
ICITNS 2003 International Conference on Information Technology and Natural Sciences

AN INTEGRATED STRATEGY FOR DATA FRAGMENTATION AND
ALLOCATION IN A DISTRIBUTED DATABASE DESIGN

ISMAIL OMAR HABABEH
School of Computing

Leeds Metropolitan University
E-mail

ismail.hababeh@uaeu.ac.ae

NICHOLAS BOWRING
School of Computing

Leeds Metropolitan University
E-mail

N.Bowring@lmu.ac.uk

MUTHU RAMACHANDRAN
School of Computing

Leeds Metropolitan University
E-mail

M.Ramachandran@lmu.ac.uk

ABSTRACT

 A distributed database is structured from global
relations, fragmentation and data allocation. A global
relation can be divided into fragments and each
fragment may itself contain a relation. The
fragmentation describes how each fragment of the
distributed database is derived from the global relations.
The data allocation allows the allocation of discrete sets
of fragments to the sites of the computer network
supporting the distributed database.

 The objective of the present work is to develop a
strategy for distributed database design that is simple
and useful to achieve the objectives of data
fragmentation, allocation, and replication. It has been
designed to fragment and allocate data in a distributed
relational database system using different types of
computers on a network.

KEY WORDS

Data partitioning, segments, clustering, fragments,
benefit value, data allocation.

1. INTRODUCTION

 A distributed system is a collection of independent
computers that appear to the users of the system as a
single computer [1]. The trend in the computer field is
toward decentralization. The driving force governing
the movement away from centralized toward distributed
systems is that they have better performance than a
single large centralized system [2]. Academic, industrial
and governmental organizations have been using
distributed databases to support their needs. This use
was accelerated by the advance in telecommunication
systems and satisfied the geographical dispersed
information.

 This paper presents an approach for fragmentation
and allocation of data in a distributed relational
database and shows a way of grouping sites into
clusters to which fragments would be allocated.

 In this approach, the database relations will be
partitioned into pair-wise disjoint fragments, which will
be allocated to clusters and their respective sites
according to an allocating algorithm. This approach
describes a method to minimize the transactions
communication cost by distributing the database
relations over the sites, and increasing data availability
and integrity by allocating multiple copies of the same
database fragments over the sites.

2. BACKGROUND

 Existing distributed database methodologies are
limited in their theoretical and implementation parts.
They don't deal with distributed database issues
separately, don't optimize transaction response time,
don't test their performance on different types of
network connectivity, and present exponential time of
complexity.

 Various strategies have already been described that
effectively partition data across distributed systems.
Naturally, there are benefits and drawbacks to all
schemes. Minyoung and Yang-sun [3] have proposed a
methodology for partitioning and allocating data
effectively over a network for PC-based distributed
database design. The researchers present a cost model
and propose a heuristic procedure for merging mixed
fragments (grid cells), based on the joint cost and the
frequencies of the transactions accessing the cells. The
purpose of merging cells is to minimize the global
transaction processing cost. Because the sequence of
attributes has no meaning in a relation, the possible
combinations of horizontal merging can be minimized
to a time computation of complexity bounded by n(n-
1)/2 instead of 2 n -1.

 Navathe, Karlapalem, and Minyoung [4] have
presented a methodology for generating a mixed
fragmentation scheme (horizontal and vertical) for the
initial distributed database design phase. They form a
grid on a relation, which suggests all possible ways that

mailto:ismail.hababeh@uaeu.ac.ae
mailto:N.Bowring@lmu.ac.uk
mailto:M.Ramachandran@lmu.ac.uk

ICITNS 2003 International Conference on Information Technology and Natural Sciences

the global relation may be partitioned in a distributed
database system. This approach needs to incorporate
performance evaluation methods for merging grid cells,
and to articulate the architecture and functions that a
database server should have.

 Xuemin, Maria, and Yanchun [5] have investigated
the allocation of database fragments to a network so
that the overall communication cost for processing a
given set of transactions is minimized.

 Chun-Hung Cheng, Wing-Kin Lee, Kam-Fai Wong
[6] have explored the use of a genetic search-based
clustering algorithm for data partitioning to achieve
high database retrieval performance. They formulate the
clustering problem in data partitioning as a Travelling
Salesman Problem (TSP) and propose 2 genetic
operators SE and SP, as well as modified version of ER
operators to solve the associated (TSP). A vertical
partitioning technique is used in their algorithm, and
they show that their model is applied to solve the
horizontal partitioning problem.

