182)
where
X{(n) =[x;(n), x;(n = 1), ..., x,(n+ 1 — N,

The number of elements XN is
K
TN = szi (7.183)
i=1

The connecting (XN + K)(XZN + K) matrix Ry y(n + 1), defined by

t

xi(n+1) xi(n+1)

] Xi(n) Xi(n)
Ryyi(n+1)=> W= : :
p=l xg(n+1) || xg(n+1)
Xk(n) Xk (n)

can again be partitioned in two different manners and provide the gain
updating operations. The algorithms obtained are those shown in Figures
7.6 and 7.7. The only difference is that the prediction coefficient XN x K
matrices are organized differently to accommodate the rearrangement of the
data vector X(n).

A typical case where filter dimensions can be different is pole-zero mod-
eling.
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7.12. FLS POLE-ZERO MODELING

Pole-zero modeling techniques are used in control for parametric system
identification.

An adaptive filter with zeros and poles can be viewed as a filter with 2-D
input data and 1-D reference signal if the equation error approach is chosen.
The filter defined by

Fn+1)=A'"m)Xn+ 1)+ B'(n)Y(n) (7.184)
is equivalent to a filter as in Figure 7.5 with input signal vector
x(n+ 1)]
n+1)= - 7.185
rore =0k (7.185)

For example, let us consider the pole-zero modeling of a system with
output y(n) when fed with x(n). An approach which ensures stability is
shown in Figure 4.12(b). A 2-D FLS algorithm can be used to compute
the model coefficients with input signal vector

| x(n+1)
x(n+1) = |: ) ] (7.186)

However, as pointed out in Section 4.11, that equation error type of
approach is biased when noise is added to the reference signal. It is prefer-
able to use the output error approach in Figure 4.12(a). But stability can
only be guaranteed if the smoothing filter with z-transfer function C(z)
satisfying strictly positive real (SPR) condition (4.149) in Chapter 4 is intro-
duced on the error signal.

An efficient approach to pole-zero modeling is obtained by incorporating
the smoothing filter in the LS process [9]. A 3-D FLS algorithm is employed,
and the corresponding diagram is shown in Figure 7.9. The output error
signal f(n) used in the adaptation process is

S () = y(n) = [uy (n) + u(n) + u3(n)] (7.187)

where u;(n), uy(n), and uz(n) are the outputs of the three filters fed by y(n),
x(n), and e(n) = y(n) — y(n), respectively. The cost function is

n
Jy(n) =Y W' (p) (7.188)
p=1
Let the unknown system output be

N N
y(n) = Z ax(n — i) + Z by(n —1i) (7.189)
i=0 i=1
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Unknown System

x{n)

N / usin)
L S bz i y(n)

i

L ;(:,C-P
Z a,-(n)z" {

1= upin) eln)
5 US(H)

3 citmz!

oy

7 f(n)

FIG. 7.9 Adaptive pole-zero modeling with a 3-D FLS algorithm.

or

N N N
ym) = apx(n—i)+ Y bjn—i)+ Y be(n—i) (7.190)
i=0 i=1 i=1

From (7.187), the error signal is zero in the steady state if

aioo) =a;, bioco)=0b;, c(0)=b;, 1<i<N

Now, assume that a white noise sequence 7(n) with power 0,2, is added to
the system output. The cost function to be minimized becomes

n

J3n(”) = Z anp

p=1

N

- 2
F®) +n(p) =Y cmm(p — z')} (7.191)

i=1

which, for sufficiently large n can be approximated by

n
Ty () =y WP
=1

B N
)+ 05[1 + c?(n)ﬂ (7.192)
L =1

1
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The steady-state solution is
ai(o0) =a;, b(co)=b;, ci(c0)=0, 1 <i<N

Finally, the correct system identification is achieved, in the presence of
noise or not. The smoothing filter coefficients vanish on the long run when
additive noise is present. An illustration is provided by the following
example.

Example [9]

Let the transfer function of the unknown system be

0.05+0.1z71 +0.075z72
1 —0.96z"1 +0.94z2

H(z) =

and let the input be the first-order AR signal
x(n) = eg(n) +0.8x(n — 1)

where ¢y(n) is a white Gaussian sequence.
The system gain G defined by

E[ 2
Gg = IOIOg%

is shown in Figure 7.10(a) versus time. The ratio of the system output signal
to additive noise power is 30 dB. For comparison the gain obtained with the
equation error or series-parallel approach is also given. In accordance with
expression (4.154) in Chapter 4, it is bounded by the SNR. The smoothing
filter coefficients are shown in Figure 7.10(b). They first reach the b; values
(=1, 2) and decay to zero after.

The 3-D parallel approach requires approximately twice the number of
multiplications of the 2-D series-parallel approach.

7.13. MULTIRATE ADAPTIVE FILTERS

The sampling frequencies of input and reference signals can be different. In
the sample rate reduction case, depicted in Figure 7.11, the input and refer-
ence sampling frequencies are fg and fg g, respectively. The input signal
sequence is used to form K sequences with sample rate f5 x which are fed
to K filters with coefficient vectors H;(n)(0 < i < K — 1). The cost function
to be minimized in the adaptive filter, Jgrr(Kn), is
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FIG. 7.10 Pole-zero modeling of an unknown system: (a) System gain in FLS
identification. (b) Smoothing filter coefficients.

n

Tsrr(Kn) =Y W" [ y(Kp) — H'(Kp)X (Kp)’ (7.193)

=1

The data vector X(Kn) is the vector of the NK most recent input
values. The input may be considered as consisting of K different signals,
and the algorithms presented in the preceding sections can be applied.
The corresponding calculations are carried out at the frequency fs/k.

An alternative approach takes advantage of the sequential presentation
of the input samples and is presented for the particular and important case
where k = 2.
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FIG. 7.11 Sample rate reduction adaptive filter.

It is assumed that the input sequence is seen as two interleaved sequences
x1(n) and x,(n) and two input data vectors, X,y(n) and X ,y(n+ 1) are
defined as follows:

Xon(n)
Xo(n+ Dxy(n+ Dxy(n)xi(n)  x(n+1—=N)xj(n+1—N)

«— Xy 4+ )——m———

or in vector form

xp(n) xi(n+1)
Xon(n) = XI:(n) , Xiov(n+1) = Xzz(n)
x(n +.1 —N) Xy(n +.1 —N)

The cost function is

n

Jm) =Y W' y(p) — Hon(m)Xon(p)] (7.194)

p=l1

where H,y(n) is the coefficient vector with 2N elements. The multirate
adaptive filter section consists of the two following equations:

e(n+1)=y(n+1) — Hyy(n)Xoy(n+ 1)

(7.195)
Hyn(n+ 1) = Hyy(n) + Goy(n + De(n + 1)

The adaptation gain vector G,y(n) is itself defined from the AC matrix
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Ron(m) =Y " W' Xon(p)Xsn(p) (7.196)
p=1

as follows
Gon(n) = Ron(n)Xon(n) (7.197)

In the multirate fast least squares algorithm, the adaptation gain vector is
updated through linear prediction. A first error energy can be defined by

Ey(n) =Y W' xi(p) — Aj sn(m)Xon(p — DI (7.198)
p=1
and it leads to the linear prediction matrix equation
1 o Eh,(n + 1)
R2N+l(n+1)[—A],2N(n+l)} — [ 0 ] (7199)

where the extended (2N + 1) x (2N + 1) matrix is

n+1
Ry (m+1)= Z Wn+1p|:X2;(lp(Pz 1)][x1(p), Xinv(p — 1) (7.200)

=1

Now, the procedure of Chapter 6 can be applied to compute an extended
adaptation gain G,y 1(n+1) from forward linear prediction and an
updated adaptation gain Gy,y(n+ 1) from backward linear prediction.
The same procedure can be repeated with x,(n 4 1) as the new data, leading
to another extended adaptation gain G,,y. (4 1) and, finally, to the
desired updated gain G,y (n + 1). The complete computational organization
is given in Figure 7.12; in fact, the one-dimensional FLS algorithm is run
twice in the prediction section.

The approach can be extended to multidimensional, or multichannel,
inputs with K elementary signals. It is sufficient to run K times the predic-
tion section for 1-D signals, and use the proper prediction and adaptation
gain vectors each time. There is no gain in computational simplicity with
respect to the algorithms presented in Sections 7.9 and 7.10, but the scheme
is elegant and easy to implement, particularly in the context of multirate
filtering.

As concerns the case of increasing sample rate, it is shown in Figure 7.13.
It corresponds to scalar input and multidimensional reference signals.

It is much more economical in terms of computational complexity than
the sample rate reduction, because the adaptation gain is computed once for
the K interpolating filters. All the calculations are again carried out at
frequency fs/k, the reference sequence being split into K sequences at that
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FIG. 7.12 The algorithm FLS 2-D/1-D.
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FIG. 7.13 Sample rate increase adaptive filter.

frequency. The system boils down to K different adaptive filters with the
same input.

In signal processing, multirate aspects are often linked with DFT appli-
cations and filter banks, which correspond to frequency domain conver-
sions.

7.14. FREQUENCY DOMAIN ADAPTIVE FILTERS

The power conservation principle states that the power of a signal in the
time domain equals the sum of the powers of its frequency components.
Thus, the LS techniques and adaptive methods worked out for time data can
be transposed in the frequency domain.

The principle of a frequency domain adaptive filter (FDAF) is depicted in
Figure 7.14. The N-point DFTs of the input and reference signals are com-
puted. The complex input data obtained are multiplied by complex coeffi-
cients and subtracted from the reference to produce the output error used to
adjust the coefficients.

At first glance, the approach may look complicated and farfetched.
However, there are two motivations [10, 11]. First, from a theoretical
point of view, the DFT computer is actually a filter bank which performs
some orthogonalization of the data; thus, an order N adaptive filter becomes
a set of N separate order 1 filters. Second, from a practical standpoint, the
efficient FFT algorithms to compute the DFT of blocks of N data, parti-
cularly for large N, can potentially produce substantial savings in computa-
tion speed, because the DFT output sampling frequency can be reduced by
the factor N.
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FIG. 7.14 FDATF structure.

Assuming N separate complex filters and combining the results of
Sections 6.1 and 7.8, we obtain the LS solution for the coefficients

> WPyn(p)xni(p)

hin) == . 0<i<N-1 (7.201)
Z] WP x1(p)X1i(p)
p:

where x7;(n) and yz;(n) are the transformed sequences.

For sufficiently large n, the denominator of that equation is an estimate
of the input power spectrum, and the numerator is an estimate of the cross-
power spectrum between input and reference signals. Overall the FDAF is
an approximation of the optimal Wiener filter, itself the frequency domain
counterpart of the time domain filter associated with the normal equations.
Note that the optimal method along these lines, in case of stationary signals,
would be to use the eigentransform of Section 3.12.

The updating equations associated with (7.201) are

hi(n+1) = hi(n) + 17 (n+ Dxg(n + 1) x [yg(n+ 1) = h(n)xp(n + 1)]
(7.202)

and

rimn+1)=Wrin)+ xr;(n+ Dxp(n+ 1) (7.203)
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The FFT algorithms need about (N /2)log,(N/2) complex multiplications
each, which have to be added to the N order 1 adaptive filter operations.
Altogether savings can be significant for large N, with respect to FLS algo-
rithms.

The LMS algorithm can also be used to update the coefficients, and the
results given in Chapter 4 can serve to assess complexity and performance.

It must be pointed out that the sample rate reduction by N at the DFT
output can alter the adaptive filter operation, due to the circular convolution
effects. A scheme without sample rate reduction is shown in Figure 7.15,
where a single orthogonal transform is used. If the first row of the transform
matrix consists of 1’s only, the inverse transformed data are obtained by just
summing the transformed data [12]. Note also that the complex operations
are avoided if a real transform, such as the DCT [equations (3.160) in
Chapter 3], is used.

A general observation about the performance of frequency domain adap-
tive filters is that they can yield poor results in the presence of nonstationary
signals, because the subband decomposition they include can enhance the
nonstationary character of the signals.

7.15. SECOND-ORDER NONLINEAR FILTERS

A nonlinear second-order Volterra filter consists of a linear section and a
quadratic section in parallel, when the input signal is Gaussian, as men-
tioned in Section 4.16.

In this structure, FLS algorithms can be used to update the coefficients of
the linear section in a straightforward manner. As concerns the quadratic

'l |orthogonal

i Transform

x(n+t-N)

FIG. 7.15 FDAF with a single orthogonal transform.
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section, its introduction in the least squares procedure brings a significant
increase of the computational complexity. However, it is possible to intro-
duce a simplified iterative procedure, based on the adaptation gain of the
linear section [13].

Let us consider the system to be identified in Figure 7.16. The input signal
x(n) is assumed to be a white noise, as well as the measurement noise b(n),
which is uncorrelated with x(n) and has the power o7. The cost function at
time 7 is

Jn) =Y [(p) = X'(DHn) — X' (p)Mm)X ()’ (7.204)

p=l1

Due to the Gaussian hypothesis, the third-order moments vanish, and set-
ting to zero the derivatives yields for the linear section with N coefficients

> y(pX(p) - {Z X@)X‘@)]H(n) =0 (7.205)
=1 p=1

and for the quadratic section with N° coefficients
S XX Py(p) = Y X)X (P)Mn)X(p)X'(p) =0 (7.206)
p=l1 p=1

Since x(n) is a white noise, the coefficients are given by

b(n)

Second order
Non-linear system

x{n) y(n)
Yl

Second order
Volterra filter

4

FIG. 7.16 Identification of a second-order nonlinear system.

e(n)
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M(n) = Ry'(n) [Z X@)X’@)y@)} Ry'(n) (7.207)
=1

The above expressions for H(n) and M(n) are the counterparts of equa-
tions (4.162) in the least squares context. Therefore, the coefficients satisfy
the following recursion

Mn+1)=Mmn)+Gun+ De(n+ DG n+1) (7.208)
with
em+ D) =yn+1)—X'm+DHn) — X+ DHMmn)X' n+1) (7.209)

The same derivation as in Section 4.16 leads to the following expression for
the output error power:

N, ) (7.210)

E[*(n+ 1)] wm%(l +=+
n n

where the terms N/n and 2N/n” correspond to the linear and quadratic
terms respectively. Obviously, the speed of convergence of the nonlinear
section is limited by the speed of convergence of the linear section.

The approach can be extended to cost functions with a weighting factor.
In any case, the performance can be significantly enhanced, compared to
what the gradient technique achieves.

7.16. UNIFIED GENERAL VIEW AND CONCLUSION

The adaptive filters presented in Chapters 4, 6, and 7, in FIR or IIR direct
form, have a strong structural resemblance, illustrated in the following
coefficient updating equations:

new old input
coefficient = | coefficient | + | step data innovation
vector vector size vector signal

To determine the terms in that equation, the adaptive filter has only the
data vector and reference signal available. All other variables, including the
coefficients, are estimated. There are two categories of estimates; those
which constitute predictions from the past, termed a priori, and those
which incorporate the new information available, termed a posteriori. The
final output of the filter is the a posteriori error signal

e+ 1) =yn+1)— H@n+DXn+1) (7.211)

which can be interpreted as a measurement noise, a model error, or, in
prediction, an excitation signal.
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The innovation signal i(n) represents the difference between the reference
y(n+ 1) and a priori estimates which are functions of the past coefficients
and output errors:

im+1)=ymn+1)—F[H @), Hmn-1),..]JX(n+1)

(7.212)
— Fle(n),e(n—1),...]
or, in terms of variable deviations
im+1)=AH'n+DXn+ 1)+ Ae(m+1) (7.213)

with
AHn+1)=Hm+1)— F[Hn), Hn—-1),...]
Aen+1)=¢em+1)— Flen),en—1),...]
The derivation of an adaptive algorithm requires the design of predictors

to generate the a priori estimates and a criterion defining how to use the
innovation i(n + 1) to determine the a posteriori estimates from the a priori

ones.
When one takes
im+D)=en+1)=yn+1)—HmXn+1) (7.214)

one simply assumes that the a priori estimate H(n) for the coefficients is the
a posteriori estimate at time #n, which is valid for short-term stationary
signals, and that the a priori error signal is zero, which is reasonable since
the error signal is expected to be a zero mean white noise [14].

Minimizing the deviation between a posteriori and a priori estimates,
with the cost function

J(n) = AH'(n)R(n)AH (n) + [Ae(n)] (7.215)
where R(n) is a symmetric positive definite weighting matrix, yields

in+1)
1+ X'+ DR '+ DX(n+1)

Hn+1)= Hn) + R'n+DXn+1)

(7.216)

The flow graph of the general direct-form adaptive filter is given in Figure
7.17. It is valid for real, complex, or M-D data. The type of algorithm
employed impacts the matrix R(n), which is diagonal for the LSM algorithm
and a square symmetric matrix for the LS approaches. Only the IIR filter
discussed in Sections 4.15 and 7.12 uses an error prediction calculation to
control the stability. The coefficient prediction filter can be usd in a nonsta-
tionary environment to exploit the a priori knowledge on the nature of the
nonstationarity and perform an appropriate bandlimited extrapolation.
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FIG. 7.17 General direct-form adaptive filter.

Finally, the transversal adaptive filters form a large, diverse, and versatile

family which can satisfy the requirements of applications in many technical
fields. Their complexity can be tailored to the resources of the users, and
their performances assessed accordingly. It is particularly remarkable to
observe how flexible the FLS algorithms are, since they can provide exact
solutions for different kinds of signals, observation conditions, and struc-
tures. A further illustration is given in the next chapter.

EXERCISES

1.

Use the approach in Section 7.1 to derive an algorithm based on all
prediction errors as in Section 6.5, with nonzero initial input data
vector. What is the additional computation load?

Taking

em+1D)=yn+1)—HmXn+1)

instead of (7.41) as the definition for the output error signal, give the
computational organization of an alternative FLS algorithm for com-
plex signals. Show that only forward prediction equations are modified
by complex conjugation operations. Compare with the equations given
in Section 7.3.

Give the detailed computational organization of an FLS algorithm for
2-D input signals, the coefficient vectors H;(n) and H,(n) having
N; = N, = 4 elements. Count the memories needed. Modify the algo-
rithm to achieve the minimum number of operations when N; = 4 and

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



MARCEL

N, = 2. What reduction in number of multiplications and memories is
obtained?

Extend the algorithm given in Section 7.4 for M-D input signals to the
case of a sliding window. Estimate the additional computation load.
At the input of an adaptive filter with order N =4, the signal is
sampled at 4 kHz. The observed reference signal is available at the
sampling frequency 1 kHz. Give the FLS algorithm for this multirate
filter. Compare the complexities of the multirate algorithm and the
standard algorithm which corresponds to a 4-kHz reference signal
sampling rate. Compare also the performance of the two algorithms;
what is the penalty in adaptation speed brought by undersampling the
reference?

Use the technique described in Section 7.7 for pole-zero modeling to
design an LS FIR/IIR predictor. Compare the 2-D and 3-D
approaches in terms of computational complexity.

Consider the FDAF in Figure 7.10. The orthogonal transform of order
N is the DCT which produces real outputs; describe the corresponding
FLS algorithms. Compare the multiplication speed obtained with that
of a direct FLS algorithm of order N. Compare also the performance
of the two approaches.

ANNEX 7.1 FLS ALGORITHM WITH SLIDING

N HONOHC O NN NS! @]

(@}

WINDOW

SUBROUTINE FLSSW(N,NO,X,A,EAB,EA,G,GO,IND)

COMPUTES THE ADAPTATION GAIN (F.L.S. with SLIDING

WINDOW)

N = FILTER ORDER

NO = WINDOW LENGTH

X = INPUT SIGNAL : x(n+1)

VXO = DATA VECTOR : N+NO ELEMENTS

A = FORWARD PREDICTION COEFFICIENTS
B = BACKWARD PREDICTION COEFFICIENTS
EA =PREDICTION ERROR ENERGY

G = ADAPTATION GAIN

GO = BACKWARD ADAPTATION GAIN

IND = TIME INDEX

DIMENSION VXO(500),A(15),B(15),G(15),G1(16),
GO(15),G01(16) IF(IND.GT.1)GOTO30
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@]

20

21

30

QN

40

50

60

70

MARCEL

INITIALIZATION

DO20I=1,15
A(I)=0.
B(I)=0.
G(I)=0.
GO(I)=0.
CONTINUE
DO21I=1,500
VX0 (I)=0.
CONTINUE
EA=0.1
CONTINUE

ADAPTATION GAIN CALCULATION

EAV=X
EPSA=X

EAVO=VXO0 (NO)

EPSAO=VXO0 (NO)

DO40I=1,N
EAV=EAV-A(I)*VXO(I)
EAVO=EAVO-A(I)*VXO(NO+I)
DO50I=1,N
A(I)=A(I)+G(I)*EAV-GO(I)*EAVO
EPSA=EPSA-A(I)*VXO(I)
EPSAO=EPSAO-A(I)*VXO (NO+I)
CONTINUE
EA=EA+EAV*EPSA-EAVO*EPSAO
G1(1)=EPSA/EA
GO1(1)=EPSAO/EA

DO60I=1,N
Gl(I+1)=G(I)-A(I)*G1(1)
GO1(I+1)=GO(I)-A(I)*GO1(1)
CONTINUE

EAB=VXO (N)

EABO=VXO (N+NO)
DO70I=2,NO+N

J=NO+N+1-I

VX0 (J+1)=VX0(J)

VX0 (1)=X

DO80I=1,N
EAB=EAB-B(I)*VXO(I)
EABO=EABO-B (I)*VXO(I+NO)

b Copyright n 2001 by Marcel Dekker,Inc. All Rights Reserved.



MARCEL

80

90

100

CONTINUE
GG1=G1l(N+1)/(1.+GO1(N+1)*EABO)
GGO=GO1(N+1)/(1.-G1(N+1)*EAB)
DO90I=1,N
G(I)=G1l(I)+GG1l*(B(I)-EABO*GO1l(I))
G(I)=G(I)/(1.-GG1*EAB)
GO(I)=GO1l(I)+GGO* (B(I)+EAB*G1(I))
GO(I)=GO(I)/(1.+GGO*EABO)
CONTINUE

DO100I=1,N
B(I)=B(I)+G(I)*EAB-GO(I)*EABO
RETURN

END

ANNEX 7.2 FLS ALGORITHM FOR FORWARD-

OO OHCHO OO HONOES! @]

aQ N

20

BACKWARD LINEAR PREDICTION

SUBROUTINE FLSFB(N,X,B,EE,U,W,IND)

COMPUTES THE ADAPTATION GAINS FOR COMBINED
FORWARD-BACKWARD

PREDICTION USING A FAST LEAST SQUARES ALGORITHM
N = FILTER ORDER

X = INPUT SIGNAL : x(n+1)
VX =DATAVECTOR : X(n) ; Nelements
B = COEFFICIENT VECTOR ; N elements

Gl = FORWARD GAIN VECTOR
G2 = BACKWARD GAIN VECTOR
U = SYMMETRIC GAIN VECTOR
W = WEIGHTING FACTOR

IND = TIME INDEX

DIMENSION VX(15),B(15),G1(15),G2(15),U(15),
Ul(1l6) IF(IND.GT.1)GOTO30

INITIALIZATION
DO20I=1,N
B(I)=0.
G1(I)=0.
G2(I)=0.
VX(I)=0.
CONTINUE

EPSU=0.

bereer Copyrightn 2001 by Marcel Dekker, Inc.All Rights Reserved.



EE=0.1
30 CONTINUE

C
C ADAPTATION GAIN CALCULATION
C
DO40I=1,N
40 U(I)=G2(I)-G1l(I)*EPSU
EPSG=0.
EPSGG=W*W
DO50I=1,N

EPSGG=EPSGG+VX (I)*U(I)

50 EPSG=EPSG+VX(I)*U(N+1-I)
EPSG1=EPSG
EPSG=EPSG/EPSGG
DO60I=1,N

60 G1(I)=(U(N+1-I)-EPSG*U(I))/W
EAV=0.
DO70I=1,N

70 EAV=EAV+B (N+1-I)*VX(I)
EAV=X-EAV*W
Ul(1)=EAV/EE
DO80I=1,N

80 ULl(N+2-I)=G1(I)-Ul(1l)*B(I)
D090I=1,N

90 G2(I)=Ul(I)+U1(N+1)*B(I)
ALF1=(EPSGG-EPSG*EPSGL) / (W*W)
EAB=VX (N) *W
D0100I=1,N-1

100 VX(N+1-I)=VX(N-I)*W
VX (1)=X
ALF2=0.
DO105I=1,N

105 ALF2=ALF2+VX(I)*G2(I)
ALF2=1.+ALF2/ (W*W)
D0O110I=1,N

110 EAB=EAB-B(I)*VX(I)
ALF12=0.
D0120I=1,N

120 ALF12=ALF12+VX(I)*G1(I)
ALF12=ALF12/(W*W)
EPSU=ALF12/ALF1
ALFF=ALF1*ALF2-ALF12*ALF12
EPSA=(ALF2*EAV-ALF12*EAB) /ALFF
EPSB=(ALF1*EAB-ALF12*EAV) /ALFF
EE=W*W*EE+EPSA*EAV+EPSB*EAB

MARCEL
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DO130I=1,N

130 B(I)=B(I)+(G1(I)*EPSA+G2(I)*EPSB)/(W*W)

RETURN
END

ANNEX 7.3 FLS ALGORITHM WITH

@]

eHNOHONO NSO NN HO O RS EONe!

@]

MULTIDIMENSIONAL INPUT SIGNAL

SUBROUTINE FLS1MD(K,N,EAINV,UA,UB,VU,VUL,
A,G,B,W)

COMPUTES THE ADAPTATION GAIN FOR MULTIDIMENSIONAL
INPUT SIGNAL

K = NUMBER OF INPUT SIGNALS (FILTER DIMENSION)
N = NUMBER OF COEFFICIENTS IN EVERY CHANNEL

UA = INPUT VECTOR AT TIME (n+1)

UB = INPUT VECTORAT TIME (n+1-N)

VU =KNELEMENT DATA VECTOR AT TIME (n)

VU1l = KN ELEMENT DATA VECTOR AT TIME (n+1)

A = FORWARD LINEAR PREDICTION (KNxK) MATRIX
B = BACKWARD LINEAR PREDICTION (KNxK) MATRIX
G = ADAPTATION GAIN VECTOR

EAINV = PREDICTION ERROR ENERGY INVERSE (KxK) MATRIX
W =WEIGHTING FACTOR

DIMENSION UA(1),UB(1),vU(1l),vUl(1l),G(1)
DIMENSIONA(20,10),B(20,10) ,EAINV(10,10)
DIMENSION SM(10) ,RM(20) ,EKA(10) ,EKB(10),
AUX(10,10)

DIMENSION EPKA(10),P1(10,10),P2(10),P3(10,10),
P5(10,10)

KN=K*N

FORWARD LINEAR PREDICTION ERROR :

DO 11I=1,K

PR=0.

P2(I)=0.

DO 2 J=1,KN
PR=PR+A(J,I)*VU(J)
CONTINUE
EKA(I)=UA(I)-PR
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1 CONTINUE

C
C FORWARD PREDICTON MATRIX :
C

DO 3 I=1,KN

DO 4 J=1,K

A(I,J)=A(I,J)+G(I)*EKA(J)
4 CONTINUE
3 CONTINUE

C
C A POSTERIORI PREDICTION ERROR :
C

DO 5 I=1,K

PR=0

DO 6 J=1,KN
PR=PR+A(J,I)*VU(J)
6 CONTINUE
EPKA(I)=UA(I)-PR
5 CONTINUE

C
C UPDATING OF ERROR ENERGY INVERSE MATRIX :
C

P4=0.

DO 7 J=1,K

DO 8 I=1,K

P1(J,I)=EKA(J)*EPKA(I)
P2(J)=P2(J)+EPKA(I)*EAINV(I,J)
P3(I,J)=0.
P5(I,J)=0.
CONTINUE
CONTINUE
DO 21 I=1,K
DO 22 J=1,K
DO 23 L=1,K
P3(I,J)=P3(I,J)+EAINV(I,L)*P1(L,J)
23 CONTINUE
22 CONTINUE
P4=P4+P2(I)*EKA(I)
21 CONTINUE
P4=P4+W
DO 24 I=1,K
DO 25 J=1,K
DO 26 L=1,K
P5(I,J)=P5(I,J)+P3(I,L)*EAINV(L,J)
26 CONTINUE

~ 00
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P5(I,J)=P5(I,J) /P4

25 CONTINUE

24 CONTINUE
DO 27 I=1,K
DO 28 J=1,K
EAINV(I,J)=(EAINV(I,J)-P5(I,J))/W
AUX(I,J)=EAINV(I,J)

28 CONTINUE

27 CONTINUE

EAINV IS IN AUX FOR SUBSEQUENT CALCULATIONS
KN+K ELEMENT ADAPTATION GAIN (VECTORS RM AND SM) :

[oNONONS!

DO 9 I=1,K
EX=0.
DO 10 J=1,K
EX=EX+AUX(I,J)*EPKA(J)
10 CONTINUE
AUX(I,1)=EX
9 CONTINUE
DO 11 I=K+1,KN+K
EX=0.
DO 12 J=1,K
EX=EX-A(I-K,J)*AUX(J,1)
12 CONTINUE
AUX(I,1)=EX+G(I-K)
11 CONTINUE
DO 13 I=1,KN
RM(I)=AUX(I,1)
IF(I.LE.K) SM(I)=AUX(KN+I,1)
13 CONTINUE

@]

BACKWARD PREDICTION ERROR :

DO 14 I=1,K
PR=0.
DO 15 J=1,KN
PR=PR+B (J,I)*VU1(J)
15 CONTINUE
EKB(I)=UB(I)-PR
14 CONTINUE

a N

KN ELEMENT ADAPTATION GAIN :

EX=0.

MARCEL
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DO 16 I=1,K

EX=EX+EKB (I)*SM(I)
16 CONTINUE

EX=1./(1.-EX)

DO 17 I=1,KN

PR=0.

