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1. Introduction

Let Mn(C) be the space of n × n complex matrices and let ||| · ||| denote any unitarily invariant (or symmetric) norm
on Mn(C). So, |||U AV ||| = |||A||| for all A ∈ Mn(C) and for all unitary matrices U , V ∈ Mn(C). For A ∈ Mn(C), the Hilbert–
Schmidt norm, the trace norm, and the spectral norm of A are defined by ‖A‖2 = (

∑n
j=1 s2

j (A))1/2, ‖A‖1 = ∑n
j=1 s j(A), and

‖A‖ = s1(A), respectively, where s1(A) � · · · � sn(A) are the singular values of A, that is, the eigenvalues of the positive
semidefinite matrix |A| = (A∗ A)1/2.

Note that ‖A‖2 = (tr |A|2)1/2 and ‖A‖1 = tr |A|, where tr is the usual trace functional. It is evident that these norms
are unitarily invariant, and it is known that each unitarily invariant norm is a symmetric guage function of singular values
[4, p. 91].

The classical Young inequality for two scalars is the ν-weighted arithmetic–geometric mean inequality, which is a fun-
damental relation between two nonnegative real numbers. This inequality says that if a,b � 0 and 0 � ν � 1, then

aνb1−ν � νa + (1 − ν)b (1.1)

with equality if and only if a = b. If ν = 1
2 , we obtain the arithmetic–geometric mean inequality

√
ab � a + b

2
. (1.2)

If p,q > 1 such that 1
p + 1

q = 1, then the inequality (1.1) can be written as

ab � ap

p
+ bq

q
. (1.3)
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A matrix version proved in [2] says that if A, B ∈ Mn(C) are positive semidefinite, then

s j(AB) � s j

(
Ap

p
+ Bq

q

)
(1.4)

for j = 1, . . . ,n.
The special case where p = q = 2 has been obtained earlier in [6]. Young’s inequality in operator algebras has been

considered in [8] and references therein.
It follows immediately from (1.4) that if A, B ∈ Mn(C) are positive semidefinite and 0 � ν � 1, then a trace version of

Young’s inequality holds:

tr
∣∣Aν B1−ν

∣∣ � tr
(
ν A + (1 − ν)B

)
. (1.5)

A determinant version of Young’s inequality is also known [10, p. 467]:

det
(

Aν B1−ν
)
� det

(
ν A + (1 − ν)B

)
. (1.6)

Bhatia and Parthasarathy [7] and Kosaki [12] proved that if A, B, X ∈ Mn(C) such that A and B are positive semidefinite
and if 0 � ν � 1, then∥∥Aν X B1−ν

∥∥
2 �

∥∥ν A X + (1 − ν)X B
∥∥

2. (1.7)

It should be mentioned here that for ν �= 1
2 , the inequality (1.7) may not hold for other unitarily invariant norms.

The Heinz means are defined as follows:

Hν(a,b) = aνb1−ν + a1−νbν

2

for 0 � ν � 1 and a,b � 0. It follows immediately from the inequalities (1.1) and (1.3) that the Heinz means interpolate
between the geometric mean and the arithmetic mean:

√
ab � aνb1−ν + a1−νbν

2
� a + b

2
. (1.8)

Bhatia and Davis proved in [5] that if A, B, X ∈ Mn(C) such that A and B are positive semidefinite and if 0 � ν � 1, then

∣∣∣∣∣∣A1/2 X B1/2
∣∣∣∣∣∣ �

∣∣∣∣
∣∣∣∣
∣∣∣∣ Aν X B1−ν + A1−ν X Bν

2

∣∣∣∣
∣∣∣∣
∣∣∣∣ �

∣∣∣∣
∣∣∣∣
∣∣∣∣ A X + X B

2

∣∣∣∣
∣∣∣∣
∣∣∣∣. (1.9)