 Motzkin D. [7] has developed a distributed database
design tool that provides for increased fault tolerance
and data availability. She has focused on how to assign
replications of fragments sites in a way that increases
the fault tolerance of the distributed database. The
design tool has two components: Initial Optimal
Fragment Distribution (IOFD), and Fault Tolerance
Enhancement (FTE) where each component is
composed of three units: input parameters, design
algorithm, and output. The algorithms used in this
model can utilize parallel processing, where
fragmentation and fragment assignment can be executed
in parallel.

 Tamhankar and Ram [8] have developed a
comprehensive methodology for fragmentation and
distribution of data across multiple sites such that
design objectives in terms of response time and
availability for transactions, and constraints on storage
space are adequately addressed. Daudpota and Nadeem
[9] have constructed a formal model of data allocation
and have derived an algorithm to fragment and allocate
the relations. Their work is not applied to the distributed
applications, which have different network connectivity
(LAN/WAN).

 Stonebraker [10] described a new architecture for
distributed data (Mariposa), which involves the design
of an experimental distributed data management system
providing high performance in an environment of high
data mobility and heterogeneous host capabilities. This
approach doesn’t guarantee the ability of all sites to
process a given portion of a given query.

 Peddemors and Hertzberger [11] have described the
first phase realization of a distributed database system
in which an iterative process is used to build the
distributed database system. Each phase has a set of
objectives, spans a limited amount of time, adds
functionality, and the output of every phase serves as
input for the next phase. However, in their work the
generic server interface is not easily usable; for every
application, a new server interface has to be written.
 Papastavrou, Samaras, and Pitoura [12] have
developed a Java-based distributed client/server
applications over the web to use mobile agents between
the client program and the server machine, to provide
database connectivity, processing and communication,
and to eliminate the overheads of the existing
methodologies. In case of executing multiple
transactions from the web client on the same database
module, it needs to connect, authenticate and disconnect
them separately, and the cost of transactions in this way
becomes costly.

 Lee, Shi, Y., and Stolen, J. [13] Mahmood, Khan,
H.U, and Fatmi, H.A [14], and March and Rho [15]
have studied allocating data over geographically
dispersed sites connected by data communication
networks. They have not covered post-allocation of
data, and they consider files reallocation only, and the
data and operation allocation problems are independent
and can be solved simultaneously.

 H.Lee,Y.-K.Park, G.Jang, S.-Y.Huh [16] have
proposed a heuristic methodology for determining file
and workload allocation simultaneously on a LAN. This
method minimizes the response time for processing
transactions. Only transactions with same properties are
routed to the same server, which does not guarantee the
minimization of the communication cost. Their
assumption of Non-redundant allocation decreases the
reliability of the system, and the impact of storing
fragment copies on the sites of the LAN is not very
significant.

 Yin-Fu Huang, Jyh-Her Chen [17] have proposed a
heuristic algorithm that reflects transaction behavior in
distributed database. Their model determines the
replicated number of each fragment and finds a near-
optimal allocation of all fragments in a WAN such that
the total communication cost is minimized. The
fragments accessed by a transaction are all assumed
independent, which is not the case in the real world.
This method neglects site information like storage and
processing capacity. Their model was applied on a LAN
network instead of WAN. They did not minimize the
transaction response time, and they consider the CPU
processing time and I/O access time as minor factors in
minimizing the total cost in the environment of WAN.

ICITNS 2003 International Conference on Information Technology and Natural Sciences

3. THE STRATEGY DESIGN

3.1 PARTITION THE DATABASE

 Partitioning the data across distributed systems is
essential and it can be done in different ways. The
research described in this paper discusses partitioning a
database into pair-wise disjoint fragments by using a
horizontal partitioning technique, in which the records
of a relation are assigned to different disjoint fragments
such that the relation can be obtained by union of the
disjoint fragments. In this type of fragmentation, all of
the information in the record is used, or else none is.
This method guarantees the ability of all sites to process
a given portion of a given transaction, but the other
partitioning methods need to incorporate performance
evaluation methods for merging grid cells, and to
articulate the architecture and functions that a database
server should have.