DO 18 J=1,K

PR=PR+B (I,J)*SM(J)
18 CONTINUE

G(I)=EX* (RM(I)+PR)
17 CONTINUE

BACKWARD PREDICTION (KNxK) MATRIX :

DO 19 I=1,KN
DO 20 J=1,K
B(I,J)=B(I,J)+G(I)*EKB(J)
20 CONTINUE
19 CONTINUE
RETURN
END
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Lattice Algorithms and
Geometrical Approach

Although FLS algorithms for transversal adaptive sructures are essentially
based on time recursions, the algorithms for lattice structures make a joint
use of time and order recurrence relationships. For a fixed filter order value
N, they require more operations than their transversal counterparts.
However, they provide adaptive filters of all the intermediate orders from
1 to NV, which is an attractive feature in those applications where the order is
not known beforehand and several different values have to be tried [1-3].

The order recurrence relationships introduced in Section 5.6 can be
extended to real-time estimates.

8.1. ORDER RECURRENCE RELATIONS FOR
PREDICTION COEFFICIENTS

Let Ay(n), By(n), E,n(n), Eyn(n) and Gy(n) denote the input signal predic-
tion coefficient vectors, the error energies, and the adaptation gain at time n
for filter order N. The forward linear prediction matrix equation for order
N—1is

Ry@)| —Alel(l/l)_ ol 8.1)

Similarly, the backward prediction equation is

By ] [ 0 ]
Ry(m| "M = Exyy® | (8.2)

Now, partitioning equation (6.61) in Chapter 6 for Ry, (n) yields
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1 Eyn-1y(n)
|:RN(n) rh(n) } —Ay_a(n) | _ 0 8.3)
[rhm]" Ry(n— N) 0 Ky(n)

where the variable Ky (n), corresponding to the last row, is

Ky(n) = Z W' Px(p)x(p = N) — Ay (M Ry_1(n = DBy_(n = 1) (8.4)
p=1

In (8.4), forward and backward prediction coefficients appear in a balanced
manner. Therefore the same variable Ky(n) appears in the backward pre-
diction matrix equation as well:

|:R1(n) [rvm)]’ i| 0 Ky(n)

rv(m) Ry(n—1)

By (1) |~ 0 ®-5)
1

Eyn—n(n—1)

as can be readily verified by analyzing the first row. Multiplying both sides
by the scalar Ky (n)/Eyn_1)(n — 1) gives

0 KX (n)
Ry () [—BN_I(n—l)} K | =] P ®6)
1 Eyn-n(n—1) Ky(n)

Now, subtracting equation (8.6) from equation (8.3) and identifying with
the forward prediction matrix equation (8.1) for order N, we botain the
following recursion for the forward prediction coefficient vectors:

C[Avam] Ky [By(—1)
AN(”)—|: Nol :| Eb(N—l)(n_1)|: N l_] i| (87)

The first row yields a recursion for the forward prediction error energies:

Ky (n)
Eyn-1(n—1)

The same method can be applied to backward prediction equations. Matrix
equation (8.3) can be rewritten as

E,n(n) = Eyn—1)(n) — (8.8)

[ 1 } Ky (n) K’B(”)
Ry 41(n) —Ay_1(n) Ea(N_1)(”l) = szv(n) (8.9)
0 E n-1)(n)
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Subtracting equation (8.9) from equation (8.5) and identifying with the
backward prediction matrix equation (8.2) for order N lead to recurrence
relations for the backward prediction coefficients vectors

0 KN(}’Z) |: —1 ]
By(n) = - 8.10
v |:BN1(” - 1)} Eyn—1y(n) [ Ax-1(n) (8.10)
and for the backward prediction error energy
Ki(n)

Eyn(n) = Eyv_ny(n —1) — (8.11)

Ea(Nfl)(n)

The definitions of the backward prediction a priori error
ean(n+1) = x(n+1) — Ay() X (n)

and backward prediction error
epy(n+ 1) =x(n+1—N)— By(n)X(n+1)

in connection with recursions (8.7) and (8.10), lead to the lattice predictor
structure, which relates errors for orders N and N — 1:

_ Ky(n)
ean(n+1) =eyn_p(n+1) Epv(n — 1)eh(N—l)(n) (8.12)
and
_ Ky(n)
epn(n+ 1) = epv_1)(n) Eyv_n() eqv—n(n+1) (8.13)

Similarly, for a posteriori errors,
eav(n+1) = x(n+ 1) — Ay(n + 1) X (n)
and
v+ 1) =x(n+1—N)—Byn+DHXn+1)

The lattice structure operations are

ean(n+1) = gun_ny(n+ 1) = kpy(n + Deyy_1y(n) (8.14a)
epn(n+1) = epy_1)(n) — kon(n + Deyv_y(n + 1) (8.14b)
where
K 1 K 1
ko(n4 1) = v D k(4 1) = vt D 8.15)

En_n(n+1)’ Epn—1)(n)

are the estimates of the PARCOR or reflection coefficients introduced in
Section 5.5.
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The flow diagram of the corresponding lattice filter section is shown in
Figure 8.1. The same structure can be used for a priori and a posteriori
errors. A prediction error filter of order N is obtained by cascading N such
sections.

Similar order recursions can be derived for the coefficients of adaptive
filters, the adaptation gain, and the ratio of a posteriori to a priori errors.

8.2. ORDER RECURRENCE RELATIONS FOR THE
FILTER COEFFICIENTS

An adaptive filter with N coefficients produces an output error signal ey(n):
ex(n+1)=y(n+1)— Hy(m)X(n+1) (8.16)

The coefficient vector Hy(n), which minimizes the error energy at time n, is
obtained by

Hy(n) = Ry (n)r,n(n) (8.17)

with
Fan() = Y W y(p) Xy (p)
p=1

For a filter with N + 1 coefficients, the equations are

eypi(n+1)=yn+1)— Hy  (m Xy (n+ 1) (8.18a)

~———— stage N

: —(D
ea(N,”(n+i) kaN(nl - eaN(n*I)
kDN(n)
— 7 ),
eb(N'] )(ﬂ" 1) ebN(n+ 1)

FIG. 8.1 Adaptive lattice prediction error filter section.
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rny(n)
Ry 1(mHyy1(n) = i W' y(p)x(p — N) (8.18b)

p=l1

The coefficient vector Hy,(n) can be obtained from H y(n) with the help of
the partitioning (6.61) of Chapter 6 of the input signal AC matrix. As in the
preceding section, consider the equation

Hym] _| Ryt i) [HN(n)}
RN+1(”)|: 0 i| = |:[r?v(n)]f R,(n — N):| 0
(8.19)
_ |: rny(n) :|
[ ()] Hy(n)
The last row can also be written as
[N Hy(n) = By(n)Ry(n)Hy(n) = B )1y () (8.20)
Subtracting equation (8.19) from (8.18a) yields
0
RN+1<n>[HN+1(n) - [HNO(”)H - [ Kﬂv(m} (821)
where
Ky (n) = Z W' Py(p)x(p — N) — By(m)X (p)] (8.22)
p=1

Now, identifying equation (8.21) with the backward linear prediction matrix
equation leads to the following recurrence equation for the filter coefficients:

Hy(n) = [H%(")} - —Z " EZ; [Bﬁ(ln)] (8.23)

Substituting (8.23) into definition (8.17a) yields the relation for a priori
output errors

Keov(n
ex i+ 1) = exn+ 1) =YD o) (8.24)
Eyn(n)
The corresponding equation for a posteriori errors is
Kiy(n+1)
N
) n+1l)y=ey(n+1)————<epn(n+1 8.25
st ) = eyt ) = RO e ) (8.25)

Altogether, equations (8.12), (8.13), and (8.24) constitute the set of a
priori equations for the lattice filter, while equations (8.14a,b) and (8.25)
give the a posteriori version.
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The error energy can also be computed recursively. According to the
definition of the filter error output, we have

n
Ena(n) =Y W'y (p) — Hyy1(0) Ry 41 (M Hyy 41 (n) (8.26)
p=1
Substituting recurrence relation (8.23) into (8.26) and using the backward
prediction matrix equation, we obtain the order recursion

Ki(n)
Epy(n)

Obviously Ey,(n) < Ey(n), and the error power decreases as the filter
order increases, which is a logical result.

Recall from Section 6.4 that the adaptation gain can be computed in a
similar way. The derivation is repeated here for convenience. From the
definition relation

Enyi(n) = Ey(n) — (8.27)

Ry(m)Gy(n) = Xy(n) (8.28)
we have
RN(n>[ GM@} [ By A [GNl(m]
0 [’y Ry(n+1—N) 0

8.29
_ [ Xy_1(n) } (829
[ 1 ()] Gy (n)

The last row can be expressed by

[P 1 (W] Gy (n) = By () Xy_1(n) = x(n+ 1 — N) — epv—n(n)  (8.30)

and equation (8.29) can be rewritten as
Gy_i(n) | _ _ p-l 0
[ = v - rita| , ° (831)

But the last row of the inverse AC matrix is proportional to the backward
prediction coefficient vector; hence

| Gy(n) epn-n)(M) [ —By_i(n)
GN(”Z)—|: NOI }er[ N ] (8.32)

This is equation (6.75) in Section 6.4. Recall that the other partitioning of
Ry (n) and the use of forward variables led to equation (6.73) in Chapter 6,
which is a mixture of time and order recursions.

This expression is useful to recursively compute the ratio ¢y(n) of a
posteriori to a priori errors, defined by
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en(n)
ey(n)

Direct substitution yields

= 1= Xy(mRy () Xy(n) = 1 — X{(n)Gy(n)

on(n) =

2
exyn_n(n)
on(n) = py_1(n) = 2o (8.33)
Eyn_1y(n)
The initial stage N = 1 is worth considering:
2 2
€po(1) x“(n)
= —_ = l
e1(n) = @o(n) Epo()

S )
p=1

Thus, in order to compute gy (7) recursively, it is sufficient to take ¢y(n) = 1
and repeatedly use equation (8.33).

We reemphasize that ¢y (n) is a crucial variable in FLS algorithms. It is of
particular importance in lattice algorithms because it forms an essential link
between order and time recursions.

8.3. TIME RECURRENCE RELATIONS

For a fixed filter order N, the lattice variable Ky(n) can be computed recur-
sively in time. According to definition (8.4), we have

Ky(n+1)= Wi W' Px(p)x(p — N — 1)+ x(n+ 1)x(n — N)
p= (8.34)

— AN(n+ DRy(n)By(n)

Now, from the time recurrence relations (6.45), (6.26), and (6.53) in Chapter
6 for Ay(n+1), Ry(n), and By(n), respectively, the following updating
relation is obtained after some algebraic manipulations:

Kyii(n41) = WKy, (n) + ean(n + Depy () (8.35)

Due to relations (6.49) and (6.56) of Chapter 6 between a priori and a
posteriori errors, an alternative updating equation is

Kyii(n+1) = WKy 1(n) + e,n(n + Deyy(n) (8.36)

Clearly, the variable K, |(n) represents an estimation of the cross-corre-
lation between forward and backward order N prediction errors. Indeed,
equation (8.35) is similar to the prediction error energy updating relations
(6.58) and (6.59) derived and used in Chapter 6.

A similar relation can be derived for the filter output error energy Ey(n).
Equation (8.26) for order N and time n + 1 corresponds to
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n+l1
Ex(n+1) =Y W"™"(p) — Hy(n+ DRy(n+ DHy(n + 1) (8.37)

=1
Substituting the coefficient updating relation

Hy(n+1)=Hym) + Gy(n+ Dey(n+1) (8.38)
into (8.37), again yields after simplification

Ey(n+1)= WEy(mn) +ey(n+ Dey(n+1) (8.39)
For the filter section variable Kyy(n + 1), definition (8.22) can be rewritten as

n+1

Kn(n+1) =Y W™ 7y(p)x(p— N)
=1

(8.40)
— [Bi(n) + Giy(n + Deyy(n + 1)]
X [Wryn(n) + y(n + DX y(n + 1)]
which, after simplification, leads to
Kov(n+1) = WKyy(n) + gpn(n + Dey(n + 1) (8.41)

Note that the variable K;y(n + 1), which according to definition (8.22) is
an estimate of the cross-correlation between the reference signal and the
backward prediction error, can be calculated as an estimate of the cross-
correlation between the filter output error and the backward prediction
error. This is due to the property of noncorrelation between the prediction
errors and the data vector.

The recurrence relations derived so far can be used to build FLS algo-
rithms for filters in lattice structures.

8.4. FLS ALGORITHMS FOR LATTICE STRUCTURES

The algorithms combine time and order recurrence relations to compute, for
each set of new values of input and reference signals which become avail-
able, the lattice coefficients, the prediction and filter errors, their energies,
and their cross-correlations. For a filter of order N, the operations are
divided into prediction and filter operations.

To begin with, let us consider the initialization procedure. Since there are
two types of recursions, two types of initializations have to be distinguished.
The initializations for the order recursions are obtained in a straightforward
manner: the prediction errors are initialized by the new input signal sample,
the prediction error energies are set equal to the input signal power, and the
variable ¢y(n) is set to 1.
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For time recursions, an approach to initialize the state variables of the
order N lattice filter can be obtained as an extension of that given in Section
6.7. The input signal for n < 0 is assumed to consist of a single pulse at time
—N, which leads to

€,i(0) = €,(0) = ¢,(0) = ,(0) =0, 0<i<N-1
E 0)=W"E,, 0<i<N-I
Ep(0)=W""E, 0<i<N-1I
K;(0) =0, I <i<N

(8.42)
i
where E| is a real positive scalar. It can be verified that the prediction order
recursions, and particularly energy relations (8.8) and (8.11), are satisfied for
n = 0. Indeed, in these conditions, the impact of the choice of the initial
error energy value E, on the filter performance is the same as for the trans-
versal structure, and the relevant results given in Chapter 6 are still valid.

Many more or less different algorithms can be worked out from the basic
time and order recursions, depending on the selection of internal variables
and on whether the emphasis is on a priori or a posteriori error calculations
and on time or order recurrence relations.

There are general rules to design efficient and robust algorithms, some of
which can be stated as follows:

Minimize the number of state variables.

Give precedence to time recurrence whenever possible.

Make sure that reliable control variables are available to check the proper
functioning of the adaptive filter.

Accordingly, the lattice algorithm given below avoids using the cross-
correlation variable K;(n) and is based on a direct time updating of the
reflection coefficients [4].
Substituting the time recursion (8.36) and the error energy updating
equation into definition (8.15) gives
[Eai(n+ 1) = eqi(n + Degi(n + Dl () = Kiyi(n + 1) — £4,(n + Depi(n)
(8.43)

Hence, using again (8.15) at time n+ 1 gives

ai(n+1)

E,n+1)

Now, the time recursion (8.13) yields

g4i(n + Depyppy(n + 1)
E (n+1)

kogizn(n + 1) — kg (n) + [epi(n) — kyirry(Me(n+ 1) (8.44)

(8.45)

kairy(n +1) = kyiyny(n) +
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which provides a time updating for the reflection coefficients involving only
error variables.

The same procedure, using time recursions (8.35) and (8.12), leads to the
time updating equation for the other reflection coefficients in the prediction
section:

epi(m)eqiyn(n+ 1)

kp; 1) =k 4
b(1+l)(n+ ) b(l+1)(n)+ Epi(n) (8.46)
For the filter section, let
Kn(n)
koy(n) = =2 8.47
=g (8:47)

The same procedure again, using time recursion (8.21) and the filter error
energy updating relation, yields

(n+ Dei(n+1)

Epi
. D = fr
e D = k)

(8.48)

The computational organization of the lattice adaptive filter based on a
priori errors is given in Figure 8.2. The initial conditions are

eyi(0) = k4i(0) = kp(0) = k;(0) =0, 0<i<N-1
00 =1, E 0 =W"E,, Eu0)=W""E, 0<i<N-I
(8.49)

and the FORTRAN program is given in Annex 8.1.

A lattice algorithm based on a posteriori errors can be derived in a similar
manner.

The computational complexity of the algorithm in Figure 8.2 amounts to
16N + 2 multiplications and 3N divisions in the form of inverse calcula-
tions. About 7N memories are required.

The block diagram of the adaptive filter is shown in Figure 8.3. The filter
section is sometimes called the ladder section, and the complete system is
called a lattice-ladder adaptive filter.

Since it has been shown in Section 5.3 that the backward prediction
errors are uncorrelated, the filter can be viewed as a decorrelation processor
followed by a set of N first-order separate adaptive filters.

In the presence of stationary signals, the two sets of lattice coefficients,
like the forward and backward prediction coefficients, take on similar values
in the steady state. Algorithms which use only one set of coefficients, and
thus are potentially simpler, can be obtained with normalized variables [5].
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FILTER COEFFICIENTS  K(n)
BACKWARD PREDICTION ERRORS [ #,(m)]
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Kpilne 1) = Keithd + e (ne 1) &, (e 1 ne 1/ tne )

FIG. 8.2 Computational organization of a lattice adaptive filter.

8.5. NORMALIZED LATTICE ALGORITHMS

The variable K;(n) defined by equation (8.4) and updated by (8.35) corre-
sponds to a cross-correlation calculation. A true cross-correlation coeffi-
cient, with magnitude range [—1, 1], is obtained by scaling that variable
with the energies of the error signals, which leads to the normalized variable,
k;(n), defined by

ki (n) = 1) (8.50)

AY Eai(n)Ebi(n - 1)

A time recurrence relation can be derived, using (8.36) to get
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FIG. 8.3 The lattice adaptive filter.

ki1 (n+ 1) = [E,(n + DI PIWK (1) + e(n + Dep(m[Ep(n)] "/
(8.51)

In order to make k;,(n) appear in (8.51), we have to consider the ratios of
the error energies. The time updating equations can be rewritten as

En) _ | culn+1)

E n+1)"  Eumn+1) ¢i(n) (8.52)
and

Ep(n—1) . &) 1

B En)a) (8.53)

If the normalized forward prediction error is defined by

enain-+ 1) = €4+ 10— e+ Dl E -+ D2

and the normalized backward prediction error by
enpi(1) = e (Mlpi(m) Epy ()]~ (8.55)
then, the recurrence equation (8.51) becomes

kip1(n+ 1) = ki (1 — engi(n + D)1 — enp(m)]'* + €01 + Deypi()
(8.56)

(8.54)
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Clearly, with the above definitions, the normalized error variables are
intermediates between a priori and a posteriori errors.

To obtain an algorithm, we must derive recursions for the normalized
prediction errors. The order recursion (8.14a) for forward a posteriori errors
can be rewritten as
Kipi(n+1)

Eyi(n)

Substitution of the normalized errors in that expression leads to

mm+n}”[mm
Eqivn(n+1) ®ir1(n)

Pir1(Meqirn(n +1) = gi(n)eg(n + 1) — €5i(1) (8.57)

12
ena(i+l)(n + 1) = [ i| enai(n + 1) (858)

The normalized variables can be introduced into the order recursions (8.8)
and (8.33) to yield

Eyin(n+1) = Eu(n+ D[ -k (n+ 1) (8.59)
and
@ir1(n) = @1 — eppi(n)] (8.60)

Substituting into (8.58) leads to the final form of the time recurrence relation
for the normalized forward prediction error:

enatien(1+ 1) = [1 = ki (1 + D] P11 = (] @61)
X (enai(n + 1) - ki+1(n + l)enb[(n))

The same method can be applied to backward prediction errors. Order
recursion (8.14b) is expressed in terms of normalized variables by

Ey(n) TT oi(n) }W
Epiyny(n+1) @ip1(n+1)
X (enbi(n) - kH—l(n + 1)€nai(” + 1))

emirn(n+1) = [ (8.62)

Equation (8.11) for the energy can be written

Epiyn(n+1) = Epy([1 = kiyy(n + D] (8.63)
An equation relating ¢, ;(n 4+ 1) and ¢;(n) can be obtained with the help of
adaptation gain recurrence relation (6.73) in Chapter 6, which yields
ea(n+ 1)

Eqn+ 1) 864

Qi (n+1) = gi(n) —
and thus
@i1(n+ 1) = @[] — engi(n + 1)] (8.65)
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Hence the final form of the time recurrence relation for the normalized
backward prediction error is

euirnyn+ 1) =[1 = ki (n + DIV = ei(n + D72
X (€pi(n) — kiy1(n + D)eygi(n + 1))
Finally equations (8.56), (8.61), and (8.66) make an algorithm for the nor-
malized lattice adaptive predictor.

Normalized variables can be introduced as well in the filter section. The
normalized filter output errors are defined by

(8.66)

T2
%wzw{%% = eI WE@] (8.67)

Then order recursion (8.25) yields

12 12 ] '
%sz[mm}[mm]<%@_ Ky() %w)(%@

Ei1(n) @iy1(n) VE(n)pi(n) Epi(n)
Defining the normalized coefficients by
kp(n) = _ Rt (8.69)
We can write the order recursion (8.27) for error energies as
Eii(n) = Em1 — kj(n)] (8.70)

Substituting (8.60) and (8.70) into (8.68) leads to the order recursion for
filter output errors:

eairn(m) = [1 — ki)™ 2[1 — emp(m)] ™ Ple,i(n) — kp(n)e,pi(n)] (8.71)

Now the normalized coefficients themselves have to be calculated. Once the
normalized variables are introduced in time recursion (8.41), one gets

%w]m[ﬂw
E,n+1) En+1)

kp(n+1) = [ i|l/2 Whk(n) + e,pi(n + 1)e,(n + 1)
(8.72)
The time recursion for filter output error energies can be rewritten as
E(m) _ &0+ Den+)
E(n+1) En+1)

Substituting (8.53) and (8.73) into (8.72), we obtain the time recursion for
the normalized filter coefficients:

=1-cn+1) (8.73)
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k(n+ 1) = k(1 — eppi(n + D]'?[1 — epi(n + 1]'?

(8.74)
+ enbi(n + 1)6,“'(1/1 + 1)

which completes the normalized lattice filter algorithm. The initializations
follow the definition of the normalized variables, which implies for the
prediction

x(n+1)
\Y4 EaO(n + 1)

and for the filter section

y(n+1)
VEo(n+1)

Other initializations are in accordance with (8.49), with the additional equa-
tion E/()(O) = Eo.

The computational organization of the normalized lattice adaptive filter
is shown in Figure 8.4, and a filter section is depicted in Figure 8.5.

In spite of its conciseness, this algorithm requires more calculations than
its unnormalized counterpart. The prediction section needs 10N + 2 multi-
plications, 2N + 1 divisions, and 3N + 1 square roots, whereas the filter
section requires 6 N + 2 multiplications, N + 1 divisions, and 2N + 1 square
roots. Altogether, the algorithm complexity amounts to 16N + 4 multiplica-
tions, 3N + 2 divisions, and SN + 2 square roots. An important point is the
need for square-root calculations, which are a significant burden in imple-
mentations. The number of memories needed is about 3N.

Overall, the normalized algorithm may be attractive for handling non-
stationary signals with fixed-point arithmetic because it has a built-in mag-
nitude scaling of its variables. The resulting robustness to roundoff errors is
enhanced by the fact that only one set of prediction coefficients is calculated
[5-7].

The main advantage of the lattice approach is that it constitutes a set of
N adaptive filters with all orders from 1 to N. Therefore it may be interest-
ing to calculate the coefficients and adaptation gains of the corresponding
transversal filters.

enaO(n + 1) = = enbO(n + 1) (875)

e on+1)= Eo(n+ 1) = WEz(n) + y*(n + 1) (8.76)

8.6. CALCULATION OF TRANSVERSAL FILTER
COEFFICIENTS

The conversion from lattice to transversal prediction coefficients is per-
formed with the help of the order recursions (8.7) and (8.10), which can
be written as
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FIG. 8.4 Computational organization of the normalized lattice adaptive filter.

it 1= | D] o0 247

B 1= | g | = Faentn e 0] 4oy ] 8.77)
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FIG. 8.5 A section of normalized lattice adaptive filter.

The coefficients of the transversal filters can be recursively computed from
order 2 to order N. However, it may be more convenient to replace B;(n) by
Bi(n+ 1) in order to deal with a set of variables homogeneous in time.

Substituting the time recursions of the forward and backward prediction
coefficients into (8.77) and adding the order recursion (8.32) for the adapta-
tion gain, the conversion set becomes

A(n+1 Bn+ 1
Aip(n+1) = |: (n0+ ):|—k,,<,-+1)(n+l)|: (’i_li_ ):I
Gin+ 1
+k,,<,-+1>(n+1>e,,,~(n+1>[ o )}
0 0
Biy(n+1) = [B_(n . 1)} —epn+ 1)[6(" ; 1)} (8.78)
-

— koipny(n + 1)[Ai(n+ 1)}

Gin+1 ,. _B(n+1
ctnen-[94]

The corresponding flow graph is shown in Figure 8.6. The implementation
requires some care in handling the coefficient vectors. The operator Z ' in
the flow graph represents a one-element shift of an (i + 1)-element vector in
an (i + 2)-element register. The input of the first section, corresponding to
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FIG. 8.6 A section for calculating the transversal predictor coefficients.

i=0, is (1,1,0), and the output of the last section, corresponding to
i = N — 1, yields the prediction coefficients.

The transversal coefficients H;(n) of the filter section are obtained recur-
sively from equation (8.23).

Note that a similar computational complexity can be obtained through
the direct calculation of the forward prediction transversal coefficients.
Suppose we want to calculate all the coefficients from order 1 to order N:
since the adaptation gain updating can use only forward variables, backward
variables are no longer needed, and the algorithm obtained by simplifying the
algorithms in Chapter 6 is shown in Figure 8.7. The computational complex-
ity is about 2N (N + 1) multiplications and N divisions per time sample.

8.7. MULTIDIMENSIONAL LATTICE ALGORITHMS

The lattice algorithms for scalar input and reference signals can be extended
to vector signals. As shown in Section 7.5, for a K-element input signal the
prediction errors become a K-element vector, the lattice coefficients and
error energies become K x K matrices, and the prediction error ratios
remain scalars. It is sufficient to change accordingly the equations in
Figure 8.2 to obtain a multidimensional lattice algorithm.

As an example, let us consider the 2-D input signals x'(n) = [x;(n), x,(n)]
and scalar reference y(n), the notations being as in Section 7.4.

The 2i-element filter coefficient vector H,;(n) which minimizes the cost
function
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FORWARD PREDICTORS : Ayin}

ADAPTATION GAINS - G,(n)

(NPUT DATA VECTOR : X, ()
PREDICTION ERROR ENERGIES : Eg(n)

WEIGHTING FACTOR W

NEW DATA AT TIME n: input signal : x{n+1)

INITLALIZATION
Egqlf 1) = WE,o(n) + x2(ne 1)
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FIG. 8.7 Direct calculation of forward prediction transversal coefficients for orders
1 to N.

Iy = " W) — Ha(mX i) (8.79)
p=1

satisfies the relation
Ryi(n)Hyi(n) = rai(n)
The same relation at order i + 1 is
n rai(n)
| Xup) . n
n—p 2i ‘. teo, ) _ e .
,; w [X(P - i)}[xzz(l?)s X (p — DHy41)(n) = p;] )
(8.80)

berrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



MARC
DE

The partitioning of the matrix Ry)(n) leads to

Royi(n) i) Hyi(n) rai(n)
ol S W — - || O || PO Ha
p=1 0
(8.81)
Hence
HZi(n) » 0
Hyiy1)(n) = 8 + RZ(i+1)(”)|:Ki(n)i| (8.82)
with
Kin) =Y W' y(p)lx(p — i) — By(n)X(p)] (8.83)
p=1
the 2i x 2 backward prediction coefficient matrix being expressed by
Bi(n) = Ry (0)r(n)
The backward prediction matrix equation is
—By(m) | _| O
Rz(,-+1>(n)[ A } = [ Em(n)} (8.84)

where E,;;(n) is the 2 x 2 backward error energy matrix. From the output
error definition

eipi(n+1) = y(n+1) — Hyg1y(n) Xoi1y(n + 1) (8.85)
the following order recursion is obtained, from (8.82) and (8.84):
e (n+ 1) = ¢i(n+ 1) — K{(n) Expi(mes(n+ 1) (8.86)

It is the extension of (8.24) to the 2-D input signal case.

Consequently, for each order, the filter output error is computed with the
help of the backward prediction errors, which are themselves computed
recursively with the forward prediction errors. The filter block diagram is
in Figure 8.3.

Simplifications can be made when the lengths of the two corresponding
adaptive filters, as shown in Figure 7.1, are different, say M and N + M.
Then the overall filter appears as a combination of a 1-D section with N
stages and a 2-D section with M stages. These two different sections have
to be carefully interconnected. It is simpler to make the 1-D section come
first [8].
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At order N, the elements of the forward prediction error vector are

N+ 1) = x(n+ 1) = [x,(n), ..., x,(n+ 1 — N)]Ay,(n)

(2) (8.87)
v+ 1D =x(n+1)—[xi@n),....x;(n+1—N)]4y(n)
and those of the backward prediction error vector are
41 =x(n+1—N)—[x;(n+1),...,x,(n+2— N)]By(n)
A+ 1) =x(n+1) = [+ 1), ... xy(n+2 — N)]doy (n)
(8.88)

where the prediction coefficient matrices are partitioned as

_ [ Au(m)  An@m) _ | Bu(m) Bj(n)
AzN(n)_[Azl(n) Azz(")}’ BzN(n)_[le(ﬂ) Bzz(")}

Clearly, e aN(n + 1) and e(l)(n + 1) are the forward and backward predic-
tion errors of the 1-D process, as expected. They are prov1ded by the last
stage of the 1-D lattice section. The two other errors eaN(n+1) and
65,2]\),(14 + 1) turn out to be the outputs of 1-D filters whose reference signal
is x5(n).

Therefore, they can be computed recursively as shown in Section 8.2,
using equatins similar to (8.24) for the error signal and (8.41) for the
cross-correlation  estimation; the initial values are e%)(n +1)=
e+ 1) = xy(n+ 1).

Definition (8.88) and the procedure in Section 8.2 lead to

(n)
R+ 1) = ey (n+1)— % ey 1)) (8.89)

and for a posteriori errors

Kun-pn+1) D

(2) _ @

e+ 1) = ey [+ 1) — Ery () S0 B (8.90)
with

K-+ 1) = WK v_n(0) + &5y ey + 1) (8.91)

We can obtain e(2) (1 + 1) directly from the forward prediction errors,
because it has the same definitoin as eaN(n + 1) except for the shift of the
data vector. Therefore the order recursive procedure can be applied again to
yield
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Kyn(n+1) &

(2
3 (n—l—l)_ea (11+1)— e, (n+1) (8.92)
bN W=D E,n-_n(n+1) W=D
and
Koy (n+ 1) = WEKyn(n) + ey (0 + Delgy_py(n+ 1) (8.93)

Finally, the 1-D/2-D lattice filter for nonuniform lengths is depicted in
Figure 8.8.