The second inequality in (1.9) is known as Heinz inequality [4, p. 265].
Recently, Audenaert [3] gave a singular value inequality for Heinz means of matrices as follows:
If A, B ∈ Mn(C) are positive semidefinite and 0 � ν � 1, then

s j
(

Aν B1−ν + A1−ν Bν
)
� s j(A + B) (1.10)

for j = 1, . . . ,n.
The inequality (1.10) entails the second inequality in (1.9) for the case X = I . Recall that unitarily invariant norms are

increasing functions of singular values.
In this paper, we refine Young’s inequality (1.1) and the second inequality in (1.8). These refinements enable us to

establish improved Young and Heinz inequalities for matrices. In particular, we will improve the trace and the determinant
inequalities (1.5) and (1.6), and we will improve the Heinz inequality (the second inequality in (1.9)) for the Hilbert–Schmidt
norm. As an application of our improved Heinz inequality, we will investigate the equality condition in the inequality (1.10).
Though we confine our discussion to matrices, by slight modification the norm inequalities we obtain here can be extended
to operators on an infinite-dimensional complex separable Hilbert space. In this setting, when we consider |||T |||, we are
implicitly assuming that the operator T belongs to the norm ideal associated with ||| · |||.

2. Refinements of the scalar Young’s inequality

We begin this section with the following refinement of the scalar Young’s inequality (1.1).

Theorem 2.1. If a,b � 0 and 0 � ν � 1, then

aνb1−ν + r0(
√

a − √
b)2 � νa + (1 − ν)b, (2.1)

where r0 = min{ν,1 − ν}.
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Proof. If ν = 1
2 , the inequality (2.1) becomes an equality. Assume that ν < 1

2 . Then, by the inequality (1.1), we have

νa + (1 − ν)b − ν(
√

a − √
b)2 = 2ν

√
ab + (1 − 2ν)b

� (ab)νb1−2ν

= aνb1−ν,

and so

νa + (1 − ν)b � ν(
√

a − √
b)2 + aνb1−ν.

If 1 − ν < 1
2 , then

νa + (1 − ν)b − (1 − ν)(
√

a − √
b)2 = (2ν − 1)a + 2(1 − ν)

√
ab

� a2ν−1(ab)1−ν

= aνb1−ν,

and so

νa + (1 − ν)b � (1 − ν)(
√

a − √
b)2 + aνb1−ν .

Hence,

aνb1−ν + r0(
√

a − √
b)2 � νa + (1 − ν)b.

This completes the proof. �
As a direct consequence of Theorem 2.1, we have

aνb1−ν + a1−νbν + 2r0(
√

a − √
b)2 � a + b, (2.2)

and so

Hν(a,b) + r0(
√

a − √
b)2 � a + b

2
.

Corollary 2.2. If a,b � 0 and 0 � ν � 1, then(
aνb1−ν + a1−νbν

)2 + 2r0(a − b)2 � (a + b)2, (2.3)

where r0 = min{ν,1 − ν}.

Proof. By Theorem 2.1, we have

(a + b)2 − (
aνb1−ν + a1−νbv)2 = a2 + b2 − a2νb2(1−ν) − a2(1−ν)b2ν

= νa2 + (1 − ν)b2 − a2vb2(1−ν) + (1 − ν)a2 + vb2 − a2(1−ν)b2ν

� r0(a − b)2 + r0(a − b)2

= 2r0(a − b)2. �
Hirzallah and Kittaneh [9] obtained a related refinement of the scalar Young’s inequality as follows:(

aνb1−ν
)2 + r2

0(a − b)2 �
(
νa + (1 − ν)b

)2
. (2.4)

Remark. If we replace a by a2 and b by b2, the inequality (2.1) can be written in the form(
aνb1−ν

)2 + r0(a − b)2 � νa2 + (1 − ν)b2. (2.5)

When comparing the inequality (2.5) with the inequality (2.4), it is easy to observe that the left-hand side and the right-
hand side in the inequality (2.5) are greater than or equal to the corresponding sides in the inequality (2.4), respectively. It
should be noticed here that neither (2.4) nor (2.5) is uniformly better than the other.
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3. Improved Young and Heinz inequalities for matrices