 Since a horizontal fragment technique is used; the
number of database segments is equal to the number of
applications. The global database is segmented through
the application sites using the relational operators
SELECT, JOIN, and SEMIJOIN [18]. These segments
are then split into fragments which are pair-wise
disjoint (to avoid allocating unnecessary records to the
fragments for a given application), and based on a
horizontal partitioning technique each fragment is either
completely required by a transaction, or it is not used at
all. There is no partial use.

Algorithm:
k = Number of the last fragment in the database (0 at

the beginning)

Repeat for all relations in the database

Repeat for all pairs of segments Si, Sj in each relation

where i ≠ j

 If Si ∩ Sj is not empty Then

k = k + 1

 Fk = Si ∩ Sj

 Fk+1 = Si - Fk

 Fk+2 = Sj - Fk

 Si and Sj are omitted

 End if

Until all pairs of segments in each relation have been

processed

Until all relations in the database have been processed

Rename the remain fragment numbers sequentially

 In the case of free records, which do not belong to
any fragment in any relation in the database, a new
fragment should be created and added to the collection
of fragments in that relation.

 Algorithm:

k = Number of the last fragment number

Repeat for all relations in the database

 k = k + 1

 Fk = R - ∪ Fi (for all fragments Fi in relation R)

 IF Fk is not empty then

 Add Fk to the collected fragments of the relation

 End if

Until all relations in the database have been processed

3.2 GROUPING SITES INTO CLUSTERS

 Clustering is a method of storing tables that can
increase I/O performance and reduce storage overhead.
Sites are grouped in clusters based on the
communication cost unit (cost of sending K bytes
between two sites).

 Grouping the sites into clusters helps to eliminate the
extra communication costs between the sites during the
process of data allocation. We developed an algorithm
for grouping sites into clusters, and determine whether
or not a set of sites assigned to a cluster. If the
communication cost between two or more sites is less
than, or equal to, a certain number X units (the
threshold between clusters depending on the site’s
network system) then it will be grouped together in one
cluster. Performing this procedure after partitioning the
data will minimize the communication costs between
clusters and sites, and the clustering algorithm in this
strategy is considered the fastest way to determine the
data allocation to a set of sites rather than site by site.

Algorithm:
 Repeat
 For I = 1 to the number of sites in the database
 For J = 1 to the number of sites in the database
 If I ≠ J and communication cost between site I and

site J <= X then
 Site I and site J are grouped together (at the same

cluster)
 End if
 End for
 End for
 Until all sites in the database have been processed

ICITNS 2003 International Conference on Information Technology and Natural Sciences

3.3 ALLOCATING FRAGMENTS TO

CLUSTERS

 To determine fragment allocation at clusters and
their respective sites, an algorithm based on a calculated
value (benefit value) has been developed. The algorithm
will determine whether the fragment is allocated to or
omitted from the cluster. This method attempts to
minimize the communication costs by distributing the
global database over the sites, increasing availability
and reliability where multiple copies of the same data
are allocated.

 Initially, fragments are allocated to all clusters
having applications, which use the fragment, and the
benefit (B) of allocating a fragment to a cluster is
computed. For each cluster, the benefit of allocating the
fragment to the cluster is computed as the cost of not
allocating the fragment to the cluster minus the cost of
allocating the fragment to the cluster.

 The cost of allocating the fragment is computed as
the sum of: cost of local retrievals, cost of local updates,
cost of space occupied by the fragment, and cost of
updates sent from other clusters (remote update). The
cost of not allocating a fragment is computed as the sum
of local retrievals plus the cost of local retrievals from
other clusters (remote clusters). This method of data
allocation minimizes the transactions total response
time. If the benefit of allocating the fragment to the
cluster is positive (greater than or equal zero) the
fragment is allocated to the cluster, otherwise the
fragment will be cancelled from the cluster.

 Fragment Fi is initially allocated to the site if it
satisfies the following condition: The cost of allocating
the fragment to the cluster is less than the cost of not
allocating the fragment to the same cluster (the
fragment handled remotely). The cost taken into
consideration for each cluster is the average
communication for all clusters. The following variables
are used in the allocating algorithm.

FREQR(Tj,Fi,Ck): Average number of frequency of

retrieval issued by transactions Tj’s to fragment Fi at

cluster Ck.

FREQR(Tj,Fi,Ck,Sx): Average number of frequency of

retrieval issued by transactions Tj’s to fragment Fi at

site Sx in cluster Ck.