The above technique can be extended to higher dimensions to produce
cascades of lattice sections with increasing dimensions.

8.8. BLOCK PROCESSING

The algorithms considered so far assume that updating the coefficient is
needed whenever new data become available. However, in a number of
applications the coefficient values are used only when a set or block of n
data has been received. Updating at each time index is adequate in that case
too, but it may require an excessive number of arithmetic operations.

The problem is to compute the N elements of the coefficient vector Hy(n)
which minimizes the cost function Jy(n) given by

Tn(n) =Y [y(p) — HymXy () (8.94)
p=1

!ﬂ. -0 - 1-D [

1 Stage 1 Stage - n —

2D
x5(n) Stage

t ! —

y(n) ey(n) e5in) Bys pin)

FIG. 8.8 The 1-D/2-D lattice structure for nonuniform length filters.
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where the block length 7 is usually significantly larger than the filter order
N.
As seen before, the solution is

n -1 n
Hy(n) = [Z XW)XW)} > @)Xy (p) (8.95)
p=l1 =1

If the initial data vector is null, X(0) = 0, it is recommended to carry out
the calculation up to the time n + N — 1 while taking X(n + 1) = 0, because
the input signal AC matrix so obtained is Toeplitz. The computation of its
N different elements requires nN multiplications and additions. The same
amount is required by the cross-correlation vector. Once the correlation
data have been calculated, the prediction coefficients are obtained through
the Levinson algorithm given in Section 5.4, which requires N divisions and
N(N + 1) multiplications. The filter coefficients are then calculated recur-
sively through (8.23), where the variable k;(n) (0 <i < N —1) can be
obtained directly from its definition (8.22), because the cross-correlation
coefficients r,,y(n) are available; again N divisions are required as well as
N(N — 1) multiplications. The corresponding FORTRAN subroutine is
given in Annex 5.1.

For arbitrary initial vectors or for zero initial input vector and summa-
tion stopping at n, the AC matrix estimation in (8.95) is no longer Toeplitz,
and order recursive algorithms can be worked out to obtain the coefficient
vector Hy(n). They begin with calculating the cross-correlation variables
K;(n) and Kj(n) from their definitions (8.3) and (8.22), and they use the
recursions given in the previous sections. They are relatively complex, in
terms of number of equations [9]. For example, the computational require-
ments are about nN + 4.5N” for prediction and 2nN + 5.5N for the filter,
in the algorithm given in [10].

8.9. GEOMETRICAL DESCRIPTION

The procedure used to derive the FLS algorithms in the previous chapters
consists of matrix manipulations. A vector space viewpoint is introduced
below, which provides an opportunity to unify the derivations of the
different algorithms [3, 11-14].

The vector space considered is defined over real numbers, and its vectors
have M elements; it is denoted R™. The vector of the N most recent input
data is

Xy(n) =[x(n), x(n—1),...,x(1),0,...,0]

and the data matrix containing the N most recent input vectors is
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Xyn() = [Xp(n), Xpy(n = 1), ..., Xy(n+1—N)]

The column vectors form a basis of the corresponding N dimensional sub-

space.

An essential operator is the projection matrix, which for a subspace U is
defined by

Py =UU'U)'U! (8.96)

It is readily verified that P,U = U. If U and Y are vectors, Py Y is the
projection of Y on U as shown in Figure 8.9. The following are useful
relationships:
Pt :PU’ (PUY)t(PUY): YtPUY, PUPU:PU (897)
The orthogonal projection operator is defined by
0 =1-UU'U) U (8.98)
Indeed the sum of the projections is the vector itself:

PyY+PyY=Y (8.99)

Let us consider as a particular case the operator P{y, (,—1) applied to the
M -element vector X, (n):

Ply, ety X () = Xpr(n) — Xyg(n — 1)
X [Xin(n — DXy — D17 Xign(n — DX y(n)

The product of the last two terms is

M U

P.Y

FIG. 8.9 Projection operator.
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XJI\/IN(n — DXy (n)

- ) T
x(n—1)  x(n—2), - x(2) x(1) 0 07| x(mn—1)
x(n—2) xn=3) -~ x(I) 0 O 0 :
B . . x()
xn4+1=N) x(n—=N) -+ - e e 0 ;
L 0
(8.100)
With the relations of the previous chapters, we have
Xy — DXy () = Y Xy(p — Dx(p) = ry(n) (8.101)
p=I1
Similarly
[Xirn(n — DXyn(n— D] = D~ Xy(p)Xi(p) = Ry(n — 1) (8.102)
p=I
Hence
[Xhv(n = DXyn(n — DI Xy (n = DXy (n) = Ry (0 = Dry(n) = Ay(n)
(8.103)

Thus, the M-clement forward prediction error vector is obtained:
P?XM,V(n—])}XM(n) =ey(n) = Xy (n) — Xyyy(n — 1) Ay(n) (8.104)

It is such that

n

ey (m) = [x(p) = X'(p — DA = Eun(n) (8.105)

p=l1

and the forward prediction error energy is the squared norm of the ortho-
gonal projection of the new vector X,(n) on the subspace spanned by the N
most recent input vectors.

Finally, the operator Py, .1y, denoted in a shorter form by Pi(n — 1),
is a prediction operator. Note that the first element in the error vector ey, (n)
is the a posteriori forward prediction error

ean(n) = x(n) — Xy (n — D) Ay(n) (8.106)

MARCEL
DE
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It is useful to define a dual prediction operator Q%(n — 1) which produces the
a priori forward prediction error as the first element of the error vector. It is
defined by

0% =1—-UU'S'sSU)'U'S'S (8.107)
where S is the M x M shifting matrix

010 --- 00
001 --- 00
s=|: i P
000 --- 0 1
000 --- 00

The product of S with a time-dependent M x 1 vector shifts this vector one
sample back. Therefore one has

The M x M matrix S'S is a diagonal matrix with 0 as the first diagonal
element and 1’s as the other elements.

As before, the operator Qfy, (-1 is denoted by O%(n — 1). Let us con-
sider the product Q%(n — 1)X,,(n). Clearly,

n—1
Xin(n— DS'SXy () = Xy(p — Dx(p) = riy(n — 1) (8.109)
p=1
and
n—2
Xy = DS'SXyy(n = 1) = 3 Xx(0)Xy(p) = Ry(n —2) (8.110)
p=1

which leads to
0% — DXy (n) = ey (n) = Xy (n) — Xyyy(n — DAy — 1) (8.111)
The first element of the vector ey, (n) is
eun(n) = x(n) — Xy(n — DNAy(n—1) (8.112)

That operation itself can be expressed in terms of operators. In order to
single out the first element of a vector, we use the so-called M x 1 pinning
vector I1:

m=[1,0,...,0]
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Therefore the forward prediction errors are expressed by

ean(n) = TPy (n — DX (n) = Xiy(n) P (n — DIT (8.113)
and
ean(n) = Q% (n — DXy (n) = X (m)Q%(n — DI (8.114)

These two errors are related by the factor ¢y(n — 1), which is expressed in
terms of the space operators as follows:

M'PL (I = 1 = Xy (mRY () Xy (n) = ¢y (n)
Hence, we have the relationship beween P% and Q%
n'o% = (M'Py 1)~ '11' P4 (8.115)

Fast algorithms are based on order and time recursions, and it is necessary
to determine the relationship between the corresponding projection opera-
tors.

8.10. ORDER AND TIME RECURSIONS

Incrementing the filter order amounts to adding a vector to the matrix
Xyv(n) and thus expanding the dimensionality of the associated subspace.
A new projection operator is obtained.

Assume U is a matrix and V a vector; then for any vector Y the following
equality is valid for the orthogonal projection operators:

PLY =Py Y + PLV(V'PLVY VP Y (8.116)

It is the combined projection theorem illustrated in Figure 8.10. Clearly, if U
and V are orthogonal—that is, Py ¥V =0 and Py V = V—then equation
(8.116) reduces to

PyY =Py, Y +P,Y (8.117)
For the operators one gets
Pyy =Py —PyV(V' PV VP (8.118)

In Chapter 6, order recursions are involved in the adaptation gain updating
process. The adaptation gain Gy(n) can be viewed as the first vector of an
N x M matrix

Gy = (XhnXun) ™ Xy (8.119)

and
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FIG. 8.10 [Illustration of the combined projection theorem.

Gn(m) = RY' (M) Xy (1) = Gy (m)TT (8.120)

In order to determine the operator associated with an expanded subspace, it
is useful to notice that X,y Gy is the projection operator Py. For U a matrix
and V a vector, equations (8.118) and (8.99) lead to

U, ViGy,y =1U, V][%U} +(V = UGy V)(V'PLV) ' VP
Hence
vy = [GOU} i [_GlUV}(V’PUUV)IV’P?J (8.121)

Similarly, if U and V are permuted, one gets
Gro=|2+| 1 Nweymyvie (8.122)
V,u GU _GU V U U .

These are the basic order recursive equations exploited in the algorithms in
Chapter 6.

The time recursions can be described in terms of geometrical operators as
well. Instead of adding a column to the data matrix X,y (n), we add a row to
the matrix X,,y(n — 1) after a backward shift. Let us consider the matrices
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0 0 0 ]
xn—=1) x(n-2) --- x(n— M)
S'sxy = | x(n—=2) x(n—=3) -+ x(n—1-M)
x(1) 0 0 ] (8.123)
(x(n) x(n—1) --- x(n+1—N)
0 0 0
'y =
| 0 0 0

Clearly, their column vectors are orthogonal and they span orthogonal
subspaces. The following equality is valid for the projectors:

Py = Pgisy + Pnniy (8.124)
Due to the definition of the shifting matrix, we have

S'sS'=5", SS'S=S, SS+nmn=1 (8.125)
Thus

Pggy = S'PgyS (8.126)

The time recursions useful in the algorithms involve the error signals, and,
therefore, the orthogonal projectors are considered. Definition (8.98) yields

S'P%yS = S'S — S'SX(X'S'SX)"' X'S'S (8.127)

As time advances, the objective is to update the orthogonal projection
operator associated with the data matrix X;,y(n), and an equation linking
PSy and P% is looked for. Definitions (8.123) lead to

X'X=X'S'SX + X'TITII' X (8.128)
Now, using the matrix inversion lemma (6.24) of Chapter 6, one gets

X's'sx)y'=x'x) '+ ') ' X' na P, T X' X)) (8.129)
Substituting into (8.127) yields, in concise form,

S'P%yS = S'S[P% — PSTI(IT' Py) "' T P4 1S'S
Using the property (8.125), we obtain the time recursion equation

P% = S'P%S + PSTI(IT P4 IT) T Py (8.130)

To illustrate that result, let us postmultiply both sides by the reference signal
vector Y;,(n), defined by
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Y)M®n) =[yn), yn—1),...,9(1),0,...,0]

Clearly
2(n) — Xy(n)Hy(n)
y(n—1) = Xy(n — 1)Hy(n)
Py Yy(n) = (1) — Xy(D)Hy(n) ; Hy(n) = Ry (n)r,n(n)
0
L 0 A
(8.131)
The same operation at time n — 1 leads to
_ 0 -
y(n—1)=Xy(n— DHy(n - 1)
S'Psy SYy(n) = y(1) = Xi(D)Hy(n — 1) (8.132)
0
L 0 _
Now
PRI = 1 — Xy(m)Ry(m)Xy(n) = pn(n) (8.133)
and the last term of the right side of the recursion equation (8.130) is
i en(n) ]
—Xy(n — 1)Gy(n)
0 t po —1 vt po _ 1 : SN(n)
PYI(IT Py I I Py Yy (n) = | —XN(1)Gy(n) (8.134)
0 YN (n)
L 0 _
The filter coefficient time updating equation
Hy(n) = Hy(n — 1) + Gn(men(m
en(n)

leads to the verifications of the result

P5 Yy (n) = 8PSy SYa(n) + P TI(IT P4 T " T Py Yo (n) (8.135)
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It is important to consider the application of the time updating formula
(8.130) to the gain operator Gy. Definition (8.119) and equation (8.115)
lead to

I — XGy = S'(I — SXGgy)S + (I — XG )T 0% (8.136)

Then, the properties of the shifting matrix S and pinning vector IT yield,
after simplification, the following time updating formula for the gain opera-
tor:

GX - GSXS + GXHH[QOX (8137)

With the geometrical operators presented so far, all sorts of algorithms can
be derived.

8.11. UNIFIED DERIVATION OF FLS ALGORITHMS

The FLS algorithms are obtained by applying the basic order and time
recursions with different choices of signal matrices and vectors.

In order to derive the transversal algorithm based on a priori errors and
presented in Section 6.4, one takes U = X, n(n — 1) and V = X,,(n). The
following equalities are readily verified:

VIP(EJH = 8(tN(n)’ V[Q(Z/H = eaN(n)

C (8.138)
GUV = AN(}’Z), V[PUV = EaN(n)

Therefore, the time updating of the forward prediction coefficients is
obtained by postmultiplying (8.137) by X,,(n). The time and order updating
equation for the adaptation gain is obtained by postmultiplying (8.122) by
I1. The recursion for the error energy E,y(n) corresponds to premultiplying
the time updating formula (8.130) by X},(n) and postmultiplying by X ,,(n).
The backward variables are obtained in the same manner as the forward
variables, X,,(n — N) replacing X,,(n).

The algorithm based on all prediction errors and given in Section 6.5 uses
the error ratio ¢y(n) = IT' P (n)I1, which is calculated through a time and
order updating equation.

Postmultiplying (8.118) by IT and premultiplying by IT' yields after sim-
plification

85211\/ (n)
EaN(n)

Now, substituting (6.49) of Chapter 6 and the time recursion for the error
energy into (8.139) gives

ony1(n) = oy(n—1) — (8.139)
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Exnin—1)
EaN(n)
A similar relation can be derived for the backward prediction error energies,
taking U = Xynv(n) and V = Xy, (n — N). It is

en1(n) Epy(n)

Eyn(n—1)
In order to get a sequential algorithm, we must calculate the updated energy
Eyn(n). Postmultiplying (8.121) by U = X,n(n) and V = X,,(n — N) yields
the adaptation gain recursion (6.75) of Chapter 6, which shows that the last
element of Gy (n) is

on1(n) = py(n—1) (8.140)

on(n) = (8.141)

_ epn(n)
" = )
Hence
§0N+1(”) (8.142)
1 — epn(n)m(n) ’

Finally, the error ratio gy(n) can be updated by equations (8.140) and
(8.142). The algorithm is completed by taking into account the backward
coefficient time updating equation and rewriting (6.75) of Chapter 6 as

Gyii(n) = [ Gy(m[1 - ng(n)fn(n)]} n |:_BN(1n -1 ] mn) (8.143)

on(n) =

Dividing both sides by ¢y, (n) and substituting (8.142) lead to

Gyyi(n) [ Gy () N [—Bzv(n — l)} m(n)
Pn+1(n) B g0]\7001) 1 Pn1(1)

(8.144)

Therefore the a priori adaptation gain Gy(n) = Gy(n)/@y(n) can be used
instead of G(n), and the algorithm of Section 6.5 is obtained. In Figure 6.5
oy (n) is updated.

The geometrical approach can also be employed to derive the lattice
structure equations. The lattice approach consists of computing the forward
and backward prediction errors recursively in order. The forward a poster-
iori prediction error for order i is

£4i(n) = Xy (n) Py 11 (8.145)
where
UZXM(,'_])(I’I— 1), V:XM(I’I—Z)

Substituting projection equation (8.118) into (8.145) yields
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&4i(1) = &44_1y(n) — Xy (m)PLV (V' Py yy“lvi Py (8.1406)
The factors in the second term on the right side are

VIP(Z/H = Sh(i_l)(n - 1), VtP(Z/V = Eh(j_l)(l’l — 1)

Xy (mPyV =Y x(p)x(p — i) — Al_1(mR;_1(n — 1)B;_y(n — 1) = K(n)
p=1
(8.147)
Hence
K;i(n)
Eyi_p(n—1)

which is equation (8.14a). The corresponding backward equation (8.14b) is

g4(n) = Ea(ifl)(n) - Sh(ifl)(” -1

epi(n) = Xy (n — )Py 11 (8.148)

The a priori equations are obtained by using the operator Q7 ;- instead of
i
Algorithms with nonzero initial conditions in either transversal or lattice
structures are obtained in the same manner; block processing algorithms are
also obtained similarly.

8.12. SUMMARY AND CONCLUSION

The flexibility of LS techniques has been further illustrated by the derivation
of order recurrence relationships for prediction and filter coefficients and
their combination with time recurrence relationships to make fast algo-
rithms. The lattice structures obtained are based on reflection coefficients
which represent a real-time estimation of the cross-correlation between for-
ward and backward prediction errors. A great many different algorithms
can be worked out by varying the types and arrangements of the recursive
equations. However, if the general rules for designing efficient and robust
algorithms are enforced, the actual choice reduces to a few options, and an
algorithm based on direct time updating of the reflection coefficients has
been presented.

The LS variables can be normalized in such a way that time and order
recursions be kept. For the lattice structure, a concise and robust algorithm
can be obtained, which uses a single set of reflection coefficients. However,
the computational complexity is significantly increased by the square-root
operations involved.
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The lattice approach can be extended to M-D signals with uniform and
nonuniform filter lengths. The 1-D/2-D case has been investigated.

Overall, the lattice approach requires more computations than the trans-
versal method. However, besides its academic interest, it provides all the
filters with orders from 1 to N and can be attractive in those applications
where the filter order is not known beforehand and when the user can be
satisfied with reflection coefficients.

A vector space viewpoint provides an elegant description of the fast
algorithms and their computational mechanisms. The calculation of errors
corresponds to a projection operation in a signal vector space. Order and
time updating formulae can be worked out for the projection operators. By
choosing properly the matrices and vectors for these projection operators,
one can derive all sorts of algorithms in a simple and concise way. The
method applies to transversal or lattice structures, with or without initial
conditions, with exponential or sliding time windows. Overall, the geometric
description offers a unified derivation of the FLS algorithms.

EXERCISES
1. The signal

x(n) = sin(nw/3) + sin(nw/4)

is fed to an order 4 adaptive FIR lattice predictor. Give the values of
the four optimal reflection coefficients. The weighting factor in the
adaptive algorithm is W = 0.98; give upper bounds for the magnitudes
of the variables K;(n). What are their steady-state values?

2. Give the computational organization of an FLS lattice algorithm in
which the cross-correlation estimation variables K;(n) are updated in
time and the a priori and a posteriori forward and backward predic-
tion errors are calculated. Count the multiplications, divisions, and
memories needed.

3. Consider the filter section in the block diagram in Figure 8.3. Calculate
the coefficient /;(n) of an order 1 LS adaptive filter whose input
sequence is ep(n+1) and whose reference signal is e;(n+1).
Compare with the expression of k;(n) and comment on the difference.

4. Derive the lattice algorithm with direct time updating of the coeffi-
cients as in Figure 8.2, but with a posteriori errors. Hint: Use the error
ratios ¢;(n) to get the a posteriori errors and then find the updating
equations for the reflection coefficients.

5. Let Xy be an N-element vector such that 0 < Xj Xy < 1. Prove the
identities
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1—(1—XyXy)'"?

Iy — Xy XD =1 Xy X4
N NAN N X]thN NAN
1— XXy =1
(I — Xy X4 = 1+ If‘/}) Xy Xy
NAN

Iy — Xy X)Xy = Xy(1 — Xy Xy)'/?

Show that the square roots of these matrices can be obtained with
% + % multiplications and one square-root calculation.

6. In order to derive normalized versions of the transversal FLS algo-
rithms, we define the normalized variables

€q(1)
E,(n)

ea(1)
E,(n—1)’

ean(n) = Ean(n) =
Define normalized versions of the prediction coefficients and the adap-
tation gain. Give the corresponding time updating relationships. Give
the updating equations for the error energies. Give the computational
organization of a normalized transversal FLS algorithm and compare
the complexity with that of the standaard algorithm.

7. 1In order to visualize the vector space approach, consider the case
where M = 3, N =2 and the signal input sequence is

x(n)=0, n<0

x(1)=4, x2)=2, x(3)=4
In the 3-D space (0., 0,,0.), draw the vectors X,(1), X3/(2), X3/(3),
and the vector I1. Calculate and show the vector P%(2)X,,(3). Show
the forward and backward prediction errors at time n = 3. Show how
the adaptation gains G,(2) and G,(3) are formed.

8. Find the order updating equation for the prediction opertor Q. Use it

to geometrically derive the lattice equations for a priori prediction
errors.

ANNEX 8.1 FLS ALGORITHM FOR A PREDICTOR IN
LATTICE STRUCTURE

SUBROUTINE FLSL(N,X,EAB,EA,EB,KA,KB,W, IND)

C

C COMPUTES THE PARAMETERS OF A LATTICE PREDICTOR
C N = FILTER ORDER

C X = INPUT SIGNAL

C

EAB = VECTOR OF BACKWARD PREDICTION ERRORS
(A PRIORI)
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PN NONSNS!

OO NONS!

@]

@]

20
30

EA =VECTOR OF FORWARD PREDICTION ERROR ENERGIES
EB =VECTOR OF BACKWARD PREDICTION ERROR ENERGIES
KA,KB = LATTICE COEFFICIENTS

W = WEIGHTING FACTOR

IND = TIME INDEX

REAL KA, KB

DIMENSION
EAB(1),EA(1),EB(1),KA(1),KB(1),EAV(15),PHI(15)
INITIALIZATION

IF(IND.GT.1)GOTO30

X1=0
EO=1.
DO20I=1,N
EAB(I)=0.

EA(I)=EO*W**N
EB(I)=EO*W** (N-1I)
KA(I)=0.

KB(I)=0.
PHI(I)=1.
CONTINUE

CONTINUE

ORDER : 1

EO1=EO

EO=W*EO+X*X

EAV(1)=X-KB(1)*X1

EAB1=EAB (1)

EAB(1)=X1-KA(1l)*X
KA(1)=KA(1)+X*EAB(1l)/EO

KB (1)=KB(1)+EAV(1l)*X1/EO1
EA(1)*W*EA(1)+EAV (1) *EAV (1) *PHI (1)
PHI1=PHI(1)

PHI(1)=1-X*X/EO

EB1=EB (1)
EB(1)=W*EB(1)+EAB(1)*EAB(1)*PHI (1)
X1=X

ORDERS > 1

N1=N-1
DO50I=1,N1
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EAV(I+1)=EAV(I)-KB(I+1)*EAB1

EAB2=EAB(I+1)

EAB(I+1)=EAB1-KA(I+1)*EAV(I)
KA(I+1)=KA(I+1)+EAV(I)*PHI1*EAB(I+1)/EA(I)
KB(I+1)=KB(I+1)+EAV(I+1)*EAB1*PHI1/EB1
EA(I+1)=W*EA(I+1)+EAV(I+1)*EAV(I+1)*PHI(I+1)
PHI1=PHI (I+1)
PHI(I+1)=PHI(I)*(1-PHI(I)*EAB(I)*EAB(I)/EB(I))
EB1=EB(I+1)
EB(I+1)=W*EB(I+1)+EAB(I+1)*EAB(I+1)*PHI(I+1)
EAB1=EAB2

50 CONTINUE

RETURN
END
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9
Rotation-Based Algorithms

The rotation operation has a unique feature: namely it does not affect the
norm of vectors. Therefore, with algorithms using exclusively rotations, no
increases or doublings of the dynamic range can be expected, like those
occurring in other algorithms, when data are squared or multiplied by
one another. Moreover, it is well known in digital filtering that rotations
can provide for optimal processing and ensure stability.

As pointed out in the previous chapter, the family of lattice algorithms
essentially relies on a triangular decomposition of the input signal autocor-
relation matrix, which is presented in Chapter 5. In fact, a similar decom-
position can be performed on the matrix of the input samples, namely the
so-called QR decomposition [1].

Using the QR decomposition technique, the solution to a least squares
problem is obtained in two steps. First, an orthogonal matrix is used to
transform the input signal sample matrix into another matrix whose ele-
ments are zeros except for a triangular submatrix. Then, the optimal set of
coefficients is derived through solving a linear triangular system of equa-
tions [2,3].

In this chapter, the QR decomposition is presented, and fast least squares
algorithms are derived for one-dimensional and multidimensional signals.
But, to begin with, the basic data rotation operation is analyzed.

MARCEL
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9.1. THE ROTATION OPERATION

Let us consider a real data vector X with 3 elements,

X =|x 9.1)

and two rotations R; and R, defined by the matrices

1 0 0 cosf, 0 —sinb,
R, =10 cosf —sin6; |, R, = 0 1 0 9.2)
0 sinf; cos6,; sinf, 0 cosb,

Now let us design rotations R; and R, to cancel the middle and the top
elements respectively in vector X. This is achieved by choosing the rotation
angle 6, such that

cosf; —sinf [[x;]| |0
[sin@l cos 6, i||:x0 T s ©-3)
where the variable s; = ,/x} + x3 is the norm of the two-element data vec-
tor, which is rotation-invariant. Then

cosf; = @, sinf; = adl 9.4)
S1 S1

The same procedure can be applied again, using rotation angle 6,, leading

to:
cosf, —sinb [[x,| |0
[ sinf, cosf, i| |:s1 T s ©-3)
where s, = /s 4+ x3 and
cosf, = s—l, sinf, = e (9.6)
A S

The new variable s, is the norm of the vector X. The entire operation is
described by the matrix equation

0 X2
0 = R2R1 X1 (97)
A X

Therefore, the norm of any vector can be computed iteratively through a set
of rotations, defined by the elements of that vector. In the iterations the
cosine contains the previous value of the norm, while the sine introduces the
new data. As concerns initial values, the first element must be positive or
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null. If xo =0 and x; # 0, then 6; = 7/2 and all the subsequent angles 6;
satisfy the inequalities

—n/2 <6, <m/2 9.8)

Next, the procedure is applied to the QR decomposition.

9.2. THE QR DECOMPOSITION

In transversal least squares adaptive filtering with N coefficients, the cost
function is defined, as in the previous chapters, by

n

Jn) =Y W' y(p) — X' (pH®]T 9.9)

p=0

where y(p) is the reference sequence, X (p) is the vector of the N most recent
input samples at time p and W is the weighting factor. The N-coefficient
vector at time n, H(n), minimizes the cost function J(n). It is assumed that
the input sequence is x(n) = 0 for n < 0.

Now, the input data matrix Xy(n) is introduced. It is an (n+ 1) x N-
element matrix defined by

x(n) x(n—1) -oo x(n+1—=N)
Wx(mn—1) W'Yx(n-2) -« W'"Px(n—N)
Xy(n) = : : : (9.10)
W x(0) 0 . 0

The first step in deriving algorithms consists of multiplying this matrix by a
rotation matrix Qy(#n), in order to reduce the nonzero elements to a trian-
gular submatrix. In fact, there are two possible approaches to reach that
goal. The first one is based on forward linear prediction [2]. It yields the
following result, where Sy(#) is an upper-left-triangular N x N matrix:

0 ... 0
OvXym=| 0 0 ©.11)
0

The dual approach exploits backward linear prediction, leading to
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0 ... 0

On(m)Xy(n) = 0 - 0 9.12)

o R

where Ty(n) is a lower-right-triangular N x N matrix [3].

Both approaches lead to fast algorithms, with similar computation com-
plexities. However, the backward technique has a number of advantages in
terms of simplicity of derivation, interpretation of internal variables, flex-
ibility of implementation and conciseness. It is the one which is adopted
here.

As concerns the rotation matrix Qy(n), later on, it will be shown how it is
constructed iteratively from the input data sequence.

Once the above triangularization has been completed, the solution of the
least squares problem in adaptive filtering is readily obtained. In fact, the
cost function J(n) given by (9.9) is the square of the norm of the error vector
expressed by

W1/€2n(n) Wl/zy(n) ]
e:nfl(n) _ y:(n— )| Xy H () (9.13)
w/ 2.60 (n) Wn/éy 0)

Now both sides are multiplied by the rotation matrix Qy(#n), and equations
(9.11) and (9.12) are used. The optimal coefficient vector is the vector H(n)
which cancels the last N elements of the vector obtained after rotation,

leading to
[ eg(n) ]
o) R [ SRR
w'le, 1(n) :
NG : = | e 9.14)
; 0
Wl/zeo(n) . N
. 0

Since rotations conserve the norms of the vectors, the cost function is
equivalently expressed by

VOEDINAQ) (9.15)
p=N
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Finally, the error elements involved have been obtained by rotating the
reference vector by the matrix Qy(n).

Coming back to the triangular matrix T(#) in (9.12), it is used to derive
a fast algorithm. We need to make clear the physical interpretation of its
elements, and the backward linear prediction problem serves that purpose.

9.3. ROTATIONS IN BACKWARD LINEAR
PREDICTION

The backward linear prediction energy at time n is denoted Ejy(n) and
expressed by

Epn(n) =Y W"[x(p — N) = X'(p)By(n)}’ (9.16)
p=0

where By(n) is the N-element vector of the transversal backward linear
prediction coefficients. Following the same path as in the previous section,
one can observe that Ej,(n) is the square of the norm of the error vector
expressed by

epn(1) x(n—N)
Wl/zeb”_l(n) Wl/zx(n —1—N)

: : — Xn(n)By(n) 9.17)
W™ eyo(n) W2 x(=N)

Again, since rotations preserve the norms of the vectors, an equivalent
problem can be formulated after both sides of equation (9.17) have been
multiplied by the rotation matrix Qy(n). In fact, let us extend the input data
matrix by one column to the right and perform a multiplication of the
matrix Xy, (n) obtained by the rotation matrix Qy(n). In that operation,
the right column of the extended matrix Xy, ;(n) produces the following
vector

€ n(n)
Wl/z);(gi_—];/)— N) ebq:q(n) ntl-N
On(n) : = : (9.18)
1/2. _ epgn+1(1) N
WA Xy (n)

As in equation (9.14), the top n 4+ 1 — N elements of the vector obtained are
the rotated backward linear prediction errors, which make up the error
energy by
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Epn(n) = €5p(1) 9.19)
p=N

The remaining N bottom elements, X, (n), are the result of rotating the
input data vector, and the backward linear prediction is the solution of the
system involving the triangular matrix

qu/v(”) = Tn(n)By(n) (9.20)

Finally, rotating the extended matrix yields

x(n — N) ) - O )
W' x(n—1-N) : : :
On(n) Xy(n) : =10 e 0 epy n1(n)
v :
WEx(=N) Xpgn(n)
q
9.21)

Now, from the right-hand-side matrix in the above equation, it is possible to
obtain the triangular matrix of order N + 1, namely Ty, (n). A setof n — N
rotations, as those described in Section 9.1, can be used to accumulate the
prediction errors, leading to the order recursion (9.22). Obviously, the recur-
sion is valid for any order NV and, through induction, the following expres-
sion (9.23) is obtained for the triangular matrix.