Based on the refined Young inequality (2.4), it has been shown in [9] that if A, B, X ∈ Mn(C) such that A and B are
positive semidefinite and if 0 � ν � 1, then∥∥Aν X B1−ν

∥∥2
2 + r2

0‖A X − X B‖2
2 �

∥∥ν A X + (1 − ν)X B
∥∥2

2,

which is an improvement of the matrix Young inequality (1.7) for the Hilbert–Schmidt norm. In the next theorem, we give
refinements of both the trace and the determinant versions of Young’s inequality based on the refined Young inequality (2.1).
To do this, we need the following lemma (see, e.g., [4, p. 94]).

Lemma 3.1. Let A, B ∈ Mn(C). Then

n∑
j=1

s j(AB) �
n∑

j=1

s j(A)s j(B).

Theorem 3.2. Let A, B ∈ Mn(C) be positive semidefinite. If 0 � ν � 1, then

tr
∣∣Aν B1−ν

∣∣ + r0(
√

tr A − √
tr B)2 � tr

(
ν A + (1 − ν)B

)
.

If A and B are positive definite, then

det
(

Aν B1−ν
) + rn

0 det(A + B − 2A # B) � det
(
ν A + (1 − ν)B

)
,

where r0 = min{ν,1 − ν} and A # B = B1/2(B−1/2 AB−1/2)1/2 B1/2 is the geometric mean of A and B.

Proof. By the inequality (2.1), we have

νs j(A) + (1 − ν)s j(B) � sνj (A)s1−ν
j (B) + r0

(
s1/2

j (A) − s1/2
j (B)

)2

for j = 1, . . . ,n. Thus, by Lemma 3.1 and the Cauchy–Schwarz inequality, we have

tr
(
ν A + (1 − ν)B

) = ν tr A + (1 − ν) tr B

=
n∑

j=1

(
νs j(A) + (1 − ν)s j(B)

)

�
n∑

j=1

s j
(

Aν
)
s j

(
B1−ν

) + r0

(
n∑

j=1

s j(A) +
n∑

j=1

s j(B) − 2
n∑

j=1

s1/2
j (A)s1/2

j (B)

)

�
n∑

j=1

s j
(

Aν B1−ν
) + r0

(
tr A + tr B − 2

(
n∑

j=1

s j(A)

)1/2( n∑
j=1

s j(B)

)1/2)

= tr
∣∣Aν B1−ν

∣∣ + r0(
√

tr A − √
tr B)2.

This completes the proof of the trace inequality.
To prove the determinant inequality, note that by the inequality (2.1), we have

νs j
(

B
−1/2

AB−1/2) + (1 − ν) � s
ν

j

(
B

−1/2
AB−1/2) + r0

(
s

1/2
j

(
B

−1/2
AB−1/2) − 1

)2

for j = 1, . . . ,n. Thus,

det
(
νB−1/2 AB−1/2 + (1 − ν)I

) =
n∏

j=1

(
νs j

(
B−1/2 AB−1/2) + 1 − ν

)

�
n∏

j=1

[
sνj

(
B−1/2 AB−1/2) + r0

(
s1/2

j

(
B−1/2 AB−1/2) − 1

)2]

�
n∏

j=1

sνj
(

B−1/2 AB−1/2) + rn
0

n∏
j=1

(
s1/2

j

(
B−1/2 AB−1/2) − 1

)2

= det
(

B−1/2 AB−1/2)ν + rn det
((

B−1/2 AB−1/2)1/2 − I
)2

.
0
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Consequently,

det
(

Aν B1−ν
) + rn

0 det(A + B − 2A # B) � det
(
ν A + (1 − ν)B

)
. �

Remark. Ando’s singular value inequality (1.4) entails the norm inequality∣∣∣∣∣∣Aν B1−ν
∣∣∣∣∣∣ �

∣∣∣∣∣∣ν A + (1 − ν)B
∣∣∣∣∣∣. (3.1)

So, our Theorem 3.2 improves this inequality for the trace norm:∥∥Aν B1−ν
∥∥

1 + r0
(√‖A‖1 − √‖B‖1

)2 �
∥∥ν A + (1 − ν)B

∥∥
1. (3.2)

This is false for the spectral norm. To see this, let A = [ 2 0
0 3

]
, B = [ 1 0

0 0

]
, and ν = 1

2 .