FREQU(Tj,Fi,Ck): Average number of frequency of

update issued by transactions Tj’s to fragment Fi at

cluster Ck.

FREQU(Tj,Fi,Ck,Sx): Average number of frequency of

update issued by transactions Tj’s to fragment Fi at site

Sx in cluster Ck.

RCsum(Ci): Sum of remote communications at cluster

Ci.

RUsum(Ci): Sum of remote updates at cluster Ci.

RCsum(Ci,Sx): Sum of remote communications at site

Sx in cluster Ci.

RUsum(Ci,Sx): Sum of remote updates at site Sx in

cluster Ci.

CR(Ci): Average cost of retrieval at cluster Ci.

CR(Cj,Sx): Cost of retrieval at site Sx in cluster Cj.

CU(Ci): Average cost of update at cluster Ci.

CU(Cj,Sx): Cost of update at site Sx in cluster Cj.

CC(C): Average cost of communication between

clusters.

CC(S): Average cost of communication between sites.

ACC(C): Average cost of communications between

clusters other than the current one.

ACC(S): Average cost of communications between

sites other than the current one.

UR: Unit retrieval.

UU: Unit update.

UC: Unit communication (Bytes).

Rratio: Retrieval ratio.

Uratio: Update ratio.

Csp(Ci): Average cost of space of cluster Ci.

Csp(Cj,Sx): Average cost of space of site Sx in cluster

Cj.

Fsize(Fi): Size of fragment Fi (Bytes).

CNUsum: Sum of costs of not allocating fragment for

update.

CNCsum: Sum of costs of not allocating fragment for

communication.

CA(Fi,Cj): Cost of allocating fragment Fi to cluster Cj.

CA(Fi,Cj,Sx): Cost of allocating fragment Fi to site Sx in

cluster Cj.

CN(Fi,Cj): Cost of not allocating fragment Fi to cluster

Cj.

ICITNS 2003 International Conference on Information Technology and Natural Sciences

CN(Fi,Cj,Sx): Cost of not allocating fragment Fi to site

Sx in cluster Cj.

B(Fi,Cj): Benefit of allocating fragment Fi to cluster Cj.

B(Fi,Cj,Sx):Benefit of allocating fragment Fi to site Sx in

cluster Cj.

Algorithm:

For I = 1 to number of fragments in the database do

 CNUSUM = 0

 CNCSUM = 0

 For J = 1 to number of clusters at fragment I do

 For k = 1 to number of clusters at fragment I do

 If J ≠ k Then

 CNUSUM = CNUSUM + CU(Cj) *

FREQU(Tk,Fi,Ck)

 CNCSUM = CNCSUM + FREQU(Tk,Fi,Ck) *

Uratio * ACC(C)

 End if

 End for

 RUsum(Cj) = CNUSUM ;

RCsum(Cj) = CNCSUM ;

 CA(Fi,Cj) = CR(Cj) * FREQR(Tj,Fi,Cj) +

 CU(Cj) * FREQU(Tj,Fi,Cj) +

 Csp(Cj) * Fsize(Fi) + RUsum(Cj) + RCsum(Cj)

 CN(Fi,Cj) = CR(Cj) * FREQR(Tj,Fi,Cj) +

 FREQR(Tj,Fi,Cj) * Rratio * CC(C)

 B(Fi,Cj) = CN(Fi,Cj) - CA(Fi,Cj)

 End for

 CNUSUM = 0

 CNCSUM = 0

 End for

 The benefit is computed for all fragments at each
cluster, according to the algorithm described above. The
fragments that give positive benefit results are allocated
to the clusters.

3.4 ALLOCATING FRAGMENTS TO
THE SITES

 The fragments will be allocated to the sites of each
cluster if they show positive (benefit values).

 Data allocations could be increased or decreased to
meet the requirements of the strategy for the purpose of
availability, reliability, and integrity.

 The benefit of allocating fragments to sites in
clusters that are allocated by fragments are computed
and described in the following algorithm.