[0 - 0 ER®n
0
Typm) =1 . Xy () (9.22)
: q
0 0 - EpNm)
Tyam=| 5 (9.23)
m 0 ENm) - X
LEY () Xogr ()

Thus, the triangular matrix Ty, (n) is made of the square roots of the
backward prediction error energies for its diagonal and it is made of the
rotated input data vectors, with orders 1 through N, for the remaining
nonzero elements.

At this point, no consideration has been given as to how the rotation
matrix Qy(n) can be obtained. Actually, it can be constructed recursively for
each new input data sample. Let us assume that the rotation matrix is
available at time n — 1. It is denoted by Qy(n + 1) and produces the follow-
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ing result, when it multiplies the input data matrix Xy(n + 1), defined by
equation (9.10):

0 0
On(n—DXy(n—1)= o N 0 (9.24)
TN(H — 1)

The input data matrix satisfies the relation

| x(n) x(n+1—N)
Xy(n) = |: WX — 1) ] (9.25)
Next, the following product is considered:
x(n) x(n+1—N)

| 0 0 ... 0

Xn(n) = : :

On(n ) 0 N 0

W'Y Ty(n—1)

(9.26)

and the rotation matrix at time » is obtained from Qy(n — 1) by a set of N
rotations, which cancel the first row of the right-hand side of (9.26).
The first of these NV rotations is Ry, defined by

cosf; 0 --- 0 —sin6,
0 1 -~ 0 0
Ry = : : : : (9.27)
0 0 --- 1 0
sinfy 0 --- 0 cos6,
It cancels x(n) in (9.26) if the angle 6, is chosen, using (9.23), such that
W\2EV20, 1
cos O, = +(”) sinf, = # (9.28)
Eyy(n) Eyy(n)

Actually Ey(n) is the input signal energy. The next element in the first row
was x(n — 1), but it has been changed by the first rotation. Let us denote it
by u. It is cancelled by the rotation matrix R, expressed by

cosf, 0 -.- —sin6, O
0 r .- 0 0
Ry, = : : : (9.29)
sind, 0 --- cosf, O
0 0 0 1
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Because the rotations lead to the triangular matrix at time 7, the angle 6, is
such that

usin 6, + W'2E,*(n — 1)cos 6, = E,|*(n) (9.30)
and, therefore

W'2E*(n—1)

2 (9.31)

cosb, =

)

u
2= 12, 1
E,[*(n)

Now, considering the time recursion for the backward prediction error
energy

Ey(n) = WEy(n— 1) + e3,,(n) (9.32)

where ey,(n) is the rotation linear prediction error, and identifying with
(9.31), it becomes clear that the scalar u is actually the rotation linear pre-
diction error e, (n).

After N such steps, the operation is complete and the following recursion
is obtained:

On(n) = RN"'R2RI|:(1) QN(,?_ 1)] (9.33)

The angles are defined by

W'2EP(n—1)
E\*(m

Chig (I’l)

—Eé ,-/z(n) (9.34)

cosb; = , sinf;,| =

It is worth emphasizing that such a factorization is possible only because the
matrix Ty(n — 1) is triangular.

9.4. ROTATION IN FORWARD LINEAR PREDICTION

A dual path to reach the matrix Ty (n) from Ty(n) is provided by forward
linear prediction. The forward linear prediction energy, E,y(n), is defined by

En(m) =Y W' 7x(p) = X'(p — DAy 9.35)
p=0

and it is the square of the norm of the error vector
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eaN(n) X(Vl)
W' e,y _1(n) w2x(n - 1) |: Xy(n—1)
. . “lo ...

W™ 0(n) W2 x(0)
(9.36)

The input data matrix Xy(n — 1) has to be completed with a bottom row of
zeros, to satisfy the time shift in forward linear prediction, and the rotation
matrix used for the triangularization must be modified accordingly. In the
following product, the top n — N clements of the resulting vector are the
rotated forward prediction errors, the next N elements, denoted X,,,y(n), are
the rotated input data vector

€agn(1)
1]2x(n) q. n—N
Ox(n—1) 0 W¥x(n—1) :
RS | . e |} 037
0 T
W"<x(0)
As mentioned before, the linear prediction vector A4 y(n) is the solution of
the system
Xogn(n) = Ty(n — 1Ay (n) (9.38)

Since the objective is to derive the triangular matrix Ty ;(n) from Ty(n — 1),
it is useful to consider the extended matrix Xy, (n). The same rotation as in
expression (9.37) above yields

[ eu(n) 0 0
Onn—1) o}X B :(n) o
0 1 [Xan () = | Cagna (9.39)
Yo) i)
i Wn/Zx(O) 0 . 0 |

Now, it is sufficient to accumulate the forward prediction error values
€q4q n+1(n) through e,,,(n) on the bottom element wn! 2x(O) to achieve trian-
gularization. In the process, the bottom element of the first column is
replaced by the square root of the forward linear prediction error energy.
As shown in Section 9.1, this accumulation is performed by a set of appro-
priate rotations, which have no bearing on the desired least squares algo-
rithm and are not required in explicit form. In fact, the next step consists of
the operation
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Xan(n) 0
Qu(n) : Ty(n—1) | | = Tyya(n) (9.40)
‘/2( y 0 - 0

The rotation matrix Q,(n) accumulates the vector X, y(n) on the bottom
element and is the product of N rotations R,; defined by

I .-+ cose; --- —sing;
R,=|0 -« 1 ... 0 (9.41)
0 -+ sine; --- cosw;

The angles «; can be determined in a straightforward manner from the
elements of the triangular matrices Ty (n) and Ty(n — 1) involved in equa-
tion (9.40). From expression (9.23) for a triangular matrix, and considering
the diagonal elements, combined with the fact that 7(n — 1) has been
completed with zeros in the bottom row, the following relationships appear
for 1pi2} 4 N:

E,2 (n) = cos o Ey*(n — 1) (9.42)

In order to illustrate the physical meaning of the angles, it is interesting to
compare the above equation with the following order recursion of the nor-
malized lattice algorithm derived in Chapter 8:

By ) =1 = I mlE (= 1) (9.43)
As a consequence, the following equivalence can be established
sina; = k;(n), 1pi2 4 N (9.44)

The procedure to calculate the angles «; is defined by the simplified relation

0
an(n)
= Q,(n 9.45
| g O )[ EY2(n )i| (9.45)
Eb(/) (n)
Note the relation obtained by reversing the above equation:

N

[ [cose; = EXFm)/Ey () (9.46)

Additionally, an explicit expression for sing; is
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xani(n)

sin; = 7= ki(n) (9.47)

N
E,n(n) + Z] xiq}\/j(n)j|
=

It provides useful information about the rotated input data: the elements
Xqqni(n) of the vector obtained by rotation of the input signal samples are
linked to the normalized lattice coefficients k;(n).

9.5. THE FAST LEAST SQUARES QR ALGORITHM

In a recursive algorithm, the rotation matrix Q y(n) has to be computed from
Qn(n —1). The new input datum at time n, x(n), sits at the upper left corner
in the matrix Xy (n). Now, in the triangularization operation, it is processed
by the first column of the rotation matrix. Therefore, it is sufficient, in the
search for a recursive algorithm, to concentrate on the first column of the
matrix.

Picking up the first column in a matrix is expressed in equations by a
multiplication of the matrix by a vector with a one at the top and zero
elsewhere. Such a vector is sometimes called a pinning vector. Taking into
account the recursion already obtained for Qy(n), namely expression (9.33),
the operation leads to

1 VN(n)
0 0
Onm| . | = : (9.48)
A 0
0 Gy(n)

where the new variables yy(n) and Gy(n) are defined in terms of the angles
involved in the rotations R; through Ry.
As concerns yy(n), it is expressed by

N
yn(n) = [ ] cost; (9.49)
i=1

and it has a simple physical meaning. From equation (9.14) for example, the
a posteriori error can be written as

en(n) = [eqn(n)v eqnfl(n)’ ERER €qN(I’l), 0-- O]va(n) : (950)

berrer Copyrightn2001 by Marcel Dekker, Inc.All Rights Reserved.




MARCEL
DE

which, using (9.48) yields
en(n) = VN(n)eqn(n) (951)

Thus, the scalar yy(n) is the ratio of the a posteriori error at time n to the
rotation error. It is the square root of the prediction error ratio ¢y (n).
The elements of the vector Gy (n) are given by

g1(n) =sin ) = x(n)/E})*(n)
2:(n) = cos 6, sin b, = &, (n)/ E,|*(n) (9.52)
gn(n) = ey 1(W/E)y_ (1)

where g,;(n) is the a posteriori backward prediction error for order i, con-
nected to the rotation error by

epi(n) = yi(n)ey;y(n) (9.53)

From the algorithmic point of view, the vector Gy(n) provides the link
between forward and backward linear prediction and it leads to a fast
algorithm.

The forward linear prediction procedure described above can be summar-
ized, combining (9.40) and (9.41), by the following factorization of the
rotation matrix Qy,(n)

e Y (G R 9.54)

where Q,,(n) stands for the combination of rotations used to accumulate the
forward prediction error values and produce the prediction error energy
EaN(n)'

Multiplying both sides by the pinning vector yields

yN(no_ D YN+1(1)
0
]an _ :
[ 0 Qa(n)}Qm() o |7 (9.55)
GN(%_ D Gyy1(n)

The action of the matrix Q,,(n) is resticted to the last rotation, which
projects the top element in the vector, yy(n — 1), at the bottom with the
multiplying factor e,,,(n)/E, 1 2(n) Therefore, keeping just the bottom N + 1
rows in (9.55), one gets

Gy(n—1) gn+1(1)
er(”)l:)/N(”— l)eaqn(n)/E}ﬂ/\f(n)} [ G;(n) } (9.56)
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A fast algorithm is obtained by combining equations (9.33), (9.45), (9.48),
(9.56). The sequence of operations is shown in Figure 9.1, where the unne-
cessary variables have been dropped and rotation matrices are restricted to
the size (N + 1) x (N + 1). To prevent any confusion in notations the matrix
product R R,--- Ry in recursion (9.33) has been denoted Q,(n) in its
restricted form.

The filter section is derived through application of recursion (9.33) to the
vector of the reference signal samples. The a posteriori output error, and the
a priori error as well, can be provided from the rotation output error
denoted e, (n + 1).

The FORTRAN subroutine for the FLS-QR algorithm is given in Annex
9.1, including the initialization of the internal variables.

9.6. IMPLEMENTATION ASPECTS

From an implementation point of view, there are two main motivations to
develop rotation-based algorithms. First, the adaptive filter variables can
keep the same dynamic range as the input variables. Second, numerical
stability can be ensured. The good numerical behavior of the QR-based
algorithm stems from the fact that rotations conserve the norms of the
vector. Thus, when computing with finite arithmetic, the following con-
straints must be satisfied for the limited precision variables, for 1 < i < n:

cos? 6, +sin’6;, < 1,  cos’o;+sin‘e; < 1 (9.57)
Moreover, it is interesting to notice in the algorithm of Figure 9.1 the
existence of a reduction mechanism for roundoff errors. The vector Gy (n)
is a key variable. Assume that its square norm is increased by A at time n.
The last rotation in the prediction section yields

yam) = 1= |GymI* — A (9.58)

Then, at time n + 1, the norm of the updated vector Gy(n + 1) is changed
approximatively by A[l — egq(n +1)/E,(n+ 1)]. A detailed analysis of the
stability of QR-based algorithms can be found in reference [4].

As concerns the numerical calculations, they can be derived in two cate-
gories, namely rotations and angle calculations. The algorithm of Figure 9.1
comprises 3N rotations and 2N angle calculations, for the elements of
matrices Q, and Q, respectively. Each rotation is equivalent to a complex
multiplication, while the angle calculations are preferably implemented with
the help of look-up tables.

The block diagram of the prediction section is given in Figure 9.2,
emphasizing the sets of rotations in the prediction section and the feedback
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Available at time n

Forward Transformed input data N-element vector : Xgin)
Transformed reference N-element vector : Yq(n)}
Transformed unit vector : Gn(n)
Forward prediction error energy : Ea(n}
Prediction error ratio - yn(n)

Weighting factor : W

New Data at Time n -

Input Signal : x(n+1} ; Reference : y(nt1)

Prediction Section :

Eaq(nt1) x(n+1)
= Qa(n)
Xq(n+1) W2 Xq(n)

Ea{n+1) = W Ea(n) + e, 2(n+1)
0 Xq(n+1)

= Quon+1) ,
Exo"(n+1) Ea'?(n+1)

u = (n) ew(nt1)/ Ea*(nt1)

gun(ntl) Gu(n)
= Qunrl)
Gu(n+1) u
Yul(nr+1) 1
= Qa(nt+1)
Grio+1) 0
Filter Section
eq(n+1) y(n+1)
= Qa(n+l)
Yq(nt1) W' Yq(n)

e(rtl) = yn(otl)  eyntl)

FIG. 9.1 Computational organization of the fast least squares QR algorithm.
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FIG. 9.2 Block diagram of the FLSQR adaptive filter.

brought by the variable u. The two different directions for the propagation
of the calculations are worth pointing out. Note that the numerical accuracy
in the implementation can be monitored. The last rotation in the Q,(n + 1)
matrix provides, according to equation (9.55), the variable gy, (n+ 1),
which is the last element of Gy, (n), and also the first element of the
same vector, i.e., g;(n+ 1), which can be computed directly from the
input data by

_ x(n)

At each time, the difference between the value given by the algorithm and
the direct computation reflects the numerical accuracy of the algorithm.
A VLSI implementation of the FLSQR algorithm is described in refer-
ence [S]. It is based on the CORDIC approach, which is particularly
efficient at performing signal processing functions in which rotations
are involved.
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9.7. THE CASE OF COMPLEX SIGNALS

Rotations suitable for complex data can be derived from the general form of
the elementary unitary matrix

00 = |:e-/°‘ cos® —e’Psin 9}

0. ; 9.60
e’’sind e’ cosh ( )

with @ — 8 — y + § = 0 (modulo 2r). However, the FLS-QR algorithm exhi-
bits several specificities which lead to a unique option for the rotation
matrix.

To begin with, the rotations involved in the algorithm lead to a real
vector, because its single nonzero element is the square root of the error
energy, the backward prediction error energy for the rotations denoted Q,
and the forward prediction error energy for Q,. In the matrices, every
rotation has to cancel the first element of a two-element vector and make
the second element real. Additionally, the second element in the rotated
vector is always real, because of order recursions and because it is the square
root of a prediction error energy. Finally, rotation matrices in the present
case can only take the form

ct —sbO
Qo = [59 o } (.61)

with (¢6)* + 5650 = 1, ¢ being real and s complex.

Thus, in order to process complex data, it is sufficient to modify the angle
calculations accordingly.

The error ratio yy(n) is a product of ¢6 variables and remains real. The
forward linear prediction error energy is computed by

E,(n+1) = WE,(n) + e,y(n+ e, (n+1) (9.62)

As an illustration, the following results have been obtained in the case of
system modelling. The reference signal is

(1) = [0.5 + 0.87]x(n) + (0.4 + 0.3j)x(n + 1) + (0.1 + 0.7))x(n — 2)

and x(n) is a white Gaussian noise whose power is unity. After 10° itera-
tions, one gets

Y, (n) =[1.04+7.0j,4.1 +3.2j,5.1 + 8.2j]'
The theoretical vector is derived from Section 2 and the equation
Y n(n) = Ty(n)H(n) (9.63)

The weighting factor in the simulation is W = 0.99, and one gets
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The rotation algorithm for complex data finds application in communica-
tion receivers, for equalization.

[0.1 + 0.7, 0.4 +0.3/,0.5 + 0.8/’

9.8. MULTIDIMENSIONAL SIGNALS

The procedure described in the previous sections can be applied to multi-
dimensional (MD) signals, leading to the FLS-QR algorithm for MD sig-
nals.

The case of two signals x;(n) and x,(n) is considered first. The (n + 1) x
2N input data matrix is defined by

1/le(n) 1/2x2(n) e x21(;42+ 1-N)
Wxin—1) W' xy(n—1) -+ W /x3(n—N)
Xoy = 1. 2 . 2. (9.64)
W™ x,(0) W x,0) - 0

Following the developments in the previous sections, a fast algorithm is
derived from the path to the matrix Ty,,(n) from T,y(n) using forward
linear prediction. By definition,

0

Oon(m) Xon(n) = 0
0

(9.65)

A time recurrence relation for the rotation matrix Q,y(n) is obtained by
considering the equation

X)) x0) o X+ 1—N)
1 0 . . .

[0 Q2N<n—1)]X2N(”>= o 0 .. 0 (9.66)
W' Ton(n—1)

and canceling the first row of the right-hand-side matrix. Now let us intro-
duce forward linear prediction, as in (9.39), by the equation
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nin = 0 [sz(n)}
0 0 1
i Clagn (”) eZaqn(n) 0 e 0 ]
(9.67)
— elan (Vl) eZan (I/l) 0 e 0
Xlan(n) XZan(n) TZN(n—l)
W"2x(0) W"%x,00 0 -~ 0
0 0 0 - 0]

By using two sets of rotations, Qy,,(n) and Q,,,(n), the prediction errors can
be accumulated to produce the matrix

Xlan(n) XZan(n) T2N(n - 1)
E/2
. 20 %%N(n) 0---0 (9.68)
I{aN( ) EléaN(n) 0---0

It appears that £, {HN(n) is the prediction error energy for the signal x;(n). As
concerns the signal x,(n), its prediction error energy is the sum of two terms,
namely Ej,,y(n) which is linked to the signal x;(n) and an orthogonal com-
ponent E,y,n(n).

The same triangularization procedure can be applied to the input signals
themselves, yielding

x1(n) Xo(n) 0 0
0 WPEL =1 | =| 0  EL®»
W' PE Wy —1) W'PEL(n—1) Ey{p(n)  E}o(n)

(9.67)

where Q,, is a product of two rotations. The matrix obtained is included in
the triangular matrices expressed by

0 0 - Eyy()
Ton4a(n) = : : - (9.68)
0 zléio (n) -+ Xaopgn(n)

E\2 12
Eypo(n)  Eygp(n)
The procedure to derive a fast algorithm starts from (9.67). The matrix

Tyn42(n) is obtained by a set of two rotation matrices Q1,(n) and Q,,(n), and
the 2-D version of the factorization (9.54) is
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0212 = 02110201 22~ ] | 9.69)

The restriction to the first column is obtained by multiplying both sides by
the pinning vector, which yields

[ Van42(1) 7]
Yan42(n) 0
0 :
: = 0 (9.70)
0 Zan42(n)
Gonia(n) an1(n)
L Goy(n)
and
[ Van42(n) 7 M yon(n—1) 7
0 0
0 | = 05%MO1MQraOream| 0 9.71)
Yan42(n) Goy(n—1)
Yang1(n) 0
L Goy(n) L 0 J

Finally, the matrices which cancel the first row of the right hand side matrix
in (9.66) are obtained by

V2N (n) 1
0
0
: =Ry Ry . (9.72)
0 :
0
Goy(n)

The algorithm for 2-D signals closely follows the FLS-QR algorithm for 1-D
signals, the size of the vectors for internal data being doubled.

In fact, it is even possible to use the 1-D algorithm to perform multi-
dimensional adaptive filtering, as already shown in Section 7.13 for trans-
versal filters. Let us consider the rotated input data vector

exgn+ 1| _ xa(n+1)
[qu(n +1 |~ Q24(n) Wl/zqu(I/l) 9.73)
and the prediction error energy
Es(n+ 1) = WEy (1) + €3 (n + 1) (9.74)
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Next, the matrix Q,,(n + 1) can be computed according to equation (9.55),
and the following vector can be obtained, repeating (9.56):

Giyain+ 1) = 0sn + 1) 1 | 075

Continuing with the sequence of operations in FLS-QR, a
(2N +1) x (2N + 1) rotation matrix Q5,(n + 1) is computed by

yovpm+ 1) _ 1
[Gz,’;il(n_’_ 1)} = Qs (n+ 1)[0} (9.76)

With the help of this matix, the new input data vector associated with
xy(n+ 1) can be computed

I

[t )| = o+ ] i ) | 077
and repetition of the above sequence of operations leads to the vector
Gonga(n+1).

Since only the 2N x 2N matrix Q,,(n + 1) is needed, the last two elements
in Goyo(n+1) can be dropped to obtain G,y(n+ 1). Therefore, in the
second path also, the computations can be carried out on vectors with 2N
elements. Finally, the rotation matrix Q,,(n) is updated in two paths of the
1-D linear prediction algorithm, fed with the data set [x,(n + 1), X5,(n)] and
[x1(n + 1), X{,(n + 1)], respectively.

The above approaches can be extended to multidimensional signals.
However, it is worth emphasizing that a specific triangularization operation
has to be included in the direct approach, according to (9.68), for each of the
K dimensions of the input signal. In contrast, the standard 1-D algorithm
can be used K times to achieve the same result, and is therefore simpler to
implement.

9.9. NORMALIZATION AND EQUIVALENCE WITH
LATTICE

The FLS-QR algorithm in Figure 9.1 can be made more regular by a nor-
malization operation, performed by the rotation

0 _ [cosy(n+1) —siny(n+1) x(n+1)
[E;éz(n + 1):| N |:sin Yy(n+1) cosy(n+1) :||: WI/ZE%Z(”)]

with

(9.78)
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x(n+1) WP EY(n)
E(n+1) E(n+1)

In the algorithm, x(n + 1) is replaced by sin¥(n + 1), and W'/ is replaced
by cos ¥(n + 1). Then, the first angle calculation equation becomes

0 X,(n+1)
BRI F O

siny(n+1) = ;ecosY(n+1) =

and it is similar to the second angle calculation. In fact, the above equation
(9.79) can be reversed and expressed as

[@”m+n

_ 1
Y+ 1) } =JyO, ' (n+ l)JN[O} (9.80)

Now, an order recursion algorithm can be derived which turns out to be
equivalent to the normalized lattice algorithm.

Relationships between QR and lattice approaches have been pointed out
in the previous sections. According to the definitions in Section 8.5, the
normalized backward prediction error is

8b,-(n + 1)

enin+1) = =sinf, (n+1 9.81
1b( ) (p}/z(l’l-Fl)E[ii/z(l/lﬁ-l) +1( ) ( )
and similarly,
€4 i(n + 1)
Cpain +1) =0~ 9.82
nat( E;l-/z(l/l N 1) ( )

The lattice coefficients are linked to the angles by equation (9.47):
sing;(n + 1) = k(n + 1). Finally, the same variables appear in both normal-
ized QR and normalized lattice algorithms.

9.10. CONCLUSION

Of all the algorithms for adaptive filtering, the FLS-QR given in Figure 9.1
is probably the best in many respects. It combines the performance of least
squares with the robustness of gradient techniques. It is a square-root type
of algorithm, and no expansion of the data dynamic range is necessary. The
angle calculations can be efficiently performed with the help of look-up
tables.

As concerns flexibility, it can cope with different situations: complex
signal, multidimensional signals, and temporary absence of data. Different
types of errors can be accommodated, and the internal variables can be
exploited for signal analysis. It is also possible, whenever it is necessary,

= Copyright n 2001 by Marcel Dekker, Inc. All Rights Reserved.



to deliver the transversal coefficients, using an iterative procedure similar to
the method given in Section 8.6 for the lattice structure.

EXERCISES

1.

2.

MARCEL
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Consider the data vector X =[1,0.7,0.2, —0.5]". Use a set of rotations
to compute its norm.

Study the relationships between the autocorrelation matrix Ry(n) and
the triangular matrices Sy(n) and Ty(n). Discuss the connections with
other triangular decompositions of Ry(n) as in Chapter 5.

The input signal to a QR algorithm is x(n) = sin n7r/3. After 107 itera-
tions, the rotated data vector is

X, =[—0.520, 0.854,0.018, 0.003, —0.004, —0.007, —0.005, 0.001]’

Give the value of the weighting factor . Discuss the relative values of
the elements of the vector X,q.

In a modeling case, the input signal x(n) is a unit-power white noise
and the reference signal is

y(n) =x(n)+0.7x(n — 1) + 0.4x(n — 2)

For N =5 and W =0.99, give the theoretical value of the rotated
reference signal vector. Verify by simulation using the algorithm of
Figure 9.1.

Give the complete list of operations for the complex FLS-QR algo-
rithm of Section 9.7.

Give the complete list of operations for the normalized FLS-QR algo-
rithm of Section 9.9, in systolic form.

In the equalizer of a communication receiver, the reference signal is
derived from the adaptive filter output, in the tracking mode. Thus, the
filter output y(n) has to be provided, and the following equation can be
used

0 y(n+1)
[ Y, (n+ 1)} = Qa(”“[ w2 Yq(n):|

Qu(n+1) and Y,(n + 1) being known, justify the above equation and
explain how y(n+ 1) and Yq’(n + 1) are calculated. Then show that
Y,(n+ 1) is obtained by the equation

Y,(n+1)=Y,(n+ 1)+ Gy(n+ De(n+1)
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ANNEX 9.1 FORTRAN SUBROUTINE FOR THE
FLSQR ALGORITHM

SUBROUTINE FLSQR2 (N,X,Y,EPSA,EPS,EA,GAMA,W,WD,
IND, YAQ)

@]

COMPUTES THE PREDICTION ERROR, THE ERROR RATIO AND

THE FILTER

OUTPUT ERROR (TRIANGULAR FACTORIZATION QR — TYPE 2)

N = FILTER ORDER

X = INPUT SIGNAL : x(n+1)

Xaq = TRANSFORMED FORWARD DATA VECTOR : N elements
(Reflection coefficients)

Y = REFERENCE SIGNAL

G = TRANSFORMED UNIT VECTOR
(Backward ‘‘aposteriori’’ predictionerror
vector)

EPSA = A POSTERIORI PREDICTION ERROR

EA = PREDICTION ERROR ENERGY

GAMA = ERROR RATIO

W =WEIGHTING FACTOR

[CHONONS!

QN

[N NONONS!

DIMENSION Xaq(15),G(16),CALF(15),SALF(15),
CTET(15),STET(15)

DIMENSION YAQ(15)

IF(IND.GT.1)GOTO30

aQ N

INITIALIZATION

DO20I1I=1,15
Xaq(I)=0.
Yaq(I)=0.
G(I)=0.
CALF(I)=1.
SALF (I)=0.
CTET(I)=1.
STET(I)=0.

20 CONTINUE
EA=1.
GAMA=1.

30 CONTINUE

@]

CALCULATION OF ROTATION ANGLES AND PREDICTION ERRORS

MARCEL
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EPSAQ=X
DO50I=1,N
EPAQ=EPSAQ
EPSAQ=EPAQ*CTET (I)-WD*XAQ (I)*STET(I)
XAQ (I)=EPAQ*STET (I)+WD*XAQ(I)*CTET(I)
50 CONTINUE
EA=W*EA+EPSAQ*EPSAQ
E1=EA
EQ=SQRT (EA)
ALF2=GAMA*EPSAQ/EQ
DO60I=1,N
EB=XAQ (N+1-I)*XAQ(N+1-I)+E1
EBQ=SQRT (EB)
SALF (N+1-I)=XAQ(N+1-I)/EBQ
CALF (N+1-I)=EQ/EBQ
EQ=EBQ
E1=EB
60 CONTINUE
EN=G(N) *SALF (N) +ALF2*CALF (N)
DO70I=2,N
G(N+2-I)=G(N+1-I)*CALF(N+1-I)-EN*SALF (N+1-1I)
EN1=G(N+1-I)*SALF (N+1-I)+EN*CALF (N+1-1I)
EN=EN1
70 CONTINUE
G(1)=EN
GAMA=1.
DO80I=1,N
STET(I)=G(I)/GAMA
CTET(I)=SQRT(1.-STET(I)*STET(I))
GAMA=GAMA*CTET(I)
80 CONTINUE
EPSA=GAMA*EPSAQ

C

C FILTER SECTION

C
EPSQ=Y
DO90I=1,N
EPQ=EPSQ

EPSQ=EPQ*CTET (I)-WD*YAQ(I)*STET(I)

YAQ(I)=EPQ*STET(I)+WD*YAQ(I)*CTET(I)
90 CONTINUE

EPS=EPSQ*GAMA

RETURN

END

MARCEL
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10
Spectral Analysis

The estimation of prediction coefficients which is performed in the adapta-
tion gain updating section of FLS algorithms corresponds to a real-time
analysis of the input signal spectrum. Therefore, in order to make correct
decisions when choosing the algorithm parameter values, we need a good
knowledge of the signal characteristics, particularly its spectral parameters.

Independently of FLS algorithms, adaptive filters in general are often
used to perform signal analysis. Thus, it is clear that the fields of adaptive
filtering and spectral analysis are tightly interconnected.

In this chapter, the major spectrum estimation techniques are reviewed,
with emphasis on the links with adaptive filtering. To begin with, the objec-
tives are stated [1].

10.1. DEFINITION AND OBJECTIVES

In theory the spectral analysis of a stationary signal x(n) consists of comput-
ing the Fourier transform X(f) defined by

o]

X()= Y xme ™ (10.1)

n=—00

The function X(f) consists of a set of pulses, or spectral lines, if the signal is
periodic or predictable. It has a continuous component if it is random.
These aspects are discussed in Chapter 2.

In practical situations, for many different reasons, only a finite set, or
record, of input data is available. and it is an estimate of the true spectrum
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which is obtained. The set of N data, x(n)(0 < n < N — 1), is considered as
a realization of a random process whose power spectral density, or spec-
trum, S(f) is defined, as stated in Section 2.4, by

o0

SN =Y rpe (10.2)

p=—00
where the ACF values for complex signals are defined by
r(p) = E[x(m)x(n — p)]

The spectral analysis techniques aim at providing estimates of that true
spectrum S(f). To judge the performance, we envisage three criteria: resolu-
tion, fidelity, and variance.