In the next result, we give an improved arithmetic–geometric mean inequality for the Hilbert–Schmidt norm.

Theorem 3.3. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. Then

2
∥∥A1/2 X B1/2

∥∥
2 + (√‖A X‖2 − √‖X B‖2

)2 � ‖A X + X B‖2.

Proof. For Y , Z ∈ Mn(C), the formula 〈Y , Z〉 = tr Y Z∗ defines an inner product on Mn(C). So, by the fact that tr Y Z = tr Z Y ,
we have 〈A X, X B〉 = 〈X B, A X〉. Using the Cauchy–Schwarz inequality, we also have

〈A X, X B〉 = tr A X B X∗

= tr A1/2 X B1/2 B1/2 X∗ A1/2

= ∥∥A1/2 X B1/2
∥∥2

2

� ‖A X‖2‖X B‖2.

Now,

‖A X + X B‖2
2 − ((√‖A X‖2 − √‖X B‖2

)2 + 2
∥∥A1/2 X B1/2

∥∥
2

)2

= ‖A X‖2
2 + ‖X B‖2

2 + 2〈A X, X B〉 − 4
∥∥A1/2 X B1/2

∥∥2
2

− (√‖A X‖2 − √‖X B‖2
)4 − 4

∥∥A1/2 X B1/2
∥∥

2

(√‖A X‖2 − √‖X B‖2
)2

= ‖A X‖2
2 + ‖X B‖2

2 + 2〈A X, X B〉 − 4〈A X, X B〉 − (√‖A X‖2 − √‖X B‖2
)4

− 4
∥∥A1/2 X B1/2

∥∥
2

(√‖A X‖2 − √‖X B‖2
)2

= ‖A X‖2
2 + ‖X B‖2

2 − 2〈A X, X B〉 − (√‖A X‖2 − √‖X B‖2
)4 − 4

∥∥A1/2 X B1/2
∥∥

2

(√‖A X‖2 − √‖X B‖2
)2

� ‖A X‖2
2 + ‖X B‖2

2 − 2‖A X‖2‖X B‖2 − (√‖A X‖2 − √‖X B‖2
)4 − 4

∥∥A1/2 X B1/2
∥∥

2

(√‖A X‖2 − √‖X B‖2
)2

= (√‖A X‖2 − √‖X B‖2
)2[(√‖A X‖2 + √‖X B‖2

)2 − (√‖A X‖2 − √‖X B‖2
)2 − 4

∥∥A1/2 X B1/2
∥∥

2

]
= 4

(√‖A X‖2 − √‖X B‖2
)2(√‖A X‖2‖X B‖2 − ∥∥A1/2 X B1/2

∥∥
2

)
� 0.

Hence,

‖A X + X B‖2 �
(√‖A X‖2 − √‖X B‖2

)2 + 2
∥∥A1/2 X B1/2

∥∥
2.

This completes the proof. �
Our improved Heinz inequality for the Hilbert–Schmidt norm can be stated as follows:

Theorem 3.4. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. If 0 � ν � 1, then∥∥Aν X B1−ν + A1−ν X Bν
∥∥

2 + 2r0
(√‖A X‖2 − √‖X B‖2

)2 � ‖A X + X B‖2,

where r0 = min{ν,1 − ν}.
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Proof. First assume that A and B are positive definite matrices. The general case will follow from the special one by a
continuity argument. Since A, B > 0, it follows by the spectral theorem that there are unitary matrices U , V ∈ Mn(C) such
that A = U DU∗ and B = V E V ∗, where D = diag(λ1, λ2, . . . , λn), E = diag(μ1,μ2, . . . ,μn), and λi,μi > 0, i = 1,2, . . . ,n. If
Y = U∗ X V = [yij], then

Aν X B1−ν + A1−ν X Bν = U
(

DνY E1−ν + D1−νY Eν
)
U∗

= U
[(

λν
i μ

1−ν
j + λ1−ν

i μν
j

)
yij

]
U∗.