 Algorithm:

For I = 1 to number of fragments in the database do

 For J = 1 to number of clusters in fragment I do

 CNUSUM = 0

 CNCSUM = 0

 For k = 1 to number of sites at cluster J do

 For x = 1 to number of sites at cluster J do

 If k ≠ x then

 CNUSUM = CNUSUM + CU(Ck,Sx) *

FREQU(Tx,Fi,Ck,Sx)

 CNCSUM = CNCSUM + FREQU(Tx,Fi,Ck,Sx) *

Uratio * ACC(S)

 End if

 End for

 RUsum(Sk) = CNUSUM

 RCsum(Sk) = CNCSUM

 CA(Fi,Sk) = CR(Sk) * FREQR(Tk,Fi,Cj,Sk) +

 CU(Sk) * FREQU(Tk,Fi,Cj,Sk) +

 Csp(Sk) * Fsize(Fi) + RUsum(Sk) +

 RCsum(Sk)

 CN(Fi,Sk) = CR(Sk) * FREQR(Tk,Fi,Cj,Sk) +

 FREQR(Tk,Fi,Cj,Sk) * Rratio * CC(S)

 B(Fi,Sk) = CN(Fi,Sk) - CA(Fi,Sk)

 End for

 CNUSUM = 0

 CNCSUM = 0

 End for

 The benefit is computed for all sites at each cluster
that is allocated to the fragment.

3.5 FINAL ALLOCATING OF
FRAGMENTS TO THE SITES

Fragments are allocated to the sites which give

positive benefit results.

ICITNS 2003 International Conference on Information Technology and Natural Sciences

Algorithm:

 For I = 1 to number of fragments in the database do

 For J = 1 to number of clusters in fragment I do

 For k = 1 to number of sites at cluster J do

 IF B(Fi,Cj,Sk) > 0 then

 Allocate Fragment Fi to Cluster Cj in Site Sk

 Else

Distributing the segments and
fragments over the sites

0
20
40
60

1 2 3 4 5 6 7 8 9 101112

Site Number

Number
of
Segments

Number
of

 Cancel Allocation of Fragment Fi from Site

 Sk at Cluster Cj

 End if

 End for

 End for

 End for

3.6 COMPLEXITY OF COMPUTATION
 The time complexity of this research is described as
follows:
The complexity of the Define-Segment algorithm is
O(A*N) where A is the number of applications, and N
is the average number of records in each application.
The complexity of the Define-Fragment algorithm is
O(R*N2) where R is the number of relations, and N is
the average number of records in each relation. The
complexity of computing average retrieval and update
frequencies is O(F*S*A*N) where F is the number of
the fragments in the database, S is the number of sites,
A is the number of applications at each site, and N is
the average number of records in each application.

 Since the sites sorted on the basis of their clusters in
ascending order for each fragment, the strategy design
model has near optimal allocation complexity bounded
by O(R*N2 + F*S*A*N + A*N).

3.7 PERFORMANCE EVALUATION

 The average communication cost between clusters
and sites, as well as the average number of retrievals
and updates are used in the proposed algorithms,
because the time complexity needs for average
computations is less than the time complexity when
other techniques are used which depend on sorting the
sites according to some computation fields.

 System performance is enhanced by removing the
redundant records from the database segments and by
increasing availability and reliability where multiple
copies of the same data are allocated. That will reduce
the communication costs where the fragments are
needed frequently. Figure 1 shows the distribution of
segments and fragments over the sites (before and after
applying our algorithms) on a sample of 45 different
applications distributed over 12 sites connected through
different networks.

FIGURE 1. THE DISTRIBUTION OF SEGMENTS AND
FRAGMENTS OVER THE SITES

 4. CONCLUSION

 The strategy is designed to meet the requirements of
determining data fragmentation and allocation in
distributed database environment, minimizing the
communication cost between sites, and enhancing the
performance in a heterogeneous network environment
system. We described a horizontal partitioning
technique that partition the database into pair-wise
disjoint fragments and removing the redundant records
from the database segments which enhance the system
performance. A Clustering algorithm is developed to
group the sites into clusters which enables the system to
determine whether or not a set of sites are assigned to a
cluster based on their communication costs. This will
minimize the communication costs between the sites.
We developed data allocation algorithms to enhance
system performance by increasing availability and
reliability where multiple copies of the same data are
allocated. The strategy presents a near optimal
allocation complexity and it can be implemented in
different network environments even if the input
parameters (relations, sites, data fields, records, and
applications) are very large.

 In the future we will focus on finding a new
computation method to determine the least
communication cost between sites and adding an
adaptive algorithm to incorporate space and reliability
constraints during the determination of fragment
allocation.