The limitation of the data record length produces a smoothing effect in
the frequency domain which distorts and obscures details. If the estimated
spectrum is smoothed to the degree that two spectral lines of interest cannot
be distinguished, the estimator is said to have inadequate or low resolution.
The resolution is often judged subjectively [2]. Here, it is taken as the mini-
mum frequency interval necessary to separate two lines.

The fidelity can be measured by the distance of the estimated spectrum
from the true spectrum. It takes into account the error or bias, when esti-
mating the frequency of a line, as well as its amplitude.

The variance, as usual, measures the confidence one can have in the
estimator.

An ideal spectrum estimator would equally well, with respect to specified
criteria as above, represent the true spectrum, irrespective of its character-
istics. Unfortunately, it is not possible, and the different methods are in
general linked to particular signals and emphasize a specific criterion. The
presentation given below corresponds, to a certain degree, to an order of
increasing resolution. Therefore emphasis is put on line spectra, which
represent a significant share of the applications and permit simple and
clear comparisons.

10.2. THE PERIODOGRAM METHOD

From the available set of N, data, an estimate Spq(f) of the spectrum is
obtained from

No—1 2

Z x(n)e—ﬂfmf

n=0

Spa(f) = No (10.3)

In order to relate Spq(f) t othe true spectrum S(f), let us expand the right
side and rearrange the summation:
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Ny—1 1 No—1 '
SN =Y. [V > x(n)i(n—p)}eﬂ””f (10.4)

p=—Mo-DL"0 n=p
The expression in brackets is the estimate ri(p) of the ACF studied in
Section 3.2. Taking the expectation of both sides of (10.4) yields

No—1

D S (10.5)

p=—(No—1)
which, due to the properties of the Fourier transform, leads to
sin’ /N,
N, sin® 7/
where * denotes the convolution operation, which corresponds to a filtering
operation in the frequency domain. The filtering function is shown in Figure

10.1.
When N, — oo, one gets

Jim_ E[S,(/)] = S(/) (10.7)

E[Spa(N)] = S(f) * (10.6)

Thus, the estimate is unbiased. If the spectrum consists of just a line, it is
correctly found by that approach, as the peak of the estimate Spq(f).
However, two lines associated with two sinusoids in the signal can only
be distinguished if they are at least separated by the interval Af = 1/N,,

ind
sin 1'1’fN0

I Ng SN2 TT

FIG. 10.1 The frequency domain filtering function in the periodogram method.
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which, therefore, is the frequency resolution of the analysis.
The variance can be calculated. The following simple expression is
obtained for Gaussian signals:

(10.8)

)
var(Sp(f)} = Sz(f)[l + M}

Ny sin® 27f

Equation (10.8) shows that for large N, the standard deviation of the esti-
mator is equal to its expectation. The estimator is not consistent.

In order to reduce the variance, we can divide the set of N, data into K
subsets, with or without overlap. The periodogram is computed on each
subset, and the spectrum estimate is taken as the average of the values
obtained. By so doing, the variance is approximately S*(f)/K, and if K is
made proportional to the record length N, then the estimator is consistent.
However, the counterpart is a decrease in resolution by the factor K.

Data windowing can be incorporated in the method to counter the side-
lobe leakage effect. Let w(n) denote the weighting function, the estimate is

2

K M-1
Span(f) = %Z % > XM + nyw(mye 7™ (10.9)
i=1 Z WZ(n) n=0

n=0

where M = N,/K is the number of data per section. In practice, some degree
of overlap is generally taken in the sectioning process to gain on the esti-
mator variance. For example, with M = 2N,/K and a square cosine win-
dow, w(n) = cos*(m/M)(n — M/2), the variance is reduced by alsmot 25%
with respect to the case M = Ny/K and w(n) = 1.

The above technique is also called the weighted periodogram or Welch
method [3]. It is made computationally efficient by using the FFT algorithm
to compute the periodograms of the data subsets. In that case, the spectrum
is estimated at discrete frequencies, which are interger multiples of f,/M, f
being the input signal sampling frequency.

10.3. THE CORRELOGRAM METHOD

A critical point in the previous approach is the choice of the sectioning
parameter K value. It has to be a trade-off between resolution and variance,
but the information for making the decision is not readily available.
Consider equation (10.6); the effect of the convolution operation is negligi-
ble if the following approximation holds:
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S TM sy (10.10)

S M sin® if

or, in the time domain,
r(p)| 1 —@ ~ r(p) (10.11)
M

Consequently, the length M of each section of the data record should be
significantly greater than the range of index values P,, over which the cor-
relation function is not negligible.

The correlogram method is in a better position in that respect. It consists
of the direct computation of the spectrum according to its definition (10.2).
If P ACF values are available, the estimate is

P-1
Scr(N)= D> rpe™ (10.12)

p==(P-1)
or, as a function of the true spectrum,

sinf (2P — 1)
sin rf

Scr(f) = S(f) * (10.13)

If the correlation values are computed using N, data, as shown in Section
3.2, an estimate of the true correlation function is obtained, which in turn is
reflected in the spectrum estimation Scr(f). It can be shown that the var-
iance is approximately

2P —

1., .
N SO (10.14)

var{Scr(f)} ~

Therefore the number of correlation values must be taken as small as pos-
sible. The optimal conditions are obtained if P is chosen as Py, assuming the
AC function can be neglected for P > P, as shown in Figure 10.2. The
estimation, according to (10.13), can become negative. In real applications,
the ACF values have to be estimated; another window w(p) is used instead
of the rectangular window, leading to the estimate

P—1

Scral) =Y. wpIr(p)e ™ (10.15)

p=—(P-1)

With the triangular window, w(p) = 1 — |p|/P, the estimate is positive, as in
the previous section, and the information is available for choosing the sum-
mation range P. The variance is
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FIG. 10.2 Optimal number of AC values in the correlogram method.

Pl

1
varlSers (N~ SN D W) (10.16)
p=—(P-1)

The correlogram is also called the Blackman—Tukey method [4]. Concerning
the computational complexity, the calculation of the ACF values has a
significant impact [5]. However, if the simplified techniques described in
Section 3.2 can be used, the need for multiplications is avoided and the
approach is made efficient.

In the methods described above, and particularly the periodogram, the
Fourier transform operates as a bank of filters whose coefficients are the
same for all the frequency values. Instead, the filter coefficients can be
adjusted for each frequency to minimize the estimation variance.

10.4. THE MINIMUM VARIANCE (MV) METHOD

The principle of that approach, also called the maximum likelihood or
Capon method [6], is to calculate the coefficients of a filter matched to the
frequency under consideration and take the filter output signal power as the
value of the power spectrum. Consequently, a sinusoid at that frequency is
undistorted, and the variance of the output is minimized.

The filter output is

N
y(n) =Y hpx(n—i) = H'X(n) (10.17)
i=0
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The N + 1 coefficients are subject to the constraint

N
> e = (10.18)

i=0
to preserve a cisoid at frequency f. Let
F=[l,e7 .. /7y

be the vector with complex elements. The filter coefficients which minimize
the output power minimize the expression

E[H'[X(n)X'(n)]H] + (1 — H'F) (10.19)

where « is a Lagrange multiplier.
The optimum coefficients are

%RJ—VLIF (10.20)

Using equation (9.18) to get the value of « and substituting into the above
expression yields

Hopl =

1 -1
H,,=—=———Ry. F 10.21
opt F[R]:/l+1F N+1 ( )
The output signal power Syv(f) is
1
Swv(f) = Hyp Ry 1 Hop = WN}HF (10.22)

If such a filter is calculated for every frequency value, an estimate of the
power spectrum is

1
Swv(f) = (10.23)
S5 pye k=
k=01=0

where the values p;,; are the elements of the inverse input signal AC matrix,
which have to be estimated from the input data set.

The function Syyw(f) can be related to the prediction filter frequency
responses, denoted by 4,(f) and defined by

i
AN =1=Y aye?™, 0<i<N (10.24)
k=1

The triangular decomposition of the inverse AC matrix [equation (5.81) of
Chapter 5] yields
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Z 14,1 (10.25)

v(f )
or
Ly ! (10.26)
Smv(f) = Sari(f)
where
Sarif) = (10.27)

k=1

is the AR spectrum estimate, taken as the inverse of the squared prediction
error filter response.

Therefore, Syy(f) turns out to be the harmonic average of the AR
estimations for all orders from 0 to N; consequently it exhibits less resolu-
tion than the AR estimate with the highest order N. The emphasis with that
approach is on minimizing the variance.

The resolution of the MV method can be significantly improved.
According to the definition, it provides an estimate of the signal power at
each frequency. A better resolution is obtained by techniques which estimate
the power spectral density instead. As seen in Chapter 3 with eigenfilters, the
power spectral density is kept if the filter is unit norm, which leads to the
minimum variance with normalization estimate [7]

Ry, H
Smvn(f) = Hop Ryt Hop (10.28)

1
Holeopt

Using (9.21), we have
F'Ry. F

S, V= 10.29
mvn (/) FR2,F ( )

As an illustration, the functions Syy(f) and Syyay(f) are shown in
Figure 10.3 for a signal consisting of two sinusoids in white noise. The
data record length is 64; the filters have N + 1 =10 coefficients; the
power of each sinusoid is 10 dB above the noise power. Clearly, the resolu-
tion of the normalized method is significantly improved, since it can distin-
guish the two sine waves, whereas the standard method cannot.

The MV method with normalization comes closer to the AR method, as
far as resolution is concerned. The price to be paid is a significant increase in
computations.
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FIG. 10.3 Minimum variance spectral estimation of two sinusoids in white noise:
(a) standard method, (b) normalized method.

The methods presented so far are based on filtering the data with a filter
matched to a single sinusoid. Consequently, they are not optimal to resolve
several sinusoids. Methods for that specific case are presented next.

10.5. HARMONIC RETRIEVAL TECHNIQUES

The principle of harmonic decomposition has been introduced in Section
2.11 as an illustration of the fundamental decomposition of signals. It is
based on the assumption that the signal consists of real sinusoids with
uncorrelated random phases in white noise, and the spectrum is calculated
as

M
Sur(f) =00 + Y ISP =) +8(f + /)] (10.30)
i=1
The corresponding ACF is

M
Hp) =2 IS’ cos2mpf;) + 02 8(p) (10.31)

i=1

where o7 is the white noise power, /; are the sinusoid frequencies, and S; are
their amplitudes.
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According to the results of Chapters 2 and 3, the noise power corre-
sponds to the smallest eigenvalue of the 2M + 1) x 2M + 1) AC matrix

Ropry:
0% = Amin, 20141 (10.32)

and the sinusoid frequencies are the zeros of the associated eigenvector
polynomial

2M
Hypre (D) =14 i, 17 (10.33)

i=1

Once the M sinusoid frequencies have been obtained, the powers are
calculated by solving the system of equations (10.31) for
p=0,1,...,M — 1, corresponding to the matrix equation (2.41) of
Chapter 2.

If it is not known a priori, the order M is determined by calculating the
minimum eigenvalues A, a4 for increasing orders until they become
virtually constant.

This method, called the Pisarenko method, provides, when the ACF
values are known, unbiased spectral estimates of signals consisting of the
sum of M sinusoids with uncorrelated random phases in white noise [8]. It is
very elegant and appealing from a theoretical point of view. However, with
real data, when the ACF has to be estimated, it exhibits a number of
limitations.

First of all, there is a fundamental practical difficulty related to the
hypothesis on the noise. Estimation bounds and experiments show that it
takes numerous samples for the characteristics of a white noise to appear. It
has been shown in Section 3.11 that errors on the AC matrix elements affect
the eigendirections; therefore, a bias is introduced on the sinusoid frequen-
cies which becomes significant for low SNRs and small data records. That
bias can be reduced by taking the order in the procedure greater than the
number of sinusoids M. In these conditions, the occurrence of spurious lines
can be prevented by choosing the minimum eigenvector in the noise space in
such a way that the zeros of the eigenpolynomial in excess be not on the unit
circle, as discussed in Section 10.8.

Example

To illustrate the impact of the number N, of data available, let us take the
signal

x(n) = sin(nwy + @)
Estimator (3.23) for the AC function yields
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2 - Ny +1 2

r2(p) = 1cos pwy +

Taking the order 2M + 1 = 3 in the procedure, the estimated frequency is

@y = cos™! |:r(2) + sign[r(1)] ,,2(2) ¥ 8r2(1)i|

4r(1)

To judge the sensitivity of this estimator with respect to the AC function, it
is useful to calculate the derivatives:

96, = @’—1 |tan™" @ |
(D]~ (D] /22) + 820 ‘
0w | _ ! |tan™" &
@ Q)+ 8r3(1)

Clearly, for @, small or close to m, the estimation is very sensitive to per-
turbations of r(1) or r(2), which can come from the second term in the above
estimation of r,(p) or from a noise component.

Concerning computational complexity, the procedure contains two
demanding operations: the eigenparameter calculation, and the extraction
of the roots of the eigenpolynomial. The determination of the frequencies f;
becomes inaccurate for large order M. It can be avoided if only the shape of
the spectrum is of interest by calculating

|H,,|*

oM 2
1+ Z v;, mine_jsz

i=1

Sir(f) = (10.34)

where H,, is the peak of the modulus of H2M+1(e-f2”if).

For the eigenparameter calculation, the conjugate gradient technique
given in Annex 3.2 is an efficient approach. Iterative gradient techniques,
mentioned in Section 3.10, can also be used; they permit an adaptive reali-
zation.

The hypothesis on the noise is avoided in the damped sinusoid decom-
position method, called the Prony method [9]. The principle consists of
fitting the set of Ny = 2P data to P damped cisoids:

P
x(n) =Y Szl (10.35)
i=1

with

— s ) i
Z=e (;+j27f")
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As pointed out in Chapter 2, this is equivalent to assuming that the data
satisfy the recurrence relationship

P
x(n) =Y apx(n— i) (10.36)
i=1

The coefficients can be obtained by solving the system

Xp) -1 - x()][a Xp+1)
Xp+D)  xp) - @) || @ X(p+2)

= . (10.37)
xX2p—1) x2p-2) - x(p)]| 4 xX(Ny)

An iterative solution is given in Section 5.14, and the algorithm is presented
in Figure 5.13. The values z; are computed as the roots of the equation

P P
=) az'=0=]]0—zz"") (10.38)
i=1 i=1

Finally the amplitudes S; are obtained by solving the system

1 1 | S x(1)

2 Z vt Zp Sy x(2)
= . (10.39)

zf_l zf_l zg_] Sp x(P)

The spectral estimate corresponds to the Fourier transform of equation
(10.35); if we assume symmetry, x(n) = x(—n), the result, for continuous
signals, is

Sps(f) =

P

20,8
Y (10.40)
= o +4n(f - f)

The method can be extended to real undamped sinusoids. It is well suited to
finding out the modes in a vibration transient.

System (10.37) may be under- or overdetermined and solved as indicated
in Section 3.5. The overdetermination case corresponds to the AR
approach.
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10.6. AUTOREGRESSIVE MODELING

The method is associated with the calculation of the linear prediction coeffi-
cients ¢;(1 < i < N) through the normal equations

1 Ey
—a 0

Rya| . |=] - (10.41)
—dy 0

where Ey is the prediction error power and Ry, is an estimate of the signal
AC matrix. The spectrum is derived from the coefficients by

Ey

Sar(f) = 5 (10.42)

'1 — Y a7

i=1

The resolution capability of that approach is illustrated in Figure 10.4,
which shows the spectrum estimated from N = 64 samples of a signal con-
sisting of two sinusoids separated by é(NLO), the SNR being 50 dB. Clearly,
the AR method provides a good analysis, but the Fourier transform
approach cannot distinguish the two components; it is a high-resolution
technique.

The matrix Ry, used in (10.41) can be calculated from the set of N, data
in various ways [10]. Let us consider the (N, + N) x (N + 1) input signal

matrix
Sapth SINUSOids
o | N
-10 )
-20 1 "’._ s
-30 ! ._:': °
-40 . .
0 1IN, 2UN, 3N, 4,

FIG. 10.4 AR spectral estimation of two sinusoids.
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AN, 0T
R |
XNg=N+1) o 0
X(No—=N) - XN,
Xnyvaty = 8 " ) x(:O) X, (10.43)
x(.l).__ e x(N.+ 1)
0o X(N)
: L L
i 0 (D)

and denote by U, X,, and L the upper, center, and lower sections, respec-
tively, as indicated. The choice

Ry =XX=UU+X'X,+L'L (10.44)

corresponds to the so-called AC equations, because the matrix obtained is
Hermitian and Toeplitz, like the theoretical AC matrix.
Another choice is

Ryy1 = X1X, (10.45)

which leads to the so-called covariance equations. The matrix is near
Toeplitz. To complete the picture, the prewindowed equations correspond
to

Ry =X X, +L'L=X'X-U'U (10.46)
and the postwindowed equations to
Ry, =X X,+UU=X'X-L'L (10.47)

Of these four types of equations, the covariance type is, in general, the most
efficient for resolution with short data records because it does not imply any
assumptions on the data outside the observation interval. The method is
well suited to adaptive implementation, as emphasized in the previous chap-
ters.

The values taken above for the matrix Ry, are based on forward linear
prediction. If the signal is stationary, the coefficients of the backward pre-
diction filter are identical to the coefficients of the forward prediction filter,
but reversed in time and conjugated, in the complex case. Therefore, the
most complete estimation procedure is based on minimizing the sum of the
forward and backward prediction error powers, and the corresponding
expression for the matrix Ry, is
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Ry = X\X, + X)X, (10.48)

where X, is the backward (N, — N) x (N + 1) matrix
X(No) -+ X(Ng—N)

X, = .
XN+1) - x(1)
An efficient approach to solve the normal equations consists of calculating
the reflection coefficients. The LS lattice structure analysis given in Section
8.1 leads to the calculation of two sets of reflection coefficients k,;(n) and
kp;(n) for forward and backward prediction, respectively, defined by equa-
tion (8.16). For stationary signals, the PARCOR coefficient k; is unique and
given by expression (5.61) in Chapter 5. Estimates for k; from k,(n) and

kp;(n) can be obtained in different ways. A first estimate is the geometric
mean

kil = /1kaim)lepi(n — D) (10.49)

which, according to (8.50), corresponds to the normalized lattice structure.
Another estimate is the harmonic mean, corresponding to the so-called
Burg method [1]

1 1 1

—= + (10.50)
ki kai(n)  kpi(n)
Accordingly, the coefficients are calculated for complex data by
No o )

2 Z ea,(i—l)(])eb,(i—l)(] -1
k= (10.51)

0

> lewi1y(DIF + lepi-n( — DI?
J=itl

Their absolute values are bounded by unity, which corresponds to a stable
prediction error filter and a finite spectrum estimate at all frequencies.
The Burg procedure is summarized as follows:

1. Calculate k; by
No
23 x(Hx( =1
ko = (10.52)
> IX()I” + 1x( = DI?
=

2. Forl <i<N:
a. Calculate the prediction errors by
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eqi( /) = eqi—1)(J) — kiepi—1y(j — 1)

: , : (10.53)
epi(J) = epi—n)(j — 1) — kjeqi—1y(j)
b. Calculate the reflection coefficients k;,; by equation (9.51)
c¢. Calculate the prediction coefficients by
a; = k;
(10.54)

@i = a1y — kidgpa-nps 1 <j<i—1

Independently of adaptive LS lattice filters, the procedure itself can be
made adaptive by the introduction of a weighting factor # in the summa-
tions of the numerator and denominator of equation (9.51). The updating
equations are

Di(n+1) = WDi(n) + legi_1)(n + DI> + lepi_p ()]

K0+ 1) = )+ 75 s e+ e ) (10.55)

+ e[,(,-,n(n + l)ébi(n + 1)]

The above updating technique can be simplified by making constant the
variable D;(n + 1), which leads to the gradient approach defined by expres-
sion (5.116) of Chapter 5.

The adaptive technique associated with the geometric mean approach
(10.49) is based on the adaptive normalized lattice algorithms described in
Section 8.5.

An interesting aspect of the lattice approach is that it provides the linear
prediction coefficients for all orders from 1 to N, and, consequently, the
corresponding spectral estimations.

Given a data record of length N, the selection of the optimal predictor
order N is not straightforward. It if is too small, a smoothed spectrum is
obtained, which produces a poor resolution. On the contrary, if it is too
large, spurious peaks may appear in the spectrum.

The results given in Section 5.7 indicate that the predictor order N can be
chosen as the value which corresponds to the maximum of the reflection
coefficients |k;|. Another choice is based on the prediction error power; it
minimizes the final prediction error (FPE) [11]

FPE(N) = 2" """ E, (10.56)

N < 22 (10.57)
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The resolution of the AR method strongly depends on the noise level.
Extending the results in Section 5.2, we can state that it is not possible to
distinguish between two real sinusoids separated by Af if the noise power
exceeds the limit a,% given approximately by

o7 ~ 40(Af)? (10.58)

when the predictor order N is twice the number M of real sinusoids in the
signal. When N increases, the results of Section 5.8 show that the limit o7
increases as a function of N —2M.

For a single sinusoid in noise, the 3-dB bandwidth of the prediction error
filter can be roughly estimated by

1
N?.SNR

where SNR is the signal-to-noise ratio and the order N is assumed to be
large. The derivation is based on the hypothesis that the signal power can be
approximated by the product of the maximum value of Sar(f) by Biar.
Note that, for N large, the prediction error filter closely approximates the
notch filter of Section 5.7.

The parameter Bs;agr can represent the resolution of the method. The
comparison with the periodogram is illustrated by the ratio

Biar & (10.59)

Biar 1
R — 10.60
Bin  N-SNR (10.60)
which clearly shows the advantage of the AR method in resolution for large
SNR values.
The variance of the AR spectrum estimate is shown to be proportional to
N+N0 for an AR signal and to —'—; for a signal composed of sinusoids in

noise.
A noisy signal expressed by
x(n) = x,(n) + e(n) (10.61)

where x,(n) is a predictable signal satisfying the recursion
M
Xp(n) =Y aix,(n — i) (10.62)
i=1
and e(n) a noise, can be viewed as an ARMA signal because
M M
xX(n) =Y apx(n—i)+e(n) — Y ae(n — i) (10.63)

i=1 i=1
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The gain obtained by increasing the predictor order corresponds to an
approximation of the MA section of the model [13]. However, a direct
ARMA modeling approach can be more efficient.

10.7. ARMA MODELING

The spectrum estimation is

2

N o
i=1

Sarma(f) = Ey (10.64)

2

14+ > ae 7>
i=1

where Ey is an error power and the signal x(n) is assumed to follow the
model

x(n) =

N
=

N
aix(n — i)+ e(n) + Y bie(n — i) (10.65)

1 i=1

A detailed analysis of ARMA signals is provided in Section 2.6.

The results can be used to calculate the model coefficients from an esti-
mate of the 2N + 1 first values of the signal ACF. The spectrum is then
calculated from (10.64). Recall, that the spectrum can be calculated without
explicitly determining the MA coefficients. The AR coefficients are found
from the extended normal equations (2.79), the ACF of the auxiliary signal
is derived from (2.89), and the spectrum is obtained from (2.92). All equa-
tions are from Chapter 2.

Adaptive aspects of ARMA modeling are dealt with in Section 4.15,
where the application of the LMS algorithm is discussed, and in Section
7.12, which covers FLS techniques. A particular simplified case worth point-
ing out is the notch filter presented in Section 5.8, whose transfer function is

N .
14+> az™"

Hy(z) = —= (10.66)

1+ Y a1 —e)z
i=1

where the notch parameter ¢ is a small positive scalar (0 < ¢ <« 1). When
predictable signals are analyzed, because of the respective locations of its
zeros and poles in the z-plane, it can be a useful intermediate between the
prediction error filter, whose zeros are prevented from reaching the unit
circle by the noise, and the minimum eigenfilter, whose zeros are on the
unit circle.
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The coefficients can be derived from a set of N, data through iterative
techniques. The filter can also be made adaptive using gradient-type algo-
rithms [14]. With LS the nonlinear character of the problem can be over-
come in a way which illustrates the flexibility of that technique [15].
Consider the diagram in Figure 10.5. The input signal is fed to the recursive
section of the filter first. Then the output sequence obtained is fed to a
prediction filter, whose coefficients are updated using an FLS algorithm.

If the same coefficients at each time are also used in the recursive section,
an FLS adaptive notch filter is achieved. The value of the fixed-notch para-
meter ¢ reflects the a priori information available about the signal: for
sinusoids in noise it can be close to zero, whereas noiselike signals lead to
choosing ¢ close to unity. The results obtained for two sinusoids in noise are
shown in Figure 10.6. The SNR is 3 dB and ¢ = 0.1. The coefficient learning
curves and the locations of the corresponding filter zeros in the complex
plane demonstrate that the two sinusoids are clearly identified by an order 4
filter.

In that approach, which can be used for efficient real-time analysis, the
recursive section placed in front of the predictor enhances the lines in the
spectrum and helps the predictor operation. A similar effect can be obtained
with signal and noise space methods [16].

10.8. SIGNAL AND NOISE SPACE METHODS

The signal AC matrix estimates used in AR methods are degraded by noise.
Improvements can be expected from attempts to remove that degradation
[17].

Assume that M real sinusoids are searched in a signal. From the set of &V,
data an estimate Ry of the N x N AC matrix is computed. Its eigendecom-
position, as seen in Chapter 3, is

1

N
Y amu-eiz
=1

%{n} uin) N e(n)

FIG. 10.5 FLS adaptive notch filter.
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FIG. 10.6 Identification of two sinusoids in noise by an adaptive notch filter:
(a) filter zeros in the complex plane, (b) coefficient learning curves.

N
RN - Z)\,ZU,U;, )"l 2 )\,2 2 > )\'N (1067)

and the prediction coefficient vector is

N
_ 1
AN:RNII"?VZ;)\I—I'U,‘U;V?V (1068)
For N > 2M, if Ry were the true AC matrix, the N — 2M last eigenvalues
would be zero. Therefore the N — 2M smallest eigenvalues of Ry can be

assumed to be associated with the noise space, and the optimum approx-
imation of the true AC matrix is Ry obtained by

2M
Ry = »UUf (10.69)
i=1

Thus, an improved estimate of the prediction coefficients is

2M
/ 1 a
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If not known, the number of sinusoids can be determined from the observa-
tion of the eigenvalues A;. Concerning the computational complexity, the
eigenvalue decomposition is a significant load.

Another estimate of the prediction coefficient vector can be found by
noticing that, for predictable signals in the absence of noise, the prediction
error is zero and the filter coefficient vector is orthogonal to all signal
vectors [18]. Therefore the estimate Ay is a vector satisfying

Uf[ 1//}:0, 1 <i<2M (10.71)

—AY
where U; now denotes an (N + l)-element eigenvector of the estimated
(N+1)x (N+1) AC matrix Ry,;. The eigenvectors Ul < i < 2M)
span the signal space.

In matrix form the system (10.71) is

Up - UN+D ap U
up vy || @) Uy
. = . (10.72)
"
Upprp o Udp(N+1) ay Uyt

or, in concise form,
"
U nAn = Uspr

The system is underdetermined, since there are 2M equations in N
unknowns and N > 2M. The minimum norm solution is given by expression
(3.73) in Chapter 3, which here yields

AN = Uspy Uiy Ui 1™ Usir (10.73)

Because the eigenvectors are orthogonal and have unit norm, the above
equation simplifies to

ANy = (1= Usp 1 Uspg )" Ubpg n Usag (10.74)

Once the estimation of the prediction coefficients has been calculated, the
spectrum is obtained by (10.42).

A further, efficient, approach to exploit the orthogonality of signal and
noise spaces consists of searching the set of M cisoids which are the most
closely orthogonal to the noise space, spanned by the N — M eigenvectors
UM +1 <i < N)[19]. The M frequencies are taken as the peaks of the
function
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S(w) = N; (10.75)

> |IF(o)U?

i=M+1
where F(w) is the cisoid vector
Fllw) =1, e, ..., e/ V"D

Weighting factors can also be introduced in the above summation.

The above methods, like those described in the previous sections, have a
resolution which is linked to the number N, of the signal values available
and the signal-to-noise ratio SNR. An estimation is given by the expression

1
E(A)] = e 10.76
(A)1= 37Nk (10.76)
The signal and noise space methods are essentially suited to batch pro-
cessing. Nevertheless, they provide a deep insight into the structures of real
signals and therefore are useful for adaptive filter design.

10.9. ESTIMATION BOUNDS

Adaptive techniques can be used for estimation purposes, and their perfor-
mance can be tested against estimation bounds in these cases [12-20, 22].

Let us consider an indirect estimation procedure in which a set of N
parameters 6; is derived from a set of N measurements y;. These measure-
ments are related to the parameters by

Yi=Ji0,....0y), 1 <i<N (10.77)

The absence of perturbations corresponds to optimal values, and a Taylor
series expansion in the vicinity of the optimum yields

i i
Yi = Viopt = ﬁ(gl,opt)[gl - el,opt] +- 4+ BOTI(QN,opt)[eN - 9N,opt]
1 N
(10.78)
or, in matrix form
(F - 1—‘opl) = Mé;(@ - Qopt) (1079)
where M is the parameter measurement function gradient matrix.
The measurement covariance matrix is
E[(F - 1—‘opt)(l—‘ - 1—‘opt)I] = Mt6E[(0 - Gopt)(e - eopt)r]MG (1080)

Assuming unbiased estimation, the parameter covariance matrix, denoted
var{6}, is
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var{f} = (Mg")'var{T}Mg' (10.81)

This provides a lower bound for the variance of the parameter estimation
6, obtained from the measurement vector I in the presence of perturbations.
If complex functions are involved, the transpose operation is replaced by
conjugate transpose.

If the numbers of parameters and measurements are different, pseudoin-
verses can be used. For example, with more measurements than parameters,
equation (10.81) can be written as

var{0} = [McME] " Mevar{TYME[MME]™! (10.82)

An important simplification occurs when the perturbation in the measure-
ments is just caused by a white noise with power o7, because equation
(10.82) becomes

var{0} = [McML] o7 (10.83)
For example, let us consider the cisoid in noise
x(n) = ae™ + b(n) (10.84)

and assume the amplitude ¢ and the angular frequency w have to be esti-
mated from N samples (1 < n < N). The 2 x N matrix M is

MG = 8a aa = e‘]uA) T ej w
o Y| Ljae’ .- jNae™”
ow dw
and therefore
N(N +1
_[ N —ja%
MeMal=| N(N4+1) NV + RN+ 1) (10.85)
ja a
’ 2 6
The variances of the estimates are
2N +1 6
2 2
Var{a} = 2Ub m, Var{w} = 20'b m (1086)

The bound in equation (10.81) can also be expressed as
var{f} = [Mgvar{T'}"' M5]™!