So,

∥∥Aν X B1−ν + A1−ν X Bν
∥∥

2 =
(

n∑
i, j=1

(
λν

i μ
1−ν
j + λ1−ν

i μν
j

)2|yij|2
)1/2

.

Let ψ(ν) = ‖Aν X B1−ν + A1−ν X Bν‖2, 0 � ν � 1. Then ψ is a continuous convex function on [0,1] (see [4, p. 265]).
Moreover, ψ is twice differentiable on (0,1). If f (ν) = ‖A X + X B‖2 −‖Aν X B1−ν + A1−ν X Bν‖2, then f (ν) = f (1−ν), f (0) =
f (1) = 0, and one can infer from [4, p. 265] that f is concave on [0,1], f ( 1

2 ) � 0, and f ′( 1
2 ) = 0.

Define g(ν) = 1
min{ν,1−ν} f (ν) for 0 < ν < 1. Then g can be rewritten as follows:

g(ν) =
{ f (ν)

ν , 0 < ν � 1
2 ,

f (1−ν)
1−ν , 1

2 � ν < 1.

So,

g′(ν) =
⎧⎨
⎩

ν f ′(ν)− f (ν)

ν2 , 0 < ν < 1
2 ,

−(1−ν) f ′(1−ν)+ f (1−ν)

(1−ν)2 , 1
2 < ν < 1.

Consider the function h(ν) = ν f ′(ν)− f (ν),0 � ν � 1. Then h(0) = 0 and h′(ν) = ν f ′′(ν) � 0, which means that h(ν) � 0.
Thus, ν f ′(ν) � f (ν) for 0 � ν � 1

2 . By a similar argument, we can show that f (1 − ν) � (1 − ν) f ′(ν) for 1
2 � ν � 1.

Therefore, g is decreasing on (0, 1
2 ) and increasing on ( 1

2 ,1). Since g′−( 1
2 ) = −4 f ( 1

2 ) and g′+( 1
2 ) = 4 f ( 1

2 ), it follows from
the continuity of g and the symmetry of g about ν = 1

2 that g attains its minimum at ν = 1
2 . Hence, g(ν) � g( 1

2 ), and so
by Theorem 3.3, we have

g(ν) � 2
(‖A X + X B‖2 − 2

∥∥A1/2 X B1/2
∥∥

2

)
� 2

(√‖A X‖2 − √‖X B‖2
)2

.

Thus,

‖A X + X B‖2 − ∥∥Aν X B1−ν + A1−ν X Bν
∥∥

2 � 2 min{ν,1 − ν}(√‖A X‖2 − √‖X B‖2
)2

.

To prove the general positive semidefinite case, assume that Aε = A + ε I and Bε = B + ε I , where ε is an arbitrary
positive real number. Then Aε and Bε are positive definite, and so by the above special case, we get∥∥Aν

ε X B1−ν
ε + A1−ν

ε X Bν
ε

∥∥
2 + 2r0

(√‖Aε X‖2 − √‖X Bε‖2
)2 � ‖Aε X + X Bε‖2.

The desired inequality now follows by letting ε →0. �
Another improvement of the Heinz inequality for the Hilbert–Schmidt norm can be stated as follows:

Theorem 3.5. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. If 0 � ν � 1, then∥∥Aν X B1−ν + A1−ν X Bν
∥∥2

2 + 2r0‖A X − X B‖2
2 � ‖A X + X B‖2

2,

where r0 = min{ν,1 − ν}.