ICITNS 2003 International Conference on Information Technology and Natural Sciences

REFERENCES

[1] Tanenbaum, Andrew, Distributed Database
Systems. Prentice Hall, 1995.

[2] Sape Mullender, Distributed Systems, Addison-
Wesley, 1993.

[3] Minyoung, Ra & Park, Yang-sun, Data
fragmentation and allocation for PC-based
distributed database design, Korea: Science &
Engineering Foundation 1992.

[4] Navathe, Karlapalem, and Minyoung, A mixed
fragmentation methodology for initial distributed
database design. Journal-of-Computer-and-
Software-Engineering.1995 vol.3, no.4; p.395-
425.

 [5] Xuemin, Maria, and Yanchun, On data allocation
with minimum overall communication costs in
distributed database design. Proceedings ICCI '93.
Fifth International Conference on Computing and
Information (Cat. No.93TH0563-7). IEEE
Comput. Soc. Press, Los Alamitos, CA, USA;
1993; xvi+587 pp. p.539-44.

 [6] Chun-Hung Cheng, Wing-Kin Lee, Kam-Fai
 Wong, A GeneticAlgorithm-Based Clustering

Approach for Database Partitioning. IEEE
Transactions On Systems, Man, And Cybernetics-
Part C: Applications and Reviews, 2002, August
Vol. 32 No. 3.

 [7] Motzkin D, A distributed database design tool that
provides for increased fault tolerance and data
availability. International Symposium on
Engineered Software Systems 1993. Proceedings
the ISESS Symposium. World Scientific,
Singapore; 1993; xvii+264. PP.222-36.

 [8] Tamhankar, AM & Ram S, Database
 Fragmentation and Allocation: An Integrated

Methodology and Case Study. IEEE Transactions
on Systems, Man. and Cybernetics-Part A.
Systems and Humans. 1998 Vol. 28. No 3. May
PP. 288 – 305.

 [9] Daudpota,NH, Five steps to construct a model of
data allocation for distributed database systems.
Journal of Intelligent Information Systems:
Integrating Artificial Intelligence and Database
Technologies. 1998 vol.11, no.2; Sept.-Oct. p.153-
68.

 [10] Stonebraker, Michael, Aoki, Paul, Devine,
Robert, Litwin, Withold and Olson, Michael,
Mariposa: A new architecture for distributed
data, IEEE Database Engineering. 1994 P. 54-
65.

 [11] Peddemors,AJH & Hertzberger LO, A high
performance distributed database system for
enhanced Internet services. Future-Generation-
Computer-Systems. 1999 vol.15, no.3; April
p.407-15.

 [12] Papastavrou, Samaras, and Pitoura, Mobile agents
 for WWW distributed database access.

Proceedings 15th International Conference on
Data Engineering (Cat. No.99CB36337). IEEE
Comput. Soc, Los Alamitos, CA, USA; 1999;
xxiii+648 pp. p.228-37.

 [13] Lee, Shi, Y., and Stolen, J, Allocating Data Files
Over a Wide Area network: Goal Setting and
Compromise Design. Information and
Management,1994 vol. 26, no. 2. p. 85-93.

 [14] Mahmood Khan H.U, and Fatmi H.A, Adaptive
File Allocation in Distributed Computer
Systems, Distributed Systems Engineering,1994
vol. 1, no. 6. p. 354-361.

 [15] March,ST & Rho,S. Allocating data and
 operations to nodes in distributed database

design. IEEE-Transactions-on-Knowledge-and-
Data-Engineering. 1995 vol.7, no.2; April p.305-
17.

 [16] H.Lee,Y.-K.Park, G.Jang, S.-Y.Huh, Designing a
distributed database on a local area network: A
methodology and decision support system.
Information and Software Technology. 2000, 42
P. 171-184.

[17] Yin-Fu Huang, Jyh-Her Chen, Fragment
Allocation in Distributed Database Design.
Journal of Information Science and Engineering.
2001, 17 P. 491-506.

 [18] M. Tamer Ozsu & Patrick Valduriez, Principles
of Distributed Database Systems. 2nd ed.
Prentice Hall, 1999.

	
	1. INTRODUCTION
	2. BACKGROUND
	Until all relations in the database have been processed
	3.2 GROUPING SITES INTO CLUSTERS
	
	REFERENCES
	
	
	
	