This expression is reminiscent of the definition of joint probability densities
of Gaussian variables. In fact, the above procedure can be generalized in
estimation theory, using the log-likelihood function [20, 23].
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Let Pr(I"|0) denote the conditional joint probability density function of
the random vector represented by the measurement vector I'. The log-
likelihood function L(6) is defined by

L() = In[Px(T0)] (10.87)

The matrix 7, of the derivatives of the log-likelihood function is called
Fisher’s information matrix:

aL\? aL AL
3, 30, 0y

oL 9L oL\
30 90, O

For example, let us consider the case of M-D Gaussian signals with
probability density p(x) expressed by [equation (2.135) of Chapter 2]

1 1
= ——F—F=¢CX
(27)""? (det R)!/?

Iy=—E (10.88)

P(X) p[—3(X —m)'R™' (X — m)]

where the AC matrix R and the mean vector m are functions of a set of

variables 8. The information matrix elements are
1 oR oR om' om

inf(k, /) = =trace| R-' — R ' — |+ —R' — 10.89
inf(k, ) =5 rdce[ 3, ae,} 0, " 9, (10.89)

The lower bound of the variance of the parameter vector estimation is called
the Cramer—Rao bound, and it is defined by

CRB(6) = diag[l;{'] (10.90)

When the functional form of the log-likelihood function is known, for
unbiased estimates, a lower bound of the parameter estimates can be calcu-
lated, and the following set of inequalities hold:

Var{9,-} = CRB(QZ'), 1 < I < N (1091)

An unbiased estimator is said to be efficient if its variance equals the bound.

10.10. CONCLUSION

The analysis techniques discussed in this chapter provide a set of varied and
useful tools to investigate the characteristics of signals. These characteristics
are helpful in studying, designing, and implementing adaptive filters. In
particular, they can provide pertinent information on how to select filter
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parameter values or to assess the dynamic range of the variables, which is
necessary for word-length determination.

As an illustration, consider the initial value E, of the prediction error
energy in FLS algorithms, used for example in prediction applications. As
pointed out in Chapter 6, it controls the initial adaptation speed of the filter.
If the SNR is poor, it does not help to take a small value, and E; can be
chosen close to the signal power; on the contrary, with high SNRs, small
values of the initial error energy make the filter fast and can lead to quick
detection of sinusoids for example.

Several analysis techniques, particularly the AR method, are well suited
to adaptive approaches, which lead to real-time signal analysis.

EXERCISES
1. Calculate the order N = 16 DFT of the sequences

. 2.5
xl(n):sm<27t1—6n>, 0<n<l5

. 3.5
Xo(n) = sm(2nﬁn), 0<n<l15

x3(n) = x1(n) + x3(n)

Discuss the possibility of recognizing the sinusoids in the spectrum.
2. The real signal x(n) is analyzed with an N-point DFT operator. Show
that the signal power spectrum can be estimated by

S(k) = X(k)X(N — k)

where X (k) is the DFT output with index k(0 < k < N—1). If
x(n) = b(n), where b(n) is a white noise with power aﬁ, calculate the
mean and variance of the estimator S(k).

Now assume that the signal is

x(n) = sin(anjc\?n) +b(m), 1<ky< g
with k integer. Calculate the mean and variance of the estimator and
comment on the results. Is the analysis technique efficient?

3. A signal has ACF r(0) = 1.0, (1) = 0.866, r(2) = 0.5. Perform the
eigenvalue decomposition of the 3 x 3 AC matrix and give the harmo-
nic decomposition of the signal. How is it modified if
(a) a white noise with power o’ is added to the signal:

(b) The ACF r(p) is replaced by 0.9°r(p)?
Give the shape of the spectrum using expression (10.34).
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4. Consider the signal sequence
n=1 2 3 4 5 6

x(n)=1.05 0.72 045 —-032 —-0.61 —-0.95
Perform the damped sinusoid decomposition following the procedure
in Section 10.5 and calculate the spectrum Spg(f).

5. For the signal

n=1 2 3 4 5 6 7 8 9 10
x(m)y=141 143 1.35 122 1.14 091 0.84 0.67 0.51 0.31
calculate the matrix R, according to expression (10.45) and use it to
derive three forward prediction coefficients. Calculate the AR spec-
trum and draw the curve Syr(f) versus frequency.

Repeat the above operations with R, calculated according to the
forward-backward technique (10.48). Compare the spectra obtained
with both approaches.

6. Consider the cisoids in noise

x(n) = ™ + ™2 4 p(n)
and assume the angular frequencies have to be estimated from N
samples. Calculate the variance estimation bounds and show the
importance of the quantity w, — wy.

Perform the same calculations when a phase parameter ¢; is intro-
duced

x(n) = pJerten) y piney b(n)

Comment on the impact of the phase parameter.
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11

Circuits and Miscellaneous
Applications

The integrated circuits, programmable microprocessors, and array proces-
sors designed for general signal processing can be used for the implementa-
tion of adaptive filters. However, several specific aspects can make the
realization of dedicated architectures worthwhile. A major feature of adap-
tive techniques is the real-time updating of a set of internal variables, with
the related checking operations. The optimization of some of the functions
included in that process may be justified; a typical function is the multi-
plication of the elements of a vector by a scalar. An important point also is
the introduction of arithmetic operations which are not widely used in other
areas of signal processing, namely division and, to a lesser extent, square
root.

11.1. DIVISION AND SQUARE ROOT

Division can be implemented in arithmetic logic units (ALUs) as a sequence
of shifts, subtractions, and tests. The procedure is time consuming, and a
more efficient approach is obtained by dedicated circuitry.

Let n and d be two positive numbers satisfying 0 < n < d. To calculate
n/d, use the following algorithm [1]:

t 0,9, =0
10:2n—d, 0= 0
th 20,9, =1
[1 <0,Q2:0

t 20,g,=1
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i <0,¢;41 =0

ti = 2ti71 — (26], — l)d, [i > 0, Qi1 = 1

It is readily verified that the following equations hold:

i . ot +d
n= d(Zq,z—-/> 4o er .l <d (11.2)
J=1

The bits g; are the most significant bits of the quotient ¢ = n/d. The algo-
rithm can be implemented in a sequential manner as shown in Figure 11.1,
assuming the same word length for n and d.
The number of full adders equals the number of bits of the factors plus
one. A parallel realization leads to an array of adders as with multipliers.
As an illustration, consider the following example: » =9 = 001001;
d =21=010101.

001001 (n)
010010 (2n)
+ 101011 (—d; 2’s complement)
111101 (2 =2n—d)
¢ =0 (1) 111010 (2¢)
+ 010101 (11.3)
001111 (zy)
¢ =1 (0)011110 (2¢))
+ 101011 (—d)
001001 (z,)
qg; =1 (0)010010

The result is ¢ =3 =0.011. . . .

When the word length of the divider d is smaller than the word length of
the dividend n, it may be advantageous to perform the operation as
q= ((l—l)X n, which corresponds to an inverse calculation followed by a multi-
plication.

The square-root extraction can be viewed as a division by an unknown
divider. The two operations have many similarities, and in both cases the
most significant bits of the result are obtained first.

In order to show how the square-root extraction can be performed recur-
sively, let us assume that the square root of a given number X has P bits and
that 7 bits (s, ...s;_1) are available after stage 7 of the extraction procedure.
The remainder R; is expressed by
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FIG. 11.1 A sequential divider.

R, =X — (S2F77) (11.4)

where

i—1
— E J
Si = Sl‘_l_jz
J=0

At the next stage, the remainder R, is
Ripy = X —[(2S; + 5,280V (11.5)

The unknown s; is a binary number, and thus s,2 = s;. Now, expanding the
product on the right side of (11.5) yields

Riy = R; — (4S; + 1)s;2%F==D (11.6)
Consequently, to obtain s; it suffices to calculate the quantity
Qi1 = R; — (4s;+ 122" (11.7)

and take its sign bit.

Hence the procedure to perform the square-root extraction for a number
X having N bits (N < 2P) is as follows:

Initialization: Ry =X, Sy, =0

Fori=0,...,P—1,
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Qi1 = Ry — (45; + 122D
Qiv1 20, si=1, Ry =01, Su1=25+1 (11.8)
01 <0, 5,=0, Ry =R, Sy=25

The desired square root is S,,.

Example

X =25=011001, N=6=2P

Q; =001001, s9=1, Ry =001001, S; = 000001

0, =001001 — 010100, s; =0, R, =R;, S, =000010

0;=0, s,=1, Ry=0, S3=000101=5
The procedure can be implemented on a standard ALU as a sequence of
shift, additions, subtractions, and tests. Dedicated circuits can also be
worked out for sequential or parallel realization.

Overall, considering the algorithms (11.1) and (11.8) it appears that,
using a standard ALU, the division is more complex than the multiplica-
tion because it requires a test to decide between addition and subtraction
at each stage; the square root is more complex than the division because it
requires an addition, a subtraction, and two shifts at each stage. However,
if a dedicated circuit is built, the test needed in the division can be
included in the logic circuitry, and the division becomes equivalent to
the multiplication. The square-root extraction is still more complex than
the division.

11.2. A MULTIBUS ARCHITECTURE

Signal processing machines are characterized by the separation of the data
and control paths. For adaptive processing, additional flexibility is desir-
able, due to the real-time updating of the internal variables. Three data
paths can be distinguished: two for the factors of the arithmetic operations,
and one for the results. Therefore, a high level of efficiency and speed is
obtained with the four-bus programmable architecture sketched in Figure
11.2.

The data buses A and B are used for the arithmetic factors, bus C for the
results. The various system units, ALU, multiplier, and memories interact
with these buses in an adequate manner. An interface unit handles the data
exchanges with the external world. The control unit is connected through
the instruction bus I to the system units and external control signal sources.

The multibus approach brings a certain level of complexity in hardware
and software as well. However, the parallelism introduced that way offers a
pipelining capacity which leads to fast and efficient realizations [2, 3].

berrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



MARCE

r I [
| l

ALU ] nMaT 1 ROM 1 interface fi=b

out
y |

1_.._—1__—_ Sequemar.,—“:ibn

FIG. 11.2 A four-bus architecture for adaptive processing.

A wide range of programmable integrated microsignal processors is now
available, as well as specific parts to build multichip architectures. Machines
can now be designed for any kind of application. A selection of applications
from various fields is given below.

11.3. LINE CANCELING AND ENHANCEMENT

A frequently encountered problem is the canceling of a line while preserving
the rest of the spectrum. As mentioned in Section 5.8, the notch filter is the
appropriate structure. If the frequency of the line is not known or changing
with time, an adaptive version can be used, with gradient or FLS algorithms
as pointed out in Section 10.7. Good performance can be obtained under a
wide range of conditions [4].

The recursive section of the notch filter actually performs a line enhance-
ment. The general approach is based on linear prediction, as shown in
Figure 11.3.

Let us assume that the signal x(n) consists of M sinusoids in noise. The
output x(n) of the adaptive prediction filter 4(z) contains the same spectral
lines, with virtually no deviations in amplitudes and phases, provided the
filter order N exceeds 2M with a sufficient margin. However, as seen in
Section 5.2, the noise component power is reduced in X(n) since the power
of the output e(#) is minimized. The delay A in front of the prediction filter
is chosen as a function of the correlation radius p, of the noise (A = py); in
case of white noise, a one-step predictor is adequate [5].

The improvement in SNR for the enhancer output x(n) is the enhance-
ment gain G,, which can be calculated using the results in Chapter 5; it is
proportional to the prediction filter order.
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FIG. 11.3 Adaptive line enhancement.

11.4. ADAPTIVE DIFFERENTIAL CODING

Besides signal analysis, linear prediction techniques can be used to con-
dense the representation of signals. The information in a signal is essen-
tially contained in the unpredictable components. Therefore, if the
predictable components are attenuated, the amplitude range of the samples
is reduced, fewer bits are needed to encode them, and a denser representa-
tion is obtained. In practice, for the sake of simplicity and ease of manip-
ulation, it is generally desirable that the original signal be retrievable from
the prediction error sequence only. Therefore, in an adaptive approach the
filter has to be implemented in a loop configuration as shown in Figure
11.4, in order to take into account the effects of output sequence
quantization.

._;.} .
X /

D(2)

N(Z) +
/ *{n)

FIG. 11.4 Adaptive differential encoding to condense information.
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The prediction error filter is of the FIR/IIR type.The coefficient update
section can use LMS algorithms as in Section 4.15, or the FLS algorithms as
pointed out in Section 7.12 on pole-zero modeling. Typical uses of the above
scheme are for signal storage or efficient transmission [6]. For example, in
communications the technique is known as ADPCM (adaptive differential
pulse code modulation), and it permits a telephone conversation to be
transmitted with unnoticeable degradations through a digital link with 32
kbit/s capacity [7].

The CCITT recommendation G.721 uses for prediction the diagram of
Figure 11.4. The transversal part, shown as D(Z) in Figure 11.4, has six
coefficients, and its output is defined by

6
Sex(k) =Y bilk — 1)d, (k — i) (11.9)
i=1

where d,(k) is the signal resulting from the quantization of the error signal

e(n).
The autoregressive section, shown as N(Z) in Figure 11.4, has two coeffi-
cients only, for easy stability control, and the signal estimate s,(k) is

2
5e(k) = s,:(k) + > ai(k — 1)s,(k — i) (11.10)

i=1
The reconstructed signal s,(k) is defined by
Sr(k) = Se(k) + dq(k)

Both sets of predictor coefficients are updated using a simplified gradient
algorithm. For the second-order predictor,

a;(k) = (1 = 27%a,(k — 1)+ 3 - 2 8sign[p(k)p(k — 1)]
ay(k) = (1 — 27 Nay(k — 1) 4 27 sign[p(k)p(k — 2)] (11.11)
— flai(k — Dlsign[p(k)p(k — 1)]

with

p(k) = dy(k) + s.-(k) (11.12)
and

fay) = 4ay if |a;| <27 1 (11.13)
f(a)) =2 sign(ay) if |a;| > 27

The reason for introducing the variable p(k) is to make the adaptation more
robust to transmission errors by subtracting from the reconstructed signal
the portion coming out of the autoregressive section. As concerns the non-
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linearity, i.e., the function f, it has been shown to prevent blocking in some
circumstances with tone signals.
The stability is guaranteed by the constraints

(k)| < 0.75, ay(k) < 1=2"%—ay(k) (11.14)

Note that, with the use of sign algorithms, the coefficients are implicitly
limited to £2. Additionally, the encoder includes a single tone detector
defined by

t,() =1 if ay(k) < —0.71875

) (11.15)
t,(k) =0 otherwise

and used in the quantization step adaptation procedure, itself based on
adaptive techniques.

11.5. ADAPTIVE DECONVOLUTION

Deconvolution is applied to experimental data in order to remove distor-
tions caused by a measurement system to a desired inaccessible signal. Let us
assume that the experimental sequence y(p)(1 < p < n) is generated by
filtering the desired signal x(p) as follows:

y@)zli;hixw—i) (11.16)
The operation is described in matrix notation by
() he b hy - 00 x(n)
R T e R | Rl BRTR T
y(.l) 0 0 0 hN',z hN.,l x(2 _ N)
or
y(n) = H'X(n) (11.18)

According to the results in Section 3.5, an LS solution is obtained by
X(n)= HH'H)'Y(n) (11.19)

The desired sequence x(n) can be retrieved in an adaptive manner through
the technique depicted in Figure 11.5.

The estimated data X(n) are fed to the distorting FIR filter, whose coeffi-
cients are assumed to be known, and the output j(#n) is subtracted from the
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FIG. 11.5 Signal restoration by adaptive deconvolution.

experimental data to produce an error e(n) used to update the estimate at

time n + 1.
The simplest approach one can think of consists of calculating X(n + 1)
by
1 N-1
X+ =—|yn+1) =D hin+1-i) (11.20)
o [ i=1 ]

However, it is unrealistic, due to initial conditions and the presence of noise
added in the mesurement process.

The gradient method corresponds to the updating equation

x(n+1) 0 hy
G+ 1 : h N
m(n:+ ) _ n:(n) Ll M [y(n . Zhixi(n):|
. . . i=1
xy(n+1) Xy_1(n) hy—

(11.21)

where § is the adaptation step, the x;(n)(1 < i < N) are state variables, and
the restored signal at the system output is

X(n+1—N)=xyn) (11.22)
The technique can be refined by using a more sophisticated adaptation

gain. If matrix manipulations can be afforded, LS techniques based on
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equation (11.19) can be worked out, associated with recursive procedures to
efficiently perform the computations [8, 9].

11.6. ADAPTIVE PROCESSING IN RADAR

Signal processing techniques are employed in radar for target detection by
whitening filters, separation of targets by high-resolution spectral analysis
methods, and target or terrain recognition by comparison with models or by
inverse filtering [10].

The target detection method is depicted in Figure 11.6.

When the signal s(¢) is emitted, the signal received can be expressed by

(1) = Gs(t — ty) + P(1) (11.23)

where G is a complex parameter representing the propagation conditions, #,
is the delay of the signal reflected on the target, and P(¢) is a perturbation
representing the multiple undesired reflections on various obstacles, or clut-
ter. The useful signal s(¢ — ) can be much smaller than the perturbation,
which can be modeled by a colored and evolving noise or, in other words, by
an AR signal with variable parameters.

The perturbation can be significantly attenuated by an adaptive predic-
tion error filter, which performs a whitening operation and delivers the
signal y,(¢). The signal s(¢) is fed to a filter with the same coefficients, and
the output is s,,(f). Now the detection process consists of comparing to a
threshold the quantity

I fyw(t)‘;w(l - T)dl|2
[lsu(0dt

The corresponding operations are the correlation, squared modulus calcula-
tions, normalization, and decision.

o(1) = (11.24)

P(t) f

Gslt-t,) Yolt) out
'_O’é>7 1-ALZ} : " 2 Norma- | | Detection
lization

z

1-A2)

sit)

FIG. 11.6 Target detection in the presence of colored evolving noise.
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The order N of the adaptive whitening filter is typically close to 10, and
the sampling frequency is several megahertz.

The applications reviewed so far deal with one-dimensional signals. In
antenna arrays and image processing, M-D signals are involved.

11.7. ADAPTIVE ANTENNAS

The outputs from the elements of an antenna array can be combined to
produce a far field beam pattern which optimizes the reception of a desired
signal [11]. The beam can be directed towards the bearing of the signal, and
it can be configured to have sidelobes which attenuate jamming signals.
Moreover, an equalization of the transmission channel can be achieved.
In the block diagram in Figure 11.7, the N elements collect delayed versions
of the useful signal x(¢). For a linear array whose elements are separated by
a distance D, the basic delay is

_dsin@
Y

At

(11.25)

where 6 is the incidence angle and v is the signal velocity. The delays are
compensated through N interpolators whose outputs are summed.

Antenna Array

x(t) I (1)

' 0 (reference)
\‘ L x(t-8T)

’ +aT

signal
0/ ‘x(_t-(N-l )aT) &0
....... qN-DAT

replica
L}

§ [

FIG. 11.7 Adaptive antenna array.
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However, the filters connected to the antenna elements can do more than
just compensate the delays. If a replica of the signal is available, as in digital
transmission, and used as a reference, an error can be derived and the system
can become an M-D adaptive filter employing the algorithms presented in
Chapter 7.

An interesting simplification occurs if the antenna elements are narrow-
band, because the received signal can be considered as a sine wave. The
equation of a propagating wave is

s(x, ) = Sexp 2n<ft - ;) (11.26)

where A = v/f is the wavelength associated to the frequency f. From equa-
tion (11.26) it appears that adequate beamforming can take place only if
Dsing 1 A

Therefore A/2 is an upper bound for the spatial sampling interval. The
filtering paths reduce to multiplications by weights w; = exp(jwA Ti) with
0 <i< N-—1and AT = (Dsin6)/v. The coefficients w; can be calculated
to minimize the cross-correlation between the output y(n) and the inputs in
the absence of the desired signal. The corresponding equation is

1 E
RN[_WN_I}:[O} (11.28)

where Ry is the input covariance matrix, Wy_; and (N — 1)-element coeffi-
cient vector, and E the output error power. The coefficients can be found
and updated through gradient techniques.

Another approach consists of maximizing the output SNR, which leads
to the N-coefficient vector

1
Wy = pip R F (11.29)
with
F=[1,e/0 . NTenTy

The similarity with linear prediction of time sequences is worth pointing out.

11.8. IMAGE SIGNAL PREDICTION

Linear models are useful in image processing for region classification and
segmentation and also for the detection of small regions which differ from
their surroundings [12].
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A picture element (pixel) of a 2-D image can be represented by a white-
noise-driven linear model as

x(n,m) =" "a(l. k)x(n — 1, m — k) + e(n, m) (11.30)

Lk eM

where e(n, m) is a white noise with power o> and M represents the support
region for the filter coefficients, called the mask. The mask M can take on
several forms. In prediction, it is associated with the past of the point (#, m).
The past of a point (ng, my) is related to causality and defined as the set of
points

{(n,m)|n = ny, m < my; n < ny, —00 < M < 0O}

The model equation (11.30) can also be considered as a prediction operation
in which the signal x(n, m) is predicted by the summation x(n, m) and e(n, m)
is the prediction error. The prediction coefficients a(/, k) can be calculated
from the 2-D normal equations

f(L k)= > alp. gyl — p. k — q) = 0.8(1. k) (11.31)

PgeM
where r(/, k) is the correlation function
r(l, k) = E[x(n, m)x(n — I, m — k)] (11.32)

The image predictor can be made adaptive by using either gradient or LS
algorithms.

A third dimension can be introduced with television signals, considering
the sequence of frames.

A pixel is predicted from its past in the same frame and from elements of
the previous frames. Applications are for reduced rate encoding, for analysis
such as edge detection, and for noise reduction. The complexity issue is
crucial in that case, since the sampling rate is 13.5 MHz. Filters with only
a small number of coefficients can actually be implemented in real-time
hardware.

11.9. ARTIFICIAL INTELLIGENCE AND NEURAL
NETWORKS

Artificial intelligence (Al) techniques attempt to reproduce and automatize
simple learning and reasoning processes in order to give machines the ability
to reason at a level approaching human performance in limited domains.
Another of their goals is to extend and structure human-machine interaction
[14].
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Successful achievements in that field are the so-called knowledge-based or
expert systems. A description of such a system is given in Figure 11.8. It is
essentially a structured software technique of performing logical interference
on symbolic data.

The expert system efficiency rests on the quality of its inference rules,
exploited by the inference engine, and of the information stored in the data
base.

In some areas, signal processing is involved in the process of constituting
the data bases on which AI works. For example, it can be needed to convert
the real data, which carry the relevant information into symbolic data.
Adaptive techniques can be useful in that process because of the improve-
ments in accuracy and speed achieved in analyzing signals and extracting the
parameters or features to condense the information.

In automation, it is increasingly important to equip machines or robots
with the capability to communicate with their environment in real time,
through acoustic and visual signals, like humans. To that purpose, signal
generation and recognition are fundamental operations.

Recognition can be defined as the automatic assignment of a signal to a
predetermined category in order to stimulate a predetermined subsequent
action. Clearly, adaptive processing methods, in one-dimensional and M-D
forms are instrumental in accurately and efficiently performing that task.

An approach which is particularly appealing for recognition and classi-
fication is that of neural networks. The basic idea is to model the brain and
its neurons, connected by synapses, by nonlinear elements linked by con-
nections which include weighting factors. Accordingly, the output y(n) of a
nonlinear element is a function of the vector of the N input values x; given
by

N
y :f<2 Wixi); xo=1 (11.33)
i=0

where w; (0 < i < N) are the weighting factors and f(x) the nonlinear func-
tion. This function, which allows the decision to be made, can be the step
associated with a comparator or a more regular or smoother function, like
the sigmoid associated with a saturable amplifier. The system defined by
equation (11.33) allows the classification in two categories of the input
vectors, depending on whether they produce a positive or negative output,
the boundary being given by the equation

N
wo + > wix; =0 (11.34)
i=1
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FIG. 11.8 A knowledge-based system.
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For N =2, this is the equation of a line. The system is called a perceptron
[11]. Its coefficients can be determined through a learning procedure exploit-
ing a set of N, input vectors X (n), for which the output d(n) is known. The
gradient algorithm can be used in that operation

Wn+1)= Wn)+ Xn)dn) — yn), 1 <n< N (11.35)

The separation of a set of elements of types A and B by a 3-coefficient
perceptron is illustrated in Figure 11.9.

The system can be made more sophisticated through the combination of
elements, like logic circuits. A network with 3 levels, or layers, is shown in
Figure 11.10. Basically, a 2-layer network can delimit convex domains,
associated with the outputs of the lower layer being zero. The 3-layer net-
work allows the combination of convex domains and can therefore reach
domains of any shape: it is a general classifier.

The learning process in a 3-layer perceptron can still exploit gradient
techniques, under the condition that the nonlinearity is a derivable function,
like the sigmoid for example. The cost function associated with an M-output
system is

M
J =) (=5 (11.36)
i=1

The iterative determination of the coefficients is based on the derivatives of
the output terms y; with respect to these coefficients. In the computation, it
is very simple to verify that the output errors propagate backwards in the
same linearized network. The procedure is thus known as the method of
backpropagation. The corresponding equations and sequence of operations
form the backpropagation algorithm shown in Figure 11.11. It is also pos-
sible to use perceptrons with a feedback loop from output to input, like IIR

filtering.
x2 & . ’0
A ?‘, -
ﬂ \NJ\*\ .
A R \NQ‘Y -
(3] -7
A a pl -
o £-r
e/, " 6 e .
0T P e ® X1
FIG. 11.9 Using a 3-coefficieht perceptron for classification.
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FIG. 11.10 Three-layer perception for general classification.

The case of binary inputs leads to the so-called Hopfield network, which
consists of a set of N elements, whose outputs are £1, interconnected as
shown in Figure 11.12. The weighting coefficients are computed to mini-
mize, on a set of N, reference vectors, the quadratic cost function

Ny N
T=Y "3 = Y wixim)) (11.37)
j=1 n=1 i=1

i

Under the hypothesis of approximately orthogonal reference data vectors,
one gets for the coefficients

No
Wy = ij(n)x,-(n) i #)) (11.38)
n=I .

Wii:() (l:l,,N)

The technique is reminiscent of linear prediction. The cost function has a set
of N local minima and, in order to determine the class to which an input
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ALGORITHM BFPNN

Available at time n:

Humber of layers : K
Number of neurons in layer k : Ny
Matrix of synaptic coefficients : Wy{n)
{connecting layers k-1 and k}
Neuron state vectors : Yg(n}
Non-linear function and derivative : £[ul,f’[u]
Adaptation step size 5

New data at time n+l:

Input vector: ¥g({n+l) ; Reference vector: D({n+l)

Update neurcon state vector:

Uk (ntl)}= Wyiin) ¥g-1(n+l) H Y (n+1l}=Ff U (n+l)]

Compute the "erreor"™ vector at output neurens:

ejg(n+l)=£’ [Ug(n+l)] [D(n+l)-¥g{n+l)]

Backpropagate "errors" from laver K to laver 1:

)
eik-1(N+L)=F£/[Ux(n+1)] 3 __ eix(n+l) wyjk(n)
1=1

Update the synaptic coefficients:

wijk(n+1)=wijk(n)+ 8 ejr{nt+l) ij—l(n+l)

e et nee

FIG. 11.11 The backpropagation algorithm for multilayer neural networks.
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FIG. 11.12 Hopfield network for the classification of binary data.

vector belongs, it is sufficient to feed it to the network and let each output
evolve according to the equation

N
yiln+1) :f|:Z ‘/Vg;'yl'(”):| (11.39)
i=1

When the system has reached its steady state, the output vector gives the
class to which the input vector belongs.

The neural network algorithms can be implemented in software and
hardware, as illustrated in Reference [12].

Overall, adaptive methods can contribute to the advances of Al techni-
ques. In return, Al techniques can contribute to the diffusion of adaptive
methods. For example, expert systems can be dedicated to adaptive filtering
and signal analysis and exploited by practitioners as a valuable help in their
efforts to optimize their realizations.

11.10. CONCLUSION

The range of applications which have been briefly introduced illustrate the
versatility of adaptive signal processing techniques and the universality of
their principles. In practice, it turns out that, for particular cases, variations
and adequate refinements are often introduced in the methods to tailor them
to the applications and enhance their efficiency. Therefore, these applica-
tions may look as many different fields. To a certain extent, it is true,

berrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



however, there is a common ground, and it is the corresponding common
knowledge which is presented in the previous chapters.

The diffusion of adaptive techniques and the extension of their application
fields are highly dependent on the advances in technology. Considering the
successive generations of large and very large-scale integrated circuits, con-
sidering the growing family of integrated signal microprocessor chips, some
of which are even specially designed to suit the needs of adaptive filtering, it
appears that more and more technological resources are available.

Finally, it can be stated that adaptive methods are bound to have an
increasing impact in science and industry.

EXERCISES

1. Let us consider the adaptive line enhancer shown in Figure 11.3. The
input signal is x(n) = sin(nw/4) and the delay is A = 1. The adaptive
prediction filter A(Z) has N = 4 coefficients.

A white noise with power o7 = 0.1 is added to the input signal.
Compute the four coefficients of the optimal prediction filter, using
the results of Section 5.12. What is the magnitude of the sinusoidal
component in the output x(n) of the prediction filter?

Compute the noise power and give the value of the enhancement
gain G,.

For large N, give the asymptotic value of the enhancement gain.

2. For speech, the following long-term autocorrelation coefficients are
considered:

ro = 1, ry = 086, ry = 0.56.

Compute the optimal coefficients of a linear predictor with N =2
coefficients. Give the value of the prediction gain G,.

Give the block diagram of an ADPCM coder based on such a pre-
dictor. Propose a simple scheme to ensure stability in the decoder, in
the presence of transmission errors.