Proof. The proof of this result can be accomplished by utilizing the inequality (2.3), the spectral theorem for positive
semidefinite matrices, and the unitary invariance of the Hilbert–Schmidt norm. �

It is known [1] that for ν �= 1
2 and ||| · ||| �= ‖ · ‖2, the X-version of the inequality (3.1) is not true. That is, for ν �= 1

2 and
||| · ||| �= ‖ · ‖2, the inequality |||Aν X B1−ν ||| � |||ν A X + (1 − ν)X B||| does not hold. However, it has been shown in [12] that
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∣∣∣∣∣∣Aν X B1−ν
∣∣∣∣∣∣ � ν|||A X ||| + (1 − ν)|||X B|||.

In view of the inequality (2.1), we can improve this inequality and generalize the inequality (3.2). To achieve this, we
need the following lemma [11].

Lemma 3.6. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. If 0 � ν � 1, then∣∣∣∣∣∣Aν X B1−ν
∣∣∣∣∣∣ � |||A X |||ν |||X B|||1−ν .

Theorem 3.7. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. If 0 � ν � 1, then∣∣∣∣∣∣Aν X B1−ν
∣∣∣∣∣∣ + r0

(√|||A X ||| − √|||X B|||)2 � ν|||A X ||| + (1 − ν)|||X B|||,
where r0 = min{ν,1 − ν}.

Proof. By Lemma 3.6 and the inequality (2.1), we have∣∣∣∣∣∣Aν X B1−ν
∣∣∣∣∣∣ + r0

(√|||A X ||| − √|||X B|||)2 � |||A X |||ν |||X B|||1−ν + r0
(√|||A X ||| − √|||X B|||)2

� ν|||A X ||| + (1 − ν)|||X B|||. �
Specializing Theorem 3.7 to the trace norm and letting X = I , we retain the inequality (3.2).
In the same vein, the triangle inequality, Lemma 3.6, and the inequality (2.3) yield the following result related to Theo-

rem 3.4.

Theorem 3.8. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. If 0 � ν � 1, then∣∣∣∣∣∣Aν X B1−ν + A1−ν X Bν
∣∣∣∣∣∣ + 2r0

(√|||A X ||| − √|||X B|||)2 � |||A X ||| + |||X B|||,
where r0 = min{ν,1 − ν}.

Specializing Theorem 3.8 to the trace norm and letting X = I , we obtain the following improved Heinz inequality for the
trace norm.

Corollary 3.9. Let A, B ∈ Mn(C) be positive semidefinite. If 0 � ν � 1, then∥∥Aν B1−ν + A1−ν Bν
∥∥

1 + 2r0
(√‖A‖1 − √‖B‖1

)2 � ‖A + B‖1.

As applications of Theorem 3.5, we give necessary and sufficient conditions for equality to hold in Heinz inequality (the
second inequality in (1.9)) for the Hilbert–Schmidt norm, and in the singular value inequality (1.10).

Corollary 3.10. Let A, B, X ∈ Mn(C) such that A and B are positive semidefinite. If 0 < ν < 1, then∥∥Aν X B1−ν + A1−ν X Bν
∥∥

2 = ‖A X + X B‖2

if and only if A X = X B.

Proof. If A X = X B , then by the spectral theorem, we have Aν X = X Bν and A1−ν X = X B1−ν . Thus, Aν X B1−ν + A1−ν X Bν =
Aν A1−ν X + X B1−ν Bν = A X + X B.

Conversely, assume that ‖Aν X B1−ν + A1−ν X Bν‖2 = ‖A X + X B‖2. Then it follows from Theorem 3.5 that ‖A X − X B‖2 = 0,

and so A X = X B . �
Corollary 3.11. Let A, B ∈ Mn(C) be positive semidefinite. If 0 < ν < 1, then

s j
(

Aν B1−ν + A1−ν Bν
) = s j(A + B)

for j = 1, . . . ,n if and only if A = B.

Proof. If A = B , then clearly Aν B1−ν + A1−ν Bν = A + B .
Conversely, assume that s j(Aν B1−ν + A1−ν Bν) = s j(A + B) for j = 1, . . . ,n. Then ‖Aν B1−ν + A1−ν Bν‖2 = ‖A + B‖2, and

so it follows from the case X = I of Corollary 3.10 that A = B. �
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