3. In a radar system, the useful signal x(n) = sin(nm/3) is sent by the
emitter. The receiver captures the following signal: y(n) =
sin(nrr/12) + 0.01 sin(n — 2)7/3). A linear predictor with two coeffi-
cients is used to attenuate the disturbing clutter component.

Give the optimal value of the N = 2 predictor coefficients. Compute
the amplitude of the two sinusoidal components at the output of the
linear predictor.

Assume that a flat noise with power aﬁ = 0.01 is added to the received
signal. What is the impact on the sinusoidal components at the output of
the linear predictor? Give the value of the signal-to-noise ratio.
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A perceptron with N = 3 coefficients and two inputs uses a step as its
nonlinear function. The training sequence X (n) and the known corre-
sponding output d(n) are as follows:

n =1 2

3 4 5 6 8 9 10
xy(n) = =055 2.
0.

7
5 05 15 -3 2 -1 —-1.5 35
5 1 45 05 25 -—-052 2

1 -1 1 1 1 -1 1 -1

X5(n) 1 2.5
dn) =1 -1

Compute the optimal values of the N =3 coefficients, using least
squares techniques. Now, the perceptron is used as a classifier and
d(n) =1 is associated with class A and d(n) = —1 is associated with
class B. Give a global and direct way to determine coefficient values.
Compare the results with those of the least squares approach.
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12

Adaptive Techniques in
Communications

Communications are a major field of appliction for adaptive techniques, and
the corresponding algorithms can be found everywhere in networks, term-
inals, line equipment, switching machines, and human interfaces. All sorts of
conditions, constraints, and challenges are encountered. The applications
selected below illustrate this diversity, and focus on the flexibility of the
algorithms and their ability to cope with many different environments.

12.1. AUTOMATIC GAIN CONTROL

Automatic gain control (AGC) is a very common function in digital recei-
vers. For example, an AGC is generally associated with an analog-to-digital
(A/D) converter, to optimize the dynamic range. In that case, the gain of the
amplifier placed in front of the A/D converter is controlled by digital means.
In some cases, also, the amplifier is digital as well [1].

The objective is to make the signal power constant. If that constant is
unity, the gain G is just the inverse of the square root of the power of the
input signal x(n). An implementation of a digital AGC is shown in Figure
12.1.

Estimation of the input signal power is performed by a narrow-band low-
pass filter H(Z), whose parameter ¢ defines the estimation time constant t
by the relation

(12.1)

1
T=-
€
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FIG. 12.1 Digital automatic gain control.

according to classical results in digital filtering. The input to the filter is the
signal s(n) = xz(n), whose variance is expressed by

var{s(n)} = E[s*(n) — (E[s(n)])*] (12.2)

Assuming the input samples to be uncorrelated, the estimate P, (n) of the
input signal power available at the filter output has the variance

var(Py(n) = [E[¥'(n)] - (E()]))5 (12.3)
For example, if x(n) is Gaussian with power af,, one gets
var{P(n)} = 20;‘2 — ¢t (12.4)

Now, it must be pointed out that the power estimation induces a multi-
plicative noise at the output of the AGC. The estimate P,(n) can be con-
sidered as the sum of the true value and a noise b(n)

P.(n) = E[x*(n)] + b(n) (12.5)
Then, if the parameter ¢ is sufficiently small,
1 1 b(n) )
G = ~ 1-— 12.6
VE2m)] +b(n)  VE[X2(n)] ( 2E[x*(n)] (126
and the AGC output is

x(m)  x(mb(n)
E[x*(n)] AE2(m)])?

u(n) = (12.7)

In the Gaussian case, the power of the multiplicative noise component in the
output u(n) is
1
400

E[C(m)b*(n)] = ; (12.8)
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using (12.4) and assuming x(n) and b(n) to be uncorrelated. This equation
clearly shows the importance of the integrator parameter ¢ The square-root
calculation in Figure 12.1 can be avoided if a magnitude estimation is per-
formed and |x(n)| is fed to the integrator. However, a bias is introduced in
the estimation and, for a Gaussian input signal, it is given by

E[|x(n)|]] = \/%Ux ~ 0.80, (12.9)

The approach can be extended to complex input signals in a straightforward
manner.

12.2. ECHO CANCELLATION

In transmission networks, echoes occur when a delayed and attenuated
version of the signal sent by the local emitter to the distant receiver reaches
the local receiver. These echo signals have their origin in the hybrid trans-
formers which perform the two/four-wire conversion, in the impedance mis-
matches along the two-wire lines, and, in some specific cases like hands-free
telephony, in acoustic couplings between loudspeakers and microphones in
the subscriber sets.

Echo cancellation or (more accurately) echo control, consists in modeling
these unwanted couplings between local emitters and receivers and subtract-
ing a synthetic echo from the real echo. Actually, it is a straight application
of adaptive filtering concepts and algorithms. However, the problem may
become extremely complex and challenging, depending on the environment,
the operational constraints, and the user requirements.

Two different situations can be distinguished, according to the nature of
the signals involved, typically data or voice. The case of data modems is
dealt with first, since it is easier to handle [2].

12.2.1. Data Echo Canceller

The most efficient exploitation of two-wire lines is achieved when data
signals are transmitted simultaneously in the two directions and in the
same frequency bands. This is called bidirectional or full-duplex transmis-
sion, in contrast to half-duplex transmission, when only one direction is
used at a time. The principle is illustrated in Figure 12.2

The signal x4 (n) is sent from terminal A to terminal B through a two-wire
line. The signal y(n) at the input of the receiver of terminal A consists of two
components, namely the signal yg(#) coming from berminal B, which is the
useful data signal, and the returned unwanted echo generated from x ()
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y(0) = ye(n) + ra{n}
.......................... <O e(n}
Terminal B py” Hybrid Terminal A
2-wire line H{Z)
&
T Xafn)

FIG. 12.2 Echo cancellation for full-duplex data transmission.

and denoted r4(n) . The task of the filter H(Z) is to generate a synthetic echo
¥y(n) as close as possible to r,(n), so that, after subtraction, the output error
e(n) is kept sufficiently close to yp(n) to make the transmission of data from
terminal B to terminal A satisfactory.

The selection of the parameters of the adaptive filter is guided by the
context. The number N of the coefficients is derived from the duration of the
echo impulse response that has to be compensated, taking into account the
sampling frequency. For example, let us consider a subscriber line of length
D = 3 km, an electric signal velocity over this subscriber line v =2 x 10® m/
s and a sampling frequency f, = 2 MHz. If a single reflection on the distant
hybrid is taken into account, the number of coefficients of the echo canceller
is calculated by

2D

N="2f (12.10)

Vv

which amounts to N = 60 with the figures given above.

It is necessary to make the filter adaptive, because the characteristics of
the transmission line may change with time. It has been emphasized in
Chapter 4 that the nature of the input signal is critical to the performance
of any adaptive filter. Here, according to Figure 12.2, the input to the filter is
the sent data signal x,(77), which generally is uncorrelated, has unit power,
and therefore has the autocorrelation matrix Ry = Iy. This is the most
favorable situation for adaptive filtering, since LMS algorithms perform
as well as RLS algorithms; the adaptation step size § is bounded by 2/N
and the adaptation time constant T = 1/§, as shown in Chapters 4 and 6.
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In the learning phase, according to Section (4.4), the average output error
power is

E,(n) = [[Hopll5(1 — 8)™" (12.11)

The L, norm of the echo coefficient vector, ||H0pt||§, represents the power of
the echo signal.

Now, in full-duplex transmission, the useful signal yg(n) in the reference
is smaller, and even generally much smaller, than the echo signal r(n). If 4
designates the ratio of the echo to the useful signal, SNR and the desired
signal to noise ratio at receiver input, then the echo attenuation 4, must
satisfy the inequality

A, > A, +SNR  (dB) (12.12)

For example, assume SNR = 40 dB and A, = 20 dB; then A4, = 60 dB,
which obviously implies a high level of performance for the echo canceller,
in terms of residual error in the steady state after convergence.

In the adaptation process, the useful signal creates a misadjustment of the
coefficients resulting in an excess output error. Denoting by 0}2, the power of
the useful received data signal and using equdtion (4.32), the variance of
each filter coefficient after convergence is o}, 8/2 and the excess mean square
error is N times greater, namely No>8/2. In order to reach the target SNR,
the step size § must satisfy the mequallty

s 1
N3 <SNR

In the above derivation, it is assumed that the output error power is very
close to the power of the useful signal U . For example, if SNR = 10*
(40 dB) and N = 60, one gets § < 3.3 x 10 -6 . This is a very small value,
leading to a very long learning phase. Therefore, whenever practical, the
echo canceller is trained in the half-duplex mode with a large step size. Then,
once a specified level of convergence has been observed, the step size is
switched to the appropriate small value.

The impact on the coefficient wordlength is worth emhasizing. The ana-
lysis given in Section 4.5 can be carried out in the present context, and
equation (4.61) simplifies to

(12.13)

1 1
b(v ~ 10g2§+§10g2 Ae (1214)

With § =3.3 x 107 and 4, = 10°, the estimated number of bits of the
coefficients is b, &~ 29. As pointed out in Section 4,5, it is not necessary to
implement the multiplications with such accuracy in the filter. The full
accuracy is just needed for the coeffiient updating.
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12.2.2. Voice Echo Canceller

Voice Echo Cancellation, or control, turns out to be a somewhat different
problem, due to the specificities of the speech signal. First, in order to cope
with the high level of nonstationarity of speech, the algorithms have to be
properly designed. Second, due to the signal bandwidth and the velocity of
acoustic waves in the open air, very long filters are necessary in some appli-
cations. For example, using equation (12.10) with v = 330 m/s, f;, = 8 kHz,
and 2D = 100 m yields N = 2400. This kind of filter length is encountered in
audioconferencing applications, for example. Some specific techniques, like
coefficient interpolation, can be employed to limit the complexity of the
device. Third, in order to reach a high level of performance and meet the
expectations of the users, the voice echo canceller may have to include
several other functions, like speech detection and denoising. Overall, a
very sophisticated device may result in the end [3].

A typical algorithm for adaptive acoustic echo cancellation is the so-
called affine projection (AP) algorithm, which in an extension of the normal-
ized LMS algorithm (NLMS) [4]. Let us consider a correlated input signal
x(n). For first-order correlation, the vector X (n + 1) of the most recent input
samples at time n+ 1 can be expressed as a linear combination of two
orthogonal vectors by

Xn+1D)=aXm)+Zn+1) (12.15)
where « is a scalar and Z(n + 1) is orthogonal to X (n), i.e.,
E[X(n)Z(n+1)] =0 (12.16)
Now, in the NLMS algorithm, the coefficient vector is updated by
X(n+ De(n+1)
X'n+ DX(n+1)

as discussed in Section (4.8). With that algorithm and equation (12.15), the
updating vector at time n+ 1 is related to the updating vector at time 7.
Some redundancy can be removed if the projection

X'(n+ DX
X'(n)X(n)

Hn+1)=Hn)+$

(12.17)

amn+1)= (12.18)

is calculated and used to derive Z(n + 1). In fact, a(n + 1) is just the first-
order prediction coefficient for the vector X(n), since it minimizes the cost
function

J=IX(n+1)—am+ DHX@0)|> (12.19)

The AP algorithm consists of the equations
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H(n+1):H(n)+5Z,(n+l)X(n+1) (12.20)
and
Zn+1)=Xn+1)— o+ DHX(n) (12.21)

completed by (12.18)
The updating of the coefficients is performed in a direction orthogonal to
X (n). The output error e(n + 1) is given, as before, by

e+ 1)=y(n+1)— HmXn+1) (12.22)

It is readily verified that the a posteriori error e(n + 1) is zero if § = 1. As
concerns complexity, the number of multiplications is twice that of the
NLMS. The convergence analysis is similar to that of the NLMS. The
procedure can be extended beyond first-order prediction, leading to
higher-order AP algorithms. With speech, experimental results show that
the AP approach accelerates the algorithms, with respect to NLMS algo-
rithms. As concerns the echo attenuation, realistic objectives can be set in
the range 30-50 dB.

During conversation, it may happen that both users talk at the same
time, and simultancous bidirectional transmission takes place: the so-
called double-talk situation. It is particularly disturbing because it pro-
duces misalignment of the coefficients and a drop in echo attenuation. In
fact, it is generally recognized that the adaptive filter coefficients have to
be frozen during double talk, and the problem arises of double-talk
detection [5].

The performance of double-talk detectors is crucial for the comfort of the
users. Several techniques, more or less complicated, can be employed, and
they can be found in the current literature. A simple and reasonably efficient
technique is given in Figure 12.3. The idea is to compare the level of the
received signal r(n) with the level of the signal e(n) after subtraction of the
synthetic echo. In the absence of a distant talker signal in r(n), the levels will
exhibit large differences, assuming that the echo canceller works properly.
On the other hand, during double talk, the levels come closer. Based on that
information, it is possible to decide on the presence or absence of double
talk and freeze or adjust the coefficients. Obviously, the parameters for level
detection and decision have to be chosen carefully to avoid false decision
and excessive delays. The level detectors can be based on power or ampli-
tude measurements, as in Section 12.1.
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FIG. 12.3 Principle of a simple scheme for double talk detection.

12.3. MODELS FOR CHANNEL EQUALIZATION AND
TARGET FILTERS

The transmission of digital data is based on the assumption that the channel
is linear-phase and satisfies the Nyquist criterion, namely that its transfer
function C(f) satisfies the relation

Ch+N+Ch—-1)=1 (12.23)

where f}, is the symbol rate. This equation is the condition for the impulse
response to be zero at all the instants that are nonzero integer multiples of
T, = 1/f;,, and consequently the condition for the absence of interference
between consecutive symbols. Obviously, practical channels do not meet the
criterion, and equalization must take place in the data receiver [6, 7].

In a given situation, the relevant equalizer structure is selected according
to the model of the channel, and it is important to review the models
associated with different transmission configurations. Ostensibly, in the
absence of noise and other disturbing signals, the optimal equalizer is just
the inverse of the channel model.

12.3.1. Channel Models

A common case is a channel that introduces amplitude and minimum-phase
distortion, with the transfer function C;(Z) given by

@z =——r (12.24)

N
1— Z ai271
i=1
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It is an all-pole model, and all the poles are inside the unit circle, which
ensures stability. Typical of such channels are telephone cables. The optimal
equalizer H(Z), in the absence of noise, is the inverse of C;(Z) and is of the
FIR type, generally called the transversal equalizer.

In radiocommunications, the signals radiated by the antenna of the emit-
ter can reach the receiver antenna through several propagation paths.
Generally, a few paths for microwave links and many paths for mobile
radiocommunications. The model is

M
Cy(Z) = [1 - Zbkzl] (12.25)
i=1

This is an all-zero model, and the inverse is an all-pole equalizer. If all the
zeros of the model are inside the unit circle, the function is minimum-phase
and the equalizer is generally implemented as a decision-feedback equalizer.
In many circumstances, the channel is not minimum-phase and, for
equalization purposes, the model transfer function is represented by:

M
C3(2) = A<I>(Z)<1 -y b,»Z‘1> (12.26)
i=1

where the first factor ®(Z) is a pure phase shifter and the second factor is
minimum-phase. In fact, ®(Z) is a phase corrector which shrinks the zeros
outside the unit circle into the unit circle. Such a phase corrector is not
equalizable. However, if a delay can be tolerated, then a suitably specified
transversal filter can perform the task. Therefore the channel C5(Z) can be
equalized by the combination of a transversal equalizer and a decision-feed-
back equalizer.

The presence of noise in the transmission channel complicates the equal-
ization issues. First of all, if a white noise is added at the channel output, like
a measurement noise, the filter that maximizes the signal-to-noise ratio at a
given time is the so-called matched filter.

12.3.2. The Matched Filter

The matched filter is derived from the following objective: find the filter
frequency response H(f) such that, at a given time 6, the output signal-
to-noise ratio is maximized. The input to the filter is assumed to be x(¢)
given by

x(t) = s(t) + b(?) (12.27)

where s(7) is the useful signal with Fourier transform S(f), and b(¢) is a
white noise with spectral power density 8. The useful filter output is
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y(1) = / S(NH(f)e™ dt (12.28)

—00

The output noise power is

P=p [ 1HGEE (1229)
and the signal-to-noise ratio SNR at time 6 is expressed by
o 2
| stmger
2
SNR = 'yf)' S E (12.30)
B
p [ lnar
Now, the Schwarz inequality can be invoked, namely
oo 2 [0¢] o0
S J2nfo 2 2
[ swnpnera < [ isnfar [ 1rora (1231)
Equality is reached for
H(f)e'™? = kS(f) (12.32)

where k is a real constant. Therefore the maximum of SNR is obtained for
H(f) = kS(f)e7*7? (12.33)
and, in terms of impulse responses,
h(t) = ks(6 — 1) (12.34)

Finally, the impulse response of the optimal filter is proportional to the
time-inverted useful signal. The optimal filter is matched to the useful signal.

The meaning in the digital transmission context is that the optimal filter
coefficients, in the presence of white noise, are given by the channel-impulse-
response elements, in reverse order. Assuming that the data signal fed to the
channel is of wunit power, the channel-impulse-response vector is
C" =cy, €1, ..., cy_1), the noise power is o7, the delay at the receiver output
is 6 = N — 1, and the signal-to-noise ratio is
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P

SNR = "=£]2 (12.35)

In terms of propagation, this result indicates that all the paths bring their
contribution to the final SNR. However, noise is not the only obstacle in
digital transmission: intersymbol interference has to be minimized.

12.3.3. The Wiener Filter

The problem of data transmission can also be appreciated from a signal
reconstruction perspective, using least squares. The situation is depicted in
Figure 12.4.

The objective is to minimize the power of the difference between output
and input signals, expressed by

J= / |s(1) — §(r)|*dt (12.36)

in the presence of the additive colored noise b(¢) with power-spectral density
|B(f)]>. According to the least squares principle, the optimal filter is
obtained when the error e(f) = s(¢) — §(¢) is uncorrelated with the filter
input x(z), which implies

(o]

For(T) = / [s(t) — A(D] x (1 — 1) dt =0 (12.37)
-0
In the spectral domain, using the results in Section 3.1 and the assumption

that the noise H(¢) is uncorrelated with the input signal s(¢), the following
filter frequency response is obtained:

ISUNIPC)
ISUOPICUNI + B
with |S(f)* the power spectral density of the input signal. The above

expression can be rewritten in different forms. First, the inverse of the
channel response can be made apparent:

H(f) = (12.38)

bit)

sft) x(t) (@)
S B o'¢ S N 131G T

FIG. 12.4 Additive noise and Wiener filtering.
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Clearly, in the digital transmission context, in the absence of noise, the
optimal equalizer frequency response is the inverse of the channel frequency
response. However, in the presence of colored noise, the spectral density of
the noise affects the equalizer frequency response. Expression (12.39) can
also be related to the matched filter, considering the factorization

[g0h)
|CONI + IBUP/ISUN)I?

In the presence of white noise with power a,% and a unit-power uncorrelated
input data signal, this equation simplifies to

C(f)
|IC(f)I* + o}

H(f) = (12.39)

H(f) =

(12.40)

H(f) = (12.41)

A comparison with equation (12.33) shows that the Wiener filter is subopti-
mal for digital transmission. The difference between the matched and
Wiener filters is discussed in a later section.

To conclude this section, an additional important aspect must be intro-
duced. The signals are actually transmitted between emitters and receivers in
analog form. A digital-to-analog conversion takes place in the emitter while
an analog-to-digital conversion is carried out in the receiver; in between, the
signal propagates in analog form. The sampling times in emitter and receiver
are not necessarily the same, and fractional delays are introduced. Thus, an
interpolating filter is part of the overall model and has to be included in the
equalizer function. It can severely degrade the performance of the equalizer,
because an accurate interpolation requires a large number of FIR coeffi-
cients, and this is why synchronization of the timing instants is generally
carried out separately in digital receivers.

12.4. TRANSVERSAL EQUALIZER

The adaptive transversal equalizer can cope with all the situations, but with
various degrees in performance. The principle is shown in Figure 12.5. In an
actual modem, the reference signal can have two origins. It can be the data
signal itself, d(n), adequately delayed to reflect the delays incurred during
transmission and equalization. This is typical of the learning phase, with a
learning sequence known at the receiver, in a transmission procedure. The
received data d(n) can also be used as the reference, and the equalizer is said
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FIG. 12.5 The transversal equalizer.

to be “decision-directed’’; it is the tracking phase and comes after the learn-
ing or training phase, when real data are transmitted.
With the LMS algorithm, the equations are:

em+1)=dn+1—-A)—H'mXn+1)

(12.42)
Hn+1)=Hmn)+de(n+1)X(n+1)

where A is the delay in the total link. The received signal itself is related to
the data by

o0
x(n) =Y cid(n— i) (12.43)
i=0
the channel transfer function being expressed by
oo
C2z)=>Y ¢z (12.44)
i=0

The optimal coefficient vector is
Hop = R Eld(n+1— A)X(n+1)] (12.45)
If the data sequence is uncorrelated, then
CA

CAa—1

Hyp = R} = R Cy (12.46)

CA+1-N

Assuming that the data sequence has unit power, the minimal residual error
power after equalization is expressed by

E =1-C\R.Cy (12.47)
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The importance of the delay is apparent, and the delay A has to be included
in the search for optimality.

Another crucial issue is the level of white noise included in the input
signal x(n). If the noise power is o; at the input, the noise power at the
decision point is

0dee = HopHopi0h (12.48)

Therefore noise is amplified in the transversal equalization process. This can
be a serious limitation, since it degrades the performance of the transmission
system.

Implementation using the LMS algorithm is simple and robust. Other
algorithms like RLS, Lattice, or QR can also be used. Due to the FIR
structure, there is no stability issue.

The extension to complex signals is straightforwawrd, as pointed out in
Section 7.8. Computing the gradient of the squared norm of the complex
output error e(n) leads to the coefficient updating equation

H(n+1) = H(n) + Se(n+ DX (n+ 1) (12.49)

Indeed, the computational complexity increases four times

The length of the learning sequence is an important parameter, because it
affects the efficiency of the transmission link. It is determined from a study
of convergence in the decision-directed mode. First, the case of two-level
binary data, d(n) = +£1, is considered. Due to the decision device, there are
two optimal coefficient vectors, namely +H,,, and zero is a saddle point on
the error surface. Once convergence has started the speed depends on the bit
error rate BER. Assuming that a wrong decision reverses the sign of the
output error, the impact of the bit error rate can be seen as a reduction of
the adaptation step size from § to §(1-2BER). Thus, a short learning
sequence suffices with binary data.

With multilevel signals, if d is the maximum distance between neighbor-
ing levels or neighboring points in the complex-plane constellation, the out-
put error is smaller than d/2. The error surface as a function of the
coefficient vector exhibits local minima, whose number is related to the
number of levels. In order to reach the global minimum in the decision-
directed mode, the coefficient vector must be sufficiently close to the opti-
mum vector when the decision-directed mode starts. Therefore, the learning
sequence must be long enough to bring the output error power below (d/2).

As an illustration, let us consider real data and L level symbols, with
uniform amplitude and probability distributions, and distance d = 1. The
signal power is P = L2/12. If an LMS algorithm with maximum speed
(8 =1.No?) is used in the learning phase, according to equatin (4.44) in
Section 4.4, the length N, of the learning sequence must be such that
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where N is the number of equalizer coefficients. For example, if L = 16 and
N = 32, the length of the learning sequence is N, > 70. Now, if the adapta-
tion step size is made smaller by a factor k, the length is approximately
multiplied by the same factor. Therefore it is essential for the efficiency of
the transmission link to get the fastest possible initial convergence. To that
purpose, fast least squares algorithms can be used to advantage.

12.5. DECISION FEEDBACK EQUALIZER—DFE

The objective of the DFE is to equalize FIR channels without inverting the
transfer function, in order to avoid the need for complicated stability con-
trol. The issue is also raised in Section 4.16, and the equation error techni-
que is introduced. In the context of equalization, the interpretation is as
follows: the channel impulse response is split into three sections: namely the
sample with maximal magnitude; the samples before, called precursors; and
the samples after, called postcursors. The DFE compensates the postcur-
SOTS.

From a signal-processing perspective, the problem is how to deal with the
zeros of the channel transfer function C(Z) that are out of the unit circle.
Let Z, be such a zero, implying

|Zy| > 1 (12.51)
The corresponding factor in the equalizer transfer function should be
1
H, = 12.52
=1y (12.52)
which can be developed in series as
-7 1 —Z& (7Y
H(zZ)=——=— <> (12.53)
‘ Zy_ L Z [2:0: Zy
Z
Due to inequality (12.51), for a suitable integer P, an approximation of H,
(z) is
AN
Hy(z) ~ — — 12.54
=53 (7) (12.54)

This approximation cannot be implemented. However, if a delay is intro-
duced as
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0 0

a realizable transfer function is obtained. Therefore, a maximum-phase zero
in the channel can be approximately equalized if a delay is introduced. The
greater the delay, the better the approximation.

The structure of the approximation obtained is worth pointing out. The
equation (12.55) is the cascade of a gain and a backward linear predictor,
and it can be implemented in that way, if blind equalization is considered,
for example.

Coming back to the equalizer, its block diagram is shown in Figure 12.6.
It consists of a transversal section A(z), also called a feedforward filter, and
a recursive section B(z), also called a feedback filter, whose coefficients can
be updated with the LMS algorithm. The optimum values of the coefficients
Aop and B, can be computed according to the least squares principle. The
output error is expressed by

em+1)=dn+1—-A)—Bn)Dn—A)—A'm)X@n+1) (12.56)

where A is the delay of the system. The least squares solution is readily
obtained by

_1
[iit] _ E[[?,(gl:_?))][D’(n ~AX (n+ 1)]] E|:d(n b1 A)[g,((’;;?)):“
(12.57)

The input x(n) satisfies equation (12.44) and, assuming uncorrelated unit
power data, one gets

x(n)

A(Z)

A
I A R

— |

FIG. 12.6 Principle of the adaptive DFE.
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[Aopl M' Ry 0 (12.58)

The transversal and recursive sections have N, and N, coefficients respec-
tively. Ry is the N, x N, autocorrelation matrix of the input signal, Iy, is
the N, x N, identity matrix. The N, x N, matrix M is defined by:

din—A)
dn—1-A)
: [x(n+ 1), x(n),...,x(n+2 — N,)|
(12.59)

Its elements are the coefficients ¢; of the channel impulse response. For
example, if N, = N, =3 and A = 2, the matrix M is

G G O
M=|c ¢ o (12.60)
Cs C4 C3

The N, -element vector Cy, is
Ch = [cas Caztsvvvs Cati—n,] (12.61)

An efficient way to compute the solution of equation (12.58) is to notice the
relationships between 4, and B,y vectors. Equation (12.56) can be rewrit-

ten as
By + MA,, =0
L ot (12.62)
M Bopt + RN“Aopt =Cy
And, finally, the optimum values for the DFE coefficients are:
Aoy = [Ry, — M'M]™'C
opt [ N, ] A (1263)
Bopt = _MAopt

Now, the minimum mean square error (MMSE) at the output of the equal-
izer is, according to Section 4.3,

Emin = E[d*(n — A)] — [Biyy, Aépt][co } (12.64)
A
which yields
Ein = E[d*(n — A)] — A5y Ca (12.65)
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It is worth pointing out that only the transversal section is involved. The
recursive section does not contribute to noise enhancement, which is one of
the key advantages of this approach [8, 9].

Example 1
Let us consider the input signal

x(n) = 0.5d(n) + 0.3d(n — 1) + 0.1d(n — 2)

and assume the following parameter values: N, =2, N, =1, A = 1. Then
the terms in (12.63) are

0.35 0.18 0.3
RN«—[0.18 0.35]’ M=[0.103] CA_[O.S]

which yields

0.045
Aopr = [1_899] bopt = —0.5745

The output MMSE is Epi, = 1 — A4, Ca = 0.0365. Now, let us change the
parameter values to N, =1, N, =2, A = 0. The optimal coefficient values
are

Aopr = |:0.3 —[0.3 0.1][8'?}] 10.5 =2
Bopt:_|:0'3i| 2:[—0.6]
0.1 -0.2
Epin =0
In fact, the channel transfer function is

C(Z)=0.5140.6Z""+0227?%

and the equalizer has the same coefficients, with opposite signs, to cancel the
multipath signals.

Example 2
Consider a transmission channel with the maximum-phase transfer function
C(Z2)=05+2"4082"

The input signal to the channel is assumed to be of unit power and uncor-
related, and an additive white noise with power o} = 0.1 is present at the
channel output. The parameter values are

N,=N,=2,A=1

brrrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



Then
re=| 150 too] =00 os] c=|o3]
The equalizer coefficients are
4 - [0.4494] B |:1.1460:|
opt 0.7865 |’ Pt 0.6292
The output mean square error is

Epin = 0.1573

It is interesting to observe that the coefficients of the feedback section B,y
are close to those of the minimum-phase function

C(Zz7)=08(1+12527" +0.62527%)

which shows how transversal and feedback sections share the equalization
task. The system output is

y(n) =0.2247d(n) 4+ 0.8425d(n — 1)
and the output mean square error can be decomposed as
Epmin = [0.2247 + (1 — 0.8426)°] 4 0.1[0.4494> + 0.7865%] = 0.1573

to show the respective contributions of noise and intersymbol interference.
Obviously, with more transversal coefficients, and more system delay, the
output mean square error can be reduced.

An important point concerning the DFE is its sensitivity to decision
errors. In the tracking mode, the decision errors propagate in the feedback
section, and multiple errors can be created. In fact, the DFE, in the decision-
directed mode, is an IIR adaptive filter. Its poles should be inside the unit
circle, since it is supposed to compensate minimum-phase functions.
However, in the adaptive process and in the presence of decision errors,
they can go out of the unit circle. As discussed in section 5.11, the exponen-
tially growing output signal eventually brings the poles back within the unit
circle, but a burst of errors results whose length is linked to the adaptation
time constant. Therefore, the DFE can only work properly if the error rate
is small; otherwise, specific measures have to be taken [9].

12.6. FRACTIONALLY SPACED EQUALIZER

In the receiver, decisions are taken at the symbol rate f, to retrieve the data.
So far, it has been assumed that all the functions in the receiver are carried
out at that rate, including the equalization. However, it is known that the
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signal spectrum exceeds the symbol rate by the amount of the roll-off of the
Nyquist filter, as shown in Figure 12.7.

Therefore sampling at the symbol rate generates aliasing, and the image
of the base band spectrum occurs around the frequency f,. According to
sampling theory, the phase of this image is linked to the sampling times. A
shift in timing produces a rotation of the phase of the image, and the base-
band spectrum and the image no longer add up in phase, in the filter transi-
tion band Af. Therefore the equalizer is sensitive to the sampling times, and
equalization may become impossible for frequencies in the vicinity of half
the symbol rate. As is well known in multirate filtering, the solution to the
problem is to increase the sampling rate sufficiently to avoid aliasing, which
leads to the so-called fractionally spaced equalizer [7, 10—-12].

An equalizer with double sampling is shown in Figure 12.8. The input
signal sample sequence is split into two sequences which are fed to two
separate equalizers H,(z) and H,(z) operating at the symbol rate.

The output error is

e(n)=dn— A) — H X,(n) — H;X,(n) (12.66)

The optimal coefficient vectors are given by

Hlopti| |:R11 R12:|_1|:"d1:|
_ 12.67
[H 20pt Ry Ry day ( )
with, for i=1,2 and j =1, 2,

R; = E[X:X]], rgi = E[d(n — A)X;(n)]

The updating of the coefficients is carried out at the symbol rate. It is
worth pointing out that the input-signal spectrum, except for the noise, goes
to zero in the vicinity of the symbol frequency f;, as shown in Figure 12.7.
Depending on the filter roll-off, the eigenvalues of the input signal AC
matrix may be widely spread, which may justify using RLS algorithms
instead of LMS for coefficient updating. In any case, if LMS is employed,

0 Y i £

FIG. 12.7 Frequency response of the Nyquist filter.
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FIG. 12.8 Double sampling equalizer.

it is advisable to use the leakage algorithm described in Section 4.6, to avoid
undesirable effects due to insufficient persistent excitation in some frequency
bands. In fact, the leakage factor prevents the uncontrolled growth of the
coefficients which may occur when no signal is present in some frequency
bands.

As concerns noise amplification, it takes place as in any transversal equal-
izer. The fractionally spaced equalizer can be completed by a feedback section,
to make the so-called fractionally spaced DFE. This combination is generally
recognized to be the most efficient approach to adaptive equalization.

12.7. MAXIMUM-LIKELIHOOD ALGORITHMS (MLA)

An alternative approach to channel equalization in receivers is maximum-
likelihood decoding. Instead of equalizing first and then decoding symbol by
symbol to retrieve the data, the idea is to take a block of samples and,
assuming that the channel transfer function is known, find the symbol
sequence which is the most likely to have produced the block of samples
considered [13, 14].

The principle, sketched in Figure 12.9, is the following: assuming that the
emitted data d(n) are known or have been decided for n < 0, find d(0) by the
maximum-likelihood method, using the channel transfer function C(Z),

d(n) x(n)
C(2) M.L. Decoder

— —» — —_— e

f t

b(n) Ci{Z)

FIG. 12.9 Maximum-likelihood decoding.
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which is known or has been estimated. If the channel is FIR with N coeffi-
cients, the input signal x(n) is expressed by

N—

x(n) =Y cid(n — i) + b(n) = C'D(n) + b(n) (12.68)

=

—

where b(n) is a white Gaussian noise with power o7. The sought datum d(0)
is involved explicitly in N received samples:

x(0) = ¢od(0) + c1d(=1) + - - - + cy_1d(=N + 1) + b(0)

x(1) = cod(1) + 1d(0) + - - + ey d(=N + 2) + b(1)

X(N—=1)=cod(N — 1)+ c1d(N —2)+---+ cy_1d(0) + b(N — 1)
(12.69)
Now an error vector E£(0) can be built with the M clements (M > N)

e(0) = x(0) — C'D(0)

e(1) = x(1) — C'D(1)
(12.70)

(M —1)=x(M —1)— C'D(M — 1)

The maximum-likelihood technique consists in searching for the minimum
E;, of the L, norm of the vector E(0):

M—1
IEOI3 =" €0 (12.71)
i=0
for all possible emitted data values: d(0), d(1),...,d(M — 1). The decision

for d(0) is the value that is involved in E,;,.
The following remarks are relevant.

e the channel coefficients are used in the computation of the error vector.

the decision is taken with the delay A = M — 1.

e if each symbol carries K bits, d(n) can take 2% values, and 2% vector
norms have to be computed.

Clearly, the computational complexity is a major issue, and the parameters
M and K have to be kept small. In fact, the scheme is practical for radio
channels with a few transmission paths and binary modulation.

Significant reductions in computational complexity can be obtained with
the ViTERrBI algorithm. The principle is as follows:
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initial conditions: vector D(—1) is known.

time 0: for each of the 2% possible transitions from vector D(—1) to
vector D(0), ¢*(0) is calculated.

time 1: from each of the 2X vectors, or states, reached at time 0, 2%
transitions are possible to reach a state of time 1. The transitions define
paths starting from the known state D(—1) and ending at state D(1). To
each path, a weight is attached which is the L, norm of the error vector,
namely: ¢*(0) + ¢*(1).

time M — 1: the path that has the smallest weight is selected, and the
value d(0) involved in that path is selected as the decoder output.

The geometrical representation of the states and the transitions at each time

is called a trellis. Note that it is sufficient to maintain

2KWV=D states in the

trellis. An example is shown in Figure 12.10, for K =1 and N = 3.

The simplifications in computations come from the following observa-

tions:

at a given time n, of all the paths ending at state D(n), it is sufficient to
keep only the path with the smallest weight.

at time n, only the error values ¢°(n) attached to the 2% transitions for
each of the states have to be calculated. Since there are 25V=" states, 2KV
error values have to be calculated.

each time, it might be sufficient to keep only a few paths, the so-called
survivors: those which have the smallest weights.

The performance of the scheme is sensitive to the parameter values, parti-
cularly the block size M and the number of survivors, but the most critical
input is the channel estimate which has to be carefully monitored.

Reccived samples (0} x(1} x(2} x(3)
. o) (W) W) W
. W) o) W) W)

) (W) (W)
-l 1

. N»’) (W) W)

FIG. 12.10 Trellis for the Viterbi algorithm.
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12.8. COMPARISON OF EQUALIZATION
APPROACHES

In order to assess the relative performance of the various techniques con-
sidered so far for optimal reception, it is useful to provide some figures of
merit. The noise level that leads to a specified bit error rate can be a good
basis for comparison. The target bit error rate retained is BER 1073,

With the maximum-likelihood (ML) technique, when the correct data
vector is picked, the minimum E_;, of the norm of the error vector is
given by:

Epin = Z b*(n) (12.72)

when expressions (12.68), (12.70), and (12.71) are combined. Assuming
binary data, a false d(0) yields the norm

N—

Z[b(z) +2¢1 + Z b*(n) (12.73)

i=0
The difference is

N—1 N—1
Epin = 4[2 cib(i)+ Y c?} (12.74)
i=0 i=0
The variable
N—1
u="ycbi) (12.75)
i=0
is Gaussian, and its variance is
o =0 Zc (12.76)

An error occurs whenever Ef — Enin < 0. The probability of this situation is
smaller than 107 if

1N—1 5
0, < 5; I (12.77)

Then the condition on the square root of the noise variance is

‘o N2 3
oy < 1+;% (12.78)
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Now, let us consider a DFE, with a recursive section only and N — 1
coefficients, as shown in Figure 12.11. The signal at the input of the decision
device is

N—1

y(n) = x(m) = Y ¢;d(n — i) (12.79)
i=1
and, if the coefficients take on the exact values, then

¥(n) = cyd(n) + b(n) (12.80)

Therefore, assuming that b(n) is a Gaussian noise, the condition
BER < 107° implies

— 12.81
oy < 3 ( )

As concerns the transversal equalizer, it implements the inverse of the
channel transfer function or an approximation as follows:

c 2= ~—|14+) nZ'| =H() (12.82)
N=Te¢. ; Co -
Jege ]l
i=1 Co
The condition on the bit error rate leads to
1
op<N (12.83)

ol—

3 N—1
[1 +> hf}
=1

Expressions (12.78), (12.81), and (12.83) provide a ranking of the three
techniques. One can say that, with respect to the input noise, the DFE is
neutral, since it keeps the input value of the signal-to-noise ratio, and the
transversal equalizer degrades the SNR, while the MLA improves the SNR.

y(n)

x(n) jf , dn)

A-1
Z ez
i-1

FIG. 12.11 Purely recursive DFE.
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In fact, in the maximum-likelihood approach, the SNRs of the various
propagation paths add up.

Example
Let us consider the simple case where
1
CZ2)=—— 12.84
(2)=1—— (12:84)

The noise-level limits for the three approaches are given in table 12.1.

It must be pointed out that the above comparison implies many assump-
tions and, in practical situations, the comparison is not so clear-cut. In many
applications, the transversal equalizer is still the preferred technique,
because of its flexibility and ease of implementation, its robustness to deci-
sion errors, and its relative computational simplicity. However, if the system
has to operate close to the SNR limit in a very noisy environment, and if
long delays are acceptable, the MLA might be the right approach.

12.9. CARRIER FREQUENCY ESTIMATION

Shifts in carrier frequency can occur during the transmission of modulated
signals, due to local oscillators or, in mobile radio environments, to the so-
called Doppler effect. Assuming that a mobile station is moving at speed v
and it is receiving a signal emitted from a fixed base station with frequency
f, then the received frequency is shifted by Af, such that

Af :fgcose (12.85)

where ¢ is the radiowave velocity and 6 is the angle between the mobile
travelling direction and the direction of the source.

In the receiver, the frequency shift has to be compensated, and a conven-
tional technique is the phase-locked loop. However, when the transmission
takes place in bursts, like in some satellite communications, faster techni-

Table 12.1 Comparison of Equalization Techniques

MLA DFE Transversal
30p, < ! 1 !
Op
V1 —d? V1+d

a=08 1/0.6 1 1.3
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ques are required. An approach is to estimate the carrier frequency from the
signal samples in the burst, then cancel it and proceed with the operations of
the optimal receiver [15, 16].

A preliminary step is to get rid of the modulation, and the methods used
to reach that goal are closely related to the modulation itself. For example,
with 4-QPSK modulation, it is sufficient to raise the signal samples to the
4th power. A 4-QPSK signal is expressed by:

x(n) = Ae/FFEH) (12.86)
and
) = —Ate’™ (12.87)

Indeed, a high-level noise component must be added to x(n) to reflect prac-
tical conditions, and it is enhanced by the operation. In practice, it is recom-
mended to multiply the phase of the signal x(n) by 4 and keep the magnitude
or, even, set it to unity.

In any case, the problem of compensating the carrier frequency in a burst
boils down to finding the frequency of a single sinusoid in noise, using N
samples. Let us assume the signal to be

x(n) = A’ 41 b(n) (0<n<N-1) (12.88)

A target accuracy has to be specified first. With 4-QPSK, the residual fre-
quency error Aw must be small enough, so that after N samples, data
extraction is still unambiguous, which implies

|¥/4

NAw < 35 (12.89)
Now, the issue is whether this accuracy can be met, given the signal-to-noise
ratio SNR. The answer is provided by the estimation bounds.

The results of section (10.9) can be applied in a straightforward manner.
There are three unknown parameters: namely the amplitude A, the angular
frequency w, and the phase ¢. Using definition (12.88) for the signal samples,
the gradient matrix Mg is such that

N(N —1 —j

N IRIGES) JAN
. AZ N(N B 1) 2

]AN —2 A°N

Since the three parameters to be estimated are real, the variances are
. . . —1 .
obtained using only the real part of the matrix MsM ;. Assuming the
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noise to be complex with power o7, the inverse of the real part of the matrix
MeM [G is multiplied by o7/2 to produce the variances
2
gy 1 6
A} =—-, =
var{4) varlol = SUR NV = 1)

2N (12.91)

(N—-1)
SNRN(4N? —3N + 1)

var{p} =

Then, for a given SNR, the number of samples must satisfy the inequality

1 6 1 m2
SNRN(N 1) - M2 (Z) (12.92)

or

96
N I
~ 72SNR

For example, if SNR = 0.1 (—10 dB), then N > 97. Note that, if a peak
factor is introduced in inequality (12.89) to reflect a probability limit, then
the number of samples is multiplied by the same factor.

Once equality (12.93) has been checked, the next step in to find an esti-
mation algorithm able to meet the bound. A classical approach consists of
performing an FFT on the input samples, taking the squared modulus of the
transformed values, and looking for the maximum of the signal spectral
power density through interpolation. The frequency corresponding to the
maximum is the desired estimate. One can also exploit the following prop-
erty: the autocorrelation function of a cissoid in noise is still a cissoid in
noise, as shown by the computation

(12.93)

| Nl _
) = 3= 2 X —p) = A"+ b'(p) (12.94)

n=p

with b’(p) a noise component given by

1 N—1 _ _ _ _
b =5—, [Z A/ b1 p) + AN (n) 4 bln)b(n — p>]
n=p

(12.95)

Now the autocorrelation function of the sequence r(p) can be computed.
After several such iterations, the element with index p = 1 in the autocorre-
lation function gives the desired estimate, after division by the element with
index 0, which is the corresponding signal power. It is worth pointing out
that the autocorrelation function of a given sequence is computed efficiently
through a cascade of three operations: calculating an FFT, taking the
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square of the modulus of the transform outputs, and calculating the inverse
FFT. i

Once the estimate e’® of the true carrier frequency e/ has been obtained,
the compensation can be carried out as shown in Figure 12.12.

The optimal receiver can use the maximum-likelihood algorithm
described in Section 12.7 to retrieve the data from the N signal samples.

12.10. ALGORITHMS FOR RADIO
COMMUNICATIONS

Signal processing algorithms have been essential for all kinds of radio trans-
mission systems, e.g., microwave fixed links, satellites, and cellular wireless
networks. Some have been developed specially, like the DFE equalizer
which was introduced to cope with the high level of noise present in some
radio channels, while the transversal equalizer gave satisfactory perfor-
mance in wired communications, where accurate equalization is the main
priority and noise is less of a problem.

A typical example of the importance of some basic algorithms, like those
given in section 12.1, is given by the power control in cellular systems,
particularly those based on code division multiple access (CDMA) [17]. In
CDMA networks, several users share the same transmission channel, and it
is essential that the corresponding signals reach the base station receiver
with similar power levels, in order for the receiver to reliably separate and
decode all the signals. However, in a mobility context, the distance between
a user and the base station can vary considerably in a short time. Therefore,
nearby emitters must have their power reduced while distant emitters have
to push up their power levels. In fact, for a CDMA-based cellular system to
work properly, a global strategy to adaptively control the power levels of the
mobile users has to be implemented. To some extent, the same applies to the
base station itself, if it has the capability to perform a space separation of
the emitted signals.

In this section, several algorithms which find application in radio recei-
vers are described.

x(n} Optimal data
"

receiver

- jndf

-4

FIG. 12.12 Compensation of the carrier frequency.
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12.10.1. Zero Forcing (ZF) Algorithm

The updating of the coefficients in a transversal equalizer can be simplified if
the data vector is employed instead of the input signal vector. The equations
are

em+1)=dn+1)—H®mWXn+1)

(12.96)
Hn+1)=H(n)+ée(n+1)D(n+1)

where D(n + 1) is the vector of the N most recent output data at time n + 1,
and the filter has N coefficients. The scheme is particularly advantageous
with binary data. The updating equation leads to the cancellation of the
expectation

Ele(n)D(n)] = E[d(n)D(n) — D(n)X’(n)Hopt] =0 (12.97)

when the optimal coefficient vector H,, has been obtained. Now, the input
x(n) is related to the data by

o0
x(n) =Y cid(n— i) (12.98)
i=0
Assuming uncorrelated data, equation (12.97) is rewritten as
0o .- 0
7 o o[
0 1 0 hl
S| - ) =0 (12.99)
0 hy.
CN—1 Cn—2 "+ Cp N

which means that the coefficients of the equalizer are such that, on average,
the N — 1 first terms of the impulse response of the channel and equalizer in
cascade are forced to zero. This is apparent if the product C(Z)H(Z) is
computed. In fact, the coefficients H,, are the N first values of the inverse
of the channel impulse response.

The ZF algorithm can be analyzed as the conventional LMS algorithm.
For example, the stability condition is derived from the a posteriori output
error &(n + 1) by:

e(n+1) = e(n+ D[l — 8D'(n + D)X (n + 1)] (12.100)

Following the reasoning of Section 4.2 and taking the expectations of the
absolute values of both sides yields the stability condition

2
0<éd<— 12.101
<8< Neg ( )
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The data are assumed to have unit power. It is worth pointing out that, since
the channel coefficients are not available beforehand, some initial guess is
necessary to select the adaptation step size 8. In practice, it might be con-
venient to use the square root of the input signal power.

12.10.2. The Constant Modulus Algorithm (CMA)

The CMA algorithm belongs to the family of the so-called blind algorithms,
which means that no reference signal is available to guide the adaptation
process, which has to rely on a priori known characteristics of the signal.

A typical characteristic of many radio signals is the constant modulus,
which is a basic requirement to fully exploit the dynamic range of the
amplifiers and achieve the best protection against noise at a given signal
power level. Frequency modulation and phase modulation have this prop-
erty [18].

The CMA algorithm is commonly used in digital phase-locked loops, and
in channel equalizers when appropriate. Since there is no need to transmit
an initial learning sequence, the approach is particularly useful in circum-
stances where it is impossible or impractical to use a learning sequence, as in
broadcasting for example. The principle is shown in Figure 12.13.

The cost function J;, is defined by:

Jew = gELA* ~ 15 (12,102

The instantaneous gradient is the derivative, with respect to the coefficients,
of the quantity in brackets. For real signals, one gets

Grad(n) = —[4% — |5(m)|*[7(n) X (n) (12.103)
The filter coefficients are updated by:
H(n+1) = H®n) + 84> — [§(n + DP1i(n+ DX (n + 1) (12.104)

—» ()

x(n) ) |50 : _ A

/ e(n)

FIG. 12.13 Principle of the CMA equalizer.
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For complex signals, the derivative of the quantity | 7(n))> with respect to the
coefficients is the vector 2y(n)X(n), and the updating equation becomes

Hn+1)=H®n) + 5[4 — [F(n+ DI In + DX(n + 1) (12.105)

With the same approach, sign algorithms can also be derived.

A critical issue with the above algorithm is convergence. Since the cost
function is not quadratic, and the algorithm includes nonlinear operations,
local minima exist. In addition, the performance, particularly the conver-
gence time, cannot be predicted.

12.10.3. Optimal Multipath Equalization

Multipath propagation is a typical feature of most radio channels. Rather
than mitigate the effect, the optimal receiver should exploit it and make the
various propagation paths contribute to the transmission. In fact, signals
carrying the same information should be combined in such a way that the
corresponding signal-to-noise ratios add up. The possibility has already
been demonstrated for the matched filter and the maximum-likelihood algo-
rithm, and it is considered below from a direct-weighting perspective.
Let us consider a set of K signals x;, such that

xo=1+4b (0<k<K-1) (12.106)

The desired quantity is 1, and b, is a white noise, of power By, in the
measurement. The K noise components are assumed uncorrelated. Next,
let us consider the weighted summation

K—1
y=xXo+ > hex (12.107)
k=1

The issue is to find the K — 1 coefficients /. that maximize the signal-to-
noise ratio in the signal y. Substituting (12.106) into (12.107) leads to

K—1 K—1
y= (1 +th) +ho+ Y Iy (12.108)
k=1 k=1

The signal-to-noise ratio is expressed by

K-1 2
(1 + th>

=1

K—1

By+ Y hiBy
k=1

SNRy = (12.109)
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The maximum of the function is obtained when all the derivatives with
respect to the coefficients are zero. That condition for coefficient 4; can be
shown to be

K—1 K—1
By+ > hiBi = (1 +th>hi3i (12.110)
k=1 k=1

Thus K — 1 such equations are obtained, and they form a system that pro-
vides the coefficient values. It is readily verified by mere substitution that the
solution to the system is

B
== 0<k<K-1) (12.111)
By

The corresponding SNR is obtained by substituting (12.111) into (12.109),
which yields, after simple algebraic manipulations,

1 K
SNRy = — — 12.112
y Bﬁ,;Bk ( )

The signal-to-noise ratio of the weighted sum y is just the sum of the indi-
vidual SNRs. Coming back to the radio-transmission context, the output of
a multipath channel can be expressed by

K-1
x(n) =Y [eid(n — i) + by(n)] (12.113)
i=0
where each of the K paths has an attenuation ¢;, a delay /i and a noise
component b;(n) with power B;. If the paths can be separated, and if the
signal with index i is multiplied by ¢; ', the noise power for that signal
becomes B;/C?. Now, if the signals are properly delayed and summed
with the coefficients given by (12.111), namely

2
Ci

h; = B (12.114)
the signal-to-noise ratio of the signal y(n — K) so obtained is given by
K12
SNRy:;E (12.115)

This expression becomes identical to (12.36) if all the paths have the same
noise power. In fact, a matched filter has been obtained.

From an application viewpoint, the above developments might look like
an academic exercise, since the paths generally cannot be separated and the
SNRs measured individually. However, the approach can be applied as such
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in code-division multiple-access (CDMA) systems, because of the decorrela-
tion brought by the coding to delayed versions of the signal, and it is called
the “RAKE” receiver [17]. The structure is shown in Figure 12.14.

The channel impulse response is measured, and the M most significant
paths are identified, with their delays. The input multipath signal x(n) is fed
to a set of M branches, called the fingers, which consist of delays, correlators
with the spreading sequence, and multipliers by the weighting coefficients.
The signal obtained by summation of the outputs of the branches is fed to
the detector which supplies the data. Actually the scheme is a direct imple-
mentation of the matched filter.

12.10.4. Adaptive Antennas for Cellular Systems

Adaptive antenna arrays have the potential to enhance the capacity of
cellular systems by exploiting spatial separation between subscribers. The
base station concentrates the signal power in the directions of the mobile
units to be reached and reduces the power radiated in the directions of the
other units. The same principle is applied to the reception of the signals
emitted by the mobiles. In fact, in cellular systems, the base stations are in a
position to perform a global optimization of the whole transmission system,
by combining send-and-receive information and by exploiting jointly the
estimation and equalization techniques for the paths of the mobiles they
are managing. However, in practice, a step-by-step introduction of these
concepts is necessary.

The block diagram of an adaptive array and the combination of space
diversity and equalization is shown in Figure 12.15.

W,
' Correlator | —
x{m} dy Correlalor wr
Wz
L | dy Correlatar

W

FIG. 12.14 Structure of the RAKE receiver.
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In fact, it is a DFE with a multichannel transversal section which can be
fractionally spaced. The algorithms presented in Sections 12.5 and 12.6 can
be used, as well as the results of Section 11.7 on adaptive antennas. If the
received signals are narrow-band, the transversal sections can be simplified
to single coefficients.

The scheme can direct the main antenna beam towards the desired mobile
unit and position nulls in the directions of interfering units, while equalizing
the transmission channel and minimizing the received noise. In fact, it is
shown to be optimal in the presence of multipath propagation and jammers
[19]. The problem with this general approach resides in the implementation,
with the practical limitations in terms of number of array elements, geome-
try, calibration, and filter dimensioning. A long learning phase is likely to be
necessary.

In order to speed up the process, a cascade approach can be contem-
plated, consisting of two steps. First an estimation of the directions of
arrival of the signals is performed. Then constrained equalization is
employed, with the appropriate algorithms of Sections 4.12 or 7.7.
Direction of arrival estimation and tracking is efficiently achieved by sub-
space methods, as in Section 10.8, and techniques are available to efficiently
carry out the singular-value decomposition of the relevant covariance
matrices [20].

At this point, the similarity between neural networks and equalizers is
worth pointing out. In fact, the adaptive equalizer in the decision-directed
mode is a classifier, like the perceptron described in Section 11.9. The results

d{n)
Decision >

/

Fesdback
section

¥

FIG. 12.15 Adaptive multichannel equalizer.

brrrer Copyrightn 2001 by Marcel Dekker,Inc. All Rights Reserved.



MARCEL

obtained in equalization can be applied to perceptrons which use the same
nonlinear operator, in particular concerning convergence speed and residual
error power. Conversely, multilayer perceptrons can be used to equalize
nonlinear channels.

12.11. CONCLUSION

A wide range of adaptive techniques has been presented for equalization and
data retrieval in digital receivers. They are intented to cope with the many
different contexts encountered in communications, and they illustrate the
flexibility and efficiency of the general concept. For each specific applica-
tion, a technique or a combination of different techniques can be identified
to meet the objectives, while satisfying the constraints.

The trend in communications is towards using more powerful algorithms
and sophisticated structures. A typical example in wireless cellular commu-
nications is the use of multiple antenna elements at both the base station and
the mobile set. A multiple-input multiple-output system results, which
should permit a better exploitation of the radio channel and an increase
in data throughput [21]. In fact, transmission channels—and particularly
radio channels, because of the usable spectrum limitations—constitute a
limited resource, in contrast with an ever-growing demand for higher bit
rates and mobility.

Another beneficial effect of the progress in signal processing algorithms is
that it is now possible to reliably exploit channels that were judged until
recently as unusable for high-rate communication. A remarkable example is
the copper wire subscriber loop, which can now support bit rates of several
Mbit/s with the xDSL (Digital Subscriber Loop) systems [22-23].

EXERCISES

1. The scheme of Figure 12.1 is applied to the signal x(n) = sin%mr. Give
the expression of the sequence P.(n), an approximate expression for
the gain G(n), and the output u(n). Assuming that the output harmonic
distortion must be smaller than one percent, what is the maximum
value of the filter parameter ¢? What is the accuracy of the power
control in that case?

2. In order to reduce the computational complexity and speed up long
echo cancellers, use is sometimes made of interpolated adaptive filters,
in which a fraction only of the coefficient set is actually adaptively
computed, and the remainder is derived through linear interpolation.
Show that, in such a scheme, interpolation can be carried out on the
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input signal, and adaptive filtering is performed on the interpolated
signals with a reduced set of coefficients.

Give the details of the operations for the simple case of N =5
coefficients and interpolation factor K = 2. Discuss the performance
of the interpolated adaptive filter in that case.

3. Schwarz inequality: prove the inequality

[a1b) + axb,) < [ai + @3][bT + b3]

and give the conditions for equality. Use this result to prove inequality
(12.31).

4. A propagation channel has the coefficient vector C' =[0.8, 1.0, 0.5],
and the power of the additive noise is o7 = 0.1. Give the coefficients
of the filter matched to the channel and the impulse response of the
channel-equalizer cascade. What is the overall delay and the maximal
value of the signal-to-noise ratio?

5. A transversal filter is considered to equalize a channel with the transfer
function

0.5
A =1"057
Compute the power of the received signal x(n), assuming unit-power
uncorrelated input data. For N =2 coefficients, give the coefficient
values.

A white noise with power o,% = 0.1 is added to the received signal.
Compute the values of the coefficients and compare with the previous
result. What is the noise enhancement factor?

From the impulse response of the channel-equalizer cascade, derive
the intersymbol interference power.

6. A two-path microwave channel is equalized by a transversal filter with
three coefficients. The model is

C(Z)=1-0."7e7* 771

Assuming that the input data signal is uncorrelated and of unit power,
compute the equalizer coefficient vector H,, and the noise enhance-
ment factor.

An alternative transversal equalizer F(Z) is obtained by taking the
first three terms in the series development of C~(Z). Give the noise
enhancement factor in that case.

By computing the products C(Z)H,,(Z) and C(Z)F(Z), show the
intersymbol interference in both cases.

Give the coefficient updating equation in the LMS approach. What
is the stability limit for the adaptation step size §?
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7. Consider a transmission channel with the transfer function
C(Z)=0.5+0252""+0.127%+0.052"°

The input signal d(n) to the channel is assumed to be of unit power and
uncorrelated. Give the values of the coefficients of a decision-feedback
equalizer with two coefficients in the transversal section and a single
coefficient in the feedback section (N, =2, N, = 1), taking A =0 as
the total system delay. Compute the output mean square error, and
give the expression of the system output to show the residual inter-
symbol interference.

Next, an additive white noise with power olf = 0.1 is present at the
channel output. Compute the equalizer coefficients in that case, and
show the relative contributions of noise and intersymbol interference
in the output mean square error.

8. At the input of a double sampling equalizer, the received signals are

x1(n) =dm)+0.7d(n — 1) + 0.2d(n — 2) + by (n)
X5(n) = 0.9d(n) 4+ 0.5d(n — 1) + by(n)

where b;(n) and b,(n) are independant white noise signals with power
a;f = 0.05 and the data d(n) are uncorrelated and of unit power.
Compute the optimal coefficients of the equalizer, with N = 2 coef-
ficients in each branch.
Give the output error power. Compare with the regular nonfraction-
ally spaced equalizer, which uses x;(n) only.
9. A transmission channel has the transfer function

CZ)=1+4072"402z72

The input data are d(n) = =1 and the following sequence is received
from time step 0 to time step 11:

x(n) ={0.6,1.2,1.0,—-1.2,0.4,0.2,0.6, —0.2, —1.2, —0.5, 0.7, 1.4}

Knowing that d(—1) = 1 and d(—2) = —1, use the MLA algorithm to
find the sequence which has been transmitted.
Give the trellis representation with the states, transitions, paths, and
weights. Discuss the computational complexity.
10. In a radio receiver, the antenna consists of a linear array of three
uniformly spaced isotropic sensors, separated by the distance
d = )/2, where A is the wavelength of the carrier frequency f, i.e., A =
¢/fy and ¢ is the velocity of light. The useful signal is arriving from the
incidence angle 6 = /6 with respect to the array. The base-band signal
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received by the center element in the array, after frequency shift and
sampling, is expressed by

x1(n) = s(n) + by(n)

where s(n) is the useful source signal and b;(n) is a white noise with
power o7.

Give the expressions of the signals xy(n) and x,(n) received by the
other antenna elements, denoting by by(n) and b,(n) the corresponding
noise signals assumed to have the power a,f.

After weighted summation, the system output is expressed by

y(n) = axo(n) + x1(n) + px,(n)

Give the relationship between the coefficients o and S necessary to
cancel a jammer arriving from incidence angle 0 (orthogonal to the
array). Compute the coefficients that maximize the output signal-to-
noise ratio.
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